Linux Audio

Check our new training course

Loading...
v6.2
 1// SPDX-License-Identifier: GPL-2.0-only
 2/*
 3 * Memory Encryption Support Common Code
 4 *
 5 * Copyright (C) 2016 Advanced Micro Devices, Inc.
 6 *
 7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
 
 
 
 
 8 */
 9
 
 
 
 
 
10#include <linux/dma-direct.h>
11#include <linux/dma-mapping.h>
12#include <linux/swiotlb.h>
13#include <linux/cc_platform.h>
14#include <linux/mem_encrypt.h>
15
16/* Override for DMA direct allocation check - ARCH_HAS_FORCE_DMA_UNENCRYPTED */
17bool force_dma_unencrypted(struct device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18{
19	/*
20	 * For SEV, all DMA must be to unencrypted addresses.
21	 */
22	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
23		return true;
 
 
24
25	/*
26	 * For SME, all DMA must be to unencrypted addresses if the
27	 * device does not support DMA to addresses that include the
28	 * encryption mask.
29	 */
30	if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
31		u64 dma_enc_mask = DMA_BIT_MASK(__ffs64(sme_me_mask));
32		u64 dma_dev_mask = min_not_zero(dev->coherent_dma_mask,
33						dev->bus_dma_limit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
35		if (dma_dev_mask <= dma_enc_mask)
36			return true;
37	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
39	return false;
40}
41
42static void print_mem_encrypt_feature_info(void)
43{
44	pr_info("Memory Encryption Features active:");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
46	if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
47		pr_cont(" Intel TDX\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48		return;
49	}
50
51	pr_cont(" AMD");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
53	/* Secure Memory Encryption */
54	if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
55		/*
56		 * SME is mutually exclusive with any of the SEV
57		 * features below.
 
 
58		 */
59		pr_cont(" SME\n");
60		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61	}
62
63	/* Secure Encrypted Virtualization */
64	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
65		pr_cont(" SEV");
66
67	/* Encrypted Register State */
68	if (cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
69		pr_cont(" SEV-ES");
70
71	/* Secure Nested Paging */
72	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
73		pr_cont(" SEV-SNP");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
75	pr_cont("\n");
 
 
76}
 
77
78/* Architecture __weak replacement functions */
79void __init mem_encrypt_init(void)
80{
81	if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
82		return;
83
84	/* Call into SWIOTLB to update the SWIOTLB DMA buffers */
85	swiotlb_update_mem_attributes();
86
87	print_mem_encrypt_feature_info();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88}
v4.17
 
  1/*
  2 * AMD Memory Encryption Support
  3 *
  4 * Copyright (C) 2016 Advanced Micro Devices, Inc.
  5 *
  6 * Author: Tom Lendacky <thomas.lendacky@amd.com>
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 */
 12
 13#define DISABLE_BRANCH_PROFILING
 14
 15#include <linux/linkage.h>
 16#include <linux/init.h>
 17#include <linux/mm.h>
 18#include <linux/dma-direct.h>
 
 19#include <linux/swiotlb.h>
 
 20#include <linux/mem_encrypt.h>
 21
 22#include <asm/tlbflush.h>
 23#include <asm/fixmap.h>
 24#include <asm/setup.h>
 25#include <asm/bootparam.h>
 26#include <asm/set_memory.h>
 27#include <asm/cacheflush.h>
 28#include <asm/processor-flags.h>
 29#include <asm/msr.h>
 30#include <asm/cmdline.h>
 31
 32#include "mm_internal.h"
 33
 34/*
 35 * Since SME related variables are set early in the boot process they must
 36 * reside in the .data section so as not to be zeroed out when the .bss
 37 * section is later cleared.
 38 */
 39u64 sme_me_mask __section(.data) = 0;
 40EXPORT_SYMBOL(sme_me_mask);
 41DEFINE_STATIC_KEY_FALSE(sev_enable_key);
 42EXPORT_SYMBOL_GPL(sev_enable_key);
 43
 44bool sev_enabled __section(.data);
 45
 46/* Buffer used for early in-place encryption by BSP, no locking needed */
 47static char sme_early_buffer[PAGE_SIZE] __aligned(PAGE_SIZE);
 48
 49/*
 50 * This routine does not change the underlying encryption setting of the
 51 * page(s) that map this memory. It assumes that eventually the memory is
 52 * meant to be accessed as either encrypted or decrypted but the contents
 53 * are currently not in the desired state.
 54 *
 55 * This routine follows the steps outlined in the AMD64 Architecture
 56 * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
 57 */
 58static void __init __sme_early_enc_dec(resource_size_t paddr,
 59				       unsigned long size, bool enc)
 60{
 61	void *src, *dst;
 62	size_t len;
 63
 64	if (!sme_me_mask)
 65		return;
 66
 67	wbinvd();
 68
 69	/*
 70	 * There are limited number of early mapping slots, so map (at most)
 71	 * one page at time.
 
 72	 */
 73	while (size) {
 74		len = min_t(size_t, sizeof(sme_early_buffer), size);
 75
 76		/*
 77		 * Create mappings for the current and desired format of
 78		 * the memory. Use a write-protected mapping for the source.
 79		 */
 80		src = enc ? early_memremap_decrypted_wp(paddr, len) :
 81			    early_memremap_encrypted_wp(paddr, len);
 82
 83		dst = enc ? early_memremap_encrypted(paddr, len) :
 84			    early_memremap_decrypted(paddr, len);
 85
 86		/*
 87		 * If a mapping can't be obtained to perform the operation,
 88		 * then eventual access of that area in the desired mode
 89		 * will cause a crash.
 90		 */
 91		BUG_ON(!src || !dst);
 92
 93		/*
 94		 * Use a temporary buffer, of cache-line multiple size, to
 95		 * avoid data corruption as documented in the APM.
 96		 */
 97		memcpy(sme_early_buffer, src, len);
 98		memcpy(dst, sme_early_buffer, len);
 99
100		early_memunmap(dst, len);
101		early_memunmap(src, len);
102
103		paddr += len;
104		size -= len;
105	}
106}
107
108void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
109{
110	__sme_early_enc_dec(paddr, size, true);
111}
112
113void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
114{
115	__sme_early_enc_dec(paddr, size, false);
116}
117
118static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
119					     bool map)
120{
121	unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
122	pmdval_t pmd_flags, pmd;
123
124	/* Use early_pmd_flags but remove the encryption mask */
125	pmd_flags = __sme_clr(early_pmd_flags);
126
127	do {
128		pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
129		__early_make_pgtable((unsigned long)vaddr, pmd);
130
131		vaddr += PMD_SIZE;
132		paddr += PMD_SIZE;
133		size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
134	} while (size);
135
136	__native_flush_tlb();
137}
138
139void __init sme_unmap_bootdata(char *real_mode_data)
140{
141	struct boot_params *boot_data;
142	unsigned long cmdline_paddr;
143
144	if (!sme_active())
145		return;
146
147	/* Get the command line address before unmapping the real_mode_data */
148	boot_data = (struct boot_params *)real_mode_data;
149	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
150
151	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
152
153	if (!cmdline_paddr)
154		return;
155
156	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
157}
158
159void __init sme_map_bootdata(char *real_mode_data)
160{
161	struct boot_params *boot_data;
162	unsigned long cmdline_paddr;
163
164	if (!sme_active())
165		return;
166
167	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
168
169	/* Get the command line address after mapping the real_mode_data */
170	boot_data = (struct boot_params *)real_mode_data;
171	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
172
173	if (!cmdline_paddr)
174		return;
175
176	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
177}
178
179void __init sme_early_init(void)
180{
181	unsigned int i;
182
183	if (!sme_me_mask)
184		return;
185
186	early_pmd_flags = __sme_set(early_pmd_flags);
187
188	__supported_pte_mask = __sme_set(__supported_pte_mask);
189
190	/* Update the protection map with memory encryption mask */
191	for (i = 0; i < ARRAY_SIZE(protection_map); i++)
192		protection_map[i] = pgprot_encrypted(protection_map[i]);
193
194	if (sev_active())
195		swiotlb_force = SWIOTLB_FORCE;
196}
197
198static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
199{
200	pgprot_t old_prot, new_prot;
201	unsigned long pfn, pa, size;
202	pte_t new_pte;
203
204	switch (level) {
205	case PG_LEVEL_4K:
206		pfn = pte_pfn(*kpte);
207		old_prot = pte_pgprot(*kpte);
208		break;
209	case PG_LEVEL_2M:
210		pfn = pmd_pfn(*(pmd_t *)kpte);
211		old_prot = pmd_pgprot(*(pmd_t *)kpte);
212		break;
213	case PG_LEVEL_1G:
214		pfn = pud_pfn(*(pud_t *)kpte);
215		old_prot = pud_pgprot(*(pud_t *)kpte);
216		break;
217	default:
218		return;
219	}
220
221	new_prot = old_prot;
222	if (enc)
223		pgprot_val(new_prot) |= _PAGE_ENC;
224	else
225		pgprot_val(new_prot) &= ~_PAGE_ENC;
226
227	/* If prot is same then do nothing. */
228	if (pgprot_val(old_prot) == pgprot_val(new_prot))
229		return;
230
231	pa = pfn << page_level_shift(level);
232	size = page_level_size(level);
233
234	/*
235	 * We are going to perform in-place en-/decryption and change the
236	 * physical page attribute from C=1 to C=0 or vice versa. Flush the
237	 * caches to ensure that data gets accessed with the correct C-bit.
238	 */
239	clflush_cache_range(__va(pa), size);
240
241	/* Encrypt/decrypt the contents in-place */
242	if (enc)
243		sme_early_encrypt(pa, size);
244	else
245		sme_early_decrypt(pa, size);
246
247	/* Change the page encryption mask. */
248	new_pte = pfn_pte(pfn, new_prot);
249	set_pte_atomic(kpte, new_pte);
250}
251
252static int __init early_set_memory_enc_dec(unsigned long vaddr,
253					   unsigned long size, bool enc)
254{
255	unsigned long vaddr_end, vaddr_next;
256	unsigned long psize, pmask;
257	int split_page_size_mask;
258	int level, ret;
259	pte_t *kpte;
260
261	vaddr_next = vaddr;
262	vaddr_end = vaddr + size;
263
264	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
265		kpte = lookup_address(vaddr, &level);
266		if (!kpte || pte_none(*kpte)) {
267			ret = 1;
268			goto out;
269		}
270
271		if (level == PG_LEVEL_4K) {
272			__set_clr_pte_enc(kpte, level, enc);
273			vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
274			continue;
275		}
276
277		psize = page_level_size(level);
278		pmask = page_level_mask(level);
279
 
 
280		/*
281		 * Check whether we can change the large page in one go.
282		 * We request a split when the address is not aligned and
283		 * the number of pages to set/clear encryption bit is smaller
284		 * than the number of pages in the large page.
285		 */
286		if (vaddr == (vaddr & pmask) &&
287		    ((vaddr_end - vaddr) >= psize)) {
288			__set_clr_pte_enc(kpte, level, enc);
289			vaddr_next = (vaddr & pmask) + psize;
290			continue;
291		}
292
293		/*
294		 * The virtual address is part of a larger page, create the next
295		 * level page table mapping (4K or 2M). If it is part of a 2M
296		 * page then we request a split of the large page into 4K
297		 * chunks. A 1GB large page is split into 2M pages, resp.
298		 */
299		if (level == PG_LEVEL_2M)
300			split_page_size_mask = 0;
301		else
302			split_page_size_mask = 1 << PG_LEVEL_2M;
303
304		kernel_physical_mapping_init(__pa(vaddr & pmask),
305					     __pa((vaddr_end & pmask) + psize),
306					     split_page_size_mask);
307	}
308
309	ret = 0;
310
311out:
312	__flush_tlb_all();
313	return ret;
314}
315
316int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
317{
318	return early_set_memory_enc_dec(vaddr, size, false);
319}
320
321int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
322{
323	return early_set_memory_enc_dec(vaddr, size, true);
324}
325
326/*
327 * SME and SEV are very similar but they are not the same, so there are
328 * times that the kernel will need to distinguish between SME and SEV. The
329 * sme_active() and sev_active() functions are used for this.  When a
330 * distinction isn't needed, the mem_encrypt_active() function can be used.
331 *
332 * The trampoline code is a good example for this requirement.  Before
333 * paging is activated, SME will access all memory as decrypted, but SEV
334 * will access all memory as encrypted.  So, when APs are being brought
335 * up under SME the trampoline area cannot be encrypted, whereas under SEV
336 * the trampoline area must be encrypted.
337 */
338bool sme_active(void)
339{
340	return sme_me_mask && !sev_enabled;
341}
342EXPORT_SYMBOL(sme_active);
343
344bool sev_active(void)
345{
346	return sme_me_mask && sev_enabled;
347}
348EXPORT_SYMBOL(sev_active);
349
350/* Architecture __weak replacement functions */
351void __init mem_encrypt_init(void)
352{
353	if (!sme_me_mask)
354		return;
355
356	/* Call into SWIOTLB to update the SWIOTLB DMA buffers */
357	swiotlb_update_mem_attributes();
358
359	/*
360	 * With SEV, DMA operations cannot use encryption, we need to use
361	 * SWIOTLB to bounce buffer DMA operation.
362	 */
363	if (sev_active())
364		dma_ops = &swiotlb_dma_ops;
365
366	/*
367	 * With SEV, we need to unroll the rep string I/O instructions.
368	 */
369	if (sev_active())
370		static_branch_enable(&sev_enable_key);
371
372	pr_info("AMD %s active\n",
373		sev_active() ? "Secure Encrypted Virtualization (SEV)"
374			     : "Secure Memory Encryption (SME)");
375}
376