Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * RTC subsystem, interface functions
   4 *
   5 * Copyright (C) 2005 Tower Technologies
   6 * Author: Alessandro Zummo <a.zummo@towertech.it>
   7 *
   8 * based on arch/arm/common/rtctime.c
   9 */
 
 
 
 
  10
  11#include <linux/rtc.h>
  12#include <linux/sched.h>
  13#include <linux/module.h>
  14#include <linux/log2.h>
  15#include <linux/workqueue.h>
  16
  17#define CREATE_TRACE_POINTS
  18#include <trace/events/rtc.h>
  19
  20static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
  21static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
  22
  23static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
  24{
  25	time64_t secs;
  26
  27	if (!rtc->offset_secs)
  28		return;
  29
  30	secs = rtc_tm_to_time64(tm);
  31
  32	/*
  33	 * Since the reading time values from RTC device are always in the RTC
  34	 * original valid range, but we need to skip the overlapped region
  35	 * between expanded range and original range, which is no need to add
  36	 * the offset.
  37	 */
  38	if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
  39	    (rtc->start_secs < rtc->range_min &&
  40	     secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
  41		return;
  42
  43	rtc_time64_to_tm(secs + rtc->offset_secs, tm);
  44}
  45
  46static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
  47{
  48	time64_t secs;
  49
  50	if (!rtc->offset_secs)
  51		return;
  52
  53	secs = rtc_tm_to_time64(tm);
  54
  55	/*
  56	 * If the setting time values are in the valid range of RTC hardware
  57	 * device, then no need to subtract the offset when setting time to RTC
  58	 * device. Otherwise we need to subtract the offset to make the time
  59	 * values are valid for RTC hardware device.
  60	 */
  61	if (secs >= rtc->range_min && secs <= rtc->range_max)
  62		return;
  63
  64	rtc_time64_to_tm(secs - rtc->offset_secs, tm);
  65}
  66
  67static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
  68{
  69	if (rtc->range_min != rtc->range_max) {
  70		time64_t time = rtc_tm_to_time64(tm);
  71		time64_t range_min = rtc->set_start_time ? rtc->start_secs :
  72			rtc->range_min;
  73		timeu64_t range_max = rtc->set_start_time ?
  74			(rtc->start_secs + rtc->range_max - rtc->range_min) :
  75			rtc->range_max;
  76
  77		if (time < range_min || time > range_max)
  78			return -ERANGE;
  79	}
  80
  81	return 0;
  82}
  83
  84static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
  85{
  86	int err;
  87
  88	if (!rtc->ops) {
  89		err = -ENODEV;
  90	} else if (!rtc->ops->read_time) {
  91		err = -EINVAL;
  92	} else {
  93		memset(tm, 0, sizeof(struct rtc_time));
  94		err = rtc->ops->read_time(rtc->dev.parent, tm);
  95		if (err < 0) {
  96			dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
  97				err);
  98			return err;
  99		}
 100
 101		rtc_add_offset(rtc, tm);
 102
 103		err = rtc_valid_tm(tm);
 104		if (err < 0)
 105			dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
 106	}
 107	return err;
 108}
 109
 110int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 111{
 112	int err;
 113
 114	err = mutex_lock_interruptible(&rtc->ops_lock);
 115	if (err)
 116		return err;
 117
 118	err = __rtc_read_time(rtc, tm);
 119	mutex_unlock(&rtc->ops_lock);
 120
 121	trace_rtc_read_time(rtc_tm_to_time64(tm), err);
 122	return err;
 123}
 124EXPORT_SYMBOL_GPL(rtc_read_time);
 125
 126int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
 127{
 128	int err, uie;
 129
 130	err = rtc_valid_tm(tm);
 131	if (err != 0)
 132		return err;
 133
 134	err = rtc_valid_range(rtc, tm);
 135	if (err)
 136		return err;
 137
 138	rtc_subtract_offset(rtc, tm);
 139
 140#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 141	uie = rtc->uie_rtctimer.enabled || rtc->uie_irq_active;
 142#else
 143	uie = rtc->uie_rtctimer.enabled;
 144#endif
 145	if (uie) {
 146		err = rtc_update_irq_enable(rtc, 0);
 147		if (err)
 148			return err;
 149	}
 150
 151	err = mutex_lock_interruptible(&rtc->ops_lock);
 152	if (err)
 153		return err;
 154
 155	if (!rtc->ops)
 156		err = -ENODEV;
 157	else if (rtc->ops->set_time)
 158		err = rtc->ops->set_time(rtc->dev.parent, tm);
 159	else
 
 
 
 
 
 
 
 160		err = -EINVAL;
 161
 162	pm_stay_awake(rtc->dev.parent);
 163	mutex_unlock(&rtc->ops_lock);
 164	/* A timer might have just expired */
 165	schedule_work(&rtc->irqwork);
 166
 167	if (uie) {
 168		err = rtc_update_irq_enable(rtc, 1);
 169		if (err)
 170			return err;
 171	}
 172
 173	trace_rtc_set_time(rtc_tm_to_time64(tm), err);
 174	return err;
 175}
 176EXPORT_SYMBOL_GPL(rtc_set_time);
 177
 178static int rtc_read_alarm_internal(struct rtc_device *rtc,
 179				   struct rtc_wkalrm *alarm)
 180{
 181	int err;
 182
 183	err = mutex_lock_interruptible(&rtc->ops_lock);
 184	if (err)
 185		return err;
 186
 187	if (!rtc->ops) {
 188		err = -ENODEV;
 189	} else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->read_alarm) {
 190		err = -EINVAL;
 191	} else {
 192		alarm->enabled = 0;
 193		alarm->pending = 0;
 194		alarm->time.tm_sec = -1;
 195		alarm->time.tm_min = -1;
 196		alarm->time.tm_hour = -1;
 197		alarm->time.tm_mday = -1;
 198		alarm->time.tm_mon = -1;
 199		alarm->time.tm_year = -1;
 200		alarm->time.tm_wday = -1;
 201		alarm->time.tm_yday = -1;
 202		alarm->time.tm_isdst = -1;
 203		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
 204	}
 205
 206	mutex_unlock(&rtc->ops_lock);
 207
 208	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
 209	return err;
 210}
 211
 212int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 213{
 214	int err;
 215	struct rtc_time before, now;
 216	int first_time = 1;
 217	time64_t t_now, t_alm;
 218	enum { none, day, month, year } missing = none;
 219	unsigned int days;
 220
 221	/* The lower level RTC driver may return -1 in some fields,
 222	 * creating invalid alarm->time values, for reasons like:
 223	 *
 224	 *   - The hardware may not be capable of filling them in;
 225	 *     many alarms match only on time-of-day fields, not
 226	 *     day/month/year calendar data.
 227	 *
 228	 *   - Some hardware uses illegal values as "wildcard" match
 229	 *     values, which non-Linux firmware (like a BIOS) may try
 230	 *     to set up as e.g. "alarm 15 minutes after each hour".
 231	 *     Linux uses only oneshot alarms.
 232	 *
 233	 * When we see that here, we deal with it by using values from
 234	 * a current RTC timestamp for any missing (-1) values.  The
 235	 * RTC driver prevents "periodic alarm" modes.
 236	 *
 237	 * But this can be racey, because some fields of the RTC timestamp
 238	 * may have wrapped in the interval since we read the RTC alarm,
 239	 * which would lead to us inserting inconsistent values in place
 240	 * of the -1 fields.
 241	 *
 242	 * Reading the alarm and timestamp in the reverse sequence
 243	 * would have the same race condition, and not solve the issue.
 244	 *
 245	 * So, we must first read the RTC timestamp,
 246	 * then read the RTC alarm value,
 247	 * and then read a second RTC timestamp.
 248	 *
 249	 * If any fields of the second timestamp have changed
 250	 * when compared with the first timestamp, then we know
 251	 * our timestamp may be inconsistent with that used by
 252	 * the low-level rtc_read_alarm_internal() function.
 253	 *
 254	 * So, when the two timestamps disagree, we just loop and do
 255	 * the process again to get a fully consistent set of values.
 256	 *
 257	 * This could all instead be done in the lower level driver,
 258	 * but since more than one lower level RTC implementation needs it,
 259	 * then it's probably best to do it here instead of there..
 260	 */
 261
 262	/* Get the "before" timestamp */
 263	err = rtc_read_time(rtc, &before);
 264	if (err < 0)
 265		return err;
 266	do {
 267		if (!first_time)
 268			memcpy(&before, &now, sizeof(struct rtc_time));
 269		first_time = 0;
 270
 271		/* get the RTC alarm values, which may be incomplete */
 272		err = rtc_read_alarm_internal(rtc, alarm);
 273		if (err)
 274			return err;
 275
 276		/* full-function RTCs won't have such missing fields */
 277		if (rtc_valid_tm(&alarm->time) == 0) {
 278			rtc_add_offset(rtc, &alarm->time);
 279			return 0;
 280		}
 281
 282		/* get the "after" timestamp, to detect wrapped fields */
 283		err = rtc_read_time(rtc, &now);
 284		if (err < 0)
 285			return err;
 286
 287		/* note that tm_sec is a "don't care" value here: */
 288	} while (before.tm_min  != now.tm_min ||
 289		 before.tm_hour != now.tm_hour ||
 290		 before.tm_mon  != now.tm_mon ||
 291		 before.tm_year != now.tm_year);
 292
 293	/* Fill in the missing alarm fields using the timestamp; we
 294	 * know there's at least one since alarm->time is invalid.
 295	 */
 296	if (alarm->time.tm_sec == -1)
 297		alarm->time.tm_sec = now.tm_sec;
 298	if (alarm->time.tm_min == -1)
 299		alarm->time.tm_min = now.tm_min;
 300	if (alarm->time.tm_hour == -1)
 301		alarm->time.tm_hour = now.tm_hour;
 302
 303	/* For simplicity, only support date rollover for now */
 304	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
 305		alarm->time.tm_mday = now.tm_mday;
 306		missing = day;
 307	}
 308	if ((unsigned int)alarm->time.tm_mon >= 12) {
 309		alarm->time.tm_mon = now.tm_mon;
 310		if (missing == none)
 311			missing = month;
 312	}
 313	if (alarm->time.tm_year == -1) {
 314		alarm->time.tm_year = now.tm_year;
 315		if (missing == none)
 316			missing = year;
 317	}
 318
 319	/* Can't proceed if alarm is still invalid after replacing
 320	 * missing fields.
 321	 */
 322	err = rtc_valid_tm(&alarm->time);
 323	if (err)
 324		goto done;
 325
 326	/* with luck, no rollover is needed */
 327	t_now = rtc_tm_to_time64(&now);
 328	t_alm = rtc_tm_to_time64(&alarm->time);
 329	if (t_now < t_alm)
 330		goto done;
 331
 332	switch (missing) {
 
 333	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
 334	 * that will trigger at 5am will do so at 5am Tuesday, which
 335	 * could also be in the next month or year.  This is a common
 336	 * case, especially for PCs.
 337	 */
 338	case day:
 339		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
 340		t_alm += 24 * 60 * 60;
 341		rtc_time64_to_tm(t_alm, &alarm->time);
 342		break;
 343
 344	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
 345	 * be next month.  An alarm matching on the 30th, 29th, or 28th
 346	 * may end up in the month after that!  Many newer PCs support
 347	 * this type of alarm.
 348	 */
 349	case month:
 350		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
 351		do {
 352			if (alarm->time.tm_mon < 11) {
 353				alarm->time.tm_mon++;
 354			} else {
 355				alarm->time.tm_mon = 0;
 356				alarm->time.tm_year++;
 357			}
 358			days = rtc_month_days(alarm->time.tm_mon,
 359					      alarm->time.tm_year);
 360		} while (days < alarm->time.tm_mday);
 361		break;
 362
 363	/* Year rollover ... easy except for leap years! */
 364	case year:
 365		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
 366		do {
 367			alarm->time.tm_year++;
 368		} while (!is_leap_year(alarm->time.tm_year + 1900) &&
 369			 rtc_valid_tm(&alarm->time) != 0);
 370		break;
 371
 372	default:
 373		dev_warn(&rtc->dev, "alarm rollover not handled\n");
 374	}
 375
 
 376	err = rtc_valid_tm(&alarm->time);
 377
 378done:
 379	if (err)
 380		dev_warn(&rtc->dev, "invalid alarm value: %ptR\n",
 381			 &alarm->time);
 
 
 382
 383	return err;
 384}
 385
 386int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 387{
 388	int err;
 389
 390	err = mutex_lock_interruptible(&rtc->ops_lock);
 391	if (err)
 392		return err;
 393	if (!rtc->ops) {
 394		err = -ENODEV;
 395	} else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->read_alarm) {
 396		err = -EINVAL;
 397	} else {
 398		memset(alarm, 0, sizeof(struct rtc_wkalrm));
 399		alarm->enabled = rtc->aie_timer.enabled;
 400		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
 401	}
 402	mutex_unlock(&rtc->ops_lock);
 403
 404	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
 405	return err;
 406}
 407EXPORT_SYMBOL_GPL(rtc_read_alarm);
 408
 409static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 410{
 411	struct rtc_time tm;
 412	time64_t now, scheduled;
 413	int err;
 414
 415	err = rtc_valid_tm(&alarm->time);
 416	if (err)
 417		return err;
 418
 419	scheduled = rtc_tm_to_time64(&alarm->time);
 420
 421	/* Make sure we're not setting alarms in the past */
 422	err = __rtc_read_time(rtc, &tm);
 423	if (err)
 424		return err;
 425	now = rtc_tm_to_time64(&tm);
 426
 427	if (scheduled <= now)
 428		return -ETIME;
 429	/*
 430	 * XXX - We just checked to make sure the alarm time is not
 431	 * in the past, but there is still a race window where if
 432	 * the is alarm set for the next second and the second ticks
 433	 * over right here, before we set the alarm.
 434	 */
 435
 436	rtc_subtract_offset(rtc, &alarm->time);
 437
 438	if (!rtc->ops)
 439		err = -ENODEV;
 440	else if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
 441		err = -EINVAL;
 442	else
 443		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
 444
 445	trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
 446	return err;
 447}
 448
 449int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 450{
 451	ktime_t alarm_time;
 452	int err;
 453
 454	if (!rtc->ops)
 455		return -ENODEV;
 456	else if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
 457		return -EINVAL;
 458
 459	err = rtc_valid_tm(&alarm->time);
 460	if (err != 0)
 461		return err;
 462
 463	err = rtc_valid_range(rtc, &alarm->time);
 464	if (err)
 465		return err;
 466
 467	err = mutex_lock_interruptible(&rtc->ops_lock);
 468	if (err)
 469		return err;
 470	if (rtc->aie_timer.enabled)
 471		rtc_timer_remove(rtc, &rtc->aie_timer);
 472
 473	alarm_time = rtc_tm_to_ktime(alarm->time);
 474	/*
 475	 * Round down so we never miss a deadline, checking for past deadline is
 476	 * done in __rtc_set_alarm
 477	 */
 478	if (test_bit(RTC_FEATURE_ALARM_RES_MINUTE, rtc->features))
 479		alarm_time = ktime_sub_ns(alarm_time, (u64)alarm->time.tm_sec * NSEC_PER_SEC);
 480
 481	rtc->aie_timer.node.expires = alarm_time;
 482	rtc->aie_timer.period = 0;
 483	if (alarm->enabled)
 484		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 485
 486	mutex_unlock(&rtc->ops_lock);
 487
 488	return err;
 489}
 490EXPORT_SYMBOL_GPL(rtc_set_alarm);
 491
 492/* Called once per device from rtc_device_register */
 493int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 494{
 495	int err;
 496	struct rtc_time now;
 497
 498	err = rtc_valid_tm(&alarm->time);
 499	if (err != 0)
 500		return err;
 501
 502	err = rtc_read_time(rtc, &now);
 503	if (err)
 504		return err;
 505
 506	err = mutex_lock_interruptible(&rtc->ops_lock);
 507	if (err)
 508		return err;
 509
 510	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 511	rtc->aie_timer.period = 0;
 
 
 
 
 512
 513	/* Alarm has to be enabled & in the future for us to enqueue it */
 514	if (alarm->enabled && (rtc_tm_to_ktime(now) <
 515			 rtc->aie_timer.node.expires)) {
 516		rtc->aie_timer.enabled = 1;
 517		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
 518		trace_rtc_timer_enqueue(&rtc->aie_timer);
 519	}
 520	mutex_unlock(&rtc->ops_lock);
 521	return err;
 522}
 523EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
 524
 
 
 525int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 526{
 527	int err;
 528
 529	err = mutex_lock_interruptible(&rtc->ops_lock);
 530	if (err)
 531		return err;
 532
 533	if (rtc->aie_timer.enabled != enabled) {
 534		if (enabled)
 535			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 536		else
 537			rtc_timer_remove(rtc, &rtc->aie_timer);
 538	}
 539
 540	if (err)
 541		/* nothing */;
 542	else if (!rtc->ops)
 543		err = -ENODEV;
 544	else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->alarm_irq_enable)
 545		err = -EINVAL;
 546	else
 547		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
 548
 549	mutex_unlock(&rtc->ops_lock);
 550
 551	trace_rtc_alarm_irq_enable(enabled, err);
 552	return err;
 553}
 554EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
 555
 556int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 557{
 558	int err;
 559
 560	err = mutex_lock_interruptible(&rtc->ops_lock);
 561	if (err)
 562		return err;
 563
 564#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 565	if (enabled == 0 && rtc->uie_irq_active) {
 566		mutex_unlock(&rtc->ops_lock);
 567		return rtc_dev_update_irq_enable_emul(rtc, 0);
 568	}
 569#endif
 570	/* make sure we're changing state */
 571	if (rtc->uie_rtctimer.enabled == enabled)
 572		goto out;
 573
 574	if (!test_bit(RTC_FEATURE_UPDATE_INTERRUPT, rtc->features) ||
 575	    !test_bit(RTC_FEATURE_ALARM, rtc->features)) {
 576		mutex_unlock(&rtc->ops_lock);
 577#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 578		return rtc_dev_update_irq_enable_emul(rtc, enabled);
 579#else
 580		return -EINVAL;
 581#endif
 582	}
 583
 584	if (enabled) {
 585		struct rtc_time tm;
 586		ktime_t now, onesec;
 587
 588		err = __rtc_read_time(rtc, &tm);
 589		if (err)
 590			goto out;
 591		onesec = ktime_set(1, 0);
 592		now = rtc_tm_to_ktime(tm);
 593		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
 594		rtc->uie_rtctimer.period = ktime_set(1, 0);
 595		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
 596	} else {
 597		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
 598	}
 599
 600out:
 601	mutex_unlock(&rtc->ops_lock);
 602
 
 
 
 
 
 
 
 
 
 603	return err;
 
 604}
 605EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
 606
 
 607/**
 608 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
 609 * @rtc: pointer to the rtc device
 610 * @num: number of occurence of the event
 611 * @mode: type of the event, RTC_AF, RTC_UF of RTC_PF
 612 *
 613 * This function is called when an AIE, UIE or PIE mode interrupt
 614 * has occurred (or been emulated).
 615 *
 
 616 */
 617void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
 618{
 619	unsigned long flags;
 620
 621	/* mark one irq of the appropriate mode */
 622	spin_lock_irqsave(&rtc->irq_lock, flags);
 623	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF | mode);
 624	spin_unlock_irqrestore(&rtc->irq_lock, flags);
 625
 
 
 
 
 
 
 626	wake_up_interruptible(&rtc->irq_queue);
 627	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
 628}
 629
 
 630/**
 631 * rtc_aie_update_irq - AIE mode rtctimer hook
 632 * @rtc: pointer to the rtc_device
 633 *
 634 * This functions is called when the aie_timer expires.
 635 */
 636void rtc_aie_update_irq(struct rtc_device *rtc)
 637{
 
 638	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
 639}
 640
 
 641/**
 642 * rtc_uie_update_irq - UIE mode rtctimer hook
 643 * @rtc: pointer to the rtc_device
 644 *
 645 * This functions is called when the uie_timer expires.
 646 */
 647void rtc_uie_update_irq(struct rtc_device *rtc)
 648{
 
 649	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
 650}
 651
 
 652/**
 653 * rtc_pie_update_irq - PIE mode hrtimer hook
 654 * @timer: pointer to the pie mode hrtimer
 655 *
 656 * This function is used to emulate PIE mode interrupts
 657 * using an hrtimer. This function is called when the periodic
 658 * hrtimer expires.
 659 */
 660enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
 661{
 662	struct rtc_device *rtc;
 663	ktime_t period;
 664	u64 count;
 665
 666	rtc = container_of(timer, struct rtc_device, pie_timer);
 667
 668	period = NSEC_PER_SEC / rtc->irq_freq;
 669	count = hrtimer_forward_now(timer, period);
 670
 671	rtc_handle_legacy_irq(rtc, count, RTC_PF);
 672
 673	return HRTIMER_RESTART;
 674}
 675
 676/**
 677 * rtc_update_irq - Triggered when a RTC interrupt occurs.
 678 * @rtc: the rtc device
 679 * @num: how many irqs are being reported (usually one)
 680 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
 681 * Context: any
 682 */
 683void rtc_update_irq(struct rtc_device *rtc,
 684		    unsigned long num, unsigned long events)
 685{
 686	if (IS_ERR_OR_NULL(rtc))
 687		return;
 688
 689	pm_stay_awake(rtc->dev.parent);
 690	schedule_work(&rtc->irqwork);
 691}
 692EXPORT_SYMBOL_GPL(rtc_update_irq);
 693
 
 
 
 
 
 
 
 
 
 694struct rtc_device *rtc_class_open(const char *name)
 695{
 696	struct device *dev;
 697	struct rtc_device *rtc = NULL;
 698
 699	dev = class_find_device_by_name(rtc_class, name);
 700	if (dev)
 701		rtc = to_rtc_device(dev);
 702
 703	if (rtc) {
 704		if (!try_module_get(rtc->owner)) {
 705			put_device(dev);
 706			rtc = NULL;
 707		}
 708	}
 709
 710	return rtc;
 711}
 712EXPORT_SYMBOL_GPL(rtc_class_open);
 713
 714void rtc_class_close(struct rtc_device *rtc)
 715{
 716	module_put(rtc->owner);
 717	put_device(&rtc->dev);
 718}
 719EXPORT_SYMBOL_GPL(rtc_class_close);
 720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 721static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
 722{
 723	/*
 724	 * We always cancel the timer here first, because otherwise
 725	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
 726	 * when we manage to start the timer before the callback
 727	 * returns HRTIMER_RESTART.
 728	 *
 729	 * We cannot use hrtimer_cancel() here as a running callback
 730	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
 731	 * would spin forever.
 732	 */
 733	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
 734		return -1;
 735
 736	if (enabled) {
 737		ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
 738
 739		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
 740	}
 741	return 0;
 742}
 743
 744/**
 745 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
 746 * @rtc: the rtc device
 
 747 * @enabled: true to enable periodic IRQs
 748 * Context: any
 749 *
 750 * Note that rtc_irq_set_freq() should previously have been used to
 751 * specify the desired frequency of periodic IRQ.
 752 */
 753int rtc_irq_set_state(struct rtc_device *rtc, int enabled)
 754{
 755	int err = 0;
 
 756
 757	while (rtc_update_hrtimer(rtc, enabled) < 0)
 758		cpu_relax();
 759
 760	rtc->pie_enabled = enabled;
 761
 762	trace_rtc_irq_set_state(enabled, err);
 
 
 
 
 
 
 
 
 
 763	return err;
 764}
 
 765
 766/**
 767 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
 768 * @rtc: the rtc device
 769 * @freq: positive frequency
 
 770 * Context: any
 771 *
 772 * Note that rtc_irq_set_state() is used to enable or disable the
 773 * periodic IRQs.
 774 */
 775int rtc_irq_set_freq(struct rtc_device *rtc, int freq)
 776{
 777	int err = 0;
 
 778
 779	if (freq <= 0 || freq > RTC_MAX_FREQ)
 780		return -EINVAL;
 781
 782	rtc->irq_freq = freq;
 783	while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0)
 784		cpu_relax();
 785
 786	trace_rtc_irq_set_freq(freq, err);
 
 
 
 
 
 
 
 
 
 787	return err;
 788}
 
 789
 790/**
 791 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
 792 * @rtc: rtc device
 793 * @timer: timer being added.
 794 *
 795 * Enqueues a timer onto the rtc devices timerqueue and sets
 796 * the next alarm event appropriately.
 797 *
 798 * Sets the enabled bit on the added timer.
 799 *
 800 * Must hold ops_lock for proper serialization of timerqueue
 801 */
 802static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
 803{
 804	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 805	struct rtc_time tm;
 806	ktime_t now;
 807	int err;
 808
 809	err = __rtc_read_time(rtc, &tm);
 810	if (err)
 811		return err;
 812
 813	timer->enabled = 1;
 814	now = rtc_tm_to_ktime(tm);
 815
 816	/* Skip over expired timers */
 817	while (next) {
 818		if (next->expires >= now)
 819			break;
 820		next = timerqueue_iterate_next(next);
 821	}
 822
 823	timerqueue_add(&rtc->timerqueue, &timer->node);
 824	trace_rtc_timer_enqueue(timer);
 825	if (!next || ktime_before(timer->node.expires, next->expires)) {
 826		struct rtc_wkalrm alarm;
 827
 828		alarm.time = rtc_ktime_to_tm(timer->node.expires);
 829		alarm.enabled = 1;
 830		err = __rtc_set_alarm(rtc, &alarm);
 831		if (err == -ETIME) {
 832			pm_stay_awake(rtc->dev.parent);
 833			schedule_work(&rtc->irqwork);
 834		} else if (err) {
 835			timerqueue_del(&rtc->timerqueue, &timer->node);
 836			trace_rtc_timer_dequeue(timer);
 837			timer->enabled = 0;
 838			return err;
 839		}
 840	}
 841	return 0;
 842}
 843
 844static void rtc_alarm_disable(struct rtc_device *rtc)
 845{
 846	if (!rtc->ops || !test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->alarm_irq_enable)
 847		return;
 848
 849	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
 850	trace_rtc_alarm_irq_enable(0, 0);
 851}
 852
 853/**
 854 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
 855 * @rtc: rtc device
 856 * @timer: timer being removed.
 857 *
 858 * Removes a timer onto the rtc devices timerqueue and sets
 859 * the next alarm event appropriately.
 860 *
 861 * Clears the enabled bit on the removed timer.
 862 *
 863 * Must hold ops_lock for proper serialization of timerqueue
 864 */
 865static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
 866{
 867	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 868
 869	timerqueue_del(&rtc->timerqueue, &timer->node);
 870	trace_rtc_timer_dequeue(timer);
 871	timer->enabled = 0;
 872	if (next == &timer->node) {
 873		struct rtc_wkalrm alarm;
 874		int err;
 875
 876		next = timerqueue_getnext(&rtc->timerqueue);
 877		if (!next) {
 878			rtc_alarm_disable(rtc);
 879			return;
 880		}
 881		alarm.time = rtc_ktime_to_tm(next->expires);
 882		alarm.enabled = 1;
 883		err = __rtc_set_alarm(rtc, &alarm);
 884		if (err == -ETIME) {
 885			pm_stay_awake(rtc->dev.parent);
 886			schedule_work(&rtc->irqwork);
 887		}
 888	}
 889}
 890
 891/**
 892 * rtc_timer_do_work - Expires rtc timers
 893 * @work: work item
 
 894 *
 895 * Expires rtc timers. Reprograms next alarm event if needed.
 896 * Called via worktask.
 897 *
 898 * Serializes access to timerqueue via ops_lock mutex
 899 */
 900void rtc_timer_do_work(struct work_struct *work)
 901{
 902	struct rtc_timer *timer;
 903	struct timerqueue_node *next;
 904	ktime_t now;
 905	struct rtc_time tm;
 906
 907	struct rtc_device *rtc =
 908		container_of(work, struct rtc_device, irqwork);
 909
 910	mutex_lock(&rtc->ops_lock);
 911again:
 912	__rtc_read_time(rtc, &tm);
 913	now = rtc_tm_to_ktime(tm);
 914	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
 915		if (next->expires > now)
 916			break;
 917
 918		/* expire timer */
 919		timer = container_of(next, struct rtc_timer, node);
 920		timerqueue_del(&rtc->timerqueue, &timer->node);
 921		trace_rtc_timer_dequeue(timer);
 922		timer->enabled = 0;
 923		if (timer->func)
 924			timer->func(timer->rtc);
 925
 926		trace_rtc_timer_fired(timer);
 927		/* Re-add/fwd periodic timers */
 928		if (ktime_to_ns(timer->period)) {
 929			timer->node.expires = ktime_add(timer->node.expires,
 930							timer->period);
 931			timer->enabled = 1;
 932			timerqueue_add(&rtc->timerqueue, &timer->node);
 933			trace_rtc_timer_enqueue(timer);
 934		}
 935	}
 936
 937	/* Set next alarm */
 938	if (next) {
 939		struct rtc_wkalrm alarm;
 940		int err;
 941		int retry = 3;
 942
 943		alarm.time = rtc_ktime_to_tm(next->expires);
 944		alarm.enabled = 1;
 945reprogram:
 946		err = __rtc_set_alarm(rtc, &alarm);
 947		if (err == -ETIME) {
 948			goto again;
 949		} else if (err) {
 950			if (retry-- > 0)
 951				goto reprogram;
 952
 953			timer = container_of(next, struct rtc_timer, node);
 954			timerqueue_del(&rtc->timerqueue, &timer->node);
 955			trace_rtc_timer_dequeue(timer);
 956			timer->enabled = 0;
 957			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
 958			goto again;
 959		}
 960	} else {
 961		rtc_alarm_disable(rtc);
 962	}
 963
 964	pm_relax(rtc->dev.parent);
 965	mutex_unlock(&rtc->ops_lock);
 966}
 967
 
 968/* rtc_timer_init - Initializes an rtc_timer
 969 * @timer: timer to be intiialized
 970 * @f: function pointer to be called when timer fires
 971 * @rtc: pointer to the rtc_device
 972 *
 973 * Kernel interface to initializing an rtc_timer.
 974 */
 975void rtc_timer_init(struct rtc_timer *timer, void (*f)(struct rtc_device *r),
 976		    struct rtc_device *rtc)
 977{
 978	timerqueue_init(&timer->node);
 979	timer->enabled = 0;
 980	timer->func = f;
 981	timer->rtc = rtc;
 982}
 983
 984/* rtc_timer_start - Sets an rtc_timer to fire in the future
 985 * @ rtc: rtc device to be used
 986 * @ timer: timer being set
 987 * @ expires: time at which to expire the timer
 988 * @ period: period that the timer will recur
 989 *
 990 * Kernel interface to set an rtc_timer
 991 */
 992int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
 993		    ktime_t expires, ktime_t period)
 994{
 995	int ret = 0;
 996
 997	mutex_lock(&rtc->ops_lock);
 998	if (timer->enabled)
 999		rtc_timer_remove(rtc, timer);
1000
1001	timer->node.expires = expires;
1002	timer->period = period;
1003
1004	ret = rtc_timer_enqueue(rtc, timer);
1005
1006	mutex_unlock(&rtc->ops_lock);
1007	return ret;
1008}
1009
1010/* rtc_timer_cancel - Stops an rtc_timer
1011 * @ rtc: rtc device to be used
1012 * @ timer: timer being set
1013 *
1014 * Kernel interface to cancel an rtc_timer
1015 */
1016void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
1017{
1018	mutex_lock(&rtc->ops_lock);
1019	if (timer->enabled)
1020		rtc_timer_remove(rtc, timer);
1021	mutex_unlock(&rtc->ops_lock);
1022}
1023
1024/**
1025 * rtc_read_offset - Read the amount of rtc offset in parts per billion
1026 * @rtc: rtc device to be used
1027 * @offset: the offset in parts per billion
1028 *
1029 * see below for details.
1030 *
1031 * Kernel interface to read rtc clock offset
1032 * Returns 0 on success, or a negative number on error.
1033 * If read_offset() is not implemented for the rtc, return -EINVAL
1034 */
1035int rtc_read_offset(struct rtc_device *rtc, long *offset)
1036{
1037	int ret;
1038
1039	if (!rtc->ops)
1040		return -ENODEV;
1041
1042	if (!rtc->ops->read_offset)
1043		return -EINVAL;
1044
1045	mutex_lock(&rtc->ops_lock);
1046	ret = rtc->ops->read_offset(rtc->dev.parent, offset);
1047	mutex_unlock(&rtc->ops_lock);
1048
1049	trace_rtc_read_offset(*offset, ret);
1050	return ret;
1051}
1052
1053/**
1054 * rtc_set_offset - Adjusts the duration of the average second
1055 * @rtc: rtc device to be used
1056 * @offset: the offset in parts per billion
1057 *
1058 * Some rtc's allow an adjustment to the average duration of a second
1059 * to compensate for differences in the actual clock rate due to temperature,
1060 * the crystal, capacitor, etc.
1061 *
1062 * The adjustment applied is as follows:
1063 *   t = t0 * (1 + offset * 1e-9)
1064 * where t0 is the measured length of 1 RTC second with offset = 0
1065 *
1066 * Kernel interface to adjust an rtc clock offset.
1067 * Return 0 on success, or a negative number on error.
1068 * If the rtc offset is not setable (or not implemented), return -EINVAL
1069 */
1070int rtc_set_offset(struct rtc_device *rtc, long offset)
1071{
1072	int ret;
1073
1074	if (!rtc->ops)
1075		return -ENODEV;
1076
1077	if (!rtc->ops->set_offset)
1078		return -EINVAL;
1079
1080	mutex_lock(&rtc->ops_lock);
1081	ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1082	mutex_unlock(&rtc->ops_lock);
1083
1084	trace_rtc_set_offset(offset, ret);
1085	return ret;
1086}
v4.6
 
  1/*
  2 * RTC subsystem, interface functions
  3 *
  4 * Copyright (C) 2005 Tower Technologies
  5 * Author: Alessandro Zummo <a.zummo@towertech.it>
  6 *
  7 * based on arch/arm/common/rtctime.c
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License version 2 as
 11 * published by the Free Software Foundation.
 12*/
 13
 14#include <linux/rtc.h>
 15#include <linux/sched.h>
 16#include <linux/module.h>
 17#include <linux/log2.h>
 18#include <linux/workqueue.h>
 19
 
 
 
 20static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
 21static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
 22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 23static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 24{
 25	int err;
 26	if (!rtc->ops)
 
 27		err = -ENODEV;
 28	else if (!rtc->ops->read_time)
 29		err = -EINVAL;
 30	else {
 31		memset(tm, 0, sizeof(struct rtc_time));
 32		err = rtc->ops->read_time(rtc->dev.parent, tm);
 33		if (err < 0) {
 34			dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
 35				err);
 36			return err;
 37		}
 38
 
 
 39		err = rtc_valid_tm(tm);
 40		if (err < 0)
 41			dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
 42	}
 43	return err;
 44}
 45
 46int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 47{
 48	int err;
 49
 50	err = mutex_lock_interruptible(&rtc->ops_lock);
 51	if (err)
 52		return err;
 53
 54	err = __rtc_read_time(rtc, tm);
 55	mutex_unlock(&rtc->ops_lock);
 
 
 56	return err;
 57}
 58EXPORT_SYMBOL_GPL(rtc_read_time);
 59
 60int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
 61{
 62	int err;
 63
 64	err = rtc_valid_tm(tm);
 65	if (err != 0)
 66		return err;
 67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 68	err = mutex_lock_interruptible(&rtc->ops_lock);
 69	if (err)
 70		return err;
 71
 72	if (!rtc->ops)
 73		err = -ENODEV;
 74	else if (rtc->ops->set_time)
 75		err = rtc->ops->set_time(rtc->dev.parent, tm);
 76	else if (rtc->ops->set_mmss64) {
 77		time64_t secs64 = rtc_tm_to_time64(tm);
 78
 79		err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
 80	} else if (rtc->ops->set_mmss) {
 81		time64_t secs64 = rtc_tm_to_time64(tm);
 82		err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
 83	} else
 84		err = -EINVAL;
 85
 86	pm_stay_awake(rtc->dev.parent);
 87	mutex_unlock(&rtc->ops_lock);
 88	/* A timer might have just expired */
 89	schedule_work(&rtc->irqwork);
 
 
 
 
 
 
 
 
 90	return err;
 91}
 92EXPORT_SYMBOL_GPL(rtc_set_time);
 93
 94static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 
 95{
 96	int err;
 97
 98	err = mutex_lock_interruptible(&rtc->ops_lock);
 99	if (err)
100		return err;
101
102	if (rtc->ops == NULL)
103		err = -ENODEV;
104	else if (!rtc->ops->read_alarm)
105		err = -EINVAL;
106	else {
107		memset(alarm, 0, sizeof(struct rtc_wkalrm));
 
 
 
 
 
 
 
 
 
 
108		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
109	}
110
111	mutex_unlock(&rtc->ops_lock);
 
 
112	return err;
113}
114
115int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
116{
117	int err;
118	struct rtc_time before, now;
119	int first_time = 1;
120	time64_t t_now, t_alm;
121	enum { none, day, month, year } missing = none;
122	unsigned days;
123
124	/* The lower level RTC driver may return -1 in some fields,
125	 * creating invalid alarm->time values, for reasons like:
126	 *
127	 *   - The hardware may not be capable of filling them in;
128	 *     many alarms match only on time-of-day fields, not
129	 *     day/month/year calendar data.
130	 *
131	 *   - Some hardware uses illegal values as "wildcard" match
132	 *     values, which non-Linux firmware (like a BIOS) may try
133	 *     to set up as e.g. "alarm 15 minutes after each hour".
134	 *     Linux uses only oneshot alarms.
135	 *
136	 * When we see that here, we deal with it by using values from
137	 * a current RTC timestamp for any missing (-1) values.  The
138	 * RTC driver prevents "periodic alarm" modes.
139	 *
140	 * But this can be racey, because some fields of the RTC timestamp
141	 * may have wrapped in the interval since we read the RTC alarm,
142	 * which would lead to us inserting inconsistent values in place
143	 * of the -1 fields.
144	 *
145	 * Reading the alarm and timestamp in the reverse sequence
146	 * would have the same race condition, and not solve the issue.
147	 *
148	 * So, we must first read the RTC timestamp,
149	 * then read the RTC alarm value,
150	 * and then read a second RTC timestamp.
151	 *
152	 * If any fields of the second timestamp have changed
153	 * when compared with the first timestamp, then we know
154	 * our timestamp may be inconsistent with that used by
155	 * the low-level rtc_read_alarm_internal() function.
156	 *
157	 * So, when the two timestamps disagree, we just loop and do
158	 * the process again to get a fully consistent set of values.
159	 *
160	 * This could all instead be done in the lower level driver,
161	 * but since more than one lower level RTC implementation needs it,
162	 * then it's probably best best to do it here instead of there..
163	 */
164
165	/* Get the "before" timestamp */
166	err = rtc_read_time(rtc, &before);
167	if (err < 0)
168		return err;
169	do {
170		if (!first_time)
171			memcpy(&before, &now, sizeof(struct rtc_time));
172		first_time = 0;
173
174		/* get the RTC alarm values, which may be incomplete */
175		err = rtc_read_alarm_internal(rtc, alarm);
176		if (err)
177			return err;
178
179		/* full-function RTCs won't have such missing fields */
180		if (rtc_valid_tm(&alarm->time) == 0)
 
181			return 0;
 
182
183		/* get the "after" timestamp, to detect wrapped fields */
184		err = rtc_read_time(rtc, &now);
185		if (err < 0)
186			return err;
187
188		/* note that tm_sec is a "don't care" value here: */
189	} while (   before.tm_min   != now.tm_min
190		 || before.tm_hour  != now.tm_hour
191		 || before.tm_mon   != now.tm_mon
192		 || before.tm_year  != now.tm_year);
193
194	/* Fill in the missing alarm fields using the timestamp; we
195	 * know there's at least one since alarm->time is invalid.
196	 */
197	if (alarm->time.tm_sec == -1)
198		alarm->time.tm_sec = now.tm_sec;
199	if (alarm->time.tm_min == -1)
200		alarm->time.tm_min = now.tm_min;
201	if (alarm->time.tm_hour == -1)
202		alarm->time.tm_hour = now.tm_hour;
203
204	/* For simplicity, only support date rollover for now */
205	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
206		alarm->time.tm_mday = now.tm_mday;
207		missing = day;
208	}
209	if ((unsigned)alarm->time.tm_mon >= 12) {
210		alarm->time.tm_mon = now.tm_mon;
211		if (missing == none)
212			missing = month;
213	}
214	if (alarm->time.tm_year == -1) {
215		alarm->time.tm_year = now.tm_year;
216		if (missing == none)
217			missing = year;
218	}
219
 
 
 
 
 
 
 
220	/* with luck, no rollover is needed */
221	t_now = rtc_tm_to_time64(&now);
222	t_alm = rtc_tm_to_time64(&alarm->time);
223	if (t_now < t_alm)
224		goto done;
225
226	switch (missing) {
227
228	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
229	 * that will trigger at 5am will do so at 5am Tuesday, which
230	 * could also be in the next month or year.  This is a common
231	 * case, especially for PCs.
232	 */
233	case day:
234		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
235		t_alm += 24 * 60 * 60;
236		rtc_time64_to_tm(t_alm, &alarm->time);
237		break;
238
239	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
240	 * be next month.  An alarm matching on the 30th, 29th, or 28th
241	 * may end up in the month after that!  Many newer PCs support
242	 * this type of alarm.
243	 */
244	case month:
245		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
246		do {
247			if (alarm->time.tm_mon < 11)
248				alarm->time.tm_mon++;
249			else {
250				alarm->time.tm_mon = 0;
251				alarm->time.tm_year++;
252			}
253			days = rtc_month_days(alarm->time.tm_mon,
254					alarm->time.tm_year);
255		} while (days < alarm->time.tm_mday);
256		break;
257
258	/* Year rollover ... easy except for leap years! */
259	case year:
260		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
261		do {
262			alarm->time.tm_year++;
263		} while (!is_leap_year(alarm->time.tm_year + 1900)
264			&& rtc_valid_tm(&alarm->time) != 0);
265		break;
266
267	default:
268		dev_warn(&rtc->dev, "alarm rollover not handled\n");
269	}
270
271done:
272	err = rtc_valid_tm(&alarm->time);
273
274	if (err) {
275		dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
276			alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
277			alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
278			alarm->time.tm_sec);
279	}
280
281	return err;
282}
283
284int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
285{
286	int err;
287
288	err = mutex_lock_interruptible(&rtc->ops_lock);
289	if (err)
290		return err;
291	if (rtc->ops == NULL)
292		err = -ENODEV;
293	else if (!rtc->ops->read_alarm)
294		err = -EINVAL;
295	else {
296		memset(alarm, 0, sizeof(struct rtc_wkalrm));
297		alarm->enabled = rtc->aie_timer.enabled;
298		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
299	}
300	mutex_unlock(&rtc->ops_lock);
301
 
302	return err;
303}
304EXPORT_SYMBOL_GPL(rtc_read_alarm);
305
306static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
307{
308	struct rtc_time tm;
309	time64_t now, scheduled;
310	int err;
311
312	err = rtc_valid_tm(&alarm->time);
313	if (err)
314		return err;
 
315	scheduled = rtc_tm_to_time64(&alarm->time);
316
317	/* Make sure we're not setting alarms in the past */
318	err = __rtc_read_time(rtc, &tm);
319	if (err)
320		return err;
321	now = rtc_tm_to_time64(&tm);
 
322	if (scheduled <= now)
323		return -ETIME;
324	/*
325	 * XXX - We just checked to make sure the alarm time is not
326	 * in the past, but there is still a race window where if
327	 * the is alarm set for the next second and the second ticks
328	 * over right here, before we set the alarm.
329	 */
330
 
 
331	if (!rtc->ops)
332		err = -ENODEV;
333	else if (!rtc->ops->set_alarm)
334		err = -EINVAL;
335	else
336		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
337
 
338	return err;
339}
340
341int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
342{
 
343	int err;
344
 
 
 
 
 
345	err = rtc_valid_tm(&alarm->time);
346	if (err != 0)
347		return err;
348
 
 
 
 
349	err = mutex_lock_interruptible(&rtc->ops_lock);
350	if (err)
351		return err;
352	if (rtc->aie_timer.enabled)
353		rtc_timer_remove(rtc, &rtc->aie_timer);
354
355	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
356	rtc->aie_timer.period = ktime_set(0, 0);
 
 
 
 
 
 
 
 
357	if (alarm->enabled)
358		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
359
360	mutex_unlock(&rtc->ops_lock);
 
361	return err;
362}
363EXPORT_SYMBOL_GPL(rtc_set_alarm);
364
365/* Called once per device from rtc_device_register */
366int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
367{
368	int err;
369	struct rtc_time now;
370
371	err = rtc_valid_tm(&alarm->time);
372	if (err != 0)
373		return err;
374
375	err = rtc_read_time(rtc, &now);
376	if (err)
377		return err;
378
379	err = mutex_lock_interruptible(&rtc->ops_lock);
380	if (err)
381		return err;
382
383	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
384	rtc->aie_timer.period = ktime_set(0, 0);
385
386	/* Alarm has to be enabled & in the futrure for us to enqueue it */
387	if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
388			 rtc->aie_timer.node.expires.tv64)) {
389
 
 
 
390		rtc->aie_timer.enabled = 1;
391		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
 
392	}
393	mutex_unlock(&rtc->ops_lock);
394	return err;
395}
396EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
397
398
399
400int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
401{
402	int err = mutex_lock_interruptible(&rtc->ops_lock);
 
 
403	if (err)
404		return err;
405
406	if (rtc->aie_timer.enabled != enabled) {
407		if (enabled)
408			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
409		else
410			rtc_timer_remove(rtc, &rtc->aie_timer);
411	}
412
413	if (err)
414		/* nothing */;
415	else if (!rtc->ops)
416		err = -ENODEV;
417	else if (!rtc->ops->alarm_irq_enable)
418		err = -EINVAL;
419	else
420		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
421
422	mutex_unlock(&rtc->ops_lock);
 
 
423	return err;
424}
425EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
426
427int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
428{
429	int err = mutex_lock_interruptible(&rtc->ops_lock);
 
 
430	if (err)
431		return err;
432
433#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
434	if (enabled == 0 && rtc->uie_irq_active) {
435		mutex_unlock(&rtc->ops_lock);
436		return rtc_dev_update_irq_enable_emul(rtc, 0);
437	}
438#endif
439	/* make sure we're changing state */
440	if (rtc->uie_rtctimer.enabled == enabled)
441		goto out;
442
443	if (rtc->uie_unsupported) {
444		err = -EINVAL;
445		goto out;
 
 
 
 
 
446	}
447
448	if (enabled) {
449		struct rtc_time tm;
450		ktime_t now, onesec;
451
452		__rtc_read_time(rtc, &tm);
 
 
453		onesec = ktime_set(1, 0);
454		now = rtc_tm_to_ktime(tm);
455		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
456		rtc->uie_rtctimer.period = ktime_set(1, 0);
457		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
458	} else
459		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
 
460
461out:
462	mutex_unlock(&rtc->ops_lock);
463#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
464	/*
465	 * Enable emulation if the driver did not provide
466	 * the update_irq_enable function pointer or if returned
467	 * -EINVAL to signal that it has been configured without
468	 * interrupts or that are not available at the moment.
469	 */
470	if (err == -EINVAL)
471		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
472#endif
473	return err;
474
475}
476EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
477
478
479/**
480 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
481 * @rtc: pointer to the rtc device
 
 
482 *
483 * This function is called when an AIE, UIE or PIE mode interrupt
484 * has occurred (or been emulated).
485 *
486 * Triggers the registered irq_task function callback.
487 */
488void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
489{
490	unsigned long flags;
491
492	/* mark one irq of the appropriate mode */
493	spin_lock_irqsave(&rtc->irq_lock, flags);
494	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
495	spin_unlock_irqrestore(&rtc->irq_lock, flags);
496
497	/* call the task func */
498	spin_lock_irqsave(&rtc->irq_task_lock, flags);
499	if (rtc->irq_task)
500		rtc->irq_task->func(rtc->irq_task->private_data);
501	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
502
503	wake_up_interruptible(&rtc->irq_queue);
504	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
505}
506
507
508/**
509 * rtc_aie_update_irq - AIE mode rtctimer hook
510 * @private: pointer to the rtc_device
511 *
512 * This functions is called when the aie_timer expires.
513 */
514void rtc_aie_update_irq(void *private)
515{
516	struct rtc_device *rtc = (struct rtc_device *)private;
517	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
518}
519
520
521/**
522 * rtc_uie_update_irq - UIE mode rtctimer hook
523 * @private: pointer to the rtc_device
524 *
525 * This functions is called when the uie_timer expires.
526 */
527void rtc_uie_update_irq(void *private)
528{
529	struct rtc_device *rtc = (struct rtc_device *)private;
530	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
531}
532
533
534/**
535 * rtc_pie_update_irq - PIE mode hrtimer hook
536 * @timer: pointer to the pie mode hrtimer
537 *
538 * This function is used to emulate PIE mode interrupts
539 * using an hrtimer. This function is called when the periodic
540 * hrtimer expires.
541 */
542enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
543{
544	struct rtc_device *rtc;
545	ktime_t period;
546	int count;
 
547	rtc = container_of(timer, struct rtc_device, pie_timer);
548
549	period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
550	count = hrtimer_forward_now(timer, period);
551
552	rtc_handle_legacy_irq(rtc, count, RTC_PF);
553
554	return HRTIMER_RESTART;
555}
556
557/**
558 * rtc_update_irq - Triggered when a RTC interrupt occurs.
559 * @rtc: the rtc device
560 * @num: how many irqs are being reported (usually one)
561 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
562 * Context: any
563 */
564void rtc_update_irq(struct rtc_device *rtc,
565		unsigned long num, unsigned long events)
566{
567	if (IS_ERR_OR_NULL(rtc))
568		return;
569
570	pm_stay_awake(rtc->dev.parent);
571	schedule_work(&rtc->irqwork);
572}
573EXPORT_SYMBOL_GPL(rtc_update_irq);
574
575static int __rtc_match(struct device *dev, const void *data)
576{
577	const char *name = data;
578
579	if (strcmp(dev_name(dev), name) == 0)
580		return 1;
581	return 0;
582}
583
584struct rtc_device *rtc_class_open(const char *name)
585{
586	struct device *dev;
587	struct rtc_device *rtc = NULL;
588
589	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
590	if (dev)
591		rtc = to_rtc_device(dev);
592
593	if (rtc) {
594		if (!try_module_get(rtc->owner)) {
595			put_device(dev);
596			rtc = NULL;
597		}
598	}
599
600	return rtc;
601}
602EXPORT_SYMBOL_GPL(rtc_class_open);
603
604void rtc_class_close(struct rtc_device *rtc)
605{
606	module_put(rtc->owner);
607	put_device(&rtc->dev);
608}
609EXPORT_SYMBOL_GPL(rtc_class_close);
610
611int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
612{
613	int retval = -EBUSY;
614
615	if (task == NULL || task->func == NULL)
616		return -EINVAL;
617
618	/* Cannot register while the char dev is in use */
619	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
620		return -EBUSY;
621
622	spin_lock_irq(&rtc->irq_task_lock);
623	if (rtc->irq_task == NULL) {
624		rtc->irq_task = task;
625		retval = 0;
626	}
627	spin_unlock_irq(&rtc->irq_task_lock);
628
629	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
630
631	return retval;
632}
633EXPORT_SYMBOL_GPL(rtc_irq_register);
634
635void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
636{
637	spin_lock_irq(&rtc->irq_task_lock);
638	if (rtc->irq_task == task)
639		rtc->irq_task = NULL;
640	spin_unlock_irq(&rtc->irq_task_lock);
641}
642EXPORT_SYMBOL_GPL(rtc_irq_unregister);
643
644static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
645{
646	/*
647	 * We always cancel the timer here first, because otherwise
648	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
649	 * when we manage to start the timer before the callback
650	 * returns HRTIMER_RESTART.
651	 *
652	 * We cannot use hrtimer_cancel() here as a running callback
653	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
654	 * would spin forever.
655	 */
656	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
657		return -1;
658
659	if (enabled) {
660		ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
661
662		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
663	}
664	return 0;
665}
666
667/**
668 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
669 * @rtc: the rtc device
670 * @task: currently registered with rtc_irq_register()
671 * @enabled: true to enable periodic IRQs
672 * Context: any
673 *
674 * Note that rtc_irq_set_freq() should previously have been used to
675 * specify the desired frequency of periodic IRQ task->func() callbacks.
676 */
677int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
678{
679	int err = 0;
680	unsigned long flags;
681
682retry:
683	spin_lock_irqsave(&rtc->irq_task_lock, flags);
684	if (rtc->irq_task != NULL && task == NULL)
685		err = -EBUSY;
686	else if (rtc->irq_task != task)
687		err = -EACCES;
688	else {
689		if (rtc_update_hrtimer(rtc, enabled) < 0) {
690			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
691			cpu_relax();
692			goto retry;
693		}
694		rtc->pie_enabled = enabled;
695	}
696	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
697	return err;
698}
699EXPORT_SYMBOL_GPL(rtc_irq_set_state);
700
701/**
702 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
703 * @rtc: the rtc device
704 * @task: currently registered with rtc_irq_register()
705 * @freq: positive frequency with which task->func() will be called
706 * Context: any
707 *
708 * Note that rtc_irq_set_state() is used to enable or disable the
709 * periodic IRQs.
710 */
711int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
712{
713	int err = 0;
714	unsigned long flags;
715
716	if (freq <= 0 || freq > RTC_MAX_FREQ)
717		return -EINVAL;
718retry:
719	spin_lock_irqsave(&rtc->irq_task_lock, flags);
720	if (rtc->irq_task != NULL && task == NULL)
721		err = -EBUSY;
722	else if (rtc->irq_task != task)
723		err = -EACCES;
724	else {
725		rtc->irq_freq = freq;
726		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
727			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
728			cpu_relax();
729			goto retry;
730		}
731	}
732	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
733	return err;
734}
735EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
736
737/**
738 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
739 * @rtc rtc device
740 * @timer timer being added.
741 *
742 * Enqueues a timer onto the rtc devices timerqueue and sets
743 * the next alarm event appropriately.
744 *
745 * Sets the enabled bit on the added timer.
746 *
747 * Must hold ops_lock for proper serialization of timerqueue
748 */
749static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
750{
 
 
 
 
 
 
 
 
 
751	timer->enabled = 1;
 
 
 
 
 
 
 
 
 
752	timerqueue_add(&rtc->timerqueue, &timer->node);
753	if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
 
754		struct rtc_wkalrm alarm;
755		int err;
756		alarm.time = rtc_ktime_to_tm(timer->node.expires);
757		alarm.enabled = 1;
758		err = __rtc_set_alarm(rtc, &alarm);
759		if (err == -ETIME) {
760			pm_stay_awake(rtc->dev.parent);
761			schedule_work(&rtc->irqwork);
762		} else if (err) {
763			timerqueue_del(&rtc->timerqueue, &timer->node);
 
764			timer->enabled = 0;
765			return err;
766		}
767	}
768	return 0;
769}
770
771static void rtc_alarm_disable(struct rtc_device *rtc)
772{
773	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
774		return;
775
776	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
 
777}
778
779/**
780 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
781 * @rtc rtc device
782 * @timer timer being removed.
783 *
784 * Removes a timer onto the rtc devices timerqueue and sets
785 * the next alarm event appropriately.
786 *
787 * Clears the enabled bit on the removed timer.
788 *
789 * Must hold ops_lock for proper serialization of timerqueue
790 */
791static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
792{
793	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 
794	timerqueue_del(&rtc->timerqueue, &timer->node);
 
795	timer->enabled = 0;
796	if (next == &timer->node) {
797		struct rtc_wkalrm alarm;
798		int err;
 
799		next = timerqueue_getnext(&rtc->timerqueue);
800		if (!next) {
801			rtc_alarm_disable(rtc);
802			return;
803		}
804		alarm.time = rtc_ktime_to_tm(next->expires);
805		alarm.enabled = 1;
806		err = __rtc_set_alarm(rtc, &alarm);
807		if (err == -ETIME) {
808			pm_stay_awake(rtc->dev.parent);
809			schedule_work(&rtc->irqwork);
810		}
811	}
812}
813
814/**
815 * rtc_timer_do_work - Expires rtc timers
816 * @rtc rtc device
817 * @timer timer being removed.
818 *
819 * Expires rtc timers. Reprograms next alarm event if needed.
820 * Called via worktask.
821 *
822 * Serializes access to timerqueue via ops_lock mutex
823 */
824void rtc_timer_do_work(struct work_struct *work)
825{
826	struct rtc_timer *timer;
827	struct timerqueue_node *next;
828	ktime_t now;
829	struct rtc_time tm;
830
831	struct rtc_device *rtc =
832		container_of(work, struct rtc_device, irqwork);
833
834	mutex_lock(&rtc->ops_lock);
835again:
836	__rtc_read_time(rtc, &tm);
837	now = rtc_tm_to_ktime(tm);
838	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
839		if (next->expires.tv64 > now.tv64)
840			break;
841
842		/* expire timer */
843		timer = container_of(next, struct rtc_timer, node);
844		timerqueue_del(&rtc->timerqueue, &timer->node);
 
845		timer->enabled = 0;
846		if (timer->task.func)
847			timer->task.func(timer->task.private_data);
848
 
849		/* Re-add/fwd periodic timers */
850		if (ktime_to_ns(timer->period)) {
851			timer->node.expires = ktime_add(timer->node.expires,
852							timer->period);
853			timer->enabled = 1;
854			timerqueue_add(&rtc->timerqueue, &timer->node);
 
855		}
856	}
857
858	/* Set next alarm */
859	if (next) {
860		struct rtc_wkalrm alarm;
861		int err;
862		int retry = 3;
863
864		alarm.time = rtc_ktime_to_tm(next->expires);
865		alarm.enabled = 1;
866reprogram:
867		err = __rtc_set_alarm(rtc, &alarm);
868		if (err == -ETIME)
869			goto again;
870		else if (err) {
871			if (retry-- > 0)
872				goto reprogram;
873
874			timer = container_of(next, struct rtc_timer, node);
875			timerqueue_del(&rtc->timerqueue, &timer->node);
 
876			timer->enabled = 0;
877			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
878			goto again;
879		}
880	} else
881		rtc_alarm_disable(rtc);
 
882
883	pm_relax(rtc->dev.parent);
884	mutex_unlock(&rtc->ops_lock);
885}
886
887
888/* rtc_timer_init - Initializes an rtc_timer
889 * @timer: timer to be intiialized
890 * @f: function pointer to be called when timer fires
891 * @data: private data passed to function pointer
892 *
893 * Kernel interface to initializing an rtc_timer.
894 */
895void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
 
896{
897	timerqueue_init(&timer->node);
898	timer->enabled = 0;
899	timer->task.func = f;
900	timer->task.private_data = data;
901}
902
903/* rtc_timer_start - Sets an rtc_timer to fire in the future
904 * @ rtc: rtc device to be used
905 * @ timer: timer being set
906 * @ expires: time at which to expire the timer
907 * @ period: period that the timer will recur
908 *
909 * Kernel interface to set an rtc_timer
910 */
911int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
912			ktime_t expires, ktime_t period)
913{
914	int ret = 0;
 
915	mutex_lock(&rtc->ops_lock);
916	if (timer->enabled)
917		rtc_timer_remove(rtc, timer);
918
919	timer->node.expires = expires;
920	timer->period = period;
921
922	ret = rtc_timer_enqueue(rtc, timer);
923
924	mutex_unlock(&rtc->ops_lock);
925	return ret;
926}
927
928/* rtc_timer_cancel - Stops an rtc_timer
929 * @ rtc: rtc device to be used
930 * @ timer: timer being set
931 *
932 * Kernel interface to cancel an rtc_timer
933 */
934void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
935{
936	mutex_lock(&rtc->ops_lock);
937	if (timer->enabled)
938		rtc_timer_remove(rtc, timer);
939	mutex_unlock(&rtc->ops_lock);
940}
941
942/**
943 * rtc_read_offset - Read the amount of rtc offset in parts per billion
944 * @ rtc: rtc device to be used
945 * @ offset: the offset in parts per billion
946 *
947 * see below for details.
948 *
949 * Kernel interface to read rtc clock offset
950 * Returns 0 on success, or a negative number on error.
951 * If read_offset() is not implemented for the rtc, return -EINVAL
952 */
953int rtc_read_offset(struct rtc_device *rtc, long *offset)
954{
955	int ret;
956
957	if (!rtc->ops)
958		return -ENODEV;
959
960	if (!rtc->ops->read_offset)
961		return -EINVAL;
962
963	mutex_lock(&rtc->ops_lock);
964	ret = rtc->ops->read_offset(rtc->dev.parent, offset);
965	mutex_unlock(&rtc->ops_lock);
 
 
966	return ret;
967}
968
969/**
970 * rtc_set_offset - Adjusts the duration of the average second
971 * @ rtc: rtc device to be used
972 * @ offset: the offset in parts per billion
973 *
974 * Some rtc's allow an adjustment to the average duration of a second
975 * to compensate for differences in the actual clock rate due to temperature,
976 * the crystal, capacitor, etc.
977 *
 
 
 
 
978 * Kernel interface to adjust an rtc clock offset.
979 * Return 0 on success, or a negative number on error.
980 * If the rtc offset is not setable (or not implemented), return -EINVAL
981 */
982int rtc_set_offset(struct rtc_device *rtc, long offset)
983{
984	int ret;
985
986	if (!rtc->ops)
987		return -ENODEV;
988
989	if (!rtc->ops->set_offset)
990		return -EINVAL;
991
992	mutex_lock(&rtc->ops_lock);
993	ret = rtc->ops->set_offset(rtc->dev.parent, offset);
994	mutex_unlock(&rtc->ops_lock);
 
 
995	return ret;
996}