Linux Audio

Check our new training course

Loading...
v6.2
   1/*
   2 * drivers/mmc/host/omap_hsmmc.c
   3 *
   4 * Driver for OMAP2430/3430 MMC controller.
   5 *
   6 * Copyright (C) 2007 Texas Instruments.
   7 *
   8 * Authors:
   9 *	Syed Mohammed Khasim	<x0khasim@ti.com>
  10 *	Madhusudhan		<madhu.cr@ti.com>
  11 *	Mohit Jalori		<mjalori@ti.com>
  12 *
  13 * This file is licensed under the terms of the GNU General Public License
  14 * version 2. This program is licensed "as is" without any warranty of any
  15 * kind, whether express or implied.
  16 */
  17
  18#include <linux/module.h>
  19#include <linux/init.h>
  20#include <linux/kernel.h>
  21#include <linux/debugfs.h>
  22#include <linux/dmaengine.h>
  23#include <linux/seq_file.h>
  24#include <linux/sizes.h>
  25#include <linux/interrupt.h>
  26#include <linux/delay.h>
  27#include <linux/dma-mapping.h>
  28#include <linux/platform_device.h>
  29#include <linux/timer.h>
  30#include <linux/clk.h>
  31#include <linux/of.h>
  32#include <linux/of_irq.h>
 
  33#include <linux/of_device.h>
 
  34#include <linux/mmc/host.h>
  35#include <linux/mmc/core.h>
  36#include <linux/mmc/mmc.h>
  37#include <linux/mmc/slot-gpio.h>
  38#include <linux/io.h>
  39#include <linux/irq.h>
 
  40#include <linux/regulator/consumer.h>
  41#include <linux/pinctrl/consumer.h>
  42#include <linux/pm_runtime.h>
  43#include <linux/pm_wakeirq.h>
  44#include <linux/platform_data/hsmmc-omap.h>
  45
  46/* OMAP HSMMC Host Controller Registers */
  47#define OMAP_HSMMC_SYSSTATUS	0x0014
  48#define OMAP_HSMMC_CON		0x002C
  49#define OMAP_HSMMC_SDMASA	0x0100
  50#define OMAP_HSMMC_BLK		0x0104
  51#define OMAP_HSMMC_ARG		0x0108
  52#define OMAP_HSMMC_CMD		0x010C
  53#define OMAP_HSMMC_RSP10	0x0110
  54#define OMAP_HSMMC_RSP32	0x0114
  55#define OMAP_HSMMC_RSP54	0x0118
  56#define OMAP_HSMMC_RSP76	0x011C
  57#define OMAP_HSMMC_DATA		0x0120
  58#define OMAP_HSMMC_PSTATE	0x0124
  59#define OMAP_HSMMC_HCTL		0x0128
  60#define OMAP_HSMMC_SYSCTL	0x012C
  61#define OMAP_HSMMC_STAT		0x0130
  62#define OMAP_HSMMC_IE		0x0134
  63#define OMAP_HSMMC_ISE		0x0138
  64#define OMAP_HSMMC_AC12		0x013C
  65#define OMAP_HSMMC_CAPA		0x0140
  66
  67#define VS18			(1 << 26)
  68#define VS30			(1 << 25)
  69#define HSS			(1 << 21)
  70#define SDVS18			(0x5 << 9)
  71#define SDVS30			(0x6 << 9)
  72#define SDVS33			(0x7 << 9)
  73#define SDVS_MASK		0x00000E00
  74#define SDVSCLR			0xFFFFF1FF
  75#define SDVSDET			0x00000400
  76#define AUTOIDLE		0x1
  77#define SDBP			(1 << 8)
  78#define DTO			0xe
  79#define ICE			0x1
  80#define ICS			0x2
  81#define CEN			(1 << 2)
  82#define CLKD_MAX		0x3FF		/* max clock divisor: 1023 */
  83#define CLKD_MASK		0x0000FFC0
  84#define CLKD_SHIFT		6
  85#define DTO_MASK		0x000F0000
  86#define DTO_SHIFT		16
  87#define INIT_STREAM		(1 << 1)
  88#define ACEN_ACMD23		(2 << 2)
  89#define DP_SELECT		(1 << 21)
  90#define DDIR			(1 << 4)
  91#define DMAE			0x1
  92#define MSBS			(1 << 5)
  93#define BCE			(1 << 1)
  94#define FOUR_BIT		(1 << 1)
  95#define HSPE			(1 << 2)
  96#define IWE			(1 << 24)
  97#define DDR			(1 << 19)
  98#define CLKEXTFREE		(1 << 16)
  99#define CTPL			(1 << 11)
 100#define DW8			(1 << 5)
 101#define OD			0x1
 102#define STAT_CLEAR		0xFFFFFFFF
 103#define INIT_STREAM_CMD		0x00000000
 104#define DUAL_VOLT_OCR_BIT	7
 105#define SRC			(1 << 25)
 106#define SRD			(1 << 26)
 107#define SOFTRESET		(1 << 1)
 108
 109/* PSTATE */
 110#define DLEV_DAT(x)		(1 << (20 + (x)))
 111
 112/* Interrupt masks for IE and ISE register */
 113#define CC_EN			(1 << 0)
 114#define TC_EN			(1 << 1)
 115#define BWR_EN			(1 << 4)
 116#define BRR_EN			(1 << 5)
 117#define CIRQ_EN			(1 << 8)
 118#define ERR_EN			(1 << 15)
 119#define CTO_EN			(1 << 16)
 120#define CCRC_EN			(1 << 17)
 121#define CEB_EN			(1 << 18)
 122#define CIE_EN			(1 << 19)
 123#define DTO_EN			(1 << 20)
 124#define DCRC_EN			(1 << 21)
 125#define DEB_EN			(1 << 22)
 126#define ACE_EN			(1 << 24)
 127#define CERR_EN			(1 << 28)
 128#define BADA_EN			(1 << 29)
 129
 130#define INT_EN_MASK (BADA_EN | CERR_EN | ACE_EN | DEB_EN | DCRC_EN |\
 131		DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \
 132		BRR_EN | BWR_EN | TC_EN | CC_EN)
 133
 134#define CNI	(1 << 7)
 135#define ACIE	(1 << 4)
 136#define ACEB	(1 << 3)
 137#define ACCE	(1 << 2)
 138#define ACTO	(1 << 1)
 139#define ACNE	(1 << 0)
 140
 141#define MMC_AUTOSUSPEND_DELAY	100
 142#define MMC_TIMEOUT_MS		20		/* 20 mSec */
 143#define MMC_TIMEOUT_US		20000		/* 20000 micro Sec */
 144#define OMAP_MMC_MIN_CLOCK	400000
 145#define OMAP_MMC_MAX_CLOCK	52000000
 146#define DRIVER_NAME		"omap_hsmmc"
 147
 
 
 
 
 148/*
 149 * One controller can have multiple slots, like on some omap boards using
 150 * omap.c controller driver. Luckily this is not currently done on any known
 151 * omap_hsmmc.c device.
 152 */
 153#define mmc_pdata(host)		host->pdata
 154
 155/*
 156 * MMC Host controller read/write API's
 157 */
 158#define OMAP_HSMMC_READ(base, reg)	\
 159	__raw_readl((base) + OMAP_HSMMC_##reg)
 160
 161#define OMAP_HSMMC_WRITE(base, reg, val) \
 162	__raw_writel((val), (base) + OMAP_HSMMC_##reg)
 163
 164struct omap_hsmmc_next {
 165	unsigned int	dma_len;
 166	s32		cookie;
 167};
 168
 169struct omap_hsmmc_host {
 170	struct	device		*dev;
 171	struct	mmc_host	*mmc;
 172	struct	mmc_request	*mrq;
 173	struct	mmc_command	*cmd;
 174	struct	mmc_data	*data;
 175	struct	clk		*fclk;
 176	struct	clk		*dbclk;
 177	struct	regulator	*pbias;
 178	bool			pbias_enabled;
 179	void	__iomem		*base;
 180	bool			vqmmc_enabled;
 181	resource_size_t		mapbase;
 182	spinlock_t		irq_lock; /* Prevent races with irq handler */
 183	unsigned int		dma_len;
 184	unsigned int		dma_sg_idx;
 185	unsigned char		bus_mode;
 186	unsigned char		power_mode;
 187	int			suspended;
 188	u32			con;
 189	u32			hctl;
 190	u32			sysctl;
 191	u32			capa;
 192	int			irq;
 193	int			wake_irq;
 194	int			use_dma, dma_ch;
 195	struct dma_chan		*tx_chan;
 196	struct dma_chan		*rx_chan;
 197	int			response_busy;
 198	int			context_loss;
 
 199	int			reqs_blocked;
 200	int			req_in_progress;
 201	unsigned long		clk_rate;
 202	unsigned int		flags;
 203#define AUTO_CMD23		(1 << 0)        /* Auto CMD23 support */
 204#define HSMMC_SDIO_IRQ_ENABLED	(1 << 1)        /* SDIO irq enabled */
 205	struct omap_hsmmc_next	next_data;
 206	struct	omap_hsmmc_platform_data	*pdata;
 
 
 
 
 
 
 
 
 
 
 207};
 208
 209struct omap_mmc_of_data {
 210	u32 reg_offset;
 211	u8 controller_flags;
 212};
 213
 214static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host);
 215
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 216static int omap_hsmmc_enable_supply(struct mmc_host *mmc)
 217{
 218	int ret;
 219	struct omap_hsmmc_host *host = mmc_priv(mmc);
 220	struct mmc_ios *ios = &mmc->ios;
 221
 222	if (!IS_ERR(mmc->supply.vmmc)) {
 223		ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
 224		if (ret)
 225			return ret;
 226	}
 227
 228	/* Enable interface voltage rail, if needed */
 229	if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
 230		ret = regulator_enable(mmc->supply.vqmmc);
 231		if (ret) {
 232			dev_err(mmc_dev(mmc), "vmmc_aux reg enable failed\n");
 233			goto err_vqmmc;
 234		}
 235		host->vqmmc_enabled = true;
 236	}
 237
 238	return 0;
 239
 240err_vqmmc:
 241	if (!IS_ERR(mmc->supply.vmmc))
 242		mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
 243
 244	return ret;
 245}
 246
 247static int omap_hsmmc_disable_supply(struct mmc_host *mmc)
 248{
 249	int ret;
 250	int status;
 251	struct omap_hsmmc_host *host = mmc_priv(mmc);
 252
 253	if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
 254		ret = regulator_disable(mmc->supply.vqmmc);
 255		if (ret) {
 256			dev_err(mmc_dev(mmc), "vmmc_aux reg disable failed\n");
 257			return ret;
 258		}
 259		host->vqmmc_enabled = false;
 260	}
 261
 262	if (!IS_ERR(mmc->supply.vmmc)) {
 263		ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
 264		if (ret)
 265			goto err_set_ocr;
 266	}
 267
 268	return 0;
 269
 270err_set_ocr:
 271	if (!IS_ERR(mmc->supply.vqmmc)) {
 272		status = regulator_enable(mmc->supply.vqmmc);
 273		if (status)
 274			dev_err(mmc_dev(mmc), "vmmc_aux re-enable failed\n");
 275	}
 276
 277	return ret;
 278}
 279
 280static int omap_hsmmc_set_pbias(struct omap_hsmmc_host *host, bool power_on)
 
 281{
 282	int ret;
 283
 284	if (IS_ERR(host->pbias))
 285		return 0;
 286
 287	if (power_on) {
 288		if (!host->pbias_enabled) {
 
 
 
 
 
 
 
 
 
 
 
 289			ret = regulator_enable(host->pbias);
 290			if (ret) {
 291				dev_err(host->dev, "pbias reg enable fail\n");
 292				return ret;
 293			}
 294			host->pbias_enabled = true;
 295		}
 296	} else {
 297		if (host->pbias_enabled) {
 298			ret = regulator_disable(host->pbias);
 299			if (ret) {
 300				dev_err(host->dev, "pbias reg disable fail\n");
 301				return ret;
 302			}
 303			host->pbias_enabled = false;
 304		}
 305	}
 306
 307	return 0;
 308}
 309
 310static int omap_hsmmc_set_power(struct omap_hsmmc_host *host, int power_on)
 311{
 
 
 312	struct mmc_host *mmc = host->mmc;
 313	int ret = 0;
 314
 
 
 
 315	/*
 316	 * If we don't see a Vcc regulator, assume it's a fixed
 317	 * voltage always-on regulator.
 318	 */
 319	if (IS_ERR(mmc->supply.vmmc))
 320		return 0;
 321
 322	ret = omap_hsmmc_set_pbias(host, false);
 
 
 
 323	if (ret)
 324		return ret;
 325
 326	/*
 327	 * Assume Vcc regulator is used only to power the card ... OMAP
 328	 * VDDS is used to power the pins, optionally with a transceiver to
 329	 * support cards using voltages other than VDDS (1.8V nominal).  When a
 330	 * transceiver is used, DAT3..7 are muxed as transceiver control pins.
 331	 *
 332	 * In some cases this regulator won't support enable/disable;
 333	 * e.g. it's a fixed rail for a WLAN chip.
 334	 *
 335	 * In other cases vcc_aux switches interface power.  Example, for
 336	 * eMMC cards it represents VccQ.  Sometimes transceivers or SDIO
 337	 * chips/cards need an interface voltage rail too.
 338	 */
 339	if (power_on) {
 340		ret = omap_hsmmc_enable_supply(mmc);
 341		if (ret)
 342			return ret;
 343
 344		ret = omap_hsmmc_set_pbias(host, true);
 345		if (ret)
 346			goto err_set_voltage;
 347	} else {
 348		ret = omap_hsmmc_disable_supply(mmc);
 349		if (ret)
 350			return ret;
 351	}
 352
 
 
 
 353	return 0;
 354
 355err_set_voltage:
 356	omap_hsmmc_disable_supply(mmc);
 357
 358	return ret;
 359}
 360
 361static int omap_hsmmc_disable_boot_regulator(struct regulator *reg)
 362{
 363	int ret;
 364
 365	if (IS_ERR(reg))
 366		return 0;
 367
 368	if (regulator_is_enabled(reg)) {
 369		ret = regulator_enable(reg);
 370		if (ret)
 371			return ret;
 372
 373		ret = regulator_disable(reg);
 374		if (ret)
 375			return ret;
 376	}
 377
 378	return 0;
 379}
 380
 381static int omap_hsmmc_disable_boot_regulators(struct omap_hsmmc_host *host)
 382{
 383	struct mmc_host *mmc = host->mmc;
 384	int ret;
 385
 386	/*
 387	 * disable regulators enabled during boot and get the usecount
 388	 * right so that regulators can be enabled/disabled by checking
 389	 * the return value of regulator_is_enabled
 390	 */
 391	ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vmmc);
 392	if (ret) {
 393		dev_err(host->dev, "fail to disable boot enabled vmmc reg\n");
 394		return ret;
 395	}
 396
 397	ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vqmmc);
 398	if (ret) {
 399		dev_err(host->dev,
 400			"fail to disable boot enabled vmmc_aux reg\n");
 401		return ret;
 402	}
 403
 404	ret = omap_hsmmc_disable_boot_regulator(host->pbias);
 405	if (ret) {
 406		dev_err(host->dev,
 407			"failed to disable boot enabled pbias reg\n");
 408		return ret;
 409	}
 410
 411	return 0;
 412}
 413
 414static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
 415{
 
 416	int ret;
 417	struct mmc_host *mmc = host->mmc;
 418
 
 
 419
 420	ret = mmc_regulator_get_supply(mmc);
 421	if (ret)
 422		return ret;
 
 
 
 
 
 
 
 
 
 
 423
 424	/* Allow an aux regulator */
 
 425	if (IS_ERR(mmc->supply.vqmmc)) {
 426		mmc->supply.vqmmc = devm_regulator_get_optional(host->dev,
 427								"vmmc_aux");
 428		if (IS_ERR(mmc->supply.vqmmc)) {
 429			ret = PTR_ERR(mmc->supply.vqmmc);
 430			if ((ret != -ENODEV) && host->dev->of_node)
 431				return ret;
 432			dev_dbg(host->dev, "unable to get vmmc_aux regulator %ld\n",
 433				PTR_ERR(mmc->supply.vqmmc));
 434		}
 435	}
 436
 437	host->pbias = devm_regulator_get_optional(host->dev, "pbias");
 438	if (IS_ERR(host->pbias)) {
 439		ret = PTR_ERR(host->pbias);
 440		if ((ret != -ENODEV) && host->dev->of_node) {
 441			dev_err(host->dev,
 442			"SD card detect fail? enable CONFIG_REGULATOR_PBIAS\n");
 443			return ret;
 444		}
 445		dev_dbg(host->dev, "unable to get pbias regulator %ld\n",
 446			PTR_ERR(host->pbias));
 
 447	}
 448
 449	/* For eMMC do not power off when not in sleep state */
 450	if (mmc_pdata(host)->no_regulator_off_init)
 451		return 0;
 452
 453	ret = omap_hsmmc_disable_boot_regulators(host);
 454	if (ret)
 455		return ret;
 456
 457	return 0;
 458}
 459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 460/*
 461 * Start clock to the card
 462 */
 463static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host)
 464{
 465	OMAP_HSMMC_WRITE(host->base, SYSCTL,
 466		OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
 467}
 468
 469/*
 470 * Stop clock to the card
 471 */
 472static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
 473{
 474	OMAP_HSMMC_WRITE(host->base, SYSCTL,
 475		OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
 476	if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
 477		dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n");
 478}
 479
 480static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host,
 481				  struct mmc_command *cmd)
 482{
 483	u32 irq_mask = INT_EN_MASK;
 484	unsigned long flags;
 485
 486	if (host->use_dma)
 487		irq_mask &= ~(BRR_EN | BWR_EN);
 488
 489	/* Disable timeout for erases */
 490	if (cmd->opcode == MMC_ERASE)
 491		irq_mask &= ~DTO_EN;
 492
 493	spin_lock_irqsave(&host->irq_lock, flags);
 494	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
 495	OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
 496
 497	/* latch pending CIRQ, but don't signal MMC core */
 498	if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
 499		irq_mask |= CIRQ_EN;
 500	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
 501	spin_unlock_irqrestore(&host->irq_lock, flags);
 502}
 503
 504static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
 505{
 506	u32 irq_mask = 0;
 507	unsigned long flags;
 508
 509	spin_lock_irqsave(&host->irq_lock, flags);
 510	/* no transfer running but need to keep cirq if enabled */
 511	if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
 512		irq_mask |= CIRQ_EN;
 513	OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
 514	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
 515	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
 516	spin_unlock_irqrestore(&host->irq_lock, flags);
 517}
 518
 519/* Calculate divisor for the given clock frequency */
 520static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios)
 521{
 522	u16 dsor = 0;
 523
 524	if (ios->clock) {
 525		dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock);
 526		if (dsor > CLKD_MAX)
 527			dsor = CLKD_MAX;
 528	}
 529
 530	return dsor;
 531}
 532
 533static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host)
 534{
 535	struct mmc_ios *ios = &host->mmc->ios;
 536	unsigned long regval;
 537	unsigned long timeout;
 538	unsigned long clkdiv;
 539
 540	dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock);
 541
 542	omap_hsmmc_stop_clock(host);
 543
 544	regval = OMAP_HSMMC_READ(host->base, SYSCTL);
 545	regval = regval & ~(CLKD_MASK | DTO_MASK);
 546	clkdiv = calc_divisor(host, ios);
 547	regval = regval | (clkdiv << 6) | (DTO << 16);
 548	OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
 549	OMAP_HSMMC_WRITE(host->base, SYSCTL,
 550		OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
 551
 552	/* Wait till the ICS bit is set */
 553	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
 554	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
 555		&& time_before(jiffies, timeout))
 556		cpu_relax();
 557
 558	/*
 559	 * Enable High-Speed Support
 560	 * Pre-Requisites
 561	 *	- Controller should support High-Speed-Enable Bit
 562	 *	- Controller should not be using DDR Mode
 563	 *	- Controller should advertise that it supports High Speed
 564	 *	  in capabilities register
 565	 *	- MMC/SD clock coming out of controller > 25MHz
 566	 */
 567	if ((mmc_pdata(host)->features & HSMMC_HAS_HSPE_SUPPORT) &&
 568	    (ios->timing != MMC_TIMING_MMC_DDR52) &&
 569	    (ios->timing != MMC_TIMING_UHS_DDR50) &&
 570	    ((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) {
 571		regval = OMAP_HSMMC_READ(host->base, HCTL);
 572		if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000)
 573			regval |= HSPE;
 574		else
 575			regval &= ~HSPE;
 576
 577		OMAP_HSMMC_WRITE(host->base, HCTL, regval);
 578	}
 579
 580	omap_hsmmc_start_clock(host);
 581}
 582
 583static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host)
 584{
 585	struct mmc_ios *ios = &host->mmc->ios;
 586	u32 con;
 587
 588	con = OMAP_HSMMC_READ(host->base, CON);
 589	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
 590	    ios->timing == MMC_TIMING_UHS_DDR50)
 591		con |= DDR;	/* configure in DDR mode */
 592	else
 593		con &= ~DDR;
 594	switch (ios->bus_width) {
 595	case MMC_BUS_WIDTH_8:
 596		OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
 597		break;
 598	case MMC_BUS_WIDTH_4:
 599		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
 600		OMAP_HSMMC_WRITE(host->base, HCTL,
 601			OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
 602		break;
 603	case MMC_BUS_WIDTH_1:
 604		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
 605		OMAP_HSMMC_WRITE(host->base, HCTL,
 606			OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
 607		break;
 608	}
 609}
 610
 611static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host)
 612{
 613	struct mmc_ios *ios = &host->mmc->ios;
 614	u32 con;
 615
 616	con = OMAP_HSMMC_READ(host->base, CON);
 617	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
 618		OMAP_HSMMC_WRITE(host->base, CON, con | OD);
 619	else
 620		OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
 621}
 622
 623#ifdef CONFIG_PM
 624
 625/*
 626 * Restore the MMC host context, if it was lost as result of a
 627 * power state change.
 628 */
 629static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
 630{
 631	struct mmc_ios *ios = &host->mmc->ios;
 632	u32 hctl, capa;
 633	unsigned long timeout;
 634
 635	if (host->con == OMAP_HSMMC_READ(host->base, CON) &&
 636	    host->hctl == OMAP_HSMMC_READ(host->base, HCTL) &&
 637	    host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) &&
 638	    host->capa == OMAP_HSMMC_READ(host->base, CAPA))
 639		return 0;
 640
 641	host->context_loss++;
 642
 643	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
 644		if (host->power_mode != MMC_POWER_OFF &&
 645		    (1 << ios->vdd) <= MMC_VDD_23_24)
 646			hctl = SDVS18;
 647		else
 648			hctl = SDVS30;
 649		capa = VS30 | VS18;
 650	} else {
 651		hctl = SDVS18;
 652		capa = VS18;
 653	}
 654
 655	if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
 656		hctl |= IWE;
 657
 658	OMAP_HSMMC_WRITE(host->base, HCTL,
 659			OMAP_HSMMC_READ(host->base, HCTL) | hctl);
 660
 661	OMAP_HSMMC_WRITE(host->base, CAPA,
 662			OMAP_HSMMC_READ(host->base, CAPA) | capa);
 663
 664	OMAP_HSMMC_WRITE(host->base, HCTL,
 665			OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
 666
 667	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
 668	while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
 669		&& time_before(jiffies, timeout))
 670		;
 671
 672	OMAP_HSMMC_WRITE(host->base, ISE, 0);
 673	OMAP_HSMMC_WRITE(host->base, IE, 0);
 674	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
 675
 676	/* Do not initialize card-specific things if the power is off */
 677	if (host->power_mode == MMC_POWER_OFF)
 678		goto out;
 679
 680	omap_hsmmc_set_bus_width(host);
 681
 682	omap_hsmmc_set_clock(host);
 683
 684	omap_hsmmc_set_bus_mode(host);
 685
 686out:
 687	dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n",
 688		host->context_loss);
 689	return 0;
 690}
 691
 692/*
 693 * Save the MMC host context (store the number of power state changes so far).
 694 */
 695static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
 696{
 697	host->con =  OMAP_HSMMC_READ(host->base, CON);
 698	host->hctl = OMAP_HSMMC_READ(host->base, HCTL);
 699	host->sysctl =  OMAP_HSMMC_READ(host->base, SYSCTL);
 700	host->capa = OMAP_HSMMC_READ(host->base, CAPA);
 701}
 702
 703#else
 704
 
 
 
 
 
 705static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
 706{
 707}
 708
 709#endif
 710
 711/*
 712 * Send init stream sequence to card
 713 * before sending IDLE command
 714 */
 715static void send_init_stream(struct omap_hsmmc_host *host)
 716{
 717	int reg = 0;
 718	unsigned long timeout;
 719
 
 
 
 720	disable_irq(host->irq);
 721
 722	OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
 723	OMAP_HSMMC_WRITE(host->base, CON,
 724		OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
 725	OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);
 726
 727	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
 728	while ((reg != CC_EN) && time_before(jiffies, timeout))
 729		reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN;
 730
 731	OMAP_HSMMC_WRITE(host->base, CON,
 732		OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
 733
 734	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
 735	OMAP_HSMMC_READ(host->base, STAT);
 736
 737	enable_irq(host->irq);
 738}
 739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 740static ssize_t
 741omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
 742			char *buf)
 743{
 744	struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
 745	struct omap_hsmmc_host *host = mmc_priv(mmc);
 746
 747	return sprintf(buf, "%s\n", mmc_pdata(host)->name);
 748}
 749
 750static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
 751
 752/*
 753 * Configure the response type and send the cmd.
 754 */
 755static void
 756omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
 757	struct mmc_data *data)
 758{
 759	int cmdreg = 0, resptype = 0, cmdtype = 0;
 760
 761	dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
 762		mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
 763	host->cmd = cmd;
 764
 765	omap_hsmmc_enable_irq(host, cmd);
 766
 767	host->response_busy = 0;
 768	if (cmd->flags & MMC_RSP_PRESENT) {
 769		if (cmd->flags & MMC_RSP_136)
 770			resptype = 1;
 771		else if (cmd->flags & MMC_RSP_BUSY) {
 772			resptype = 3;
 773			host->response_busy = 1;
 774		} else
 775			resptype = 2;
 776	}
 777
 778	/*
 779	 * Unlike OMAP1 controller, the cmdtype does not seem to be based on
 780	 * ac, bc, adtc, bcr. Only commands ending an open ended transfer need
 781	 * a val of 0x3, rest 0x0.
 782	 */
 783	if (cmd == host->mrq->stop)
 784		cmdtype = 0x3;
 785
 786	cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
 787
 788	if ((host->flags & AUTO_CMD23) && mmc_op_multi(cmd->opcode) &&
 789	    host->mrq->sbc) {
 790		cmdreg |= ACEN_ACMD23;
 791		OMAP_HSMMC_WRITE(host->base, SDMASA, host->mrq->sbc->arg);
 792	}
 793	if (data) {
 794		cmdreg |= DP_SELECT | MSBS | BCE;
 795		if (data->flags & MMC_DATA_READ)
 796			cmdreg |= DDIR;
 797		else
 798			cmdreg &= ~(DDIR);
 799	}
 800
 801	if (host->use_dma)
 802		cmdreg |= DMAE;
 803
 804	host->req_in_progress = 1;
 805
 806	OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
 807	OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
 808}
 809
 
 
 
 
 
 
 
 
 
 810static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host,
 811	struct mmc_data *data)
 812{
 813	return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
 814}
 815
 816static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
 817{
 818	int dma_ch;
 819	unsigned long flags;
 820
 821	spin_lock_irqsave(&host->irq_lock, flags);
 822	host->req_in_progress = 0;
 823	dma_ch = host->dma_ch;
 824	spin_unlock_irqrestore(&host->irq_lock, flags);
 825
 826	omap_hsmmc_disable_irq(host);
 827	/* Do not complete the request if DMA is still in progress */
 828	if (mrq->data && host->use_dma && dma_ch != -1)
 829		return;
 830	host->mrq = NULL;
 831	mmc_request_done(host->mmc, mrq);
 
 
 832}
 833
 834/*
 835 * Notify the transfer complete to MMC core
 836 */
 837static void
 838omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
 839{
 840	if (!data) {
 841		struct mmc_request *mrq = host->mrq;
 842
 843		/* TC before CC from CMD6 - don't know why, but it happens */
 844		if (host->cmd && host->cmd->opcode == 6 &&
 845		    host->response_busy) {
 846			host->response_busy = 0;
 847			return;
 848		}
 849
 850		omap_hsmmc_request_done(host, mrq);
 851		return;
 852	}
 853
 854	host->data = NULL;
 855
 856	if (!data->error)
 857		data->bytes_xfered += data->blocks * (data->blksz);
 858	else
 859		data->bytes_xfered = 0;
 860
 861	if (data->stop && (data->error || !host->mrq->sbc))
 862		omap_hsmmc_start_command(host, data->stop, NULL);
 863	else
 864		omap_hsmmc_request_done(host, data->mrq);
 865}
 866
 867/*
 868 * Notify the core about command completion
 869 */
 870static void
 871omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
 872{
 873	if (host->mrq->sbc && (host->cmd == host->mrq->sbc) &&
 874	    !host->mrq->sbc->error && !(host->flags & AUTO_CMD23)) {
 875		host->cmd = NULL;
 876		omap_hsmmc_start_dma_transfer(host);
 877		omap_hsmmc_start_command(host, host->mrq->cmd,
 878						host->mrq->data);
 879		return;
 880	}
 881
 882	host->cmd = NULL;
 883
 884	if (cmd->flags & MMC_RSP_PRESENT) {
 885		if (cmd->flags & MMC_RSP_136) {
 886			/* response type 2 */
 887			cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
 888			cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
 889			cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
 890			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
 891		} else {
 892			/* response types 1, 1b, 3, 4, 5, 6 */
 893			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
 894		}
 895	}
 896	if ((host->data == NULL && !host->response_busy) || cmd->error)
 897		omap_hsmmc_request_done(host, host->mrq);
 898}
 899
 900/*
 901 * DMA clean up for command errors
 902 */
 903static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
 904{
 905	int dma_ch;
 906	unsigned long flags;
 907
 908	host->data->error = errno;
 909
 910	spin_lock_irqsave(&host->irq_lock, flags);
 911	dma_ch = host->dma_ch;
 912	host->dma_ch = -1;
 913	spin_unlock_irqrestore(&host->irq_lock, flags);
 914
 915	if (host->use_dma && dma_ch != -1) {
 916		struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data);
 917
 918		dmaengine_terminate_all(chan);
 919		dma_unmap_sg(chan->device->dev,
 920			host->data->sg, host->data->sg_len,
 921			mmc_get_dma_dir(host->data));
 922
 923		host->data->host_cookie = 0;
 924	}
 925	host->data = NULL;
 926}
 927
 928/*
 929 * Readable error output
 930 */
 931#ifdef CONFIG_MMC_DEBUG
 932static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status)
 933{
 934	/* --- means reserved bit without definition at documentation */
 935	static const char *omap_hsmmc_status_bits[] = {
 936		"CC"  , "TC"  , "BGE", "---", "BWR" , "BRR" , "---" , "---" ,
 937		"CIRQ",	"OBI" , "---", "---", "---" , "---" , "---" , "ERRI",
 938		"CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" ,
 939		"ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---"
 940	};
 941	char res[256];
 942	char *buf = res;
 943	int len, i;
 944
 945	len = sprintf(buf, "MMC IRQ 0x%x :", status);
 946	buf += len;
 947
 948	for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
 949		if (status & (1 << i)) {
 950			len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
 951			buf += len;
 952		}
 953
 954	dev_vdbg(mmc_dev(host->mmc), "%s\n", res);
 955}
 956#else
 957static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host,
 958					     u32 status)
 959{
 960}
 961#endif  /* CONFIG_MMC_DEBUG */
 962
 963/*
 964 * MMC controller internal state machines reset
 965 *
 966 * Used to reset command or data internal state machines, using respectively
 967 *  SRC or SRD bit of SYSCTL register
 968 * Can be called from interrupt context
 969 */
 970static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
 971						   unsigned long bit)
 972{
 973	unsigned long i = 0;
 974	unsigned long limit = MMC_TIMEOUT_US;
 975
 976	OMAP_HSMMC_WRITE(host->base, SYSCTL,
 977			 OMAP_HSMMC_READ(host->base, SYSCTL) | bit);
 978
 979	/*
 980	 * OMAP4 ES2 and greater has an updated reset logic.
 981	 * Monitor a 0->1 transition first
 982	 */
 983	if (mmc_pdata(host)->features & HSMMC_HAS_UPDATED_RESET) {
 984		while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit))
 985					&& (i++ < limit))
 986			udelay(1);
 987	}
 988	i = 0;
 989
 990	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
 991		(i++ < limit))
 992		udelay(1);
 993
 994	if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
 995		dev_err(mmc_dev(host->mmc),
 996			"Timeout waiting on controller reset in %s\n",
 997			__func__);
 998}
 999
1000static void hsmmc_command_incomplete(struct omap_hsmmc_host *host,
1001					int err, int end_cmd)
1002{
1003	if (end_cmd) {
1004		omap_hsmmc_reset_controller_fsm(host, SRC);
1005		if (host->cmd)
1006			host->cmd->error = err;
1007	}
1008
1009	if (host->data) {
1010		omap_hsmmc_reset_controller_fsm(host, SRD);
1011		omap_hsmmc_dma_cleanup(host, err);
1012	} else if (host->mrq && host->mrq->cmd)
1013		host->mrq->cmd->error = err;
1014}
1015
1016static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
1017{
1018	struct mmc_data *data;
1019	int end_cmd = 0, end_trans = 0;
1020	int error = 0;
1021
1022	data = host->data;
1023	dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
1024
1025	if (status & ERR_EN) {
1026		omap_hsmmc_dbg_report_irq(host, status);
1027
1028		if (status & (CTO_EN | CCRC_EN | CEB_EN))
1029			end_cmd = 1;
1030		if (host->data || host->response_busy) {
1031			end_trans = !end_cmd;
1032			host->response_busy = 0;
1033		}
1034		if (status & (CTO_EN | DTO_EN))
1035			hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd);
1036		else if (status & (CCRC_EN | DCRC_EN | DEB_EN | CEB_EN |
1037				   BADA_EN))
1038			hsmmc_command_incomplete(host, -EILSEQ, end_cmd);
1039
1040		if (status & ACE_EN) {
1041			u32 ac12;
1042			ac12 = OMAP_HSMMC_READ(host->base, AC12);
1043			if (!(ac12 & ACNE) && host->mrq->sbc) {
1044				end_cmd = 1;
1045				if (ac12 & ACTO)
1046					error =  -ETIMEDOUT;
1047				else if (ac12 & (ACCE | ACEB | ACIE))
1048					error = -EILSEQ;
1049				host->mrq->sbc->error = error;
1050				hsmmc_command_incomplete(host, error, end_cmd);
1051			}
1052			dev_dbg(mmc_dev(host->mmc), "AC12 err: 0x%x\n", ac12);
1053		}
1054	}
1055
1056	OMAP_HSMMC_WRITE(host->base, STAT, status);
1057	if (end_cmd || ((status & CC_EN) && host->cmd))
1058		omap_hsmmc_cmd_done(host, host->cmd);
1059	if ((end_trans || (status & TC_EN)) && host->mrq)
1060		omap_hsmmc_xfer_done(host, data);
1061}
1062
1063/*
1064 * MMC controller IRQ handler
1065 */
1066static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
1067{
1068	struct omap_hsmmc_host *host = dev_id;
1069	int status;
1070
1071	status = OMAP_HSMMC_READ(host->base, STAT);
1072	while (status & (INT_EN_MASK | CIRQ_EN)) {
1073		if (host->req_in_progress)
1074			omap_hsmmc_do_irq(host, status);
1075
1076		if (status & CIRQ_EN)
1077			mmc_signal_sdio_irq(host->mmc);
1078
1079		/* Flush posted write */
1080		status = OMAP_HSMMC_READ(host->base, STAT);
1081	}
1082
1083	return IRQ_HANDLED;
1084}
1085
1086static void set_sd_bus_power(struct omap_hsmmc_host *host)
1087{
1088	unsigned long i;
1089
1090	OMAP_HSMMC_WRITE(host->base, HCTL,
1091			 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
1092	for (i = 0; i < loops_per_jiffy; i++) {
1093		if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
1094			break;
1095		cpu_relax();
1096	}
1097}
1098
1099/*
1100 * Switch MMC interface voltage ... only relevant for MMC1.
1101 *
1102 * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
1103 * The MMC2 transceiver controls are used instead of DAT4..DAT7.
1104 * Some chips, like eMMC ones, use internal transceivers.
1105 */
1106static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
1107{
1108	u32 reg_val = 0;
1109	int ret;
1110
1111	/* Disable the clocks */
1112	clk_disable_unprepare(host->dbclk);
 
 
1113
1114	/* Turn the power off */
1115	ret = omap_hsmmc_set_power(host, 0);
1116
1117	/* Turn the power ON with given VDD 1.8 or 3.0v */
1118	if (!ret)
1119		ret = omap_hsmmc_set_power(host, 1);
1120	clk_prepare_enable(host->dbclk);
 
 
1121
1122	if (ret != 0)
1123		goto err;
1124
1125	OMAP_HSMMC_WRITE(host->base, HCTL,
1126		OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
1127	reg_val = OMAP_HSMMC_READ(host->base, HCTL);
1128
1129	/*
1130	 * If a MMC dual voltage card is detected, the set_ios fn calls
1131	 * this fn with VDD bit set for 1.8V. Upon card removal from the
1132	 * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
1133	 *
1134	 * Cope with a bit of slop in the range ... per data sheets:
1135	 *  - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
1136	 *    but recommended values are 1.71V to 1.89V
1137	 *  - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
1138	 *    but recommended values are 2.7V to 3.3V
1139	 *
1140	 * Board setup code shouldn't permit anything very out-of-range.
1141	 * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
1142	 * middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
1143	 */
1144	if ((1 << vdd) <= MMC_VDD_23_24)
1145		reg_val |= SDVS18;
1146	else
1147		reg_val |= SDVS30;
1148
1149	OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
1150	set_sd_bus_power(host);
1151
1152	return 0;
1153err:
1154	dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
1155	return ret;
1156}
1157
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1158static void omap_hsmmc_dma_callback(void *param)
1159{
1160	struct omap_hsmmc_host *host = param;
1161	struct dma_chan *chan;
1162	struct mmc_data *data;
1163	int req_in_progress;
1164
1165	spin_lock_irq(&host->irq_lock);
1166	if (host->dma_ch < 0) {
1167		spin_unlock_irq(&host->irq_lock);
1168		return;
1169	}
1170
1171	data = host->mrq->data;
1172	chan = omap_hsmmc_get_dma_chan(host, data);
1173	if (!data->host_cookie)
1174		dma_unmap_sg(chan->device->dev,
1175			     data->sg, data->sg_len,
1176			     mmc_get_dma_dir(data));
1177
1178	req_in_progress = host->req_in_progress;
1179	host->dma_ch = -1;
1180	spin_unlock_irq(&host->irq_lock);
1181
1182	/* If DMA has finished after TC, complete the request */
1183	if (!req_in_progress) {
1184		struct mmc_request *mrq = host->mrq;
1185
1186		host->mrq = NULL;
1187		mmc_request_done(host->mmc, mrq);
 
 
1188	}
1189}
1190
1191static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host,
1192				       struct mmc_data *data,
1193				       struct omap_hsmmc_next *next,
1194				       struct dma_chan *chan)
1195{
1196	int dma_len;
1197
1198	if (!next && data->host_cookie &&
1199	    data->host_cookie != host->next_data.cookie) {
1200		dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d"
1201		       " host->next_data.cookie %d\n",
1202		       __func__, data->host_cookie, host->next_data.cookie);
1203		data->host_cookie = 0;
1204	}
1205
1206	/* Check if next job is already prepared */
1207	if (next || data->host_cookie != host->next_data.cookie) {
1208		dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len,
1209				     mmc_get_dma_dir(data));
1210
1211	} else {
1212		dma_len = host->next_data.dma_len;
1213		host->next_data.dma_len = 0;
1214	}
1215
1216
1217	if (dma_len == 0)
1218		return -EINVAL;
1219
1220	if (next) {
1221		next->dma_len = dma_len;
1222		data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
1223	} else
1224		host->dma_len = dma_len;
1225
1226	return 0;
1227}
1228
1229/*
1230 * Routine to configure and start DMA for the MMC card
1231 */
1232static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host,
1233					struct mmc_request *req)
1234{
 
1235	struct dma_async_tx_descriptor *tx;
1236	int ret = 0, i;
1237	struct mmc_data *data = req->data;
1238	struct dma_chan *chan;
1239	struct dma_slave_config cfg = {
1240		.src_addr = host->mapbase + OMAP_HSMMC_DATA,
1241		.dst_addr = host->mapbase + OMAP_HSMMC_DATA,
1242		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1243		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1244		.src_maxburst = data->blksz / 4,
1245		.dst_maxburst = data->blksz / 4,
1246	};
1247
1248	/* Sanity check: all the SG entries must be aligned by block size. */
1249	for (i = 0; i < data->sg_len; i++) {
1250		struct scatterlist *sgl;
1251
1252		sgl = data->sg + i;
1253		if (sgl->length % data->blksz)
1254			return -EINVAL;
1255	}
1256	if ((data->blksz % 4) != 0)
1257		/* REVISIT: The MMC buffer increments only when MSB is written.
1258		 * Return error for blksz which is non multiple of four.
1259		 */
1260		return -EINVAL;
1261
1262	BUG_ON(host->dma_ch != -1);
1263
1264	chan = omap_hsmmc_get_dma_chan(host, data);
1265
 
 
 
 
 
 
 
1266	ret = dmaengine_slave_config(chan, &cfg);
1267	if (ret)
1268		return ret;
1269
1270	ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan);
1271	if (ret)
1272		return ret;
1273
1274	tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len,
1275		data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
1276		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1277	if (!tx) {
1278		dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n");
1279		/* FIXME: cleanup */
1280		return -1;
1281	}
1282
1283	tx->callback = omap_hsmmc_dma_callback;
1284	tx->callback_param = host;
1285
1286	/* Does not fail */
1287	dmaengine_submit(tx);
1288
1289	host->dma_ch = 1;
1290
1291	return 0;
1292}
1293
1294static void set_data_timeout(struct omap_hsmmc_host *host,
1295			     unsigned long long timeout_ns,
1296			     unsigned int timeout_clks)
1297{
1298	unsigned long long timeout = timeout_ns;
1299	unsigned int cycle_ns;
1300	uint32_t reg, clkd, dto = 0;
1301
1302	reg = OMAP_HSMMC_READ(host->base, SYSCTL);
1303	clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
1304	if (clkd == 0)
1305		clkd = 1;
1306
1307	cycle_ns = 1000000000 / (host->clk_rate / clkd);
1308	do_div(timeout, cycle_ns);
1309	timeout += timeout_clks;
1310	if (timeout) {
1311		while ((timeout & 0x80000000) == 0) {
1312			dto += 1;
1313			timeout <<= 1;
1314		}
1315		dto = 31 - dto;
1316		timeout <<= 1;
1317		if (timeout && dto)
1318			dto += 1;
1319		if (dto >= 13)
1320			dto -= 13;
1321		else
1322			dto = 0;
1323		if (dto > 14)
1324			dto = 14;
1325	}
1326
1327	reg &= ~DTO_MASK;
1328	reg |= dto << DTO_SHIFT;
1329	OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
1330}
1331
1332static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host)
1333{
1334	struct mmc_request *req = host->mrq;
1335	struct dma_chan *chan;
1336
1337	if (!req->data)
1338		return;
1339	OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
1340				| (req->data->blocks << 16));
1341	set_data_timeout(host, req->data->timeout_ns,
1342				req->data->timeout_clks);
1343	chan = omap_hsmmc_get_dma_chan(host, req->data);
1344	dma_async_issue_pending(chan);
1345}
1346
1347/*
1348 * Configure block length for MMC/SD cards and initiate the transfer.
1349 */
1350static int
1351omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
1352{
1353	int ret;
1354	unsigned long long timeout;
1355
1356	host->data = req->data;
1357
1358	if (req->data == NULL) {
1359		OMAP_HSMMC_WRITE(host->base, BLK, 0);
1360		if (req->cmd->flags & MMC_RSP_BUSY) {
1361			timeout = req->cmd->busy_timeout * NSEC_PER_MSEC;
1362
1363			/*
1364			 * Set an arbitrary 100ms data timeout for commands with
1365			 * busy signal and no indication of busy_timeout.
1366			 */
1367			if (!timeout)
1368				timeout = 100000000U;
1369
1370			set_data_timeout(host, timeout, 0);
1371		}
1372		return 0;
1373	}
1374
1375	if (host->use_dma) {
1376		ret = omap_hsmmc_setup_dma_transfer(host, req);
1377		if (ret != 0) {
1378			dev_err(mmc_dev(host->mmc), "MMC start dma failure\n");
1379			return ret;
1380		}
1381	}
1382	return 0;
1383}
1384
1385static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
1386				int err)
1387{
1388	struct omap_hsmmc_host *host = mmc_priv(mmc);
1389	struct mmc_data *data = mrq->data;
1390
1391	if (host->use_dma && data->host_cookie) {
1392		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data);
1393
1394		dma_unmap_sg(c->device->dev, data->sg, data->sg_len,
1395			     mmc_get_dma_dir(data));
1396		data->host_cookie = 0;
1397	}
1398}
1399
1400static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
 
1401{
1402	struct omap_hsmmc_host *host = mmc_priv(mmc);
1403
1404	if (mrq->data->host_cookie) {
1405		mrq->data->host_cookie = 0;
1406		return ;
1407	}
1408
1409	if (host->use_dma) {
1410		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data);
1411
1412		if (omap_hsmmc_pre_dma_transfer(host, mrq->data,
1413						&host->next_data, c))
1414			mrq->data->host_cookie = 0;
1415	}
1416}
1417
1418/*
1419 * Request function. for read/write operation
1420 */
1421static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
1422{
1423	struct omap_hsmmc_host *host = mmc_priv(mmc);
1424	int err;
1425
1426	BUG_ON(host->req_in_progress);
1427	BUG_ON(host->dma_ch != -1);
1428	if (host->reqs_blocked)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1429		host->reqs_blocked = 0;
1430	WARN_ON(host->mrq != NULL);
1431	host->mrq = req;
1432	host->clk_rate = clk_get_rate(host->fclk);
1433	err = omap_hsmmc_prepare_data(host, req);
1434	if (err) {
1435		req->cmd->error = err;
1436		if (req->data)
1437			req->data->error = err;
1438		host->mrq = NULL;
1439		mmc_request_done(mmc, req);
 
 
1440		return;
1441	}
1442	if (req->sbc && !(host->flags & AUTO_CMD23)) {
1443		omap_hsmmc_start_command(host, req->sbc, NULL);
1444		return;
1445	}
1446
1447	omap_hsmmc_start_dma_transfer(host);
1448	omap_hsmmc_start_command(host, req->cmd, req->data);
1449}
1450
1451/* Routine to configure clock values. Exposed API to core */
1452static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1453{
1454	struct omap_hsmmc_host *host = mmc_priv(mmc);
1455	int do_send_init_stream = 0;
1456
 
 
1457	if (ios->power_mode != host->power_mode) {
1458		switch (ios->power_mode) {
1459		case MMC_POWER_OFF:
1460			omap_hsmmc_set_power(host, 0);
1461			break;
1462		case MMC_POWER_UP:
1463			omap_hsmmc_set_power(host, 1);
1464			break;
1465		case MMC_POWER_ON:
1466			do_send_init_stream = 1;
1467			break;
1468		}
1469		host->power_mode = ios->power_mode;
1470	}
1471
1472	/* FIXME: set registers based only on changes to ios */
1473
1474	omap_hsmmc_set_bus_width(host);
1475
1476	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1477		/* Only MMC1 can interface at 3V without some flavor
1478		 * of external transceiver; but they all handle 1.8V.
1479		 */
1480		if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
1481			(ios->vdd == DUAL_VOLT_OCR_BIT)) {
1482				/*
1483				 * The mmc_select_voltage fn of the core does
1484				 * not seem to set the power_mode to
1485				 * MMC_POWER_UP upon recalculating the voltage.
1486				 * vdd 1.8v.
1487				 */
1488			if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
1489				dev_dbg(mmc_dev(host->mmc),
1490						"Switch operation failed\n");
1491		}
1492	}
1493
1494	omap_hsmmc_set_clock(host);
1495
1496	if (do_send_init_stream)
1497		send_init_stream(host);
1498
1499	omap_hsmmc_set_bus_mode(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1500}
1501
1502static void omap_hsmmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
1503{
1504	struct omap_hsmmc_host *host = mmc_priv(mmc);
1505	u32 irq_mask, con;
1506	unsigned long flags;
1507
1508	spin_lock_irqsave(&host->irq_lock, flags);
1509
1510	con = OMAP_HSMMC_READ(host->base, CON);
1511	irq_mask = OMAP_HSMMC_READ(host->base, ISE);
1512	if (enable) {
1513		host->flags |= HSMMC_SDIO_IRQ_ENABLED;
1514		irq_mask |= CIRQ_EN;
1515		con |= CTPL | CLKEXTFREE;
1516	} else {
1517		host->flags &= ~HSMMC_SDIO_IRQ_ENABLED;
1518		irq_mask &= ~CIRQ_EN;
1519		con &= ~(CTPL | CLKEXTFREE);
1520	}
1521	OMAP_HSMMC_WRITE(host->base, CON, con);
1522	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
1523
1524	/*
1525	 * if enable, piggy back detection on current request
1526	 * but always disable immediately
1527	 */
1528	if (!host->req_in_progress || !enable)
1529		OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
1530
1531	/* flush posted write */
1532	OMAP_HSMMC_READ(host->base, IE);
1533
1534	spin_unlock_irqrestore(&host->irq_lock, flags);
1535}
1536
1537static int omap_hsmmc_configure_wake_irq(struct omap_hsmmc_host *host)
1538{
1539	int ret;
1540
1541	/*
1542	 * For omaps with wake-up path, wakeirq will be irq from pinctrl and
1543	 * for other omaps, wakeirq will be from GPIO (dat line remuxed to
1544	 * gpio). wakeirq is needed to detect sdio irq in runtime suspend state
1545	 * with functional clock disabled.
1546	 */
1547	if (!host->dev->of_node || !host->wake_irq)
1548		return -ENODEV;
1549
1550	ret = dev_pm_set_dedicated_wake_irq(host->dev, host->wake_irq);
1551	if (ret) {
1552		dev_err(mmc_dev(host->mmc), "Unable to request wake IRQ\n");
1553		goto err;
1554	}
1555
1556	/*
1557	 * Some omaps don't have wake-up path from deeper idle states
1558	 * and need to remux SDIO DAT1 to GPIO for wake-up from idle.
1559	 */
1560	if (host->pdata->controller_flags & OMAP_HSMMC_SWAKEUP_MISSING) {
1561		struct pinctrl *p = devm_pinctrl_get(host->dev);
1562		if (IS_ERR(p)) {
1563			ret = PTR_ERR(p);
 
 
 
 
 
 
1564			goto err_free_irq;
1565		}
1566
1567		if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_IDLE))) {
1568			dev_info(host->dev, "missing idle pinctrl state\n");
1569			devm_pinctrl_put(p);
1570			ret = -EINVAL;
1571			goto err_free_irq;
1572		}
1573		devm_pinctrl_put(p);
1574	}
1575
1576	OMAP_HSMMC_WRITE(host->base, HCTL,
1577			 OMAP_HSMMC_READ(host->base, HCTL) | IWE);
1578	return 0;
1579
1580err_free_irq:
1581	dev_pm_clear_wake_irq(host->dev);
1582err:
1583	dev_warn(host->dev, "no SDIO IRQ support, falling back to polling\n");
1584	host->wake_irq = 0;
1585	return ret;
1586}
1587
1588static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
1589{
1590	u32 hctl, capa, value;
1591
1592	/* Only MMC1 supports 3.0V */
1593	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1594		hctl = SDVS30;
1595		capa = VS30 | VS18;
1596	} else {
1597		hctl = SDVS18;
1598		capa = VS18;
1599	}
1600
1601	value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
1602	OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);
1603
1604	value = OMAP_HSMMC_READ(host->base, CAPA);
1605	OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);
1606
1607	/* Set SD bus power bit */
1608	set_sd_bus_power(host);
1609}
1610
1611static int omap_hsmmc_multi_io_quirk(struct mmc_card *card,
1612				     unsigned int direction, int blk_size)
1613{
1614	/* This controller can't do multiblock reads due to hw bugs */
1615	if (direction == MMC_DATA_READ)
1616		return 1;
1617
1618	return blk_size;
1619}
1620
1621static struct mmc_host_ops omap_hsmmc_ops = {
1622	.post_req = omap_hsmmc_post_req,
1623	.pre_req = omap_hsmmc_pre_req,
1624	.request = omap_hsmmc_request,
1625	.set_ios = omap_hsmmc_set_ios,
1626	.get_cd = mmc_gpio_get_cd,
1627	.get_ro = mmc_gpio_get_ro,
 
1628	.enable_sdio_irq = omap_hsmmc_enable_sdio_irq,
1629};
1630
1631#ifdef CONFIG_DEBUG_FS
1632
1633static int mmc_regs_show(struct seq_file *s, void *data)
1634{
1635	struct mmc_host *mmc = s->private;
1636	struct omap_hsmmc_host *host = mmc_priv(mmc);
1637
1638	seq_printf(s, "mmc%d:\n", mmc->index);
1639	seq_printf(s, "sdio irq mode\t%s\n",
1640		   (mmc->caps & MMC_CAP_SDIO_IRQ) ? "interrupt" : "polling");
1641
1642	if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1643		seq_printf(s, "sdio irq \t%s\n",
1644			   (host->flags & HSMMC_SDIO_IRQ_ENABLED) ?  "enabled"
1645			   : "disabled");
1646	}
1647	seq_printf(s, "ctx_loss:\t%d\n", host->context_loss);
1648
1649	pm_runtime_get_sync(host->dev);
1650	seq_puts(s, "\nregs:\n");
1651	seq_printf(s, "CON:\t\t0x%08x\n",
1652			OMAP_HSMMC_READ(host->base, CON));
1653	seq_printf(s, "PSTATE:\t\t0x%08x\n",
1654		   OMAP_HSMMC_READ(host->base, PSTATE));
1655	seq_printf(s, "HCTL:\t\t0x%08x\n",
1656			OMAP_HSMMC_READ(host->base, HCTL));
1657	seq_printf(s, "SYSCTL:\t\t0x%08x\n",
1658			OMAP_HSMMC_READ(host->base, SYSCTL));
1659	seq_printf(s, "IE:\t\t0x%08x\n",
1660			OMAP_HSMMC_READ(host->base, IE));
1661	seq_printf(s, "ISE:\t\t0x%08x\n",
1662			OMAP_HSMMC_READ(host->base, ISE));
1663	seq_printf(s, "CAPA:\t\t0x%08x\n",
1664			OMAP_HSMMC_READ(host->base, CAPA));
1665
1666	pm_runtime_mark_last_busy(host->dev);
1667	pm_runtime_put_autosuspend(host->dev);
1668
1669	return 0;
1670}
1671
1672DEFINE_SHOW_ATTRIBUTE(mmc_regs);
 
 
 
 
 
 
 
 
 
 
1673
1674static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1675{
1676	if (mmc->debugfs_root)
1677		debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root,
1678			mmc, &mmc_regs_fops);
1679}
1680
1681#else
1682
1683static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1684{
1685}
1686
1687#endif
1688
1689#ifdef CONFIG_OF
1690static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = {
1691	/* See 35xx errata 2.1.1.128 in SPRZ278F */
1692	.controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ,
1693};
1694
1695static const struct omap_mmc_of_data omap4_mmc_of_data = {
1696	.reg_offset = 0x100,
1697};
1698static const struct omap_mmc_of_data am33xx_mmc_of_data = {
1699	.reg_offset = 0x100,
1700	.controller_flags = OMAP_HSMMC_SWAKEUP_MISSING,
1701};
1702
1703static const struct of_device_id omap_mmc_of_match[] = {
1704	{
1705		.compatible = "ti,omap2-hsmmc",
1706	},
1707	{
1708		.compatible = "ti,omap3-pre-es3-hsmmc",
1709		.data = &omap3_pre_es3_mmc_of_data,
1710	},
1711	{
1712		.compatible = "ti,omap3-hsmmc",
1713	},
1714	{
1715		.compatible = "ti,omap4-hsmmc",
1716		.data = &omap4_mmc_of_data,
1717	},
1718	{
1719		.compatible = "ti,am33xx-hsmmc",
1720		.data = &am33xx_mmc_of_data,
1721	},
1722	{},
1723};
1724MODULE_DEVICE_TABLE(of, omap_mmc_of_match);
1725
1726static struct omap_hsmmc_platform_data *of_get_hsmmc_pdata(struct device *dev)
1727{
1728	struct omap_hsmmc_platform_data *pdata, *legacy;
1729	struct device_node *np = dev->of_node;
1730
1731	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1732	if (!pdata)
1733		return ERR_PTR(-ENOMEM); /* out of memory */
1734
1735	legacy = dev_get_platdata(dev);
1736	if (legacy && legacy->name)
1737		pdata->name = legacy->name;
1738
1739	if (of_find_property(np, "ti,dual-volt", NULL))
1740		pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1741
 
 
 
 
1742	if (of_find_property(np, "ti,non-removable", NULL)) {
1743		pdata->nonremovable = true;
1744		pdata->no_regulator_off_init = true;
1745	}
1746
1747	if (of_find_property(np, "ti,needs-special-reset", NULL))
1748		pdata->features |= HSMMC_HAS_UPDATED_RESET;
1749
1750	if (of_find_property(np, "ti,needs-special-hs-handling", NULL))
1751		pdata->features |= HSMMC_HAS_HSPE_SUPPORT;
1752
1753	return pdata;
1754}
1755#else
1756static inline struct omap_hsmmc_platform_data
1757			*of_get_hsmmc_pdata(struct device *dev)
1758{
1759	return ERR_PTR(-EINVAL);
1760}
1761#endif
1762
1763static int omap_hsmmc_probe(struct platform_device *pdev)
1764{
1765	struct omap_hsmmc_platform_data *pdata = pdev->dev.platform_data;
1766	struct mmc_host *mmc;
1767	struct omap_hsmmc_host *host = NULL;
1768	struct resource *res;
1769	int ret, irq;
1770	const struct of_device_id *match;
 
 
1771	const struct omap_mmc_of_data *data;
1772	void __iomem *base;
1773
1774	match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev);
1775	if (match) {
1776		pdata = of_get_hsmmc_pdata(&pdev->dev);
1777
1778		if (IS_ERR(pdata))
1779			return PTR_ERR(pdata);
1780
1781		if (match->data) {
1782			data = match->data;
1783			pdata->reg_offset = data->reg_offset;
1784			pdata->controller_flags |= data->controller_flags;
1785		}
1786	}
1787
1788	if (pdata == NULL) {
1789		dev_err(&pdev->dev, "Platform Data is missing\n");
1790		return -ENXIO;
1791	}
1792
1793	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1794	irq = platform_get_irq(pdev, 0);
1795	if (res == NULL || irq < 0)
1796		return -ENXIO;
1797
1798	base = devm_ioremap_resource(&pdev->dev, res);
1799	if (IS_ERR(base))
1800		return PTR_ERR(base);
1801
1802	mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev);
1803	if (!mmc) {
1804		ret = -ENOMEM;
1805		goto err;
1806	}
1807
1808	ret = mmc_of_parse(mmc);
1809	if (ret)
1810		goto err1;
1811
1812	host		= mmc_priv(mmc);
1813	host->mmc	= mmc;
1814	host->pdata	= pdata;
1815	host->dev	= &pdev->dev;
1816	host->use_dma	= 1;
1817	host->dma_ch	= -1;
1818	host->irq	= irq;
1819	host->mapbase	= res->start + pdata->reg_offset;
1820	host->base	= base + pdata->reg_offset;
1821	host->power_mode = MMC_POWER_OFF;
1822	host->next_data.cookie = 1;
1823	host->pbias_enabled = false;
1824	host->vqmmc_enabled = false;
 
 
 
 
1825
1826	platform_set_drvdata(pdev, host);
1827
1828	if (pdev->dev.of_node)
1829		host->wake_irq = irq_of_parse_and_map(pdev->dev.of_node, 1);
1830
1831	mmc->ops	= &omap_hsmmc_ops;
1832
1833	mmc->f_min = OMAP_MMC_MIN_CLOCK;
1834
1835	if (pdata->max_freq > 0)
1836		mmc->f_max = pdata->max_freq;
1837	else if (mmc->f_max == 0)
1838		mmc->f_max = OMAP_MMC_MAX_CLOCK;
1839
1840	spin_lock_init(&host->irq_lock);
1841
1842	host->fclk = devm_clk_get(&pdev->dev, "fck");
1843	if (IS_ERR(host->fclk)) {
1844		ret = PTR_ERR(host->fclk);
1845		host->fclk = NULL;
1846		goto err1;
1847	}
1848
1849	if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) {
1850		dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n");
1851		omap_hsmmc_ops.multi_io_quirk = omap_hsmmc_multi_io_quirk;
1852	}
1853
1854	device_init_wakeup(&pdev->dev, true);
1855	pm_runtime_enable(host->dev);
1856	pm_runtime_get_sync(host->dev);
1857	pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY);
1858	pm_runtime_use_autosuspend(host->dev);
1859
1860	omap_hsmmc_context_save(host);
1861
1862	host->dbclk = devm_clk_get(&pdev->dev, "mmchsdb_fck");
1863	/*
1864	 * MMC can still work without debounce clock.
1865	 */
1866	if (IS_ERR(host->dbclk)) {
1867		host->dbclk = NULL;
1868	} else if (clk_prepare_enable(host->dbclk) != 0) {
1869		dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n");
1870		host->dbclk = NULL;
1871	}
1872
1873	/* Set this to a value that allows allocating an entire descriptor
1874	 * list within a page (zero order allocation). */
1875	mmc->max_segs = 64;
1876
1877	mmc->max_blk_size = 512;       /* Block Length at max can be 1024 */
1878	mmc->max_blk_count = 0xFFFF;    /* No. of Blocks is 16 bits */
1879	mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
 
1880
1881	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
1882		     MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_CMD23;
1883
1884	mmc->caps |= mmc_pdata(host)->caps;
1885	if (mmc->caps & MMC_CAP_8_BIT_DATA)
1886		mmc->caps |= MMC_CAP_4_BIT_DATA;
1887
1888	if (mmc_pdata(host)->nonremovable)
1889		mmc->caps |= MMC_CAP_NONREMOVABLE;
1890
1891	mmc->pm_caps |= mmc_pdata(host)->pm_caps;
1892
1893	omap_hsmmc_conf_bus_power(host);
1894
1895	host->rx_chan = dma_request_chan(&pdev->dev, "rx");
1896	if (IS_ERR(host->rx_chan)) {
1897		dev_err(mmc_dev(host->mmc), "RX DMA channel request failed\n");
1898		ret = PTR_ERR(host->rx_chan);
1899		goto err_irq;
 
 
 
 
 
 
 
 
 
 
 
1900	}
1901
1902	host->tx_chan = dma_request_chan(&pdev->dev, "tx");
1903	if (IS_ERR(host->tx_chan)) {
1904		dev_err(mmc_dev(host->mmc), "TX DMA channel request failed\n");
1905		ret = PTR_ERR(host->tx_chan);
 
 
 
 
 
 
1906		goto err_irq;
1907	}
1908
1909	/*
1910	 * Limit the maximum segment size to the lower of the request size
1911	 * and the DMA engine device segment size limits.  In reality, with
1912	 * 32-bit transfers, the DMA engine can do longer segments than this
1913	 * but there is no way to represent that in the DMA model - if we
1914	 * increase this figure here, we get warnings from the DMA API debug.
1915	 */
1916	mmc->max_seg_size = min3(mmc->max_req_size,
1917			dma_get_max_seg_size(host->rx_chan->device->dev),
1918			dma_get_max_seg_size(host->tx_chan->device->dev));
1919
1920	/* Request IRQ for MMC operations */
1921	ret = devm_request_irq(&pdev->dev, host->irq, omap_hsmmc_irq, 0,
1922			mmc_hostname(mmc), host);
1923	if (ret) {
1924		dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
1925		goto err_irq;
1926	}
1927
1928	ret = omap_hsmmc_reg_get(host);
1929	if (ret)
1930		goto err_irq;
1931
1932	if (!mmc->ocr_avail)
1933		mmc->ocr_avail = mmc_pdata(host)->ocr_mask;
1934
1935	omap_hsmmc_disable_irq(host);
1936
1937	/*
1938	 * For now, only support SDIO interrupt if we have a separate
1939	 * wake-up interrupt configured from device tree. This is because
1940	 * the wake-up interrupt is needed for idle state and some
1941	 * platforms need special quirks. And we don't want to add new
1942	 * legacy mux platform init code callbacks any longer as we
1943	 * are moving to DT based booting anyways.
1944	 */
1945	ret = omap_hsmmc_configure_wake_irq(host);
1946	if (!ret)
1947		mmc->caps |= MMC_CAP_SDIO_IRQ;
1948
1949	ret = mmc_add_host(mmc);
1950	if (ret)
1951		goto err_irq;
1952
1953	if (mmc_pdata(host)->name != NULL) {
1954		ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
1955		if (ret < 0)
1956			goto err_slot_name;
1957	}
 
 
 
 
 
 
1958
1959	omap_hsmmc_debugfs(mmc);
1960	pm_runtime_mark_last_busy(host->dev);
1961	pm_runtime_put_autosuspend(host->dev);
1962
1963	return 0;
1964
1965err_slot_name:
1966	mmc_remove_host(mmc);
1967err_irq:
1968	device_init_wakeup(&pdev->dev, false);
1969	if (!IS_ERR_OR_NULL(host->tx_chan))
1970		dma_release_channel(host->tx_chan);
1971	if (!IS_ERR_OR_NULL(host->rx_chan))
1972		dma_release_channel(host->rx_chan);
1973	pm_runtime_dont_use_autosuspend(host->dev);
1974	pm_runtime_put_sync(host->dev);
1975	pm_runtime_disable(host->dev);
1976	clk_disable_unprepare(host->dbclk);
 
1977err1:
 
1978	mmc_free_host(mmc);
1979err:
1980	return ret;
1981}
1982
1983static int omap_hsmmc_remove(struct platform_device *pdev)
1984{
1985	struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
1986
1987	pm_runtime_get_sync(host->dev);
1988	mmc_remove_host(host->mmc);
1989
1990	dma_release_channel(host->tx_chan);
1991	dma_release_channel(host->rx_chan);
1992
1993	dev_pm_clear_wake_irq(host->dev);
1994	pm_runtime_dont_use_autosuspend(host->dev);
1995	pm_runtime_put_sync(host->dev);
1996	pm_runtime_disable(host->dev);
1997	device_init_wakeup(&pdev->dev, false);
1998	clk_disable_unprepare(host->dbclk);
 
1999
2000	mmc_free_host(host->mmc);
2001
2002	return 0;
2003}
2004
2005#ifdef CONFIG_PM_SLEEP
2006static int omap_hsmmc_suspend(struct device *dev)
2007{
2008	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2009
2010	if (!host)
2011		return 0;
2012
2013	pm_runtime_get_sync(host->dev);
2014
2015	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
2016		OMAP_HSMMC_WRITE(host->base, ISE, 0);
2017		OMAP_HSMMC_WRITE(host->base, IE, 0);
2018		OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2019		OMAP_HSMMC_WRITE(host->base, HCTL,
2020				OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
2021	}
2022
2023	clk_disable_unprepare(host->dbclk);
 
2024
2025	pm_runtime_put_sync(host->dev);
2026	return 0;
2027}
2028
2029/* Routine to resume the MMC device */
2030static int omap_hsmmc_resume(struct device *dev)
2031{
2032	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2033
2034	if (!host)
2035		return 0;
2036
2037	pm_runtime_get_sync(host->dev);
2038
2039	clk_prepare_enable(host->dbclk);
 
2040
2041	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER))
2042		omap_hsmmc_conf_bus_power(host);
2043
 
2044	pm_runtime_mark_last_busy(host->dev);
2045	pm_runtime_put_autosuspend(host->dev);
2046	return 0;
2047}
2048#endif
2049
2050#ifdef CONFIG_PM
2051static int omap_hsmmc_runtime_suspend(struct device *dev)
2052{
2053	struct omap_hsmmc_host *host;
2054	unsigned long flags;
2055	int ret = 0;
2056
2057	host = dev_get_drvdata(dev);
2058	omap_hsmmc_context_save(host);
2059	dev_dbg(dev, "disabled\n");
2060
2061	spin_lock_irqsave(&host->irq_lock, flags);
2062	if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2063	    (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2064		/* disable sdio irq handling to prevent race */
2065		OMAP_HSMMC_WRITE(host->base, ISE, 0);
2066		OMAP_HSMMC_WRITE(host->base, IE, 0);
2067
2068		if (!(OMAP_HSMMC_READ(host->base, PSTATE) & DLEV_DAT(1))) {
2069			/*
2070			 * dat1 line low, pending sdio irq
2071			 * race condition: possible irq handler running on
2072			 * multi-core, abort
2073			 */
2074			dev_dbg(dev, "pending sdio irq, abort suspend\n");
2075			OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2076			OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2077			OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2078			pm_runtime_mark_last_busy(dev);
2079			ret = -EBUSY;
2080			goto abort;
2081		}
2082
2083		pinctrl_pm_select_idle_state(dev);
2084	} else {
2085		pinctrl_pm_select_idle_state(dev);
2086	}
2087
2088abort:
2089	spin_unlock_irqrestore(&host->irq_lock, flags);
2090	return ret;
2091}
2092
2093static int omap_hsmmc_runtime_resume(struct device *dev)
2094{
2095	struct omap_hsmmc_host *host;
2096	unsigned long flags;
2097
2098	host = dev_get_drvdata(dev);
2099	omap_hsmmc_context_restore(host);
2100	dev_dbg(dev, "enabled\n");
2101
2102	spin_lock_irqsave(&host->irq_lock, flags);
2103	if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2104	    (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2105
2106		pinctrl_select_default_state(host->dev);
2107
2108		/* irq lost, if pinmux incorrect */
2109		OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2110		OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2111		OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2112	} else {
2113		pinctrl_select_default_state(host->dev);
2114	}
2115	spin_unlock_irqrestore(&host->irq_lock, flags);
2116	return 0;
2117}
2118#endif
2119
2120static const struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
2121	SET_SYSTEM_SLEEP_PM_OPS(omap_hsmmc_suspend, omap_hsmmc_resume)
2122	SET_RUNTIME_PM_OPS(omap_hsmmc_runtime_suspend, omap_hsmmc_runtime_resume, NULL)
 
2123};
2124
2125static struct platform_driver omap_hsmmc_driver = {
2126	.probe		= omap_hsmmc_probe,
2127	.remove		= omap_hsmmc_remove,
2128	.driver		= {
2129		.name = DRIVER_NAME,
2130		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
2131		.pm = &omap_hsmmc_dev_pm_ops,
2132		.of_match_table = of_match_ptr(omap_mmc_of_match),
2133	},
2134};
2135
2136module_platform_driver(omap_hsmmc_driver);
2137MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
2138MODULE_LICENSE("GPL");
2139MODULE_ALIAS("platform:" DRIVER_NAME);
2140MODULE_AUTHOR("Texas Instruments Inc");
v4.6
   1/*
   2 * drivers/mmc/host/omap_hsmmc.c
   3 *
   4 * Driver for OMAP2430/3430 MMC controller.
   5 *
   6 * Copyright (C) 2007 Texas Instruments.
   7 *
   8 * Authors:
   9 *	Syed Mohammed Khasim	<x0khasim@ti.com>
  10 *	Madhusudhan		<madhu.cr@ti.com>
  11 *	Mohit Jalori		<mjalori@ti.com>
  12 *
  13 * This file is licensed under the terms of the GNU General Public License
  14 * version 2. This program is licensed "as is" without any warranty of any
  15 * kind, whether express or implied.
  16 */
  17
  18#include <linux/module.h>
  19#include <linux/init.h>
  20#include <linux/kernel.h>
  21#include <linux/debugfs.h>
  22#include <linux/dmaengine.h>
  23#include <linux/seq_file.h>
  24#include <linux/sizes.h>
  25#include <linux/interrupt.h>
  26#include <linux/delay.h>
  27#include <linux/dma-mapping.h>
  28#include <linux/platform_device.h>
  29#include <linux/timer.h>
  30#include <linux/clk.h>
  31#include <linux/of.h>
  32#include <linux/of_irq.h>
  33#include <linux/of_gpio.h>
  34#include <linux/of_device.h>
  35#include <linux/omap-dmaengine.h>
  36#include <linux/mmc/host.h>
  37#include <linux/mmc/core.h>
  38#include <linux/mmc/mmc.h>
  39#include <linux/mmc/slot-gpio.h>
  40#include <linux/io.h>
  41#include <linux/irq.h>
  42#include <linux/gpio.h>
  43#include <linux/regulator/consumer.h>
  44#include <linux/pinctrl/consumer.h>
  45#include <linux/pm_runtime.h>
  46#include <linux/pm_wakeirq.h>
  47#include <linux/platform_data/hsmmc-omap.h>
  48
  49/* OMAP HSMMC Host Controller Registers */
  50#define OMAP_HSMMC_SYSSTATUS	0x0014
  51#define OMAP_HSMMC_CON		0x002C
  52#define OMAP_HSMMC_SDMASA	0x0100
  53#define OMAP_HSMMC_BLK		0x0104
  54#define OMAP_HSMMC_ARG		0x0108
  55#define OMAP_HSMMC_CMD		0x010C
  56#define OMAP_HSMMC_RSP10	0x0110
  57#define OMAP_HSMMC_RSP32	0x0114
  58#define OMAP_HSMMC_RSP54	0x0118
  59#define OMAP_HSMMC_RSP76	0x011C
  60#define OMAP_HSMMC_DATA		0x0120
  61#define OMAP_HSMMC_PSTATE	0x0124
  62#define OMAP_HSMMC_HCTL		0x0128
  63#define OMAP_HSMMC_SYSCTL	0x012C
  64#define OMAP_HSMMC_STAT		0x0130
  65#define OMAP_HSMMC_IE		0x0134
  66#define OMAP_HSMMC_ISE		0x0138
  67#define OMAP_HSMMC_AC12		0x013C
  68#define OMAP_HSMMC_CAPA		0x0140
  69
  70#define VS18			(1 << 26)
  71#define VS30			(1 << 25)
  72#define HSS			(1 << 21)
  73#define SDVS18			(0x5 << 9)
  74#define SDVS30			(0x6 << 9)
  75#define SDVS33			(0x7 << 9)
  76#define SDVS_MASK		0x00000E00
  77#define SDVSCLR			0xFFFFF1FF
  78#define SDVSDET			0x00000400
  79#define AUTOIDLE		0x1
  80#define SDBP			(1 << 8)
  81#define DTO			0xe
  82#define ICE			0x1
  83#define ICS			0x2
  84#define CEN			(1 << 2)
  85#define CLKD_MAX		0x3FF		/* max clock divisor: 1023 */
  86#define CLKD_MASK		0x0000FFC0
  87#define CLKD_SHIFT		6
  88#define DTO_MASK		0x000F0000
  89#define DTO_SHIFT		16
  90#define INIT_STREAM		(1 << 1)
  91#define ACEN_ACMD23		(2 << 2)
  92#define DP_SELECT		(1 << 21)
  93#define DDIR			(1 << 4)
  94#define DMAE			0x1
  95#define MSBS			(1 << 5)
  96#define BCE			(1 << 1)
  97#define FOUR_BIT		(1 << 1)
  98#define HSPE			(1 << 2)
  99#define IWE			(1 << 24)
 100#define DDR			(1 << 19)
 101#define CLKEXTFREE		(1 << 16)
 102#define CTPL			(1 << 11)
 103#define DW8			(1 << 5)
 104#define OD			0x1
 105#define STAT_CLEAR		0xFFFFFFFF
 106#define INIT_STREAM_CMD		0x00000000
 107#define DUAL_VOLT_OCR_BIT	7
 108#define SRC			(1 << 25)
 109#define SRD			(1 << 26)
 110#define SOFTRESET		(1 << 1)
 111
 112/* PSTATE */
 113#define DLEV_DAT(x)		(1 << (20 + (x)))
 114
 115/* Interrupt masks for IE and ISE register */
 116#define CC_EN			(1 << 0)
 117#define TC_EN			(1 << 1)
 118#define BWR_EN			(1 << 4)
 119#define BRR_EN			(1 << 5)
 120#define CIRQ_EN			(1 << 8)
 121#define ERR_EN			(1 << 15)
 122#define CTO_EN			(1 << 16)
 123#define CCRC_EN			(1 << 17)
 124#define CEB_EN			(1 << 18)
 125#define CIE_EN			(1 << 19)
 126#define DTO_EN			(1 << 20)
 127#define DCRC_EN			(1 << 21)
 128#define DEB_EN			(1 << 22)
 129#define ACE_EN			(1 << 24)
 130#define CERR_EN			(1 << 28)
 131#define BADA_EN			(1 << 29)
 132
 133#define INT_EN_MASK (BADA_EN | CERR_EN | ACE_EN | DEB_EN | DCRC_EN |\
 134		DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \
 135		BRR_EN | BWR_EN | TC_EN | CC_EN)
 136
 137#define CNI	(1 << 7)
 138#define ACIE	(1 << 4)
 139#define ACEB	(1 << 3)
 140#define ACCE	(1 << 2)
 141#define ACTO	(1 << 1)
 142#define ACNE	(1 << 0)
 143
 144#define MMC_AUTOSUSPEND_DELAY	100
 145#define MMC_TIMEOUT_MS		20		/* 20 mSec */
 146#define MMC_TIMEOUT_US		20000		/* 20000 micro Sec */
 147#define OMAP_MMC_MIN_CLOCK	400000
 148#define OMAP_MMC_MAX_CLOCK	52000000
 149#define DRIVER_NAME		"omap_hsmmc"
 150
 151#define VDD_1V8			1800000		/* 180000 uV */
 152#define VDD_3V0			3000000		/* 300000 uV */
 153#define VDD_165_195		(ffs(MMC_VDD_165_195) - 1)
 154
 155/*
 156 * One controller can have multiple slots, like on some omap boards using
 157 * omap.c controller driver. Luckily this is not currently done on any known
 158 * omap_hsmmc.c device.
 159 */
 160#define mmc_pdata(host)		host->pdata
 161
 162/*
 163 * MMC Host controller read/write API's
 164 */
 165#define OMAP_HSMMC_READ(base, reg)	\
 166	__raw_readl((base) + OMAP_HSMMC_##reg)
 167
 168#define OMAP_HSMMC_WRITE(base, reg, val) \
 169	__raw_writel((val), (base) + OMAP_HSMMC_##reg)
 170
 171struct omap_hsmmc_next {
 172	unsigned int	dma_len;
 173	s32		cookie;
 174};
 175
 176struct omap_hsmmc_host {
 177	struct	device		*dev;
 178	struct	mmc_host	*mmc;
 179	struct	mmc_request	*mrq;
 180	struct	mmc_command	*cmd;
 181	struct	mmc_data	*data;
 182	struct	clk		*fclk;
 183	struct	clk		*dbclk;
 184	struct	regulator	*pbias;
 185	bool			pbias_enabled;
 186	void	__iomem		*base;
 187	int			vqmmc_enabled;
 188	resource_size_t		mapbase;
 189	spinlock_t		irq_lock; /* Prevent races with irq handler */
 190	unsigned int		dma_len;
 191	unsigned int		dma_sg_idx;
 192	unsigned char		bus_mode;
 193	unsigned char		power_mode;
 194	int			suspended;
 195	u32			con;
 196	u32			hctl;
 197	u32			sysctl;
 198	u32			capa;
 199	int			irq;
 200	int			wake_irq;
 201	int			use_dma, dma_ch;
 202	struct dma_chan		*tx_chan;
 203	struct dma_chan		*rx_chan;
 204	int			response_busy;
 205	int			context_loss;
 206	int			protect_card;
 207	int			reqs_blocked;
 208	int			req_in_progress;
 209	unsigned long		clk_rate;
 210	unsigned int		flags;
 211#define AUTO_CMD23		(1 << 0)        /* Auto CMD23 support */
 212#define HSMMC_SDIO_IRQ_ENABLED	(1 << 1)        /* SDIO irq enabled */
 213	struct omap_hsmmc_next	next_data;
 214	struct	omap_hsmmc_platform_data	*pdata;
 215
 216	/* return MMC cover switch state, can be NULL if not supported.
 217	 *
 218	 * possible return values:
 219	 *   0 - closed
 220	 *   1 - open
 221	 */
 222	int (*get_cover_state)(struct device *dev);
 223
 224	int (*card_detect)(struct device *dev);
 225};
 226
 227struct omap_mmc_of_data {
 228	u32 reg_offset;
 229	u8 controller_flags;
 230};
 231
 232static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host);
 233
 234static int omap_hsmmc_card_detect(struct device *dev)
 235{
 236	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
 237
 238	return mmc_gpio_get_cd(host->mmc);
 239}
 240
 241static int omap_hsmmc_get_cover_state(struct device *dev)
 242{
 243	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
 244
 245	return mmc_gpio_get_cd(host->mmc);
 246}
 247
 248static int omap_hsmmc_enable_supply(struct mmc_host *mmc)
 249{
 250	int ret;
 251	struct omap_hsmmc_host *host = mmc_priv(mmc);
 252	struct mmc_ios *ios = &mmc->ios;
 253
 254	if (mmc->supply.vmmc) {
 255		ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
 256		if (ret)
 257			return ret;
 258	}
 259
 260	/* Enable interface voltage rail, if needed */
 261	if (mmc->supply.vqmmc && !host->vqmmc_enabled) {
 262		ret = regulator_enable(mmc->supply.vqmmc);
 263		if (ret) {
 264			dev_err(mmc_dev(mmc), "vmmc_aux reg enable failed\n");
 265			goto err_vqmmc;
 266		}
 267		host->vqmmc_enabled = 1;
 268	}
 269
 270	return 0;
 271
 272err_vqmmc:
 273	if (mmc->supply.vmmc)
 274		mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
 275
 276	return ret;
 277}
 278
 279static int omap_hsmmc_disable_supply(struct mmc_host *mmc)
 280{
 281	int ret;
 282	int status;
 283	struct omap_hsmmc_host *host = mmc_priv(mmc);
 284
 285	if (mmc->supply.vqmmc && host->vqmmc_enabled) {
 286		ret = regulator_disable(mmc->supply.vqmmc);
 287		if (ret) {
 288			dev_err(mmc_dev(mmc), "vmmc_aux reg disable failed\n");
 289			return ret;
 290		}
 291		host->vqmmc_enabled = 0;
 292	}
 293
 294	if (mmc->supply.vmmc) {
 295		ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
 296		if (ret)
 297			goto err_set_ocr;
 298	}
 299
 300	return 0;
 301
 302err_set_ocr:
 303	if (mmc->supply.vqmmc) {
 304		status = regulator_enable(mmc->supply.vqmmc);
 305		if (status)
 306			dev_err(mmc_dev(mmc), "vmmc_aux re-enable failed\n");
 307	}
 308
 309	return ret;
 310}
 311
 312static int omap_hsmmc_set_pbias(struct omap_hsmmc_host *host, bool power_on,
 313				int vdd)
 314{
 315	int ret;
 316
 317	if (!host->pbias)
 318		return 0;
 319
 320	if (power_on) {
 321		if (vdd <= VDD_165_195)
 322			ret = regulator_set_voltage(host->pbias, VDD_1V8,
 323						    VDD_1V8);
 324		else
 325			ret = regulator_set_voltage(host->pbias, VDD_3V0,
 326						    VDD_3V0);
 327		if (ret < 0) {
 328			dev_err(host->dev, "pbias set voltage fail\n");
 329			return ret;
 330		}
 331
 332		if (host->pbias_enabled == 0) {
 333			ret = regulator_enable(host->pbias);
 334			if (ret) {
 335				dev_err(host->dev, "pbias reg enable fail\n");
 336				return ret;
 337			}
 338			host->pbias_enabled = 1;
 339		}
 340	} else {
 341		if (host->pbias_enabled == 1) {
 342			ret = regulator_disable(host->pbias);
 343			if (ret) {
 344				dev_err(host->dev, "pbias reg disable fail\n");
 345				return ret;
 346			}
 347			host->pbias_enabled = 0;
 348		}
 349	}
 350
 351	return 0;
 352}
 353
 354static int omap_hsmmc_set_power(struct device *dev, int power_on, int vdd)
 355{
 356	struct omap_hsmmc_host *host =
 357		platform_get_drvdata(to_platform_device(dev));
 358	struct mmc_host *mmc = host->mmc;
 359	int ret = 0;
 360
 361	if (mmc_pdata(host)->set_power)
 362		return mmc_pdata(host)->set_power(dev, power_on, vdd);
 363
 364	/*
 365	 * If we don't see a Vcc regulator, assume it's a fixed
 366	 * voltage always-on regulator.
 367	 */
 368	if (!mmc->supply.vmmc)
 369		return 0;
 370
 371	if (mmc_pdata(host)->before_set_reg)
 372		mmc_pdata(host)->before_set_reg(dev, power_on, vdd);
 373
 374	ret = omap_hsmmc_set_pbias(host, false, 0);
 375	if (ret)
 376		return ret;
 377
 378	/*
 379	 * Assume Vcc regulator is used only to power the card ... OMAP
 380	 * VDDS is used to power the pins, optionally with a transceiver to
 381	 * support cards using voltages other than VDDS (1.8V nominal).  When a
 382	 * transceiver is used, DAT3..7 are muxed as transceiver control pins.
 383	 *
 384	 * In some cases this regulator won't support enable/disable;
 385	 * e.g. it's a fixed rail for a WLAN chip.
 386	 *
 387	 * In other cases vcc_aux switches interface power.  Example, for
 388	 * eMMC cards it represents VccQ.  Sometimes transceivers or SDIO
 389	 * chips/cards need an interface voltage rail too.
 390	 */
 391	if (power_on) {
 392		ret = omap_hsmmc_enable_supply(mmc);
 393		if (ret)
 394			return ret;
 395
 396		ret = omap_hsmmc_set_pbias(host, true, vdd);
 397		if (ret)
 398			goto err_set_voltage;
 399	} else {
 400		ret = omap_hsmmc_disable_supply(mmc);
 401		if (ret)
 402			return ret;
 403	}
 404
 405	if (mmc_pdata(host)->after_set_reg)
 406		mmc_pdata(host)->after_set_reg(dev, power_on, vdd);
 407
 408	return 0;
 409
 410err_set_voltage:
 411	omap_hsmmc_disable_supply(mmc);
 412
 413	return ret;
 414}
 415
 416static int omap_hsmmc_disable_boot_regulator(struct regulator *reg)
 417{
 418	int ret;
 419
 420	if (!reg)
 421		return 0;
 422
 423	if (regulator_is_enabled(reg)) {
 424		ret = regulator_enable(reg);
 425		if (ret)
 426			return ret;
 427
 428		ret = regulator_disable(reg);
 429		if (ret)
 430			return ret;
 431	}
 432
 433	return 0;
 434}
 435
 436static int omap_hsmmc_disable_boot_regulators(struct omap_hsmmc_host *host)
 437{
 438	struct mmc_host *mmc = host->mmc;
 439	int ret;
 440
 441	/*
 442	 * disable regulators enabled during boot and get the usecount
 443	 * right so that regulators can be enabled/disabled by checking
 444	 * the return value of regulator_is_enabled
 445	 */
 446	ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vmmc);
 447	if (ret) {
 448		dev_err(host->dev, "fail to disable boot enabled vmmc reg\n");
 449		return ret;
 450	}
 451
 452	ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vqmmc);
 453	if (ret) {
 454		dev_err(host->dev,
 455			"fail to disable boot enabled vmmc_aux reg\n");
 456		return ret;
 457	}
 458
 459	ret = omap_hsmmc_disable_boot_regulator(host->pbias);
 460	if (ret) {
 461		dev_err(host->dev,
 462			"failed to disable boot enabled pbias reg\n");
 463		return ret;
 464	}
 465
 466	return 0;
 467}
 468
 469static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
 470{
 471	int ocr_value = 0;
 472	int ret;
 473	struct mmc_host *mmc = host->mmc;
 474
 475	if (mmc_pdata(host)->set_power)
 476		return 0;
 477
 478	mmc->supply.vmmc = devm_regulator_get_optional(host->dev, "vmmc");
 479	if (IS_ERR(mmc->supply.vmmc)) {
 480		ret = PTR_ERR(mmc->supply.vmmc);
 481		if ((ret != -ENODEV) && host->dev->of_node)
 482			return ret;
 483		dev_dbg(host->dev, "unable to get vmmc regulator %ld\n",
 484			PTR_ERR(mmc->supply.vmmc));
 485		mmc->supply.vmmc = NULL;
 486	} else {
 487		ocr_value = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
 488		if (ocr_value > 0)
 489			mmc_pdata(host)->ocr_mask = ocr_value;
 490	}
 491
 492	/* Allow an aux regulator */
 493	mmc->supply.vqmmc = devm_regulator_get_optional(host->dev, "vmmc_aux");
 494	if (IS_ERR(mmc->supply.vqmmc)) {
 495		ret = PTR_ERR(mmc->supply.vqmmc);
 496		if ((ret != -ENODEV) && host->dev->of_node)
 497			return ret;
 498		dev_dbg(host->dev, "unable to get vmmc_aux regulator %ld\n",
 499			PTR_ERR(mmc->supply.vqmmc));
 500		mmc->supply.vqmmc = NULL;
 
 
 
 501	}
 502
 503	host->pbias = devm_regulator_get_optional(host->dev, "pbias");
 504	if (IS_ERR(host->pbias)) {
 505		ret = PTR_ERR(host->pbias);
 506		if ((ret != -ENODEV) && host->dev->of_node) {
 507			dev_err(host->dev,
 508			"SD card detect fail? enable CONFIG_REGULATOR_PBIAS\n");
 509			return ret;
 510		}
 511		dev_dbg(host->dev, "unable to get pbias regulator %ld\n",
 512			PTR_ERR(host->pbias));
 513		host->pbias = NULL;
 514	}
 515
 516	/* For eMMC do not power off when not in sleep state */
 517	if (mmc_pdata(host)->no_regulator_off_init)
 518		return 0;
 519
 520	ret = omap_hsmmc_disable_boot_regulators(host);
 521	if (ret)
 522		return ret;
 523
 524	return 0;
 525}
 526
 527static irqreturn_t omap_hsmmc_cover_irq(int irq, void *dev_id);
 528
 529static int omap_hsmmc_gpio_init(struct mmc_host *mmc,
 530				struct omap_hsmmc_host *host,
 531				struct omap_hsmmc_platform_data *pdata)
 532{
 533	int ret;
 534
 535	if (gpio_is_valid(pdata->gpio_cod)) {
 536		ret = mmc_gpio_request_cd(mmc, pdata->gpio_cod, 0);
 537		if (ret)
 538			return ret;
 539
 540		host->get_cover_state = omap_hsmmc_get_cover_state;
 541		mmc_gpio_set_cd_isr(mmc, omap_hsmmc_cover_irq);
 542	} else if (gpio_is_valid(pdata->gpio_cd)) {
 543		ret = mmc_gpio_request_cd(mmc, pdata->gpio_cd, 0);
 544		if (ret)
 545			return ret;
 546
 547		host->card_detect = omap_hsmmc_card_detect;
 548	}
 549
 550	if (gpio_is_valid(pdata->gpio_wp)) {
 551		ret = mmc_gpio_request_ro(mmc, pdata->gpio_wp);
 552		if (ret)
 553			return ret;
 554	}
 555
 556	return 0;
 557}
 558
 559/*
 560 * Start clock to the card
 561 */
 562static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host)
 563{
 564	OMAP_HSMMC_WRITE(host->base, SYSCTL,
 565		OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
 566}
 567
 568/*
 569 * Stop clock to the card
 570 */
 571static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
 572{
 573	OMAP_HSMMC_WRITE(host->base, SYSCTL,
 574		OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
 575	if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
 576		dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n");
 577}
 578
 579static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host,
 580				  struct mmc_command *cmd)
 581{
 582	u32 irq_mask = INT_EN_MASK;
 583	unsigned long flags;
 584
 585	if (host->use_dma)
 586		irq_mask &= ~(BRR_EN | BWR_EN);
 587
 588	/* Disable timeout for erases */
 589	if (cmd->opcode == MMC_ERASE)
 590		irq_mask &= ~DTO_EN;
 591
 592	spin_lock_irqsave(&host->irq_lock, flags);
 593	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
 594	OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
 595
 596	/* latch pending CIRQ, but don't signal MMC core */
 597	if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
 598		irq_mask |= CIRQ_EN;
 599	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
 600	spin_unlock_irqrestore(&host->irq_lock, flags);
 601}
 602
 603static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
 604{
 605	u32 irq_mask = 0;
 606	unsigned long flags;
 607
 608	spin_lock_irqsave(&host->irq_lock, flags);
 609	/* no transfer running but need to keep cirq if enabled */
 610	if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
 611		irq_mask |= CIRQ_EN;
 612	OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
 613	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
 614	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
 615	spin_unlock_irqrestore(&host->irq_lock, flags);
 616}
 617
 618/* Calculate divisor for the given clock frequency */
 619static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios)
 620{
 621	u16 dsor = 0;
 622
 623	if (ios->clock) {
 624		dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock);
 625		if (dsor > CLKD_MAX)
 626			dsor = CLKD_MAX;
 627	}
 628
 629	return dsor;
 630}
 631
 632static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host)
 633{
 634	struct mmc_ios *ios = &host->mmc->ios;
 635	unsigned long regval;
 636	unsigned long timeout;
 637	unsigned long clkdiv;
 638
 639	dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock);
 640
 641	omap_hsmmc_stop_clock(host);
 642
 643	regval = OMAP_HSMMC_READ(host->base, SYSCTL);
 644	regval = regval & ~(CLKD_MASK | DTO_MASK);
 645	clkdiv = calc_divisor(host, ios);
 646	regval = regval | (clkdiv << 6) | (DTO << 16);
 647	OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
 648	OMAP_HSMMC_WRITE(host->base, SYSCTL,
 649		OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
 650
 651	/* Wait till the ICS bit is set */
 652	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
 653	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
 654		&& time_before(jiffies, timeout))
 655		cpu_relax();
 656
 657	/*
 658	 * Enable High-Speed Support
 659	 * Pre-Requisites
 660	 *	- Controller should support High-Speed-Enable Bit
 661	 *	- Controller should not be using DDR Mode
 662	 *	- Controller should advertise that it supports High Speed
 663	 *	  in capabilities register
 664	 *	- MMC/SD clock coming out of controller > 25MHz
 665	 */
 666	if ((mmc_pdata(host)->features & HSMMC_HAS_HSPE_SUPPORT) &&
 667	    (ios->timing != MMC_TIMING_MMC_DDR52) &&
 668	    (ios->timing != MMC_TIMING_UHS_DDR50) &&
 669	    ((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) {
 670		regval = OMAP_HSMMC_READ(host->base, HCTL);
 671		if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000)
 672			regval |= HSPE;
 673		else
 674			regval &= ~HSPE;
 675
 676		OMAP_HSMMC_WRITE(host->base, HCTL, regval);
 677	}
 678
 679	omap_hsmmc_start_clock(host);
 680}
 681
 682static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host)
 683{
 684	struct mmc_ios *ios = &host->mmc->ios;
 685	u32 con;
 686
 687	con = OMAP_HSMMC_READ(host->base, CON);
 688	if (ios->timing == MMC_TIMING_MMC_DDR52 ||
 689	    ios->timing == MMC_TIMING_UHS_DDR50)
 690		con |= DDR;	/* configure in DDR mode */
 691	else
 692		con &= ~DDR;
 693	switch (ios->bus_width) {
 694	case MMC_BUS_WIDTH_8:
 695		OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
 696		break;
 697	case MMC_BUS_WIDTH_4:
 698		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
 699		OMAP_HSMMC_WRITE(host->base, HCTL,
 700			OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
 701		break;
 702	case MMC_BUS_WIDTH_1:
 703		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
 704		OMAP_HSMMC_WRITE(host->base, HCTL,
 705			OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
 706		break;
 707	}
 708}
 709
 710static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host)
 711{
 712	struct mmc_ios *ios = &host->mmc->ios;
 713	u32 con;
 714
 715	con = OMAP_HSMMC_READ(host->base, CON);
 716	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
 717		OMAP_HSMMC_WRITE(host->base, CON, con | OD);
 718	else
 719		OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
 720}
 721
 722#ifdef CONFIG_PM
 723
 724/*
 725 * Restore the MMC host context, if it was lost as result of a
 726 * power state change.
 727 */
 728static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
 729{
 730	struct mmc_ios *ios = &host->mmc->ios;
 731	u32 hctl, capa;
 732	unsigned long timeout;
 733
 734	if (host->con == OMAP_HSMMC_READ(host->base, CON) &&
 735	    host->hctl == OMAP_HSMMC_READ(host->base, HCTL) &&
 736	    host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) &&
 737	    host->capa == OMAP_HSMMC_READ(host->base, CAPA))
 738		return 0;
 739
 740	host->context_loss++;
 741
 742	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
 743		if (host->power_mode != MMC_POWER_OFF &&
 744		    (1 << ios->vdd) <= MMC_VDD_23_24)
 745			hctl = SDVS18;
 746		else
 747			hctl = SDVS30;
 748		capa = VS30 | VS18;
 749	} else {
 750		hctl = SDVS18;
 751		capa = VS18;
 752	}
 753
 754	if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
 755		hctl |= IWE;
 756
 757	OMAP_HSMMC_WRITE(host->base, HCTL,
 758			OMAP_HSMMC_READ(host->base, HCTL) | hctl);
 759
 760	OMAP_HSMMC_WRITE(host->base, CAPA,
 761			OMAP_HSMMC_READ(host->base, CAPA) | capa);
 762
 763	OMAP_HSMMC_WRITE(host->base, HCTL,
 764			OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
 765
 766	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
 767	while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
 768		&& time_before(jiffies, timeout))
 769		;
 770
 771	OMAP_HSMMC_WRITE(host->base, ISE, 0);
 772	OMAP_HSMMC_WRITE(host->base, IE, 0);
 773	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
 774
 775	/* Do not initialize card-specific things if the power is off */
 776	if (host->power_mode == MMC_POWER_OFF)
 777		goto out;
 778
 779	omap_hsmmc_set_bus_width(host);
 780
 781	omap_hsmmc_set_clock(host);
 782
 783	omap_hsmmc_set_bus_mode(host);
 784
 785out:
 786	dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n",
 787		host->context_loss);
 788	return 0;
 789}
 790
 791/*
 792 * Save the MMC host context (store the number of power state changes so far).
 793 */
 794static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
 795{
 796	host->con =  OMAP_HSMMC_READ(host->base, CON);
 797	host->hctl = OMAP_HSMMC_READ(host->base, HCTL);
 798	host->sysctl =  OMAP_HSMMC_READ(host->base, SYSCTL);
 799	host->capa = OMAP_HSMMC_READ(host->base, CAPA);
 800}
 801
 802#else
 803
 804static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
 805{
 806	return 0;
 807}
 808
 809static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
 810{
 811}
 812
 813#endif
 814
 815/*
 816 * Send init stream sequence to card
 817 * before sending IDLE command
 818 */
 819static void send_init_stream(struct omap_hsmmc_host *host)
 820{
 821	int reg = 0;
 822	unsigned long timeout;
 823
 824	if (host->protect_card)
 825		return;
 826
 827	disable_irq(host->irq);
 828
 829	OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
 830	OMAP_HSMMC_WRITE(host->base, CON,
 831		OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
 832	OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);
 833
 834	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
 835	while ((reg != CC_EN) && time_before(jiffies, timeout))
 836		reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN;
 837
 838	OMAP_HSMMC_WRITE(host->base, CON,
 839		OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
 840
 841	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
 842	OMAP_HSMMC_READ(host->base, STAT);
 843
 844	enable_irq(host->irq);
 845}
 846
 847static inline
 848int omap_hsmmc_cover_is_closed(struct omap_hsmmc_host *host)
 849{
 850	int r = 1;
 851
 852	if (host->get_cover_state)
 853		r = host->get_cover_state(host->dev);
 854	return r;
 855}
 856
 857static ssize_t
 858omap_hsmmc_show_cover_switch(struct device *dev, struct device_attribute *attr,
 859			   char *buf)
 860{
 861	struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
 862	struct omap_hsmmc_host *host = mmc_priv(mmc);
 863
 864	return sprintf(buf, "%s\n",
 865			omap_hsmmc_cover_is_closed(host) ? "closed" : "open");
 866}
 867
 868static DEVICE_ATTR(cover_switch, S_IRUGO, omap_hsmmc_show_cover_switch, NULL);
 869
 870static ssize_t
 871omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
 872			char *buf)
 873{
 874	struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
 875	struct omap_hsmmc_host *host = mmc_priv(mmc);
 876
 877	return sprintf(buf, "%s\n", mmc_pdata(host)->name);
 878}
 879
 880static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
 881
 882/*
 883 * Configure the response type and send the cmd.
 884 */
 885static void
 886omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
 887	struct mmc_data *data)
 888{
 889	int cmdreg = 0, resptype = 0, cmdtype = 0;
 890
 891	dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
 892		mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
 893	host->cmd = cmd;
 894
 895	omap_hsmmc_enable_irq(host, cmd);
 896
 897	host->response_busy = 0;
 898	if (cmd->flags & MMC_RSP_PRESENT) {
 899		if (cmd->flags & MMC_RSP_136)
 900			resptype = 1;
 901		else if (cmd->flags & MMC_RSP_BUSY) {
 902			resptype = 3;
 903			host->response_busy = 1;
 904		} else
 905			resptype = 2;
 906	}
 907
 908	/*
 909	 * Unlike OMAP1 controller, the cmdtype does not seem to be based on
 910	 * ac, bc, adtc, bcr. Only commands ending an open ended transfer need
 911	 * a val of 0x3, rest 0x0.
 912	 */
 913	if (cmd == host->mrq->stop)
 914		cmdtype = 0x3;
 915
 916	cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
 917
 918	if ((host->flags & AUTO_CMD23) && mmc_op_multi(cmd->opcode) &&
 919	    host->mrq->sbc) {
 920		cmdreg |= ACEN_ACMD23;
 921		OMAP_HSMMC_WRITE(host->base, SDMASA, host->mrq->sbc->arg);
 922	}
 923	if (data) {
 924		cmdreg |= DP_SELECT | MSBS | BCE;
 925		if (data->flags & MMC_DATA_READ)
 926			cmdreg |= DDIR;
 927		else
 928			cmdreg &= ~(DDIR);
 929	}
 930
 931	if (host->use_dma)
 932		cmdreg |= DMAE;
 933
 934	host->req_in_progress = 1;
 935
 936	OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
 937	OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
 938}
 939
 940static int
 941omap_hsmmc_get_dma_dir(struct omap_hsmmc_host *host, struct mmc_data *data)
 942{
 943	if (data->flags & MMC_DATA_WRITE)
 944		return DMA_TO_DEVICE;
 945	else
 946		return DMA_FROM_DEVICE;
 947}
 948
 949static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host,
 950	struct mmc_data *data)
 951{
 952	return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
 953}
 954
 955static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
 956{
 957	int dma_ch;
 958	unsigned long flags;
 959
 960	spin_lock_irqsave(&host->irq_lock, flags);
 961	host->req_in_progress = 0;
 962	dma_ch = host->dma_ch;
 963	spin_unlock_irqrestore(&host->irq_lock, flags);
 964
 965	omap_hsmmc_disable_irq(host);
 966	/* Do not complete the request if DMA is still in progress */
 967	if (mrq->data && host->use_dma && dma_ch != -1)
 968		return;
 969	host->mrq = NULL;
 970	mmc_request_done(host->mmc, mrq);
 971	pm_runtime_mark_last_busy(host->dev);
 972	pm_runtime_put_autosuspend(host->dev);
 973}
 974
 975/*
 976 * Notify the transfer complete to MMC core
 977 */
 978static void
 979omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
 980{
 981	if (!data) {
 982		struct mmc_request *mrq = host->mrq;
 983
 984		/* TC before CC from CMD6 - don't know why, but it happens */
 985		if (host->cmd && host->cmd->opcode == 6 &&
 986		    host->response_busy) {
 987			host->response_busy = 0;
 988			return;
 989		}
 990
 991		omap_hsmmc_request_done(host, mrq);
 992		return;
 993	}
 994
 995	host->data = NULL;
 996
 997	if (!data->error)
 998		data->bytes_xfered += data->blocks * (data->blksz);
 999	else
1000		data->bytes_xfered = 0;
1001
1002	if (data->stop && (data->error || !host->mrq->sbc))
1003		omap_hsmmc_start_command(host, data->stop, NULL);
1004	else
1005		omap_hsmmc_request_done(host, data->mrq);
1006}
1007
1008/*
1009 * Notify the core about command completion
1010 */
1011static void
1012omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
1013{
1014	if (host->mrq->sbc && (host->cmd == host->mrq->sbc) &&
1015	    !host->mrq->sbc->error && !(host->flags & AUTO_CMD23)) {
1016		host->cmd = NULL;
1017		omap_hsmmc_start_dma_transfer(host);
1018		omap_hsmmc_start_command(host, host->mrq->cmd,
1019						host->mrq->data);
1020		return;
1021	}
1022
1023	host->cmd = NULL;
1024
1025	if (cmd->flags & MMC_RSP_PRESENT) {
1026		if (cmd->flags & MMC_RSP_136) {
1027			/* response type 2 */
1028			cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
1029			cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
1030			cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
1031			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
1032		} else {
1033			/* response types 1, 1b, 3, 4, 5, 6 */
1034			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
1035		}
1036	}
1037	if ((host->data == NULL && !host->response_busy) || cmd->error)
1038		omap_hsmmc_request_done(host, host->mrq);
1039}
1040
1041/*
1042 * DMA clean up for command errors
1043 */
1044static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
1045{
1046	int dma_ch;
1047	unsigned long flags;
1048
1049	host->data->error = errno;
1050
1051	spin_lock_irqsave(&host->irq_lock, flags);
1052	dma_ch = host->dma_ch;
1053	host->dma_ch = -1;
1054	spin_unlock_irqrestore(&host->irq_lock, flags);
1055
1056	if (host->use_dma && dma_ch != -1) {
1057		struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data);
1058
1059		dmaengine_terminate_all(chan);
1060		dma_unmap_sg(chan->device->dev,
1061			host->data->sg, host->data->sg_len,
1062			omap_hsmmc_get_dma_dir(host, host->data));
1063
1064		host->data->host_cookie = 0;
1065	}
1066	host->data = NULL;
1067}
1068
1069/*
1070 * Readable error output
1071 */
1072#ifdef CONFIG_MMC_DEBUG
1073static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status)
1074{
1075	/* --- means reserved bit without definition at documentation */
1076	static const char *omap_hsmmc_status_bits[] = {
1077		"CC"  , "TC"  , "BGE", "---", "BWR" , "BRR" , "---" , "---" ,
1078		"CIRQ",	"OBI" , "---", "---", "---" , "---" , "---" , "ERRI",
1079		"CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" ,
1080		"ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---"
1081	};
1082	char res[256];
1083	char *buf = res;
1084	int len, i;
1085
1086	len = sprintf(buf, "MMC IRQ 0x%x :", status);
1087	buf += len;
1088
1089	for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
1090		if (status & (1 << i)) {
1091			len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
1092			buf += len;
1093		}
1094
1095	dev_vdbg(mmc_dev(host->mmc), "%s\n", res);
1096}
1097#else
1098static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host,
1099					     u32 status)
1100{
1101}
1102#endif  /* CONFIG_MMC_DEBUG */
1103
1104/*
1105 * MMC controller internal state machines reset
1106 *
1107 * Used to reset command or data internal state machines, using respectively
1108 *  SRC or SRD bit of SYSCTL register
1109 * Can be called from interrupt context
1110 */
1111static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
1112						   unsigned long bit)
1113{
1114	unsigned long i = 0;
1115	unsigned long limit = MMC_TIMEOUT_US;
1116
1117	OMAP_HSMMC_WRITE(host->base, SYSCTL,
1118			 OMAP_HSMMC_READ(host->base, SYSCTL) | bit);
1119
1120	/*
1121	 * OMAP4 ES2 and greater has an updated reset logic.
1122	 * Monitor a 0->1 transition first
1123	 */
1124	if (mmc_pdata(host)->features & HSMMC_HAS_UPDATED_RESET) {
1125		while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit))
1126					&& (i++ < limit))
1127			udelay(1);
1128	}
1129	i = 0;
1130
1131	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
1132		(i++ < limit))
1133		udelay(1);
1134
1135	if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
1136		dev_err(mmc_dev(host->mmc),
1137			"Timeout waiting on controller reset in %s\n",
1138			__func__);
1139}
1140
1141static void hsmmc_command_incomplete(struct omap_hsmmc_host *host,
1142					int err, int end_cmd)
1143{
1144	if (end_cmd) {
1145		omap_hsmmc_reset_controller_fsm(host, SRC);
1146		if (host->cmd)
1147			host->cmd->error = err;
1148	}
1149
1150	if (host->data) {
1151		omap_hsmmc_reset_controller_fsm(host, SRD);
1152		omap_hsmmc_dma_cleanup(host, err);
1153	} else if (host->mrq && host->mrq->cmd)
1154		host->mrq->cmd->error = err;
1155}
1156
1157static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
1158{
1159	struct mmc_data *data;
1160	int end_cmd = 0, end_trans = 0;
1161	int error = 0;
1162
1163	data = host->data;
1164	dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
1165
1166	if (status & ERR_EN) {
1167		omap_hsmmc_dbg_report_irq(host, status);
1168
1169		if (status & (CTO_EN | CCRC_EN))
1170			end_cmd = 1;
1171		if (host->data || host->response_busy) {
1172			end_trans = !end_cmd;
1173			host->response_busy = 0;
1174		}
1175		if (status & (CTO_EN | DTO_EN))
1176			hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd);
1177		else if (status & (CCRC_EN | DCRC_EN | DEB_EN | CEB_EN |
1178				   BADA_EN))
1179			hsmmc_command_incomplete(host, -EILSEQ, end_cmd);
1180
1181		if (status & ACE_EN) {
1182			u32 ac12;
1183			ac12 = OMAP_HSMMC_READ(host->base, AC12);
1184			if (!(ac12 & ACNE) && host->mrq->sbc) {
1185				end_cmd = 1;
1186				if (ac12 & ACTO)
1187					error =  -ETIMEDOUT;
1188				else if (ac12 & (ACCE | ACEB | ACIE))
1189					error = -EILSEQ;
1190				host->mrq->sbc->error = error;
1191				hsmmc_command_incomplete(host, error, end_cmd);
1192			}
1193			dev_dbg(mmc_dev(host->mmc), "AC12 err: 0x%x\n", ac12);
1194		}
1195	}
1196
1197	OMAP_HSMMC_WRITE(host->base, STAT, status);
1198	if (end_cmd || ((status & CC_EN) && host->cmd))
1199		omap_hsmmc_cmd_done(host, host->cmd);
1200	if ((end_trans || (status & TC_EN)) && host->mrq)
1201		omap_hsmmc_xfer_done(host, data);
1202}
1203
1204/*
1205 * MMC controller IRQ handler
1206 */
1207static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
1208{
1209	struct omap_hsmmc_host *host = dev_id;
1210	int status;
1211
1212	status = OMAP_HSMMC_READ(host->base, STAT);
1213	while (status & (INT_EN_MASK | CIRQ_EN)) {
1214		if (host->req_in_progress)
1215			omap_hsmmc_do_irq(host, status);
1216
1217		if (status & CIRQ_EN)
1218			mmc_signal_sdio_irq(host->mmc);
1219
1220		/* Flush posted write */
1221		status = OMAP_HSMMC_READ(host->base, STAT);
1222	}
1223
1224	return IRQ_HANDLED;
1225}
1226
1227static void set_sd_bus_power(struct omap_hsmmc_host *host)
1228{
1229	unsigned long i;
1230
1231	OMAP_HSMMC_WRITE(host->base, HCTL,
1232			 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
1233	for (i = 0; i < loops_per_jiffy; i++) {
1234		if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
1235			break;
1236		cpu_relax();
1237	}
1238}
1239
1240/*
1241 * Switch MMC interface voltage ... only relevant for MMC1.
1242 *
1243 * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
1244 * The MMC2 transceiver controls are used instead of DAT4..DAT7.
1245 * Some chips, like eMMC ones, use internal transceivers.
1246 */
1247static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
1248{
1249	u32 reg_val = 0;
1250	int ret;
1251
1252	/* Disable the clocks */
1253	pm_runtime_put_sync(host->dev);
1254	if (host->dbclk)
1255		clk_disable_unprepare(host->dbclk);
1256
1257	/* Turn the power off */
1258	ret = omap_hsmmc_set_power(host->dev, 0, 0);
1259
1260	/* Turn the power ON with given VDD 1.8 or 3.0v */
1261	if (!ret)
1262		ret = omap_hsmmc_set_power(host->dev, 1, vdd);
1263	pm_runtime_get_sync(host->dev);
1264	if (host->dbclk)
1265		clk_prepare_enable(host->dbclk);
1266
1267	if (ret != 0)
1268		goto err;
1269
1270	OMAP_HSMMC_WRITE(host->base, HCTL,
1271		OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
1272	reg_val = OMAP_HSMMC_READ(host->base, HCTL);
1273
1274	/*
1275	 * If a MMC dual voltage card is detected, the set_ios fn calls
1276	 * this fn with VDD bit set for 1.8V. Upon card removal from the
1277	 * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
1278	 *
1279	 * Cope with a bit of slop in the range ... per data sheets:
1280	 *  - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
1281	 *    but recommended values are 1.71V to 1.89V
1282	 *  - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
1283	 *    but recommended values are 2.7V to 3.3V
1284	 *
1285	 * Board setup code shouldn't permit anything very out-of-range.
1286	 * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
1287	 * middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
1288	 */
1289	if ((1 << vdd) <= MMC_VDD_23_24)
1290		reg_val |= SDVS18;
1291	else
1292		reg_val |= SDVS30;
1293
1294	OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
1295	set_sd_bus_power(host);
1296
1297	return 0;
1298err:
1299	dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
1300	return ret;
1301}
1302
1303/* Protect the card while the cover is open */
1304static void omap_hsmmc_protect_card(struct omap_hsmmc_host *host)
1305{
1306	if (!host->get_cover_state)
1307		return;
1308
1309	host->reqs_blocked = 0;
1310	if (host->get_cover_state(host->dev)) {
1311		if (host->protect_card) {
1312			dev_info(host->dev, "%s: cover is closed, "
1313					 "card is now accessible\n",
1314					 mmc_hostname(host->mmc));
1315			host->protect_card = 0;
1316		}
1317	} else {
1318		if (!host->protect_card) {
1319			dev_info(host->dev, "%s: cover is open, "
1320					 "card is now inaccessible\n",
1321					 mmc_hostname(host->mmc));
1322			host->protect_card = 1;
1323		}
1324	}
1325}
1326
1327/*
1328 * irq handler when (cell-phone) cover is mounted/removed
1329 */
1330static irqreturn_t omap_hsmmc_cover_irq(int irq, void *dev_id)
1331{
1332	struct omap_hsmmc_host *host = dev_id;
1333
1334	sysfs_notify(&host->mmc->class_dev.kobj, NULL, "cover_switch");
1335
1336	omap_hsmmc_protect_card(host);
1337	mmc_detect_change(host->mmc, (HZ * 200) / 1000);
1338	return IRQ_HANDLED;
1339}
1340
1341static void omap_hsmmc_dma_callback(void *param)
1342{
1343	struct omap_hsmmc_host *host = param;
1344	struct dma_chan *chan;
1345	struct mmc_data *data;
1346	int req_in_progress;
1347
1348	spin_lock_irq(&host->irq_lock);
1349	if (host->dma_ch < 0) {
1350		spin_unlock_irq(&host->irq_lock);
1351		return;
1352	}
1353
1354	data = host->mrq->data;
1355	chan = omap_hsmmc_get_dma_chan(host, data);
1356	if (!data->host_cookie)
1357		dma_unmap_sg(chan->device->dev,
1358			     data->sg, data->sg_len,
1359			     omap_hsmmc_get_dma_dir(host, data));
1360
1361	req_in_progress = host->req_in_progress;
1362	host->dma_ch = -1;
1363	spin_unlock_irq(&host->irq_lock);
1364
1365	/* If DMA has finished after TC, complete the request */
1366	if (!req_in_progress) {
1367		struct mmc_request *mrq = host->mrq;
1368
1369		host->mrq = NULL;
1370		mmc_request_done(host->mmc, mrq);
1371		pm_runtime_mark_last_busy(host->dev);
1372		pm_runtime_put_autosuspend(host->dev);
1373	}
1374}
1375
1376static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host,
1377				       struct mmc_data *data,
1378				       struct omap_hsmmc_next *next,
1379				       struct dma_chan *chan)
1380{
1381	int dma_len;
1382
1383	if (!next && data->host_cookie &&
1384	    data->host_cookie != host->next_data.cookie) {
1385		dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d"
1386		       " host->next_data.cookie %d\n",
1387		       __func__, data->host_cookie, host->next_data.cookie);
1388		data->host_cookie = 0;
1389	}
1390
1391	/* Check if next job is already prepared */
1392	if (next || data->host_cookie != host->next_data.cookie) {
1393		dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len,
1394				     omap_hsmmc_get_dma_dir(host, data));
1395
1396	} else {
1397		dma_len = host->next_data.dma_len;
1398		host->next_data.dma_len = 0;
1399	}
1400
1401
1402	if (dma_len == 0)
1403		return -EINVAL;
1404
1405	if (next) {
1406		next->dma_len = dma_len;
1407		data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
1408	} else
1409		host->dma_len = dma_len;
1410
1411	return 0;
1412}
1413
1414/*
1415 * Routine to configure and start DMA for the MMC card
1416 */
1417static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host,
1418					struct mmc_request *req)
1419{
1420	struct dma_slave_config cfg;
1421	struct dma_async_tx_descriptor *tx;
1422	int ret = 0, i;
1423	struct mmc_data *data = req->data;
1424	struct dma_chan *chan;
 
 
 
 
 
 
 
 
1425
1426	/* Sanity check: all the SG entries must be aligned by block size. */
1427	for (i = 0; i < data->sg_len; i++) {
1428		struct scatterlist *sgl;
1429
1430		sgl = data->sg + i;
1431		if (sgl->length % data->blksz)
1432			return -EINVAL;
1433	}
1434	if ((data->blksz % 4) != 0)
1435		/* REVISIT: The MMC buffer increments only when MSB is written.
1436		 * Return error for blksz which is non multiple of four.
1437		 */
1438		return -EINVAL;
1439
1440	BUG_ON(host->dma_ch != -1);
1441
1442	chan = omap_hsmmc_get_dma_chan(host, data);
1443
1444	cfg.src_addr = host->mapbase + OMAP_HSMMC_DATA;
1445	cfg.dst_addr = host->mapbase + OMAP_HSMMC_DATA;
1446	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1447	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1448	cfg.src_maxburst = data->blksz / 4;
1449	cfg.dst_maxburst = data->blksz / 4;
1450
1451	ret = dmaengine_slave_config(chan, &cfg);
1452	if (ret)
1453		return ret;
1454
1455	ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan);
1456	if (ret)
1457		return ret;
1458
1459	tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len,
1460		data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
1461		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1462	if (!tx) {
1463		dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n");
1464		/* FIXME: cleanup */
1465		return -1;
1466	}
1467
1468	tx->callback = omap_hsmmc_dma_callback;
1469	tx->callback_param = host;
1470
1471	/* Does not fail */
1472	dmaengine_submit(tx);
1473
1474	host->dma_ch = 1;
1475
1476	return 0;
1477}
1478
1479static void set_data_timeout(struct omap_hsmmc_host *host,
1480			     unsigned int timeout_ns,
1481			     unsigned int timeout_clks)
1482{
1483	unsigned int timeout, cycle_ns;
 
1484	uint32_t reg, clkd, dto = 0;
1485
1486	reg = OMAP_HSMMC_READ(host->base, SYSCTL);
1487	clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
1488	if (clkd == 0)
1489		clkd = 1;
1490
1491	cycle_ns = 1000000000 / (host->clk_rate / clkd);
1492	timeout = timeout_ns / cycle_ns;
1493	timeout += timeout_clks;
1494	if (timeout) {
1495		while ((timeout & 0x80000000) == 0) {
1496			dto += 1;
1497			timeout <<= 1;
1498		}
1499		dto = 31 - dto;
1500		timeout <<= 1;
1501		if (timeout && dto)
1502			dto += 1;
1503		if (dto >= 13)
1504			dto -= 13;
1505		else
1506			dto = 0;
1507		if (dto > 14)
1508			dto = 14;
1509	}
1510
1511	reg &= ~DTO_MASK;
1512	reg |= dto << DTO_SHIFT;
1513	OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
1514}
1515
1516static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host)
1517{
1518	struct mmc_request *req = host->mrq;
1519	struct dma_chan *chan;
1520
1521	if (!req->data)
1522		return;
1523	OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
1524				| (req->data->blocks << 16));
1525	set_data_timeout(host, req->data->timeout_ns,
1526				req->data->timeout_clks);
1527	chan = omap_hsmmc_get_dma_chan(host, req->data);
1528	dma_async_issue_pending(chan);
1529}
1530
1531/*
1532 * Configure block length for MMC/SD cards and initiate the transfer.
1533 */
1534static int
1535omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
1536{
1537	int ret;
 
 
1538	host->data = req->data;
1539
1540	if (req->data == NULL) {
1541		OMAP_HSMMC_WRITE(host->base, BLK, 0);
1542		/*
1543		 * Set an arbitrary 100ms data timeout for commands with
1544		 * busy signal.
1545		 */
1546		if (req->cmd->flags & MMC_RSP_BUSY)
1547			set_data_timeout(host, 100000000U, 0);
 
 
 
 
 
 
1548		return 0;
1549	}
1550
1551	if (host->use_dma) {
1552		ret = omap_hsmmc_setup_dma_transfer(host, req);
1553		if (ret != 0) {
1554			dev_err(mmc_dev(host->mmc), "MMC start dma failure\n");
1555			return ret;
1556		}
1557	}
1558	return 0;
1559}
1560
1561static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
1562				int err)
1563{
1564	struct omap_hsmmc_host *host = mmc_priv(mmc);
1565	struct mmc_data *data = mrq->data;
1566
1567	if (host->use_dma && data->host_cookie) {
1568		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data);
1569
1570		dma_unmap_sg(c->device->dev, data->sg, data->sg_len,
1571			     omap_hsmmc_get_dma_dir(host, data));
1572		data->host_cookie = 0;
1573	}
1574}
1575
1576static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq,
1577			       bool is_first_req)
1578{
1579	struct omap_hsmmc_host *host = mmc_priv(mmc);
1580
1581	if (mrq->data->host_cookie) {
1582		mrq->data->host_cookie = 0;
1583		return ;
1584	}
1585
1586	if (host->use_dma) {
1587		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data);
1588
1589		if (omap_hsmmc_pre_dma_transfer(host, mrq->data,
1590						&host->next_data, c))
1591			mrq->data->host_cookie = 0;
1592	}
1593}
1594
1595/*
1596 * Request function. for read/write operation
1597 */
1598static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
1599{
1600	struct omap_hsmmc_host *host = mmc_priv(mmc);
1601	int err;
1602
1603	BUG_ON(host->req_in_progress);
1604	BUG_ON(host->dma_ch != -1);
1605	pm_runtime_get_sync(host->dev);
1606	if (host->protect_card) {
1607		if (host->reqs_blocked < 3) {
1608			/*
1609			 * Ensure the controller is left in a consistent
1610			 * state by resetting the command and data state
1611			 * machines.
1612			 */
1613			omap_hsmmc_reset_controller_fsm(host, SRD);
1614			omap_hsmmc_reset_controller_fsm(host, SRC);
1615			host->reqs_blocked += 1;
1616		}
1617		req->cmd->error = -EBADF;
1618		if (req->data)
1619			req->data->error = -EBADF;
1620		req->cmd->retries = 0;
1621		mmc_request_done(mmc, req);
1622		pm_runtime_mark_last_busy(host->dev);
1623		pm_runtime_put_autosuspend(host->dev);
1624		return;
1625	} else if (host->reqs_blocked)
1626		host->reqs_blocked = 0;
1627	WARN_ON(host->mrq != NULL);
1628	host->mrq = req;
1629	host->clk_rate = clk_get_rate(host->fclk);
1630	err = omap_hsmmc_prepare_data(host, req);
1631	if (err) {
1632		req->cmd->error = err;
1633		if (req->data)
1634			req->data->error = err;
1635		host->mrq = NULL;
1636		mmc_request_done(mmc, req);
1637		pm_runtime_mark_last_busy(host->dev);
1638		pm_runtime_put_autosuspend(host->dev);
1639		return;
1640	}
1641	if (req->sbc && !(host->flags & AUTO_CMD23)) {
1642		omap_hsmmc_start_command(host, req->sbc, NULL);
1643		return;
1644	}
1645
1646	omap_hsmmc_start_dma_transfer(host);
1647	omap_hsmmc_start_command(host, req->cmd, req->data);
1648}
1649
1650/* Routine to configure clock values. Exposed API to core */
1651static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1652{
1653	struct omap_hsmmc_host *host = mmc_priv(mmc);
1654	int do_send_init_stream = 0;
1655
1656	pm_runtime_get_sync(host->dev);
1657
1658	if (ios->power_mode != host->power_mode) {
1659		switch (ios->power_mode) {
1660		case MMC_POWER_OFF:
1661			omap_hsmmc_set_power(host->dev, 0, 0);
1662			break;
1663		case MMC_POWER_UP:
1664			omap_hsmmc_set_power(host->dev, 1, ios->vdd);
1665			break;
1666		case MMC_POWER_ON:
1667			do_send_init_stream = 1;
1668			break;
1669		}
1670		host->power_mode = ios->power_mode;
1671	}
1672
1673	/* FIXME: set registers based only on changes to ios */
1674
1675	omap_hsmmc_set_bus_width(host);
1676
1677	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1678		/* Only MMC1 can interface at 3V without some flavor
1679		 * of external transceiver; but they all handle 1.8V.
1680		 */
1681		if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
1682			(ios->vdd == DUAL_VOLT_OCR_BIT)) {
1683				/*
1684				 * The mmc_select_voltage fn of the core does
1685				 * not seem to set the power_mode to
1686				 * MMC_POWER_UP upon recalculating the voltage.
1687				 * vdd 1.8v.
1688				 */
1689			if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
1690				dev_dbg(mmc_dev(host->mmc),
1691						"Switch operation failed\n");
1692		}
1693	}
1694
1695	omap_hsmmc_set_clock(host);
1696
1697	if (do_send_init_stream)
1698		send_init_stream(host);
1699
1700	omap_hsmmc_set_bus_mode(host);
1701
1702	pm_runtime_put_autosuspend(host->dev);
1703}
1704
1705static int omap_hsmmc_get_cd(struct mmc_host *mmc)
1706{
1707	struct omap_hsmmc_host *host = mmc_priv(mmc);
1708
1709	if (!host->card_detect)
1710		return -ENOSYS;
1711	return host->card_detect(host->dev);
1712}
1713
1714static void omap_hsmmc_init_card(struct mmc_host *mmc, struct mmc_card *card)
1715{
1716	struct omap_hsmmc_host *host = mmc_priv(mmc);
1717
1718	if (mmc_pdata(host)->init_card)
1719		mmc_pdata(host)->init_card(card);
1720}
1721
1722static void omap_hsmmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
1723{
1724	struct omap_hsmmc_host *host = mmc_priv(mmc);
1725	u32 irq_mask, con;
1726	unsigned long flags;
1727
1728	spin_lock_irqsave(&host->irq_lock, flags);
1729
1730	con = OMAP_HSMMC_READ(host->base, CON);
1731	irq_mask = OMAP_HSMMC_READ(host->base, ISE);
1732	if (enable) {
1733		host->flags |= HSMMC_SDIO_IRQ_ENABLED;
1734		irq_mask |= CIRQ_EN;
1735		con |= CTPL | CLKEXTFREE;
1736	} else {
1737		host->flags &= ~HSMMC_SDIO_IRQ_ENABLED;
1738		irq_mask &= ~CIRQ_EN;
1739		con &= ~(CTPL | CLKEXTFREE);
1740	}
1741	OMAP_HSMMC_WRITE(host->base, CON, con);
1742	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
1743
1744	/*
1745	 * if enable, piggy back detection on current request
1746	 * but always disable immediately
1747	 */
1748	if (!host->req_in_progress || !enable)
1749		OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
1750
1751	/* flush posted write */
1752	OMAP_HSMMC_READ(host->base, IE);
1753
1754	spin_unlock_irqrestore(&host->irq_lock, flags);
1755}
1756
1757static int omap_hsmmc_configure_wake_irq(struct omap_hsmmc_host *host)
1758{
1759	int ret;
1760
1761	/*
1762	 * For omaps with wake-up path, wakeirq will be irq from pinctrl and
1763	 * for other omaps, wakeirq will be from GPIO (dat line remuxed to
1764	 * gpio). wakeirq is needed to detect sdio irq in runtime suspend state
1765	 * with functional clock disabled.
1766	 */
1767	if (!host->dev->of_node || !host->wake_irq)
1768		return -ENODEV;
1769
1770	ret = dev_pm_set_dedicated_wake_irq(host->dev, host->wake_irq);
1771	if (ret) {
1772		dev_err(mmc_dev(host->mmc), "Unable to request wake IRQ\n");
1773		goto err;
1774	}
1775
1776	/*
1777	 * Some omaps don't have wake-up path from deeper idle states
1778	 * and need to remux SDIO DAT1 to GPIO for wake-up from idle.
1779	 */
1780	if (host->pdata->controller_flags & OMAP_HSMMC_SWAKEUP_MISSING) {
1781		struct pinctrl *p = devm_pinctrl_get(host->dev);
1782		if (!p) {
1783			ret = -ENODEV;
1784			goto err_free_irq;
1785		}
1786		if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_DEFAULT))) {
1787			dev_info(host->dev, "missing default pinctrl state\n");
1788			devm_pinctrl_put(p);
1789			ret = -EINVAL;
1790			goto err_free_irq;
1791		}
1792
1793		if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_IDLE))) {
1794			dev_info(host->dev, "missing idle pinctrl state\n");
1795			devm_pinctrl_put(p);
1796			ret = -EINVAL;
1797			goto err_free_irq;
1798		}
1799		devm_pinctrl_put(p);
1800	}
1801
1802	OMAP_HSMMC_WRITE(host->base, HCTL,
1803			 OMAP_HSMMC_READ(host->base, HCTL) | IWE);
1804	return 0;
1805
1806err_free_irq:
1807	dev_pm_clear_wake_irq(host->dev);
1808err:
1809	dev_warn(host->dev, "no SDIO IRQ support, falling back to polling\n");
1810	host->wake_irq = 0;
1811	return ret;
1812}
1813
1814static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
1815{
1816	u32 hctl, capa, value;
1817
1818	/* Only MMC1 supports 3.0V */
1819	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1820		hctl = SDVS30;
1821		capa = VS30 | VS18;
1822	} else {
1823		hctl = SDVS18;
1824		capa = VS18;
1825	}
1826
1827	value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
1828	OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);
1829
1830	value = OMAP_HSMMC_READ(host->base, CAPA);
1831	OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);
1832
1833	/* Set SD bus power bit */
1834	set_sd_bus_power(host);
1835}
1836
1837static int omap_hsmmc_multi_io_quirk(struct mmc_card *card,
1838				     unsigned int direction, int blk_size)
1839{
1840	/* This controller can't do multiblock reads due to hw bugs */
1841	if (direction == MMC_DATA_READ)
1842		return 1;
1843
1844	return blk_size;
1845}
1846
1847static struct mmc_host_ops omap_hsmmc_ops = {
1848	.post_req = omap_hsmmc_post_req,
1849	.pre_req = omap_hsmmc_pre_req,
1850	.request = omap_hsmmc_request,
1851	.set_ios = omap_hsmmc_set_ios,
1852	.get_cd = omap_hsmmc_get_cd,
1853	.get_ro = mmc_gpio_get_ro,
1854	.init_card = omap_hsmmc_init_card,
1855	.enable_sdio_irq = omap_hsmmc_enable_sdio_irq,
1856};
1857
1858#ifdef CONFIG_DEBUG_FS
1859
1860static int omap_hsmmc_regs_show(struct seq_file *s, void *data)
1861{
1862	struct mmc_host *mmc = s->private;
1863	struct omap_hsmmc_host *host = mmc_priv(mmc);
1864
1865	seq_printf(s, "mmc%d:\n", mmc->index);
1866	seq_printf(s, "sdio irq mode\t%s\n",
1867		   (mmc->caps & MMC_CAP_SDIO_IRQ) ? "interrupt" : "polling");
1868
1869	if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1870		seq_printf(s, "sdio irq \t%s\n",
1871			   (host->flags & HSMMC_SDIO_IRQ_ENABLED) ?  "enabled"
1872			   : "disabled");
1873	}
1874	seq_printf(s, "ctx_loss:\t%d\n", host->context_loss);
1875
1876	pm_runtime_get_sync(host->dev);
1877	seq_puts(s, "\nregs:\n");
1878	seq_printf(s, "CON:\t\t0x%08x\n",
1879			OMAP_HSMMC_READ(host->base, CON));
1880	seq_printf(s, "PSTATE:\t\t0x%08x\n",
1881		   OMAP_HSMMC_READ(host->base, PSTATE));
1882	seq_printf(s, "HCTL:\t\t0x%08x\n",
1883			OMAP_HSMMC_READ(host->base, HCTL));
1884	seq_printf(s, "SYSCTL:\t\t0x%08x\n",
1885			OMAP_HSMMC_READ(host->base, SYSCTL));
1886	seq_printf(s, "IE:\t\t0x%08x\n",
1887			OMAP_HSMMC_READ(host->base, IE));
1888	seq_printf(s, "ISE:\t\t0x%08x\n",
1889			OMAP_HSMMC_READ(host->base, ISE));
1890	seq_printf(s, "CAPA:\t\t0x%08x\n",
1891			OMAP_HSMMC_READ(host->base, CAPA));
1892
1893	pm_runtime_mark_last_busy(host->dev);
1894	pm_runtime_put_autosuspend(host->dev);
1895
1896	return 0;
1897}
1898
1899static int omap_hsmmc_regs_open(struct inode *inode, struct file *file)
1900{
1901	return single_open(file, omap_hsmmc_regs_show, inode->i_private);
1902}
1903
1904static const struct file_operations mmc_regs_fops = {
1905	.open           = omap_hsmmc_regs_open,
1906	.read           = seq_read,
1907	.llseek         = seq_lseek,
1908	.release        = single_release,
1909};
1910
1911static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1912{
1913	if (mmc->debugfs_root)
1914		debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root,
1915			mmc, &mmc_regs_fops);
1916}
1917
1918#else
1919
1920static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1921{
1922}
1923
1924#endif
1925
1926#ifdef CONFIG_OF
1927static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = {
1928	/* See 35xx errata 2.1.1.128 in SPRZ278F */
1929	.controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ,
1930};
1931
1932static const struct omap_mmc_of_data omap4_mmc_of_data = {
1933	.reg_offset = 0x100,
1934};
1935static const struct omap_mmc_of_data am33xx_mmc_of_data = {
1936	.reg_offset = 0x100,
1937	.controller_flags = OMAP_HSMMC_SWAKEUP_MISSING,
1938};
1939
1940static const struct of_device_id omap_mmc_of_match[] = {
1941	{
1942		.compatible = "ti,omap2-hsmmc",
1943	},
1944	{
1945		.compatible = "ti,omap3-pre-es3-hsmmc",
1946		.data = &omap3_pre_es3_mmc_of_data,
1947	},
1948	{
1949		.compatible = "ti,omap3-hsmmc",
1950	},
1951	{
1952		.compatible = "ti,omap4-hsmmc",
1953		.data = &omap4_mmc_of_data,
1954	},
1955	{
1956		.compatible = "ti,am33xx-hsmmc",
1957		.data = &am33xx_mmc_of_data,
1958	},
1959	{},
1960};
1961MODULE_DEVICE_TABLE(of, omap_mmc_of_match);
1962
1963static struct omap_hsmmc_platform_data *of_get_hsmmc_pdata(struct device *dev)
1964{
1965	struct omap_hsmmc_platform_data *pdata;
1966	struct device_node *np = dev->of_node;
1967
1968	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1969	if (!pdata)
1970		return ERR_PTR(-ENOMEM); /* out of memory */
1971
 
 
 
 
1972	if (of_find_property(np, "ti,dual-volt", NULL))
1973		pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1974
1975	pdata->gpio_cd = -EINVAL;
1976	pdata->gpio_cod = -EINVAL;
1977	pdata->gpio_wp = -EINVAL;
1978
1979	if (of_find_property(np, "ti,non-removable", NULL)) {
1980		pdata->nonremovable = true;
1981		pdata->no_regulator_off_init = true;
1982	}
1983
1984	if (of_find_property(np, "ti,needs-special-reset", NULL))
1985		pdata->features |= HSMMC_HAS_UPDATED_RESET;
1986
1987	if (of_find_property(np, "ti,needs-special-hs-handling", NULL))
1988		pdata->features |= HSMMC_HAS_HSPE_SUPPORT;
1989
1990	return pdata;
1991}
1992#else
1993static inline struct omap_hsmmc_platform_data
1994			*of_get_hsmmc_pdata(struct device *dev)
1995{
1996	return ERR_PTR(-EINVAL);
1997}
1998#endif
1999
2000static int omap_hsmmc_probe(struct platform_device *pdev)
2001{
2002	struct omap_hsmmc_platform_data *pdata = pdev->dev.platform_data;
2003	struct mmc_host *mmc;
2004	struct omap_hsmmc_host *host = NULL;
2005	struct resource *res;
2006	int ret, irq;
2007	const struct of_device_id *match;
2008	dma_cap_mask_t mask;
2009	unsigned tx_req, rx_req;
2010	const struct omap_mmc_of_data *data;
2011	void __iomem *base;
2012
2013	match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev);
2014	if (match) {
2015		pdata = of_get_hsmmc_pdata(&pdev->dev);
2016
2017		if (IS_ERR(pdata))
2018			return PTR_ERR(pdata);
2019
2020		if (match->data) {
2021			data = match->data;
2022			pdata->reg_offset = data->reg_offset;
2023			pdata->controller_flags |= data->controller_flags;
2024		}
2025	}
2026
2027	if (pdata == NULL) {
2028		dev_err(&pdev->dev, "Platform Data is missing\n");
2029		return -ENXIO;
2030	}
2031
2032	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2033	irq = platform_get_irq(pdev, 0);
2034	if (res == NULL || irq < 0)
2035		return -ENXIO;
2036
2037	base = devm_ioremap_resource(&pdev->dev, res);
2038	if (IS_ERR(base))
2039		return PTR_ERR(base);
2040
2041	mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev);
2042	if (!mmc) {
2043		ret = -ENOMEM;
2044		goto err;
2045	}
2046
2047	ret = mmc_of_parse(mmc);
2048	if (ret)
2049		goto err1;
2050
2051	host		= mmc_priv(mmc);
2052	host->mmc	= mmc;
2053	host->pdata	= pdata;
2054	host->dev	= &pdev->dev;
2055	host->use_dma	= 1;
2056	host->dma_ch	= -1;
2057	host->irq	= irq;
2058	host->mapbase	= res->start + pdata->reg_offset;
2059	host->base	= base + pdata->reg_offset;
2060	host->power_mode = MMC_POWER_OFF;
2061	host->next_data.cookie = 1;
2062	host->pbias_enabled = 0;
2063	host->vqmmc_enabled = 0;
2064
2065	ret = omap_hsmmc_gpio_init(mmc, host, pdata);
2066	if (ret)
2067		goto err_gpio;
2068
2069	platform_set_drvdata(pdev, host);
2070
2071	if (pdev->dev.of_node)
2072		host->wake_irq = irq_of_parse_and_map(pdev->dev.of_node, 1);
2073
2074	mmc->ops	= &omap_hsmmc_ops;
2075
2076	mmc->f_min = OMAP_MMC_MIN_CLOCK;
2077
2078	if (pdata->max_freq > 0)
2079		mmc->f_max = pdata->max_freq;
2080	else if (mmc->f_max == 0)
2081		mmc->f_max = OMAP_MMC_MAX_CLOCK;
2082
2083	spin_lock_init(&host->irq_lock);
2084
2085	host->fclk = devm_clk_get(&pdev->dev, "fck");
2086	if (IS_ERR(host->fclk)) {
2087		ret = PTR_ERR(host->fclk);
2088		host->fclk = NULL;
2089		goto err1;
2090	}
2091
2092	if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) {
2093		dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n");
2094		omap_hsmmc_ops.multi_io_quirk = omap_hsmmc_multi_io_quirk;
2095	}
2096
2097	device_init_wakeup(&pdev->dev, true);
2098	pm_runtime_enable(host->dev);
2099	pm_runtime_get_sync(host->dev);
2100	pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY);
2101	pm_runtime_use_autosuspend(host->dev);
2102
2103	omap_hsmmc_context_save(host);
2104
2105	host->dbclk = devm_clk_get(&pdev->dev, "mmchsdb_fck");
2106	/*
2107	 * MMC can still work without debounce clock.
2108	 */
2109	if (IS_ERR(host->dbclk)) {
2110		host->dbclk = NULL;
2111	} else if (clk_prepare_enable(host->dbclk) != 0) {
2112		dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n");
2113		host->dbclk = NULL;
2114	}
2115
2116	/* Since we do only SG emulation, we can have as many segs
2117	 * as we want. */
2118	mmc->max_segs = 1024;
2119
2120	mmc->max_blk_size = 512;       /* Block Length at max can be 1024 */
2121	mmc->max_blk_count = 0xFFFF;    /* No. of Blocks is 16 bits */
2122	mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
2123	mmc->max_seg_size = mmc->max_req_size;
2124
2125	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
2126		     MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_ERASE;
2127
2128	mmc->caps |= mmc_pdata(host)->caps;
2129	if (mmc->caps & MMC_CAP_8_BIT_DATA)
2130		mmc->caps |= MMC_CAP_4_BIT_DATA;
2131
2132	if (mmc_pdata(host)->nonremovable)
2133		mmc->caps |= MMC_CAP_NONREMOVABLE;
2134
2135	mmc->pm_caps |= mmc_pdata(host)->pm_caps;
2136
2137	omap_hsmmc_conf_bus_power(host);
2138
2139	if (!pdev->dev.of_node) {
2140		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
2141		if (!res) {
2142			dev_err(mmc_dev(host->mmc), "cannot get DMA TX channel\n");
2143			ret = -ENXIO;
2144			goto err_irq;
2145		}
2146		tx_req = res->start;
2147
2148		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
2149		if (!res) {
2150			dev_err(mmc_dev(host->mmc), "cannot get DMA RX channel\n");
2151			ret = -ENXIO;
2152			goto err_irq;
2153		}
2154		rx_req = res->start;
2155	}
2156
2157	dma_cap_zero(mask);
2158	dma_cap_set(DMA_SLAVE, mask);
2159
2160	host->rx_chan =
2161		dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
2162						 &rx_req, &pdev->dev, "rx");
2163
2164	if (!host->rx_chan) {
2165		dev_err(mmc_dev(host->mmc), "unable to obtain RX DMA engine channel\n");
2166		ret = -ENXIO;
2167		goto err_irq;
2168	}
2169
2170	host->tx_chan =
2171		dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
2172						 &tx_req, &pdev->dev, "tx");
2173
2174	if (!host->tx_chan) {
2175		dev_err(mmc_dev(host->mmc), "unable to obtain TX DMA engine channel\n");
2176		ret = -ENXIO;
2177		goto err_irq;
2178	}
 
2179
2180	/* Request IRQ for MMC operations */
2181	ret = devm_request_irq(&pdev->dev, host->irq, omap_hsmmc_irq, 0,
2182			mmc_hostname(mmc), host);
2183	if (ret) {
2184		dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
2185		goto err_irq;
2186	}
2187
2188	ret = omap_hsmmc_reg_get(host);
2189	if (ret)
2190		goto err_irq;
2191
2192	mmc->ocr_avail = mmc_pdata(host)->ocr_mask;
 
2193
2194	omap_hsmmc_disable_irq(host);
2195
2196	/*
2197	 * For now, only support SDIO interrupt if we have a separate
2198	 * wake-up interrupt configured from device tree. This is because
2199	 * the wake-up interrupt is needed for idle state and some
2200	 * platforms need special quirks. And we don't want to add new
2201	 * legacy mux platform init code callbacks any longer as we
2202	 * are moving to DT based booting anyways.
2203	 */
2204	ret = omap_hsmmc_configure_wake_irq(host);
2205	if (!ret)
2206		mmc->caps |= MMC_CAP_SDIO_IRQ;
2207
2208	omap_hsmmc_protect_card(host);
2209
2210	mmc_add_host(mmc);
2211
2212	if (mmc_pdata(host)->name != NULL) {
2213		ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
2214		if (ret < 0)
2215			goto err_slot_name;
2216	}
2217	if (host->get_cover_state) {
2218		ret = device_create_file(&mmc->class_dev,
2219					 &dev_attr_cover_switch);
2220		if (ret < 0)
2221			goto err_slot_name;
2222	}
2223
2224	omap_hsmmc_debugfs(mmc);
2225	pm_runtime_mark_last_busy(host->dev);
2226	pm_runtime_put_autosuspend(host->dev);
2227
2228	return 0;
2229
2230err_slot_name:
2231	mmc_remove_host(mmc);
2232err_irq:
2233	device_init_wakeup(&pdev->dev, false);
2234	if (host->tx_chan)
2235		dma_release_channel(host->tx_chan);
2236	if (host->rx_chan)
2237		dma_release_channel(host->rx_chan);
2238	pm_runtime_dont_use_autosuspend(host->dev);
2239	pm_runtime_put_sync(host->dev);
2240	pm_runtime_disable(host->dev);
2241	if (host->dbclk)
2242		clk_disable_unprepare(host->dbclk);
2243err1:
2244err_gpio:
2245	mmc_free_host(mmc);
2246err:
2247	return ret;
2248}
2249
2250static int omap_hsmmc_remove(struct platform_device *pdev)
2251{
2252	struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
2253
2254	pm_runtime_get_sync(host->dev);
2255	mmc_remove_host(host->mmc);
2256
2257	dma_release_channel(host->tx_chan);
2258	dma_release_channel(host->rx_chan);
2259
 
2260	pm_runtime_dont_use_autosuspend(host->dev);
2261	pm_runtime_put_sync(host->dev);
2262	pm_runtime_disable(host->dev);
2263	device_init_wakeup(&pdev->dev, false);
2264	if (host->dbclk)
2265		clk_disable_unprepare(host->dbclk);
2266
2267	mmc_free_host(host->mmc);
2268
2269	return 0;
2270}
2271
2272#ifdef CONFIG_PM_SLEEP
2273static int omap_hsmmc_suspend(struct device *dev)
2274{
2275	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2276
2277	if (!host)
2278		return 0;
2279
2280	pm_runtime_get_sync(host->dev);
2281
2282	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
2283		OMAP_HSMMC_WRITE(host->base, ISE, 0);
2284		OMAP_HSMMC_WRITE(host->base, IE, 0);
2285		OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2286		OMAP_HSMMC_WRITE(host->base, HCTL,
2287				OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
2288	}
2289
2290	if (host->dbclk)
2291		clk_disable_unprepare(host->dbclk);
2292
2293	pm_runtime_put_sync(host->dev);
2294	return 0;
2295}
2296
2297/* Routine to resume the MMC device */
2298static int omap_hsmmc_resume(struct device *dev)
2299{
2300	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2301
2302	if (!host)
2303		return 0;
2304
2305	pm_runtime_get_sync(host->dev);
2306
2307	if (host->dbclk)
2308		clk_prepare_enable(host->dbclk);
2309
2310	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER))
2311		omap_hsmmc_conf_bus_power(host);
2312
2313	omap_hsmmc_protect_card(host);
2314	pm_runtime_mark_last_busy(host->dev);
2315	pm_runtime_put_autosuspend(host->dev);
2316	return 0;
2317}
2318#endif
2319
 
2320static int omap_hsmmc_runtime_suspend(struct device *dev)
2321{
2322	struct omap_hsmmc_host *host;
2323	unsigned long flags;
2324	int ret = 0;
2325
2326	host = platform_get_drvdata(to_platform_device(dev));
2327	omap_hsmmc_context_save(host);
2328	dev_dbg(dev, "disabled\n");
2329
2330	spin_lock_irqsave(&host->irq_lock, flags);
2331	if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2332	    (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2333		/* disable sdio irq handling to prevent race */
2334		OMAP_HSMMC_WRITE(host->base, ISE, 0);
2335		OMAP_HSMMC_WRITE(host->base, IE, 0);
2336
2337		if (!(OMAP_HSMMC_READ(host->base, PSTATE) & DLEV_DAT(1))) {
2338			/*
2339			 * dat1 line low, pending sdio irq
2340			 * race condition: possible irq handler running on
2341			 * multi-core, abort
2342			 */
2343			dev_dbg(dev, "pending sdio irq, abort suspend\n");
2344			OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2345			OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2346			OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2347			pm_runtime_mark_last_busy(dev);
2348			ret = -EBUSY;
2349			goto abort;
2350		}
2351
2352		pinctrl_pm_select_idle_state(dev);
2353	} else {
2354		pinctrl_pm_select_idle_state(dev);
2355	}
2356
2357abort:
2358	spin_unlock_irqrestore(&host->irq_lock, flags);
2359	return ret;
2360}
2361
2362static int omap_hsmmc_runtime_resume(struct device *dev)
2363{
2364	struct omap_hsmmc_host *host;
2365	unsigned long flags;
2366
2367	host = platform_get_drvdata(to_platform_device(dev));
2368	omap_hsmmc_context_restore(host);
2369	dev_dbg(dev, "enabled\n");
2370
2371	spin_lock_irqsave(&host->irq_lock, flags);
2372	if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2373	    (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2374
2375		pinctrl_pm_select_default_state(host->dev);
2376
2377		/* irq lost, if pinmux incorrect */
2378		OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2379		OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2380		OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2381	} else {
2382		pinctrl_pm_select_default_state(host->dev);
2383	}
2384	spin_unlock_irqrestore(&host->irq_lock, flags);
2385	return 0;
2386}
 
2387
2388static struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
2389	SET_SYSTEM_SLEEP_PM_OPS(omap_hsmmc_suspend, omap_hsmmc_resume)
2390	.runtime_suspend = omap_hsmmc_runtime_suspend,
2391	.runtime_resume = omap_hsmmc_runtime_resume,
2392};
2393
2394static struct platform_driver omap_hsmmc_driver = {
2395	.probe		= omap_hsmmc_probe,
2396	.remove		= omap_hsmmc_remove,
2397	.driver		= {
2398		.name = DRIVER_NAME,
 
2399		.pm = &omap_hsmmc_dev_pm_ops,
2400		.of_match_table = of_match_ptr(omap_mmc_of_match),
2401	},
2402};
2403
2404module_platform_driver(omap_hsmmc_driver);
2405MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
2406MODULE_LICENSE("GPL");
2407MODULE_ALIAS("platform:" DRIVER_NAME);
2408MODULE_AUTHOR("Texas Instruments Inc");