Linux Audio

Check our new training course

Loading...
   1/*
   2 *  kernel/cpuset.c
   3 *
   4 *  Processor and Memory placement constraints for sets of tasks.
   5 *
   6 *  Copyright (C) 2003 BULL SA.
   7 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
   8 *  Copyright (C) 2006 Google, Inc
   9 *
  10 *  Portions derived from Patrick Mochel's sysfs code.
  11 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  12 *
  13 *  2003-10-10 Written by Simon Derr.
  14 *  2003-10-22 Updates by Stephen Hemminger.
  15 *  2004 May-July Rework by Paul Jackson.
  16 *  2006 Rework by Paul Menage to use generic cgroups
  17 *  2008 Rework of the scheduler domains and CPU hotplug handling
  18 *       by Max Krasnyansky
  19 *
  20 *  This file is subject to the terms and conditions of the GNU General Public
  21 *  License.  See the file COPYING in the main directory of the Linux
  22 *  distribution for more details.
  23 */
  24
  25#include <linux/cpu.h>
  26#include <linux/cpumask.h>
  27#include <linux/cpuset.h>
  28#include <linux/err.h>
  29#include <linux/errno.h>
  30#include <linux/file.h>
  31#include <linux/fs.h>
  32#include <linux/init.h>
  33#include <linux/interrupt.h>
  34#include <linux/kernel.h>
  35#include <linux/kmod.h>
  36#include <linux/list.h>
  37#include <linux/mempolicy.h>
  38#include <linux/mm.h>
  39#include <linux/memory.h>
  40#include <linux/export.h>
  41#include <linux/mount.h>
  42#include <linux/namei.h>
  43#include <linux/pagemap.h>
  44#include <linux/proc_fs.h>
  45#include <linux/rcupdate.h>
  46#include <linux/sched.h>
  47#include <linux/seq_file.h>
  48#include <linux/security.h>
  49#include <linux/slab.h>
  50#include <linux/spinlock.h>
  51#include <linux/stat.h>
  52#include <linux/string.h>
  53#include <linux/time.h>
  54#include <linux/backing-dev.h>
  55#include <linux/sort.h>
  56
  57#include <asm/uaccess.h>
  58#include <linux/atomic.h>
  59#include <linux/mutex.h>
  60#include <linux/workqueue.h>
  61#include <linux/cgroup.h>
  62
  63/*
  64 * Workqueue for cpuset related tasks.
  65 *
  66 * Using kevent workqueue may cause deadlock when memory_migrate
  67 * is set. So we create a separate workqueue thread for cpuset.
  68 */
  69static struct workqueue_struct *cpuset_wq;
  70
  71/*
  72 * Tracks how many cpusets are currently defined in system.
  73 * When there is only one cpuset (the root cpuset) we can
  74 * short circuit some hooks.
  75 */
  76int number_of_cpusets __read_mostly;
  77
  78/* Forward declare cgroup structures */
  79struct cgroup_subsys cpuset_subsys;
  80struct cpuset;
  81
  82/* See "Frequency meter" comments, below. */
  83
  84struct fmeter {
  85	int cnt;		/* unprocessed events count */
  86	int val;		/* most recent output value */
  87	time_t time;		/* clock (secs) when val computed */
  88	spinlock_t lock;	/* guards read or write of above */
  89};
  90
  91struct cpuset {
  92	struct cgroup_subsys_state css;
  93
  94	unsigned long flags;		/* "unsigned long" so bitops work */
  95	cpumask_var_t cpus_allowed;	/* CPUs allowed to tasks in cpuset */
  96	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */
  97
  98	struct cpuset *parent;		/* my parent */
  99
 100	struct fmeter fmeter;		/* memory_pressure filter */
 101
 102	/* partition number for rebuild_sched_domains() */
 103	int pn;
 104
 105	/* for custom sched domain */
 106	int relax_domain_level;
 107
 108	/* used for walking a cpuset hierarchy */
 109	struct list_head stack_list;
 110};
 111
 112/* Retrieve the cpuset for a cgroup */
 113static inline struct cpuset *cgroup_cs(struct cgroup *cont)
 114{
 115	return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
 116			    struct cpuset, css);
 117}
 118
 119/* Retrieve the cpuset for a task */
 120static inline struct cpuset *task_cs(struct task_struct *task)
 121{
 122	return container_of(task_subsys_state(task, cpuset_subsys_id),
 123			    struct cpuset, css);
 124}
 125
 126#ifdef CONFIG_NUMA
 127static inline bool task_has_mempolicy(struct task_struct *task)
 128{
 129	return task->mempolicy;
 130}
 131#else
 132static inline bool task_has_mempolicy(struct task_struct *task)
 133{
 134	return false;
 135}
 136#endif
 137
 138
 139/* bits in struct cpuset flags field */
 140typedef enum {
 141	CS_CPU_EXCLUSIVE,
 142	CS_MEM_EXCLUSIVE,
 143	CS_MEM_HARDWALL,
 144	CS_MEMORY_MIGRATE,
 145	CS_SCHED_LOAD_BALANCE,
 146	CS_SPREAD_PAGE,
 147	CS_SPREAD_SLAB,
 148} cpuset_flagbits_t;
 149
 150/* convenient tests for these bits */
 151static inline int is_cpu_exclusive(const struct cpuset *cs)
 152{
 153	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
 154}
 155
 156static inline int is_mem_exclusive(const struct cpuset *cs)
 157{
 158	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
 159}
 160
 161static inline int is_mem_hardwall(const struct cpuset *cs)
 162{
 163	return test_bit(CS_MEM_HARDWALL, &cs->flags);
 164}
 165
 166static inline int is_sched_load_balance(const struct cpuset *cs)
 167{
 168	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
 169}
 170
 171static inline int is_memory_migrate(const struct cpuset *cs)
 172{
 173	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
 174}
 175
 176static inline int is_spread_page(const struct cpuset *cs)
 177{
 178	return test_bit(CS_SPREAD_PAGE, &cs->flags);
 179}
 180
 181static inline int is_spread_slab(const struct cpuset *cs)
 182{
 183	return test_bit(CS_SPREAD_SLAB, &cs->flags);
 184}
 185
 186static struct cpuset top_cpuset = {
 187	.flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
 188};
 189
 190/*
 191 * There are two global mutexes guarding cpuset structures.  The first
 192 * is the main control groups cgroup_mutex, accessed via
 193 * cgroup_lock()/cgroup_unlock().  The second is the cpuset-specific
 194 * callback_mutex, below. They can nest.  It is ok to first take
 195 * cgroup_mutex, then nest callback_mutex.  We also require taking
 196 * task_lock() when dereferencing a task's cpuset pointer.  See "The
 197 * task_lock() exception", at the end of this comment.
 198 *
 199 * A task must hold both mutexes to modify cpusets.  If a task
 200 * holds cgroup_mutex, then it blocks others wanting that mutex,
 201 * ensuring that it is the only task able to also acquire callback_mutex
 202 * and be able to modify cpusets.  It can perform various checks on
 203 * the cpuset structure first, knowing nothing will change.  It can
 204 * also allocate memory while just holding cgroup_mutex.  While it is
 205 * performing these checks, various callback routines can briefly
 206 * acquire callback_mutex to query cpusets.  Once it is ready to make
 207 * the changes, it takes callback_mutex, blocking everyone else.
 208 *
 209 * Calls to the kernel memory allocator can not be made while holding
 210 * callback_mutex, as that would risk double tripping on callback_mutex
 211 * from one of the callbacks into the cpuset code from within
 212 * __alloc_pages().
 213 *
 214 * If a task is only holding callback_mutex, then it has read-only
 215 * access to cpusets.
 216 *
 217 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 218 * by other task, we use alloc_lock in the task_struct fields to protect
 219 * them.
 220 *
 221 * The cpuset_common_file_read() handlers only hold callback_mutex across
 222 * small pieces of code, such as when reading out possibly multi-word
 223 * cpumasks and nodemasks.
 224 *
 225 * Accessing a task's cpuset should be done in accordance with the
 226 * guidelines for accessing subsystem state in kernel/cgroup.c
 227 */
 228
 229static DEFINE_MUTEX(callback_mutex);
 230
 231/*
 232 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
 233 * buffers.  They are statically allocated to prevent using excess stack
 234 * when calling cpuset_print_task_mems_allowed().
 235 */
 236#define CPUSET_NAME_LEN		(128)
 237#define	CPUSET_NODELIST_LEN	(256)
 238static char cpuset_name[CPUSET_NAME_LEN];
 239static char cpuset_nodelist[CPUSET_NODELIST_LEN];
 240static DEFINE_SPINLOCK(cpuset_buffer_lock);
 241
 242/*
 243 * This is ugly, but preserves the userspace API for existing cpuset
 244 * users. If someone tries to mount the "cpuset" filesystem, we
 245 * silently switch it to mount "cgroup" instead
 246 */
 247static struct dentry *cpuset_mount(struct file_system_type *fs_type,
 248			 int flags, const char *unused_dev_name, void *data)
 249{
 250	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
 251	struct dentry *ret = ERR_PTR(-ENODEV);
 252	if (cgroup_fs) {
 253		char mountopts[] =
 254			"cpuset,noprefix,"
 255			"release_agent=/sbin/cpuset_release_agent";
 256		ret = cgroup_fs->mount(cgroup_fs, flags,
 257					   unused_dev_name, mountopts);
 258		put_filesystem(cgroup_fs);
 259	}
 260	return ret;
 261}
 262
 263static struct file_system_type cpuset_fs_type = {
 264	.name = "cpuset",
 265	.mount = cpuset_mount,
 266};
 267
 268/*
 269 * Return in pmask the portion of a cpusets's cpus_allowed that
 270 * are online.  If none are online, walk up the cpuset hierarchy
 271 * until we find one that does have some online cpus.  If we get
 272 * all the way to the top and still haven't found any online cpus,
 273 * return cpu_online_mask.  Or if passed a NULL cs from an exit'ing
 274 * task, return cpu_online_mask.
 275 *
 276 * One way or another, we guarantee to return some non-empty subset
 277 * of cpu_online_mask.
 278 *
 279 * Call with callback_mutex held.
 280 */
 281
 282static void guarantee_online_cpus(const struct cpuset *cs,
 283				  struct cpumask *pmask)
 284{
 285	while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
 286		cs = cs->parent;
 287	if (cs)
 288		cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
 289	else
 290		cpumask_copy(pmask, cpu_online_mask);
 291	BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
 292}
 293
 294/*
 295 * Return in *pmask the portion of a cpusets's mems_allowed that
 296 * are online, with memory.  If none are online with memory, walk
 297 * up the cpuset hierarchy until we find one that does have some
 298 * online mems.  If we get all the way to the top and still haven't
 299 * found any online mems, return node_states[N_HIGH_MEMORY].
 300 *
 301 * One way or another, we guarantee to return some non-empty subset
 302 * of node_states[N_HIGH_MEMORY].
 303 *
 304 * Call with callback_mutex held.
 305 */
 306
 307static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
 308{
 309	while (cs && !nodes_intersects(cs->mems_allowed,
 310					node_states[N_HIGH_MEMORY]))
 311		cs = cs->parent;
 312	if (cs)
 313		nodes_and(*pmask, cs->mems_allowed,
 314					node_states[N_HIGH_MEMORY]);
 315	else
 316		*pmask = node_states[N_HIGH_MEMORY];
 317	BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
 318}
 319
 320/*
 321 * update task's spread flag if cpuset's page/slab spread flag is set
 322 *
 323 * Called with callback_mutex/cgroup_mutex held
 324 */
 325static void cpuset_update_task_spread_flag(struct cpuset *cs,
 326					struct task_struct *tsk)
 327{
 328	if (is_spread_page(cs))
 329		tsk->flags |= PF_SPREAD_PAGE;
 330	else
 331		tsk->flags &= ~PF_SPREAD_PAGE;
 332	if (is_spread_slab(cs))
 333		tsk->flags |= PF_SPREAD_SLAB;
 334	else
 335		tsk->flags &= ~PF_SPREAD_SLAB;
 336}
 337
 338/*
 339 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 340 *
 341 * One cpuset is a subset of another if all its allowed CPUs and
 342 * Memory Nodes are a subset of the other, and its exclusive flags
 343 * are only set if the other's are set.  Call holding cgroup_mutex.
 344 */
 345
 346static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
 347{
 348	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
 349		nodes_subset(p->mems_allowed, q->mems_allowed) &&
 350		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
 351		is_mem_exclusive(p) <= is_mem_exclusive(q);
 352}
 353
 354/**
 355 * alloc_trial_cpuset - allocate a trial cpuset
 356 * @cs: the cpuset that the trial cpuset duplicates
 357 */
 358static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
 359{
 360	struct cpuset *trial;
 361
 362	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
 363	if (!trial)
 364		return NULL;
 365
 366	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
 367		kfree(trial);
 368		return NULL;
 369	}
 370	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
 371
 372	return trial;
 373}
 374
 375/**
 376 * free_trial_cpuset - free the trial cpuset
 377 * @trial: the trial cpuset to be freed
 378 */
 379static void free_trial_cpuset(struct cpuset *trial)
 380{
 381	free_cpumask_var(trial->cpus_allowed);
 382	kfree(trial);
 383}
 384
 385/*
 386 * validate_change() - Used to validate that any proposed cpuset change
 387 *		       follows the structural rules for cpusets.
 388 *
 389 * If we replaced the flag and mask values of the current cpuset
 390 * (cur) with those values in the trial cpuset (trial), would
 391 * our various subset and exclusive rules still be valid?  Presumes
 392 * cgroup_mutex held.
 393 *
 394 * 'cur' is the address of an actual, in-use cpuset.  Operations
 395 * such as list traversal that depend on the actual address of the
 396 * cpuset in the list must use cur below, not trial.
 397 *
 398 * 'trial' is the address of bulk structure copy of cur, with
 399 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 400 * or flags changed to new, trial values.
 401 *
 402 * Return 0 if valid, -errno if not.
 403 */
 404
 405static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
 406{
 407	struct cgroup *cont;
 408	struct cpuset *c, *par;
 409
 410	/* Each of our child cpusets must be a subset of us */
 411	list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
 412		if (!is_cpuset_subset(cgroup_cs(cont), trial))
 413			return -EBUSY;
 414	}
 415
 416	/* Remaining checks don't apply to root cpuset */
 417	if (cur == &top_cpuset)
 418		return 0;
 419
 420	par = cur->parent;
 421
 422	/* We must be a subset of our parent cpuset */
 423	if (!is_cpuset_subset(trial, par))
 424		return -EACCES;
 425
 426	/*
 427	 * If either I or some sibling (!= me) is exclusive, we can't
 428	 * overlap
 429	 */
 430	list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
 431		c = cgroup_cs(cont);
 432		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
 433		    c != cur &&
 434		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
 435			return -EINVAL;
 436		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
 437		    c != cur &&
 438		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
 439			return -EINVAL;
 440	}
 441
 442	/* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
 443	if (cgroup_task_count(cur->css.cgroup)) {
 444		if (cpumask_empty(trial->cpus_allowed) ||
 445		    nodes_empty(trial->mems_allowed)) {
 446			return -ENOSPC;
 447		}
 448	}
 449
 450	return 0;
 451}
 452
 453#ifdef CONFIG_SMP
 454/*
 455 * Helper routine for generate_sched_domains().
 456 * Do cpusets a, b have overlapping cpus_allowed masks?
 457 */
 458static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
 459{
 460	return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
 461}
 462
 463static void
 464update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
 465{
 466	if (dattr->relax_domain_level < c->relax_domain_level)
 467		dattr->relax_domain_level = c->relax_domain_level;
 468	return;
 469}
 470
 471static void
 472update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
 473{
 474	LIST_HEAD(q);
 475
 476	list_add(&c->stack_list, &q);
 477	while (!list_empty(&q)) {
 478		struct cpuset *cp;
 479		struct cgroup *cont;
 480		struct cpuset *child;
 481
 482		cp = list_first_entry(&q, struct cpuset, stack_list);
 483		list_del(q.next);
 484
 485		if (cpumask_empty(cp->cpus_allowed))
 486			continue;
 487
 488		if (is_sched_load_balance(cp))
 489			update_domain_attr(dattr, cp);
 490
 491		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
 492			child = cgroup_cs(cont);
 493			list_add_tail(&child->stack_list, &q);
 494		}
 495	}
 496}
 497
 498/*
 499 * generate_sched_domains()
 500 *
 501 * This function builds a partial partition of the systems CPUs
 502 * A 'partial partition' is a set of non-overlapping subsets whose
 503 * union is a subset of that set.
 504 * The output of this function needs to be passed to kernel/sched.c
 505 * partition_sched_domains() routine, which will rebuild the scheduler's
 506 * load balancing domains (sched domains) as specified by that partial
 507 * partition.
 508 *
 509 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
 510 * for a background explanation of this.
 511 *
 512 * Does not return errors, on the theory that the callers of this
 513 * routine would rather not worry about failures to rebuild sched
 514 * domains when operating in the severe memory shortage situations
 515 * that could cause allocation failures below.
 516 *
 517 * Must be called with cgroup_lock held.
 518 *
 519 * The three key local variables below are:
 520 *    q  - a linked-list queue of cpuset pointers, used to implement a
 521 *	   top-down scan of all cpusets.  This scan loads a pointer
 522 *	   to each cpuset marked is_sched_load_balance into the
 523 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 524 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 525 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 526 *	   that need to be load balanced, for convenient iterative
 527 *	   access by the subsequent code that finds the best partition,
 528 *	   i.e the set of domains (subsets) of CPUs such that the
 529 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 530 *	   is a subset of one of these domains, while there are as
 531 *	   many such domains as possible, each as small as possible.
 532 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 533 *	   the kernel/sched.c routine partition_sched_domains() in a
 534 *	   convenient format, that can be easily compared to the prior
 535 *	   value to determine what partition elements (sched domains)
 536 *	   were changed (added or removed.)
 537 *
 538 * Finding the best partition (set of domains):
 539 *	The triple nested loops below over i, j, k scan over the
 540 *	load balanced cpusets (using the array of cpuset pointers in
 541 *	csa[]) looking for pairs of cpusets that have overlapping
 542 *	cpus_allowed, but which don't have the same 'pn' partition
 543 *	number and gives them in the same partition number.  It keeps
 544 *	looping on the 'restart' label until it can no longer find
 545 *	any such pairs.
 546 *
 547 *	The union of the cpus_allowed masks from the set of
 548 *	all cpusets having the same 'pn' value then form the one
 549 *	element of the partition (one sched domain) to be passed to
 550 *	partition_sched_domains().
 551 */
 552static int generate_sched_domains(cpumask_var_t **domains,
 553			struct sched_domain_attr **attributes)
 554{
 555	LIST_HEAD(q);		/* queue of cpusets to be scanned */
 556	struct cpuset *cp;	/* scans q */
 557	struct cpuset **csa;	/* array of all cpuset ptrs */
 558	int csn;		/* how many cpuset ptrs in csa so far */
 559	int i, j, k;		/* indices for partition finding loops */
 560	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
 561	struct sched_domain_attr *dattr;  /* attributes for custom domains */
 562	int ndoms = 0;		/* number of sched domains in result */
 563	int nslot;		/* next empty doms[] struct cpumask slot */
 564
 565	doms = NULL;
 566	dattr = NULL;
 567	csa = NULL;
 568
 569	/* Special case for the 99% of systems with one, full, sched domain */
 570	if (is_sched_load_balance(&top_cpuset)) {
 571		ndoms = 1;
 572		doms = alloc_sched_domains(ndoms);
 573		if (!doms)
 574			goto done;
 575
 576		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
 577		if (dattr) {
 578			*dattr = SD_ATTR_INIT;
 579			update_domain_attr_tree(dattr, &top_cpuset);
 580		}
 581		cpumask_copy(doms[0], top_cpuset.cpus_allowed);
 582
 583		goto done;
 584	}
 585
 586	csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
 587	if (!csa)
 588		goto done;
 589	csn = 0;
 590
 591	list_add(&top_cpuset.stack_list, &q);
 592	while (!list_empty(&q)) {
 593		struct cgroup *cont;
 594		struct cpuset *child;   /* scans child cpusets of cp */
 595
 596		cp = list_first_entry(&q, struct cpuset, stack_list);
 597		list_del(q.next);
 598
 599		if (cpumask_empty(cp->cpus_allowed))
 600			continue;
 601
 602		/*
 603		 * All child cpusets contain a subset of the parent's cpus, so
 604		 * just skip them, and then we call update_domain_attr_tree()
 605		 * to calc relax_domain_level of the corresponding sched
 606		 * domain.
 607		 */
 608		if (is_sched_load_balance(cp)) {
 609			csa[csn++] = cp;
 610			continue;
 611		}
 612
 613		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
 614			child = cgroup_cs(cont);
 615			list_add_tail(&child->stack_list, &q);
 616		}
 617  	}
 618
 619	for (i = 0; i < csn; i++)
 620		csa[i]->pn = i;
 621	ndoms = csn;
 622
 623restart:
 624	/* Find the best partition (set of sched domains) */
 625	for (i = 0; i < csn; i++) {
 626		struct cpuset *a = csa[i];
 627		int apn = a->pn;
 628
 629		for (j = 0; j < csn; j++) {
 630			struct cpuset *b = csa[j];
 631			int bpn = b->pn;
 632
 633			if (apn != bpn && cpusets_overlap(a, b)) {
 634				for (k = 0; k < csn; k++) {
 635					struct cpuset *c = csa[k];
 636
 637					if (c->pn == bpn)
 638						c->pn = apn;
 639				}
 640				ndoms--;	/* one less element */
 641				goto restart;
 642			}
 643		}
 644	}
 645
 646	/*
 647	 * Now we know how many domains to create.
 648	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
 649	 */
 650	doms = alloc_sched_domains(ndoms);
 651	if (!doms)
 652		goto done;
 653
 654	/*
 655	 * The rest of the code, including the scheduler, can deal with
 656	 * dattr==NULL case. No need to abort if alloc fails.
 657	 */
 658	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
 659
 660	for (nslot = 0, i = 0; i < csn; i++) {
 661		struct cpuset *a = csa[i];
 662		struct cpumask *dp;
 663		int apn = a->pn;
 664
 665		if (apn < 0) {
 666			/* Skip completed partitions */
 667			continue;
 668		}
 669
 670		dp = doms[nslot];
 671
 672		if (nslot == ndoms) {
 673			static int warnings = 10;
 674			if (warnings) {
 675				printk(KERN_WARNING
 676				 "rebuild_sched_domains confused:"
 677				  " nslot %d, ndoms %d, csn %d, i %d,"
 678				  " apn %d\n",
 679				  nslot, ndoms, csn, i, apn);
 680				warnings--;
 681			}
 682			continue;
 683		}
 684
 685		cpumask_clear(dp);
 686		if (dattr)
 687			*(dattr + nslot) = SD_ATTR_INIT;
 688		for (j = i; j < csn; j++) {
 689			struct cpuset *b = csa[j];
 690
 691			if (apn == b->pn) {
 692				cpumask_or(dp, dp, b->cpus_allowed);
 693				if (dattr)
 694					update_domain_attr_tree(dattr + nslot, b);
 695
 696				/* Done with this partition */
 697				b->pn = -1;
 698			}
 699		}
 700		nslot++;
 701	}
 702	BUG_ON(nslot != ndoms);
 703
 704done:
 705	kfree(csa);
 706
 707	/*
 708	 * Fallback to the default domain if kmalloc() failed.
 709	 * See comments in partition_sched_domains().
 710	 */
 711	if (doms == NULL)
 712		ndoms = 1;
 713
 714	*domains    = doms;
 715	*attributes = dattr;
 716	return ndoms;
 717}
 718
 719/*
 720 * Rebuild scheduler domains.
 721 *
 722 * Call with neither cgroup_mutex held nor within get_online_cpus().
 723 * Takes both cgroup_mutex and get_online_cpus().
 724 *
 725 * Cannot be directly called from cpuset code handling changes
 726 * to the cpuset pseudo-filesystem, because it cannot be called
 727 * from code that already holds cgroup_mutex.
 728 */
 729static void do_rebuild_sched_domains(struct work_struct *unused)
 730{
 731	struct sched_domain_attr *attr;
 732	cpumask_var_t *doms;
 733	int ndoms;
 734
 735	get_online_cpus();
 736
 737	/* Generate domain masks and attrs */
 738	cgroup_lock();
 739	ndoms = generate_sched_domains(&doms, &attr);
 740	cgroup_unlock();
 741
 742	/* Have scheduler rebuild the domains */
 743	partition_sched_domains(ndoms, doms, attr);
 744
 745	put_online_cpus();
 746}
 747#else /* !CONFIG_SMP */
 748static void do_rebuild_sched_domains(struct work_struct *unused)
 749{
 750}
 751
 752static int generate_sched_domains(cpumask_var_t **domains,
 753			struct sched_domain_attr **attributes)
 754{
 755	*domains = NULL;
 756	return 1;
 757}
 758#endif /* CONFIG_SMP */
 759
 760static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
 761
 762/*
 763 * Rebuild scheduler domains, asynchronously via workqueue.
 764 *
 765 * If the flag 'sched_load_balance' of any cpuset with non-empty
 766 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 767 * which has that flag enabled, or if any cpuset with a non-empty
 768 * 'cpus' is removed, then call this routine to rebuild the
 769 * scheduler's dynamic sched domains.
 770 *
 771 * The rebuild_sched_domains() and partition_sched_domains()
 772 * routines must nest cgroup_lock() inside get_online_cpus(),
 773 * but such cpuset changes as these must nest that locking the
 774 * other way, holding cgroup_lock() for much of the code.
 775 *
 776 * So in order to avoid an ABBA deadlock, the cpuset code handling
 777 * these user changes delegates the actual sched domain rebuilding
 778 * to a separate workqueue thread, which ends up processing the
 779 * above do_rebuild_sched_domains() function.
 780 */
 781static void async_rebuild_sched_domains(void)
 782{
 783	queue_work(cpuset_wq, &rebuild_sched_domains_work);
 784}
 785
 786/*
 787 * Accomplishes the same scheduler domain rebuild as the above
 788 * async_rebuild_sched_domains(), however it directly calls the
 789 * rebuild routine synchronously rather than calling it via an
 790 * asynchronous work thread.
 791 *
 792 * This can only be called from code that is not holding
 793 * cgroup_mutex (not nested in a cgroup_lock() call.)
 794 */
 795void rebuild_sched_domains(void)
 796{
 797	do_rebuild_sched_domains(NULL);
 798}
 799
 800/**
 801 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
 802 * @tsk: task to test
 803 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
 804 *
 805 * Call with cgroup_mutex held.  May take callback_mutex during call.
 806 * Called for each task in a cgroup by cgroup_scan_tasks().
 807 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
 808 * words, if its mask is not equal to its cpuset's mask).
 809 */
 810static int cpuset_test_cpumask(struct task_struct *tsk,
 811			       struct cgroup_scanner *scan)
 812{
 813	return !cpumask_equal(&tsk->cpus_allowed,
 814			(cgroup_cs(scan->cg))->cpus_allowed);
 815}
 816
 817/**
 818 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
 819 * @tsk: task to test
 820 * @scan: struct cgroup_scanner containing the cgroup of the task
 821 *
 822 * Called by cgroup_scan_tasks() for each task in a cgroup whose
 823 * cpus_allowed mask needs to be changed.
 824 *
 825 * We don't need to re-check for the cgroup/cpuset membership, since we're
 826 * holding cgroup_lock() at this point.
 827 */
 828static void cpuset_change_cpumask(struct task_struct *tsk,
 829				  struct cgroup_scanner *scan)
 830{
 831	set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
 832}
 833
 834/**
 835 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 836 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 837 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
 838 *
 839 * Called with cgroup_mutex held
 840 *
 841 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 842 * calling callback functions for each.
 843 *
 844 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 845 * if @heap != NULL.
 846 */
 847static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
 848{
 849	struct cgroup_scanner scan;
 850
 851	scan.cg = cs->css.cgroup;
 852	scan.test_task = cpuset_test_cpumask;
 853	scan.process_task = cpuset_change_cpumask;
 854	scan.heap = heap;
 855	cgroup_scan_tasks(&scan);
 856}
 857
 858/**
 859 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 860 * @cs: the cpuset to consider
 861 * @buf: buffer of cpu numbers written to this cpuset
 862 */
 863static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
 864			  const char *buf)
 865{
 866	struct ptr_heap heap;
 867	int retval;
 868	int is_load_balanced;
 869
 870	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
 871	if (cs == &top_cpuset)
 872		return -EACCES;
 873
 874	/*
 875	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
 876	 * Since cpulist_parse() fails on an empty mask, we special case
 877	 * that parsing.  The validate_change() call ensures that cpusets
 878	 * with tasks have cpus.
 879	 */
 880	if (!*buf) {
 881		cpumask_clear(trialcs->cpus_allowed);
 882	} else {
 883		retval = cpulist_parse(buf, trialcs->cpus_allowed);
 884		if (retval < 0)
 885			return retval;
 886
 887		if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
 888			return -EINVAL;
 889	}
 890	retval = validate_change(cs, trialcs);
 891	if (retval < 0)
 892		return retval;
 893
 894	/* Nothing to do if the cpus didn't change */
 895	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
 896		return 0;
 897
 898	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
 899	if (retval)
 900		return retval;
 901
 902	is_load_balanced = is_sched_load_balance(trialcs);
 903
 904	mutex_lock(&callback_mutex);
 905	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
 906	mutex_unlock(&callback_mutex);
 907
 908	/*
 909	 * Scan tasks in the cpuset, and update the cpumasks of any
 910	 * that need an update.
 911	 */
 912	update_tasks_cpumask(cs, &heap);
 913
 914	heap_free(&heap);
 915
 916	if (is_load_balanced)
 917		async_rebuild_sched_domains();
 918	return 0;
 919}
 920
 921/*
 922 * cpuset_migrate_mm
 923 *
 924 *    Migrate memory region from one set of nodes to another.
 925 *
 926 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 927 *    so that the migration code can allocate pages on these nodes.
 928 *
 929 *    Call holding cgroup_mutex, so current's cpuset won't change
 930 *    during this call, as manage_mutex holds off any cpuset_attach()
 931 *    calls.  Therefore we don't need to take task_lock around the
 932 *    call to guarantee_online_mems(), as we know no one is changing
 933 *    our task's cpuset.
 934 *
 935 *    While the mm_struct we are migrating is typically from some
 936 *    other task, the task_struct mems_allowed that we are hacking
 937 *    is for our current task, which must allocate new pages for that
 938 *    migrating memory region.
 939 */
 940
 941static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
 942							const nodemask_t *to)
 943{
 944	struct task_struct *tsk = current;
 945
 946	tsk->mems_allowed = *to;
 947
 948	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
 949
 950	guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
 951}
 952
 953/*
 954 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 955 * @tsk: the task to change
 956 * @newmems: new nodes that the task will be set
 957 *
 958 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
 959 * we structure updates as setting all new allowed nodes, then clearing newly
 960 * disallowed ones.
 961 */
 962static void cpuset_change_task_nodemask(struct task_struct *tsk,
 963					nodemask_t *newmems)
 964{
 965	bool need_loop;
 966
 967	/*
 968	 * Allow tasks that have access to memory reserves because they have
 969	 * been OOM killed to get memory anywhere.
 970	 */
 971	if (unlikely(test_thread_flag(TIF_MEMDIE)))
 972		return;
 973	if (current->flags & PF_EXITING) /* Let dying task have memory */
 974		return;
 975
 976	task_lock(tsk);
 977	/*
 978	 * Determine if a loop is necessary if another thread is doing
 979	 * get_mems_allowed().  If at least one node remains unchanged and
 980	 * tsk does not have a mempolicy, then an empty nodemask will not be
 981	 * possible when mems_allowed is larger than a word.
 982	 */
 983	need_loop = task_has_mempolicy(tsk) ||
 984			!nodes_intersects(*newmems, tsk->mems_allowed);
 985
 986	if (need_loop)
 987		write_seqcount_begin(&tsk->mems_allowed_seq);
 988
 989	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
 990	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
 991
 992	mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
 993	tsk->mems_allowed = *newmems;
 994
 995	if (need_loop)
 996		write_seqcount_end(&tsk->mems_allowed_seq);
 997
 998	task_unlock(tsk);
 999}
1000
1001/*
1002 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1003 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1004 * memory_migrate flag is set. Called with cgroup_mutex held.
1005 */
1006static void cpuset_change_nodemask(struct task_struct *p,
1007				   struct cgroup_scanner *scan)
1008{
1009	struct mm_struct *mm;
1010	struct cpuset *cs;
1011	int migrate;
1012	const nodemask_t *oldmem = scan->data;
1013	static nodemask_t newmems;	/* protected by cgroup_mutex */
1014
1015	cs = cgroup_cs(scan->cg);
1016	guarantee_online_mems(cs, &newmems);
1017
1018	cpuset_change_task_nodemask(p, &newmems);
1019
1020	mm = get_task_mm(p);
1021	if (!mm)
1022		return;
1023
1024	migrate = is_memory_migrate(cs);
1025
1026	mpol_rebind_mm(mm, &cs->mems_allowed);
1027	if (migrate)
1028		cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1029	mmput(mm);
1030}
1031
1032static void *cpuset_being_rebound;
1033
1034/**
1035 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1036 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1037 * @oldmem: old mems_allowed of cpuset cs
1038 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1039 *
1040 * Called with cgroup_mutex held
1041 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1042 * if @heap != NULL.
1043 */
1044static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1045				 struct ptr_heap *heap)
1046{
1047	struct cgroup_scanner scan;
1048
1049	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1050
1051	scan.cg = cs->css.cgroup;
1052	scan.test_task = NULL;
1053	scan.process_task = cpuset_change_nodemask;
1054	scan.heap = heap;
1055	scan.data = (nodemask_t *)oldmem;
1056
1057	/*
1058	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1059	 * take while holding tasklist_lock.  Forks can happen - the
1060	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1061	 * and rebind their vma mempolicies too.  Because we still hold
1062	 * the global cgroup_mutex, we know that no other rebind effort
1063	 * will be contending for the global variable cpuset_being_rebound.
1064	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1065	 * is idempotent.  Also migrate pages in each mm to new nodes.
1066	 */
1067	cgroup_scan_tasks(&scan);
1068
1069	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1070	cpuset_being_rebound = NULL;
1071}
1072
1073/*
1074 * Handle user request to change the 'mems' memory placement
1075 * of a cpuset.  Needs to validate the request, update the
1076 * cpusets mems_allowed, and for each task in the cpuset,
1077 * update mems_allowed and rebind task's mempolicy and any vma
1078 * mempolicies and if the cpuset is marked 'memory_migrate',
1079 * migrate the tasks pages to the new memory.
1080 *
1081 * Call with cgroup_mutex held.  May take callback_mutex during call.
1082 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1083 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1084 * their mempolicies to the cpusets new mems_allowed.
1085 */
1086static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1087			   const char *buf)
1088{
1089	NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
1090	int retval;
1091	struct ptr_heap heap;
1092
1093	if (!oldmem)
1094		return -ENOMEM;
1095
1096	/*
1097	 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1098	 * it's read-only
1099	 */
1100	if (cs == &top_cpuset) {
1101		retval = -EACCES;
1102		goto done;
1103	}
1104
1105	/*
1106	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1107	 * Since nodelist_parse() fails on an empty mask, we special case
1108	 * that parsing.  The validate_change() call ensures that cpusets
1109	 * with tasks have memory.
1110	 */
1111	if (!*buf) {
1112		nodes_clear(trialcs->mems_allowed);
1113	} else {
1114		retval = nodelist_parse(buf, trialcs->mems_allowed);
1115		if (retval < 0)
1116			goto done;
1117
1118		if (!nodes_subset(trialcs->mems_allowed,
1119				node_states[N_HIGH_MEMORY])) {
1120			retval =  -EINVAL;
1121			goto done;
1122		}
1123	}
1124	*oldmem = cs->mems_allowed;
1125	if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
1126		retval = 0;		/* Too easy - nothing to do */
1127		goto done;
1128	}
1129	retval = validate_change(cs, trialcs);
1130	if (retval < 0)
1131		goto done;
1132
1133	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1134	if (retval < 0)
1135		goto done;
1136
1137	mutex_lock(&callback_mutex);
1138	cs->mems_allowed = trialcs->mems_allowed;
1139	mutex_unlock(&callback_mutex);
1140
1141	update_tasks_nodemask(cs, oldmem, &heap);
1142
1143	heap_free(&heap);
1144done:
1145	NODEMASK_FREE(oldmem);
1146	return retval;
1147}
1148
1149int current_cpuset_is_being_rebound(void)
1150{
1151	return task_cs(current) == cpuset_being_rebound;
1152}
1153
1154static int update_relax_domain_level(struct cpuset *cs, s64 val)
1155{
1156#ifdef CONFIG_SMP
1157	if (val < -1 || val >= sched_domain_level_max)
1158		return -EINVAL;
1159#endif
1160
1161	if (val != cs->relax_domain_level) {
1162		cs->relax_domain_level = val;
1163		if (!cpumask_empty(cs->cpus_allowed) &&
1164		    is_sched_load_balance(cs))
1165			async_rebuild_sched_domains();
1166	}
1167
1168	return 0;
1169}
1170
1171/*
1172 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1173 * @tsk: task to be updated
1174 * @scan: struct cgroup_scanner containing the cgroup of the task
1175 *
1176 * Called by cgroup_scan_tasks() for each task in a cgroup.
1177 *
1178 * We don't need to re-check for the cgroup/cpuset membership, since we're
1179 * holding cgroup_lock() at this point.
1180 */
1181static void cpuset_change_flag(struct task_struct *tsk,
1182				struct cgroup_scanner *scan)
1183{
1184	cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1185}
1186
1187/*
1188 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1189 * @cs: the cpuset in which each task's spread flags needs to be changed
1190 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1191 *
1192 * Called with cgroup_mutex held
1193 *
1194 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1195 * calling callback functions for each.
1196 *
1197 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1198 * if @heap != NULL.
1199 */
1200static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1201{
1202	struct cgroup_scanner scan;
1203
1204	scan.cg = cs->css.cgroup;
1205	scan.test_task = NULL;
1206	scan.process_task = cpuset_change_flag;
1207	scan.heap = heap;
1208	cgroup_scan_tasks(&scan);
1209}
1210
1211/*
1212 * update_flag - read a 0 or a 1 in a file and update associated flag
1213 * bit:		the bit to update (see cpuset_flagbits_t)
1214 * cs:		the cpuset to update
1215 * turning_on: 	whether the flag is being set or cleared
1216 *
1217 * Call with cgroup_mutex held.
1218 */
1219
1220static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1221		       int turning_on)
1222{
1223	struct cpuset *trialcs;
1224	int balance_flag_changed;
1225	int spread_flag_changed;
1226	struct ptr_heap heap;
1227	int err;
1228
1229	trialcs = alloc_trial_cpuset(cs);
1230	if (!trialcs)
1231		return -ENOMEM;
1232
1233	if (turning_on)
1234		set_bit(bit, &trialcs->flags);
1235	else
1236		clear_bit(bit, &trialcs->flags);
1237
1238	err = validate_change(cs, trialcs);
1239	if (err < 0)
1240		goto out;
1241
1242	err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1243	if (err < 0)
1244		goto out;
1245
1246	balance_flag_changed = (is_sched_load_balance(cs) !=
1247				is_sched_load_balance(trialcs));
1248
1249	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1250			|| (is_spread_page(cs) != is_spread_page(trialcs)));
1251
1252	mutex_lock(&callback_mutex);
1253	cs->flags = trialcs->flags;
1254	mutex_unlock(&callback_mutex);
1255
1256	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1257		async_rebuild_sched_domains();
1258
1259	if (spread_flag_changed)
1260		update_tasks_flags(cs, &heap);
1261	heap_free(&heap);
1262out:
1263	free_trial_cpuset(trialcs);
1264	return err;
1265}
1266
1267/*
1268 * Frequency meter - How fast is some event occurring?
1269 *
1270 * These routines manage a digitally filtered, constant time based,
1271 * event frequency meter.  There are four routines:
1272 *   fmeter_init() - initialize a frequency meter.
1273 *   fmeter_markevent() - called each time the event happens.
1274 *   fmeter_getrate() - returns the recent rate of such events.
1275 *   fmeter_update() - internal routine used to update fmeter.
1276 *
1277 * A common data structure is passed to each of these routines,
1278 * which is used to keep track of the state required to manage the
1279 * frequency meter and its digital filter.
1280 *
1281 * The filter works on the number of events marked per unit time.
1282 * The filter is single-pole low-pass recursive (IIR).  The time unit
1283 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
1284 * simulate 3 decimal digits of precision (multiplied by 1000).
1285 *
1286 * With an FM_COEF of 933, and a time base of 1 second, the filter
1287 * has a half-life of 10 seconds, meaning that if the events quit
1288 * happening, then the rate returned from the fmeter_getrate()
1289 * will be cut in half each 10 seconds, until it converges to zero.
1290 *
1291 * It is not worth doing a real infinitely recursive filter.  If more
1292 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1293 * just compute FM_MAXTICKS ticks worth, by which point the level
1294 * will be stable.
1295 *
1296 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1297 * arithmetic overflow in the fmeter_update() routine.
1298 *
1299 * Given the simple 32 bit integer arithmetic used, this meter works
1300 * best for reporting rates between one per millisecond (msec) and
1301 * one per 32 (approx) seconds.  At constant rates faster than one
1302 * per msec it maxes out at values just under 1,000,000.  At constant
1303 * rates between one per msec, and one per second it will stabilize
1304 * to a value N*1000, where N is the rate of events per second.
1305 * At constant rates between one per second and one per 32 seconds,
1306 * it will be choppy, moving up on the seconds that have an event,
1307 * and then decaying until the next event.  At rates slower than
1308 * about one in 32 seconds, it decays all the way back to zero between
1309 * each event.
1310 */
1311
1312#define FM_COEF 933		/* coefficient for half-life of 10 secs */
1313#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1314#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
1315#define FM_SCALE 1000		/* faux fixed point scale */
1316
1317/* Initialize a frequency meter */
1318static void fmeter_init(struct fmeter *fmp)
1319{
1320	fmp->cnt = 0;
1321	fmp->val = 0;
1322	fmp->time = 0;
1323	spin_lock_init(&fmp->lock);
1324}
1325
1326/* Internal meter update - process cnt events and update value */
1327static void fmeter_update(struct fmeter *fmp)
1328{
1329	time_t now = get_seconds();
1330	time_t ticks = now - fmp->time;
1331
1332	if (ticks == 0)
1333		return;
1334
1335	ticks = min(FM_MAXTICKS, ticks);
1336	while (ticks-- > 0)
1337		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1338	fmp->time = now;
1339
1340	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1341	fmp->cnt = 0;
1342}
1343
1344/* Process any previous ticks, then bump cnt by one (times scale). */
1345static void fmeter_markevent(struct fmeter *fmp)
1346{
1347	spin_lock(&fmp->lock);
1348	fmeter_update(fmp);
1349	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1350	spin_unlock(&fmp->lock);
1351}
1352
1353/* Process any previous ticks, then return current value. */
1354static int fmeter_getrate(struct fmeter *fmp)
1355{
1356	int val;
1357
1358	spin_lock(&fmp->lock);
1359	fmeter_update(fmp);
1360	val = fmp->val;
1361	spin_unlock(&fmp->lock);
1362	return val;
1363}
1364
1365/*
1366 * Protected by cgroup_lock. The nodemasks must be stored globally because
1367 * dynamically allocating them is not allowed in can_attach, and they must
1368 * persist until attach.
1369 */
1370static cpumask_var_t cpus_attach;
1371static nodemask_t cpuset_attach_nodemask_from;
1372static nodemask_t cpuset_attach_nodemask_to;
1373
1374/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1375static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1376{
1377	struct cpuset *cs = cgroup_cs(cgrp);
1378	struct task_struct *task;
1379	int ret;
1380
1381	if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1382		return -ENOSPC;
1383
1384	cgroup_taskset_for_each(task, cgrp, tset) {
1385		/*
1386		 * Kthreads bound to specific cpus cannot be moved to a new
1387		 * cpuset; we cannot change their cpu affinity and
1388		 * isolating such threads by their set of allowed nodes is
1389		 * unnecessary.  Thus, cpusets are not applicable for such
1390		 * threads.  This prevents checking for success of
1391		 * set_cpus_allowed_ptr() on all attached tasks before
1392		 * cpus_allowed may be changed.
1393		 */
1394		if (task->flags & PF_THREAD_BOUND)
1395			return -EINVAL;
1396		if ((ret = security_task_setscheduler(task)))
1397			return ret;
1398	}
1399
1400	/* prepare for attach */
1401	if (cs == &top_cpuset)
1402		cpumask_copy(cpus_attach, cpu_possible_mask);
1403	else
1404		guarantee_online_cpus(cs, cpus_attach);
1405
1406	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1407
1408	return 0;
1409}
1410
1411static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
1412{
1413	struct mm_struct *mm;
1414	struct task_struct *task;
1415	struct task_struct *leader = cgroup_taskset_first(tset);
1416	struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
1417	struct cpuset *cs = cgroup_cs(cgrp);
1418	struct cpuset *oldcs = cgroup_cs(oldcgrp);
1419
1420	cgroup_taskset_for_each(task, cgrp, tset) {
1421		/*
1422		 * can_attach beforehand should guarantee that this doesn't
1423		 * fail.  TODO: have a better way to handle failure here
1424		 */
1425		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1426
1427		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1428		cpuset_update_task_spread_flag(cs, task);
1429	}
1430
1431	/*
1432	 * Change mm, possibly for multiple threads in a threadgroup. This is
1433	 * expensive and may sleep.
1434	 */
1435	cpuset_attach_nodemask_from = oldcs->mems_allowed;
1436	cpuset_attach_nodemask_to = cs->mems_allowed;
1437	mm = get_task_mm(leader);
1438	if (mm) {
1439		mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1440		if (is_memory_migrate(cs))
1441			cpuset_migrate_mm(mm, &cpuset_attach_nodemask_from,
1442					  &cpuset_attach_nodemask_to);
1443		mmput(mm);
1444	}
1445}
1446
1447/* The various types of files and directories in a cpuset file system */
1448
1449typedef enum {
1450	FILE_MEMORY_MIGRATE,
1451	FILE_CPULIST,
1452	FILE_MEMLIST,
1453	FILE_CPU_EXCLUSIVE,
1454	FILE_MEM_EXCLUSIVE,
1455	FILE_MEM_HARDWALL,
1456	FILE_SCHED_LOAD_BALANCE,
1457	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1458	FILE_MEMORY_PRESSURE_ENABLED,
1459	FILE_MEMORY_PRESSURE,
1460	FILE_SPREAD_PAGE,
1461	FILE_SPREAD_SLAB,
1462} cpuset_filetype_t;
1463
1464static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1465{
1466	int retval = 0;
1467	struct cpuset *cs = cgroup_cs(cgrp);
1468	cpuset_filetype_t type = cft->private;
1469
1470	if (!cgroup_lock_live_group(cgrp))
1471		return -ENODEV;
1472
1473	switch (type) {
1474	case FILE_CPU_EXCLUSIVE:
1475		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1476		break;
1477	case FILE_MEM_EXCLUSIVE:
1478		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1479		break;
1480	case FILE_MEM_HARDWALL:
1481		retval = update_flag(CS_MEM_HARDWALL, cs, val);
1482		break;
1483	case FILE_SCHED_LOAD_BALANCE:
1484		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1485		break;
1486	case FILE_MEMORY_MIGRATE:
1487		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1488		break;
1489	case FILE_MEMORY_PRESSURE_ENABLED:
1490		cpuset_memory_pressure_enabled = !!val;
1491		break;
1492	case FILE_MEMORY_PRESSURE:
1493		retval = -EACCES;
1494		break;
1495	case FILE_SPREAD_PAGE:
1496		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1497		break;
1498	case FILE_SPREAD_SLAB:
1499		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1500		break;
1501	default:
1502		retval = -EINVAL;
1503		break;
1504	}
1505	cgroup_unlock();
1506	return retval;
1507}
1508
1509static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1510{
1511	int retval = 0;
1512	struct cpuset *cs = cgroup_cs(cgrp);
1513	cpuset_filetype_t type = cft->private;
1514
1515	if (!cgroup_lock_live_group(cgrp))
1516		return -ENODEV;
1517
1518	switch (type) {
1519	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1520		retval = update_relax_domain_level(cs, val);
1521		break;
1522	default:
1523		retval = -EINVAL;
1524		break;
1525	}
1526	cgroup_unlock();
1527	return retval;
1528}
1529
1530/*
1531 * Common handling for a write to a "cpus" or "mems" file.
1532 */
1533static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1534				const char *buf)
1535{
1536	int retval = 0;
1537	struct cpuset *cs = cgroup_cs(cgrp);
1538	struct cpuset *trialcs;
1539
1540	if (!cgroup_lock_live_group(cgrp))
1541		return -ENODEV;
1542
1543	trialcs = alloc_trial_cpuset(cs);
1544	if (!trialcs) {
1545		retval = -ENOMEM;
1546		goto out;
1547	}
1548
1549	switch (cft->private) {
1550	case FILE_CPULIST:
1551		retval = update_cpumask(cs, trialcs, buf);
1552		break;
1553	case FILE_MEMLIST:
1554		retval = update_nodemask(cs, trialcs, buf);
1555		break;
1556	default:
1557		retval = -EINVAL;
1558		break;
1559	}
1560
1561	free_trial_cpuset(trialcs);
1562out:
1563	cgroup_unlock();
1564	return retval;
1565}
1566
1567/*
1568 * These ascii lists should be read in a single call, by using a user
1569 * buffer large enough to hold the entire map.  If read in smaller
1570 * chunks, there is no guarantee of atomicity.  Since the display format
1571 * used, list of ranges of sequential numbers, is variable length,
1572 * and since these maps can change value dynamically, one could read
1573 * gibberish by doing partial reads while a list was changing.
1574 * A single large read to a buffer that crosses a page boundary is
1575 * ok, because the result being copied to user land is not recomputed
1576 * across a page fault.
1577 */
1578
1579static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1580{
1581	size_t count;
1582
1583	mutex_lock(&callback_mutex);
1584	count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1585	mutex_unlock(&callback_mutex);
1586
1587	return count;
1588}
1589
1590static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1591{
1592	size_t count;
1593
1594	mutex_lock(&callback_mutex);
1595	count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
1596	mutex_unlock(&callback_mutex);
1597
1598	return count;
1599}
1600
1601static ssize_t cpuset_common_file_read(struct cgroup *cont,
1602				       struct cftype *cft,
1603				       struct file *file,
1604				       char __user *buf,
1605				       size_t nbytes, loff_t *ppos)
1606{
1607	struct cpuset *cs = cgroup_cs(cont);
1608	cpuset_filetype_t type = cft->private;
1609	char *page;
1610	ssize_t retval = 0;
1611	char *s;
1612
1613	if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1614		return -ENOMEM;
1615
1616	s = page;
1617
1618	switch (type) {
1619	case FILE_CPULIST:
1620		s += cpuset_sprintf_cpulist(s, cs);
1621		break;
1622	case FILE_MEMLIST:
1623		s += cpuset_sprintf_memlist(s, cs);
1624		break;
1625	default:
1626		retval = -EINVAL;
1627		goto out;
1628	}
1629	*s++ = '\n';
1630
1631	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1632out:
1633	free_page((unsigned long)page);
1634	return retval;
1635}
1636
1637static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1638{
1639	struct cpuset *cs = cgroup_cs(cont);
1640	cpuset_filetype_t type = cft->private;
1641	switch (type) {
1642	case FILE_CPU_EXCLUSIVE:
1643		return is_cpu_exclusive(cs);
1644	case FILE_MEM_EXCLUSIVE:
1645		return is_mem_exclusive(cs);
1646	case FILE_MEM_HARDWALL:
1647		return is_mem_hardwall(cs);
1648	case FILE_SCHED_LOAD_BALANCE:
1649		return is_sched_load_balance(cs);
1650	case FILE_MEMORY_MIGRATE:
1651		return is_memory_migrate(cs);
1652	case FILE_MEMORY_PRESSURE_ENABLED:
1653		return cpuset_memory_pressure_enabled;
1654	case FILE_MEMORY_PRESSURE:
1655		return fmeter_getrate(&cs->fmeter);
1656	case FILE_SPREAD_PAGE:
1657		return is_spread_page(cs);
1658	case FILE_SPREAD_SLAB:
1659		return is_spread_slab(cs);
1660	default:
1661		BUG();
1662	}
1663
1664	/* Unreachable but makes gcc happy */
1665	return 0;
1666}
1667
1668static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1669{
1670	struct cpuset *cs = cgroup_cs(cont);
1671	cpuset_filetype_t type = cft->private;
1672	switch (type) {
1673	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1674		return cs->relax_domain_level;
1675	default:
1676		BUG();
1677	}
1678
1679	/* Unrechable but makes gcc happy */
1680	return 0;
1681}
1682
1683
1684/*
1685 * for the common functions, 'private' gives the type of file
1686 */
1687
1688static struct cftype files[] = {
1689	{
1690		.name = "cpus",
1691		.read = cpuset_common_file_read,
1692		.write_string = cpuset_write_resmask,
1693		.max_write_len = (100U + 6 * NR_CPUS),
1694		.private = FILE_CPULIST,
1695	},
1696
1697	{
1698		.name = "mems",
1699		.read = cpuset_common_file_read,
1700		.write_string = cpuset_write_resmask,
1701		.max_write_len = (100U + 6 * MAX_NUMNODES),
1702		.private = FILE_MEMLIST,
1703	},
1704
1705	{
1706		.name = "cpu_exclusive",
1707		.read_u64 = cpuset_read_u64,
1708		.write_u64 = cpuset_write_u64,
1709		.private = FILE_CPU_EXCLUSIVE,
1710	},
1711
1712	{
1713		.name = "mem_exclusive",
1714		.read_u64 = cpuset_read_u64,
1715		.write_u64 = cpuset_write_u64,
1716		.private = FILE_MEM_EXCLUSIVE,
1717	},
1718
1719	{
1720		.name = "mem_hardwall",
1721		.read_u64 = cpuset_read_u64,
1722		.write_u64 = cpuset_write_u64,
1723		.private = FILE_MEM_HARDWALL,
1724	},
1725
1726	{
1727		.name = "sched_load_balance",
1728		.read_u64 = cpuset_read_u64,
1729		.write_u64 = cpuset_write_u64,
1730		.private = FILE_SCHED_LOAD_BALANCE,
1731	},
1732
1733	{
1734		.name = "sched_relax_domain_level",
1735		.read_s64 = cpuset_read_s64,
1736		.write_s64 = cpuset_write_s64,
1737		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1738	},
1739
1740	{
1741		.name = "memory_migrate",
1742		.read_u64 = cpuset_read_u64,
1743		.write_u64 = cpuset_write_u64,
1744		.private = FILE_MEMORY_MIGRATE,
1745	},
1746
1747	{
1748		.name = "memory_pressure",
1749		.read_u64 = cpuset_read_u64,
1750		.write_u64 = cpuset_write_u64,
1751		.private = FILE_MEMORY_PRESSURE,
1752		.mode = S_IRUGO,
1753	},
1754
1755	{
1756		.name = "memory_spread_page",
1757		.read_u64 = cpuset_read_u64,
1758		.write_u64 = cpuset_write_u64,
1759		.private = FILE_SPREAD_PAGE,
1760	},
1761
1762	{
1763		.name = "memory_spread_slab",
1764		.read_u64 = cpuset_read_u64,
1765		.write_u64 = cpuset_write_u64,
1766		.private = FILE_SPREAD_SLAB,
1767	},
1768
1769	{
1770		.name = "memory_pressure_enabled",
1771		.flags = CFTYPE_ONLY_ON_ROOT,
1772		.read_u64 = cpuset_read_u64,
1773		.write_u64 = cpuset_write_u64,
1774		.private = FILE_MEMORY_PRESSURE_ENABLED,
1775	},
1776
1777	{ }	/* terminate */
1778};
1779
1780/*
1781 * post_clone() is called during cgroup_create() when the
1782 * clone_children mount argument was specified.  The cgroup
1783 * can not yet have any tasks.
1784 *
1785 * Currently we refuse to set up the cgroup - thereby
1786 * refusing the task to be entered, and as a result refusing
1787 * the sys_unshare() or clone() which initiated it - if any
1788 * sibling cpusets have exclusive cpus or mem.
1789 *
1790 * If this becomes a problem for some users who wish to
1791 * allow that scenario, then cpuset_post_clone() could be
1792 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1793 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1794 * held.
1795 */
1796static void cpuset_post_clone(struct cgroup *cgroup)
1797{
1798	struct cgroup *parent, *child;
1799	struct cpuset *cs, *parent_cs;
1800
1801	parent = cgroup->parent;
1802	list_for_each_entry(child, &parent->children, sibling) {
1803		cs = cgroup_cs(child);
1804		if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1805			return;
1806	}
1807	cs = cgroup_cs(cgroup);
1808	parent_cs = cgroup_cs(parent);
1809
1810	mutex_lock(&callback_mutex);
1811	cs->mems_allowed = parent_cs->mems_allowed;
1812	cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
1813	mutex_unlock(&callback_mutex);
1814	return;
1815}
1816
1817/*
1818 *	cpuset_create - create a cpuset
1819 *	cont:	control group that the new cpuset will be part of
1820 */
1821
1822static struct cgroup_subsys_state *cpuset_create(struct cgroup *cont)
1823{
1824	struct cpuset *cs;
1825	struct cpuset *parent;
1826
1827	if (!cont->parent) {
1828		return &top_cpuset.css;
1829	}
1830	parent = cgroup_cs(cont->parent);
1831	cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1832	if (!cs)
1833		return ERR_PTR(-ENOMEM);
1834	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1835		kfree(cs);
1836		return ERR_PTR(-ENOMEM);
1837	}
1838
1839	cs->flags = 0;
1840	if (is_spread_page(parent))
1841		set_bit(CS_SPREAD_PAGE, &cs->flags);
1842	if (is_spread_slab(parent))
1843		set_bit(CS_SPREAD_SLAB, &cs->flags);
1844	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1845	cpumask_clear(cs->cpus_allowed);
1846	nodes_clear(cs->mems_allowed);
1847	fmeter_init(&cs->fmeter);
1848	cs->relax_domain_level = -1;
1849
1850	cs->parent = parent;
1851	number_of_cpusets++;
1852	return &cs->css ;
1853}
1854
1855/*
1856 * If the cpuset being removed has its flag 'sched_load_balance'
1857 * enabled, then simulate turning sched_load_balance off, which
1858 * will call async_rebuild_sched_domains().
1859 */
1860
1861static void cpuset_destroy(struct cgroup *cont)
1862{
1863	struct cpuset *cs = cgroup_cs(cont);
1864
1865	if (is_sched_load_balance(cs))
1866		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1867
1868	number_of_cpusets--;
1869	free_cpumask_var(cs->cpus_allowed);
1870	kfree(cs);
1871}
1872
1873struct cgroup_subsys cpuset_subsys = {
1874	.name = "cpuset",
1875	.create = cpuset_create,
1876	.destroy = cpuset_destroy,
1877	.can_attach = cpuset_can_attach,
1878	.attach = cpuset_attach,
1879	.post_clone = cpuset_post_clone,
1880	.subsys_id = cpuset_subsys_id,
1881	.base_cftypes = files,
1882	.early_init = 1,
1883};
1884
1885/**
1886 * cpuset_init - initialize cpusets at system boot
1887 *
1888 * Description: Initialize top_cpuset and the cpuset internal file system,
1889 **/
1890
1891int __init cpuset_init(void)
1892{
1893	int err = 0;
1894
1895	if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1896		BUG();
1897
1898	cpumask_setall(top_cpuset.cpus_allowed);
1899	nodes_setall(top_cpuset.mems_allowed);
1900
1901	fmeter_init(&top_cpuset.fmeter);
1902	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1903	top_cpuset.relax_domain_level = -1;
1904
1905	err = register_filesystem(&cpuset_fs_type);
1906	if (err < 0)
1907		return err;
1908
1909	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1910		BUG();
1911
1912	number_of_cpusets = 1;
1913	return 0;
1914}
1915
1916/**
1917 * cpuset_do_move_task - move a given task to another cpuset
1918 * @tsk: pointer to task_struct the task to move
1919 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1920 *
1921 * Called by cgroup_scan_tasks() for each task in a cgroup.
1922 * Return nonzero to stop the walk through the tasks.
1923 */
1924static void cpuset_do_move_task(struct task_struct *tsk,
1925				struct cgroup_scanner *scan)
1926{
1927	struct cgroup *new_cgroup = scan->data;
1928
1929	cgroup_attach_task(new_cgroup, tsk);
1930}
1931
1932/**
1933 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1934 * @from: cpuset in which the tasks currently reside
1935 * @to: cpuset to which the tasks will be moved
1936 *
1937 * Called with cgroup_mutex held
1938 * callback_mutex must not be held, as cpuset_attach() will take it.
1939 *
1940 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1941 * calling callback functions for each.
1942 */
1943static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1944{
1945	struct cgroup_scanner scan;
1946
1947	scan.cg = from->css.cgroup;
1948	scan.test_task = NULL; /* select all tasks in cgroup */
1949	scan.process_task = cpuset_do_move_task;
1950	scan.heap = NULL;
1951	scan.data = to->css.cgroup;
1952
1953	if (cgroup_scan_tasks(&scan))
1954		printk(KERN_ERR "move_member_tasks_to_cpuset: "
1955				"cgroup_scan_tasks failed\n");
1956}
1957
1958/*
1959 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
1960 * or memory nodes, we need to walk over the cpuset hierarchy,
1961 * removing that CPU or node from all cpusets.  If this removes the
1962 * last CPU or node from a cpuset, then move the tasks in the empty
1963 * cpuset to its next-highest non-empty parent.
1964 *
1965 * Called with cgroup_mutex held
1966 * callback_mutex must not be held, as cpuset_attach() will take it.
1967 */
1968static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1969{
1970	struct cpuset *parent;
1971
1972	/*
1973	 * The cgroup's css_sets list is in use if there are tasks
1974	 * in the cpuset; the list is empty if there are none;
1975	 * the cs->css.refcnt seems always 0.
1976	 */
1977	if (list_empty(&cs->css.cgroup->css_sets))
1978		return;
1979
1980	/*
1981	 * Find its next-highest non-empty parent, (top cpuset
1982	 * has online cpus, so can't be empty).
1983	 */
1984	parent = cs->parent;
1985	while (cpumask_empty(parent->cpus_allowed) ||
1986			nodes_empty(parent->mems_allowed))
1987		parent = parent->parent;
1988
1989	move_member_tasks_to_cpuset(cs, parent);
1990}
1991
1992/*
1993 * Walk the specified cpuset subtree and look for empty cpusets.
1994 * The tasks of such cpuset must be moved to a parent cpuset.
1995 *
1996 * Called with cgroup_mutex held.  We take callback_mutex to modify
1997 * cpus_allowed and mems_allowed.
1998 *
1999 * This walk processes the tree from top to bottom, completing one layer
2000 * before dropping down to the next.  It always processes a node before
2001 * any of its children.
2002 *
2003 * For now, since we lack memory hot unplug, we'll never see a cpuset
2004 * that has tasks along with an empty 'mems'.  But if we did see such
2005 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
2006 */
2007static void scan_for_empty_cpusets(struct cpuset *root)
2008{
2009	LIST_HEAD(queue);
2010	struct cpuset *cp;	/* scans cpusets being updated */
2011	struct cpuset *child;	/* scans child cpusets of cp */
2012	struct cgroup *cont;
2013	static nodemask_t oldmems;	/* protected by cgroup_mutex */
2014
2015	list_add_tail((struct list_head *)&root->stack_list, &queue);
2016
2017	while (!list_empty(&queue)) {
2018		cp = list_first_entry(&queue, struct cpuset, stack_list);
2019		list_del(queue.next);
2020		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
2021			child = cgroup_cs(cont);
2022			list_add_tail(&child->stack_list, &queue);
2023		}
2024
2025		/* Continue past cpusets with all cpus, mems online */
2026		if (cpumask_subset(cp->cpus_allowed, cpu_active_mask) &&
2027		    nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
2028			continue;
2029
2030		oldmems = cp->mems_allowed;
2031
2032		/* Remove offline cpus and mems from this cpuset. */
2033		mutex_lock(&callback_mutex);
2034		cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
2035			    cpu_active_mask);
2036		nodes_and(cp->mems_allowed, cp->mems_allowed,
2037						node_states[N_HIGH_MEMORY]);
2038		mutex_unlock(&callback_mutex);
2039
2040		/* Move tasks from the empty cpuset to a parent */
2041		if (cpumask_empty(cp->cpus_allowed) ||
2042		     nodes_empty(cp->mems_allowed))
2043			remove_tasks_in_empty_cpuset(cp);
2044		else {
2045			update_tasks_cpumask(cp, NULL);
2046			update_tasks_nodemask(cp, &oldmems, NULL);
2047		}
2048	}
2049}
2050
2051/*
2052 * The top_cpuset tracks what CPUs and Memory Nodes are online,
2053 * period.  This is necessary in order to make cpusets transparent
2054 * (of no affect) on systems that are actively using CPU hotplug
2055 * but making no active use of cpusets.
2056 *
2057 * This routine ensures that top_cpuset.cpus_allowed tracks
2058 * cpu_active_mask on each CPU hotplug (cpuhp) event.
2059 *
2060 * Called within get_online_cpus().  Needs to call cgroup_lock()
2061 * before calling generate_sched_domains().
2062 */
2063void cpuset_update_active_cpus(void)
2064{
2065	struct sched_domain_attr *attr;
2066	cpumask_var_t *doms;
2067	int ndoms;
2068
2069	cgroup_lock();
2070	mutex_lock(&callback_mutex);
2071	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2072	mutex_unlock(&callback_mutex);
2073	scan_for_empty_cpusets(&top_cpuset);
2074	ndoms = generate_sched_domains(&doms, &attr);
2075	cgroup_unlock();
2076
2077	/* Have scheduler rebuild the domains */
2078	partition_sched_domains(ndoms, doms, attr);
2079}
2080
2081#ifdef CONFIG_MEMORY_HOTPLUG
2082/*
2083 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
2084 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
2085 * See also the previous routine cpuset_track_online_cpus().
2086 */
2087static int cpuset_track_online_nodes(struct notifier_block *self,
2088				unsigned long action, void *arg)
2089{
2090	static nodemask_t oldmems;	/* protected by cgroup_mutex */
2091
2092	cgroup_lock();
2093	switch (action) {
2094	case MEM_ONLINE:
2095		oldmems = top_cpuset.mems_allowed;
2096		mutex_lock(&callback_mutex);
2097		top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2098		mutex_unlock(&callback_mutex);
2099		update_tasks_nodemask(&top_cpuset, &oldmems, NULL);
2100		break;
2101	case MEM_OFFLINE:
2102		/*
2103		 * needn't update top_cpuset.mems_allowed explicitly because
2104		 * scan_for_empty_cpusets() will update it.
2105		 */
2106		scan_for_empty_cpusets(&top_cpuset);
2107		break;
2108	default:
2109		break;
2110	}
2111	cgroup_unlock();
2112
2113	return NOTIFY_OK;
2114}
2115#endif
2116
2117/**
2118 * cpuset_init_smp - initialize cpus_allowed
2119 *
2120 * Description: Finish top cpuset after cpu, node maps are initialized
2121 **/
2122
2123void __init cpuset_init_smp(void)
2124{
2125	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2126	top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2127
2128	hotplug_memory_notifier(cpuset_track_online_nodes, 10);
2129
2130	cpuset_wq = create_singlethread_workqueue("cpuset");
2131	BUG_ON(!cpuset_wq);
2132}
2133
2134/**
2135 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2136 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2137 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2138 *
2139 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2140 * attached to the specified @tsk.  Guaranteed to return some non-empty
2141 * subset of cpu_online_mask, even if this means going outside the
2142 * tasks cpuset.
2143 **/
2144
2145void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2146{
2147	mutex_lock(&callback_mutex);
2148	task_lock(tsk);
2149	guarantee_online_cpus(task_cs(tsk), pmask);
2150	task_unlock(tsk);
2151	mutex_unlock(&callback_mutex);
2152}
2153
2154void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2155{
2156	const struct cpuset *cs;
2157
2158	rcu_read_lock();
2159	cs = task_cs(tsk);
2160	if (cs)
2161		do_set_cpus_allowed(tsk, cs->cpus_allowed);
2162	rcu_read_unlock();
2163
2164	/*
2165	 * We own tsk->cpus_allowed, nobody can change it under us.
2166	 *
2167	 * But we used cs && cs->cpus_allowed lockless and thus can
2168	 * race with cgroup_attach_task() or update_cpumask() and get
2169	 * the wrong tsk->cpus_allowed. However, both cases imply the
2170	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2171	 * which takes task_rq_lock().
2172	 *
2173	 * If we are called after it dropped the lock we must see all
2174	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2175	 * set any mask even if it is not right from task_cs() pov,
2176	 * the pending set_cpus_allowed_ptr() will fix things.
2177	 *
2178	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2179	 * if required.
2180	 */
2181}
2182
2183void cpuset_init_current_mems_allowed(void)
2184{
2185	nodes_setall(current->mems_allowed);
2186}
2187
2188/**
2189 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2190 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2191 *
2192 * Description: Returns the nodemask_t mems_allowed of the cpuset
2193 * attached to the specified @tsk.  Guaranteed to return some non-empty
2194 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
2195 * tasks cpuset.
2196 **/
2197
2198nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2199{
2200	nodemask_t mask;
2201
2202	mutex_lock(&callback_mutex);
2203	task_lock(tsk);
2204	guarantee_online_mems(task_cs(tsk), &mask);
2205	task_unlock(tsk);
2206	mutex_unlock(&callback_mutex);
2207
2208	return mask;
2209}
2210
2211/**
2212 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2213 * @nodemask: the nodemask to be checked
2214 *
2215 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2216 */
2217int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2218{
2219	return nodes_intersects(*nodemask, current->mems_allowed);
2220}
2221
2222/*
2223 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2224 * mem_hardwall ancestor to the specified cpuset.  Call holding
2225 * callback_mutex.  If no ancestor is mem_exclusive or mem_hardwall
2226 * (an unusual configuration), then returns the root cpuset.
2227 */
2228static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2229{
2230	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
2231		cs = cs->parent;
2232	return cs;
2233}
2234
2235/**
2236 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2237 * @node: is this an allowed node?
2238 * @gfp_mask: memory allocation flags
2239 *
2240 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
2241 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
2242 * yes.  If it's not a __GFP_HARDWALL request and this node is in the nearest
2243 * hardwalled cpuset ancestor to this task's cpuset, yes.  If the task has been
2244 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2245 * flag, yes.
2246 * Otherwise, no.
2247 *
2248 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2249 * cpuset_node_allowed_hardwall().  Otherwise, cpuset_node_allowed_softwall()
2250 * might sleep, and might allow a node from an enclosing cpuset.
2251 *
2252 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2253 * cpusets, and never sleeps.
2254 *
2255 * The __GFP_THISNODE placement logic is really handled elsewhere,
2256 * by forcibly using a zonelist starting at a specified node, and by
2257 * (in get_page_from_freelist()) refusing to consider the zones for
2258 * any node on the zonelist except the first.  By the time any such
2259 * calls get to this routine, we should just shut up and say 'yes'.
2260 *
2261 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2262 * and do not allow allocations outside the current tasks cpuset
2263 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2264 * GFP_KERNEL allocations are not so marked, so can escape to the
2265 * nearest enclosing hardwalled ancestor cpuset.
2266 *
2267 * Scanning up parent cpusets requires callback_mutex.  The
2268 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2269 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2270 * current tasks mems_allowed came up empty on the first pass over
2271 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
2272 * cpuset are short of memory, might require taking the callback_mutex
2273 * mutex.
2274 *
2275 * The first call here from mm/page_alloc:get_page_from_freelist()
2276 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2277 * so no allocation on a node outside the cpuset is allowed (unless
2278 * in interrupt, of course).
2279 *
2280 * The second pass through get_page_from_freelist() doesn't even call
2281 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
2282 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2283 * in alloc_flags.  That logic and the checks below have the combined
2284 * affect that:
2285 *	in_interrupt - any node ok (current task context irrelevant)
2286 *	GFP_ATOMIC   - any node ok
2287 *	TIF_MEMDIE   - any node ok
2288 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2289 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2290 *
2291 * Rule:
2292 *    Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
2293 *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2294 *    the code that might scan up ancestor cpusets and sleep.
2295 */
2296int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
2297{
2298	const struct cpuset *cs;	/* current cpuset ancestors */
2299	int allowed;			/* is allocation in zone z allowed? */
2300
2301	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2302		return 1;
2303	might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2304	if (node_isset(node, current->mems_allowed))
2305		return 1;
2306	/*
2307	 * Allow tasks that have access to memory reserves because they have
2308	 * been OOM killed to get memory anywhere.
2309	 */
2310	if (unlikely(test_thread_flag(TIF_MEMDIE)))
2311		return 1;
2312	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
2313		return 0;
2314
2315	if (current->flags & PF_EXITING) /* Let dying task have memory */
2316		return 1;
2317
2318	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2319	mutex_lock(&callback_mutex);
2320
2321	task_lock(current);
2322	cs = nearest_hardwall_ancestor(task_cs(current));
2323	task_unlock(current);
2324
2325	allowed = node_isset(node, cs->mems_allowed);
2326	mutex_unlock(&callback_mutex);
2327	return allowed;
2328}
2329
2330/*
2331 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2332 * @node: is this an allowed node?
2333 * @gfp_mask: memory allocation flags
2334 *
2335 * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is
2336 * set, yes, we can always allocate.  If node is in our task's mems_allowed,
2337 * yes.  If the task has been OOM killed and has access to memory reserves as
2338 * specified by the TIF_MEMDIE flag, yes.
2339 * Otherwise, no.
2340 *
2341 * The __GFP_THISNODE placement logic is really handled elsewhere,
2342 * by forcibly using a zonelist starting at a specified node, and by
2343 * (in get_page_from_freelist()) refusing to consider the zones for
2344 * any node on the zonelist except the first.  By the time any such
2345 * calls get to this routine, we should just shut up and say 'yes'.
2346 *
2347 * Unlike the cpuset_node_allowed_softwall() variant, above,
2348 * this variant requires that the node be in the current task's
2349 * mems_allowed or that we're in interrupt.  It does not scan up the
2350 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2351 * It never sleeps.
2352 */
2353int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
2354{
2355	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2356		return 1;
2357	if (node_isset(node, current->mems_allowed))
2358		return 1;
2359	/*
2360	 * Allow tasks that have access to memory reserves because they have
2361	 * been OOM killed to get memory anywhere.
2362	 */
2363	if (unlikely(test_thread_flag(TIF_MEMDIE)))
2364		return 1;
2365	return 0;
2366}
2367
2368/**
2369 * cpuset_unlock - release lock on cpuset changes
2370 *
2371 * Undo the lock taken in a previous cpuset_lock() call.
2372 */
2373
2374void cpuset_unlock(void)
2375{
2376	mutex_unlock(&callback_mutex);
2377}
2378
2379/**
2380 * cpuset_mem_spread_node() - On which node to begin search for a file page
2381 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2382 *
2383 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2384 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2385 * and if the memory allocation used cpuset_mem_spread_node()
2386 * to determine on which node to start looking, as it will for
2387 * certain page cache or slab cache pages such as used for file
2388 * system buffers and inode caches, then instead of starting on the
2389 * local node to look for a free page, rather spread the starting
2390 * node around the tasks mems_allowed nodes.
2391 *
2392 * We don't have to worry about the returned node being offline
2393 * because "it can't happen", and even if it did, it would be ok.
2394 *
2395 * The routines calling guarantee_online_mems() are careful to
2396 * only set nodes in task->mems_allowed that are online.  So it
2397 * should not be possible for the following code to return an
2398 * offline node.  But if it did, that would be ok, as this routine
2399 * is not returning the node where the allocation must be, only
2400 * the node where the search should start.  The zonelist passed to
2401 * __alloc_pages() will include all nodes.  If the slab allocator
2402 * is passed an offline node, it will fall back to the local node.
2403 * See kmem_cache_alloc_node().
2404 */
2405
2406static int cpuset_spread_node(int *rotor)
2407{
2408	int node;
2409
2410	node = next_node(*rotor, current->mems_allowed);
2411	if (node == MAX_NUMNODES)
2412		node = first_node(current->mems_allowed);
2413	*rotor = node;
2414	return node;
2415}
2416
2417int cpuset_mem_spread_node(void)
2418{
2419	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2420		current->cpuset_mem_spread_rotor =
2421			node_random(&current->mems_allowed);
2422
2423	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2424}
2425
2426int cpuset_slab_spread_node(void)
2427{
2428	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2429		current->cpuset_slab_spread_rotor =
2430			node_random(&current->mems_allowed);
2431
2432	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2433}
2434
2435EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2436
2437/**
2438 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2439 * @tsk1: pointer to task_struct of some task.
2440 * @tsk2: pointer to task_struct of some other task.
2441 *
2442 * Description: Return true if @tsk1's mems_allowed intersects the
2443 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
2444 * one of the task's memory usage might impact the memory available
2445 * to the other.
2446 **/
2447
2448int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2449				   const struct task_struct *tsk2)
2450{
2451	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2452}
2453
2454/**
2455 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2456 * @task: pointer to task_struct of some task.
2457 *
2458 * Description: Prints @task's name, cpuset name, and cached copy of its
2459 * mems_allowed to the kernel log.  Must hold task_lock(task) to allow
2460 * dereferencing task_cs(task).
2461 */
2462void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2463{
2464	struct dentry *dentry;
2465
2466	dentry = task_cs(tsk)->css.cgroup->dentry;
2467	spin_lock(&cpuset_buffer_lock);
2468	snprintf(cpuset_name, CPUSET_NAME_LEN,
2469		 dentry ? (const char *)dentry->d_name.name : "/");
2470	nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2471			   tsk->mems_allowed);
2472	printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2473	       tsk->comm, cpuset_name, cpuset_nodelist);
2474	spin_unlock(&cpuset_buffer_lock);
2475}
2476
2477/*
2478 * Collection of memory_pressure is suppressed unless
2479 * this flag is enabled by writing "1" to the special
2480 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2481 */
2482
2483int cpuset_memory_pressure_enabled __read_mostly;
2484
2485/**
2486 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2487 *
2488 * Keep a running average of the rate of synchronous (direct)
2489 * page reclaim efforts initiated by tasks in each cpuset.
2490 *
2491 * This represents the rate at which some task in the cpuset
2492 * ran low on memory on all nodes it was allowed to use, and
2493 * had to enter the kernels page reclaim code in an effort to
2494 * create more free memory by tossing clean pages or swapping
2495 * or writing dirty pages.
2496 *
2497 * Display to user space in the per-cpuset read-only file
2498 * "memory_pressure".  Value displayed is an integer
2499 * representing the recent rate of entry into the synchronous
2500 * (direct) page reclaim by any task attached to the cpuset.
2501 **/
2502
2503void __cpuset_memory_pressure_bump(void)
2504{
2505	task_lock(current);
2506	fmeter_markevent(&task_cs(current)->fmeter);
2507	task_unlock(current);
2508}
2509
2510#ifdef CONFIG_PROC_PID_CPUSET
2511/*
2512 * proc_cpuset_show()
2513 *  - Print tasks cpuset path into seq_file.
2514 *  - Used for /proc/<pid>/cpuset.
2515 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2516 *    doesn't really matter if tsk->cpuset changes after we read it,
2517 *    and we take cgroup_mutex, keeping cpuset_attach() from changing it
2518 *    anyway.
2519 */
2520static int proc_cpuset_show(struct seq_file *m, void *unused_v)
2521{
2522	struct pid *pid;
2523	struct task_struct *tsk;
2524	char *buf;
2525	struct cgroup_subsys_state *css;
2526	int retval;
2527
2528	retval = -ENOMEM;
2529	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2530	if (!buf)
2531		goto out;
2532
2533	retval = -ESRCH;
2534	pid = m->private;
2535	tsk = get_pid_task(pid, PIDTYPE_PID);
2536	if (!tsk)
2537		goto out_free;
2538
2539	retval = -EINVAL;
2540	cgroup_lock();
2541	css = task_subsys_state(tsk, cpuset_subsys_id);
2542	retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
2543	if (retval < 0)
2544		goto out_unlock;
2545	seq_puts(m, buf);
2546	seq_putc(m, '\n');
2547out_unlock:
2548	cgroup_unlock();
2549	put_task_struct(tsk);
2550out_free:
2551	kfree(buf);
2552out:
2553	return retval;
2554}
2555
2556static int cpuset_open(struct inode *inode, struct file *file)
2557{
2558	struct pid *pid = PROC_I(inode)->pid;
2559	return single_open(file, proc_cpuset_show, pid);
2560}
2561
2562const struct file_operations proc_cpuset_operations = {
2563	.open		= cpuset_open,
2564	.read		= seq_read,
2565	.llseek		= seq_lseek,
2566	.release	= single_release,
2567};
2568#endif /* CONFIG_PROC_PID_CPUSET */
2569
2570/* Display task mems_allowed in /proc/<pid>/status file. */
2571void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2572{
2573	seq_printf(m, "Mems_allowed:\t");
2574	seq_nodemask(m, &task->mems_allowed);
2575	seq_printf(m, "\n");
2576	seq_printf(m, "Mems_allowed_list:\t");
2577	seq_nodemask_list(m, &task->mems_allowed);
2578	seq_printf(m, "\n");
2579}