Linux Audio

Check our new training course

Loading...
v6.2
 1// SPDX-License-Identifier: GPL-2.0-only
 2/*
 3 * Memory Encryption Support Common Code
 4 *
 5 * Copyright (C) 2016 Advanced Micro Devices, Inc.
 6 *
 7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
 8 */
 9
 
 
 
 
 
10#include <linux/dma-direct.h>
11#include <linux/dma-mapping.h>
12#include <linux/swiotlb.h>
13#include <linux/cc_platform.h>
14#include <linux/mem_encrypt.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
16/* Override for DMA direct allocation check - ARCH_HAS_FORCE_DMA_UNENCRYPTED */
17bool force_dma_unencrypted(struct device *dev)
18{
19	/*
20	 * For SEV, all DMA must be to unencrypted addresses.
21	 */
22	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
23		return true;
24
25	/*
26	 * For SME, all DMA must be to unencrypted addresses if the
27	 * device does not support DMA to addresses that include the
28	 * encryption mask.
29	 */
30	if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
31		u64 dma_enc_mask = DMA_BIT_MASK(__ffs64(sme_me_mask));
32		u64 dma_dev_mask = min_not_zero(dev->coherent_dma_mask,
33						dev->bus_dma_limit);
34
35		if (dma_dev_mask <= dma_enc_mask)
36			return true;
37	}
38
39	return false;
40}
41
42static void print_mem_encrypt_feature_info(void)
43{
44	pr_info("Memory Encryption Features active:");
 
45
46	if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
47		pr_cont(" Intel TDX\n");
48		return;
 
 
 
 
 
 
 
 
 
 
 
49	}
50
51	pr_cont(" AMD");
 
 
 
 
 
52
53	/* Secure Memory Encryption */
54	if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
55		/*
56		 * SME is mutually exclusive with any of the SEV
57		 * features below.
58		 */
59		pr_cont(" SME\n");
60		return;
61	}
62
63	/* Secure Encrypted Virtualization */
64	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
65		pr_cont(" SEV");
66
67	/* Encrypted Register State */
68	if (cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
69		pr_cont(" SEV-ES");
70
71	/* Secure Nested Paging */
72	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
73		pr_cont(" SEV-SNP");
74
75	pr_cont("\n");
76}
77
78/* Architecture __weak replacement functions */
79void __init mem_encrypt_init(void)
80{
81	if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
82		return;
83
84	/* Call into SWIOTLB to update the SWIOTLB DMA buffers */
85	swiotlb_update_mem_attributes();
86
 
 
 
 
 
 
 
87	print_mem_encrypt_feature_info();
88}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * AMD Memory Encryption Support
  4 *
  5 * Copyright (C) 2016 Advanced Micro Devices, Inc.
  6 *
  7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
  8 */
  9
 10#define DISABLE_BRANCH_PROFILING
 11
 12#include <linux/linkage.h>
 13#include <linux/init.h>
 14#include <linux/mm.h>
 15#include <linux/dma-direct.h>
 
 16#include <linux/swiotlb.h>
 
 17#include <linux/mem_encrypt.h>
 18#include <linux/device.h>
 19#include <linux/kernel.h>
 20#include <linux/bitops.h>
 21#include <linux/dma-mapping.h>
 22#include <linux/virtio_config.h>
 23
 24#include <asm/tlbflush.h>
 25#include <asm/fixmap.h>
 26#include <asm/setup.h>
 27#include <asm/bootparam.h>
 28#include <asm/set_memory.h>
 29#include <asm/cacheflush.h>
 30#include <asm/processor-flags.h>
 31#include <asm/msr.h>
 32#include <asm/cmdline.h>
 33
 34#include "mm_internal.h"
 35
 36/*
 37 * Since SME related variables are set early in the boot process they must
 38 * reside in the .data section so as not to be zeroed out when the .bss
 39 * section is later cleared.
 40 */
 41u64 sme_me_mask __section(".data") = 0;
 42u64 sev_status __section(".data") = 0;
 43u64 sev_check_data __section(".data") = 0;
 44EXPORT_SYMBOL(sme_me_mask);
 45DEFINE_STATIC_KEY_FALSE(sev_enable_key);
 46EXPORT_SYMBOL_GPL(sev_enable_key);
 47
 48/* Buffer used for early in-place encryption by BSP, no locking needed */
 49static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE);
 50
 51/*
 52 * This routine does not change the underlying encryption setting of the
 53 * page(s) that map this memory. It assumes that eventually the memory is
 54 * meant to be accessed as either encrypted or decrypted but the contents
 55 * are currently not in the desired state.
 56 *
 57 * This routine follows the steps outlined in the AMD64 Architecture
 58 * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
 59 */
 60static void __init __sme_early_enc_dec(resource_size_t paddr,
 61				       unsigned long size, bool enc)
 62{
 63	void *src, *dst;
 64	size_t len;
 65
 66	if (!sme_me_mask)
 67		return;
 68
 69	wbinvd();
 70
 71	/*
 72	 * There are limited number of early mapping slots, so map (at most)
 73	 * one page at time.
 74	 */
 75	while (size) {
 76		len = min_t(size_t, sizeof(sme_early_buffer), size);
 77
 78		/*
 79		 * Create mappings for the current and desired format of
 80		 * the memory. Use a write-protected mapping for the source.
 81		 */
 82		src = enc ? early_memremap_decrypted_wp(paddr, len) :
 83			    early_memremap_encrypted_wp(paddr, len);
 84
 85		dst = enc ? early_memremap_encrypted(paddr, len) :
 86			    early_memremap_decrypted(paddr, len);
 87
 88		/*
 89		 * If a mapping can't be obtained to perform the operation,
 90		 * then eventual access of that area in the desired mode
 91		 * will cause a crash.
 92		 */
 93		BUG_ON(!src || !dst);
 94
 95		/*
 96		 * Use a temporary buffer, of cache-line multiple size, to
 97		 * avoid data corruption as documented in the APM.
 98		 */
 99		memcpy(sme_early_buffer, src, len);
100		memcpy(dst, sme_early_buffer, len);
101
102		early_memunmap(dst, len);
103		early_memunmap(src, len);
104
105		paddr += len;
106		size -= len;
107	}
108}
109
110void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
111{
112	__sme_early_enc_dec(paddr, size, true);
113}
114
115void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
116{
117	__sme_early_enc_dec(paddr, size, false);
118}
119
120static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
121					     bool map)
122{
123	unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
124	pmdval_t pmd_flags, pmd;
125
126	/* Use early_pmd_flags but remove the encryption mask */
127	pmd_flags = __sme_clr(early_pmd_flags);
128
129	do {
130		pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
131		__early_make_pgtable((unsigned long)vaddr, pmd);
132
133		vaddr += PMD_SIZE;
134		paddr += PMD_SIZE;
135		size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
136	} while (size);
137
138	flush_tlb_local();
139}
140
141void __init sme_unmap_bootdata(char *real_mode_data)
142{
143	struct boot_params *boot_data;
144	unsigned long cmdline_paddr;
145
146	if (!sme_active())
147		return;
148
149	/* Get the command line address before unmapping the real_mode_data */
150	boot_data = (struct boot_params *)real_mode_data;
151	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
152
153	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
154
155	if (!cmdline_paddr)
156		return;
157
158	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
159}
160
161void __init sme_map_bootdata(char *real_mode_data)
162{
163	struct boot_params *boot_data;
164	unsigned long cmdline_paddr;
165
166	if (!sme_active())
167		return;
168
169	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
170
171	/* Get the command line address after mapping the real_mode_data */
172	boot_data = (struct boot_params *)real_mode_data;
173	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
174
175	if (!cmdline_paddr)
176		return;
177
178	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
179}
180
181void __init sme_early_init(void)
182{
183	unsigned int i;
184
185	if (!sme_me_mask)
186		return;
187
188	early_pmd_flags = __sme_set(early_pmd_flags);
189
190	__supported_pte_mask = __sme_set(__supported_pte_mask);
191
192	/* Update the protection map with memory encryption mask */
193	for (i = 0; i < ARRAY_SIZE(protection_map); i++)
194		protection_map[i] = pgprot_encrypted(protection_map[i]);
195
196	if (sev_active())
197		swiotlb_force = SWIOTLB_FORCE;
198}
199
200void __init sev_setup_arch(void)
201{
202	phys_addr_t total_mem = memblock_phys_mem_size();
203	unsigned long size;
204
205	if (!sev_active())
206		return;
207
208	/*
209	 * For SEV, all DMA has to occur via shared/unencrypted pages.
210	 * SEV uses SWIOTLB to make this happen without changing device
211	 * drivers. However, depending on the workload being run, the
212	 * default 64MB of SWIOTLB may not be enough and SWIOTLB may
213	 * run out of buffers for DMA, resulting in I/O errors and/or
214	 * performance degradation especially with high I/O workloads.
215	 *
216	 * Adjust the default size of SWIOTLB for SEV guests using
217	 * a percentage of guest memory for SWIOTLB buffers.
218	 * Also, as the SWIOTLB bounce buffer memory is allocated
219	 * from low memory, ensure that the adjusted size is within
220	 * the limits of low available memory.
221	 *
222	 * The percentage of guest memory used here for SWIOTLB buffers
223	 * is more of an approximation of the static adjustment which
224	 * 64MB for <1G, and ~128M to 256M for 1G-to-4G, i.e., the 6%
225	 */
226	size = total_mem * 6 / 100;
227	size = clamp_val(size, IO_TLB_DEFAULT_SIZE, SZ_1G);
228	swiotlb_adjust_size(size);
229}
230
231static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
232{
233	pgprot_t old_prot, new_prot;
234	unsigned long pfn, pa, size;
235	pte_t new_pte;
236
237	switch (level) {
238	case PG_LEVEL_4K:
239		pfn = pte_pfn(*kpte);
240		old_prot = pte_pgprot(*kpte);
241		break;
242	case PG_LEVEL_2M:
243		pfn = pmd_pfn(*(pmd_t *)kpte);
244		old_prot = pmd_pgprot(*(pmd_t *)kpte);
245		break;
246	case PG_LEVEL_1G:
247		pfn = pud_pfn(*(pud_t *)kpte);
248		old_prot = pud_pgprot(*(pud_t *)kpte);
249		break;
250	default:
251		return;
252	}
253
254	new_prot = old_prot;
255	if (enc)
256		pgprot_val(new_prot) |= _PAGE_ENC;
257	else
258		pgprot_val(new_prot) &= ~_PAGE_ENC;
259
260	/* If prot is same then do nothing. */
261	if (pgprot_val(old_prot) == pgprot_val(new_prot))
262		return;
263
264	pa = pfn << PAGE_SHIFT;
265	size = page_level_size(level);
266
267	/*
268	 * We are going to perform in-place en-/decryption and change the
269	 * physical page attribute from C=1 to C=0 or vice versa. Flush the
270	 * caches to ensure that data gets accessed with the correct C-bit.
271	 */
272	clflush_cache_range(__va(pa), size);
273
274	/* Encrypt/decrypt the contents in-place */
275	if (enc)
276		sme_early_encrypt(pa, size);
277	else
278		sme_early_decrypt(pa, size);
279
280	/* Change the page encryption mask. */
281	new_pte = pfn_pte(pfn, new_prot);
282	set_pte_atomic(kpte, new_pte);
283}
284
285static int __init early_set_memory_enc_dec(unsigned long vaddr,
286					   unsigned long size, bool enc)
287{
288	unsigned long vaddr_end, vaddr_next;
289	unsigned long psize, pmask;
290	int split_page_size_mask;
291	int level, ret;
292	pte_t *kpte;
293
294	vaddr_next = vaddr;
295	vaddr_end = vaddr + size;
296
297	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
298		kpte = lookup_address(vaddr, &level);
299		if (!kpte || pte_none(*kpte)) {
300			ret = 1;
301			goto out;
302		}
303
304		if (level == PG_LEVEL_4K) {
305			__set_clr_pte_enc(kpte, level, enc);
306			vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
307			continue;
308		}
309
310		psize = page_level_size(level);
311		pmask = page_level_mask(level);
312
313		/*
314		 * Check whether we can change the large page in one go.
315		 * We request a split when the address is not aligned and
316		 * the number of pages to set/clear encryption bit is smaller
317		 * than the number of pages in the large page.
318		 */
319		if (vaddr == (vaddr & pmask) &&
320		    ((vaddr_end - vaddr) >= psize)) {
321			__set_clr_pte_enc(kpte, level, enc);
322			vaddr_next = (vaddr & pmask) + psize;
323			continue;
324		}
325
326		/*
327		 * The virtual address is part of a larger page, create the next
328		 * level page table mapping (4K or 2M). If it is part of a 2M
329		 * page then we request a split of the large page into 4K
330		 * chunks. A 1GB large page is split into 2M pages, resp.
331		 */
332		if (level == PG_LEVEL_2M)
333			split_page_size_mask = 0;
334		else
335			split_page_size_mask = 1 << PG_LEVEL_2M;
336
337		/*
338		 * kernel_physical_mapping_change() does not flush the TLBs, so
339		 * a TLB flush is required after we exit from the for loop.
340		 */
341		kernel_physical_mapping_change(__pa(vaddr & pmask),
342					       __pa((vaddr_end & pmask) + psize),
343					       split_page_size_mask);
344	}
345
346	ret = 0;
347
348out:
349	__flush_tlb_all();
350	return ret;
351}
352
353int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
354{
355	return early_set_memory_enc_dec(vaddr, size, false);
356}
357
358int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
359{
360	return early_set_memory_enc_dec(vaddr, size, true);
361}
362
363/*
364 * SME and SEV are very similar but they are not the same, so there are
365 * times that the kernel will need to distinguish between SME and SEV. The
366 * sme_active() and sev_active() functions are used for this.  When a
367 * distinction isn't needed, the mem_encrypt_active() function can be used.
368 *
369 * The trampoline code is a good example for this requirement.  Before
370 * paging is activated, SME will access all memory as decrypted, but SEV
371 * will access all memory as encrypted.  So, when APs are being brought
372 * up under SME the trampoline area cannot be encrypted, whereas under SEV
373 * the trampoline area must be encrypted.
374 */
375bool sev_active(void)
376{
377	return sev_status & MSR_AMD64_SEV_ENABLED;
378}
379
380bool sme_active(void)
381{
382	return sme_me_mask && !sev_active();
383}
384EXPORT_SYMBOL_GPL(sev_active);
385
386/* Needs to be called from non-instrumentable code */
387bool noinstr sev_es_active(void)
388{
389	return sev_status & MSR_AMD64_SEV_ES_ENABLED;
390}
391
392/* Override for DMA direct allocation check - ARCH_HAS_FORCE_DMA_UNENCRYPTED */
393bool force_dma_unencrypted(struct device *dev)
394{
395	/*
396	 * For SEV, all DMA must be to unencrypted addresses.
397	 */
398	if (sev_active())
399		return true;
400
401	/*
402	 * For SME, all DMA must be to unencrypted addresses if the
403	 * device does not support DMA to addresses that include the
404	 * encryption mask.
405	 */
406	if (sme_active()) {
407		u64 dma_enc_mask = DMA_BIT_MASK(__ffs64(sme_me_mask));
408		u64 dma_dev_mask = min_not_zero(dev->coherent_dma_mask,
409						dev->bus_dma_limit);
410
411		if (dma_dev_mask <= dma_enc_mask)
412			return true;
413	}
414
415	return false;
416}
417
418void __init mem_encrypt_free_decrypted_mem(void)
419{
420	unsigned long vaddr, vaddr_end, npages;
421	int r;
422
423	vaddr = (unsigned long)__start_bss_decrypted_unused;
424	vaddr_end = (unsigned long)__end_bss_decrypted;
425	npages = (vaddr_end - vaddr) >> PAGE_SHIFT;
426
427	/*
428	 * The unused memory range was mapped decrypted, change the encryption
429	 * attribute from decrypted to encrypted before freeing it.
430	 */
431	if (mem_encrypt_active()) {
432		r = set_memory_encrypted(vaddr, npages);
433		if (r) {
434			pr_warn("failed to free unused decrypted pages\n");
435			return;
436		}
437	}
438
439	free_init_pages("unused decrypted", vaddr, vaddr_end);
440}
441
442static void print_mem_encrypt_feature_info(void)
443{
444	pr_info("AMD Memory Encryption Features active:");
445
446	/* Secure Memory Encryption */
447	if (sme_active()) {
448		/*
449		 * SME is mutually exclusive with any of the SEV
450		 * features below.
451		 */
452		pr_cont(" SME\n");
453		return;
454	}
455
456	/* Secure Encrypted Virtualization */
457	if (sev_active())
458		pr_cont(" SEV");
459
460	/* Encrypted Register State */
461	if (sev_es_active())
462		pr_cont(" SEV-ES");
463
 
 
 
 
464	pr_cont("\n");
465}
466
467/* Architecture __weak replacement functions */
468void __init mem_encrypt_init(void)
469{
470	if (!sme_me_mask)
471		return;
472
473	/* Call into SWIOTLB to update the SWIOTLB DMA buffers */
474	swiotlb_update_mem_attributes();
475
476	/*
477	 * With SEV, we need to unroll the rep string I/O instructions,
478	 * but SEV-ES supports them through the #VC handler.
479	 */
480	if (sev_active() && !sev_es_active())
481		static_branch_enable(&sev_enable_key);
482
483	print_mem_encrypt_feature_info();
484}
485
486int arch_has_restricted_virtio_memory_access(void)
487{
488	return sev_active();
489}
490EXPORT_SYMBOL_GPL(arch_has_restricted_virtio_memory_access);