Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  4 * Copyright (c) 2016-2018 Christoph Hellwig.
  5 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
  6 */
  7#include "xfs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 12#include "xfs_mount.h"
 13#include "xfs_inode.h"
 14#include "xfs_trans.h"
 
 
 
 15#include "xfs_iomap.h"
 16#include "xfs_trace.h"
 17#include "xfs_bmap.h"
 18#include "xfs_bmap_util.h"
 19#include "xfs_reflink.h"
 20#include "xfs_errortag.h"
 21#include "xfs_error.h"
 
 
 
 
 
 
 22
 
 
 
 23struct xfs_writepage_ctx {
 24	struct iomap_writepage_ctx ctx;
 25	unsigned int		data_seq;
 26	unsigned int		cow_seq;
 
 
 27};
 28
 29static inline struct xfs_writepage_ctx *
 30XFS_WPC(struct iomap_writepage_ctx *ctx)
 
 
 
 31{
 32	return container_of(ctx, struct xfs_writepage_ctx, ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 33}
 34
 35/*
 36 * Fast and loose check if this write could update the on-disk inode size.
 37 */
 38static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend)
 39{
 40	return ioend->io_offset + ioend->io_size >
 41		XFS_I(ioend->io_inode)->i_disk_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 42}
 43
 44/*
 45 * Update on-disk file size now that data has been written to disk.
 46 */
 47int
 48xfs_setfilesize(
 49	struct xfs_inode	*ip,
 
 50	xfs_off_t		offset,
 51	size_t			size)
 52{
 53	struct xfs_mount	*mp = ip->i_mount;
 54	struct xfs_trans	*tp;
 55	xfs_fsize_t		isize;
 56	int			error;
 57
 58	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
 59	if (error)
 60		return error;
 61
 62	xfs_ilock(ip, XFS_ILOCK_EXCL);
 63	isize = xfs_new_eof(ip, offset + size);
 64	if (!isize) {
 65		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 66		xfs_trans_cancel(tp);
 67		return 0;
 68	}
 69
 70	trace_xfs_setfilesize(ip, offset, size);
 71
 72	ip->i_disk_size = isize;
 73	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 74	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 75
 76	return xfs_trans_commit(tp);
 77}
 78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 79/*
 80 * IO write completion.
 81 */
 82STATIC void
 83xfs_end_ioend(
 84	struct iomap_ioend	*ioend)
 85{
 86	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
 87	struct xfs_mount	*mp = ip->i_mount;
 88	xfs_off_t		offset = ioend->io_offset;
 89	size_t			size = ioend->io_size;
 90	unsigned int		nofs_flag;
 91	int			error;
 92
 93	/*
 94	 * We can allocate memory here while doing writeback on behalf of
 95	 * memory reclaim.  To avoid memory allocation deadlocks set the
 96	 * task-wide nofs context for the following operations.
 97	 */
 98	nofs_flag = memalloc_nofs_save();
 
 99
100	/*
101	 * Just clean up the in-memory structures if the fs has been shut down.
 
 
 
 
102	 */
103	if (xfs_is_shutdown(mp)) {
104		error = -EIO;
105		goto done;
 
 
 
 
 
 
106	}
107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108	/*
109	 * Clean up all COW blocks and underlying data fork delalloc blocks on
110	 * I/O error. The delalloc punch is required because this ioend was
111	 * mapped to blocks in the COW fork and the associated pages are no
112	 * longer dirty. If we don't remove delalloc blocks here, they become
113	 * stale and can corrupt free space accounting on unmount.
114	 */
115	error = blk_status_to_errno(ioend->io_bio->bi_status);
116	if (unlikely(error)) {
117		if (ioend->io_flags & IOMAP_F_SHARED) {
118			xfs_reflink_cancel_cow_range(ip, offset, size, true);
119			xfs_bmap_punch_delalloc_range(ip, offset,
120					offset + size);
121		}
122		goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124
125	/*
126	 * Success: commit the COW or unwritten blocks if needed.
 
 
 
 
127	 */
128	if (ioend->io_flags & IOMAP_F_SHARED)
129		error = xfs_reflink_end_cow(ip, offset, size);
130	else if (ioend->io_type == IOMAP_UNWRITTEN)
131		error = xfs_iomap_write_unwritten(ip, offset, size, false);
 
132
133	if (!error && xfs_ioend_is_append(ioend))
134		error = xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
135done:
136	iomap_finish_ioends(ioend, error);
137	memalloc_nofs_restore(nofs_flag);
 
138}
139
140/*
141 * Finish all pending IO completions that require transactional modifications.
 
142 *
143 * We try to merge physical and logically contiguous ioends before completion to
144 * minimise the number of transactions we need to perform during IO completion.
145 * Both unwritten extent conversion and COW remapping need to iterate and modify
146 * one physical extent at a time, so we gain nothing by merging physically
147 * discontiguous extents here.
148 *
149 * The ioend chain length that we can be processing here is largely unbound in
150 * length and we may have to perform significant amounts of work on each ioend
151 * to complete it. Hence we have to be careful about holding the CPU for too
152 * long in this loop.
153 */
154void
155xfs_end_io(
156	struct work_struct	*work)
 
 
157{
158	struct xfs_inode	*ip =
159		container_of(work, struct xfs_inode, i_ioend_work);
160	struct iomap_ioend	*ioend;
161	struct list_head	tmp;
162	unsigned long		flags;
163
164	spin_lock_irqsave(&ip->i_ioend_lock, flags);
165	list_replace_init(&ip->i_ioend_list, &tmp);
166	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
167
168	iomap_sort_ioends(&tmp);
169	while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend,
170			io_list))) {
171		list_del_init(&ioend->io_list);
172		iomap_ioend_try_merge(ioend, &tmp);
173		xfs_end_ioend(ioend);
174		cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175	}
 
 
 
 
176}
177
 
 
 
 
 
 
 
178STATIC void
179xfs_end_bio(
180	struct bio		*bio)
 
 
 
 
181{
182	struct iomap_ioend	*ioend = bio->bi_private;
183	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
184	unsigned long		flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
185
186	spin_lock_irqsave(&ip->i_ioend_lock, flags);
187	if (list_empty(&ip->i_ioend_list))
188		WARN_ON_ONCE(!queue_work(ip->i_mount->m_unwritten_workqueue,
189					 &ip->i_ioend_work));
190	list_add_tail(&ioend->io_list, &ip->i_ioend_list);
191	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
192}
193
194/*
195 * Fast revalidation of the cached writeback mapping. Return true if the current
196 * mapping is valid, false otherwise.
 
 
197 */
198static bool
199xfs_imap_valid(
200	struct iomap_writepage_ctx	*wpc,
201	struct xfs_inode		*ip,
202	loff_t				offset)
203{
204	if (offset < wpc->iomap.offset ||
205	    offset >= wpc->iomap.offset + wpc->iomap.length)
 
 
206		return false;
207	/*
208	 * If this is a COW mapping, it is sufficient to check that the mapping
209	 * covers the offset. Be careful to check this first because the caller
210	 * can revalidate a COW mapping without updating the data seqno.
211	 */
212	if (wpc->iomap.flags & IOMAP_F_SHARED)
213		return true;
214
215	/*
216	 * This is not a COW mapping. Check the sequence number of the data fork
217	 * because concurrent changes could have invalidated the extent. Check
218	 * the COW fork because concurrent changes since the last time we
219	 * checked (and found nothing at this offset) could have added
220	 * overlapping blocks.
221	 */
222	if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq)) {
223		trace_xfs_wb_data_iomap_invalid(ip, &wpc->iomap,
224				XFS_WPC(wpc)->data_seq, XFS_DATA_FORK);
225		return false;
226	}
227	if (xfs_inode_has_cow_data(ip) &&
228	    XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq)) {
229		trace_xfs_wb_cow_iomap_invalid(ip, &wpc->iomap,
230				XFS_WPC(wpc)->cow_seq, XFS_COW_FORK);
231		return false;
232	}
233	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
234}
235
236/*
237 * Pass in a dellalloc extent and convert it to real extents, return the real
238 * extent that maps offset_fsb in wpc->iomap.
 
 
 
 
 
 
 
 
 
239 *
240 * The current page is held locked so nothing could have removed the block
241 * backing offset_fsb, although it could have moved from the COW to the data
242 * fork by another thread.
243 */
244static int
245xfs_convert_blocks(
246	struct iomap_writepage_ctx *wpc,
247	struct xfs_inode	*ip,
248	int			whichfork,
249	loff_t			offset)
250{
251	int			error;
252	unsigned		*seq;
 
 
253
254	if (whichfork == XFS_COW_FORK)
255		seq = &XFS_WPC(wpc)->cow_seq;
256	else
257		seq = &XFS_WPC(wpc)->data_seq;
258
259	/*
260	 * Attempt to allocate whatever delalloc extent currently backs offset
261	 * and put the result into wpc->iomap.  Allocate in a loop because it
262	 * may take several attempts to allocate real blocks for a contiguous
263	 * delalloc extent if free space is sufficiently fragmented.
264	 */
 
 
 
265	do {
266		error = xfs_bmapi_convert_delalloc(ip, whichfork, offset,
267				&wpc->iomap, seq);
268		if (error)
269			return error;
270	} while (wpc->iomap.offset + wpc->iomap.length <= offset);
271
272	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
273}
274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
275static int
276xfs_map_blocks(
277	struct iomap_writepage_ctx *wpc,
 
278	struct inode		*inode,
279	loff_t			offset)
 
 
280{
281	struct xfs_inode	*ip = XFS_I(inode);
282	struct xfs_mount	*mp = ip->i_mount;
283	ssize_t			count = i_blocksize(inode);
284	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
285	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
286	xfs_fileoff_t		cow_fsb;
287	int			whichfork;
288	struct xfs_bmbt_irec	imap;
289	struct xfs_iext_cursor	icur;
290	int			retries = 0;
291	int			error = 0;
 
 
292
293	if (xfs_is_shutdown(mp))
294		return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
295
296	XFS_ERRORTAG_DELAY(mp, XFS_ERRTAG_WB_DELAY_MS);
 
297
 
 
 
298	/*
299	 * COW fork blocks can overlap data fork blocks even if the blocks
300	 * aren't shared.  COW I/O always takes precedent, so we must always
301	 * check for overlap on reflink inodes unless the mapping is already a
302	 * COW one, or the COW fork hasn't changed from the last time we looked
303	 * at it.
 
 
 
 
304	 *
305	 * It's safe to check the COW fork if_seq here without the ILOCK because
306	 * we've indirectly protected against concurrent updates: writeback has
307	 * the page locked, which prevents concurrent invalidations by reflink
308	 * and directio and prevents concurrent buffered writes to the same
309	 * page.  Changes to if_seq always happen under i_lock, which protects
310	 * against concurrent updates and provides a memory barrier on the way
311	 * out that ensures that we always see the current value.
312	 */
313	if (xfs_imap_valid(wpc, ip, offset))
314		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
315
316	/*
317	 * If we don't have a valid map, now it's time to get a new one for this
318	 * offset.  This will convert delayed allocations (including COW ones)
319	 * into real extents.  If we return without a valid map, it means we
320	 * landed in a hole and we skip the block.
 
 
 
 
321	 */
322retry:
323	cow_fsb = NULLFILEOFF;
324	whichfork = XFS_DATA_FORK;
325	xfs_ilock(ip, XFS_ILOCK_SHARED);
326	ASSERT(!xfs_need_iread_extents(&ip->i_df));
327
328	/*
329	 * Check if this is offset is covered by a COW extents, and if yes use
330	 * it directly instead of looking up anything in the data fork.
331	 */
332	if (xfs_inode_has_cow_data(ip) &&
333	    xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
334		cow_fsb = imap.br_startoff;
335	if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
336		XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
337		xfs_iunlock(ip, XFS_ILOCK_SHARED);
338
339		whichfork = XFS_COW_FORK;
340		goto allocate_blocks;
341	}
342
343	/*
344	 * No COW extent overlap. Revalidate now that we may have updated
345	 * ->cow_seq. If the data mapping is still valid, we're done.
 
 
 
 
 
 
 
 
 
346	 */
347	if (xfs_imap_valid(wpc, ip, offset)) {
348		xfs_iunlock(ip, XFS_ILOCK_SHARED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
349		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
350	}
 
351
352	/*
353	 * If we don't have a valid map, now it's time to get a new one for this
354	 * offset.  This will convert delayed allocations (including COW ones)
355	 * into real extents.
356	 */
357	if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
358		imap.br_startoff = end_fsb;	/* fake a hole past EOF */
359	XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq);
360	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 
 
 
 
 
 
 
 
 
 
 
 
361
362	/* landed in a hole or beyond EOF? */
363	if (imap.br_startoff > offset_fsb) {
364		imap.br_blockcount = imap.br_startoff - offset_fsb;
365		imap.br_startoff = offset_fsb;
366		imap.br_startblock = HOLESTARTBLOCK;
367		imap.br_state = XFS_EXT_NORM;
 
 
 
 
 
368	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
369
370	/*
371	 * Truncate to the next COW extent if there is one.  This is the only
372	 * opportunity to do this because we can skip COW fork lookups for the
373	 * subsequent blocks in the mapping; however, the requirement to treat
374	 * the COW range separately remains.
 
375	 */
376	if (cow_fsb != NULLFILEOFF &&
377	    cow_fsb < imap.br_startoff + imap.br_blockcount)
378		imap.br_blockcount = cow_fsb - imap.br_startoff;
 
 
 
379
380	/* got a delalloc extent? */
381	if (imap.br_startblock != HOLESTARTBLOCK &&
382	    isnullstartblock(imap.br_startblock))
383		goto allocate_blocks;
 
384
385	xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0, 0, XFS_WPC(wpc)->data_seq);
386	trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap);
387	return 0;
388allocate_blocks:
389	error = xfs_convert_blocks(wpc, ip, whichfork, offset);
390	if (error) {
391		/*
392		 * If we failed to find the extent in the COW fork we might have
393		 * raced with a COW to data fork conversion or truncate.
394		 * Restart the lookup to catch the extent in the data fork for
395		 * the former case, but prevent additional retries to avoid
396		 * looping forever for the latter case.
397		 */
398		if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++)
399			goto retry;
400		ASSERT(error != -EAGAIN);
401		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
402	}
403
404	/*
405	 * Due to merging the return real extent might be larger than the
406	 * original delalloc one.  Trim the return extent to the next COW
407	 * boundary again to force a re-lookup.
408	 */
409	if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) {
410		loff_t		cow_offset = XFS_FSB_TO_B(mp, cow_fsb);
411
412		if (cow_offset < wpc->iomap.offset + wpc->iomap.length)
413			wpc->iomap.length = cow_offset - wpc->iomap.offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
414	}
415
416	ASSERT(wpc->iomap.offset <= offset);
417	ASSERT(wpc->iomap.offset + wpc->iomap.length > offset);
418	trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap);
419	return 0;
 
 
 
 
420}
421
422static int
423xfs_prepare_ioend(
424	struct iomap_ioend	*ioend,
425	int			status)
 
 
 
 
 
 
 
 
 
 
 
 
426{
427	unsigned int		nofs_flag;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
428
429	/*
430	 * We can allocate memory here while doing writeback on behalf of
431	 * memory reclaim.  To avoid memory allocation deadlocks set the
432	 * task-wide nofs context for the following operations.
 
433	 */
434	nofs_flag = memalloc_nofs_save();
 
 
 
435
436	/* Convert CoW extents to regular */
437	if (!status && (ioend->io_flags & IOMAP_F_SHARED)) {
438		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
439				ioend->io_offset, ioend->io_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
440	}
441
442	memalloc_nofs_restore(nofs_flag);
 
443
444	/* send ioends that might require a transaction to the completion wq */
445	if (xfs_ioend_is_append(ioend) || ioend->io_type == IOMAP_UNWRITTEN ||
446	    (ioend->io_flags & IOMAP_F_SHARED))
447		ioend->io_bio->bi_end_io = xfs_end_bio;
448	return status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
449}
450
451/*
452 * If the page has delalloc blocks on it, we need to punch them out before we
453 * invalidate the page.  If we don't, we leave a stale delalloc mapping on the
454 * inode that can trip up a later direct I/O read operation on the same region.
455 *
456 * We prevent this by truncating away the delalloc regions on the page.  Because
457 * they are delalloc, we can do this without needing a transaction. Indeed - if
458 * we get ENOSPC errors, we have to be able to do this truncation without a
459 * transaction as there is no space left for block reservation (typically why we
460 * see a ENOSPC in writeback).
461 */
462static void
463xfs_discard_folio(
464	struct folio		*folio,
465	loff_t			pos)
 
466{
467	struct xfs_inode	*ip = XFS_I(folio->mapping->host);
468	struct xfs_mount	*mp = ip->i_mount;
 
469	int			error;
470
471	if (xfs_is_shutdown(mp))
 
 
472		return;
473
474	xfs_alert_ratelimited(mp,
475		"page discard on page "PTR_FMT", inode 0x%llx, pos %llu.",
476			folio, ip->i_ino, pos);
 
 
 
 
 
 
 
 
 
 
477
478	error = xfs_bmap_punch_delalloc_range(ip, pos,
479			round_up(pos, folio_size(folio)));
 
 
 
 
 
 
 
 
 
 
 
 
480
481	if (error && !xfs_is_shutdown(mp))
482		xfs_alert(mp, "page discard unable to remove delalloc mapping.");
483}
 
 
 
 
 
 
 
 
 
484
485static const struct iomap_writeback_ops xfs_writeback_ops = {
486	.map_blocks		= xfs_map_blocks,
487	.prepare_ioend		= xfs_prepare_ioend,
488	.discard_folio		= xfs_discard_folio,
489};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
490
 
 
 
 
 
 
491STATIC int
492xfs_vm_writepages(
 
493	struct address_space	*mapping,
494	struct writeback_control *wbc)
 
 
 
 
495{
496	struct xfs_writepage_ctx wpc = { };
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
497
498	/*
499	 * Writing back data in a transaction context can result in recursive
500	 * transactions. This is bad, so issue a warning and get out of here.
501	 */
502	if (WARN_ON_ONCE(current->journal_info))
503		return 0;
504
505	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
506	return iomap_writepages(mapping, wbc, &wpc.ctx, &xfs_writeback_ops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
507}
508
 
 
 
 
 
 
 
 
509STATIC int
510xfs_dax_writepages(
 
511	struct address_space	*mapping,
512	struct writeback_control *wbc)
 
 
 
 
513{
514	struct xfs_inode	*ip = XFS_I(mapping->host);
515
516	xfs_iflags_clear(ip, XFS_ITRUNCATED);
517	return dax_writeback_mapping_range(mapping,
518			xfs_inode_buftarg(ip)->bt_daxdev, wbc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
519}
520
521STATIC sector_t
522xfs_vm_bmap(
523	struct address_space	*mapping,
524	sector_t		block)
525{
526	struct xfs_inode	*ip = XFS_I(mapping->host);
527
528	trace_xfs_vm_bmap(ip);
529
530	/*
531	 * The swap code (ab-)uses ->bmap to get a block mapping and then
532	 * bypasses the file system for actual I/O.  We really can't allow
533	 * that on reflinks inodes, so we have to skip out here.  And yes,
534	 * 0 is the magic code for a bmap error.
535	 *
536	 * Since we don't pass back blockdev info, we can't return bmap
537	 * information for rt files either.
538	 */
539	if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip))
540		return 0;
541	return iomap_bmap(mapping, block, &xfs_read_iomap_ops);
542}
543
544STATIC int
545xfs_vm_read_folio(
546	struct file		*unused,
547	struct folio		*folio)
548{
549	return iomap_read_folio(folio, &xfs_read_iomap_ops);
 
550}
551
552STATIC void
553xfs_vm_readahead(
554	struct readahead_control	*rac)
 
 
 
555{
556	iomap_readahead(rac, &xfs_read_iomap_ops);
 
557}
558
559static int
560xfs_iomap_swapfile_activate(
561	struct swap_info_struct		*sis,
562	struct file			*swap_file,
563	sector_t			*span)
564{
565	sis->bdev = xfs_inode_buftarg(XFS_I(file_inode(swap_file)))->bt_bdev;
566	return iomap_swapfile_activate(sis, swap_file, span,
567			&xfs_read_iomap_ops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
568}
569
570const struct address_space_operations xfs_address_space_operations = {
571	.read_folio		= xfs_vm_read_folio,
572	.readahead		= xfs_vm_readahead,
 
573	.writepages		= xfs_vm_writepages,
574	.dirty_folio		= filemap_dirty_folio,
575	.release_folio		= iomap_release_folio,
576	.invalidate_folio	= iomap_invalidate_folio,
 
 
577	.bmap			= xfs_vm_bmap,
578	.direct_IO		= noop_direct_IO,
579	.migrate_folio		= filemap_migrate_folio,
580	.is_partially_uptodate  = iomap_is_partially_uptodate,
581	.error_remove_page	= generic_error_remove_page,
582	.swap_activate		= xfs_iomap_swapfile_activate,
583};
584
585const struct address_space_operations xfs_dax_aops = {
586	.writepages		= xfs_dax_writepages,
587	.direct_IO		= noop_direct_IO,
588	.dirty_folio		= noop_dirty_folio,
589	.swap_activate		= xfs_iomap_swapfile_activate,
590};
v4.6
 
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_shared.h"
  20#include "xfs_format.h"
  21#include "xfs_log_format.h"
  22#include "xfs_trans_resv.h"
  23#include "xfs_mount.h"
  24#include "xfs_inode.h"
  25#include "xfs_trans.h"
  26#include "xfs_inode_item.h"
  27#include "xfs_alloc.h"
  28#include "xfs_error.h"
  29#include "xfs_iomap.h"
  30#include "xfs_trace.h"
  31#include "xfs_bmap.h"
  32#include "xfs_bmap_util.h"
  33#include "xfs_bmap_btree.h"
  34#include <linux/gfp.h>
  35#include <linux/mpage.h>
  36#include <linux/pagevec.h>
  37#include <linux/writeback.h>
  38
  39/* flags for direct write completions */
  40#define XFS_DIO_FLAG_UNWRITTEN	(1 << 0)
  41#define XFS_DIO_FLAG_APPEND	(1 << 1)
  42
  43/*
  44 * structure owned by writepages passed to individual writepage calls
  45 */
  46struct xfs_writepage_ctx {
  47	struct xfs_bmbt_irec    imap;
  48	bool			imap_valid;
  49	unsigned int		io_type;
  50	struct xfs_ioend	*ioend;
  51	sector_t		last_block;
  52};
  53
  54void
  55xfs_count_page_state(
  56	struct page		*page,
  57	int			*delalloc,
  58	int			*unwritten)
  59{
  60	struct buffer_head	*bh, *head;
  61
  62	*delalloc = *unwritten = 0;
  63
  64	bh = head = page_buffers(page);
  65	do {
  66		if (buffer_unwritten(bh))
  67			(*unwritten) = 1;
  68		else if (buffer_delay(bh))
  69			(*delalloc) = 1;
  70	} while ((bh = bh->b_this_page) != head);
  71}
  72
  73struct block_device *
  74xfs_find_bdev_for_inode(
  75	struct inode		*inode)
  76{
  77	struct xfs_inode	*ip = XFS_I(inode);
  78	struct xfs_mount	*mp = ip->i_mount;
  79
  80	if (XFS_IS_REALTIME_INODE(ip))
  81		return mp->m_rtdev_targp->bt_bdev;
  82	else
  83		return mp->m_ddev_targp->bt_bdev;
  84}
  85
  86/*
  87 * We're now finished for good with this ioend structure.
  88 * Update the page state via the associated buffer_heads,
  89 * release holds on the inode and bio, and finally free
  90 * up memory.  Do not use the ioend after this.
  91 */
  92STATIC void
  93xfs_destroy_ioend(
  94	xfs_ioend_t		*ioend)
  95{
  96	struct buffer_head	*bh, *next;
  97
  98	for (bh = ioend->io_buffer_head; bh; bh = next) {
  99		next = bh->b_private;
 100		bh->b_end_io(bh, !ioend->io_error);
 101	}
 102
 103	mempool_free(ioend, xfs_ioend_pool);
 104}
 105
 106/*
 107 * Fast and loose check if this write could update the on-disk inode size.
 108 */
 109static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
 110{
 111	return ioend->io_offset + ioend->io_size >
 112		XFS_I(ioend->io_inode)->i_d.di_size;
 113}
 114
 115STATIC int
 116xfs_setfilesize_trans_alloc(
 117	struct xfs_ioend	*ioend)
 118{
 119	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
 120	struct xfs_trans	*tp;
 121	int			error;
 122
 123	tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
 124
 125	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
 126	if (error) {
 127		xfs_trans_cancel(tp);
 128		return error;
 129	}
 130
 131	ioend->io_append_trans = tp;
 132
 133	/*
 134	 * We may pass freeze protection with a transaction.  So tell lockdep
 135	 * we released it.
 136	 */
 137	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
 138	/*
 139	 * We hand off the transaction to the completion thread now, so
 140	 * clear the flag here.
 141	 */
 142	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
 143	return 0;
 144}
 145
 146/*
 147 * Update on-disk file size now that data has been written to disk.
 148 */
 149STATIC int
 150xfs_setfilesize(
 151	struct xfs_inode	*ip,
 152	struct xfs_trans	*tp,
 153	xfs_off_t		offset,
 154	size_t			size)
 155{
 
 
 156	xfs_fsize_t		isize;
 
 
 
 
 
 157
 158	xfs_ilock(ip, XFS_ILOCK_EXCL);
 159	isize = xfs_new_eof(ip, offset + size);
 160	if (!isize) {
 161		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 162		xfs_trans_cancel(tp);
 163		return 0;
 164	}
 165
 166	trace_xfs_setfilesize(ip, offset, size);
 167
 168	ip->i_d.di_size = isize;
 169	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 170	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 171
 172	return xfs_trans_commit(tp);
 173}
 174
 175STATIC int
 176xfs_setfilesize_ioend(
 177	struct xfs_ioend	*ioend)
 178{
 179	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
 180	struct xfs_trans	*tp = ioend->io_append_trans;
 181
 182	/*
 183	 * The transaction may have been allocated in the I/O submission thread,
 184	 * thus we need to mark ourselves as being in a transaction manually.
 185	 * Similarly for freeze protection.
 186	 */
 187	current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
 188	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
 189
 190	/* we abort the update if there was an IO error */
 191	if (ioend->io_error) {
 192		xfs_trans_cancel(tp);
 193		return ioend->io_error;
 194	}
 195
 196	return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
 197}
 198
 199/*
 200 * Schedule IO completion handling on the final put of an ioend.
 201 *
 202 * If there is no work to do we might as well call it a day and free the
 203 * ioend right now.
 204 */
 205STATIC void
 206xfs_finish_ioend(
 207	struct xfs_ioend	*ioend)
 208{
 209	if (atomic_dec_and_test(&ioend->io_remaining)) {
 210		struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
 211
 212		if (ioend->io_type == XFS_IO_UNWRITTEN)
 213			queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
 214		else if (ioend->io_append_trans)
 215			queue_work(mp->m_data_workqueue, &ioend->io_work);
 216		else
 217			xfs_destroy_ioend(ioend);
 218	}
 219}
 220
 221/*
 222 * IO write completion.
 223 */
 224STATIC void
 225xfs_end_io(
 226	struct work_struct *work)
 227{
 228	xfs_ioend_t	*ioend = container_of(work, xfs_ioend_t, io_work);
 229	struct xfs_inode *ip = XFS_I(ioend->io_inode);
 230	int		error = 0;
 
 
 
 231
 232	/*
 233	 * Set an error if the mount has shut down and proceed with end I/O
 234	 * processing so it can perform whatever cleanups are necessary.
 
 235	 */
 236	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 237		ioend->io_error = -EIO;
 238
 239	/*
 240	 * For unwritten extents we need to issue transactions to convert a
 241	 * range to normal written extens after the data I/O has finished.
 242	 * Detecting and handling completion IO errors is done individually
 243	 * for each case as different cleanup operations need to be performed
 244	 * on error.
 245	 */
 246	if (ioend->io_type == XFS_IO_UNWRITTEN) {
 247		if (ioend->io_error)
 248			goto done;
 249		error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
 250						  ioend->io_size);
 251	} else if (ioend->io_append_trans) {
 252		error = xfs_setfilesize_ioend(ioend);
 253	} else {
 254		ASSERT(!xfs_ioend_is_append(ioend));
 255	}
 256
 257done:
 258	if (error)
 259		ioend->io_error = error;
 260	xfs_destroy_ioend(ioend);
 261}
 262
 263/*
 264 * Allocate and initialise an IO completion structure.
 265 * We need to track unwritten extent write completion here initially.
 266 * We'll need to extend this for updating the ondisk inode size later
 267 * (vs. incore size).
 268 */
 269STATIC xfs_ioend_t *
 270xfs_alloc_ioend(
 271	struct inode		*inode,
 272	unsigned int		type)
 273{
 274	xfs_ioend_t		*ioend;
 275
 276	ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
 277
 278	/*
 279	 * Set the count to 1 initially, which will prevent an I/O
 280	 * completion callback from happening before we have started
 281	 * all the I/O from calling the completion routine too early.
 
 
 282	 */
 283	atomic_set(&ioend->io_remaining, 1);
 284	ioend->io_error = 0;
 285	INIT_LIST_HEAD(&ioend->io_list);
 286	ioend->io_type = type;
 287	ioend->io_inode = inode;
 288	ioend->io_buffer_head = NULL;
 289	ioend->io_buffer_tail = NULL;
 290	ioend->io_offset = 0;
 291	ioend->io_size = 0;
 292	ioend->io_append_trans = NULL;
 293
 294	INIT_WORK(&ioend->io_work, xfs_end_io);
 295	return ioend;
 296}
 297
 298STATIC int
 299xfs_map_blocks(
 300	struct inode		*inode,
 301	loff_t			offset,
 302	struct xfs_bmbt_irec	*imap,
 303	int			type)
 304{
 305	struct xfs_inode	*ip = XFS_I(inode);
 306	struct xfs_mount	*mp = ip->i_mount;
 307	ssize_t			count = 1 << inode->i_blkbits;
 308	xfs_fileoff_t		offset_fsb, end_fsb;
 309	int			error = 0;
 310	int			bmapi_flags = XFS_BMAPI_ENTIRE;
 311	int			nimaps = 1;
 312
 313	if (XFS_FORCED_SHUTDOWN(mp))
 314		return -EIO;
 315
 316	if (type == XFS_IO_UNWRITTEN)
 317		bmapi_flags |= XFS_BMAPI_IGSTATE;
 318
 319	xfs_ilock(ip, XFS_ILOCK_SHARED);
 320	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
 321	       (ip->i_df.if_flags & XFS_IFEXTENTS));
 322	ASSERT(offset <= mp->m_super->s_maxbytes);
 323
 324	if (offset + count > mp->m_super->s_maxbytes)
 325		count = mp->m_super->s_maxbytes - offset;
 326	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
 327	offset_fsb = XFS_B_TO_FSBT(mp, offset);
 328	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
 329				imap, &nimaps, bmapi_flags);
 330	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 331
 332	if (error)
 333		return error;
 334
 335	if (type == XFS_IO_DELALLOC &&
 336	    (!nimaps || isnullstartblock(imap->br_startblock))) {
 337		error = xfs_iomap_write_allocate(ip, offset, imap);
 338		if (!error)
 339			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
 340		return error;
 341	}
 342
 343#ifdef DEBUG
 344	if (type == XFS_IO_UNWRITTEN) {
 345		ASSERT(nimaps);
 346		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 347		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 348	}
 349#endif
 350	if (nimaps)
 351		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
 352	return 0;
 353}
 354
 355STATIC bool
 356xfs_imap_valid(
 357	struct inode		*inode,
 358	struct xfs_bmbt_irec	*imap,
 359	xfs_off_t		offset)
 360{
 361	offset >>= inode->i_blkbits;
 362
 363	return offset >= imap->br_startoff &&
 364		offset < imap->br_startoff + imap->br_blockcount;
 365}
 366
 367/*
 368 * BIO completion handler for buffered IO.
 369 */
 370STATIC void
 371xfs_end_bio(
 372	struct bio		*bio)
 373{
 374	xfs_ioend_t		*ioend = bio->bi_private;
 375
 376	if (!ioend->io_error)
 377		ioend->io_error = bio->bi_error;
 378
 379	/* Toss bio and pass work off to an xfsdatad thread */
 380	bio->bi_private = NULL;
 381	bio->bi_end_io = NULL;
 382	bio_put(bio);
 383
 384	xfs_finish_ioend(ioend);
 385}
 386
 387STATIC void
 388xfs_submit_ioend_bio(
 389	struct writeback_control *wbc,
 390	xfs_ioend_t		*ioend,
 391	struct bio		*bio)
 392{
 393	atomic_inc(&ioend->io_remaining);
 394	bio->bi_private = ioend;
 395	bio->bi_end_io = xfs_end_bio;
 396	submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
 397}
 398
 399STATIC struct bio *
 400xfs_alloc_ioend_bio(
 401	struct buffer_head	*bh)
 402{
 403	struct bio		*bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
 404
 405	ASSERT(bio->bi_private == NULL);
 406	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
 407	bio->bi_bdev = bh->b_bdev;
 408	return bio;
 409}
 410
 411STATIC void
 412xfs_start_buffer_writeback(
 413	struct buffer_head	*bh)
 414{
 415	ASSERT(buffer_mapped(bh));
 416	ASSERT(buffer_locked(bh));
 417	ASSERT(!buffer_delay(bh));
 418	ASSERT(!buffer_unwritten(bh));
 419
 420	mark_buffer_async_write(bh);
 421	set_buffer_uptodate(bh);
 422	clear_buffer_dirty(bh);
 423}
 424
 425STATIC void
 426xfs_start_page_writeback(
 427	struct page		*page,
 428	int			clear_dirty)
 429{
 430	ASSERT(PageLocked(page));
 431	ASSERT(!PageWriteback(page));
 432
 433	/*
 434	 * if the page was not fully cleaned, we need to ensure that the higher
 435	 * layers come back to it correctly. That means we need to keep the page
 436	 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
 437	 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
 438	 * write this page in this writeback sweep will be made.
 439	 */
 440	if (clear_dirty) {
 441		clear_page_dirty_for_io(page);
 442		set_page_writeback(page);
 443	} else
 444		set_page_writeback_keepwrite(page);
 445
 446	unlock_page(page);
 447}
 448
 449static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
 450{
 451	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
 452}
 453
 454/*
 455 * Submit all of the bios for an ioend. We are only passed a single ioend at a
 456 * time; the caller is responsible for chaining prior to submission.
 457 *
 458 * If @fail is non-zero, it means that we have a situation where some part of
 459 * the submission process has failed after we have marked paged for writeback
 460 * and unlocked them. In this situation, we need to fail the ioend chain rather
 461 * than submit it to IO. This typically only happens on a filesystem shutdown.
 
 
 
 
 
 
 462 */
 463STATIC int
 464xfs_submit_ioend(
 465	struct writeback_control *wbc,
 466	xfs_ioend_t		*ioend,
 467	int			status)
 468{
 469	struct buffer_head	*bh;
 470	struct bio		*bio;
 471	sector_t		lastblock = 0;
 472
 473	/* Reserve log space if we might write beyond the on-disk inode size. */
 474	if (!status &&
 475	     ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
 476		status = xfs_setfilesize_trans_alloc(ioend);
 477	/*
 478	 * If we are failing the IO now, just mark the ioend with an
 479	 * error and finish it. This will run IO completion immediately
 480	 * as there is only one reference to the ioend at this point in
 481	 * time.
 482	 */
 483	if (status) {
 484		ioend->io_error = status;
 485		xfs_finish_ioend(ioend);
 486		return status;
 487	}
 488
 489	bio = NULL;
 490	for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
 491
 492		if (!bio) {
 493retry:
 494			bio = xfs_alloc_ioend_bio(bh);
 495		} else if (bh->b_blocknr != lastblock + 1) {
 496			xfs_submit_ioend_bio(wbc, ioend, bio);
 497			goto retry;
 498		}
 499
 500		if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
 501			xfs_submit_ioend_bio(wbc, ioend, bio);
 502			goto retry;
 503		}
 504
 505		lastblock = bh->b_blocknr;
 506	}
 507	if (bio)
 508		xfs_submit_ioend_bio(wbc, ioend, bio);
 509	xfs_finish_ioend(ioend);
 510	return 0;
 511}
 512
 513/*
 514 * Test to see if we've been building up a completion structure for
 515 * earlier buffers -- if so, we try to append to this ioend if we
 516 * can, otherwise we finish off any current ioend and start another.
 517 * Return the ioend we finished off so that the caller can submit it
 518 * once it has finished processing the dirty page.
 519 */
 520STATIC void
 521xfs_add_to_ioend(
 522	struct inode		*inode,
 523	struct buffer_head	*bh,
 524	xfs_off_t		offset,
 525	struct xfs_writepage_ctx *wpc,
 526	struct list_head	*iolist)
 527{
 528	if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
 529	    bh->b_blocknr != wpc->last_block + 1 ||
 530	    offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
 531		struct xfs_ioend	*new;
 532
 533		if (wpc->ioend)
 534			list_add(&wpc->ioend->io_list, iolist);
 535
 536		new = xfs_alloc_ioend(inode, wpc->io_type);
 537		new->io_offset = offset;
 538		new->io_buffer_head = bh;
 539		new->io_buffer_tail = bh;
 540		wpc->ioend = new;
 541	} else {
 542		wpc->ioend->io_buffer_tail->b_private = bh;
 543		wpc->ioend->io_buffer_tail = bh;
 544	}
 545
 546	bh->b_private = NULL;
 547	wpc->ioend->io_size += bh->b_size;
 548	wpc->last_block = bh->b_blocknr;
 549	xfs_start_buffer_writeback(bh);
 550}
 551
 552STATIC void
 553xfs_map_buffer(
 554	struct inode		*inode,
 555	struct buffer_head	*bh,
 556	struct xfs_bmbt_irec	*imap,
 557	xfs_off_t		offset)
 558{
 559	sector_t		bn;
 560	struct xfs_mount	*m = XFS_I(inode)->i_mount;
 561	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
 562	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
 563
 564	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 565	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 566
 567	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
 568	      ((offset - iomap_offset) >> inode->i_blkbits);
 569
 570	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
 571
 572	bh->b_blocknr = bn;
 573	set_buffer_mapped(bh);
 574}
 575
 576STATIC void
 577xfs_map_at_offset(
 578	struct inode		*inode,
 579	struct buffer_head	*bh,
 580	struct xfs_bmbt_irec	*imap,
 581	xfs_off_t		offset)
 582{
 583	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 584	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 585
 586	xfs_map_buffer(inode, bh, imap, offset);
 587	set_buffer_mapped(bh);
 588	clear_buffer_delay(bh);
 589	clear_buffer_unwritten(bh);
 590}
 591
 592/*
 593 * Test if a given page contains at least one buffer of a given @type.
 594 * If @check_all_buffers is true, then we walk all the buffers in the page to
 595 * try to find one of the type passed in. If it is not set, then the caller only
 596 * needs to check the first buffer on the page for a match.
 597 */
 598STATIC bool
 599xfs_check_page_type(
 600	struct page		*page,
 601	unsigned int		type,
 602	bool			check_all_buffers)
 603{
 604	struct buffer_head	*bh;
 605	struct buffer_head	*head;
 606
 607	if (PageWriteback(page))
 608		return false;
 609	if (!page->mapping)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 610		return false;
 611	if (!page_has_buffers(page))
 
 
 
 
 612		return false;
 613
 614	bh = head = page_buffers(page);
 615	do {
 616		if (buffer_unwritten(bh)) {
 617			if (type == XFS_IO_UNWRITTEN)
 618				return true;
 619		} else if (buffer_delay(bh)) {
 620			if (type == XFS_IO_DELALLOC)
 621				return true;
 622		} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
 623			if (type == XFS_IO_OVERWRITE)
 624				return true;
 625		}
 626
 627		/* If we are only checking the first buffer, we are done now. */
 628		if (!check_all_buffers)
 629			break;
 630	} while ((bh = bh->b_this_page) != head);
 631
 632	return false;
 633}
 634
 635STATIC void
 636xfs_vm_invalidatepage(
 637	struct page		*page,
 638	unsigned int		offset,
 639	unsigned int		length)
 640{
 641	trace_xfs_invalidatepage(page->mapping->host, page, offset,
 642				 length);
 643	block_invalidatepage(page, offset, length);
 644}
 645
 646/*
 647 * If the page has delalloc buffers on it, we need to punch them out before we
 648 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
 649 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
 650 * is done on that same region - the delalloc extent is returned when none is
 651 * supposed to be there.
 652 *
 653 * We prevent this by truncating away the delalloc regions on the page before
 654 * invalidating it. Because they are delalloc, we can do this without needing a
 655 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
 656 * truncation without a transaction as there is no space left for block
 657 * reservation (typically why we see a ENOSPC in writeback).
 658 *
 659 * This is not a performance critical path, so for now just do the punching a
 660 * buffer head at a time.
 
 661 */
 662STATIC void
 663xfs_aops_discard_page(
 664	struct page		*page)
 
 
 
 665{
 666	struct inode		*inode = page->mapping->host;
 667	struct xfs_inode	*ip = XFS_I(inode);
 668	struct buffer_head	*bh, *head;
 669	loff_t			offset = page_offset(page);
 670
 671	if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
 672		goto out_invalidate;
 
 
 673
 674	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 675		goto out_invalidate;
 676
 677	xfs_alert(ip->i_mount,
 678		"page discard on page %p, inode 0x%llx, offset %llu.",
 679			page, ip->i_ino, offset);
 680
 681	xfs_ilock(ip, XFS_ILOCK_EXCL);
 682	bh = head = page_buffers(page);
 683	do {
 684		int		error;
 685		xfs_fileoff_t	start_fsb;
 
 
 
 686
 687		if (!buffer_delay(bh))
 688			goto next_buffer;
 689
 690		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
 691		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
 692		if (error) {
 693			/* something screwed, just bail */
 694			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 695				xfs_alert(ip->i_mount,
 696			"page discard unable to remove delalloc mapping.");
 697			}
 698			break;
 699		}
 700next_buffer:
 701		offset += 1 << inode->i_blkbits;
 702
 703	} while ((bh = bh->b_this_page) != head);
 704
 705	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 706out_invalidate:
 707	xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
 708	return;
 709}
 710
 711/*
 712 * We implement an immediate ioend submission policy here to avoid needing to
 713 * chain multiple ioends and hence nest mempool allocations which can violate
 714 * forward progress guarantees we need to provide. The current ioend we are
 715 * adding buffers to is cached on the writepage context, and if the new buffer
 716 * does not append to the cached ioend it will create a new ioend and cache that
 717 * instead.
 718 *
 719 * If a new ioend is created and cached, the old ioend is returned and queued
 720 * locally for submission once the entire page is processed or an error has been
 721 * detected.  While ioends are submitted immediately after they are completed,
 722 * batching optimisations are provided by higher level block plugging.
 723 *
 724 * At the end of a writeback pass, there will be a cached ioend remaining on the
 725 * writepage context that the caller will need to submit.
 726 */
 727static int
 728xfs_writepage_map(
 729	struct xfs_writepage_ctx *wpc,
 730	struct writeback_control *wbc,
 731	struct inode		*inode,
 732	struct page		*page,
 733	loff_t			offset,
 734	__uint64_t              end_offset)
 735{
 736	LIST_HEAD(submit_list);
 737	struct xfs_ioend	*ioend, *next;
 738	struct buffer_head	*bh, *head;
 739	ssize_t			len = 1 << inode->i_blkbits;
 
 
 
 
 
 
 740	int			error = 0;
 741	int			count = 0;
 742	int			uptodate = 1;
 743
 744	bh = head = page_buffers(page);
 745	offset = page_offset(page);
 746	do {
 747		if (offset >= end_offset)
 748			break;
 749		if (!buffer_uptodate(bh))
 750			uptodate = 0;
 751
 752		/*
 753		 * set_page_dirty dirties all buffers in a page, independent
 754		 * of their state.  The dirty state however is entirely
 755		 * meaningless for holes (!mapped && uptodate), so skip
 756		 * buffers covering holes here.
 757		 */
 758		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
 759			wpc->imap_valid = false;
 760			continue;
 761		}
 762
 763		if (buffer_unwritten(bh)) {
 764			if (wpc->io_type != XFS_IO_UNWRITTEN) {
 765				wpc->io_type = XFS_IO_UNWRITTEN;
 766				wpc->imap_valid = false;
 767			}
 768		} else if (buffer_delay(bh)) {
 769			if (wpc->io_type != XFS_IO_DELALLOC) {
 770				wpc->io_type = XFS_IO_DELALLOC;
 771				wpc->imap_valid = false;
 772			}
 773		} else if (buffer_uptodate(bh)) {
 774			if (wpc->io_type != XFS_IO_OVERWRITE) {
 775				wpc->io_type = XFS_IO_OVERWRITE;
 776				wpc->imap_valid = false;
 777			}
 778		} else {
 779			if (PageUptodate(page))
 780				ASSERT(buffer_mapped(bh));
 781			/*
 782			 * This buffer is not uptodate and will not be
 783			 * written to disk.  Ensure that we will put any
 784			 * subsequent writeable buffers into a new
 785			 * ioend.
 786			 */
 787			wpc->imap_valid = false;
 788			continue;
 789		}
 790
 791		if (wpc->imap_valid)
 792			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
 793							 offset);
 794		if (!wpc->imap_valid) {
 795			error = xfs_map_blocks(inode, offset, &wpc->imap,
 796					     wpc->io_type);
 797			if (error)
 798				goto out;
 799			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
 800							 offset);
 801		}
 802		if (wpc->imap_valid) {
 803			lock_buffer(bh);
 804			if (wpc->io_type != XFS_IO_OVERWRITE)
 805				xfs_map_at_offset(inode, bh, &wpc->imap, offset);
 806			xfs_add_to_ioend(inode, bh, offset, wpc, &submit_list);
 807			count++;
 808		}
 809
 810	} while (offset += len, ((bh = bh->b_this_page) != head));
 811
 812	if (uptodate && bh == head)
 813		SetPageUptodate(page);
 814
 815	ASSERT(wpc->ioend || list_empty(&submit_list));
 816
 817out:
 818	/*
 819	 * On error, we have to fail the ioend here because we have locked
 820	 * buffers in the ioend. If we don't do this, we'll deadlock
 821	 * invalidating the page as that tries to lock the buffers on the page.
 822	 * Also, because we may have set pages under writeback, we have to make
 823	 * sure we run IO completion to mark the error state of the IO
 824	 * appropriately, so we can't cancel the ioend directly here. That means
 825	 * we have to mark this page as under writeback if we included any
 826	 * buffers from it in the ioend chain so that completion treats it
 827	 * correctly.
 828	 *
 829	 * If we didn't include the page in the ioend, the on error we can
 830	 * simply discard and unlock it as there are no other users of the page
 831	 * or it's buffers right now. The caller will still need to trigger
 832	 * submission of outstanding ioends on the writepage context so they are
 833	 * treated correctly on error.
 
 
 834	 */
 835	if (count) {
 836		xfs_start_page_writeback(page, !error);
 837
 838		/*
 839		 * Preserve the original error if there was one, otherwise catch
 840		 * submission errors here and propagate into subsequent ioend
 841		 * submissions.
 842		 */
 843		list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
 844			int error2;
 845
 846			list_del_init(&ioend->io_list);
 847			error2 = xfs_submit_ioend(wbc, ioend, error);
 848			if (error2 && !error)
 849				error = error2;
 850		}
 851	} else if (error) {
 852		xfs_aops_discard_page(page);
 853		ClearPageUptodate(page);
 854		unlock_page(page);
 855	} else {
 856		/*
 857		 * We can end up here with no error and nothing to write if we
 858		 * race with a partial page truncate on a sub-page block sized
 859		 * filesystem. In that case we need to mark the page clean.
 860		 */
 861		xfs_start_page_writeback(page, 1);
 862		end_page_writeback(page);
 863	}
 864
 865	mapping_set_error(page->mapping, error);
 866	return error;
 867}
 868
 869/*
 870 * Write out a dirty page.
 871 *
 872 * For delalloc space on the page we need to allocate space and flush it.
 873 * For unwritten space on the page we need to start the conversion to
 874 * regular allocated space.
 875 * For any other dirty buffer heads on the page we should flush them.
 876 */
 877STATIC int
 878xfs_do_writepage(
 879	struct page		*page,
 880	struct writeback_control *wbc,
 881	void			*data)
 882{
 883	struct xfs_writepage_ctx *wpc = data;
 884	struct inode		*inode = page->mapping->host;
 885	loff_t			offset;
 886	__uint64_t              end_offset;
 887	pgoff_t                 end_index;
 888
 889	trace_xfs_writepage(inode, page, 0, 0);
 890
 891	ASSERT(page_has_buffers(page));
 892
 893	/*
 894	 * Refuse to write the page out if we are called from reclaim context.
 895	 *
 896	 * This avoids stack overflows when called from deeply used stacks in
 897	 * random callers for direct reclaim or memcg reclaim.  We explicitly
 898	 * allow reclaim from kswapd as the stack usage there is relatively low.
 899	 *
 900	 * This should never happen except in the case of a VM regression so
 901	 * warn about it.
 902	 */
 903	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
 904			PF_MEMALLOC))
 905		goto redirty;
 
 
 906
 907	/*
 908	 * Given that we do not allow direct reclaim to call us, we should
 909	 * never be called while in a filesystem transaction.
 910	 */
 911	if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
 912		goto redirty;
 
 
 
 
 
 
 
 
 913
 914	/*
 915	 * Is this page beyond the end of the file?
 916	 *
 917	 * The page index is less than the end_index, adjust the end_offset
 918	 * to the highest offset that this page should represent.
 919	 * -----------------------------------------------------
 920	 * |			file mapping	       | <EOF> |
 921	 * -----------------------------------------------------
 922	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
 923	 * ^--------------------------------^----------|--------
 924	 * |     desired writeback range    |      see else    |
 925	 * ---------------------------------^------------------|
 926	 */
 927	offset = i_size_read(inode);
 928	end_index = offset >> PAGE_SHIFT;
 929	if (page->index < end_index)
 930		end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
 931	else {
 932		/*
 933		 * Check whether the page to write out is beyond or straddles
 934		 * i_size or not.
 935		 * -------------------------------------------------------
 936		 * |		file mapping		        | <EOF>  |
 937		 * -------------------------------------------------------
 938		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
 939		 * ^--------------------------------^-----------|---------
 940		 * |				    |      Straddles     |
 941		 * ---------------------------------^-----------|--------|
 942		 */
 943		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
 944
 945		/*
 946		 * Skip the page if it is fully outside i_size, e.g. due to a
 947		 * truncate operation that is in progress. We must redirty the
 948		 * page so that reclaim stops reclaiming it. Otherwise
 949		 * xfs_vm_releasepage() is called on it and gets confused.
 950		 *
 951		 * Note that the end_index is unsigned long, it would overflow
 952		 * if the given offset is greater than 16TB on 32-bit system
 953		 * and if we do check the page is fully outside i_size or not
 954		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
 955		 * will be evaluated to 0.  Hence this page will be redirtied
 956		 * and be written out repeatedly which would result in an
 957		 * infinite loop, the user program that perform this operation
 958		 * will hang.  Instead, we can verify this situation by checking
 959		 * if the page to write is totally beyond the i_size or if it's
 960		 * offset is just equal to the EOF.
 961		 */
 962		if (page->index > end_index ||
 963		    (page->index == end_index && offset_into_page == 0))
 964			goto redirty;
 965
 966		/*
 967		 * The page straddles i_size.  It must be zeroed out on each
 968		 * and every writepage invocation because it may be mmapped.
 969		 * "A file is mapped in multiples of the page size.  For a file
 970		 * that is not a multiple of the page size, the remaining
 971		 * memory is zeroed when mapped, and writes to that region are
 972		 * not written out to the file."
 973		 */
 974		zero_user_segment(page, offset_into_page, PAGE_SIZE);
 975
 976		/* Adjust the end_offset to the end of file */
 977		end_offset = offset;
 978	}
 979
 980	return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
 981
 982redirty:
 983	redirty_page_for_writepage(wbc, page);
 984	unlock_page(page);
 985	return 0;
 986}
 987
 988STATIC int
 989xfs_vm_writepage(
 990	struct page		*page,
 991	struct writeback_control *wbc)
 992{
 993	struct xfs_writepage_ctx wpc = {
 994		.io_type = XFS_IO_INVALID,
 995	};
 996	int			ret;
 997
 998	ret = xfs_do_writepage(page, wbc, &wpc);
 999	if (wpc.ioend)
1000		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1001	return ret;
1002}
1003
1004STATIC int
1005xfs_vm_writepages(
1006	struct address_space	*mapping,
1007	struct writeback_control *wbc)
1008{
1009	struct xfs_writepage_ctx wpc = {
1010		.io_type = XFS_IO_INVALID,
1011	};
1012	int			ret;
1013
1014	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1015	if (dax_mapping(mapping))
1016		return dax_writeback_mapping_range(mapping,
1017				xfs_find_bdev_for_inode(mapping->host), wbc);
1018
1019	ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1020	if (wpc.ioend)
1021		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1022	return ret;
1023}
1024
1025/*
1026 * Called to move a page into cleanable state - and from there
1027 * to be released. The page should already be clean. We always
1028 * have buffer heads in this call.
1029 *
1030 * Returns 1 if the page is ok to release, 0 otherwise.
1031 */
1032STATIC int
1033xfs_vm_releasepage(
1034	struct page		*page,
1035	gfp_t			gfp_mask)
1036{
1037	int			delalloc, unwritten;
1038
1039	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1040
1041	xfs_count_page_state(page, &delalloc, &unwritten);
1042
1043	if (WARN_ON_ONCE(delalloc))
1044		return 0;
1045	if (WARN_ON_ONCE(unwritten))
1046		return 0;
1047
1048	return try_to_free_buffers(page);
1049}
1050
1051/*
1052 * When we map a DIO buffer, we may need to pass flags to
1053 * xfs_end_io_direct_write to tell it what kind of write IO we are doing.
1054 *
1055 * Note that for DIO, an IO to the highest supported file block offset (i.e.
1056 * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64
1057 * bit variable. Hence if we see this overflow, we have to assume that the IO is
1058 * extending the file size. We won't know for sure until IO completion is run
1059 * and the actual max write offset is communicated to the IO completion
1060 * routine.
1061 */
1062static void
1063xfs_map_direct(
1064	struct inode		*inode,
1065	struct buffer_head	*bh_result,
1066	struct xfs_bmbt_irec	*imap,
1067	xfs_off_t		offset)
1068{
1069	uintptr_t		*flags = (uintptr_t *)&bh_result->b_private;
1070	xfs_off_t		size = bh_result->b_size;
1071
1072	trace_xfs_get_blocks_map_direct(XFS_I(inode), offset, size,
1073		ISUNWRITTEN(imap) ? XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, imap);
1074
1075	if (ISUNWRITTEN(imap)) {
1076		*flags |= XFS_DIO_FLAG_UNWRITTEN;
1077		set_buffer_defer_completion(bh_result);
1078	} else if (offset + size > i_size_read(inode) || offset + size < 0) {
1079		*flags |= XFS_DIO_FLAG_APPEND;
1080		set_buffer_defer_completion(bh_result);
1081	}
1082}
1083
1084/*
1085 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1086 * is, so that we can avoid repeated get_blocks calls.
1087 *
1088 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1089 * for blocks beyond EOF must be marked new so that sub block regions can be
1090 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1091 * was just allocated or is unwritten, otherwise the callers would overwrite
1092 * existing data with zeros. Hence we have to split the mapping into a range up
1093 * to and including EOF, and a second mapping for beyond EOF.
1094 */
1095static void
1096xfs_map_trim_size(
1097	struct inode		*inode,
1098	sector_t		iblock,
1099	struct buffer_head	*bh_result,
1100	struct xfs_bmbt_irec	*imap,
1101	xfs_off_t		offset,
1102	ssize_t			size)
1103{
1104	xfs_off_t		mapping_size;
1105
1106	mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1107	mapping_size <<= inode->i_blkbits;
1108
1109	ASSERT(mapping_size > 0);
1110	if (mapping_size > size)
1111		mapping_size = size;
1112	if (offset < i_size_read(inode) &&
1113	    offset + mapping_size >= i_size_read(inode)) {
1114		/* limit mapping to block that spans EOF */
1115		mapping_size = roundup_64(i_size_read(inode) - offset,
1116					  1 << inode->i_blkbits);
1117	}
1118	if (mapping_size > LONG_MAX)
1119		mapping_size = LONG_MAX;
1120
1121	bh_result->b_size = mapping_size;
1122}
1123
1124STATIC int
1125__xfs_get_blocks(
1126	struct inode		*inode,
1127	sector_t		iblock,
1128	struct buffer_head	*bh_result,
1129	int			create,
1130	bool			direct,
1131	bool			dax_fault)
1132{
1133	struct xfs_inode	*ip = XFS_I(inode);
1134	struct xfs_mount	*mp = ip->i_mount;
1135	xfs_fileoff_t		offset_fsb, end_fsb;
1136	int			error = 0;
1137	int			lockmode = 0;
1138	struct xfs_bmbt_irec	imap;
1139	int			nimaps = 1;
1140	xfs_off_t		offset;
1141	ssize_t			size;
1142	int			new = 0;
1143
1144	if (XFS_FORCED_SHUTDOWN(mp))
1145		return -EIO;
1146
1147	offset = (xfs_off_t)iblock << inode->i_blkbits;
1148	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1149	size = bh_result->b_size;
1150
1151	if (!create && direct && offset >= i_size_read(inode))
1152		return 0;
1153
1154	/*
1155	 * Direct I/O is usually done on preallocated files, so try getting
1156	 * a block mapping without an exclusive lock first.  For buffered
1157	 * writes we already have the exclusive iolock anyway, so avoiding
1158	 * a lock roundtrip here by taking the ilock exclusive from the
1159	 * beginning is a useful micro optimization.
1160	 */
1161	if (create && !direct) {
1162		lockmode = XFS_ILOCK_EXCL;
1163		xfs_ilock(ip, lockmode);
1164	} else {
1165		lockmode = xfs_ilock_data_map_shared(ip);
1166	}
1167
1168	ASSERT(offset <= mp->m_super->s_maxbytes);
1169	if (offset + size > mp->m_super->s_maxbytes)
1170		size = mp->m_super->s_maxbytes - offset;
1171	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1172	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1173
1174	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1175				&imap, &nimaps, XFS_BMAPI_ENTIRE);
1176	if (error)
1177		goto out_unlock;
1178
1179	/* for DAX, we convert unwritten extents directly */
1180	if (create &&
1181	    (!nimaps ||
1182	     (imap.br_startblock == HOLESTARTBLOCK ||
1183	      imap.br_startblock == DELAYSTARTBLOCK) ||
1184	     (IS_DAX(inode) && ISUNWRITTEN(&imap)))) {
1185		if (direct || xfs_get_extsz_hint(ip)) {
1186			/*
1187			 * xfs_iomap_write_direct() expects the shared lock. It
1188			 * is unlocked on return.
1189			 */
1190			if (lockmode == XFS_ILOCK_EXCL)
1191				xfs_ilock_demote(ip, lockmode);
1192
1193			error = xfs_iomap_write_direct(ip, offset, size,
1194						       &imap, nimaps);
1195			if (error)
1196				return error;
1197			new = 1;
1198
1199		} else {
1200			/*
1201			 * Delalloc reservations do not require a transaction,
1202			 * we can go on without dropping the lock here. If we
1203			 * are allocating a new delalloc block, make sure that
1204			 * we set the new flag so that we mark the buffer new so
1205			 * that we know that it is newly allocated if the write
1206			 * fails.
1207			 */
1208			if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1209				new = 1;
1210			error = xfs_iomap_write_delay(ip, offset, size, &imap);
1211			if (error)
1212				goto out_unlock;
1213
1214			xfs_iunlock(ip, lockmode);
1215		}
1216		trace_xfs_get_blocks_alloc(ip, offset, size,
1217				ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1218						   : XFS_IO_DELALLOC, &imap);
1219	} else if (nimaps) {
1220		trace_xfs_get_blocks_found(ip, offset, size,
1221				ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1222						   : XFS_IO_OVERWRITE, &imap);
1223		xfs_iunlock(ip, lockmode);
1224	} else {
1225		trace_xfs_get_blocks_notfound(ip, offset, size);
1226		goto out_unlock;
1227	}
1228
1229	if (IS_DAX(inode) && create) {
1230		ASSERT(!ISUNWRITTEN(&imap));
1231		/* zeroing is not needed at a higher layer */
1232		new = 0;
1233	}
1234
1235	/* trim mapping down to size requested */
1236	if (direct || size > (1 << inode->i_blkbits))
1237		xfs_map_trim_size(inode, iblock, bh_result,
1238				  &imap, offset, size);
1239
1240	/*
1241	 * For unwritten extents do not report a disk address in the buffered
1242	 * read case (treat as if we're reading into a hole).
1243	 */
1244	if (imap.br_startblock != HOLESTARTBLOCK &&
1245	    imap.br_startblock != DELAYSTARTBLOCK &&
1246	    (create || !ISUNWRITTEN(&imap))) {
1247		xfs_map_buffer(inode, bh_result, &imap, offset);
1248		if (ISUNWRITTEN(&imap))
1249			set_buffer_unwritten(bh_result);
1250		/* direct IO needs special help */
1251		if (create && direct) {
1252			if (dax_fault)
1253				ASSERT(!ISUNWRITTEN(&imap));
1254			else
1255				xfs_map_direct(inode, bh_result, &imap, offset);
1256		}
1257	}
1258
1259	/*
1260	 * If this is a realtime file, data may be on a different device.
1261	 * to that pointed to from the buffer_head b_bdev currently.
 
1262	 */
1263	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
 
1264
1265	/*
1266	 * If we previously allocated a block out beyond eof and we are now
1267	 * coming back to use it then we will need to flag it as new even if it
1268	 * has a disk address.
1269	 *
1270	 * With sub-block writes into unwritten extents we also need to mark
1271	 * the buffer as new so that the unwritten parts of the buffer gets
1272	 * correctly zeroed.
1273	 */
1274	if (create &&
1275	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1276	     (offset >= i_size_read(inode)) ||
1277	     (new || ISUNWRITTEN(&imap))))
1278		set_buffer_new(bh_result);
1279
1280	if (imap.br_startblock == DELAYSTARTBLOCK) {
1281		BUG_ON(direct);
1282		if (create) {
1283			set_buffer_uptodate(bh_result);
1284			set_buffer_mapped(bh_result);
1285			set_buffer_delay(bh_result);
1286		}
1287	}
1288
 
 
 
1289	return 0;
1290
1291out_unlock:
1292	xfs_iunlock(ip, lockmode);
1293	return error;
1294}
1295
1296int
1297xfs_get_blocks(
1298	struct inode		*inode,
1299	sector_t		iblock,
1300	struct buffer_head	*bh_result,
1301	int			create)
1302{
1303	return __xfs_get_blocks(inode, iblock, bh_result, create, false, false);
1304}
1305
1306int
1307xfs_get_blocks_direct(
1308	struct inode		*inode,
1309	sector_t		iblock,
1310	struct buffer_head	*bh_result,
1311	int			create)
1312{
1313	return __xfs_get_blocks(inode, iblock, bh_result, create, true, false);
1314}
1315
1316int
1317xfs_get_blocks_dax_fault(
1318	struct inode		*inode,
1319	sector_t		iblock,
1320	struct buffer_head	*bh_result,
1321	int			create)
1322{
1323	return __xfs_get_blocks(inode, iblock, bh_result, create, true, true);
1324}
1325
1326/*
1327 * Complete a direct I/O write request.
1328 *
1329 * xfs_map_direct passes us some flags in the private data to tell us what to
1330 * do.  If no flags are set, then the write IO is an overwrite wholly within
1331 * the existing allocated file size and so there is nothing for us to do.
1332 *
1333 * Note that in this case the completion can be called in interrupt context,
1334 * whereas if we have flags set we will always be called in task context
1335 * (i.e. from a workqueue).
1336 */
1337STATIC int
1338xfs_end_io_direct_write(
1339	struct kiocb		*iocb,
1340	loff_t			offset,
1341	ssize_t			size,
1342	void			*private)
1343{
1344	struct inode		*inode = file_inode(iocb->ki_filp);
1345	struct xfs_inode	*ip = XFS_I(inode);
1346	struct xfs_mount	*mp = ip->i_mount;
1347	uintptr_t		flags = (uintptr_t)private;
1348	int			error = 0;
1349
1350	trace_xfs_end_io_direct_write(ip, offset, size);
1351
1352	if (XFS_FORCED_SHUTDOWN(mp))
1353		return -EIO;
1354
1355	if (size <= 0)
1356		return size;
1357
1358	/*
1359	 * The flags tell us whether we are doing unwritten extent conversions
1360	 * or an append transaction that updates the on-disk file size. These
1361	 * cases are the only cases where we should *potentially* be needing
1362	 * to update the VFS inode size.
1363	 */
1364	if (flags == 0) {
1365		ASSERT(offset + size <= i_size_read(inode));
1366		return 0;
1367	}
1368
1369	/*
1370	 * We need to update the in-core inode size here so that we don't end up
1371	 * with the on-disk inode size being outside the in-core inode size. We
1372	 * have no other method of updating EOF for AIO, so always do it here
1373	 * if necessary.
1374	 *
1375	 * We need to lock the test/set EOF update as we can be racing with
1376	 * other IO completions here to update the EOF. Failing to serialise
1377	 * here can result in EOF moving backwards and Bad Things Happen when
1378	 * that occurs.
1379	 */
1380	spin_lock(&ip->i_flags_lock);
1381	if (offset + size > i_size_read(inode))
1382		i_size_write(inode, offset + size);
1383	spin_unlock(&ip->i_flags_lock);
1384
1385	if (flags & XFS_DIO_FLAG_UNWRITTEN) {
1386		trace_xfs_end_io_direct_write_unwritten(ip, offset, size);
1387
1388		error = xfs_iomap_write_unwritten(ip, offset, size);
1389	} else if (flags & XFS_DIO_FLAG_APPEND) {
1390		struct xfs_trans *tp;
1391
1392		trace_xfs_end_io_direct_write_append(ip, offset, size);
1393
1394		tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
1395		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
1396		if (error) {
1397			xfs_trans_cancel(tp);
1398			return error;
1399		}
1400		error = xfs_setfilesize(ip, tp, offset, size);
1401	}
1402
1403	return error;
1404}
1405
1406STATIC ssize_t
1407xfs_vm_direct_IO(
1408	struct kiocb		*iocb,
1409	struct iov_iter		*iter,
1410	loff_t			offset)
1411{
1412	struct inode		*inode = iocb->ki_filp->f_mapping->host;
1413	dio_iodone_t		*endio = NULL;
1414	int			flags = 0;
1415	struct block_device	*bdev;
1416
1417	if (iov_iter_rw(iter) == WRITE) {
1418		endio = xfs_end_io_direct_write;
1419		flags = DIO_ASYNC_EXTEND;
1420	}
1421
1422	if (IS_DAX(inode)) {
1423		return dax_do_io(iocb, inode, iter, offset,
1424				 xfs_get_blocks_direct, endio, 0);
1425	}
1426
1427	bdev = xfs_find_bdev_for_inode(inode);
1428	return  __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
1429			xfs_get_blocks_direct, endio, NULL, flags);
1430}
1431
1432/*
1433 * Punch out the delalloc blocks we have already allocated.
1434 *
1435 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1436 * as the page is still locked at this point.
 
 
 
 
 
1437 */
1438STATIC void
1439xfs_vm_kill_delalloc_range(
1440	struct inode		*inode,
1441	loff_t			start,
1442	loff_t			end)
1443{
1444	struct xfs_inode	*ip = XFS_I(inode);
1445	xfs_fileoff_t		start_fsb;
1446	xfs_fileoff_t		end_fsb;
1447	int			error;
1448
1449	start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1450	end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1451	if (end_fsb <= start_fsb)
1452		return;
1453
1454	xfs_ilock(ip, XFS_ILOCK_EXCL);
1455	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1456						end_fsb - start_fsb);
1457	if (error) {
1458		/* something screwed, just bail */
1459		if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1460			xfs_alert(ip->i_mount,
1461		"xfs_vm_write_failed: unable to clean up ino %lld",
1462					ip->i_ino);
1463		}
1464	}
1465	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1466}
1467
1468STATIC void
1469xfs_vm_write_failed(
1470	struct inode		*inode,
1471	struct page		*page,
1472	loff_t			pos,
1473	unsigned		len)
1474{
1475	loff_t			block_offset;
1476	loff_t			block_start;
1477	loff_t			block_end;
1478	loff_t			from = pos & (PAGE_SIZE - 1);
1479	loff_t			to = from + len;
1480	struct buffer_head	*bh, *head;
1481	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
1482
1483	/*
1484	 * The request pos offset might be 32 or 64 bit, this is all fine
1485	 * on 64-bit platform.  However, for 64-bit pos request on 32-bit
1486	 * platform, the high 32-bit will be masked off if we evaluate the
1487	 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1488	 * 0xfffff000 as an unsigned long, hence the result is incorrect
1489	 * which could cause the following ASSERT failed in most cases.
1490	 * In order to avoid this, we can evaluate the block_offset of the
1491	 * start of the page by using shifts rather than masks the mismatch
1492	 * problem.
1493	 */
1494	block_offset = (pos >> PAGE_SHIFT) << PAGE_SHIFT;
1495
1496	ASSERT(block_offset + from == pos);
1497
1498	head = page_buffers(page);
1499	block_start = 0;
1500	for (bh = head; bh != head || !block_start;
1501	     bh = bh->b_this_page, block_start = block_end,
1502				   block_offset += bh->b_size) {
1503		block_end = block_start + bh->b_size;
1504
1505		/* skip buffers before the write */
1506		if (block_end <= from)
1507			continue;
1508
1509		/* if the buffer is after the write, we're done */
1510		if (block_start >= to)
1511			break;
1512
1513		/*
1514		 * Process delalloc and unwritten buffers beyond EOF. We can
1515		 * encounter unwritten buffers in the event that a file has
1516		 * post-EOF unwritten extents and an extending write happens to
1517		 * fail (e.g., an unaligned write that also involves a delalloc
1518		 * to the same page).
1519		 */
1520		if (!buffer_delay(bh) && !buffer_unwritten(bh))
1521			continue;
1522
1523		if (!xfs_mp_fail_writes(mp) && !buffer_new(bh) &&
1524		    block_offset < i_size_read(inode))
1525			continue;
1526
1527		if (buffer_delay(bh))
1528			xfs_vm_kill_delalloc_range(inode, block_offset,
1529						   block_offset + bh->b_size);
1530
1531		/*
1532		 * This buffer does not contain data anymore. make sure anyone
1533		 * who finds it knows that for certain.
1534		 */
1535		clear_buffer_delay(bh);
1536		clear_buffer_uptodate(bh);
1537		clear_buffer_mapped(bh);
1538		clear_buffer_new(bh);
1539		clear_buffer_dirty(bh);
1540		clear_buffer_unwritten(bh);
1541	}
1542
1543}
1544
1545/*
1546 * This used to call block_write_begin(), but it unlocks and releases the page
1547 * on error, and we need that page to be able to punch stale delalloc blocks out
1548 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1549 * the appropriate point.
1550 */
1551STATIC int
1552xfs_vm_write_begin(
1553	struct file		*file,
1554	struct address_space	*mapping,
1555	loff_t			pos,
1556	unsigned		len,
1557	unsigned		flags,
1558	struct page		**pagep,
1559	void			**fsdata)
1560{
1561	pgoff_t			index = pos >> PAGE_SHIFT;
1562	struct page		*page;
1563	int			status;
1564	struct xfs_mount	*mp = XFS_I(mapping->host)->i_mount;
1565
1566	ASSERT(len <= PAGE_SIZE);
1567
1568	page = grab_cache_page_write_begin(mapping, index, flags);
1569	if (!page)
1570		return -ENOMEM;
1571
1572	status = __block_write_begin(page, pos, len, xfs_get_blocks);
1573	if (xfs_mp_fail_writes(mp))
1574		status = -EIO;
1575	if (unlikely(status)) {
1576		struct inode	*inode = mapping->host;
1577		size_t		isize = i_size_read(inode);
1578
1579		xfs_vm_write_failed(inode, page, pos, len);
1580		unlock_page(page);
 
 
 
 
1581
1582		/*
1583		 * If the write is beyond EOF, we only want to kill blocks
1584		 * allocated in this write, not blocks that were previously
1585		 * written successfully.
1586		 */
1587		if (xfs_mp_fail_writes(mp))
1588			isize = 0;
1589		if (pos + len > isize) {
1590			ssize_t start = max_t(ssize_t, pos, isize);
1591
1592			truncate_pagecache_range(inode, start, pos + len);
1593		}
1594
1595		put_page(page);
1596		page = NULL;
1597	}
1598
1599	*pagep = page;
1600	return status;
1601}
1602
1603/*
1604 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1605 * this specific write because they will never be written. Previous writes
1606 * beyond EOF where block allocation succeeded do not need to be trashed, so
1607 * only new blocks from this write should be trashed. For blocks within
1608 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1609 * written with all the other valid data.
1610 */
1611STATIC int
1612xfs_vm_write_end(
1613	struct file		*file,
1614	struct address_space	*mapping,
1615	loff_t			pos,
1616	unsigned		len,
1617	unsigned		copied,
1618	struct page		*page,
1619	void			*fsdata)
1620{
1621	int			ret;
1622
1623	ASSERT(len <= PAGE_SIZE);
1624
1625	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1626	if (unlikely(ret < len)) {
1627		struct inode	*inode = mapping->host;
1628		size_t		isize = i_size_read(inode);
1629		loff_t		to = pos + len;
1630
1631		if (to > isize) {
1632			/* only kill blocks in this write beyond EOF */
1633			if (pos > isize)
1634				isize = pos;
1635			xfs_vm_kill_delalloc_range(inode, isize, to);
1636			truncate_pagecache_range(inode, isize, to);
1637		}
1638	}
1639	return ret;
1640}
1641
1642STATIC sector_t
1643xfs_vm_bmap(
1644	struct address_space	*mapping,
1645	sector_t		block)
1646{
1647	struct inode		*inode = (struct inode *)mapping->host;
1648	struct xfs_inode	*ip = XFS_I(inode);
 
1649
1650	trace_xfs_vm_bmap(XFS_I(inode));
1651	xfs_ilock(ip, XFS_IOLOCK_SHARED);
1652	filemap_write_and_wait(mapping);
1653	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1654	return generic_block_bmap(mapping, block, xfs_get_blocks);
 
 
 
 
 
 
 
1655}
1656
1657STATIC int
1658xfs_vm_readpage(
1659	struct file		*unused,
1660	struct page		*page)
1661{
1662	trace_xfs_vm_readpage(page->mapping->host, 1);
1663	return mpage_readpage(page, xfs_get_blocks);
1664}
1665
1666STATIC int
1667xfs_vm_readpages(
1668	struct file		*unused,
1669	struct address_space	*mapping,
1670	struct list_head	*pages,
1671	unsigned		nr_pages)
1672{
1673	trace_xfs_vm_readpages(mapping->host, nr_pages);
1674	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1675}
1676
1677/*
1678 * This is basically a copy of __set_page_dirty_buffers() with one
1679 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1680 * dirty, we'll never be able to clean them because we don't write buffers
1681 * beyond EOF, and that means we can't invalidate pages that span EOF
1682 * that have been marked dirty. Further, the dirty state can leak into
1683 * the file interior if the file is extended, resulting in all sorts of
1684 * bad things happening as the state does not match the underlying data.
1685 *
1686 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1687 * this only exist because of bufferheads and how the generic code manages them.
1688 */
1689STATIC int
1690xfs_vm_set_page_dirty(
1691	struct page		*page)
1692{
1693	struct address_space	*mapping = page->mapping;
1694	struct inode		*inode = mapping->host;
1695	loff_t			end_offset;
1696	loff_t			offset;
1697	int			newly_dirty;
1698
1699	if (unlikely(!mapping))
1700		return !TestSetPageDirty(page);
1701
1702	end_offset = i_size_read(inode);
1703	offset = page_offset(page);
1704
1705	spin_lock(&mapping->private_lock);
1706	if (page_has_buffers(page)) {
1707		struct buffer_head *head = page_buffers(page);
1708		struct buffer_head *bh = head;
1709
1710		do {
1711			if (offset < end_offset)
1712				set_buffer_dirty(bh);
1713			bh = bh->b_this_page;
1714			offset += 1 << inode->i_blkbits;
1715		} while (bh != head);
1716	}
1717	/*
1718	 * Lock out page->mem_cgroup migration to keep PageDirty
1719	 * synchronized with per-memcg dirty page counters.
1720	 */
1721	lock_page_memcg(page);
1722	newly_dirty = !TestSetPageDirty(page);
1723	spin_unlock(&mapping->private_lock);
1724
1725	if (newly_dirty) {
1726		/* sigh - __set_page_dirty() is static, so copy it here, too */
1727		unsigned long flags;
1728
1729		spin_lock_irqsave(&mapping->tree_lock, flags);
1730		if (page->mapping) {	/* Race with truncate? */
1731			WARN_ON_ONCE(!PageUptodate(page));
1732			account_page_dirtied(page, mapping);
1733			radix_tree_tag_set(&mapping->page_tree,
1734					page_index(page), PAGECACHE_TAG_DIRTY);
1735		}
1736		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1737	}
1738	unlock_page_memcg(page);
1739	if (newly_dirty)
1740		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1741	return newly_dirty;
1742}
1743
1744const struct address_space_operations xfs_address_space_operations = {
1745	.readpage		= xfs_vm_readpage,
1746	.readpages		= xfs_vm_readpages,
1747	.writepage		= xfs_vm_writepage,
1748	.writepages		= xfs_vm_writepages,
1749	.set_page_dirty		= xfs_vm_set_page_dirty,
1750	.releasepage		= xfs_vm_releasepage,
1751	.invalidatepage		= xfs_vm_invalidatepage,
1752	.write_begin		= xfs_vm_write_begin,
1753	.write_end		= xfs_vm_write_end,
1754	.bmap			= xfs_vm_bmap,
1755	.direct_IO		= xfs_vm_direct_IO,
1756	.migratepage		= buffer_migrate_page,
1757	.is_partially_uptodate  = block_is_partially_uptodate,
1758	.error_remove_page	= generic_error_remove_page,
 
 
 
 
 
 
 
 
1759};