Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */
  3#include <linux/mm.h>
  4#include <linux/llist.h>
  5#include <linux/bpf.h>
  6#include <linux/irq_work.h>
  7#include <linux/bpf_mem_alloc.h>
  8#include <linux/memcontrol.h>
  9#include <asm/local.h>
 10
 11/* Any context (including NMI) BPF specific memory allocator.
 12 *
 13 * Tracing BPF programs can attach to kprobe and fentry. Hence they
 14 * run in unknown context where calling plain kmalloc() might not be safe.
 15 *
 16 * Front-end kmalloc() with per-cpu per-bucket cache of free elements.
 17 * Refill this cache asynchronously from irq_work.
 18 *
 19 * CPU_0 buckets
 20 * 16 32 64 96 128 196 256 512 1024 2048 4096
 21 * ...
 22 * CPU_N buckets
 23 * 16 32 64 96 128 196 256 512 1024 2048 4096
 24 *
 25 * The buckets are prefilled at the start.
 26 * BPF programs always run with migration disabled.
 27 * It's safe to allocate from cache of the current cpu with irqs disabled.
 28 * Free-ing is always done into bucket of the current cpu as well.
 29 * irq_work trims extra free elements from buckets with kfree
 30 * and refills them with kmalloc, so global kmalloc logic takes care
 31 * of freeing objects allocated by one cpu and freed on another.
 32 *
 33 * Every allocated objected is padded with extra 8 bytes that contains
 34 * struct llist_node.
 35 */
 36#define LLIST_NODE_SZ sizeof(struct llist_node)
 37
 38/* similar to kmalloc, but sizeof == 8 bucket is gone */
 39static u8 size_index[24] __ro_after_init = {
 40	3,	/* 8 */
 41	3,	/* 16 */
 42	4,	/* 24 */
 43	4,	/* 32 */
 44	5,	/* 40 */
 45	5,	/* 48 */
 46	5,	/* 56 */
 47	5,	/* 64 */
 48	1,	/* 72 */
 49	1,	/* 80 */
 50	1,	/* 88 */
 51	1,	/* 96 */
 52	6,	/* 104 */
 53	6,	/* 112 */
 54	6,	/* 120 */
 55	6,	/* 128 */
 56	2,	/* 136 */
 57	2,	/* 144 */
 58	2,	/* 152 */
 59	2,	/* 160 */
 60	2,	/* 168 */
 61	2,	/* 176 */
 62	2,	/* 184 */
 63	2	/* 192 */
 64};
 65
 66static int bpf_mem_cache_idx(size_t size)
 67{
 68	if (!size || size > 4096)
 69		return -1;
 70
 71	if (size <= 192)
 72		return size_index[(size - 1) / 8] - 1;
 73
 74	return fls(size - 1) - 2;
 75}
 76
 77#define NUM_CACHES 11
 78
 79struct bpf_mem_cache {
 80	/* per-cpu list of free objects of size 'unit_size'.
 81	 * All accesses are done with interrupts disabled and 'active' counter
 82	 * protection with __llist_add() and __llist_del_first().
 83	 */
 84	struct llist_head free_llist;
 85	local_t active;
 86
 87	/* Operations on the free_list from unit_alloc/unit_free/bpf_mem_refill
 88	 * are sequenced by per-cpu 'active' counter. But unit_free() cannot
 89	 * fail. When 'active' is busy the unit_free() will add an object to
 90	 * free_llist_extra.
 91	 */
 92	struct llist_head free_llist_extra;
 93
 94	struct irq_work refill_work;
 95	struct obj_cgroup *objcg;
 96	int unit_size;
 97	/* count of objects in free_llist */
 98	int free_cnt;
 99	int low_watermark, high_watermark, batch;
100	int percpu_size;
101
102	struct rcu_head rcu;
103	struct llist_head free_by_rcu;
104	struct llist_head waiting_for_gp;
105	atomic_t call_rcu_in_progress;
106};
107
108struct bpf_mem_caches {
109	struct bpf_mem_cache cache[NUM_CACHES];
110};
111
112static struct llist_node notrace *__llist_del_first(struct llist_head *head)
113{
114	struct llist_node *entry, *next;
115
116	entry = head->first;
117	if (!entry)
118		return NULL;
119	next = entry->next;
120	head->first = next;
121	return entry;
122}
123
124static void *__alloc(struct bpf_mem_cache *c, int node)
125{
126	/* Allocate, but don't deplete atomic reserves that typical
127	 * GFP_ATOMIC would do. irq_work runs on this cpu and kmalloc
128	 * will allocate from the current numa node which is what we
129	 * want here.
130	 */
131	gfp_t flags = GFP_NOWAIT | __GFP_NOWARN | __GFP_ACCOUNT;
132
133	if (c->percpu_size) {
134		void **obj = kmalloc_node(c->percpu_size, flags, node);
135		void *pptr = __alloc_percpu_gfp(c->unit_size, 8, flags);
136
137		if (!obj || !pptr) {
138			free_percpu(pptr);
139			kfree(obj);
140			return NULL;
141		}
142		obj[1] = pptr;
143		return obj;
144	}
145
146	return kmalloc_node(c->unit_size, flags, node);
147}
148
149static struct mem_cgroup *get_memcg(const struct bpf_mem_cache *c)
150{
151#ifdef CONFIG_MEMCG_KMEM
152	if (c->objcg)
153		return get_mem_cgroup_from_objcg(c->objcg);
154#endif
155
156#ifdef CONFIG_MEMCG
157	return root_mem_cgroup;
158#else
159	return NULL;
160#endif
161}
162
163/* Mostly runs from irq_work except __init phase. */
164static void alloc_bulk(struct bpf_mem_cache *c, int cnt, int node)
165{
166	struct mem_cgroup *memcg = NULL, *old_memcg;
167	unsigned long flags;
168	void *obj;
169	int i;
170
171	memcg = get_memcg(c);
172	old_memcg = set_active_memcg(memcg);
173	for (i = 0; i < cnt; i++) {
174		/*
175		 * free_by_rcu is only manipulated by irq work refill_work().
176		 * IRQ works on the same CPU are called sequentially, so it is
177		 * safe to use __llist_del_first() here. If alloc_bulk() is
178		 * invoked by the initial prefill, there will be no running
179		 * refill_work(), so __llist_del_first() is fine as well.
180		 *
181		 * In most cases, objects on free_by_rcu are from the same CPU.
182		 * If some objects come from other CPUs, it doesn't incur any
183		 * harm because NUMA_NO_NODE means the preference for current
184		 * numa node and it is not a guarantee.
185		 */
186		obj = __llist_del_first(&c->free_by_rcu);
187		if (!obj) {
188			obj = __alloc(c, node);
189			if (!obj)
190				break;
191		}
192		if (IS_ENABLED(CONFIG_PREEMPT_RT))
193			/* In RT irq_work runs in per-cpu kthread, so disable
194			 * interrupts to avoid preemption and interrupts and
195			 * reduce the chance of bpf prog executing on this cpu
196			 * when active counter is busy.
197			 */
198			local_irq_save(flags);
199		/* alloc_bulk runs from irq_work which will not preempt a bpf
200		 * program that does unit_alloc/unit_free since IRQs are
201		 * disabled there. There is no race to increment 'active'
202		 * counter. It protects free_llist from corruption in case NMI
203		 * bpf prog preempted this loop.
204		 */
205		WARN_ON_ONCE(local_inc_return(&c->active) != 1);
206		__llist_add(obj, &c->free_llist);
207		c->free_cnt++;
208		local_dec(&c->active);
209		if (IS_ENABLED(CONFIG_PREEMPT_RT))
210			local_irq_restore(flags);
211	}
212	set_active_memcg(old_memcg);
213	mem_cgroup_put(memcg);
214}
215
216static void free_one(struct bpf_mem_cache *c, void *obj)
217{
218	if (c->percpu_size) {
219		free_percpu(((void **)obj)[1]);
220		kfree(obj);
221		return;
222	}
223
224	kfree(obj);
225}
226
227static void __free_rcu(struct rcu_head *head)
228{
229	struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu);
230	struct llist_node *llnode = llist_del_all(&c->waiting_for_gp);
231	struct llist_node *pos, *t;
232
233	llist_for_each_safe(pos, t, llnode)
234		free_one(c, pos);
235	atomic_set(&c->call_rcu_in_progress, 0);
236}
237
238static void __free_rcu_tasks_trace(struct rcu_head *head)
239{
240	/* If RCU Tasks Trace grace period implies RCU grace period,
241	 * there is no need to invoke call_rcu().
242	 */
243	if (rcu_trace_implies_rcu_gp())
244		__free_rcu(head);
245	else
246		call_rcu(head, __free_rcu);
247}
248
249static void enque_to_free(struct bpf_mem_cache *c, void *obj)
250{
251	struct llist_node *llnode = obj;
252
253	/* bpf_mem_cache is a per-cpu object. Freeing happens in irq_work.
254	 * Nothing races to add to free_by_rcu list.
255	 */
256	__llist_add(llnode, &c->free_by_rcu);
257}
258
259static void do_call_rcu(struct bpf_mem_cache *c)
260{
261	struct llist_node *llnode, *t;
262
263	if (atomic_xchg(&c->call_rcu_in_progress, 1))
264		return;
265
266	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp));
267	llist_for_each_safe(llnode, t, __llist_del_all(&c->free_by_rcu))
268		/* There is no concurrent __llist_add(waiting_for_gp) access.
269		 * It doesn't race with llist_del_all either.
270		 * But there could be two concurrent llist_del_all(waiting_for_gp):
271		 * from __free_rcu() and from drain_mem_cache().
272		 */
273		__llist_add(llnode, &c->waiting_for_gp);
274	/* Use call_rcu_tasks_trace() to wait for sleepable progs to finish.
275	 * If RCU Tasks Trace grace period implies RCU grace period, free
276	 * these elements directly, else use call_rcu() to wait for normal
277	 * progs to finish and finally do free_one() on each element.
278	 */
279	call_rcu_tasks_trace(&c->rcu, __free_rcu_tasks_trace);
280}
281
282static void free_bulk(struct bpf_mem_cache *c)
283{
284	struct llist_node *llnode, *t;
285	unsigned long flags;
286	int cnt;
287
288	do {
289		if (IS_ENABLED(CONFIG_PREEMPT_RT))
290			local_irq_save(flags);
291		WARN_ON_ONCE(local_inc_return(&c->active) != 1);
292		llnode = __llist_del_first(&c->free_llist);
293		if (llnode)
294			cnt = --c->free_cnt;
295		else
296			cnt = 0;
297		local_dec(&c->active);
298		if (IS_ENABLED(CONFIG_PREEMPT_RT))
299			local_irq_restore(flags);
300		if (llnode)
301			enque_to_free(c, llnode);
302	} while (cnt > (c->high_watermark + c->low_watermark) / 2);
303
304	/* and drain free_llist_extra */
305	llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra))
306		enque_to_free(c, llnode);
307	do_call_rcu(c);
308}
309
310static void bpf_mem_refill(struct irq_work *work)
311{
312	struct bpf_mem_cache *c = container_of(work, struct bpf_mem_cache, refill_work);
313	int cnt;
314
315	/* Racy access to free_cnt. It doesn't need to be 100% accurate */
316	cnt = c->free_cnt;
317	if (cnt < c->low_watermark)
318		/* irq_work runs on this cpu and kmalloc will allocate
319		 * from the current numa node which is what we want here.
320		 */
321		alloc_bulk(c, c->batch, NUMA_NO_NODE);
322	else if (cnt > c->high_watermark)
323		free_bulk(c);
324}
325
326static void notrace irq_work_raise(struct bpf_mem_cache *c)
327{
328	irq_work_queue(&c->refill_work);
329}
330
331/* For typical bpf map case that uses bpf_mem_cache_alloc and single bucket
332 * the freelist cache will be elem_size * 64 (or less) on each cpu.
333 *
334 * For bpf programs that don't have statically known allocation sizes and
335 * assuming (low_mark + high_mark) / 2 as an average number of elements per
336 * bucket and all buckets are used the total amount of memory in freelists
337 * on each cpu will be:
338 * 64*16 + 64*32 + 64*64 + 64*96 + 64*128 + 64*196 + 64*256 + 32*512 + 16*1024 + 8*2048 + 4*4096
339 * == ~ 116 Kbyte using below heuristic.
340 * Initialized, but unused bpf allocator (not bpf map specific one) will
341 * consume ~ 11 Kbyte per cpu.
342 * Typical case will be between 11K and 116K closer to 11K.
343 * bpf progs can and should share bpf_mem_cache when possible.
344 */
345
346static void prefill_mem_cache(struct bpf_mem_cache *c, int cpu)
347{
348	init_irq_work(&c->refill_work, bpf_mem_refill);
349	if (c->unit_size <= 256) {
350		c->low_watermark = 32;
351		c->high_watermark = 96;
352	} else {
353		/* When page_size == 4k, order-0 cache will have low_mark == 2
354		 * and high_mark == 6 with batch alloc of 3 individual pages at
355		 * a time.
356		 * 8k allocs and above low == 1, high == 3, batch == 1.
357		 */
358		c->low_watermark = max(32 * 256 / c->unit_size, 1);
359		c->high_watermark = max(96 * 256 / c->unit_size, 3);
360	}
361	c->batch = max((c->high_watermark - c->low_watermark) / 4 * 3, 1);
362
363	/* To avoid consuming memory assume that 1st run of bpf
364	 * prog won't be doing more than 4 map_update_elem from
365	 * irq disabled region
366	 */
367	alloc_bulk(c, c->unit_size <= 256 ? 4 : 1, cpu_to_node(cpu));
368}
369
370/* When size != 0 bpf_mem_cache for each cpu.
371 * This is typical bpf hash map use case when all elements have equal size.
372 *
373 * When size == 0 allocate 11 bpf_mem_cache-s for each cpu, then rely on
374 * kmalloc/kfree. Max allocation size is 4096 in this case.
375 * This is bpf_dynptr and bpf_kptr use case.
376 */
377int bpf_mem_alloc_init(struct bpf_mem_alloc *ma, int size, bool percpu)
378{
379	static u16 sizes[NUM_CACHES] = {96, 192, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096};
380	struct bpf_mem_caches *cc, __percpu *pcc;
381	struct bpf_mem_cache *c, __percpu *pc;
382	struct obj_cgroup *objcg = NULL;
383	int cpu, i, unit_size, percpu_size = 0;
384
385	if (size) {
386		pc = __alloc_percpu_gfp(sizeof(*pc), 8, GFP_KERNEL);
387		if (!pc)
388			return -ENOMEM;
389
390		if (percpu)
391			/* room for llist_node and per-cpu pointer */
392			percpu_size = LLIST_NODE_SZ + sizeof(void *);
393		else
394			size += LLIST_NODE_SZ; /* room for llist_node */
395		unit_size = size;
396
397#ifdef CONFIG_MEMCG_KMEM
398		objcg = get_obj_cgroup_from_current();
399#endif
400		for_each_possible_cpu(cpu) {
401			c = per_cpu_ptr(pc, cpu);
402			c->unit_size = unit_size;
403			c->objcg = objcg;
404			c->percpu_size = percpu_size;
405			prefill_mem_cache(c, cpu);
406		}
407		ma->cache = pc;
408		return 0;
409	}
410
411	/* size == 0 && percpu is an invalid combination */
412	if (WARN_ON_ONCE(percpu))
413		return -EINVAL;
414
415	pcc = __alloc_percpu_gfp(sizeof(*cc), 8, GFP_KERNEL);
416	if (!pcc)
417		return -ENOMEM;
418#ifdef CONFIG_MEMCG_KMEM
419	objcg = get_obj_cgroup_from_current();
420#endif
421	for_each_possible_cpu(cpu) {
422		cc = per_cpu_ptr(pcc, cpu);
423		for (i = 0; i < NUM_CACHES; i++) {
424			c = &cc->cache[i];
425			c->unit_size = sizes[i];
426			c->objcg = objcg;
427			prefill_mem_cache(c, cpu);
428		}
429	}
430	ma->caches = pcc;
431	return 0;
432}
433
434static void drain_mem_cache(struct bpf_mem_cache *c)
435{
436	struct llist_node *llnode, *t;
437
438	/* No progs are using this bpf_mem_cache, but htab_map_free() called
439	 * bpf_mem_cache_free() for all remaining elements and they can be in
440	 * free_by_rcu or in waiting_for_gp lists, so drain those lists now.
441	 *
442	 * Except for waiting_for_gp list, there are no concurrent operations
443	 * on these lists, so it is safe to use __llist_del_all().
444	 */
445	llist_for_each_safe(llnode, t, __llist_del_all(&c->free_by_rcu))
446		free_one(c, llnode);
447	llist_for_each_safe(llnode, t, llist_del_all(&c->waiting_for_gp))
448		free_one(c, llnode);
449	llist_for_each_safe(llnode, t, __llist_del_all(&c->free_llist))
450		free_one(c, llnode);
451	llist_for_each_safe(llnode, t, __llist_del_all(&c->free_llist_extra))
452		free_one(c, llnode);
453}
454
455static void free_mem_alloc_no_barrier(struct bpf_mem_alloc *ma)
456{
457	free_percpu(ma->cache);
458	free_percpu(ma->caches);
459	ma->cache = NULL;
460	ma->caches = NULL;
461}
462
463static void free_mem_alloc(struct bpf_mem_alloc *ma)
464{
465	/* waiting_for_gp lists was drained, but __free_rcu might
466	 * still execute. Wait for it now before we freeing percpu caches.
467	 *
468	 * rcu_barrier_tasks_trace() doesn't imply synchronize_rcu_tasks_trace(),
469	 * but rcu_barrier_tasks_trace() and rcu_barrier() below are only used
470	 * to wait for the pending __free_rcu_tasks_trace() and __free_rcu(),
471	 * so if call_rcu(head, __free_rcu) is skipped due to
472	 * rcu_trace_implies_rcu_gp(), it will be OK to skip rcu_barrier() by
473	 * using rcu_trace_implies_rcu_gp() as well.
474	 */
475	rcu_barrier_tasks_trace();
476	if (!rcu_trace_implies_rcu_gp())
477		rcu_barrier();
478	free_mem_alloc_no_barrier(ma);
479}
480
481static void free_mem_alloc_deferred(struct work_struct *work)
482{
483	struct bpf_mem_alloc *ma = container_of(work, struct bpf_mem_alloc, work);
484
485	free_mem_alloc(ma);
486	kfree(ma);
487}
488
489static void destroy_mem_alloc(struct bpf_mem_alloc *ma, int rcu_in_progress)
490{
491	struct bpf_mem_alloc *copy;
492
493	if (!rcu_in_progress) {
494		/* Fast path. No callbacks are pending, hence no need to do
495		 * rcu_barrier-s.
496		 */
497		free_mem_alloc_no_barrier(ma);
498		return;
499	}
500
501	copy = kmalloc(sizeof(*ma), GFP_KERNEL);
502	if (!copy) {
503		/* Slow path with inline barrier-s */
504		free_mem_alloc(ma);
505		return;
506	}
507
508	/* Defer barriers into worker to let the rest of map memory to be freed */
509	copy->cache = ma->cache;
510	ma->cache = NULL;
511	copy->caches = ma->caches;
512	ma->caches = NULL;
513	INIT_WORK(&copy->work, free_mem_alloc_deferred);
514	queue_work(system_unbound_wq, &copy->work);
515}
516
517void bpf_mem_alloc_destroy(struct bpf_mem_alloc *ma)
518{
519	struct bpf_mem_caches *cc;
520	struct bpf_mem_cache *c;
521	int cpu, i, rcu_in_progress;
522
523	if (ma->cache) {
524		rcu_in_progress = 0;
525		for_each_possible_cpu(cpu) {
526			c = per_cpu_ptr(ma->cache, cpu);
527			/*
528			 * refill_work may be unfinished for PREEMPT_RT kernel
529			 * in which irq work is invoked in a per-CPU RT thread.
530			 * It is also possible for kernel with
531			 * arch_irq_work_has_interrupt() being false and irq
532			 * work is invoked in timer interrupt. So waiting for
533			 * the completion of irq work to ease the handling of
534			 * concurrency.
535			 */
536			irq_work_sync(&c->refill_work);
537			drain_mem_cache(c);
538			rcu_in_progress += atomic_read(&c->call_rcu_in_progress);
539		}
540		/* objcg is the same across cpus */
541		if (c->objcg)
542			obj_cgroup_put(c->objcg);
543		destroy_mem_alloc(ma, rcu_in_progress);
544	}
545	if (ma->caches) {
546		rcu_in_progress = 0;
547		for_each_possible_cpu(cpu) {
548			cc = per_cpu_ptr(ma->caches, cpu);
549			for (i = 0; i < NUM_CACHES; i++) {
550				c = &cc->cache[i];
551				irq_work_sync(&c->refill_work);
552				drain_mem_cache(c);
553				rcu_in_progress += atomic_read(&c->call_rcu_in_progress);
554			}
555		}
556		if (c->objcg)
557			obj_cgroup_put(c->objcg);
558		destroy_mem_alloc(ma, rcu_in_progress);
559	}
560}
561
562/* notrace is necessary here and in other functions to make sure
563 * bpf programs cannot attach to them and cause llist corruptions.
564 */
565static void notrace *unit_alloc(struct bpf_mem_cache *c)
566{
567	struct llist_node *llnode = NULL;
568	unsigned long flags;
569	int cnt = 0;
570
571	/* Disable irqs to prevent the following race for majority of prog types:
572	 * prog_A
573	 *   bpf_mem_alloc
574	 *      preemption or irq -> prog_B
575	 *        bpf_mem_alloc
576	 *
577	 * but prog_B could be a perf_event NMI prog.
578	 * Use per-cpu 'active' counter to order free_list access between
579	 * unit_alloc/unit_free/bpf_mem_refill.
580	 */
581	local_irq_save(flags);
582	if (local_inc_return(&c->active) == 1) {
583		llnode = __llist_del_first(&c->free_llist);
584		if (llnode)
585			cnt = --c->free_cnt;
586	}
587	local_dec(&c->active);
588	local_irq_restore(flags);
589
590	WARN_ON(cnt < 0);
591
592	if (cnt < c->low_watermark)
593		irq_work_raise(c);
594	return llnode;
595}
596
597/* Though 'ptr' object could have been allocated on a different cpu
598 * add it to the free_llist of the current cpu.
599 * Let kfree() logic deal with it when it's later called from irq_work.
600 */
601static void notrace unit_free(struct bpf_mem_cache *c, void *ptr)
602{
603	struct llist_node *llnode = ptr - LLIST_NODE_SZ;
604	unsigned long flags;
605	int cnt = 0;
606
607	BUILD_BUG_ON(LLIST_NODE_SZ > 8);
608
609	local_irq_save(flags);
610	if (local_inc_return(&c->active) == 1) {
611		__llist_add(llnode, &c->free_llist);
612		cnt = ++c->free_cnt;
613	} else {
614		/* unit_free() cannot fail. Therefore add an object to atomic
615		 * llist. free_bulk() will drain it. Though free_llist_extra is
616		 * a per-cpu list we have to use atomic llist_add here, since
617		 * it also can be interrupted by bpf nmi prog that does another
618		 * unit_free() into the same free_llist_extra.
619		 */
620		llist_add(llnode, &c->free_llist_extra);
621	}
622	local_dec(&c->active);
623	local_irq_restore(flags);
624
625	if (cnt > c->high_watermark)
626		/* free few objects from current cpu into global kmalloc pool */
627		irq_work_raise(c);
628}
629
630/* Called from BPF program or from sys_bpf syscall.
631 * In both cases migration is disabled.
632 */
633void notrace *bpf_mem_alloc(struct bpf_mem_alloc *ma, size_t size)
634{
635	int idx;
636	void *ret;
637
638	if (!size)
639		return ZERO_SIZE_PTR;
640
641	idx = bpf_mem_cache_idx(size + LLIST_NODE_SZ);
642	if (idx < 0)
643		return NULL;
644
645	ret = unit_alloc(this_cpu_ptr(ma->caches)->cache + idx);
646	return !ret ? NULL : ret + LLIST_NODE_SZ;
647}
648
649void notrace bpf_mem_free(struct bpf_mem_alloc *ma, void *ptr)
650{
651	int idx;
652
653	if (!ptr)
654		return;
655
656	idx = bpf_mem_cache_idx(ksize(ptr - LLIST_NODE_SZ));
657	if (idx < 0)
658		return;
659
660	unit_free(this_cpu_ptr(ma->caches)->cache + idx, ptr);
661}
662
663void notrace *bpf_mem_cache_alloc(struct bpf_mem_alloc *ma)
664{
665	void *ret;
666
667	ret = unit_alloc(this_cpu_ptr(ma->cache));
668	return !ret ? NULL : ret + LLIST_NODE_SZ;
669}
670
671void notrace bpf_mem_cache_free(struct bpf_mem_alloc *ma, void *ptr)
672{
673	if (!ptr)
674		return;
675
676	unit_free(this_cpu_ptr(ma->cache), ptr);
677}