Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Handle async block request by crypto hardware engine.
  4 *
  5 * Copyright (C) 2016 Linaro, Inc.
  6 *
  7 * Author: Baolin Wang <baolin.wang@linaro.org>
 
 
 
 
 
 
  8 */
  9
 10#include <linux/err.h>
 11#include <linux/delay.h>
 12#include <linux/device.h>
 13#include <crypto/engine.h>
 14#include <uapi/linux/sched/types.h>
 15#include "internal.h"
 16
 17#define CRYPTO_ENGINE_MAX_QLEN 10
 18
 19/**
 20 * crypto_finalize_request - finalize one request if the request is done
 21 * @engine: the hardware engine
 22 * @req: the request need to be finalized
 23 * @err: error number
 24 */
 25static void crypto_finalize_request(struct crypto_engine *engine,
 26				    struct crypto_async_request *req, int err)
 27{
 28	unsigned long flags;
 29	bool finalize_req = false;
 30	int ret;
 31	struct crypto_engine_ctx *enginectx;
 32
 33	/*
 34	 * If hardware cannot enqueue more requests
 35	 * and retry mechanism is not supported
 36	 * make sure we are completing the current request
 37	 */
 38	if (!engine->retry_support) {
 39		spin_lock_irqsave(&engine->queue_lock, flags);
 40		if (engine->cur_req == req) {
 41			finalize_req = true;
 42			engine->cur_req = NULL;
 43		}
 44		spin_unlock_irqrestore(&engine->queue_lock, flags);
 45	}
 46
 47	if (finalize_req || engine->retry_support) {
 48		enginectx = crypto_tfm_ctx(req->tfm);
 49		if (enginectx->op.prepare_request &&
 50		    enginectx->op.unprepare_request) {
 51			ret = enginectx->op.unprepare_request(engine, req);
 52			if (ret)
 53				dev_err(engine->dev, "failed to unprepare request\n");
 54		}
 55	}
 56	lockdep_assert_in_softirq();
 57	req->complete(req, err);
 58
 59	kthread_queue_work(engine->kworker, &engine->pump_requests);
 60}
 61
 62/**
 63 * crypto_pump_requests - dequeue one request from engine queue to process
 64 * @engine: the hardware engine
 65 * @in_kthread: true if we are in the context of the request pump thread
 66 *
 67 * This function checks if there is any request in the engine queue that
 68 * needs processing and if so call out to the driver to initialize hardware
 69 * and handle each request.
 70 */
 71static void crypto_pump_requests(struct crypto_engine *engine,
 72				 bool in_kthread)
 73{
 74	struct crypto_async_request *async_req, *backlog;
 
 
 75	unsigned long flags;
 76	bool was_busy = false;
 77	int ret;
 78	struct crypto_engine_ctx *enginectx;
 79
 80	spin_lock_irqsave(&engine->queue_lock, flags);
 81
 82	/* Make sure we are not already running a request */
 83	if (!engine->retry_support && engine->cur_req)
 84		goto out;
 85
 86	/* If another context is idling then defer */
 87	if (engine->idling) {
 88		kthread_queue_work(engine->kworker, &engine->pump_requests);
 89		goto out;
 90	}
 91
 92	/* Check if the engine queue is idle */
 93	if (!crypto_queue_len(&engine->queue) || !engine->running) {
 94		if (!engine->busy)
 95			goto out;
 96
 97		/* Only do teardown in the thread */
 98		if (!in_kthread) {
 99			kthread_queue_work(engine->kworker,
100					   &engine->pump_requests);
101			goto out;
102		}
103
104		engine->busy = false;
105		engine->idling = true;
106		spin_unlock_irqrestore(&engine->queue_lock, flags);
107
108		if (engine->unprepare_crypt_hardware &&
109		    engine->unprepare_crypt_hardware(engine))
110			dev_err(engine->dev, "failed to unprepare crypt hardware\n");
111
112		spin_lock_irqsave(&engine->queue_lock, flags);
113		engine->idling = false;
114		goto out;
115	}
116
117start_request:
118	/* Get the fist request from the engine queue to handle */
119	backlog = crypto_get_backlog(&engine->queue);
120	async_req = crypto_dequeue_request(&engine->queue);
121	if (!async_req)
122		goto out;
123
124	/*
125	 * If hardware doesn't support the retry mechanism,
126	 * keep track of the request we are processing now.
127	 * We'll need it on completion (crypto_finalize_request).
128	 */
129	if (!engine->retry_support)
130		engine->cur_req = async_req;
131
132	if (backlog)
133		backlog->complete(backlog, -EINPROGRESS);
134
135	if (engine->busy)
136		was_busy = true;
137	else
138		engine->busy = true;
139
140	spin_unlock_irqrestore(&engine->queue_lock, flags);
141
 
142	/* Until here we get the request need to be encrypted successfully */
143	if (!was_busy && engine->prepare_crypt_hardware) {
144		ret = engine->prepare_crypt_hardware(engine);
145		if (ret) {
146			dev_err(engine->dev, "failed to prepare crypt hardware\n");
147			goto req_err_2;
148		}
149	}
150
151	enginectx = crypto_tfm_ctx(async_req->tfm);
152
153	if (enginectx->op.prepare_request) {
154		ret = enginectx->op.prepare_request(engine, async_req);
 
 
 
 
 
 
 
 
155		if (ret) {
156			dev_err(engine->dev, "failed to prepare request: %d\n",
157				ret);
158			goto req_err_2;
159		}
160	}
161	if (!enginectx->op.do_one_request) {
162		dev_err(engine->dev, "failed to do request\n");
163		ret = -EINVAL;
164		goto req_err_1;
165	}
166
167	ret = enginectx->op.do_one_request(engine, async_req);
168
169	/* Request unsuccessfully executed by hardware */
170	if (ret < 0) {
171		/*
172		 * If hardware queue is full (-ENOSPC), requeue request
173		 * regardless of backlog flag.
174		 * Otherwise, unprepare and complete the request.
175		 */
176		if (!engine->retry_support ||
177		    (ret != -ENOSPC)) {
178			dev_err(engine->dev,
179				"Failed to do one request from queue: %d\n",
180				ret);
181			goto req_err_1;
182		}
183		/*
184		 * If retry mechanism is supported,
185		 * unprepare current request and
186		 * enqueue it back into crypto-engine queue.
187		 */
188		if (enginectx->op.unprepare_request) {
189			ret = enginectx->op.unprepare_request(engine,
190							      async_req);
191			if (ret)
192				dev_err(engine->dev,
193					"failed to unprepare request\n");
194		}
195		spin_lock_irqsave(&engine->queue_lock, flags);
196		/*
197		 * If hardware was unable to execute request, enqueue it
198		 * back in front of crypto-engine queue, to keep the order
199		 * of requests.
200		 */
201		crypto_enqueue_request_head(&engine->queue, async_req);
202
203		kthread_queue_work(engine->kworker, &engine->pump_requests);
204		goto out;
205	}
206
207	goto retry;
208
209req_err_1:
210	if (enginectx->op.unprepare_request) {
211		ret = enginectx->op.unprepare_request(engine, async_req);
212		if (ret)
213			dev_err(engine->dev, "failed to unprepare request\n");
214	}
215
216req_err_2:
217	async_req->complete(async_req, ret);
218
219retry:
220	/* If retry mechanism is supported, send new requests to engine */
221	if (engine->retry_support) {
222		spin_lock_irqsave(&engine->queue_lock, flags);
223		goto start_request;
224	}
225	return;
226
227out:
228	spin_unlock_irqrestore(&engine->queue_lock, flags);
229
230	/*
231	 * Batch requests is possible only if
232	 * hardware can enqueue multiple requests
233	 */
234	if (engine->do_batch_requests) {
235		ret = engine->do_batch_requests(engine);
236		if (ret)
237			dev_err(engine->dev, "failed to do batch requests: %d\n",
238				ret);
239	}
240
241	return;
242}
243
244static void crypto_pump_work(struct kthread_work *work)
245{
246	struct crypto_engine *engine =
247		container_of(work, struct crypto_engine, pump_requests);
248
249	crypto_pump_requests(engine, true);
250}
251
252/**
253 * crypto_transfer_request - transfer the new request into the engine queue
 
254 * @engine: the hardware engine
255 * @req: the request need to be listed into the engine queue
256 * @need_pump: indicates whether queue the pump of request to kthread_work
257 */
258static int crypto_transfer_request(struct crypto_engine *engine,
259				   struct crypto_async_request *req,
260				   bool need_pump)
261{
262	unsigned long flags;
263	int ret;
264
265	spin_lock_irqsave(&engine->queue_lock, flags);
266
267	if (!engine->running) {
268		spin_unlock_irqrestore(&engine->queue_lock, flags);
269		return -ESHUTDOWN;
270	}
271
272	ret = crypto_enqueue_request(&engine->queue, req);
273
274	if (!engine->busy && need_pump)
275		kthread_queue_work(engine->kworker, &engine->pump_requests);
276
277	spin_unlock_irqrestore(&engine->queue_lock, flags);
278	return ret;
279}
 
280
281/**
282 * crypto_transfer_request_to_engine - transfer one request to list
283 * into the engine queue
284 * @engine: the hardware engine
285 * @req: the request need to be listed into the engine queue
286 */
287static int crypto_transfer_request_to_engine(struct crypto_engine *engine,
288					     struct crypto_async_request *req)
289{
290	return crypto_transfer_request(engine, req, true);
291}
 
292
293/**
294 * crypto_transfer_aead_request_to_engine - transfer one aead_request
295 * to list into the engine queue
296 * @engine: the hardware engine
297 * @req: the request need to be listed into the engine queue
298 */
299int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine,
300					   struct aead_request *req)
301{
302	return crypto_transfer_request_to_engine(engine, &req->base);
303}
304EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine);
305
306/**
307 * crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request
308 * to list into the engine queue
309 * @engine: the hardware engine
310 * @req: the request need to be listed into the engine queue
311 */
312int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine,
313					       struct akcipher_request *req)
314{
315	return crypto_transfer_request_to_engine(engine, &req->base);
 
 
 
 
316}
317EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine);
318
319/**
320 * crypto_transfer_hash_request_to_engine - transfer one ahash_request
321 * to list into the engine queue
322 * @engine: the hardware engine
323 * @req: the request need to be listed into the engine queue
324 */
325int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine,
326					   struct ahash_request *req)
327{
328	return crypto_transfer_request_to_engine(engine, &req->base);
329}
330EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine);
331
332/**
333 * crypto_transfer_kpp_request_to_engine - transfer one kpp_request to list
334 * into the engine queue
335 * @engine: the hardware engine
336 * @req: the request need to be listed into the engine queue
337 */
338int crypto_transfer_kpp_request_to_engine(struct crypto_engine *engine,
339					  struct kpp_request *req)
340{
341	return crypto_transfer_request_to_engine(engine, &req->base);
342}
343EXPORT_SYMBOL_GPL(crypto_transfer_kpp_request_to_engine);
344
345/**
346 * crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request
347 * to list into the engine queue
348 * @engine: the hardware engine
349 * @req: the request need to be listed into the engine queue
350 */
351int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine,
352					       struct skcipher_request *req)
353{
354	return crypto_transfer_request_to_engine(engine, &req->base);
355}
356EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine);
357
358/**
359 * crypto_finalize_aead_request - finalize one aead_request if
360 * the request is done
361 * @engine: the hardware engine
362 * @req: the request need to be finalized
363 * @err: error number
364 */
365void crypto_finalize_aead_request(struct crypto_engine *engine,
366				  struct aead_request *req, int err)
367{
368	return crypto_finalize_request(engine, &req->base, err);
369}
370EXPORT_SYMBOL_GPL(crypto_finalize_aead_request);
371
372/**
373 * crypto_finalize_akcipher_request - finalize one akcipher_request if
374 * the request is done
375 * @engine: the hardware engine
376 * @req: the request need to be finalized
377 * @err: error number
378 */
379void crypto_finalize_akcipher_request(struct crypto_engine *engine,
380				      struct akcipher_request *req, int err)
381{
382	return crypto_finalize_request(engine, &req->base, err);
 
 
 
 
 
 
 
 
 
 
383}
384EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request);
385
386/**
387 * crypto_finalize_hash_request - finalize one ahash_request if
388 * the request is done
389 * @engine: the hardware engine
390 * @req: the request need to be finalized
391 * @err: error number
392 */
393void crypto_finalize_hash_request(struct crypto_engine *engine,
394				  struct ahash_request *req, int err)
395{
396	return crypto_finalize_request(engine, &req->base, err);
397}
398EXPORT_SYMBOL_GPL(crypto_finalize_hash_request);
399
400/**
401 * crypto_finalize_kpp_request - finalize one kpp_request if the request is done
402 * @engine: the hardware engine
403 * @req: the request need to be finalized
404 * @err: error number
405 */
406void crypto_finalize_kpp_request(struct crypto_engine *engine,
407				 struct kpp_request *req, int err)
408{
409	return crypto_finalize_request(engine, &req->base, err);
410}
411EXPORT_SYMBOL_GPL(crypto_finalize_kpp_request);
412
413/**
414 * crypto_finalize_skcipher_request - finalize one skcipher_request if
415 * the request is done
416 * @engine: the hardware engine
417 * @req: the request need to be finalized
418 * @err: error number
419 */
420void crypto_finalize_skcipher_request(struct crypto_engine *engine,
421				      struct skcipher_request *req, int err)
422{
423	return crypto_finalize_request(engine, &req->base, err);
 
 
 
 
 
424}
425EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request);
426
427/**
428 * crypto_engine_start - start the hardware engine
429 * @engine: the hardware engine need to be started
430 *
431 * Return 0 on success, else on fail.
432 */
433int crypto_engine_start(struct crypto_engine *engine)
434{
435	unsigned long flags;
436
437	spin_lock_irqsave(&engine->queue_lock, flags);
438
439	if (engine->running || engine->busy) {
440		spin_unlock_irqrestore(&engine->queue_lock, flags);
441		return -EBUSY;
442	}
443
444	engine->running = true;
445	spin_unlock_irqrestore(&engine->queue_lock, flags);
446
447	kthread_queue_work(engine->kworker, &engine->pump_requests);
448
449	return 0;
450}
451EXPORT_SYMBOL_GPL(crypto_engine_start);
452
453/**
454 * crypto_engine_stop - stop the hardware engine
455 * @engine: the hardware engine need to be stopped
456 *
457 * Return 0 on success, else on fail.
458 */
459int crypto_engine_stop(struct crypto_engine *engine)
460{
461	unsigned long flags;
462	unsigned int limit = 500;
463	int ret = 0;
464
465	spin_lock_irqsave(&engine->queue_lock, flags);
466
467	/*
468	 * If the engine queue is not empty or the engine is on busy state,
469	 * we need to wait for a while to pump the requests of engine queue.
470	 */
471	while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) {
472		spin_unlock_irqrestore(&engine->queue_lock, flags);
473		msleep(20);
474		spin_lock_irqsave(&engine->queue_lock, flags);
475	}
476
477	if (crypto_queue_len(&engine->queue) || engine->busy)
478		ret = -EBUSY;
479	else
480		engine->running = false;
481
482	spin_unlock_irqrestore(&engine->queue_lock, flags);
483
484	if (ret)
485		dev_warn(engine->dev, "could not stop engine\n");
486
487	return ret;
488}
489EXPORT_SYMBOL_GPL(crypto_engine_stop);
490
491/**
492 * crypto_engine_alloc_init_and_set - allocate crypto hardware engine structure
493 * and initialize it by setting the maximum number of entries in the software
494 * crypto-engine queue.
495 * @dev: the device attached with one hardware engine
496 * @retry_support: whether hardware has support for retry mechanism
497 * @cbk_do_batch: pointer to a callback function to be invoked when executing
498 *                a batch of requests.
499 *                This has the form:
500 *                callback(struct crypto_engine *engine)
501 *                where:
502 *                @engine: the crypto engine structure.
503 * @rt: whether this queue is set to run as a realtime task
504 * @qlen: maximum size of the crypto-engine queue
505 *
506 * This must be called from context that can sleep.
507 * Return: the crypto engine structure on success, else NULL.
508 */
509struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev,
510						       bool retry_support,
511						       int (*cbk_do_batch)(struct crypto_engine *engine),
512						       bool rt, int qlen)
513{
 
514	struct crypto_engine *engine;
515
516	if (!dev)
517		return NULL;
518
519	engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL);
520	if (!engine)
521		return NULL;
522
523	engine->dev = dev;
524	engine->rt = rt;
525	engine->running = false;
526	engine->busy = false;
527	engine->idling = false;
528	engine->retry_support = retry_support;
529	engine->priv_data = dev;
530	/*
531	 * Batch requests is possible only if
532	 * hardware has support for retry mechanism.
533	 */
534	engine->do_batch_requests = retry_support ? cbk_do_batch : NULL;
535
536	snprintf(engine->name, sizeof(engine->name),
537		 "%s-engine", dev_name(dev));
538
539	crypto_init_queue(&engine->queue, qlen);
540	spin_lock_init(&engine->queue_lock);
541
542	engine->kworker = kthread_create_worker(0, "%s", engine->name);
543	if (IS_ERR(engine->kworker)) {
544		dev_err(dev, "failed to create crypto request pump task\n");
545		return NULL;
546	}
547	kthread_init_work(&engine->pump_requests, crypto_pump_work);
548
549	if (engine->rt) {
550		dev_info(dev, "will run requests pump with realtime priority\n");
551		sched_set_fifo(engine->kworker->task);
552	}
553
554	return engine;
555}
556EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and_set);
557
558/**
559 * crypto_engine_alloc_init - allocate crypto hardware engine structure and
560 * initialize it.
561 * @dev: the device attached with one hardware engine
562 * @rt: whether this queue is set to run as a realtime task
563 *
564 * This must be called from context that can sleep.
565 * Return: the crypto engine structure on success, else NULL.
566 */
567struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt)
568{
569	return crypto_engine_alloc_init_and_set(dev, false, NULL, rt,
570						CRYPTO_ENGINE_MAX_QLEN);
571}
572EXPORT_SYMBOL_GPL(crypto_engine_alloc_init);
573
574/**
575 * crypto_engine_exit - free the resources of hardware engine when exit
576 * @engine: the hardware engine need to be freed
577 *
578 * Return 0 for success.
579 */
580int crypto_engine_exit(struct crypto_engine *engine)
581{
582	int ret;
583
584	ret = crypto_engine_stop(engine);
585	if (ret)
586		return ret;
587
588	kthread_destroy_worker(engine->kworker);
589
590	return 0;
591}
592EXPORT_SYMBOL_GPL(crypto_engine_exit);
593
594MODULE_LICENSE("GPL");
595MODULE_DESCRIPTION("Crypto hardware engine framework");
v4.10.11
 
  1/*
  2 * Handle async block request by crypto hardware engine.
  3 *
  4 * Copyright (C) 2016 Linaro, Inc.
  5 *
  6 * Author: Baolin Wang <baolin.wang@linaro.org>
  7 *
  8 * This program is free software; you can redistribute it and/or modify it
  9 * under the terms of the GNU General Public License as published by the Free
 10 * Software Foundation; either version 2 of the License, or (at your option)
 11 * any later version.
 12 *
 13 */
 14
 15#include <linux/err.h>
 16#include <linux/delay.h>
 
 17#include <crypto/engine.h>
 18#include <crypto/internal/hash.h>
 19#include "internal.h"
 20
 21#define CRYPTO_ENGINE_MAX_QLEN 10
 22
 23/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 24 * crypto_pump_requests - dequeue one request from engine queue to process
 25 * @engine: the hardware engine
 26 * @in_kthread: true if we are in the context of the request pump thread
 27 *
 28 * This function checks if there is any request in the engine queue that
 29 * needs processing and if so call out to the driver to initialize hardware
 30 * and handle each request.
 31 */
 32static void crypto_pump_requests(struct crypto_engine *engine,
 33				 bool in_kthread)
 34{
 35	struct crypto_async_request *async_req, *backlog;
 36	struct ahash_request *hreq;
 37	struct ablkcipher_request *breq;
 38	unsigned long flags;
 39	bool was_busy = false;
 40	int ret, rtype;
 
 41
 42	spin_lock_irqsave(&engine->queue_lock, flags);
 43
 44	/* Make sure we are not already running a request */
 45	if (engine->cur_req)
 46		goto out;
 47
 48	/* If another context is idling then defer */
 49	if (engine->idling) {
 50		kthread_queue_work(engine->kworker, &engine->pump_requests);
 51		goto out;
 52	}
 53
 54	/* Check if the engine queue is idle */
 55	if (!crypto_queue_len(&engine->queue) || !engine->running) {
 56		if (!engine->busy)
 57			goto out;
 58
 59		/* Only do teardown in the thread */
 60		if (!in_kthread) {
 61			kthread_queue_work(engine->kworker,
 62					   &engine->pump_requests);
 63			goto out;
 64		}
 65
 66		engine->busy = false;
 67		engine->idling = true;
 68		spin_unlock_irqrestore(&engine->queue_lock, flags);
 69
 70		if (engine->unprepare_crypt_hardware &&
 71		    engine->unprepare_crypt_hardware(engine))
 72			pr_err("failed to unprepare crypt hardware\n");
 73
 74		spin_lock_irqsave(&engine->queue_lock, flags);
 75		engine->idling = false;
 76		goto out;
 77	}
 78
 
 79	/* Get the fist request from the engine queue to handle */
 80	backlog = crypto_get_backlog(&engine->queue);
 81	async_req = crypto_dequeue_request(&engine->queue);
 82	if (!async_req)
 83		goto out;
 84
 85	engine->cur_req = async_req;
 
 
 
 
 
 
 
 86	if (backlog)
 87		backlog->complete(backlog, -EINPROGRESS);
 88
 89	if (engine->busy)
 90		was_busy = true;
 91	else
 92		engine->busy = true;
 93
 94	spin_unlock_irqrestore(&engine->queue_lock, flags);
 95
 96	rtype = crypto_tfm_alg_type(engine->cur_req->tfm);
 97	/* Until here we get the request need to be encrypted successfully */
 98	if (!was_busy && engine->prepare_crypt_hardware) {
 99		ret = engine->prepare_crypt_hardware(engine);
100		if (ret) {
101			pr_err("failed to prepare crypt hardware\n");
102			goto req_err;
103		}
104	}
105
106	switch (rtype) {
107	case CRYPTO_ALG_TYPE_AHASH:
108		hreq = ahash_request_cast(engine->cur_req);
109		if (engine->prepare_hash_request) {
110			ret = engine->prepare_hash_request(engine, hreq);
111			if (ret) {
112				pr_err("failed to prepare request: %d\n", ret);
113				goto req_err;
114			}
115			engine->cur_req_prepared = true;
116		}
117		ret = engine->hash_one_request(engine, hreq);
118		if (ret) {
119			pr_err("failed to hash one request from queue\n");
120			goto req_err;
 
121		}
122		return;
123	case CRYPTO_ALG_TYPE_ABLKCIPHER:
124		breq = ablkcipher_request_cast(engine->cur_req);
125		if (engine->prepare_cipher_request) {
126			ret = engine->prepare_cipher_request(engine, breq);
127			if (ret) {
128				pr_err("failed to prepare request: %d\n", ret);
129				goto req_err;
130			}
131			engine->cur_req_prepared = true;
 
 
 
 
 
 
 
 
 
 
 
 
132		}
133		ret = engine->cipher_one_request(engine, breq);
134		if (ret) {
135			pr_err("failed to cipher one request from queue\n");
136			goto req_err;
 
 
 
 
 
 
 
137		}
138		return;
139	default:
140		pr_err("failed to prepare request of unknown type\n");
141		return;
142	}
143
144req_err:
145	switch (rtype) {
146	case CRYPTO_ALG_TYPE_AHASH:
147		hreq = ahash_request_cast(engine->cur_req);
148		crypto_finalize_hash_request(engine, hreq, ret);
149		break;
150	case CRYPTO_ALG_TYPE_ABLKCIPHER:
151		breq = ablkcipher_request_cast(engine->cur_req);
152		crypto_finalize_cipher_request(engine, breq, ret);
153		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
154	}
155	return;
156
157out:
158	spin_unlock_irqrestore(&engine->queue_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
159}
160
161static void crypto_pump_work(struct kthread_work *work)
162{
163	struct crypto_engine *engine =
164		container_of(work, struct crypto_engine, pump_requests);
165
166	crypto_pump_requests(engine, true);
167}
168
169/**
170 * crypto_transfer_cipher_request - transfer the new request into the
171 * enginequeue
172 * @engine: the hardware engine
173 * @req: the request need to be listed into the engine queue
 
174 */
175int crypto_transfer_cipher_request(struct crypto_engine *engine,
176				   struct ablkcipher_request *req,
177				   bool need_pump)
178{
179	unsigned long flags;
180	int ret;
181
182	spin_lock_irqsave(&engine->queue_lock, flags);
183
184	if (!engine->running) {
185		spin_unlock_irqrestore(&engine->queue_lock, flags);
186		return -ESHUTDOWN;
187	}
188
189	ret = ablkcipher_enqueue_request(&engine->queue, req);
190
191	if (!engine->busy && need_pump)
192		kthread_queue_work(engine->kworker, &engine->pump_requests);
193
194	spin_unlock_irqrestore(&engine->queue_lock, flags);
195	return ret;
196}
197EXPORT_SYMBOL_GPL(crypto_transfer_cipher_request);
198
199/**
200 * crypto_transfer_cipher_request_to_engine - transfer one request to list
201 * into the engine queue
202 * @engine: the hardware engine
203 * @req: the request need to be listed into the engine queue
204 */
205int crypto_transfer_cipher_request_to_engine(struct crypto_engine *engine,
206					     struct ablkcipher_request *req)
207{
208	return crypto_transfer_cipher_request(engine, req, true);
209}
210EXPORT_SYMBOL_GPL(crypto_transfer_cipher_request_to_engine);
211
212/**
213 * crypto_transfer_hash_request - transfer the new request into the
214 * enginequeue
215 * @engine: the hardware engine
216 * @req: the request need to be listed into the engine queue
217 */
218int crypto_transfer_hash_request(struct crypto_engine *engine,
219				 struct ahash_request *req, bool need_pump)
220{
221	unsigned long flags;
222	int ret;
 
223
224	spin_lock_irqsave(&engine->queue_lock, flags);
225
226	if (!engine->running) {
227		spin_unlock_irqrestore(&engine->queue_lock, flags);
228		return -ESHUTDOWN;
229	}
230
231	ret = ahash_enqueue_request(&engine->queue, req);
232
233	if (!engine->busy && need_pump)
234		kthread_queue_work(engine->kworker, &engine->pump_requests);
235
236	spin_unlock_irqrestore(&engine->queue_lock, flags);
237	return ret;
238}
239EXPORT_SYMBOL_GPL(crypto_transfer_hash_request);
240
241/**
242 * crypto_transfer_hash_request_to_engine - transfer one request to list
243 * into the engine queue
244 * @engine: the hardware engine
245 * @req: the request need to be listed into the engine queue
246 */
247int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine,
248					   struct ahash_request *req)
249{
250	return crypto_transfer_hash_request(engine, req, true);
251}
252EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine);
253
254/**
255 * crypto_finalize_cipher_request - finalize one request if the request is done
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
256 * @engine: the hardware engine
257 * @req: the request need to be finalized
258 * @err: error number
259 */
260void crypto_finalize_cipher_request(struct crypto_engine *engine,
261				    struct ablkcipher_request *req, int err)
262{
263	unsigned long flags;
264	bool finalize_cur_req = false;
265	int ret;
266
267	spin_lock_irqsave(&engine->queue_lock, flags);
268	if (engine->cur_req == &req->base)
269		finalize_cur_req = true;
270	spin_unlock_irqrestore(&engine->queue_lock, flags);
271
272	if (finalize_cur_req) {
273		if (engine->cur_req_prepared &&
274		    engine->unprepare_cipher_request) {
275			ret = engine->unprepare_cipher_request(engine, req);
276			if (ret)
277				pr_err("failed to unprepare request\n");
278		}
279		spin_lock_irqsave(&engine->queue_lock, flags);
280		engine->cur_req = NULL;
281		engine->cur_req_prepared = false;
282		spin_unlock_irqrestore(&engine->queue_lock, flags);
283	}
284
285	req->base.complete(&req->base, err);
286
287	kthread_queue_work(engine->kworker, &engine->pump_requests);
288}
289EXPORT_SYMBOL_GPL(crypto_finalize_cipher_request);
290
291/**
292 * crypto_finalize_hash_request - finalize one request if the request is done
 
293 * @engine: the hardware engine
294 * @req: the request need to be finalized
295 * @err: error number
296 */
297void crypto_finalize_hash_request(struct crypto_engine *engine,
298				  struct ahash_request *req, int err)
299{
300	unsigned long flags;
301	bool finalize_cur_req = false;
302	int ret;
303
304	spin_lock_irqsave(&engine->queue_lock, flags);
305	if (engine->cur_req == &req->base)
306		finalize_cur_req = true;
307	spin_unlock_irqrestore(&engine->queue_lock, flags);
 
 
 
 
 
 
 
 
308
309	if (finalize_cur_req) {
310		if (engine->cur_req_prepared &&
311		    engine->unprepare_hash_request) {
312			ret = engine->unprepare_hash_request(engine, req);
313			if (ret)
314				pr_err("failed to unprepare request\n");
315		}
316		spin_lock_irqsave(&engine->queue_lock, flags);
317		engine->cur_req = NULL;
318		engine->cur_req_prepared = false;
319		spin_unlock_irqrestore(&engine->queue_lock, flags);
320	}
321
322	req->base.complete(&req->base, err);
323
324	kthread_queue_work(engine->kworker, &engine->pump_requests);
325}
326EXPORT_SYMBOL_GPL(crypto_finalize_hash_request);
327
328/**
329 * crypto_engine_start - start the hardware engine
330 * @engine: the hardware engine need to be started
331 *
332 * Return 0 on success, else on fail.
333 */
334int crypto_engine_start(struct crypto_engine *engine)
335{
336	unsigned long flags;
337
338	spin_lock_irqsave(&engine->queue_lock, flags);
339
340	if (engine->running || engine->busy) {
341		spin_unlock_irqrestore(&engine->queue_lock, flags);
342		return -EBUSY;
343	}
344
345	engine->running = true;
346	spin_unlock_irqrestore(&engine->queue_lock, flags);
347
348	kthread_queue_work(engine->kworker, &engine->pump_requests);
349
350	return 0;
351}
352EXPORT_SYMBOL_GPL(crypto_engine_start);
353
354/**
355 * crypto_engine_stop - stop the hardware engine
356 * @engine: the hardware engine need to be stopped
357 *
358 * Return 0 on success, else on fail.
359 */
360int crypto_engine_stop(struct crypto_engine *engine)
361{
362	unsigned long flags;
363	unsigned int limit = 500;
364	int ret = 0;
365
366	spin_lock_irqsave(&engine->queue_lock, flags);
367
368	/*
369	 * If the engine queue is not empty or the engine is on busy state,
370	 * we need to wait for a while to pump the requests of engine queue.
371	 */
372	while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) {
373		spin_unlock_irqrestore(&engine->queue_lock, flags);
374		msleep(20);
375		spin_lock_irqsave(&engine->queue_lock, flags);
376	}
377
378	if (crypto_queue_len(&engine->queue) || engine->busy)
379		ret = -EBUSY;
380	else
381		engine->running = false;
382
383	spin_unlock_irqrestore(&engine->queue_lock, flags);
384
385	if (ret)
386		pr_warn("could not stop engine\n");
387
388	return ret;
389}
390EXPORT_SYMBOL_GPL(crypto_engine_stop);
391
392/**
393 * crypto_engine_alloc_init - allocate crypto hardware engine structure and
394 * initialize it.
 
395 * @dev: the device attached with one hardware engine
 
 
 
 
 
 
 
396 * @rt: whether this queue is set to run as a realtime task
 
397 *
398 * This must be called from context that can sleep.
399 * Return: the crypto engine structure on success, else NULL.
400 */
401struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt)
 
 
 
402{
403	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
404	struct crypto_engine *engine;
405
406	if (!dev)
407		return NULL;
408
409	engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL);
410	if (!engine)
411		return NULL;
412
 
413	engine->rt = rt;
414	engine->running = false;
415	engine->busy = false;
416	engine->idling = false;
417	engine->cur_req_prepared = false;
418	engine->priv_data = dev;
 
 
 
 
 
 
419	snprintf(engine->name, sizeof(engine->name),
420		 "%s-engine", dev_name(dev));
421
422	crypto_init_queue(&engine->queue, CRYPTO_ENGINE_MAX_QLEN);
423	spin_lock_init(&engine->queue_lock);
424
425	engine->kworker = kthread_create_worker(0, "%s", engine->name);
426	if (IS_ERR(engine->kworker)) {
427		dev_err(dev, "failed to create crypto request pump task\n");
428		return NULL;
429	}
430	kthread_init_work(&engine->pump_requests, crypto_pump_work);
431
432	if (engine->rt) {
433		dev_info(dev, "will run requests pump with realtime priority\n");
434		sched_setscheduler(engine->kworker->task, SCHED_FIFO, &param);
435	}
436
437	return engine;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
438}
439EXPORT_SYMBOL_GPL(crypto_engine_alloc_init);
440
441/**
442 * crypto_engine_exit - free the resources of hardware engine when exit
443 * @engine: the hardware engine need to be freed
444 *
445 * Return 0 for success.
446 */
447int crypto_engine_exit(struct crypto_engine *engine)
448{
449	int ret;
450
451	ret = crypto_engine_stop(engine);
452	if (ret)
453		return ret;
454
455	kthread_destroy_worker(engine->kworker);
456
457	return 0;
458}
459EXPORT_SYMBOL_GPL(crypto_engine_exit);
460
461MODULE_LICENSE("GPL");
462MODULE_DESCRIPTION("Crypto hardware engine framework");