Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.2.
   1/*
   2 *  kernel/cpuset.c
   3 *
   4 *  Processor and Memory placement constraints for sets of tasks.
   5 *
   6 *  Copyright (C) 2003 BULL SA.
   7 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
   8 *  Copyright (C) 2006 Google, Inc
   9 *
  10 *  Portions derived from Patrick Mochel's sysfs code.
  11 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  12 *
  13 *  2003-10-10 Written by Simon Derr.
  14 *  2003-10-22 Updates by Stephen Hemminger.
  15 *  2004 May-July Rework by Paul Jackson.
  16 *  2006 Rework by Paul Menage to use generic cgroups
  17 *  2008 Rework of the scheduler domains and CPU hotplug handling
  18 *       by Max Krasnyansky
  19 *
  20 *  This file is subject to the terms and conditions of the GNU General Public
  21 *  License.  See the file COPYING in the main directory of the Linux
  22 *  distribution for more details.
  23 */
  24
  25#include <linux/cpu.h>
  26#include <linux/cpumask.h>
  27#include <linux/cpuset.h>
  28#include <linux/err.h>
  29#include <linux/errno.h>
  30#include <linux/file.h>
  31#include <linux/fs.h>
  32#include <linux/init.h>
  33#include <linux/interrupt.h>
  34#include <linux/kernel.h>
  35#include <linux/kmod.h>
  36#include <linux/list.h>
  37#include <linux/mempolicy.h>
  38#include <linux/mm.h>
  39#include <linux/memory.h>
  40#include <linux/export.h>
  41#include <linux/mount.h>
  42#include <linux/namei.h>
  43#include <linux/pagemap.h>
  44#include <linux/proc_fs.h>
  45#include <linux/rcupdate.h>
  46#include <linux/sched.h>
  47#include <linux/seq_file.h>
  48#include <linux/security.h>
  49#include <linux/slab.h>
  50#include <linux/spinlock.h>
  51#include <linux/stat.h>
  52#include <linux/string.h>
  53#include <linux/time.h>
  54#include <linux/time64.h>
  55#include <linux/backing-dev.h>
  56#include <linux/sort.h>
  57
  58#include <asm/uaccess.h>
  59#include <linux/atomic.h>
  60#include <linux/mutex.h>
  61#include <linux/cgroup.h>
  62#include <linux/wait.h>
  63
  64struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
  65
  66/* See "Frequency meter" comments, below. */
  67
  68struct fmeter {
  69	int cnt;		/* unprocessed events count */
  70	int val;		/* most recent output value */
  71	time64_t time;		/* clock (secs) when val computed */
  72	spinlock_t lock;	/* guards read or write of above */
  73};
  74
  75struct cpuset {
  76	struct cgroup_subsys_state css;
  77
  78	unsigned long flags;		/* "unsigned long" so bitops work */
  79
  80	/*
  81	 * On default hierarchy:
  82	 *
  83	 * The user-configured masks can only be changed by writing to
  84	 * cpuset.cpus and cpuset.mems, and won't be limited by the
  85	 * parent masks.
  86	 *
  87	 * The effective masks is the real masks that apply to the tasks
  88	 * in the cpuset. They may be changed if the configured masks are
  89	 * changed or hotplug happens.
  90	 *
  91	 * effective_mask == configured_mask & parent's effective_mask,
  92	 * and if it ends up empty, it will inherit the parent's mask.
  93	 *
  94	 *
  95	 * On legacy hierachy:
  96	 *
  97	 * The user-configured masks are always the same with effective masks.
  98	 */
  99
 100	/* user-configured CPUs and Memory Nodes allow to tasks */
 101	cpumask_var_t cpus_allowed;
 102	nodemask_t mems_allowed;
 103
 104	/* effective CPUs and Memory Nodes allow to tasks */
 105	cpumask_var_t effective_cpus;
 106	nodemask_t effective_mems;
 107
 108	/*
 109	 * This is old Memory Nodes tasks took on.
 110	 *
 111	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
 112	 * - A new cpuset's old_mems_allowed is initialized when some
 113	 *   task is moved into it.
 114	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
 115	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
 116	 *   then old_mems_allowed is updated to mems_allowed.
 117	 */
 118	nodemask_t old_mems_allowed;
 119
 120	struct fmeter fmeter;		/* memory_pressure filter */
 121
 122	/*
 123	 * Tasks are being attached to this cpuset.  Used to prevent
 124	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
 125	 */
 126	int attach_in_progress;
 127
 128	/* partition number for rebuild_sched_domains() */
 129	int pn;
 130
 131	/* for custom sched domain */
 132	int relax_domain_level;
 133};
 134
 135static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
 136{
 137	return css ? container_of(css, struct cpuset, css) : NULL;
 138}
 139
 140/* Retrieve the cpuset for a task */
 141static inline struct cpuset *task_cs(struct task_struct *task)
 142{
 143	return css_cs(task_css(task, cpuset_cgrp_id));
 144}
 145
 146static inline struct cpuset *parent_cs(struct cpuset *cs)
 147{
 148	return css_cs(cs->css.parent);
 149}
 150
 151#ifdef CONFIG_NUMA
 152static inline bool task_has_mempolicy(struct task_struct *task)
 153{
 154	return task->mempolicy;
 155}
 156#else
 157static inline bool task_has_mempolicy(struct task_struct *task)
 158{
 159	return false;
 160}
 161#endif
 162
 163
 164/* bits in struct cpuset flags field */
 165typedef enum {
 166	CS_ONLINE,
 167	CS_CPU_EXCLUSIVE,
 168	CS_MEM_EXCLUSIVE,
 169	CS_MEM_HARDWALL,
 170	CS_MEMORY_MIGRATE,
 171	CS_SCHED_LOAD_BALANCE,
 172	CS_SPREAD_PAGE,
 173	CS_SPREAD_SLAB,
 174} cpuset_flagbits_t;
 175
 176/* convenient tests for these bits */
 177static inline bool is_cpuset_online(const struct cpuset *cs)
 178{
 179	return test_bit(CS_ONLINE, &cs->flags);
 180}
 181
 182static inline int is_cpu_exclusive(const struct cpuset *cs)
 183{
 184	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
 185}
 186
 187static inline int is_mem_exclusive(const struct cpuset *cs)
 188{
 189	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
 190}
 191
 192static inline int is_mem_hardwall(const struct cpuset *cs)
 193{
 194	return test_bit(CS_MEM_HARDWALL, &cs->flags);
 195}
 196
 197static inline int is_sched_load_balance(const struct cpuset *cs)
 198{
 199	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
 200}
 201
 202static inline int is_memory_migrate(const struct cpuset *cs)
 203{
 204	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
 205}
 206
 207static inline int is_spread_page(const struct cpuset *cs)
 208{
 209	return test_bit(CS_SPREAD_PAGE, &cs->flags);
 210}
 211
 212static inline int is_spread_slab(const struct cpuset *cs)
 213{
 214	return test_bit(CS_SPREAD_SLAB, &cs->flags);
 215}
 216
 217static struct cpuset top_cpuset = {
 218	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
 219		  (1 << CS_MEM_EXCLUSIVE)),
 220};
 221
 222/**
 223 * cpuset_for_each_child - traverse online children of a cpuset
 224 * @child_cs: loop cursor pointing to the current child
 225 * @pos_css: used for iteration
 226 * @parent_cs: target cpuset to walk children of
 227 *
 228 * Walk @child_cs through the online children of @parent_cs.  Must be used
 229 * with RCU read locked.
 230 */
 231#define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
 232	css_for_each_child((pos_css), &(parent_cs)->css)		\
 233		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
 234
 235/**
 236 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 237 * @des_cs: loop cursor pointing to the current descendant
 238 * @pos_css: used for iteration
 239 * @root_cs: target cpuset to walk ancestor of
 240 *
 241 * Walk @des_cs through the online descendants of @root_cs.  Must be used
 242 * with RCU read locked.  The caller may modify @pos_css by calling
 243 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 244 * iteration and the first node to be visited.
 245 */
 246#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
 247	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
 248		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
 249
 250/*
 251 * There are two global locks guarding cpuset structures - cpuset_mutex and
 252 * callback_lock. We also require taking task_lock() when dereferencing a
 253 * task's cpuset pointer. See "The task_lock() exception", at the end of this
 254 * comment.
 255 *
 256 * A task must hold both locks to modify cpusets.  If a task holds
 257 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
 258 * is the only task able to also acquire callback_lock and be able to
 259 * modify cpusets.  It can perform various checks on the cpuset structure
 260 * first, knowing nothing will change.  It can also allocate memory while
 261 * just holding cpuset_mutex.  While it is performing these checks, various
 262 * callback routines can briefly acquire callback_lock to query cpusets.
 263 * Once it is ready to make the changes, it takes callback_lock, blocking
 264 * everyone else.
 265 *
 266 * Calls to the kernel memory allocator can not be made while holding
 267 * callback_lock, as that would risk double tripping on callback_lock
 268 * from one of the callbacks into the cpuset code from within
 269 * __alloc_pages().
 270 *
 271 * If a task is only holding callback_lock, then it has read-only
 272 * access to cpusets.
 273 *
 274 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 275 * by other task, we use alloc_lock in the task_struct fields to protect
 276 * them.
 277 *
 278 * The cpuset_common_file_read() handlers only hold callback_lock across
 279 * small pieces of code, such as when reading out possibly multi-word
 280 * cpumasks and nodemasks.
 281 *
 282 * Accessing a task's cpuset should be done in accordance with the
 283 * guidelines for accessing subsystem state in kernel/cgroup.c
 284 */
 285
 286static DEFINE_MUTEX(cpuset_mutex);
 287static DEFINE_SPINLOCK(callback_lock);
 288
 289static struct workqueue_struct *cpuset_migrate_mm_wq;
 290
 291/*
 292 * CPU / memory hotplug is handled asynchronously.
 293 */
 294static void cpuset_hotplug_workfn(struct work_struct *work);
 295static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
 296
 297static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
 298
 299/*
 300 * This is ugly, but preserves the userspace API for existing cpuset
 301 * users. If someone tries to mount the "cpuset" filesystem, we
 302 * silently switch it to mount "cgroup" instead
 303 */
 304static struct dentry *cpuset_mount(struct file_system_type *fs_type,
 305			 int flags, const char *unused_dev_name, void *data)
 306{
 307	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
 308	struct dentry *ret = ERR_PTR(-ENODEV);
 309	if (cgroup_fs) {
 310		char mountopts[] =
 311			"cpuset,noprefix,"
 312			"release_agent=/sbin/cpuset_release_agent";
 313		ret = cgroup_fs->mount(cgroup_fs, flags,
 314					   unused_dev_name, mountopts);
 315		put_filesystem(cgroup_fs);
 316	}
 317	return ret;
 318}
 319
 320static struct file_system_type cpuset_fs_type = {
 321	.name = "cpuset",
 322	.mount = cpuset_mount,
 323};
 324
 325/*
 326 * Return in pmask the portion of a cpusets's cpus_allowed that
 327 * are online.  If none are online, walk up the cpuset hierarchy
 328 * until we find one that does have some online cpus.  The top
 329 * cpuset always has some cpus online.
 330 *
 331 * One way or another, we guarantee to return some non-empty subset
 332 * of cpu_online_mask.
 333 *
 334 * Call with callback_lock or cpuset_mutex held.
 335 */
 336static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
 337{
 338	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask))
 339		cs = parent_cs(cs);
 340	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
 341}
 342
 343/*
 344 * Return in *pmask the portion of a cpusets's mems_allowed that
 345 * are online, with memory.  If none are online with memory, walk
 346 * up the cpuset hierarchy until we find one that does have some
 347 * online mems.  The top cpuset always has some mems online.
 348 *
 349 * One way or another, we guarantee to return some non-empty subset
 350 * of node_states[N_MEMORY].
 351 *
 352 * Call with callback_lock or cpuset_mutex held.
 353 */
 354static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
 355{
 356	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
 357		cs = parent_cs(cs);
 358	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
 359}
 360
 361/*
 362 * update task's spread flag if cpuset's page/slab spread flag is set
 363 *
 364 * Call with callback_lock or cpuset_mutex held.
 365 */
 366static void cpuset_update_task_spread_flag(struct cpuset *cs,
 367					struct task_struct *tsk)
 368{
 369	if (is_spread_page(cs))
 370		task_set_spread_page(tsk);
 371	else
 372		task_clear_spread_page(tsk);
 373
 374	if (is_spread_slab(cs))
 375		task_set_spread_slab(tsk);
 376	else
 377		task_clear_spread_slab(tsk);
 378}
 379
 380/*
 381 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 382 *
 383 * One cpuset is a subset of another if all its allowed CPUs and
 384 * Memory Nodes are a subset of the other, and its exclusive flags
 385 * are only set if the other's are set.  Call holding cpuset_mutex.
 386 */
 387
 388static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
 389{
 390	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
 391		nodes_subset(p->mems_allowed, q->mems_allowed) &&
 392		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
 393		is_mem_exclusive(p) <= is_mem_exclusive(q);
 394}
 395
 396/**
 397 * alloc_trial_cpuset - allocate a trial cpuset
 398 * @cs: the cpuset that the trial cpuset duplicates
 399 */
 400static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
 401{
 402	struct cpuset *trial;
 403
 404	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
 405	if (!trial)
 406		return NULL;
 407
 408	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
 409		goto free_cs;
 410	if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
 411		goto free_cpus;
 412
 413	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
 414	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
 415	return trial;
 416
 417free_cpus:
 418	free_cpumask_var(trial->cpus_allowed);
 419free_cs:
 420	kfree(trial);
 421	return NULL;
 422}
 423
 424/**
 425 * free_trial_cpuset - free the trial cpuset
 426 * @trial: the trial cpuset to be freed
 427 */
 428static void free_trial_cpuset(struct cpuset *trial)
 429{
 430	free_cpumask_var(trial->effective_cpus);
 431	free_cpumask_var(trial->cpus_allowed);
 432	kfree(trial);
 433}
 434
 435/*
 436 * validate_change() - Used to validate that any proposed cpuset change
 437 *		       follows the structural rules for cpusets.
 438 *
 439 * If we replaced the flag and mask values of the current cpuset
 440 * (cur) with those values in the trial cpuset (trial), would
 441 * our various subset and exclusive rules still be valid?  Presumes
 442 * cpuset_mutex held.
 443 *
 444 * 'cur' is the address of an actual, in-use cpuset.  Operations
 445 * such as list traversal that depend on the actual address of the
 446 * cpuset in the list must use cur below, not trial.
 447 *
 448 * 'trial' is the address of bulk structure copy of cur, with
 449 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 450 * or flags changed to new, trial values.
 451 *
 452 * Return 0 if valid, -errno if not.
 453 */
 454
 455static int validate_change(struct cpuset *cur, struct cpuset *trial)
 456{
 457	struct cgroup_subsys_state *css;
 458	struct cpuset *c, *par;
 459	int ret;
 460
 461	rcu_read_lock();
 462
 463	/* Each of our child cpusets must be a subset of us */
 464	ret = -EBUSY;
 465	cpuset_for_each_child(c, css, cur)
 466		if (!is_cpuset_subset(c, trial))
 467			goto out;
 468
 469	/* Remaining checks don't apply to root cpuset */
 470	ret = 0;
 471	if (cur == &top_cpuset)
 472		goto out;
 473
 474	par = parent_cs(cur);
 475
 476	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
 477	ret = -EACCES;
 478	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
 479	    !is_cpuset_subset(trial, par))
 480		goto out;
 481
 482	/*
 483	 * If either I or some sibling (!= me) is exclusive, we can't
 484	 * overlap
 485	 */
 486	ret = -EINVAL;
 487	cpuset_for_each_child(c, css, par) {
 488		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
 489		    c != cur &&
 490		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
 491			goto out;
 492		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
 493		    c != cur &&
 494		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
 495			goto out;
 496	}
 497
 498	/*
 499	 * Cpusets with tasks - existing or newly being attached - can't
 500	 * be changed to have empty cpus_allowed or mems_allowed.
 501	 */
 502	ret = -ENOSPC;
 503	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
 504		if (!cpumask_empty(cur->cpus_allowed) &&
 505		    cpumask_empty(trial->cpus_allowed))
 506			goto out;
 507		if (!nodes_empty(cur->mems_allowed) &&
 508		    nodes_empty(trial->mems_allowed))
 509			goto out;
 510	}
 511
 512	/*
 513	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
 514	 * tasks.
 515	 */
 516	ret = -EBUSY;
 517	if (is_cpu_exclusive(cur) &&
 518	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
 519				       trial->cpus_allowed))
 520		goto out;
 521
 522	ret = 0;
 523out:
 524	rcu_read_unlock();
 525	return ret;
 526}
 527
 528#ifdef CONFIG_SMP
 529/*
 530 * Helper routine for generate_sched_domains().
 531 * Do cpusets a, b have overlapping effective cpus_allowed masks?
 532 */
 533static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
 534{
 535	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
 536}
 537
 538static void
 539update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
 540{
 541	if (dattr->relax_domain_level < c->relax_domain_level)
 542		dattr->relax_domain_level = c->relax_domain_level;
 543	return;
 544}
 545
 546static void update_domain_attr_tree(struct sched_domain_attr *dattr,
 547				    struct cpuset *root_cs)
 548{
 549	struct cpuset *cp;
 550	struct cgroup_subsys_state *pos_css;
 551
 552	rcu_read_lock();
 553	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
 554		/* skip the whole subtree if @cp doesn't have any CPU */
 555		if (cpumask_empty(cp->cpus_allowed)) {
 556			pos_css = css_rightmost_descendant(pos_css);
 557			continue;
 558		}
 559
 560		if (is_sched_load_balance(cp))
 561			update_domain_attr(dattr, cp);
 562	}
 563	rcu_read_unlock();
 564}
 565
 566/*
 567 * generate_sched_domains()
 568 *
 569 * This function builds a partial partition of the systems CPUs
 570 * A 'partial partition' is a set of non-overlapping subsets whose
 571 * union is a subset of that set.
 572 * The output of this function needs to be passed to kernel/sched/core.c
 573 * partition_sched_domains() routine, which will rebuild the scheduler's
 574 * load balancing domains (sched domains) as specified by that partial
 575 * partition.
 576 *
 577 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
 578 * for a background explanation of this.
 579 *
 580 * Does not return errors, on the theory that the callers of this
 581 * routine would rather not worry about failures to rebuild sched
 582 * domains when operating in the severe memory shortage situations
 583 * that could cause allocation failures below.
 584 *
 585 * Must be called with cpuset_mutex held.
 586 *
 587 * The three key local variables below are:
 588 *    q  - a linked-list queue of cpuset pointers, used to implement a
 589 *	   top-down scan of all cpusets.  This scan loads a pointer
 590 *	   to each cpuset marked is_sched_load_balance into the
 591 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 592 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 593 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 594 *	   that need to be load balanced, for convenient iterative
 595 *	   access by the subsequent code that finds the best partition,
 596 *	   i.e the set of domains (subsets) of CPUs such that the
 597 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 598 *	   is a subset of one of these domains, while there are as
 599 *	   many such domains as possible, each as small as possible.
 600 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 601 *	   the kernel/sched/core.c routine partition_sched_domains() in a
 602 *	   convenient format, that can be easily compared to the prior
 603 *	   value to determine what partition elements (sched domains)
 604 *	   were changed (added or removed.)
 605 *
 606 * Finding the best partition (set of domains):
 607 *	The triple nested loops below over i, j, k scan over the
 608 *	load balanced cpusets (using the array of cpuset pointers in
 609 *	csa[]) looking for pairs of cpusets that have overlapping
 610 *	cpus_allowed, but which don't have the same 'pn' partition
 611 *	number and gives them in the same partition number.  It keeps
 612 *	looping on the 'restart' label until it can no longer find
 613 *	any such pairs.
 614 *
 615 *	The union of the cpus_allowed masks from the set of
 616 *	all cpusets having the same 'pn' value then form the one
 617 *	element of the partition (one sched domain) to be passed to
 618 *	partition_sched_domains().
 619 */
 620static int generate_sched_domains(cpumask_var_t **domains,
 621			struct sched_domain_attr **attributes)
 622{
 623	struct cpuset *cp;	/* scans q */
 624	struct cpuset **csa;	/* array of all cpuset ptrs */
 625	int csn;		/* how many cpuset ptrs in csa so far */
 626	int i, j, k;		/* indices for partition finding loops */
 627	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
 628	cpumask_var_t non_isolated_cpus;  /* load balanced CPUs */
 629	struct sched_domain_attr *dattr;  /* attributes for custom domains */
 630	int ndoms = 0;		/* number of sched domains in result */
 631	int nslot;		/* next empty doms[] struct cpumask slot */
 632	struct cgroup_subsys_state *pos_css;
 633
 634	doms = NULL;
 635	dattr = NULL;
 636	csa = NULL;
 637
 638	if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
 639		goto done;
 640	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
 641
 642	/* Special case for the 99% of systems with one, full, sched domain */
 643	if (is_sched_load_balance(&top_cpuset)) {
 644		ndoms = 1;
 645		doms = alloc_sched_domains(ndoms);
 646		if (!doms)
 647			goto done;
 648
 649		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
 650		if (dattr) {
 651			*dattr = SD_ATTR_INIT;
 652			update_domain_attr_tree(dattr, &top_cpuset);
 653		}
 654		cpumask_and(doms[0], top_cpuset.effective_cpus,
 655				     non_isolated_cpus);
 656
 657		goto done;
 658	}
 659
 660	csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
 661	if (!csa)
 662		goto done;
 663	csn = 0;
 664
 665	rcu_read_lock();
 666	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
 667		if (cp == &top_cpuset)
 668			continue;
 669		/*
 670		 * Continue traversing beyond @cp iff @cp has some CPUs and
 671		 * isn't load balancing.  The former is obvious.  The
 672		 * latter: All child cpusets contain a subset of the
 673		 * parent's cpus, so just skip them, and then we call
 674		 * update_domain_attr_tree() to calc relax_domain_level of
 675		 * the corresponding sched domain.
 676		 */
 677		if (!cpumask_empty(cp->cpus_allowed) &&
 678		    !(is_sched_load_balance(cp) &&
 679		      cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
 680			continue;
 681
 682		if (is_sched_load_balance(cp))
 683			csa[csn++] = cp;
 684
 685		/* skip @cp's subtree */
 686		pos_css = css_rightmost_descendant(pos_css);
 687	}
 688	rcu_read_unlock();
 689
 690	for (i = 0; i < csn; i++)
 691		csa[i]->pn = i;
 692	ndoms = csn;
 693
 694restart:
 695	/* Find the best partition (set of sched domains) */
 696	for (i = 0; i < csn; i++) {
 697		struct cpuset *a = csa[i];
 698		int apn = a->pn;
 699
 700		for (j = 0; j < csn; j++) {
 701			struct cpuset *b = csa[j];
 702			int bpn = b->pn;
 703
 704			if (apn != bpn && cpusets_overlap(a, b)) {
 705				for (k = 0; k < csn; k++) {
 706					struct cpuset *c = csa[k];
 707
 708					if (c->pn == bpn)
 709						c->pn = apn;
 710				}
 711				ndoms--;	/* one less element */
 712				goto restart;
 713			}
 714		}
 715	}
 716
 717	/*
 718	 * Now we know how many domains to create.
 719	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
 720	 */
 721	doms = alloc_sched_domains(ndoms);
 722	if (!doms)
 723		goto done;
 724
 725	/*
 726	 * The rest of the code, including the scheduler, can deal with
 727	 * dattr==NULL case. No need to abort if alloc fails.
 728	 */
 729	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
 730
 731	for (nslot = 0, i = 0; i < csn; i++) {
 732		struct cpuset *a = csa[i];
 733		struct cpumask *dp;
 734		int apn = a->pn;
 735
 736		if (apn < 0) {
 737			/* Skip completed partitions */
 738			continue;
 739		}
 740
 741		dp = doms[nslot];
 742
 743		if (nslot == ndoms) {
 744			static int warnings = 10;
 745			if (warnings) {
 746				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
 747					nslot, ndoms, csn, i, apn);
 748				warnings--;
 749			}
 750			continue;
 751		}
 752
 753		cpumask_clear(dp);
 754		if (dattr)
 755			*(dattr + nslot) = SD_ATTR_INIT;
 756		for (j = i; j < csn; j++) {
 757			struct cpuset *b = csa[j];
 758
 759			if (apn == b->pn) {
 760				cpumask_or(dp, dp, b->effective_cpus);
 761				cpumask_and(dp, dp, non_isolated_cpus);
 762				if (dattr)
 763					update_domain_attr_tree(dattr + nslot, b);
 764
 765				/* Done with this partition */
 766				b->pn = -1;
 767			}
 768		}
 769		nslot++;
 770	}
 771	BUG_ON(nslot != ndoms);
 772
 773done:
 774	free_cpumask_var(non_isolated_cpus);
 775	kfree(csa);
 776
 777	/*
 778	 * Fallback to the default domain if kmalloc() failed.
 779	 * See comments in partition_sched_domains().
 780	 */
 781	if (doms == NULL)
 782		ndoms = 1;
 783
 784	*domains    = doms;
 785	*attributes = dattr;
 786	return ndoms;
 787}
 788
 789/*
 790 * Rebuild scheduler domains.
 791 *
 792 * If the flag 'sched_load_balance' of any cpuset with non-empty
 793 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 794 * which has that flag enabled, or if any cpuset with a non-empty
 795 * 'cpus' is removed, then call this routine to rebuild the
 796 * scheduler's dynamic sched domains.
 797 *
 798 * Call with cpuset_mutex held.  Takes get_online_cpus().
 799 */
 800static void rebuild_sched_domains_locked(void)
 801{
 802	struct sched_domain_attr *attr;
 803	cpumask_var_t *doms;
 804	int ndoms;
 805
 806	lockdep_assert_held(&cpuset_mutex);
 807	get_online_cpus();
 808
 809	/*
 810	 * We have raced with CPU hotplug. Don't do anything to avoid
 811	 * passing doms with offlined cpu to partition_sched_domains().
 812	 * Anyways, hotplug work item will rebuild sched domains.
 813	 */
 814	if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
 815		goto out;
 816
 817	/* Generate domain masks and attrs */
 818	ndoms = generate_sched_domains(&doms, &attr);
 819
 820	/* Have scheduler rebuild the domains */
 821	partition_sched_domains(ndoms, doms, attr);
 822out:
 823	put_online_cpus();
 824}
 825#else /* !CONFIG_SMP */
 826static void rebuild_sched_domains_locked(void)
 827{
 828}
 829#endif /* CONFIG_SMP */
 830
 831void rebuild_sched_domains(void)
 832{
 833	mutex_lock(&cpuset_mutex);
 834	rebuild_sched_domains_locked();
 835	mutex_unlock(&cpuset_mutex);
 836}
 837
 838/**
 839 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 840 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 841 *
 842 * Iterate through each task of @cs updating its cpus_allowed to the
 843 * effective cpuset's.  As this function is called with cpuset_mutex held,
 844 * cpuset membership stays stable.
 845 */
 846static void update_tasks_cpumask(struct cpuset *cs)
 847{
 848	struct css_task_iter it;
 849	struct task_struct *task;
 850
 851	css_task_iter_start(&cs->css, &it);
 852	while ((task = css_task_iter_next(&it)))
 853		set_cpus_allowed_ptr(task, cs->effective_cpus);
 854	css_task_iter_end(&it);
 855}
 856
 857/*
 858 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
 859 * @cs: the cpuset to consider
 860 * @new_cpus: temp variable for calculating new effective_cpus
 861 *
 862 * When congifured cpumask is changed, the effective cpumasks of this cpuset
 863 * and all its descendants need to be updated.
 864 *
 865 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
 866 *
 867 * Called with cpuset_mutex held
 868 */
 869static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
 870{
 871	struct cpuset *cp;
 872	struct cgroup_subsys_state *pos_css;
 873	bool need_rebuild_sched_domains = false;
 874
 875	rcu_read_lock();
 876	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
 877		struct cpuset *parent = parent_cs(cp);
 878
 879		cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
 880
 881		/*
 882		 * If it becomes empty, inherit the effective mask of the
 883		 * parent, which is guaranteed to have some CPUs.
 884		 */
 885		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
 886		    cpumask_empty(new_cpus))
 887			cpumask_copy(new_cpus, parent->effective_cpus);
 888
 889		/* Skip the whole subtree if the cpumask remains the same. */
 890		if (cpumask_equal(new_cpus, cp->effective_cpus)) {
 891			pos_css = css_rightmost_descendant(pos_css);
 892			continue;
 893		}
 894
 895		if (!css_tryget_online(&cp->css))
 896			continue;
 897		rcu_read_unlock();
 898
 899		spin_lock_irq(&callback_lock);
 900		cpumask_copy(cp->effective_cpus, new_cpus);
 901		spin_unlock_irq(&callback_lock);
 902
 903		WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
 904			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
 905
 906		update_tasks_cpumask(cp);
 907
 908		/*
 909		 * If the effective cpumask of any non-empty cpuset is changed,
 910		 * we need to rebuild sched domains.
 911		 */
 912		if (!cpumask_empty(cp->cpus_allowed) &&
 913		    is_sched_load_balance(cp))
 914			need_rebuild_sched_domains = true;
 915
 916		rcu_read_lock();
 917		css_put(&cp->css);
 918	}
 919	rcu_read_unlock();
 920
 921	if (need_rebuild_sched_domains)
 922		rebuild_sched_domains_locked();
 923}
 924
 925/**
 926 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 927 * @cs: the cpuset to consider
 928 * @trialcs: trial cpuset
 929 * @buf: buffer of cpu numbers written to this cpuset
 930 */
 931static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
 932			  const char *buf)
 933{
 934	int retval;
 935
 936	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
 937	if (cs == &top_cpuset)
 938		return -EACCES;
 939
 940	/*
 941	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
 942	 * Since cpulist_parse() fails on an empty mask, we special case
 943	 * that parsing.  The validate_change() call ensures that cpusets
 944	 * with tasks have cpus.
 945	 */
 946	if (!*buf) {
 947		cpumask_clear(trialcs->cpus_allowed);
 948	} else {
 949		retval = cpulist_parse(buf, trialcs->cpus_allowed);
 950		if (retval < 0)
 951			return retval;
 952
 953		if (!cpumask_subset(trialcs->cpus_allowed,
 954				    top_cpuset.cpus_allowed))
 955			return -EINVAL;
 956	}
 957
 958	/* Nothing to do if the cpus didn't change */
 959	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
 960		return 0;
 961
 962	retval = validate_change(cs, trialcs);
 963	if (retval < 0)
 964		return retval;
 965
 966	spin_lock_irq(&callback_lock);
 967	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
 968	spin_unlock_irq(&callback_lock);
 969
 970	/* use trialcs->cpus_allowed as a temp variable */
 971	update_cpumasks_hier(cs, trialcs->cpus_allowed);
 972	return 0;
 973}
 974
 975/*
 976 * Migrate memory region from one set of nodes to another.  This is
 977 * performed asynchronously as it can be called from process migration path
 978 * holding locks involved in process management.  All mm migrations are
 979 * performed in the queued order and can be waited for by flushing
 980 * cpuset_migrate_mm_wq.
 981 */
 982
 983struct cpuset_migrate_mm_work {
 984	struct work_struct	work;
 985	struct mm_struct	*mm;
 986	nodemask_t		from;
 987	nodemask_t		to;
 988};
 989
 990static void cpuset_migrate_mm_workfn(struct work_struct *work)
 991{
 992	struct cpuset_migrate_mm_work *mwork =
 993		container_of(work, struct cpuset_migrate_mm_work, work);
 994
 995	/* on a wq worker, no need to worry about %current's mems_allowed */
 996	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
 997	mmput(mwork->mm);
 998	kfree(mwork);
 999}
1000
1001static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1002							const nodemask_t *to)
1003{
1004	struct cpuset_migrate_mm_work *mwork;
1005
1006	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1007	if (mwork) {
1008		mwork->mm = mm;
1009		mwork->from = *from;
1010		mwork->to = *to;
1011		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1012		queue_work(cpuset_migrate_mm_wq, &mwork->work);
1013	} else {
1014		mmput(mm);
1015	}
1016}
1017
1018static void cpuset_post_attach(void)
1019{
1020	flush_workqueue(cpuset_migrate_mm_wq);
1021}
1022
1023/*
1024 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1025 * @tsk: the task to change
1026 * @newmems: new nodes that the task will be set
1027 *
1028 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1029 * we structure updates as setting all new allowed nodes, then clearing newly
1030 * disallowed ones.
1031 */
1032static void cpuset_change_task_nodemask(struct task_struct *tsk,
1033					nodemask_t *newmems)
1034{
1035	bool need_loop;
1036
1037	/*
1038	 * Allow tasks that have access to memory reserves because they have
1039	 * been OOM killed to get memory anywhere.
1040	 */
1041	if (unlikely(test_thread_flag(TIF_MEMDIE)))
1042		return;
1043	if (current->flags & PF_EXITING) /* Let dying task have memory */
1044		return;
1045
1046	task_lock(tsk);
1047	/*
1048	 * Determine if a loop is necessary if another thread is doing
1049	 * read_mems_allowed_begin().  If at least one node remains unchanged and
1050	 * tsk does not have a mempolicy, then an empty nodemask will not be
1051	 * possible when mems_allowed is larger than a word.
1052	 */
1053	need_loop = task_has_mempolicy(tsk) ||
1054			!nodes_intersects(*newmems, tsk->mems_allowed);
1055
1056	if (need_loop) {
1057		local_irq_disable();
1058		write_seqcount_begin(&tsk->mems_allowed_seq);
1059	}
1060
1061	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1062	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1063
1064	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1065	tsk->mems_allowed = *newmems;
1066
1067	if (need_loop) {
1068		write_seqcount_end(&tsk->mems_allowed_seq);
1069		local_irq_enable();
1070	}
1071
1072	task_unlock(tsk);
1073}
1074
1075static void *cpuset_being_rebound;
1076
1077/**
1078 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1079 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1080 *
1081 * Iterate through each task of @cs updating its mems_allowed to the
1082 * effective cpuset's.  As this function is called with cpuset_mutex held,
1083 * cpuset membership stays stable.
1084 */
1085static void update_tasks_nodemask(struct cpuset *cs)
1086{
1087	static nodemask_t newmems;	/* protected by cpuset_mutex */
1088	struct css_task_iter it;
1089	struct task_struct *task;
1090
1091	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1092
1093	guarantee_online_mems(cs, &newmems);
1094
1095	/*
1096	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1097	 * take while holding tasklist_lock.  Forks can happen - the
1098	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1099	 * and rebind their vma mempolicies too.  Because we still hold
1100	 * the global cpuset_mutex, we know that no other rebind effort
1101	 * will be contending for the global variable cpuset_being_rebound.
1102	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1103	 * is idempotent.  Also migrate pages in each mm to new nodes.
1104	 */
1105	css_task_iter_start(&cs->css, &it);
1106	while ((task = css_task_iter_next(&it))) {
1107		struct mm_struct *mm;
1108		bool migrate;
1109
1110		cpuset_change_task_nodemask(task, &newmems);
1111
1112		mm = get_task_mm(task);
1113		if (!mm)
1114			continue;
1115
1116		migrate = is_memory_migrate(cs);
1117
1118		mpol_rebind_mm(mm, &cs->mems_allowed);
1119		if (migrate)
1120			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1121		else
1122			mmput(mm);
1123	}
1124	css_task_iter_end(&it);
1125
1126	/*
1127	 * All the tasks' nodemasks have been updated, update
1128	 * cs->old_mems_allowed.
1129	 */
1130	cs->old_mems_allowed = newmems;
1131
1132	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1133	cpuset_being_rebound = NULL;
1134}
1135
1136/*
1137 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1138 * @cs: the cpuset to consider
1139 * @new_mems: a temp variable for calculating new effective_mems
1140 *
1141 * When configured nodemask is changed, the effective nodemasks of this cpuset
1142 * and all its descendants need to be updated.
1143 *
1144 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1145 *
1146 * Called with cpuset_mutex held
1147 */
1148static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1149{
1150	struct cpuset *cp;
1151	struct cgroup_subsys_state *pos_css;
1152
1153	rcu_read_lock();
1154	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1155		struct cpuset *parent = parent_cs(cp);
1156
1157		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1158
1159		/*
1160		 * If it becomes empty, inherit the effective mask of the
1161		 * parent, which is guaranteed to have some MEMs.
1162		 */
1163		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1164		    nodes_empty(*new_mems))
1165			*new_mems = parent->effective_mems;
1166
1167		/* Skip the whole subtree if the nodemask remains the same. */
1168		if (nodes_equal(*new_mems, cp->effective_mems)) {
1169			pos_css = css_rightmost_descendant(pos_css);
1170			continue;
1171		}
1172
1173		if (!css_tryget_online(&cp->css))
1174			continue;
1175		rcu_read_unlock();
1176
1177		spin_lock_irq(&callback_lock);
1178		cp->effective_mems = *new_mems;
1179		spin_unlock_irq(&callback_lock);
1180
1181		WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1182			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1183
1184		update_tasks_nodemask(cp);
1185
1186		rcu_read_lock();
1187		css_put(&cp->css);
1188	}
1189	rcu_read_unlock();
1190}
1191
1192/*
1193 * Handle user request to change the 'mems' memory placement
1194 * of a cpuset.  Needs to validate the request, update the
1195 * cpusets mems_allowed, and for each task in the cpuset,
1196 * update mems_allowed and rebind task's mempolicy and any vma
1197 * mempolicies and if the cpuset is marked 'memory_migrate',
1198 * migrate the tasks pages to the new memory.
1199 *
1200 * Call with cpuset_mutex held. May take callback_lock during call.
1201 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1202 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1203 * their mempolicies to the cpusets new mems_allowed.
1204 */
1205static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1206			   const char *buf)
1207{
1208	int retval;
1209
1210	/*
1211	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1212	 * it's read-only
1213	 */
1214	if (cs == &top_cpuset) {
1215		retval = -EACCES;
1216		goto done;
1217	}
1218
1219	/*
1220	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1221	 * Since nodelist_parse() fails on an empty mask, we special case
1222	 * that parsing.  The validate_change() call ensures that cpusets
1223	 * with tasks have memory.
1224	 */
1225	if (!*buf) {
1226		nodes_clear(trialcs->mems_allowed);
1227	} else {
1228		retval = nodelist_parse(buf, trialcs->mems_allowed);
1229		if (retval < 0)
1230			goto done;
1231
1232		if (!nodes_subset(trialcs->mems_allowed,
1233				  top_cpuset.mems_allowed)) {
1234			retval = -EINVAL;
1235			goto done;
1236		}
1237	}
1238
1239	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1240		retval = 0;		/* Too easy - nothing to do */
1241		goto done;
1242	}
1243	retval = validate_change(cs, trialcs);
1244	if (retval < 0)
1245		goto done;
1246
1247	spin_lock_irq(&callback_lock);
1248	cs->mems_allowed = trialcs->mems_allowed;
1249	spin_unlock_irq(&callback_lock);
1250
1251	/* use trialcs->mems_allowed as a temp variable */
1252	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1253done:
1254	return retval;
1255}
1256
1257int current_cpuset_is_being_rebound(void)
1258{
1259	int ret;
1260
1261	rcu_read_lock();
1262	ret = task_cs(current) == cpuset_being_rebound;
1263	rcu_read_unlock();
1264
1265	return ret;
1266}
1267
1268static int update_relax_domain_level(struct cpuset *cs, s64 val)
1269{
1270#ifdef CONFIG_SMP
1271	if (val < -1 || val >= sched_domain_level_max)
1272		return -EINVAL;
1273#endif
1274
1275	if (val != cs->relax_domain_level) {
1276		cs->relax_domain_level = val;
1277		if (!cpumask_empty(cs->cpus_allowed) &&
1278		    is_sched_load_balance(cs))
1279			rebuild_sched_domains_locked();
1280	}
1281
1282	return 0;
1283}
1284
1285/**
1286 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1287 * @cs: the cpuset in which each task's spread flags needs to be changed
1288 *
1289 * Iterate through each task of @cs updating its spread flags.  As this
1290 * function is called with cpuset_mutex held, cpuset membership stays
1291 * stable.
1292 */
1293static void update_tasks_flags(struct cpuset *cs)
1294{
1295	struct css_task_iter it;
1296	struct task_struct *task;
1297
1298	css_task_iter_start(&cs->css, &it);
1299	while ((task = css_task_iter_next(&it)))
1300		cpuset_update_task_spread_flag(cs, task);
1301	css_task_iter_end(&it);
1302}
1303
1304/*
1305 * update_flag - read a 0 or a 1 in a file and update associated flag
1306 * bit:		the bit to update (see cpuset_flagbits_t)
1307 * cs:		the cpuset to update
1308 * turning_on: 	whether the flag is being set or cleared
1309 *
1310 * Call with cpuset_mutex held.
1311 */
1312
1313static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1314		       int turning_on)
1315{
1316	struct cpuset *trialcs;
1317	int balance_flag_changed;
1318	int spread_flag_changed;
1319	int err;
1320
1321	trialcs = alloc_trial_cpuset(cs);
1322	if (!trialcs)
1323		return -ENOMEM;
1324
1325	if (turning_on)
1326		set_bit(bit, &trialcs->flags);
1327	else
1328		clear_bit(bit, &trialcs->flags);
1329
1330	err = validate_change(cs, trialcs);
1331	if (err < 0)
1332		goto out;
1333
1334	balance_flag_changed = (is_sched_load_balance(cs) !=
1335				is_sched_load_balance(trialcs));
1336
1337	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1338			|| (is_spread_page(cs) != is_spread_page(trialcs)));
1339
1340	spin_lock_irq(&callback_lock);
1341	cs->flags = trialcs->flags;
1342	spin_unlock_irq(&callback_lock);
1343
1344	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1345		rebuild_sched_domains_locked();
1346
1347	if (spread_flag_changed)
1348		update_tasks_flags(cs);
1349out:
1350	free_trial_cpuset(trialcs);
1351	return err;
1352}
1353
1354/*
1355 * Frequency meter - How fast is some event occurring?
1356 *
1357 * These routines manage a digitally filtered, constant time based,
1358 * event frequency meter.  There are four routines:
1359 *   fmeter_init() - initialize a frequency meter.
1360 *   fmeter_markevent() - called each time the event happens.
1361 *   fmeter_getrate() - returns the recent rate of such events.
1362 *   fmeter_update() - internal routine used to update fmeter.
1363 *
1364 * A common data structure is passed to each of these routines,
1365 * which is used to keep track of the state required to manage the
1366 * frequency meter and its digital filter.
1367 *
1368 * The filter works on the number of events marked per unit time.
1369 * The filter is single-pole low-pass recursive (IIR).  The time unit
1370 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
1371 * simulate 3 decimal digits of precision (multiplied by 1000).
1372 *
1373 * With an FM_COEF of 933, and a time base of 1 second, the filter
1374 * has a half-life of 10 seconds, meaning that if the events quit
1375 * happening, then the rate returned from the fmeter_getrate()
1376 * will be cut in half each 10 seconds, until it converges to zero.
1377 *
1378 * It is not worth doing a real infinitely recursive filter.  If more
1379 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1380 * just compute FM_MAXTICKS ticks worth, by which point the level
1381 * will be stable.
1382 *
1383 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1384 * arithmetic overflow in the fmeter_update() routine.
1385 *
1386 * Given the simple 32 bit integer arithmetic used, this meter works
1387 * best for reporting rates between one per millisecond (msec) and
1388 * one per 32 (approx) seconds.  At constant rates faster than one
1389 * per msec it maxes out at values just under 1,000,000.  At constant
1390 * rates between one per msec, and one per second it will stabilize
1391 * to a value N*1000, where N is the rate of events per second.
1392 * At constant rates between one per second and one per 32 seconds,
1393 * it will be choppy, moving up on the seconds that have an event,
1394 * and then decaying until the next event.  At rates slower than
1395 * about one in 32 seconds, it decays all the way back to zero between
1396 * each event.
1397 */
1398
1399#define FM_COEF 933		/* coefficient for half-life of 10 secs */
1400#define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
1401#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
1402#define FM_SCALE 1000		/* faux fixed point scale */
1403
1404/* Initialize a frequency meter */
1405static void fmeter_init(struct fmeter *fmp)
1406{
1407	fmp->cnt = 0;
1408	fmp->val = 0;
1409	fmp->time = 0;
1410	spin_lock_init(&fmp->lock);
1411}
1412
1413/* Internal meter update - process cnt events and update value */
1414static void fmeter_update(struct fmeter *fmp)
1415{
1416	time64_t now;
1417	u32 ticks;
1418
1419	now = ktime_get_seconds();
1420	ticks = now - fmp->time;
1421
1422	if (ticks == 0)
1423		return;
1424
1425	ticks = min(FM_MAXTICKS, ticks);
1426	while (ticks-- > 0)
1427		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1428	fmp->time = now;
1429
1430	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1431	fmp->cnt = 0;
1432}
1433
1434/* Process any previous ticks, then bump cnt by one (times scale). */
1435static void fmeter_markevent(struct fmeter *fmp)
1436{
1437	spin_lock(&fmp->lock);
1438	fmeter_update(fmp);
1439	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1440	spin_unlock(&fmp->lock);
1441}
1442
1443/* Process any previous ticks, then return current value. */
1444static int fmeter_getrate(struct fmeter *fmp)
1445{
1446	int val;
1447
1448	spin_lock(&fmp->lock);
1449	fmeter_update(fmp);
1450	val = fmp->val;
1451	spin_unlock(&fmp->lock);
1452	return val;
1453}
1454
1455static struct cpuset *cpuset_attach_old_cs;
1456
1457/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1458static int cpuset_can_attach(struct cgroup_taskset *tset)
1459{
1460	struct cgroup_subsys_state *css;
1461	struct cpuset *cs;
1462	struct task_struct *task;
1463	int ret;
1464
1465	/* used later by cpuset_attach() */
1466	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
1467	cs = css_cs(css);
1468
1469	mutex_lock(&cpuset_mutex);
1470
1471	/* allow moving tasks into an empty cpuset if on default hierarchy */
1472	ret = -ENOSPC;
1473	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1474	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1475		goto out_unlock;
1476
1477	cgroup_taskset_for_each(task, css, tset) {
1478		ret = task_can_attach(task, cs->cpus_allowed);
1479		if (ret)
1480			goto out_unlock;
1481		ret = security_task_setscheduler(task);
1482		if (ret)
1483			goto out_unlock;
1484	}
1485
1486	/*
1487	 * Mark attach is in progress.  This makes validate_change() fail
1488	 * changes which zero cpus/mems_allowed.
1489	 */
1490	cs->attach_in_progress++;
1491	ret = 0;
1492out_unlock:
1493	mutex_unlock(&cpuset_mutex);
1494	return ret;
1495}
1496
1497static void cpuset_cancel_attach(struct cgroup_taskset *tset)
1498{
1499	struct cgroup_subsys_state *css;
1500	struct cpuset *cs;
1501
1502	cgroup_taskset_first(tset, &css);
1503	cs = css_cs(css);
1504
1505	mutex_lock(&cpuset_mutex);
1506	css_cs(css)->attach_in_progress--;
1507	mutex_unlock(&cpuset_mutex);
1508}
1509
1510/*
1511 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1512 * but we can't allocate it dynamically there.  Define it global and
1513 * allocate from cpuset_init().
1514 */
1515static cpumask_var_t cpus_attach;
1516
1517static void cpuset_attach(struct cgroup_taskset *tset)
1518{
1519	/* static buf protected by cpuset_mutex */
1520	static nodemask_t cpuset_attach_nodemask_to;
1521	struct task_struct *task;
1522	struct task_struct *leader;
1523	struct cgroup_subsys_state *css;
1524	struct cpuset *cs;
1525	struct cpuset *oldcs = cpuset_attach_old_cs;
1526
1527	cgroup_taskset_first(tset, &css);
1528	cs = css_cs(css);
1529
1530	mutex_lock(&cpuset_mutex);
1531
1532	/* prepare for attach */
1533	if (cs == &top_cpuset)
1534		cpumask_copy(cpus_attach, cpu_possible_mask);
1535	else
1536		guarantee_online_cpus(cs, cpus_attach);
1537
1538	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1539
1540	cgroup_taskset_for_each(task, css, tset) {
1541		/*
1542		 * can_attach beforehand should guarantee that this doesn't
1543		 * fail.  TODO: have a better way to handle failure here
1544		 */
1545		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1546
1547		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1548		cpuset_update_task_spread_flag(cs, task);
1549	}
1550
1551	/*
1552	 * Change mm for all threadgroup leaders. This is expensive and may
1553	 * sleep and should be moved outside migration path proper.
1554	 */
1555	cpuset_attach_nodemask_to = cs->effective_mems;
1556	cgroup_taskset_for_each_leader(leader, css, tset) {
1557		struct mm_struct *mm = get_task_mm(leader);
1558
1559		if (mm) {
1560			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1561
1562			/*
1563			 * old_mems_allowed is the same with mems_allowed
1564			 * here, except if this task is being moved
1565			 * automatically due to hotplug.  In that case
1566			 * @mems_allowed has been updated and is empty, so
1567			 * @old_mems_allowed is the right nodesets that we
1568			 * migrate mm from.
1569			 */
1570			if (is_memory_migrate(cs))
1571				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1572						  &cpuset_attach_nodemask_to);
1573			else
1574				mmput(mm);
1575		}
1576	}
1577
1578	cs->old_mems_allowed = cpuset_attach_nodemask_to;
1579
1580	cs->attach_in_progress--;
1581	if (!cs->attach_in_progress)
1582		wake_up(&cpuset_attach_wq);
1583
1584	mutex_unlock(&cpuset_mutex);
1585}
1586
1587/* The various types of files and directories in a cpuset file system */
1588
1589typedef enum {
1590	FILE_MEMORY_MIGRATE,
1591	FILE_CPULIST,
1592	FILE_MEMLIST,
1593	FILE_EFFECTIVE_CPULIST,
1594	FILE_EFFECTIVE_MEMLIST,
1595	FILE_CPU_EXCLUSIVE,
1596	FILE_MEM_EXCLUSIVE,
1597	FILE_MEM_HARDWALL,
1598	FILE_SCHED_LOAD_BALANCE,
1599	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1600	FILE_MEMORY_PRESSURE_ENABLED,
1601	FILE_MEMORY_PRESSURE,
1602	FILE_SPREAD_PAGE,
1603	FILE_SPREAD_SLAB,
1604} cpuset_filetype_t;
1605
1606static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1607			    u64 val)
1608{
1609	struct cpuset *cs = css_cs(css);
1610	cpuset_filetype_t type = cft->private;
1611	int retval = 0;
1612
1613	mutex_lock(&cpuset_mutex);
1614	if (!is_cpuset_online(cs)) {
1615		retval = -ENODEV;
1616		goto out_unlock;
1617	}
1618
1619	switch (type) {
1620	case FILE_CPU_EXCLUSIVE:
1621		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1622		break;
1623	case FILE_MEM_EXCLUSIVE:
1624		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1625		break;
1626	case FILE_MEM_HARDWALL:
1627		retval = update_flag(CS_MEM_HARDWALL, cs, val);
1628		break;
1629	case FILE_SCHED_LOAD_BALANCE:
1630		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1631		break;
1632	case FILE_MEMORY_MIGRATE:
1633		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1634		break;
1635	case FILE_MEMORY_PRESSURE_ENABLED:
1636		cpuset_memory_pressure_enabled = !!val;
1637		break;
1638	case FILE_SPREAD_PAGE:
1639		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1640		break;
1641	case FILE_SPREAD_SLAB:
1642		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1643		break;
1644	default:
1645		retval = -EINVAL;
1646		break;
1647	}
1648out_unlock:
1649	mutex_unlock(&cpuset_mutex);
1650	return retval;
1651}
1652
1653static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1654			    s64 val)
1655{
1656	struct cpuset *cs = css_cs(css);
1657	cpuset_filetype_t type = cft->private;
1658	int retval = -ENODEV;
1659
1660	mutex_lock(&cpuset_mutex);
1661	if (!is_cpuset_online(cs))
1662		goto out_unlock;
1663
1664	switch (type) {
1665	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1666		retval = update_relax_domain_level(cs, val);
1667		break;
1668	default:
1669		retval = -EINVAL;
1670		break;
1671	}
1672out_unlock:
1673	mutex_unlock(&cpuset_mutex);
1674	return retval;
1675}
1676
1677/*
1678 * Common handling for a write to a "cpus" or "mems" file.
1679 */
1680static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1681				    char *buf, size_t nbytes, loff_t off)
1682{
1683	struct cpuset *cs = css_cs(of_css(of));
1684	struct cpuset *trialcs;
1685	int retval = -ENODEV;
1686
1687	buf = strstrip(buf);
1688
1689	/*
1690	 * CPU or memory hotunplug may leave @cs w/o any execution
1691	 * resources, in which case the hotplug code asynchronously updates
1692	 * configuration and transfers all tasks to the nearest ancestor
1693	 * which can execute.
1694	 *
1695	 * As writes to "cpus" or "mems" may restore @cs's execution
1696	 * resources, wait for the previously scheduled operations before
1697	 * proceeding, so that we don't end up keep removing tasks added
1698	 * after execution capability is restored.
1699	 *
1700	 * cpuset_hotplug_work calls back into cgroup core via
1701	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1702	 * operation like this one can lead to a deadlock through kernfs
1703	 * active_ref protection.  Let's break the protection.  Losing the
1704	 * protection is okay as we check whether @cs is online after
1705	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
1706	 * hierarchies.
1707	 */
1708	css_get(&cs->css);
1709	kernfs_break_active_protection(of->kn);
1710	flush_work(&cpuset_hotplug_work);
1711
1712	mutex_lock(&cpuset_mutex);
1713	if (!is_cpuset_online(cs))
1714		goto out_unlock;
1715
1716	trialcs = alloc_trial_cpuset(cs);
1717	if (!trialcs) {
1718		retval = -ENOMEM;
1719		goto out_unlock;
1720	}
1721
1722	switch (of_cft(of)->private) {
1723	case FILE_CPULIST:
1724		retval = update_cpumask(cs, trialcs, buf);
1725		break;
1726	case FILE_MEMLIST:
1727		retval = update_nodemask(cs, trialcs, buf);
1728		break;
1729	default:
1730		retval = -EINVAL;
1731		break;
1732	}
1733
1734	free_trial_cpuset(trialcs);
1735out_unlock:
1736	mutex_unlock(&cpuset_mutex);
1737	kernfs_unbreak_active_protection(of->kn);
1738	css_put(&cs->css);
1739	flush_workqueue(cpuset_migrate_mm_wq);
1740	return retval ?: nbytes;
1741}
1742
1743/*
1744 * These ascii lists should be read in a single call, by using a user
1745 * buffer large enough to hold the entire map.  If read in smaller
1746 * chunks, there is no guarantee of atomicity.  Since the display format
1747 * used, list of ranges of sequential numbers, is variable length,
1748 * and since these maps can change value dynamically, one could read
1749 * gibberish by doing partial reads while a list was changing.
1750 */
1751static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1752{
1753	struct cpuset *cs = css_cs(seq_css(sf));
1754	cpuset_filetype_t type = seq_cft(sf)->private;
1755	int ret = 0;
1756
1757	spin_lock_irq(&callback_lock);
1758
1759	switch (type) {
1760	case FILE_CPULIST:
1761		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
1762		break;
1763	case FILE_MEMLIST:
1764		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1765		break;
1766	case FILE_EFFECTIVE_CPULIST:
1767		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1768		break;
1769	case FILE_EFFECTIVE_MEMLIST:
1770		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1771		break;
1772	default:
1773		ret = -EINVAL;
1774	}
1775
1776	spin_unlock_irq(&callback_lock);
1777	return ret;
1778}
1779
1780static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1781{
1782	struct cpuset *cs = css_cs(css);
1783	cpuset_filetype_t type = cft->private;
1784	switch (type) {
1785	case FILE_CPU_EXCLUSIVE:
1786		return is_cpu_exclusive(cs);
1787	case FILE_MEM_EXCLUSIVE:
1788		return is_mem_exclusive(cs);
1789	case FILE_MEM_HARDWALL:
1790		return is_mem_hardwall(cs);
1791	case FILE_SCHED_LOAD_BALANCE:
1792		return is_sched_load_balance(cs);
1793	case FILE_MEMORY_MIGRATE:
1794		return is_memory_migrate(cs);
1795	case FILE_MEMORY_PRESSURE_ENABLED:
1796		return cpuset_memory_pressure_enabled;
1797	case FILE_MEMORY_PRESSURE:
1798		return fmeter_getrate(&cs->fmeter);
1799	case FILE_SPREAD_PAGE:
1800		return is_spread_page(cs);
1801	case FILE_SPREAD_SLAB:
1802		return is_spread_slab(cs);
1803	default:
1804		BUG();
1805	}
1806
1807	/* Unreachable but makes gcc happy */
1808	return 0;
1809}
1810
1811static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1812{
1813	struct cpuset *cs = css_cs(css);
1814	cpuset_filetype_t type = cft->private;
1815	switch (type) {
1816	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1817		return cs->relax_domain_level;
1818	default:
1819		BUG();
1820	}
1821
1822	/* Unrechable but makes gcc happy */
1823	return 0;
1824}
1825
1826
1827/*
1828 * for the common functions, 'private' gives the type of file
1829 */
1830
1831static struct cftype files[] = {
1832	{
1833		.name = "cpus",
1834		.seq_show = cpuset_common_seq_show,
1835		.write = cpuset_write_resmask,
1836		.max_write_len = (100U + 6 * NR_CPUS),
1837		.private = FILE_CPULIST,
1838	},
1839
1840	{
1841		.name = "mems",
1842		.seq_show = cpuset_common_seq_show,
1843		.write = cpuset_write_resmask,
1844		.max_write_len = (100U + 6 * MAX_NUMNODES),
1845		.private = FILE_MEMLIST,
1846	},
1847
1848	{
1849		.name = "effective_cpus",
1850		.seq_show = cpuset_common_seq_show,
1851		.private = FILE_EFFECTIVE_CPULIST,
1852	},
1853
1854	{
1855		.name = "effective_mems",
1856		.seq_show = cpuset_common_seq_show,
1857		.private = FILE_EFFECTIVE_MEMLIST,
1858	},
1859
1860	{
1861		.name = "cpu_exclusive",
1862		.read_u64 = cpuset_read_u64,
1863		.write_u64 = cpuset_write_u64,
1864		.private = FILE_CPU_EXCLUSIVE,
1865	},
1866
1867	{
1868		.name = "mem_exclusive",
1869		.read_u64 = cpuset_read_u64,
1870		.write_u64 = cpuset_write_u64,
1871		.private = FILE_MEM_EXCLUSIVE,
1872	},
1873
1874	{
1875		.name = "mem_hardwall",
1876		.read_u64 = cpuset_read_u64,
1877		.write_u64 = cpuset_write_u64,
1878		.private = FILE_MEM_HARDWALL,
1879	},
1880
1881	{
1882		.name = "sched_load_balance",
1883		.read_u64 = cpuset_read_u64,
1884		.write_u64 = cpuset_write_u64,
1885		.private = FILE_SCHED_LOAD_BALANCE,
1886	},
1887
1888	{
1889		.name = "sched_relax_domain_level",
1890		.read_s64 = cpuset_read_s64,
1891		.write_s64 = cpuset_write_s64,
1892		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1893	},
1894
1895	{
1896		.name = "memory_migrate",
1897		.read_u64 = cpuset_read_u64,
1898		.write_u64 = cpuset_write_u64,
1899		.private = FILE_MEMORY_MIGRATE,
1900	},
1901
1902	{
1903		.name = "memory_pressure",
1904		.read_u64 = cpuset_read_u64,
1905	},
1906
1907	{
1908		.name = "memory_spread_page",
1909		.read_u64 = cpuset_read_u64,
1910		.write_u64 = cpuset_write_u64,
1911		.private = FILE_SPREAD_PAGE,
1912	},
1913
1914	{
1915		.name = "memory_spread_slab",
1916		.read_u64 = cpuset_read_u64,
1917		.write_u64 = cpuset_write_u64,
1918		.private = FILE_SPREAD_SLAB,
1919	},
1920
1921	{
1922		.name = "memory_pressure_enabled",
1923		.flags = CFTYPE_ONLY_ON_ROOT,
1924		.read_u64 = cpuset_read_u64,
1925		.write_u64 = cpuset_write_u64,
1926		.private = FILE_MEMORY_PRESSURE_ENABLED,
1927	},
1928
1929	{ }	/* terminate */
1930};
1931
1932/*
1933 *	cpuset_css_alloc - allocate a cpuset css
1934 *	cgrp:	control group that the new cpuset will be part of
1935 */
1936
1937static struct cgroup_subsys_state *
1938cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1939{
1940	struct cpuset *cs;
1941
1942	if (!parent_css)
1943		return &top_cpuset.css;
1944
1945	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1946	if (!cs)
1947		return ERR_PTR(-ENOMEM);
1948	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1949		goto free_cs;
1950	if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1951		goto free_cpus;
1952
1953	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1954	cpumask_clear(cs->cpus_allowed);
1955	nodes_clear(cs->mems_allowed);
1956	cpumask_clear(cs->effective_cpus);
1957	nodes_clear(cs->effective_mems);
1958	fmeter_init(&cs->fmeter);
1959	cs->relax_domain_level = -1;
1960
1961	return &cs->css;
1962
1963free_cpus:
1964	free_cpumask_var(cs->cpus_allowed);
1965free_cs:
1966	kfree(cs);
1967	return ERR_PTR(-ENOMEM);
1968}
1969
1970static int cpuset_css_online(struct cgroup_subsys_state *css)
1971{
1972	struct cpuset *cs = css_cs(css);
1973	struct cpuset *parent = parent_cs(cs);
1974	struct cpuset *tmp_cs;
1975	struct cgroup_subsys_state *pos_css;
1976
1977	if (!parent)
1978		return 0;
1979
1980	mutex_lock(&cpuset_mutex);
1981
1982	set_bit(CS_ONLINE, &cs->flags);
1983	if (is_spread_page(parent))
1984		set_bit(CS_SPREAD_PAGE, &cs->flags);
1985	if (is_spread_slab(parent))
1986		set_bit(CS_SPREAD_SLAB, &cs->flags);
1987
1988	cpuset_inc();
1989
1990	spin_lock_irq(&callback_lock);
1991	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
1992		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1993		cs->effective_mems = parent->effective_mems;
1994	}
1995	spin_unlock_irq(&callback_lock);
1996
1997	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1998		goto out_unlock;
1999
2000	/*
2001	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2002	 * set.  This flag handling is implemented in cgroup core for
2003	 * histrical reasons - the flag may be specified during mount.
2004	 *
2005	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2006	 * refuse to clone the configuration - thereby refusing the task to
2007	 * be entered, and as a result refusing the sys_unshare() or
2008	 * clone() which initiated it.  If this becomes a problem for some
2009	 * users who wish to allow that scenario, then this could be
2010	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2011	 * (and likewise for mems) to the new cgroup.
2012	 */
2013	rcu_read_lock();
2014	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2015		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2016			rcu_read_unlock();
2017			goto out_unlock;
2018		}
2019	}
2020	rcu_read_unlock();
2021
2022	spin_lock_irq(&callback_lock);
2023	cs->mems_allowed = parent->mems_allowed;
2024	cs->effective_mems = parent->mems_allowed;
2025	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2026	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2027	spin_unlock_irq(&callback_lock);
2028out_unlock:
2029	mutex_unlock(&cpuset_mutex);
2030	return 0;
2031}
2032
2033/*
2034 * If the cpuset being removed has its flag 'sched_load_balance'
2035 * enabled, then simulate turning sched_load_balance off, which
2036 * will call rebuild_sched_domains_locked().
2037 */
2038
2039static void cpuset_css_offline(struct cgroup_subsys_state *css)
2040{
2041	struct cpuset *cs = css_cs(css);
2042
2043	mutex_lock(&cpuset_mutex);
2044
2045	if (is_sched_load_balance(cs))
2046		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2047
2048	cpuset_dec();
2049	clear_bit(CS_ONLINE, &cs->flags);
2050
2051	mutex_unlock(&cpuset_mutex);
2052}
2053
2054static void cpuset_css_free(struct cgroup_subsys_state *css)
2055{
2056	struct cpuset *cs = css_cs(css);
2057
2058	free_cpumask_var(cs->effective_cpus);
2059	free_cpumask_var(cs->cpus_allowed);
2060	kfree(cs);
2061}
2062
2063static void cpuset_bind(struct cgroup_subsys_state *root_css)
2064{
2065	mutex_lock(&cpuset_mutex);
2066	spin_lock_irq(&callback_lock);
2067
2068	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2069		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2070		top_cpuset.mems_allowed = node_possible_map;
2071	} else {
2072		cpumask_copy(top_cpuset.cpus_allowed,
2073			     top_cpuset.effective_cpus);
2074		top_cpuset.mems_allowed = top_cpuset.effective_mems;
2075	}
2076
2077	spin_unlock_irq(&callback_lock);
2078	mutex_unlock(&cpuset_mutex);
2079}
2080
2081struct cgroup_subsys cpuset_cgrp_subsys = {
2082	.css_alloc	= cpuset_css_alloc,
2083	.css_online	= cpuset_css_online,
2084	.css_offline	= cpuset_css_offline,
2085	.css_free	= cpuset_css_free,
2086	.can_attach	= cpuset_can_attach,
2087	.cancel_attach	= cpuset_cancel_attach,
2088	.attach		= cpuset_attach,
2089	.post_attach	= cpuset_post_attach,
2090	.bind		= cpuset_bind,
2091	.legacy_cftypes	= files,
2092	.early_init	= true,
2093};
2094
2095/**
2096 * cpuset_init - initialize cpusets at system boot
2097 *
2098 * Description: Initialize top_cpuset and the cpuset internal file system,
2099 **/
2100
2101int __init cpuset_init(void)
2102{
2103	int err = 0;
2104
2105	if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2106		BUG();
2107	if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2108		BUG();
2109
2110	cpumask_setall(top_cpuset.cpus_allowed);
2111	nodes_setall(top_cpuset.mems_allowed);
2112	cpumask_setall(top_cpuset.effective_cpus);
2113	nodes_setall(top_cpuset.effective_mems);
2114
2115	fmeter_init(&top_cpuset.fmeter);
2116	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2117	top_cpuset.relax_domain_level = -1;
2118
2119	err = register_filesystem(&cpuset_fs_type);
2120	if (err < 0)
2121		return err;
2122
2123	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2124		BUG();
2125
2126	return 0;
2127}
2128
2129/*
2130 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2131 * or memory nodes, we need to walk over the cpuset hierarchy,
2132 * removing that CPU or node from all cpusets.  If this removes the
2133 * last CPU or node from a cpuset, then move the tasks in the empty
2134 * cpuset to its next-highest non-empty parent.
2135 */
2136static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2137{
2138	struct cpuset *parent;
2139
2140	/*
2141	 * Find its next-highest non-empty parent, (top cpuset
2142	 * has online cpus, so can't be empty).
2143	 */
2144	parent = parent_cs(cs);
2145	while (cpumask_empty(parent->cpus_allowed) ||
2146			nodes_empty(parent->mems_allowed))
2147		parent = parent_cs(parent);
2148
2149	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2150		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2151		pr_cont_cgroup_name(cs->css.cgroup);
2152		pr_cont("\n");
2153	}
2154}
2155
2156static void
2157hotplug_update_tasks_legacy(struct cpuset *cs,
2158			    struct cpumask *new_cpus, nodemask_t *new_mems,
2159			    bool cpus_updated, bool mems_updated)
2160{
2161	bool is_empty;
2162
2163	spin_lock_irq(&callback_lock);
2164	cpumask_copy(cs->cpus_allowed, new_cpus);
2165	cpumask_copy(cs->effective_cpus, new_cpus);
2166	cs->mems_allowed = *new_mems;
2167	cs->effective_mems = *new_mems;
2168	spin_unlock_irq(&callback_lock);
2169
2170	/*
2171	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2172	 * as the tasks will be migratecd to an ancestor.
2173	 */
2174	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2175		update_tasks_cpumask(cs);
2176	if (mems_updated && !nodes_empty(cs->mems_allowed))
2177		update_tasks_nodemask(cs);
2178
2179	is_empty = cpumask_empty(cs->cpus_allowed) ||
2180		   nodes_empty(cs->mems_allowed);
2181
2182	mutex_unlock(&cpuset_mutex);
2183
2184	/*
2185	 * Move tasks to the nearest ancestor with execution resources,
2186	 * This is full cgroup operation which will also call back into
2187	 * cpuset. Should be done outside any lock.
2188	 */
2189	if (is_empty)
2190		remove_tasks_in_empty_cpuset(cs);
2191
2192	mutex_lock(&cpuset_mutex);
2193}
2194
2195static void
2196hotplug_update_tasks(struct cpuset *cs,
2197		     struct cpumask *new_cpus, nodemask_t *new_mems,
2198		     bool cpus_updated, bool mems_updated)
2199{
2200	if (cpumask_empty(new_cpus))
2201		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2202	if (nodes_empty(*new_mems))
2203		*new_mems = parent_cs(cs)->effective_mems;
2204
2205	spin_lock_irq(&callback_lock);
2206	cpumask_copy(cs->effective_cpus, new_cpus);
2207	cs->effective_mems = *new_mems;
2208	spin_unlock_irq(&callback_lock);
2209
2210	if (cpus_updated)
2211		update_tasks_cpumask(cs);
2212	if (mems_updated)
2213		update_tasks_nodemask(cs);
2214}
2215
2216/**
2217 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2218 * @cs: cpuset in interest
2219 *
2220 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2221 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
2222 * all its tasks are moved to the nearest ancestor with both resources.
2223 */
2224static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2225{
2226	static cpumask_t new_cpus;
2227	static nodemask_t new_mems;
2228	bool cpus_updated;
2229	bool mems_updated;
2230retry:
2231	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2232
2233	mutex_lock(&cpuset_mutex);
2234
2235	/*
2236	 * We have raced with task attaching. We wait until attaching
2237	 * is finished, so we won't attach a task to an empty cpuset.
2238	 */
2239	if (cs->attach_in_progress) {
2240		mutex_unlock(&cpuset_mutex);
2241		goto retry;
2242	}
2243
2244	cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2245	nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2246
2247	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2248	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2249
2250	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2251		hotplug_update_tasks(cs, &new_cpus, &new_mems,
2252				     cpus_updated, mems_updated);
2253	else
2254		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2255					    cpus_updated, mems_updated);
2256
2257	mutex_unlock(&cpuset_mutex);
2258}
2259
2260/**
2261 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2262 *
2263 * This function is called after either CPU or memory configuration has
2264 * changed and updates cpuset accordingly.  The top_cpuset is always
2265 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2266 * order to make cpusets transparent (of no affect) on systems that are
2267 * actively using CPU hotplug but making no active use of cpusets.
2268 *
2269 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2270 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2271 * all descendants.
2272 *
2273 * Note that CPU offlining during suspend is ignored.  We don't modify
2274 * cpusets across suspend/resume cycles at all.
2275 */
2276static void cpuset_hotplug_workfn(struct work_struct *work)
2277{
2278	static cpumask_t new_cpus;
2279	static nodemask_t new_mems;
2280	bool cpus_updated, mems_updated;
2281	bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
2282
2283	mutex_lock(&cpuset_mutex);
2284
2285	/* fetch the available cpus/mems and find out which changed how */
2286	cpumask_copy(&new_cpus, cpu_active_mask);
2287	new_mems = node_states[N_MEMORY];
2288
2289	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2290	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2291
2292	/* synchronize cpus_allowed to cpu_active_mask */
2293	if (cpus_updated) {
2294		spin_lock_irq(&callback_lock);
2295		if (!on_dfl)
2296			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2297		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2298		spin_unlock_irq(&callback_lock);
2299		/* we don't mess with cpumasks of tasks in top_cpuset */
2300	}
2301
2302	/* synchronize mems_allowed to N_MEMORY */
2303	if (mems_updated) {
2304		spin_lock_irq(&callback_lock);
2305		if (!on_dfl)
2306			top_cpuset.mems_allowed = new_mems;
2307		top_cpuset.effective_mems = new_mems;
2308		spin_unlock_irq(&callback_lock);
2309		update_tasks_nodemask(&top_cpuset);
2310	}
2311
2312	mutex_unlock(&cpuset_mutex);
2313
2314	/* if cpus or mems changed, we need to propagate to descendants */
2315	if (cpus_updated || mems_updated) {
2316		struct cpuset *cs;
2317		struct cgroup_subsys_state *pos_css;
2318
2319		rcu_read_lock();
2320		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2321			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2322				continue;
2323			rcu_read_unlock();
2324
2325			cpuset_hotplug_update_tasks(cs);
2326
2327			rcu_read_lock();
2328			css_put(&cs->css);
2329		}
2330		rcu_read_unlock();
2331	}
2332
2333	/* rebuild sched domains if cpus_allowed has changed */
2334	if (cpus_updated)
2335		rebuild_sched_domains();
2336}
2337
2338void cpuset_update_active_cpus(bool cpu_online)
2339{
2340	/*
2341	 * We're inside cpu hotplug critical region which usually nests
2342	 * inside cgroup synchronization.  Bounce actual hotplug processing
2343	 * to a work item to avoid reverse locking order.
2344	 *
2345	 * We still need to do partition_sched_domains() synchronously;
2346	 * otherwise, the scheduler will get confused and put tasks to the
2347	 * dead CPU.  Fall back to the default single domain.
2348	 * cpuset_hotplug_workfn() will rebuild it as necessary.
2349	 */
2350	partition_sched_domains(1, NULL, NULL);
2351	schedule_work(&cpuset_hotplug_work);
2352}
2353
2354/*
2355 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2356 * Call this routine anytime after node_states[N_MEMORY] changes.
2357 * See cpuset_update_active_cpus() for CPU hotplug handling.
2358 */
2359static int cpuset_track_online_nodes(struct notifier_block *self,
2360				unsigned long action, void *arg)
2361{
2362	schedule_work(&cpuset_hotplug_work);
2363	return NOTIFY_OK;
2364}
2365
2366static struct notifier_block cpuset_track_online_nodes_nb = {
2367	.notifier_call = cpuset_track_online_nodes,
2368	.priority = 10,		/* ??! */
2369};
2370
2371/**
2372 * cpuset_init_smp - initialize cpus_allowed
2373 *
2374 * Description: Finish top cpuset after cpu, node maps are initialized
2375 */
2376void __init cpuset_init_smp(void)
2377{
2378	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2379	top_cpuset.mems_allowed = node_states[N_MEMORY];
2380	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2381
2382	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2383	top_cpuset.effective_mems = node_states[N_MEMORY];
2384
2385	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2386
2387	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
2388	BUG_ON(!cpuset_migrate_mm_wq);
2389}
2390
2391/**
2392 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2393 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2394 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2395 *
2396 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2397 * attached to the specified @tsk.  Guaranteed to return some non-empty
2398 * subset of cpu_online_mask, even if this means going outside the
2399 * tasks cpuset.
2400 **/
2401
2402void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2403{
2404	unsigned long flags;
2405
2406	spin_lock_irqsave(&callback_lock, flags);
2407	rcu_read_lock();
2408	guarantee_online_cpus(task_cs(tsk), pmask);
2409	rcu_read_unlock();
2410	spin_unlock_irqrestore(&callback_lock, flags);
2411}
2412
2413void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2414{
2415	rcu_read_lock();
2416	do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2417	rcu_read_unlock();
2418
2419	/*
2420	 * We own tsk->cpus_allowed, nobody can change it under us.
2421	 *
2422	 * But we used cs && cs->cpus_allowed lockless and thus can
2423	 * race with cgroup_attach_task() or update_cpumask() and get
2424	 * the wrong tsk->cpus_allowed. However, both cases imply the
2425	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2426	 * which takes task_rq_lock().
2427	 *
2428	 * If we are called after it dropped the lock we must see all
2429	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2430	 * set any mask even if it is not right from task_cs() pov,
2431	 * the pending set_cpus_allowed_ptr() will fix things.
2432	 *
2433	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2434	 * if required.
2435	 */
2436}
2437
2438void __init cpuset_init_current_mems_allowed(void)
2439{
2440	nodes_setall(current->mems_allowed);
2441}
2442
2443/**
2444 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2445 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2446 *
2447 * Description: Returns the nodemask_t mems_allowed of the cpuset
2448 * attached to the specified @tsk.  Guaranteed to return some non-empty
2449 * subset of node_states[N_MEMORY], even if this means going outside the
2450 * tasks cpuset.
2451 **/
2452
2453nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2454{
2455	nodemask_t mask;
2456	unsigned long flags;
2457
2458	spin_lock_irqsave(&callback_lock, flags);
2459	rcu_read_lock();
2460	guarantee_online_mems(task_cs(tsk), &mask);
2461	rcu_read_unlock();
2462	spin_unlock_irqrestore(&callback_lock, flags);
2463
2464	return mask;
2465}
2466
2467/**
2468 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2469 * @nodemask: the nodemask to be checked
2470 *
2471 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2472 */
2473int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2474{
2475	return nodes_intersects(*nodemask, current->mems_allowed);
2476}
2477
2478/*
2479 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2480 * mem_hardwall ancestor to the specified cpuset.  Call holding
2481 * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
2482 * (an unusual configuration), then returns the root cpuset.
2483 */
2484static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2485{
2486	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2487		cs = parent_cs(cs);
2488	return cs;
2489}
2490
2491/**
2492 * cpuset_node_allowed - Can we allocate on a memory node?
2493 * @node: is this an allowed node?
2494 * @gfp_mask: memory allocation flags
2495 *
2496 * If we're in interrupt, yes, we can always allocate.  If @node is set in
2497 * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
2498 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2499 * yes.  If current has access to memory reserves due to TIF_MEMDIE, yes.
2500 * Otherwise, no.
2501 *
2502 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2503 * and do not allow allocations outside the current tasks cpuset
2504 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2505 * GFP_KERNEL allocations are not so marked, so can escape to the
2506 * nearest enclosing hardwalled ancestor cpuset.
2507 *
2508 * Scanning up parent cpusets requires callback_lock.  The
2509 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2510 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2511 * current tasks mems_allowed came up empty on the first pass over
2512 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
2513 * cpuset are short of memory, might require taking the callback_lock.
2514 *
2515 * The first call here from mm/page_alloc:get_page_from_freelist()
2516 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2517 * so no allocation on a node outside the cpuset is allowed (unless
2518 * in interrupt, of course).
2519 *
2520 * The second pass through get_page_from_freelist() doesn't even call
2521 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
2522 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2523 * in alloc_flags.  That logic and the checks below have the combined
2524 * affect that:
2525 *	in_interrupt - any node ok (current task context irrelevant)
2526 *	GFP_ATOMIC   - any node ok
2527 *	TIF_MEMDIE   - any node ok
2528 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2529 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2530 */
2531int __cpuset_node_allowed(int node, gfp_t gfp_mask)
2532{
2533	struct cpuset *cs;		/* current cpuset ancestors */
2534	int allowed;			/* is allocation in zone z allowed? */
2535	unsigned long flags;
2536
2537	if (in_interrupt())
2538		return 1;
2539	if (node_isset(node, current->mems_allowed))
2540		return 1;
2541	/*
2542	 * Allow tasks that have access to memory reserves because they have
2543	 * been OOM killed to get memory anywhere.
2544	 */
2545	if (unlikely(test_thread_flag(TIF_MEMDIE)))
2546		return 1;
2547	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
2548		return 0;
2549
2550	if (current->flags & PF_EXITING) /* Let dying task have memory */
2551		return 1;
2552
2553	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2554	spin_lock_irqsave(&callback_lock, flags);
2555
2556	rcu_read_lock();
2557	cs = nearest_hardwall_ancestor(task_cs(current));
2558	allowed = node_isset(node, cs->mems_allowed);
2559	rcu_read_unlock();
2560
2561	spin_unlock_irqrestore(&callback_lock, flags);
2562	return allowed;
2563}
2564
2565/**
2566 * cpuset_mem_spread_node() - On which node to begin search for a file page
2567 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2568 *
2569 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2570 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2571 * and if the memory allocation used cpuset_mem_spread_node()
2572 * to determine on which node to start looking, as it will for
2573 * certain page cache or slab cache pages such as used for file
2574 * system buffers and inode caches, then instead of starting on the
2575 * local node to look for a free page, rather spread the starting
2576 * node around the tasks mems_allowed nodes.
2577 *
2578 * We don't have to worry about the returned node being offline
2579 * because "it can't happen", and even if it did, it would be ok.
2580 *
2581 * The routines calling guarantee_online_mems() are careful to
2582 * only set nodes in task->mems_allowed that are online.  So it
2583 * should not be possible for the following code to return an
2584 * offline node.  But if it did, that would be ok, as this routine
2585 * is not returning the node where the allocation must be, only
2586 * the node where the search should start.  The zonelist passed to
2587 * __alloc_pages() will include all nodes.  If the slab allocator
2588 * is passed an offline node, it will fall back to the local node.
2589 * See kmem_cache_alloc_node().
2590 */
2591
2592static int cpuset_spread_node(int *rotor)
2593{
2594	int node;
2595
2596	node = next_node(*rotor, current->mems_allowed);
2597	if (node == MAX_NUMNODES)
2598		node = first_node(current->mems_allowed);
2599	*rotor = node;
2600	return node;
2601}
2602
2603int cpuset_mem_spread_node(void)
2604{
2605	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2606		current->cpuset_mem_spread_rotor =
2607			node_random(&current->mems_allowed);
2608
2609	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2610}
2611
2612int cpuset_slab_spread_node(void)
2613{
2614	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2615		current->cpuset_slab_spread_rotor =
2616			node_random(&current->mems_allowed);
2617
2618	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2619}
2620
2621EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2622
2623/**
2624 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2625 * @tsk1: pointer to task_struct of some task.
2626 * @tsk2: pointer to task_struct of some other task.
2627 *
2628 * Description: Return true if @tsk1's mems_allowed intersects the
2629 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
2630 * one of the task's memory usage might impact the memory available
2631 * to the other.
2632 **/
2633
2634int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2635				   const struct task_struct *tsk2)
2636{
2637	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2638}
2639
2640/**
2641 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2642 *
2643 * Description: Prints current's name, cpuset name, and cached copy of its
2644 * mems_allowed to the kernel log.
2645 */
2646void cpuset_print_current_mems_allowed(void)
2647{
2648	struct cgroup *cgrp;
2649
2650	rcu_read_lock();
2651
2652	cgrp = task_cs(current)->css.cgroup;
2653	pr_info("%s cpuset=", current->comm);
2654	pr_cont_cgroup_name(cgrp);
2655	pr_cont(" mems_allowed=%*pbl\n",
2656		nodemask_pr_args(&current->mems_allowed));
2657
2658	rcu_read_unlock();
2659}
2660
2661/*
2662 * Collection of memory_pressure is suppressed unless
2663 * this flag is enabled by writing "1" to the special
2664 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2665 */
2666
2667int cpuset_memory_pressure_enabled __read_mostly;
2668
2669/**
2670 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2671 *
2672 * Keep a running average of the rate of synchronous (direct)
2673 * page reclaim efforts initiated by tasks in each cpuset.
2674 *
2675 * This represents the rate at which some task in the cpuset
2676 * ran low on memory on all nodes it was allowed to use, and
2677 * had to enter the kernels page reclaim code in an effort to
2678 * create more free memory by tossing clean pages or swapping
2679 * or writing dirty pages.
2680 *
2681 * Display to user space in the per-cpuset read-only file
2682 * "memory_pressure".  Value displayed is an integer
2683 * representing the recent rate of entry into the synchronous
2684 * (direct) page reclaim by any task attached to the cpuset.
2685 **/
2686
2687void __cpuset_memory_pressure_bump(void)
2688{
2689	rcu_read_lock();
2690	fmeter_markevent(&task_cs(current)->fmeter);
2691	rcu_read_unlock();
2692}
2693
2694#ifdef CONFIG_PROC_PID_CPUSET
2695/*
2696 * proc_cpuset_show()
2697 *  - Print tasks cpuset path into seq_file.
2698 *  - Used for /proc/<pid>/cpuset.
2699 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2700 *    doesn't really matter if tsk->cpuset changes after we read it,
2701 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2702 *    anyway.
2703 */
2704int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2705		     struct pid *pid, struct task_struct *tsk)
2706{
2707	char *buf, *p;
2708	struct cgroup_subsys_state *css;
2709	int retval;
2710
2711	retval = -ENOMEM;
2712	buf = kmalloc(PATH_MAX, GFP_KERNEL);
2713	if (!buf)
2714		goto out;
2715
2716	retval = -ENAMETOOLONG;
2717	css = task_get_css(tsk, cpuset_cgrp_id);
2718	p = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
2719			   current->nsproxy->cgroup_ns);
2720	css_put(css);
2721	if (!p)
2722		goto out_free;
2723	seq_puts(m, p);
2724	seq_putc(m, '\n');
2725	retval = 0;
2726out_free:
2727	kfree(buf);
2728out:
2729	return retval;
2730}
2731#endif /* CONFIG_PROC_PID_CPUSET */
2732
2733/* Display task mems_allowed in /proc/<pid>/status file. */
2734void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2735{
2736	seq_printf(m, "Mems_allowed:\t%*pb\n",
2737		   nodemask_pr_args(&task->mems_allowed));
2738	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2739		   nodemask_pr_args(&task->mems_allowed));
2740}