Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  4 * Copyright (c) 2016-2018 Christoph Hellwig.
  5 * All Rights Reserved.
  6 */
  7#include "xfs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 12#include "xfs_mount.h"
 13#include "xfs_inode.h"
 14#include "xfs_trans.h"
 15#include "xfs_iomap.h"
 16#include "xfs_trace.h"
 17#include "xfs_bmap.h"
 18#include "xfs_bmap_util.h"
 19#include "xfs_reflink.h"
 20#include "xfs_errortag.h"
 21#include "xfs_error.h"
 22
 23struct xfs_writepage_ctx {
 24	struct iomap_writepage_ctx ctx;
 25	unsigned int		data_seq;
 26	unsigned int		cow_seq;
 27};
 28
 29static inline struct xfs_writepage_ctx *
 30XFS_WPC(struct iomap_writepage_ctx *ctx)
 31{
 32	return container_of(ctx, struct xfs_writepage_ctx, ctx);
 33}
 34
 35/*
 36 * Fast and loose check if this write could update the on-disk inode size.
 37 */
 38static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend)
 39{
 40	return ioend->io_offset + ioend->io_size >
 41		XFS_I(ioend->io_inode)->i_disk_size;
 42}
 43
 44/*
 45 * Update on-disk file size now that data has been written to disk.
 46 */
 47int
 48xfs_setfilesize(
 49	struct xfs_inode	*ip,
 50	xfs_off_t		offset,
 51	size_t			size)
 52{
 53	struct xfs_mount	*mp = ip->i_mount;
 54	struct xfs_trans	*tp;
 55	xfs_fsize_t		isize;
 56	int			error;
 57
 58	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
 59	if (error)
 60		return error;
 61
 62	xfs_ilock(ip, XFS_ILOCK_EXCL);
 63	isize = xfs_new_eof(ip, offset + size);
 64	if (!isize) {
 65		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 66		xfs_trans_cancel(tp);
 67		return 0;
 68	}
 69
 70	trace_xfs_setfilesize(ip, offset, size);
 71
 72	ip->i_disk_size = isize;
 73	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 74	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 75
 76	return xfs_trans_commit(tp);
 77}
 78
 79/*
 80 * IO write completion.
 81 */
 82STATIC void
 83xfs_end_ioend(
 84	struct iomap_ioend	*ioend)
 85{
 86	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
 87	struct xfs_mount	*mp = ip->i_mount;
 88	xfs_off_t		offset = ioend->io_offset;
 89	size_t			size = ioend->io_size;
 90	unsigned int		nofs_flag;
 91	int			error;
 92
 93	/*
 94	 * We can allocate memory here while doing writeback on behalf of
 95	 * memory reclaim.  To avoid memory allocation deadlocks set the
 96	 * task-wide nofs context for the following operations.
 97	 */
 98	nofs_flag = memalloc_nofs_save();
 99
100	/*
101	 * Just clean up the in-memory structures if the fs has been shut down.
102	 */
103	if (xfs_is_shutdown(mp)) {
104		error = -EIO;
105		goto done;
106	}
107
108	/*
109	 * Clean up all COW blocks and underlying data fork delalloc blocks on
110	 * I/O error. The delalloc punch is required because this ioend was
111	 * mapped to blocks in the COW fork and the associated pages are no
112	 * longer dirty. If we don't remove delalloc blocks here, they become
113	 * stale and can corrupt free space accounting on unmount.
114	 */
115	error = blk_status_to_errno(ioend->io_bio->bi_status);
116	if (unlikely(error)) {
117		if (ioend->io_flags & IOMAP_F_SHARED) {
118			xfs_reflink_cancel_cow_range(ip, offset, size, true);
119			xfs_bmap_punch_delalloc_range(ip, offset,
120					offset + size);
121		}
122		goto done;
123	}
124
125	/*
126	 * Success: commit the COW or unwritten blocks if needed.
127	 */
128	if (ioend->io_flags & IOMAP_F_SHARED)
129		error = xfs_reflink_end_cow(ip, offset, size);
130	else if (ioend->io_type == IOMAP_UNWRITTEN)
131		error = xfs_iomap_write_unwritten(ip, offset, size, false);
132
133	if (!error && xfs_ioend_is_append(ioend))
134		error = xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
135done:
136	iomap_finish_ioends(ioend, error);
137	memalloc_nofs_restore(nofs_flag);
138}
139
140/*
141 * Finish all pending IO completions that require transactional modifications.
142 *
143 * We try to merge physical and logically contiguous ioends before completion to
144 * minimise the number of transactions we need to perform during IO completion.
145 * Both unwritten extent conversion and COW remapping need to iterate and modify
146 * one physical extent at a time, so we gain nothing by merging physically
147 * discontiguous extents here.
148 *
149 * The ioend chain length that we can be processing here is largely unbound in
150 * length and we may have to perform significant amounts of work on each ioend
151 * to complete it. Hence we have to be careful about holding the CPU for too
152 * long in this loop.
153 */
154void
155xfs_end_io(
156	struct work_struct	*work)
157{
158	struct xfs_inode	*ip =
159		container_of(work, struct xfs_inode, i_ioend_work);
160	struct iomap_ioend	*ioend;
161	struct list_head	tmp;
162	unsigned long		flags;
163
164	spin_lock_irqsave(&ip->i_ioend_lock, flags);
165	list_replace_init(&ip->i_ioend_list, &tmp);
166	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
167
168	iomap_sort_ioends(&tmp);
169	while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend,
170			io_list))) {
171		list_del_init(&ioend->io_list);
172		iomap_ioend_try_merge(ioend, &tmp);
173		xfs_end_ioend(ioend);
174		cond_resched();
175	}
176}
177
178STATIC void
179xfs_end_bio(
180	struct bio		*bio)
181{
182	struct iomap_ioend	*ioend = bio->bi_private;
183	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
184	unsigned long		flags;
185
186	spin_lock_irqsave(&ip->i_ioend_lock, flags);
187	if (list_empty(&ip->i_ioend_list))
188		WARN_ON_ONCE(!queue_work(ip->i_mount->m_unwritten_workqueue,
189					 &ip->i_ioend_work));
190	list_add_tail(&ioend->io_list, &ip->i_ioend_list);
191	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
192}
193
194/*
195 * Fast revalidation of the cached writeback mapping. Return true if the current
196 * mapping is valid, false otherwise.
197 */
198static bool
199xfs_imap_valid(
200	struct iomap_writepage_ctx	*wpc,
201	struct xfs_inode		*ip,
202	loff_t				offset)
203{
204	if (offset < wpc->iomap.offset ||
205	    offset >= wpc->iomap.offset + wpc->iomap.length)
206		return false;
207	/*
208	 * If this is a COW mapping, it is sufficient to check that the mapping
209	 * covers the offset. Be careful to check this first because the caller
210	 * can revalidate a COW mapping without updating the data seqno.
211	 */
212	if (wpc->iomap.flags & IOMAP_F_SHARED)
213		return true;
214
215	/*
216	 * This is not a COW mapping. Check the sequence number of the data fork
217	 * because concurrent changes could have invalidated the extent. Check
218	 * the COW fork because concurrent changes since the last time we
219	 * checked (and found nothing at this offset) could have added
220	 * overlapping blocks.
221	 */
222	if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq)) {
223		trace_xfs_wb_data_iomap_invalid(ip, &wpc->iomap,
224				XFS_WPC(wpc)->data_seq, XFS_DATA_FORK);
225		return false;
226	}
227	if (xfs_inode_has_cow_data(ip) &&
228	    XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq)) {
229		trace_xfs_wb_cow_iomap_invalid(ip, &wpc->iomap,
230				XFS_WPC(wpc)->cow_seq, XFS_COW_FORK);
231		return false;
232	}
233	return true;
234}
235
236/*
237 * Pass in a dellalloc extent and convert it to real extents, return the real
238 * extent that maps offset_fsb in wpc->iomap.
239 *
240 * The current page is held locked so nothing could have removed the block
241 * backing offset_fsb, although it could have moved from the COW to the data
242 * fork by another thread.
243 */
244static int
245xfs_convert_blocks(
246	struct iomap_writepage_ctx *wpc,
247	struct xfs_inode	*ip,
248	int			whichfork,
249	loff_t			offset)
250{
251	int			error;
252	unsigned		*seq;
253
254	if (whichfork == XFS_COW_FORK)
255		seq = &XFS_WPC(wpc)->cow_seq;
256	else
257		seq = &XFS_WPC(wpc)->data_seq;
258
259	/*
260	 * Attempt to allocate whatever delalloc extent currently backs offset
261	 * and put the result into wpc->iomap.  Allocate in a loop because it
262	 * may take several attempts to allocate real blocks for a contiguous
263	 * delalloc extent if free space is sufficiently fragmented.
264	 */
265	do {
266		error = xfs_bmapi_convert_delalloc(ip, whichfork, offset,
267				&wpc->iomap, seq);
268		if (error)
269			return error;
270	} while (wpc->iomap.offset + wpc->iomap.length <= offset);
271
272	return 0;
273}
274
275static int
276xfs_map_blocks(
277	struct iomap_writepage_ctx *wpc,
278	struct inode		*inode,
279	loff_t			offset)
 
280{
281	struct xfs_inode	*ip = XFS_I(inode);
282	struct xfs_mount	*mp = ip->i_mount;
283	ssize_t			count = i_blocksize(inode);
284	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
285	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
286	xfs_fileoff_t		cow_fsb;
287	int			whichfork;
288	struct xfs_bmbt_irec	imap;
289	struct xfs_iext_cursor	icur;
290	int			retries = 0;
291	int			error = 0;
 
292
293	if (xfs_is_shutdown(mp))
294		return -EIO;
295
296	XFS_ERRORTAG_DELAY(mp, XFS_ERRTAG_WB_DELAY_MS);
297
298	/*
299	 * COW fork blocks can overlap data fork blocks even if the blocks
300	 * aren't shared.  COW I/O always takes precedent, so we must always
301	 * check for overlap on reflink inodes unless the mapping is already a
302	 * COW one, or the COW fork hasn't changed from the last time we looked
303	 * at it.
304	 *
305	 * It's safe to check the COW fork if_seq here without the ILOCK because
306	 * we've indirectly protected against concurrent updates: writeback has
307	 * the page locked, which prevents concurrent invalidations by reflink
308	 * and directio and prevents concurrent buffered writes to the same
309	 * page.  Changes to if_seq always happen under i_lock, which protects
310	 * against concurrent updates and provides a memory barrier on the way
311	 * out that ensures that we always see the current value.
312	 */
313	if (xfs_imap_valid(wpc, ip, offset))
314		return 0;
315
316	/*
317	 * If we don't have a valid map, now it's time to get a new one for this
318	 * offset.  This will convert delayed allocations (including COW ones)
319	 * into real extents.  If we return without a valid map, it means we
320	 * landed in a hole and we skip the block.
321	 */
322retry:
323	cow_fsb = NULLFILEOFF;
324	whichfork = XFS_DATA_FORK;
325	xfs_ilock(ip, XFS_ILOCK_SHARED);
326	ASSERT(!xfs_need_iread_extents(&ip->i_df));
327
328	/*
329	 * Check if this is offset is covered by a COW extents, and if yes use
330	 * it directly instead of looking up anything in the data fork.
331	 */
332	if (xfs_inode_has_cow_data(ip) &&
333	    xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
334		cow_fsb = imap.br_startoff;
335	if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
336		XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
337		xfs_iunlock(ip, XFS_ILOCK_SHARED);
338
339		whichfork = XFS_COW_FORK;
340		goto allocate_blocks;
341	}
342
343	/*
344	 * No COW extent overlap. Revalidate now that we may have updated
345	 * ->cow_seq. If the data mapping is still valid, we're done.
346	 */
347	if (xfs_imap_valid(wpc, ip, offset)) {
348		xfs_iunlock(ip, XFS_ILOCK_SHARED);
349		return 0;
350	}
351
352	/*
353	 * If we don't have a valid map, now it's time to get a new one for this
354	 * offset.  This will convert delayed allocations (including COW ones)
355	 * into real extents.
356	 */
357	if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
358		imap.br_startoff = end_fsb;	/* fake a hole past EOF */
359	XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq);
360	xfs_iunlock(ip, XFS_ILOCK_SHARED);
361
362	/* landed in a hole or beyond EOF? */
363	if (imap.br_startoff > offset_fsb) {
364		imap.br_blockcount = imap.br_startoff - offset_fsb;
365		imap.br_startoff = offset_fsb;
366		imap.br_startblock = HOLESTARTBLOCK;
367		imap.br_state = XFS_EXT_NORM;
368	}
369
370	/*
371	 * Truncate to the next COW extent if there is one.  This is the only
372	 * opportunity to do this because we can skip COW fork lookups for the
373	 * subsequent blocks in the mapping; however, the requirement to treat
374	 * the COW range separately remains.
375	 */
376	if (cow_fsb != NULLFILEOFF &&
377	    cow_fsb < imap.br_startoff + imap.br_blockcount)
378		imap.br_blockcount = cow_fsb - imap.br_startoff;
379
380	/* got a delalloc extent? */
381	if (imap.br_startblock != HOLESTARTBLOCK &&
382	    isnullstartblock(imap.br_startblock))
383		goto allocate_blocks;
384
385	xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0, 0, XFS_WPC(wpc)->data_seq);
386	trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap);
387	return 0;
388allocate_blocks:
389	error = xfs_convert_blocks(wpc, ip, whichfork, offset);
 
 
 
 
 
 
 
 
 
 
 
 
390	if (error) {
391		/*
392		 * If we failed to find the extent in the COW fork we might have
393		 * raced with a COW to data fork conversion or truncate.
394		 * Restart the lookup to catch the extent in the data fork for
395		 * the former case, but prevent additional retries to avoid
396		 * looping forever for the latter case.
397		 */
398		if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++)
399			goto retry;
400		ASSERT(error != -EAGAIN);
401		return error;
402	}
403
404	/*
405	 * Due to merging the return real extent might be larger than the
406	 * original delalloc one.  Trim the return extent to the next COW
407	 * boundary again to force a re-lookup.
408	 */
409	if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) {
410		loff_t		cow_offset = XFS_FSB_TO_B(mp, cow_fsb);
411
412		if (cow_offset < wpc->iomap.offset + wpc->iomap.length)
413			wpc->iomap.length = cow_offset - wpc->iomap.offset;
414	}
415
416	ASSERT(wpc->iomap.offset <= offset);
417	ASSERT(wpc->iomap.offset + wpc->iomap.length > offset);
418	trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap);
419	return 0;
420}
421
422static int
423xfs_prepare_ioend(
424	struct iomap_ioend	*ioend,
425	int			status)
426{
427	unsigned int		nofs_flag;
428
429	/*
430	 * We can allocate memory here while doing writeback on behalf of
431	 * memory reclaim.  To avoid memory allocation deadlocks set the
432	 * task-wide nofs context for the following operations.
433	 */
434	nofs_flag = memalloc_nofs_save();
435
436	/* Convert CoW extents to regular */
437	if (!status && (ioend->io_flags & IOMAP_F_SHARED)) {
438		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
439				ioend->io_offset, ioend->io_size);
440	}
441
442	memalloc_nofs_restore(nofs_flag);
443
444	/* send ioends that might require a transaction to the completion wq */
445	if (xfs_ioend_is_append(ioend) || ioend->io_type == IOMAP_UNWRITTEN ||
446	    (ioend->io_flags & IOMAP_F_SHARED))
447		ioend->io_bio->bi_end_io = xfs_end_bio;
448	return status;
449}
450
451/*
452 * If the page has delalloc blocks on it, we need to punch them out before we
453 * invalidate the page.  If we don't, we leave a stale delalloc mapping on the
454 * inode that can trip up a later direct I/O read operation on the same region.
 
 
455 *
456 * We prevent this by truncating away the delalloc regions on the page.  Because
457 * they are delalloc, we can do this without needing a transaction. Indeed - if
458 * we get ENOSPC errors, we have to be able to do this truncation without a
459 * transaction as there is no space left for block reservation (typically why we
460 * see a ENOSPC in writeback).
461 */
462static void
463xfs_discard_folio(
464	struct folio		*folio,
465	loff_t			pos)
466{
467	struct xfs_inode	*ip = XFS_I(folio->mapping->host);
468	struct xfs_mount	*mp = ip->i_mount;
469	int			error;
470
471	if (xfs_is_shutdown(mp))
472		return;
473
474	xfs_alert_ratelimited(mp,
475		"page discard on page "PTR_FMT", inode 0x%llx, pos %llu.",
476			folio, ip->i_ino, pos);
477
478	error = xfs_bmap_punch_delalloc_range(ip, pos,
479			round_up(pos, folio_size(folio)));
480
481	if (error && !xfs_is_shutdown(mp))
482		xfs_alert(mp, "page discard unable to remove delalloc mapping.");
 
 
483}
484
485static const struct iomap_writeback_ops xfs_writeback_ops = {
486	.map_blocks		= xfs_map_blocks,
487	.prepare_ioend		= xfs_prepare_ioend,
488	.discard_folio		= xfs_discard_folio,
489};
490
491STATIC int
492xfs_vm_writepages(
493	struct address_space	*mapping,
494	struct writeback_control *wbc)
495{
496	struct xfs_writepage_ctx wpc = { };
497
498	/*
499	 * Writing back data in a transaction context can result in recursive
500	 * transactions. This is bad, so issue a warning and get out of here.
501	 */
502	if (WARN_ON_ONCE(current->journal_info))
503		return 0;
504
505	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
506	return iomap_writepages(mapping, wbc, &wpc.ctx, &xfs_writeback_ops);
507}
508
509STATIC int
510xfs_dax_writepages(
511	struct address_space	*mapping,
512	struct writeback_control *wbc)
513{
514	struct xfs_inode	*ip = XFS_I(mapping->host);
515
516	xfs_iflags_clear(ip, XFS_ITRUNCATED);
517	return dax_writeback_mapping_range(mapping,
518			xfs_inode_buftarg(ip)->bt_daxdev, wbc);
519}
520
521STATIC sector_t
522xfs_vm_bmap(
523	struct address_space	*mapping,
524	sector_t		block)
525{
526	struct xfs_inode	*ip = XFS_I(mapping->host);
527
528	trace_xfs_vm_bmap(ip);
529
530	/*
531	 * The swap code (ab-)uses ->bmap to get a block mapping and then
532	 * bypasses the file system for actual I/O.  We really can't allow
533	 * that on reflinks inodes, so we have to skip out here.  And yes,
534	 * 0 is the magic code for a bmap error.
535	 *
536	 * Since we don't pass back blockdev info, we can't return bmap
537	 * information for rt files either.
538	 */
539	if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip))
540		return 0;
541	return iomap_bmap(mapping, block, &xfs_read_iomap_ops);
542}
543
544STATIC int
545xfs_vm_read_folio(
546	struct file		*unused,
547	struct folio		*folio)
548{
549	return iomap_read_folio(folio, &xfs_read_iomap_ops);
550}
551
552STATIC void
553xfs_vm_readahead(
554	struct readahead_control	*rac)
555{
556	iomap_readahead(rac, &xfs_read_iomap_ops);
557}
558
559static int
560xfs_iomap_swapfile_activate(
561	struct swap_info_struct		*sis,
562	struct file			*swap_file,
563	sector_t			*span)
564{
565	sis->bdev = xfs_inode_buftarg(XFS_I(file_inode(swap_file)))->bt_bdev;
566	return iomap_swapfile_activate(sis, swap_file, span,
567			&xfs_read_iomap_ops);
568}
569
570const struct address_space_operations xfs_address_space_operations = {
571	.read_folio		= xfs_vm_read_folio,
572	.readahead		= xfs_vm_readahead,
573	.writepages		= xfs_vm_writepages,
574	.dirty_folio		= filemap_dirty_folio,
575	.release_folio		= iomap_release_folio,
576	.invalidate_folio	= iomap_invalidate_folio,
577	.bmap			= xfs_vm_bmap,
578	.direct_IO		= noop_direct_IO,
579	.migrate_folio		= filemap_migrate_folio,
580	.is_partially_uptodate  = iomap_is_partially_uptodate,
581	.error_remove_page	= generic_error_remove_page,
582	.swap_activate		= xfs_iomap_swapfile_activate,
583};
584
585const struct address_space_operations xfs_dax_aops = {
586	.writepages		= xfs_dax_writepages,
587	.direct_IO		= noop_direct_IO,
588	.dirty_folio		= noop_dirty_folio,
589	.swap_activate		= xfs_iomap_swapfile_activate,
590};
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  4 * Copyright (c) 2016-2018 Christoph Hellwig.
  5 * All Rights Reserved.
  6 */
  7#include "xfs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 12#include "xfs_mount.h"
 13#include "xfs_inode.h"
 14#include "xfs_trans.h"
 15#include "xfs_iomap.h"
 16#include "xfs_trace.h"
 17#include "xfs_bmap.h"
 18#include "xfs_bmap_util.h"
 19#include "xfs_reflink.h"
 20#include "xfs_errortag.h"
 21#include "xfs_error.h"
 22
 23struct xfs_writepage_ctx {
 24	struct iomap_writepage_ctx ctx;
 25	unsigned int		data_seq;
 26	unsigned int		cow_seq;
 27};
 28
 29static inline struct xfs_writepage_ctx *
 30XFS_WPC(struct iomap_writepage_ctx *ctx)
 31{
 32	return container_of(ctx, struct xfs_writepage_ctx, ctx);
 33}
 34
 35/*
 36 * Fast and loose check if this write could update the on-disk inode size.
 37 */
 38static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend)
 39{
 40	return ioend->io_offset + ioend->io_size >
 41		XFS_I(ioend->io_inode)->i_disk_size;
 42}
 43
 44/*
 45 * Update on-disk file size now that data has been written to disk.
 46 */
 47int
 48xfs_setfilesize(
 49	struct xfs_inode	*ip,
 50	xfs_off_t		offset,
 51	size_t			size)
 52{
 53	struct xfs_mount	*mp = ip->i_mount;
 54	struct xfs_trans	*tp;
 55	xfs_fsize_t		isize;
 56	int			error;
 57
 58	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
 59	if (error)
 60		return error;
 61
 62	xfs_ilock(ip, XFS_ILOCK_EXCL);
 63	isize = xfs_new_eof(ip, offset + size);
 64	if (!isize) {
 65		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 66		xfs_trans_cancel(tp);
 67		return 0;
 68	}
 69
 70	trace_xfs_setfilesize(ip, offset, size);
 71
 72	ip->i_disk_size = isize;
 73	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 74	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 75
 76	return xfs_trans_commit(tp);
 77}
 78
 79/*
 80 * IO write completion.
 81 */
 82STATIC void
 83xfs_end_ioend(
 84	struct iomap_ioend	*ioend)
 85{
 86	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
 87	struct xfs_mount	*mp = ip->i_mount;
 88	xfs_off_t		offset = ioend->io_offset;
 89	size_t			size = ioend->io_size;
 90	unsigned int		nofs_flag;
 91	int			error;
 92
 93	/*
 94	 * We can allocate memory here while doing writeback on behalf of
 95	 * memory reclaim.  To avoid memory allocation deadlocks set the
 96	 * task-wide nofs context for the following operations.
 97	 */
 98	nofs_flag = memalloc_nofs_save();
 99
100	/*
101	 * Just clean up the in-memory structures if the fs has been shut down.
102	 */
103	if (xfs_is_shutdown(mp)) {
104		error = -EIO;
105		goto done;
106	}
107
108	/*
109	 * Clean up all COW blocks and underlying data fork delalloc blocks on
110	 * I/O error. The delalloc punch is required because this ioend was
111	 * mapped to blocks in the COW fork and the associated pages are no
112	 * longer dirty. If we don't remove delalloc blocks here, they become
113	 * stale and can corrupt free space accounting on unmount.
114	 */
115	error = blk_status_to_errno(ioend->io_bio.bi_status);
116	if (unlikely(error)) {
117		if (ioend->io_flags & IOMAP_F_SHARED) {
118			xfs_reflink_cancel_cow_range(ip, offset, size, true);
119			xfs_bmap_punch_delalloc_range(ip, XFS_DATA_FORK, offset,
120					offset + size);
121		}
122		goto done;
123	}
124
125	/*
126	 * Success: commit the COW or unwritten blocks if needed.
127	 */
128	if (ioend->io_flags & IOMAP_F_SHARED)
129		error = xfs_reflink_end_cow(ip, offset, size);
130	else if (ioend->io_type == IOMAP_UNWRITTEN)
131		error = xfs_iomap_write_unwritten(ip, offset, size, false);
132
133	if (!error && xfs_ioend_is_append(ioend))
134		error = xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
135done:
136	iomap_finish_ioends(ioend, error);
137	memalloc_nofs_restore(nofs_flag);
138}
139
140/*
141 * Finish all pending IO completions that require transactional modifications.
142 *
143 * We try to merge physical and logically contiguous ioends before completion to
144 * minimise the number of transactions we need to perform during IO completion.
145 * Both unwritten extent conversion and COW remapping need to iterate and modify
146 * one physical extent at a time, so we gain nothing by merging physically
147 * discontiguous extents here.
148 *
149 * The ioend chain length that we can be processing here is largely unbound in
150 * length and we may have to perform significant amounts of work on each ioend
151 * to complete it. Hence we have to be careful about holding the CPU for too
152 * long in this loop.
153 */
154void
155xfs_end_io(
156	struct work_struct	*work)
157{
158	struct xfs_inode	*ip =
159		container_of(work, struct xfs_inode, i_ioend_work);
160	struct iomap_ioend	*ioend;
161	struct list_head	tmp;
162	unsigned long		flags;
163
164	spin_lock_irqsave(&ip->i_ioend_lock, flags);
165	list_replace_init(&ip->i_ioend_list, &tmp);
166	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
167
168	iomap_sort_ioends(&tmp);
169	while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend,
170			io_list))) {
171		list_del_init(&ioend->io_list);
172		iomap_ioend_try_merge(ioend, &tmp);
173		xfs_end_ioend(ioend);
174		cond_resched();
175	}
176}
177
178STATIC void
179xfs_end_bio(
180	struct bio		*bio)
181{
182	struct iomap_ioend	*ioend = iomap_ioend_from_bio(bio);
183	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
184	unsigned long		flags;
185
186	spin_lock_irqsave(&ip->i_ioend_lock, flags);
187	if (list_empty(&ip->i_ioend_list))
188		WARN_ON_ONCE(!queue_work(ip->i_mount->m_unwritten_workqueue,
189					 &ip->i_ioend_work));
190	list_add_tail(&ioend->io_list, &ip->i_ioend_list);
191	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
192}
193
194/*
195 * Fast revalidation of the cached writeback mapping. Return true if the current
196 * mapping is valid, false otherwise.
197 */
198static bool
199xfs_imap_valid(
200	struct iomap_writepage_ctx	*wpc,
201	struct xfs_inode		*ip,
202	loff_t				offset)
203{
204	if (offset < wpc->iomap.offset ||
205	    offset >= wpc->iomap.offset + wpc->iomap.length)
206		return false;
207	/*
208	 * If this is a COW mapping, it is sufficient to check that the mapping
209	 * covers the offset. Be careful to check this first because the caller
210	 * can revalidate a COW mapping without updating the data seqno.
211	 */
212	if (wpc->iomap.flags & IOMAP_F_SHARED)
213		return true;
214
215	/*
216	 * This is not a COW mapping. Check the sequence number of the data fork
217	 * because concurrent changes could have invalidated the extent. Check
218	 * the COW fork because concurrent changes since the last time we
219	 * checked (and found nothing at this offset) could have added
220	 * overlapping blocks.
221	 */
222	if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq)) {
223		trace_xfs_wb_data_iomap_invalid(ip, &wpc->iomap,
224				XFS_WPC(wpc)->data_seq, XFS_DATA_FORK);
225		return false;
226	}
227	if (xfs_inode_has_cow_data(ip) &&
228	    XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq)) {
229		trace_xfs_wb_cow_iomap_invalid(ip, &wpc->iomap,
230				XFS_WPC(wpc)->cow_seq, XFS_COW_FORK);
231		return false;
232	}
233	return true;
234}
235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236static int
237xfs_map_blocks(
238	struct iomap_writepage_ctx *wpc,
239	struct inode		*inode,
240	loff_t			offset,
241	unsigned int		len)
242{
243	struct xfs_inode	*ip = XFS_I(inode);
244	struct xfs_mount	*mp = ip->i_mount;
245	ssize_t			count = i_blocksize(inode);
246	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
247	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
248	xfs_fileoff_t		cow_fsb;
249	int			whichfork;
250	struct xfs_bmbt_irec	imap;
251	struct xfs_iext_cursor	icur;
252	int			retries = 0;
253	int			error = 0;
254	unsigned int		*seq;
255
256	if (xfs_is_shutdown(mp))
257		return -EIO;
258
259	XFS_ERRORTAG_DELAY(mp, XFS_ERRTAG_WB_DELAY_MS);
260
261	/*
262	 * COW fork blocks can overlap data fork blocks even if the blocks
263	 * aren't shared.  COW I/O always takes precedent, so we must always
264	 * check for overlap on reflink inodes unless the mapping is already a
265	 * COW one, or the COW fork hasn't changed from the last time we looked
266	 * at it.
267	 *
268	 * It's safe to check the COW fork if_seq here without the ILOCK because
269	 * we've indirectly protected against concurrent updates: writeback has
270	 * the page locked, which prevents concurrent invalidations by reflink
271	 * and directio and prevents concurrent buffered writes to the same
272	 * page.  Changes to if_seq always happen under i_lock, which protects
273	 * against concurrent updates and provides a memory barrier on the way
274	 * out that ensures that we always see the current value.
275	 */
276	if (xfs_imap_valid(wpc, ip, offset))
277		return 0;
278
279	/*
280	 * If we don't have a valid map, now it's time to get a new one for this
281	 * offset.  This will convert delayed allocations (including COW ones)
282	 * into real extents.  If we return without a valid map, it means we
283	 * landed in a hole and we skip the block.
284	 */
285retry:
286	cow_fsb = NULLFILEOFF;
287	whichfork = XFS_DATA_FORK;
288	xfs_ilock(ip, XFS_ILOCK_SHARED);
289	ASSERT(!xfs_need_iread_extents(&ip->i_df));
290
291	/*
292	 * Check if this is offset is covered by a COW extents, and if yes use
293	 * it directly instead of looking up anything in the data fork.
294	 */
295	if (xfs_inode_has_cow_data(ip) &&
296	    xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
297		cow_fsb = imap.br_startoff;
298	if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
299		XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
300		xfs_iunlock(ip, XFS_ILOCK_SHARED);
301
302		whichfork = XFS_COW_FORK;
303		goto allocate_blocks;
304	}
305
306	/*
307	 * No COW extent overlap. Revalidate now that we may have updated
308	 * ->cow_seq. If the data mapping is still valid, we're done.
309	 */
310	if (xfs_imap_valid(wpc, ip, offset)) {
311		xfs_iunlock(ip, XFS_ILOCK_SHARED);
312		return 0;
313	}
314
315	/*
316	 * If we don't have a valid map, now it's time to get a new one for this
317	 * offset.  This will convert delayed allocations (including COW ones)
318	 * into real extents.
319	 */
320	if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
321		imap.br_startoff = end_fsb;	/* fake a hole past EOF */
322	XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq);
323	xfs_iunlock(ip, XFS_ILOCK_SHARED);
324
325	/* landed in a hole or beyond EOF? */
326	if (imap.br_startoff > offset_fsb) {
327		imap.br_blockcount = imap.br_startoff - offset_fsb;
328		imap.br_startoff = offset_fsb;
329		imap.br_startblock = HOLESTARTBLOCK;
330		imap.br_state = XFS_EXT_NORM;
331	}
332
333	/*
334	 * Truncate to the next COW extent if there is one.  This is the only
335	 * opportunity to do this because we can skip COW fork lookups for the
336	 * subsequent blocks in the mapping; however, the requirement to treat
337	 * the COW range separately remains.
338	 */
339	if (cow_fsb != NULLFILEOFF &&
340	    cow_fsb < imap.br_startoff + imap.br_blockcount)
341		imap.br_blockcount = cow_fsb - imap.br_startoff;
342
343	/* got a delalloc extent? */
344	if (imap.br_startblock != HOLESTARTBLOCK &&
345	    isnullstartblock(imap.br_startblock))
346		goto allocate_blocks;
347
348	xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0, 0, XFS_WPC(wpc)->data_seq);
349	trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap);
350	return 0;
351allocate_blocks:
352	/*
353	 * Convert a dellalloc extent to a real one. The current page is held
354	 * locked so nothing could have removed the block backing offset_fsb,
355	 * although it could have moved from the COW to the data fork by another
356	 * thread.
357	 */
358	if (whichfork == XFS_COW_FORK)
359		seq = &XFS_WPC(wpc)->cow_seq;
360	else
361		seq = &XFS_WPC(wpc)->data_seq;
362
363	error = xfs_bmapi_convert_delalloc(ip, whichfork, offset,
364				&wpc->iomap, seq);
365	if (error) {
366		/*
367		 * If we failed to find the extent in the COW fork we might have
368		 * raced with a COW to data fork conversion or truncate.
369		 * Restart the lookup to catch the extent in the data fork for
370		 * the former case, but prevent additional retries to avoid
371		 * looping forever for the latter case.
372		 */
373		if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++)
374			goto retry;
375		ASSERT(error != -EAGAIN);
376		return error;
377	}
378
379	/*
380	 * Due to merging the return real extent might be larger than the
381	 * original delalloc one.  Trim the return extent to the next COW
382	 * boundary again to force a re-lookup.
383	 */
384	if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) {
385		loff_t		cow_offset = XFS_FSB_TO_B(mp, cow_fsb);
386
387		if (cow_offset < wpc->iomap.offset + wpc->iomap.length)
388			wpc->iomap.length = cow_offset - wpc->iomap.offset;
389	}
390
391	ASSERT(wpc->iomap.offset <= offset);
392	ASSERT(wpc->iomap.offset + wpc->iomap.length > offset);
393	trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap);
394	return 0;
395}
396
397static int
398xfs_prepare_ioend(
399	struct iomap_ioend	*ioend,
400	int			status)
401{
402	unsigned int		nofs_flag;
403
404	/*
405	 * We can allocate memory here while doing writeback on behalf of
406	 * memory reclaim.  To avoid memory allocation deadlocks set the
407	 * task-wide nofs context for the following operations.
408	 */
409	nofs_flag = memalloc_nofs_save();
410
411	/* Convert CoW extents to regular */
412	if (!status && (ioend->io_flags & IOMAP_F_SHARED)) {
413		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
414				ioend->io_offset, ioend->io_size);
415	}
416
417	memalloc_nofs_restore(nofs_flag);
418
419	/* send ioends that might require a transaction to the completion wq */
420	if (xfs_ioend_is_append(ioend) || ioend->io_type == IOMAP_UNWRITTEN ||
421	    (ioend->io_flags & IOMAP_F_SHARED))
422		ioend->io_bio.bi_end_io = xfs_end_bio;
423	return status;
424}
425
426/*
427 * If the folio has delalloc blocks on it, the caller is asking us to punch them
428 * out. If we don't, we can leave a stale delalloc mapping covered by a clean
429 * page that needs to be dirtied again before the delalloc mapping can be
430 * converted. This stale delalloc mapping can trip up a later direct I/O read
431 * operation on the same region.
432 *
433 * We prevent this by truncating away the delalloc regions on the folio. Because
434 * they are delalloc, we can do this without needing a transaction. Indeed - if
435 * we get ENOSPC errors, we have to be able to do this truncation without a
436 * transaction as there is no space left for block reservation (typically why
437 * we see a ENOSPC in writeback).
438 */
439static void
440xfs_discard_folio(
441	struct folio		*folio,
442	loff_t			pos)
443{
444	struct xfs_inode	*ip = XFS_I(folio->mapping->host);
445	struct xfs_mount	*mp = ip->i_mount;
 
446
447	if (xfs_is_shutdown(mp))
448		return;
449
450	xfs_alert_ratelimited(mp,
451		"page discard on page "PTR_FMT", inode 0x%llx, pos %llu.",
452			folio, ip->i_ino, pos);
453
454	/*
455	 * The end of the punch range is always the offset of the first
456	 * byte of the next folio. Hence the end offset is only dependent on the
457	 * folio itself and not the start offset that is passed in.
458	 */
459	xfs_bmap_punch_delalloc_range(ip, XFS_DATA_FORK, pos,
460				folio_pos(folio) + folio_size(folio));
461}
462
463static const struct iomap_writeback_ops xfs_writeback_ops = {
464	.map_blocks		= xfs_map_blocks,
465	.prepare_ioend		= xfs_prepare_ioend,
466	.discard_folio		= xfs_discard_folio,
467};
468
469STATIC int
470xfs_vm_writepages(
471	struct address_space	*mapping,
472	struct writeback_control *wbc)
473{
474	struct xfs_writepage_ctx wpc = { };
475
 
 
 
 
 
 
 
476	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
477	return iomap_writepages(mapping, wbc, &wpc.ctx, &xfs_writeback_ops);
478}
479
480STATIC int
481xfs_dax_writepages(
482	struct address_space	*mapping,
483	struct writeback_control *wbc)
484{
485	struct xfs_inode	*ip = XFS_I(mapping->host);
486
487	xfs_iflags_clear(ip, XFS_ITRUNCATED);
488	return dax_writeback_mapping_range(mapping,
489			xfs_inode_buftarg(ip)->bt_daxdev, wbc);
490}
491
492STATIC sector_t
493xfs_vm_bmap(
494	struct address_space	*mapping,
495	sector_t		block)
496{
497	struct xfs_inode	*ip = XFS_I(mapping->host);
498
499	trace_xfs_vm_bmap(ip);
500
501	/*
502	 * The swap code (ab-)uses ->bmap to get a block mapping and then
503	 * bypasses the file system for actual I/O.  We really can't allow
504	 * that on reflinks inodes, so we have to skip out here.  And yes,
505	 * 0 is the magic code for a bmap error.
506	 *
507	 * Since we don't pass back blockdev info, we can't return bmap
508	 * information for rt files either.
509	 */
510	if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip))
511		return 0;
512	return iomap_bmap(mapping, block, &xfs_read_iomap_ops);
513}
514
515STATIC int
516xfs_vm_read_folio(
517	struct file		*unused,
518	struct folio		*folio)
519{
520	return iomap_read_folio(folio, &xfs_read_iomap_ops);
521}
522
523STATIC void
524xfs_vm_readahead(
525	struct readahead_control	*rac)
526{
527	iomap_readahead(rac, &xfs_read_iomap_ops);
528}
529
530static int
531xfs_iomap_swapfile_activate(
532	struct swap_info_struct		*sis,
533	struct file			*swap_file,
534	sector_t			*span)
535{
536	sis->bdev = xfs_inode_buftarg(XFS_I(file_inode(swap_file)))->bt_bdev;
537	return iomap_swapfile_activate(sis, swap_file, span,
538			&xfs_read_iomap_ops);
539}
540
541const struct address_space_operations xfs_address_space_operations = {
542	.read_folio		= xfs_vm_read_folio,
543	.readahead		= xfs_vm_readahead,
544	.writepages		= xfs_vm_writepages,
545	.dirty_folio		= iomap_dirty_folio,
546	.release_folio		= iomap_release_folio,
547	.invalidate_folio	= iomap_invalidate_folio,
548	.bmap			= xfs_vm_bmap,
 
549	.migrate_folio		= filemap_migrate_folio,
550	.is_partially_uptodate  = iomap_is_partially_uptodate,
551	.error_remove_folio	= generic_error_remove_folio,
552	.swap_activate		= xfs_iomap_swapfile_activate,
553};
554
555const struct address_space_operations xfs_dax_aops = {
556	.writepages		= xfs_dax_writepages,
 
557	.dirty_folio		= noop_dirty_folio,
558	.swap_activate		= xfs_iomap_swapfile_activate,
559};