Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/pagemap.h>
   8#include <linux/writeback.h>
   9#include <linux/blkdev.h>
  10#include <linux/rbtree.h>
  11#include <linux/slab.h>
  12#include <linux/error-injection.h>
  13#include "ctree.h"
  14#include "disk-io.h"
  15#include "transaction.h"
  16#include "volumes.h"
  17#include "locking.h"
  18#include "btrfs_inode.h"
  19#include "async-thread.h"
  20#include "free-space-cache.h"
  21#include "qgroup.h"
  22#include "print-tree.h"
  23#include "delalloc-space.h"
  24#include "block-group.h"
  25#include "backref.h"
  26#include "misc.h"
  27#include "subpage.h"
  28#include "zoned.h"
  29#include "inode-item.h"
  30#include "space-info.h"
  31#include "fs.h"
  32#include "accessors.h"
  33#include "extent-tree.h"
  34#include "root-tree.h"
  35#include "file-item.h"
  36#include "relocation.h"
  37#include "super.h"
  38#include "tree-checker.h"
  39
  40/*
  41 * Relocation overview
  42 *
  43 * [What does relocation do]
  44 *
  45 * The objective of relocation is to relocate all extents of the target block
  46 * group to other block groups.
  47 * This is utilized by resize (shrink only), profile converting, compacting
  48 * space, or balance routine to spread chunks over devices.
  49 *
  50 * 		Before		|		After
  51 * ------------------------------------------------------------------
  52 *  BG A: 10 data extents	| BG A: deleted
  53 *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
  54 *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
  55 *
  56 * [How does relocation work]
  57 *
  58 * 1.   Mark the target block group read-only
  59 *      New extents won't be allocated from the target block group.
  60 *
  61 * 2.1  Record each extent in the target block group
  62 *      To build a proper map of extents to be relocated.
  63 *
  64 * 2.2  Build data reloc tree and reloc trees
  65 *      Data reloc tree will contain an inode, recording all newly relocated
  66 *      data extents.
  67 *      There will be only one data reloc tree for one data block group.
  68 *
  69 *      Reloc tree will be a special snapshot of its source tree, containing
  70 *      relocated tree blocks.
  71 *      Each tree referring to a tree block in target block group will get its
  72 *      reloc tree built.
  73 *
  74 * 2.3  Swap source tree with its corresponding reloc tree
  75 *      Each involved tree only refers to new extents after swap.
  76 *
  77 * 3.   Cleanup reloc trees and data reloc tree.
  78 *      As old extents in the target block group are still referenced by reloc
  79 *      trees, we need to clean them up before really freeing the target block
  80 *      group.
  81 *
  82 * The main complexity is in steps 2.2 and 2.3.
  83 *
  84 * The entry point of relocation is relocate_block_group() function.
  85 */
 
 
 
  86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  87#define RELOCATION_RESERVED_NODES	256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  88/*
  89 * map address of tree root to tree
  90 */
  91struct mapping_node {
  92	struct {
  93		struct rb_node rb_node;
  94		u64 bytenr;
  95	}; /* Use rb_simle_node for search/insert */
  96	void *data;
  97};
  98
  99struct mapping_tree {
 100	struct rb_root rb_root;
 101	spinlock_t lock;
 102};
 103
 104/*
 105 * present a tree block to process
 106 */
 107struct tree_block {
 108	struct {
 109		struct rb_node rb_node;
 110		u64 bytenr;
 111	}; /* Use rb_simple_node for search/insert */
 112	u64 owner;
 113	struct btrfs_key key;
 114	unsigned int level:8;
 115	unsigned int key_ready:1;
 116};
 117
 118#define MAX_EXTENTS 128
 119
 120struct file_extent_cluster {
 121	u64 start;
 122	u64 end;
 123	u64 boundary[MAX_EXTENTS];
 124	unsigned int nr;
 125};
 126
 127struct reloc_control {
 128	/* block group to relocate */
 129	struct btrfs_block_group *block_group;
 130	/* extent tree */
 131	struct btrfs_root *extent_root;
 132	/* inode for moving data */
 133	struct inode *data_inode;
 134
 135	struct btrfs_block_rsv *block_rsv;
 136
 137	struct btrfs_backref_cache backref_cache;
 138
 139	struct file_extent_cluster cluster;
 140	/* tree blocks have been processed */
 141	struct extent_io_tree processed_blocks;
 142	/* map start of tree root to corresponding reloc tree */
 143	struct mapping_tree reloc_root_tree;
 144	/* list of reloc trees */
 145	struct list_head reloc_roots;
 146	/* list of subvolume trees that get relocated */
 147	struct list_head dirty_subvol_roots;
 148	/* size of metadata reservation for merging reloc trees */
 149	u64 merging_rsv_size;
 150	/* size of relocated tree nodes */
 151	u64 nodes_relocated;
 152	/* reserved size for block group relocation*/
 153	u64 reserved_bytes;
 154
 155	u64 search_start;
 156	u64 extents_found;
 157
 158	unsigned int stage:8;
 159	unsigned int create_reloc_tree:1;
 160	unsigned int merge_reloc_tree:1;
 161	unsigned int found_file_extent:1;
 162};
 163
 164/* stages of data relocation */
 165#define MOVE_DATA_EXTENTS	0
 166#define UPDATE_DATA_PTRS	1
 167
 168static void mark_block_processed(struct reloc_control *rc,
 169				 struct btrfs_backref_node *node)
 
 
 
 
 170{
 171	u32 blocksize;
 
 
 172
 173	if (node->level == 0 ||
 174	    in_range(node->bytenr, rc->block_group->start,
 175		     rc->block_group->length)) {
 176		blocksize = rc->extent_root->fs_info->nodesize;
 177		set_extent_bits(&rc->processed_blocks, node->bytenr,
 178				node->bytenr + blocksize - 1, EXTENT_DIRTY);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 179	}
 180	node->processed = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 181}
 182
 
 
 
 
 
 
 
 
 183
 184static void mapping_tree_init(struct mapping_tree *tree)
 185{
 186	tree->rb_root = RB_ROOT;
 187	spin_lock_init(&tree->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188}
 189
 190/*
 191 * walk up backref nodes until reach node presents tree root
 192 */
 193static struct btrfs_backref_node *walk_up_backref(
 194		struct btrfs_backref_node *node,
 195		struct btrfs_backref_edge *edges[], int *index)
 196{
 197	struct btrfs_backref_edge *edge;
 198	int idx = *index;
 199
 200	while (!list_empty(&node->upper)) {
 201		edge = list_entry(node->upper.next,
 202				  struct btrfs_backref_edge, list[LOWER]);
 203		edges[idx++] = edge;
 204		node = edge->node[UPPER];
 205	}
 206	BUG_ON(node->detached);
 207	*index = idx;
 208	return node;
 209}
 210
 211/*
 212 * walk down backref nodes to find start of next reference path
 213 */
 214static struct btrfs_backref_node *walk_down_backref(
 215		struct btrfs_backref_edge *edges[], int *index)
 216{
 217	struct btrfs_backref_edge *edge;
 218	struct btrfs_backref_node *lower;
 219	int idx = *index;
 220
 221	while (idx > 0) {
 222		edge = edges[idx - 1];
 223		lower = edge->node[LOWER];
 224		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
 225			idx--;
 226			continue;
 227		}
 228		edge = list_entry(edge->list[LOWER].next,
 229				  struct btrfs_backref_edge, list[LOWER]);
 230		edges[idx - 1] = edge;
 231		*index = idx;
 232		return edge->node[UPPER];
 233	}
 234	*index = 0;
 235	return NULL;
 236}
 237
 238static void update_backref_node(struct btrfs_backref_cache *cache,
 239				struct btrfs_backref_node *node, u64 bytenr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 240{
 241	struct rb_node *rb_node;
 242	rb_erase(&node->rb_node, &cache->rb_root);
 243	node->bytenr = bytenr;
 244	rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
 245	if (rb_node)
 246		btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
 247}
 248
 249/*
 250 * update backref cache after a transaction commit
 251 */
 252static int update_backref_cache(struct btrfs_trans_handle *trans,
 253				struct btrfs_backref_cache *cache)
 254{
 255	struct btrfs_backref_node *node;
 256	int level = 0;
 257
 258	if (cache->last_trans == 0) {
 259		cache->last_trans = trans->transid;
 260		return 0;
 261	}
 262
 263	if (cache->last_trans == trans->transid)
 264		return 0;
 265
 266	/*
 267	 * detached nodes are used to avoid unnecessary backref
 268	 * lookup. transaction commit changes the extent tree.
 269	 * so the detached nodes are no longer useful.
 270	 */
 271	while (!list_empty(&cache->detached)) {
 272		node = list_entry(cache->detached.next,
 273				  struct btrfs_backref_node, list);
 274		btrfs_backref_cleanup_node(cache, node);
 275	}
 276
 277	while (!list_empty(&cache->changed)) {
 278		node = list_entry(cache->changed.next,
 279				  struct btrfs_backref_node, list);
 280		list_del_init(&node->list);
 281		BUG_ON(node->pending);
 282		update_backref_node(cache, node, node->new_bytenr);
 283	}
 284
 285	/*
 286	 * some nodes can be left in the pending list if there were
 287	 * errors during processing the pending nodes.
 288	 */
 289	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
 290		list_for_each_entry(node, &cache->pending[level], list) {
 291			BUG_ON(!node->pending);
 292			if (node->bytenr == node->new_bytenr)
 293				continue;
 294			update_backref_node(cache, node, node->new_bytenr);
 295		}
 296	}
 297
 298	cache->last_trans = 0;
 299	return 1;
 300}
 301
 302static bool reloc_root_is_dead(struct btrfs_root *root)
 303{
 304	/*
 305	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
 306	 * btrfs_update_reloc_root. We need to see the updated bit before
 307	 * trying to access reloc_root
 308	 */
 309	smp_rmb();
 310	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
 311		return true;
 312	return false;
 313}
 314
 315/*
 316 * Check if this subvolume tree has valid reloc tree.
 317 *
 318 * Reloc tree after swap is considered dead, thus not considered as valid.
 319 * This is enough for most callers, as they don't distinguish dead reloc root
 320 * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
 321 * special case.
 322 */
 323static bool have_reloc_root(struct btrfs_root *root)
 324{
 325	if (reloc_root_is_dead(root))
 326		return false;
 327	if (!root->reloc_root)
 328		return false;
 329	return true;
 330}
 331
 332int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
 333{
 334	struct btrfs_root *reloc_root;
 335
 336	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 337		return 0;
 338
 339	/* This root has been merged with its reloc tree, we can ignore it */
 340	if (reloc_root_is_dead(root))
 341		return 1;
 342
 343	reloc_root = root->reloc_root;
 344	if (!reloc_root)
 345		return 0;
 346
 347	if (btrfs_header_generation(reloc_root->commit_root) ==
 348	    root->fs_info->running_transaction->transid)
 349		return 0;
 350	/*
 351	 * if there is reloc tree and it was created in previous
 352	 * transaction backref lookup can find the reloc tree,
 353	 * so backref node for the fs tree root is useless for
 354	 * relocation.
 355	 */
 356	return 1;
 357}
 358
 359/*
 360 * find reloc tree by address of tree root
 361 */
 362struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
 
 363{
 364	struct reloc_control *rc = fs_info->reloc_ctl;
 365	struct rb_node *rb_node;
 366	struct mapping_node *node;
 367	struct btrfs_root *root = NULL;
 368
 369	ASSERT(rc);
 370	spin_lock(&rc->reloc_root_tree.lock);
 371	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
 372	if (rb_node) {
 373		node = rb_entry(rb_node, struct mapping_node, rb_node);
 374		root = node->data;
 375	}
 376	spin_unlock(&rc->reloc_root_tree.lock);
 377	return btrfs_grab_root(root);
 378}
 379
 380/*
 381 * For useless nodes, do two major clean ups:
 382 *
 383 * - Cleanup the children edges and nodes
 384 *   If child node is also orphan (no parent) during cleanup, then the child
 385 *   node will also be cleaned up.
 386 *
 387 * - Freeing up leaves (level 0), keeps nodes detached
 388 *   For nodes, the node is still cached as "detached"
 389 *
 390 * Return false if @node is not in the @useless_nodes list.
 391 * Return true if @node is in the @useless_nodes list.
 392 */
 393static bool handle_useless_nodes(struct reloc_control *rc,
 394				 struct btrfs_backref_node *node)
 395{
 396	struct btrfs_backref_cache *cache = &rc->backref_cache;
 397	struct list_head *useless_node = &cache->useless_node;
 398	bool ret = false;
 
 
 
 
 
 
 
 
 
 399
 400	while (!list_empty(useless_node)) {
 401		struct btrfs_backref_node *cur;
 
 
 402
 403		cur = list_first_entry(useless_node, struct btrfs_backref_node,
 404				 list);
 405		list_del_init(&cur->list);
 
 
 
 406
 407		/* Only tree root nodes can be added to @useless_nodes */
 408		ASSERT(list_empty(&cur->upper));
 409
 410		if (cur == node)
 411			ret = true;
 
 
 
 
 
 
 
 412
 413		/* The node is the lowest node */
 414		if (cur->lowest) {
 415			list_del_init(&cur->lower);
 416			cur->lowest = 0;
 417		}
 418
 419		/* Cleanup the lower edges */
 420		while (!list_empty(&cur->lower)) {
 421			struct btrfs_backref_edge *edge;
 422			struct btrfs_backref_node *lower;
 423
 424			edge = list_entry(cur->lower.next,
 425					struct btrfs_backref_edge, list[UPPER]);
 426			list_del(&edge->list[UPPER]);
 427			list_del(&edge->list[LOWER]);
 428			lower = edge->node[LOWER];
 429			btrfs_backref_free_edge(cache, edge);
 430
 431			/* Child node is also orphan, queue for cleanup */
 432			if (list_empty(&lower->upper))
 433				list_add(&lower->list, useless_node);
 434		}
 435		/* Mark this block processed for relocation */
 436		mark_block_processed(rc, cur);
 437
 438		/*
 439		 * Backref nodes for tree leaves are deleted from the cache.
 440		 * Backref nodes for upper level tree blocks are left in the
 441		 * cache to avoid unnecessary backref lookup.
 442		 */
 443		if (cur->level > 0) {
 444			list_add(&cur->list, &cache->detached);
 445			cur->detached = 1;
 446		} else {
 447			rb_erase(&cur->rb_node, &cache->rb_root);
 448			btrfs_backref_free_node(cache, cur);
 449		}
 
 
 
 
 450	}
 451	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 452}
 453
 454/*
 455 * Build backref tree for a given tree block. Root of the backref tree
 456 * corresponds the tree block, leaves of the backref tree correspond roots of
 457 * b-trees that reference the tree block.
 458 *
 459 * The basic idea of this function is check backrefs of a given block to find
 460 * upper level blocks that reference the block, and then check backrefs of
 461 * these upper level blocks recursively. The recursion stops when tree root is
 462 * reached or backrefs for the block is cached.
 463 *
 464 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
 465 * all upper level blocks that directly/indirectly reference the block are also
 466 * cached.
 467 */
 468static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
 469			struct reloc_control *rc, struct btrfs_key *node_key,
 470			int level, u64 bytenr)
 471{
 472	struct btrfs_backref_iter *iter;
 473	struct btrfs_backref_cache *cache = &rc->backref_cache;
 474	/* For searching parent of TREE_BLOCK_REF */
 475	struct btrfs_path *path;
 476	struct btrfs_backref_node *cur;
 477	struct btrfs_backref_node *node = NULL;
 478	struct btrfs_backref_edge *edge;
 
 
 
 
 
 
 
 
 
 
 
 
 479	int ret;
 480	int err = 0;
 
 481
 482	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info);
 483	if (!iter)
 484		return ERR_PTR(-ENOMEM);
 485	path = btrfs_alloc_path();
 486	if (!path) {
 487		err = -ENOMEM;
 488		goto out;
 489	}
 
 
 490
 491	node = btrfs_backref_alloc_node(cache, bytenr, level);
 492	if (!node) {
 493		err = -ENOMEM;
 494		goto out;
 495	}
 496
 
 
 497	node->lowest = 1;
 498	cur = node;
 
 
 
 
 
 
 499
 500	/* Breadth-first search to build backref cache */
 501	do {
 502		ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
 503						  cur);
 504		if (ret < 0) {
 505			err = ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 506			goto out;
 507		}
 508		edge = list_first_entry_or_null(&cache->pending_edge,
 509				struct btrfs_backref_edge, list[UPPER]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 510		/*
 511		 * The pending list isn't empty, take the first block to
 512		 * process
 513		 */
 514		if (edge) {
 515			list_del_init(&edge->list[UPPER]);
 516			cur = edge->node[UPPER];
 
 
 
 
 
 517		}
 518	} while (edge);
 
 519
 520	/* Finish the upper linkage of newly added edges/nodes */
 521	ret = btrfs_backref_finish_upper_links(cache, node);
 522	if (ret < 0) {
 523		err = ret;
 524		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 525	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 526
 527	if (handle_useless_nodes(rc, node))
 528		node = NULL;
 
 
 
 
 
 
 
 
 
 
 529out:
 530	btrfs_backref_iter_free(iter);
 531	btrfs_free_path(path);
 532	if (err) {
 533		btrfs_backref_error_cleanup(cache, node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 534		return ERR_PTR(err);
 535	}
 536	ASSERT(!node || !node->detached);
 537	ASSERT(list_empty(&cache->useless_node) &&
 538	       list_empty(&cache->pending_edge));
 539	return node;
 540}
 541
 542/*
 543 * helper to add backref node for the newly created snapshot.
 544 * the backref node is created by cloning backref node that
 545 * corresponds to root of source tree
 546 */
 547static int clone_backref_node(struct btrfs_trans_handle *trans,
 548			      struct reloc_control *rc,
 549			      struct btrfs_root *src,
 550			      struct btrfs_root *dest)
 551{
 552	struct btrfs_root *reloc_root = src->reloc_root;
 553	struct btrfs_backref_cache *cache = &rc->backref_cache;
 554	struct btrfs_backref_node *node = NULL;
 555	struct btrfs_backref_node *new_node;
 556	struct btrfs_backref_edge *edge;
 557	struct btrfs_backref_edge *new_edge;
 558	struct rb_node *rb_node;
 559
 560	if (cache->last_trans > 0)
 561		update_backref_cache(trans, cache);
 562
 563	rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
 564	if (rb_node) {
 565		node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
 566		if (node->detached)
 567			node = NULL;
 568		else
 569			BUG_ON(node->new_bytenr != reloc_root->node->start);
 570	}
 571
 572	if (!node) {
 573		rb_node = rb_simple_search(&cache->rb_root,
 574					   reloc_root->commit_root->start);
 575		if (rb_node) {
 576			node = rb_entry(rb_node, struct btrfs_backref_node,
 577					rb_node);
 578			BUG_ON(node->detached);
 579		}
 580	}
 581
 582	if (!node)
 583		return 0;
 584
 585	new_node = btrfs_backref_alloc_node(cache, dest->node->start,
 586					    node->level);
 587	if (!new_node)
 588		return -ENOMEM;
 589
 
 
 590	new_node->lowest = node->lowest;
 591	new_node->checked = 1;
 592	new_node->root = btrfs_grab_root(dest);
 593	ASSERT(new_node->root);
 594
 595	if (!node->lowest) {
 596		list_for_each_entry(edge, &node->lower, list[UPPER]) {
 597			new_edge = btrfs_backref_alloc_edge(cache);
 598			if (!new_edge)
 599				goto fail;
 600
 601			btrfs_backref_link_edge(new_edge, edge->node[LOWER],
 602						new_node, LINK_UPPER);
 
 
 603		}
 604	} else {
 605		list_add_tail(&new_node->lower, &cache->leaves);
 606	}
 607
 608	rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
 609				   &new_node->rb_node);
 610	if (rb_node)
 611		btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
 612
 613	if (!new_node->lowest) {
 614		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
 615			list_add_tail(&new_edge->list[LOWER],
 616				      &new_edge->node[LOWER]->upper);
 617		}
 618	}
 619	return 0;
 620fail:
 621	while (!list_empty(&new_node->lower)) {
 622		new_edge = list_entry(new_node->lower.next,
 623				      struct btrfs_backref_edge, list[UPPER]);
 624		list_del(&new_edge->list[UPPER]);
 625		btrfs_backref_free_edge(cache, new_edge);
 626	}
 627	btrfs_backref_free_node(cache, new_node);
 628	return -ENOMEM;
 629}
 630
 631/*
 632 * helper to add 'address of tree root -> reloc tree' mapping
 633 */
 634static int __must_check __add_reloc_root(struct btrfs_root *root)
 635{
 636	struct btrfs_fs_info *fs_info = root->fs_info;
 637	struct rb_node *rb_node;
 638	struct mapping_node *node;
 639	struct reloc_control *rc = fs_info->reloc_ctl;
 640
 641	node = kmalloc(sizeof(*node), GFP_NOFS);
 642	if (!node)
 643		return -ENOMEM;
 644
 645	node->bytenr = root->commit_root->start;
 646	node->data = root;
 647
 648	spin_lock(&rc->reloc_root_tree.lock);
 649	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
 650				   node->bytenr, &node->rb_node);
 651	spin_unlock(&rc->reloc_root_tree.lock);
 652	if (rb_node) {
 653		btrfs_err(fs_info,
 654			    "Duplicate root found for start=%llu while inserting into relocation tree",
 655			    node->bytenr);
 
 656		return -EEXIST;
 657	}
 658
 659	list_add_tail(&root->root_list, &rc->reloc_roots);
 660	return 0;
 661}
 662
 663/*
 664 * helper to delete the 'address of tree root -> reloc tree'
 665 * mapping
 666 */
 667static void __del_reloc_root(struct btrfs_root *root)
 668{
 669	struct btrfs_fs_info *fs_info = root->fs_info;
 670	struct rb_node *rb_node;
 671	struct mapping_node *node = NULL;
 672	struct reloc_control *rc = fs_info->reloc_ctl;
 673	bool put_ref = false;
 674
 675	if (rc && root->node) {
 676		spin_lock(&rc->reloc_root_tree.lock);
 677		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
 678					   root->commit_root->start);
 679		if (rb_node) {
 680			node = rb_entry(rb_node, struct mapping_node, rb_node);
 681			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
 682			RB_CLEAR_NODE(&node->rb_node);
 683		}
 684		spin_unlock(&rc->reloc_root_tree.lock);
 685		ASSERT(!node || (struct btrfs_root *)node->data == root);
 686	}
 
 687
 688	/*
 689	 * We only put the reloc root here if it's on the list.  There's a lot
 690	 * of places where the pattern is to splice the rc->reloc_roots, process
 691	 * the reloc roots, and then add the reloc root back onto
 692	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
 693	 * list we don't want the reference being dropped, because the guy
 694	 * messing with the list is in charge of the reference.
 695	 */
 696	spin_lock(&fs_info->trans_lock);
 697	if (!list_empty(&root->root_list)) {
 698		put_ref = true;
 699		list_del_init(&root->root_list);
 700	}
 701	spin_unlock(&fs_info->trans_lock);
 702	if (put_ref)
 703		btrfs_put_root(root);
 704	kfree(node);
 705}
 706
 707/*
 708 * helper to update the 'address of tree root -> reloc tree'
 709 * mapping
 710 */
 711static int __update_reloc_root(struct btrfs_root *root)
 712{
 713	struct btrfs_fs_info *fs_info = root->fs_info;
 714	struct rb_node *rb_node;
 715	struct mapping_node *node = NULL;
 716	struct reloc_control *rc = fs_info->reloc_ctl;
 717
 718	spin_lock(&rc->reloc_root_tree.lock);
 719	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
 720				   root->commit_root->start);
 721	if (rb_node) {
 722		node = rb_entry(rb_node, struct mapping_node, rb_node);
 723		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
 724	}
 725	spin_unlock(&rc->reloc_root_tree.lock);
 726
 727	if (!node)
 728		return 0;
 729	BUG_ON((struct btrfs_root *)node->data != root);
 730
 731	spin_lock(&rc->reloc_root_tree.lock);
 732	node->bytenr = root->node->start;
 733	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
 734				   node->bytenr, &node->rb_node);
 735	spin_unlock(&rc->reloc_root_tree.lock);
 736	if (rb_node)
 737		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
 738	return 0;
 739}
 740
 741static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
 742					struct btrfs_root *root, u64 objectid)
 743{
 744	struct btrfs_fs_info *fs_info = root->fs_info;
 745	struct btrfs_root *reloc_root;
 746	struct extent_buffer *eb;
 747	struct btrfs_root_item *root_item;
 748	struct btrfs_key root_key;
 749	int ret = 0;
 750	bool must_abort = false;
 751
 752	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
 753	if (!root_item)
 754		return ERR_PTR(-ENOMEM);
 755
 756	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
 757	root_key.type = BTRFS_ROOT_ITEM_KEY;
 758	root_key.offset = objectid;
 759
 760	if (root->root_key.objectid == objectid) {
 761		u64 commit_root_gen;
 762
 763		/* called by btrfs_init_reloc_root */
 764		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
 765				      BTRFS_TREE_RELOC_OBJECTID);
 766		if (ret)
 767			goto fail;
 768
 769		/*
 770		 * Set the last_snapshot field to the generation of the commit
 771		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
 772		 * correctly (returns true) when the relocation root is created
 773		 * either inside the critical section of a transaction commit
 774		 * (through transaction.c:qgroup_account_snapshot()) and when
 775		 * it's created before the transaction commit is started.
 776		 */
 777		commit_root_gen = btrfs_header_generation(root->commit_root);
 778		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
 779	} else {
 780		/*
 781		 * called by btrfs_reloc_post_snapshot_hook.
 782		 * the source tree is a reloc tree, all tree blocks
 783		 * modified after it was created have RELOC flag
 784		 * set in their headers. so it's OK to not update
 785		 * the 'last_snapshot'.
 786		 */
 787		ret = btrfs_copy_root(trans, root, root->node, &eb,
 788				      BTRFS_TREE_RELOC_OBJECTID);
 789		if (ret)
 790			goto fail;
 791	}
 792
 793	/*
 794	 * We have changed references at this point, we must abort the
 795	 * transaction if anything fails.
 796	 */
 797	must_abort = true;
 798
 799	memcpy(root_item, &root->root_item, sizeof(*root_item));
 800	btrfs_set_root_bytenr(root_item, eb->start);
 801	btrfs_set_root_level(root_item, btrfs_header_level(eb));
 802	btrfs_set_root_generation(root_item, trans->transid);
 803
 804	if (root->root_key.objectid == objectid) {
 805		btrfs_set_root_refs(root_item, 0);
 806		memset(&root_item->drop_progress, 0,
 807		       sizeof(struct btrfs_disk_key));
 808		btrfs_set_root_drop_level(root_item, 0);
 
 
 
 
 
 
 809	}
 810
 811	btrfs_tree_unlock(eb);
 812	free_extent_buffer(eb);
 813
 814	ret = btrfs_insert_root(trans, fs_info->tree_root,
 815				&root_key, root_item);
 816	if (ret)
 817		goto fail;
 818
 819	kfree(root_item);
 820
 821	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
 822	if (IS_ERR(reloc_root)) {
 823		ret = PTR_ERR(reloc_root);
 824		goto abort;
 825	}
 826	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
 827	reloc_root->last_trans = trans->transid;
 828	return reloc_root;
 829fail:
 830	kfree(root_item);
 831abort:
 832	if (must_abort)
 833		btrfs_abort_transaction(trans, ret);
 834	return ERR_PTR(ret);
 835}
 836
 837/*
 838 * create reloc tree for a given fs tree. reloc tree is just a
 839 * snapshot of the fs tree with special root objectid.
 840 *
 841 * The reloc_root comes out of here with two references, one for
 842 * root->reloc_root, and another for being on the rc->reloc_roots list.
 843 */
 844int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
 845			  struct btrfs_root *root)
 846{
 847	struct btrfs_fs_info *fs_info = root->fs_info;
 848	struct btrfs_root *reloc_root;
 849	struct reloc_control *rc = fs_info->reloc_ctl;
 850	struct btrfs_block_rsv *rsv;
 851	int clear_rsv = 0;
 852	int ret;
 853
 854	if (!rc)
 855		return 0;
 856
 857	/*
 858	 * The subvolume has reloc tree but the swap is finished, no need to
 859	 * create/update the dead reloc tree
 860	 */
 861	if (reloc_root_is_dead(root))
 862		return 0;
 863
 864	/*
 865	 * This is subtle but important.  We do not do
 866	 * record_root_in_transaction for reloc roots, instead we record their
 867	 * corresponding fs root, and then here we update the last trans for the
 868	 * reloc root.  This means that we have to do this for the entire life
 869	 * of the reloc root, regardless of which stage of the relocation we are
 870	 * in.
 871	 */
 872	if (root->reloc_root) {
 873		reloc_root = root->reloc_root;
 874		reloc_root->last_trans = trans->transid;
 875		return 0;
 876	}
 877
 878	/*
 879	 * We are merging reloc roots, we do not need new reloc trees.  Also
 880	 * reloc trees never need their own reloc tree.
 881	 */
 882	if (!rc->create_reloc_tree ||
 883	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
 884		return 0;
 885
 886	if (!trans->reloc_reserved) {
 887		rsv = trans->block_rsv;
 888		trans->block_rsv = rc->block_rsv;
 889		clear_rsv = 1;
 890	}
 891	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
 892	if (clear_rsv)
 893		trans->block_rsv = rsv;
 894	if (IS_ERR(reloc_root))
 895		return PTR_ERR(reloc_root);
 896
 897	ret = __add_reloc_root(reloc_root);
 898	ASSERT(ret != -EEXIST);
 899	if (ret) {
 900		/* Pairs with create_reloc_root */
 901		btrfs_put_root(reloc_root);
 902		return ret;
 903	}
 904	root->reloc_root = btrfs_grab_root(reloc_root);
 905	return 0;
 906}
 907
 908/*
 909 * update root item of reloc tree
 910 */
 911int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
 912			    struct btrfs_root *root)
 913{
 914	struct btrfs_fs_info *fs_info = root->fs_info;
 915	struct btrfs_root *reloc_root;
 916	struct btrfs_root_item *root_item;
 917	int ret;
 918
 919	if (!have_reloc_root(root))
 920		return 0;
 921
 922	reloc_root = root->reloc_root;
 923	root_item = &reloc_root->root_item;
 924
 925	/*
 926	 * We are probably ok here, but __del_reloc_root() will drop its ref of
 927	 * the root.  We have the ref for root->reloc_root, but just in case
 928	 * hold it while we update the reloc root.
 929	 */
 930	btrfs_grab_root(reloc_root);
 931
 932	/* root->reloc_root will stay until current relocation finished */
 933	if (fs_info->reloc_ctl->merge_reloc_tree &&
 934	    btrfs_root_refs(root_item) == 0) {
 935		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
 936		/*
 937		 * Mark the tree as dead before we change reloc_root so
 938		 * have_reloc_root will not touch it from now on.
 939		 */
 940		smp_wmb();
 941		__del_reloc_root(reloc_root);
 942	}
 943
 944	if (reloc_root->commit_root != reloc_root->node) {
 945		__update_reloc_root(reloc_root);
 946		btrfs_set_root_node(root_item, reloc_root->node);
 947		free_extent_buffer(reloc_root->commit_root);
 948		reloc_root->commit_root = btrfs_root_node(reloc_root);
 949	}
 950
 951	ret = btrfs_update_root(trans, fs_info->tree_root,
 952				&reloc_root->root_key, root_item);
 953	btrfs_put_root(reloc_root);
 954	return ret;
 
 
 955}
 956
 957/*
 958 * helper to find first cached inode with inode number >= objectid
 959 * in a subvolume
 960 */
 961static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
 962{
 963	struct rb_node *node;
 964	struct rb_node *prev;
 965	struct btrfs_inode *entry;
 966	struct inode *inode;
 967
 968	spin_lock(&root->inode_lock);
 969again:
 970	node = root->inode_tree.rb_node;
 971	prev = NULL;
 972	while (node) {
 973		prev = node;
 974		entry = rb_entry(node, struct btrfs_inode, rb_node);
 975
 976		if (objectid < btrfs_ino(entry))
 977			node = node->rb_left;
 978		else if (objectid > btrfs_ino(entry))
 979			node = node->rb_right;
 980		else
 981			break;
 982	}
 983	if (!node) {
 984		while (prev) {
 985			entry = rb_entry(prev, struct btrfs_inode, rb_node);
 986			if (objectid <= btrfs_ino(entry)) {
 987				node = prev;
 988				break;
 989			}
 990			prev = rb_next(prev);
 991		}
 992	}
 993	while (node) {
 994		entry = rb_entry(node, struct btrfs_inode, rb_node);
 995		inode = igrab(&entry->vfs_inode);
 996		if (inode) {
 997			spin_unlock(&root->inode_lock);
 998			return inode;
 999		}
1000
1001		objectid = btrfs_ino(entry) + 1;
1002		if (cond_resched_lock(&root->inode_lock))
1003			goto again;
1004
1005		node = rb_next(node);
1006	}
1007	spin_unlock(&root->inode_lock);
1008	return NULL;
1009}
1010
 
 
 
 
 
 
 
 
 
1011/*
1012 * get new location of data
1013 */
1014static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1015			    u64 bytenr, u64 num_bytes)
1016{
1017	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1018	struct btrfs_path *path;
1019	struct btrfs_file_extent_item *fi;
1020	struct extent_buffer *leaf;
1021	int ret;
1022
1023	path = btrfs_alloc_path();
1024	if (!path)
1025		return -ENOMEM;
1026
1027	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1028	ret = btrfs_lookup_file_extent(NULL, root, path,
1029			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1030	if (ret < 0)
1031		goto out;
1032	if (ret > 0) {
1033		ret = -ENOENT;
1034		goto out;
1035	}
1036
1037	leaf = path->nodes[0];
1038	fi = btrfs_item_ptr(leaf, path->slots[0],
1039			    struct btrfs_file_extent_item);
1040
1041	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1042	       btrfs_file_extent_compression(leaf, fi) ||
1043	       btrfs_file_extent_encryption(leaf, fi) ||
1044	       btrfs_file_extent_other_encoding(leaf, fi));
1045
1046	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1047		ret = -EINVAL;
1048		goto out;
1049	}
1050
1051	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1052	ret = 0;
1053out:
1054	btrfs_free_path(path);
1055	return ret;
1056}
1057
1058/*
1059 * update file extent items in the tree leaf to point to
1060 * the new locations.
1061 */
1062static noinline_for_stack
1063int replace_file_extents(struct btrfs_trans_handle *trans,
1064			 struct reloc_control *rc,
1065			 struct btrfs_root *root,
1066			 struct extent_buffer *leaf)
1067{
1068	struct btrfs_fs_info *fs_info = root->fs_info;
1069	struct btrfs_key key;
1070	struct btrfs_file_extent_item *fi;
1071	struct inode *inode = NULL;
1072	u64 parent;
1073	u64 bytenr;
1074	u64 new_bytenr = 0;
1075	u64 num_bytes;
1076	u64 end;
1077	u32 nritems;
1078	u32 i;
1079	int ret = 0;
1080	int first = 1;
1081	int dirty = 0;
1082
1083	if (rc->stage != UPDATE_DATA_PTRS)
1084		return 0;
1085
1086	/* reloc trees always use full backref */
1087	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1088		parent = leaf->start;
1089	else
1090		parent = 0;
1091
1092	nritems = btrfs_header_nritems(leaf);
1093	for (i = 0; i < nritems; i++) {
1094		struct btrfs_ref ref = { 0 };
1095
1096		cond_resched();
1097		btrfs_item_key_to_cpu(leaf, &key, i);
1098		if (key.type != BTRFS_EXTENT_DATA_KEY)
1099			continue;
1100		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1101		if (btrfs_file_extent_type(leaf, fi) ==
1102		    BTRFS_FILE_EXTENT_INLINE)
1103			continue;
1104		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1105		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1106		if (bytenr == 0)
1107			continue;
1108		if (!in_range(bytenr, rc->block_group->start,
1109			      rc->block_group->length))
1110			continue;
1111
1112		/*
1113		 * if we are modifying block in fs tree, wait for read_folio
1114		 * to complete and drop the extent cache
1115		 */
1116		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1117			if (first) {
1118				inode = find_next_inode(root, key.objectid);
1119				first = 0;
1120			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1121				btrfs_add_delayed_iput(BTRFS_I(inode));
1122				inode = find_next_inode(root, key.objectid);
1123			}
1124			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1125				struct extent_state *cached_state = NULL;
1126
1127				end = key.offset +
1128				      btrfs_file_extent_num_bytes(leaf, fi);
1129				WARN_ON(!IS_ALIGNED(key.offset,
1130						    fs_info->sectorsize));
1131				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1132				end--;
1133				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1134						      key.offset, end,
1135						      &cached_state);
1136				if (!ret)
1137					continue;
1138
1139				btrfs_drop_extent_map_range(BTRFS_I(inode),
1140							    key.offset, end, true);
1141				unlock_extent(&BTRFS_I(inode)->io_tree,
1142					      key.offset, end, &cached_state);
1143			}
1144		}
1145
1146		ret = get_new_location(rc->data_inode, &new_bytenr,
1147				       bytenr, num_bytes);
1148		if (ret) {
1149			/*
1150			 * Don't have to abort since we've not changed anything
1151			 * in the file extent yet.
1152			 */
1153			break;
1154		}
1155
1156		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1157		dirty = 1;
1158
1159		key.offset -= btrfs_file_extent_offset(leaf, fi);
1160		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1161				       num_bytes, parent);
1162		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1163				    key.objectid, key.offset,
1164				    root->root_key.objectid, false);
1165		ret = btrfs_inc_extent_ref(trans, &ref);
1166		if (ret) {
1167			btrfs_abort_transaction(trans, ret);
1168			break;
1169		}
1170
1171		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1172				       num_bytes, parent);
1173		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1174				    key.objectid, key.offset,
1175				    root->root_key.objectid, false);
1176		ret = btrfs_free_extent(trans, &ref);
1177		if (ret) {
1178			btrfs_abort_transaction(trans, ret);
1179			break;
1180		}
1181	}
1182	if (dirty)
1183		btrfs_mark_buffer_dirty(leaf);
1184	if (inode)
1185		btrfs_add_delayed_iput(BTRFS_I(inode));
1186	return ret;
1187}
1188
1189static noinline_for_stack
1190int memcmp_node_keys(struct extent_buffer *eb, int slot,
1191		     struct btrfs_path *path, int level)
1192{
1193	struct btrfs_disk_key key1;
1194	struct btrfs_disk_key key2;
1195	btrfs_node_key(eb, &key1, slot);
1196	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1197	return memcmp(&key1, &key2, sizeof(key1));
1198}
1199
1200/*
1201 * try to replace tree blocks in fs tree with the new blocks
1202 * in reloc tree. tree blocks haven't been modified since the
1203 * reloc tree was create can be replaced.
1204 *
1205 * if a block was replaced, level of the block + 1 is returned.
1206 * if no block got replaced, 0 is returned. if there are other
1207 * errors, a negative error number is returned.
1208 */
1209static noinline_for_stack
1210int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1211		 struct btrfs_root *dest, struct btrfs_root *src,
1212		 struct btrfs_path *path, struct btrfs_key *next_key,
1213		 int lowest_level, int max_level)
1214{
1215	struct btrfs_fs_info *fs_info = dest->fs_info;
1216	struct extent_buffer *eb;
1217	struct extent_buffer *parent;
1218	struct btrfs_ref ref = { 0 };
1219	struct btrfs_key key;
1220	u64 old_bytenr;
1221	u64 new_bytenr;
1222	u64 old_ptr_gen;
1223	u64 new_ptr_gen;
1224	u64 last_snapshot;
1225	u32 blocksize;
1226	int cow = 0;
1227	int level;
1228	int ret;
1229	int slot;
1230
1231	ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1232	ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1233
1234	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1235again:
1236	slot = path->slots[lowest_level];
1237	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1238
1239	eb = btrfs_lock_root_node(dest);
 
1240	level = btrfs_header_level(eb);
1241
1242	if (level < lowest_level) {
1243		btrfs_tree_unlock(eb);
1244		free_extent_buffer(eb);
1245		return 0;
1246	}
1247
1248	if (cow) {
1249		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1250				      BTRFS_NESTING_COW);
1251		if (ret) {
1252			btrfs_tree_unlock(eb);
1253			free_extent_buffer(eb);
1254			return ret;
1255		}
1256	}
 
1257
1258	if (next_key) {
1259		next_key->objectid = (u64)-1;
1260		next_key->type = (u8)-1;
1261		next_key->offset = (u64)-1;
1262	}
1263
1264	parent = eb;
1265	while (1) {
1266		level = btrfs_header_level(parent);
1267		ASSERT(level >= lowest_level);
1268
1269		ret = btrfs_bin_search(parent, &key, &slot);
1270		if (ret < 0)
1271			break;
1272		if (ret && slot > 0)
1273			slot--;
1274
1275		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1276			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1277
1278		old_bytenr = btrfs_node_blockptr(parent, slot);
1279		blocksize = fs_info->nodesize;
1280		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1281
1282		if (level <= max_level) {
1283			eb = path->nodes[level];
1284			new_bytenr = btrfs_node_blockptr(eb,
1285							path->slots[level]);
1286			new_ptr_gen = btrfs_node_ptr_generation(eb,
1287							path->slots[level]);
1288		} else {
1289			new_bytenr = 0;
1290			new_ptr_gen = 0;
1291		}
1292
1293		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1294			ret = level;
1295			break;
1296		}
1297
1298		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1299		    memcmp_node_keys(parent, slot, path, level)) {
1300			if (level <= lowest_level) {
1301				ret = 0;
1302				break;
1303			}
1304
1305			eb = btrfs_read_node_slot(parent, slot);
1306			if (IS_ERR(eb)) {
1307				ret = PTR_ERR(eb);
1308				break;
 
 
 
 
1309			}
1310			btrfs_tree_lock(eb);
1311			if (cow) {
1312				ret = btrfs_cow_block(trans, dest, eb, parent,
1313						      slot, &eb,
1314						      BTRFS_NESTING_COW);
1315				if (ret) {
1316					btrfs_tree_unlock(eb);
1317					free_extent_buffer(eb);
1318					break;
1319				}
1320			}
 
1321
1322			btrfs_tree_unlock(parent);
1323			free_extent_buffer(parent);
1324
1325			parent = eb;
1326			continue;
1327		}
1328
1329		if (!cow) {
1330			btrfs_tree_unlock(parent);
1331			free_extent_buffer(parent);
1332			cow = 1;
1333			goto again;
1334		}
1335
1336		btrfs_node_key_to_cpu(path->nodes[level], &key,
1337				      path->slots[level]);
1338		btrfs_release_path(path);
1339
1340		path->lowest_level = level;
1341		set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1342		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1343		clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1344		path->lowest_level = 0;
1345		if (ret) {
1346			if (ret > 0)
1347				ret = -ENOENT;
1348			break;
1349		}
1350
1351		/*
1352		 * Info qgroup to trace both subtrees.
1353		 *
1354		 * We must trace both trees.
1355		 * 1) Tree reloc subtree
1356		 *    If not traced, we will leak data numbers
1357		 * 2) Fs subtree
1358		 *    If not traced, we will double count old data
1359		 *
1360		 * We don't scan the subtree right now, but only record
1361		 * the swapped tree blocks.
1362		 * The real subtree rescan is delayed until we have new
1363		 * CoW on the subtree root node before transaction commit.
1364		 */
1365		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1366				rc->block_group, parent, slot,
1367				path->nodes[level], path->slots[level],
1368				last_snapshot);
1369		if (ret < 0)
1370			break;
1371		/*
1372		 * swap blocks in fs tree and reloc tree.
1373		 */
1374		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1375		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1376		btrfs_mark_buffer_dirty(parent);
1377
1378		btrfs_set_node_blockptr(path->nodes[level],
1379					path->slots[level], old_bytenr);
1380		btrfs_set_node_ptr_generation(path->nodes[level],
1381					      path->slots[level], old_ptr_gen);
1382		btrfs_mark_buffer_dirty(path->nodes[level]);
1383
1384		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1385				       blocksize, path->nodes[level]->start);
1386		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1387				    0, true);
1388		ret = btrfs_inc_extent_ref(trans, &ref);
1389		if (ret) {
1390			btrfs_abort_transaction(trans, ret);
1391			break;
1392		}
1393		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1394				       blocksize, 0);
1395		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 0,
1396				    true);
1397		ret = btrfs_inc_extent_ref(trans, &ref);
1398		if (ret) {
1399			btrfs_abort_transaction(trans, ret);
1400			break;
1401		}
1402
1403		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1404				       blocksize, path->nodes[level]->start);
1405		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1406				    0, true);
1407		ret = btrfs_free_extent(trans, &ref);
1408		if (ret) {
1409			btrfs_abort_transaction(trans, ret);
1410			break;
1411		}
1412
1413		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1414				       blocksize, 0);
1415		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid,
1416				    0, true);
1417		ret = btrfs_free_extent(trans, &ref);
1418		if (ret) {
1419			btrfs_abort_transaction(trans, ret);
1420			break;
1421		}
1422
1423		btrfs_unlock_up_safe(path, 0);
1424
1425		ret = level;
1426		break;
1427	}
1428	btrfs_tree_unlock(parent);
1429	free_extent_buffer(parent);
1430	return ret;
1431}
1432
1433/*
1434 * helper to find next relocated block in reloc tree
1435 */
1436static noinline_for_stack
1437int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1438		       int *level)
1439{
1440	struct extent_buffer *eb;
1441	int i;
1442	u64 last_snapshot;
1443	u32 nritems;
1444
1445	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1446
1447	for (i = 0; i < *level; i++) {
1448		free_extent_buffer(path->nodes[i]);
1449		path->nodes[i] = NULL;
1450	}
1451
1452	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1453		eb = path->nodes[i];
1454		nritems = btrfs_header_nritems(eb);
1455		while (path->slots[i] + 1 < nritems) {
1456			path->slots[i]++;
1457			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1458			    last_snapshot)
1459				continue;
1460
1461			*level = i;
1462			return 0;
1463		}
1464		free_extent_buffer(path->nodes[i]);
1465		path->nodes[i] = NULL;
1466	}
1467	return 1;
1468}
1469
1470/*
1471 * walk down reloc tree to find relocated block of lowest level
1472 */
1473static noinline_for_stack
1474int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1475			 int *level)
1476{
1477	struct extent_buffer *eb = NULL;
1478	int i;
 
1479	u64 ptr_gen = 0;
1480	u64 last_snapshot;
1481	u32 nritems;
1482
1483	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1484
1485	for (i = *level; i > 0; i--) {
1486		eb = path->nodes[i];
1487		nritems = btrfs_header_nritems(eb);
1488		while (path->slots[i] < nritems) {
1489			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1490			if (ptr_gen > last_snapshot)
1491				break;
1492			path->slots[i]++;
1493		}
1494		if (path->slots[i] >= nritems) {
1495			if (i == *level)
1496				break;
1497			*level = i + 1;
1498			return 0;
1499		}
1500		if (i == 1) {
1501			*level = i;
1502			return 0;
1503		}
1504
1505		eb = btrfs_read_node_slot(eb, path->slots[i]);
1506		if (IS_ERR(eb))
 
1507			return PTR_ERR(eb);
 
 
 
 
1508		BUG_ON(btrfs_header_level(eb) != i - 1);
1509		path->nodes[i - 1] = eb;
1510		path->slots[i - 1] = 0;
1511	}
1512	return 1;
1513}
1514
1515/*
1516 * invalidate extent cache for file extents whose key in range of
1517 * [min_key, max_key)
1518 */
1519static int invalidate_extent_cache(struct btrfs_root *root,
1520				   struct btrfs_key *min_key,
1521				   struct btrfs_key *max_key)
1522{
1523	struct btrfs_fs_info *fs_info = root->fs_info;
1524	struct inode *inode = NULL;
1525	u64 objectid;
1526	u64 start, end;
1527	u64 ino;
1528
1529	objectid = min_key->objectid;
1530	while (1) {
1531		struct extent_state *cached_state = NULL;
1532
1533		cond_resched();
1534		iput(inode);
1535
1536		if (objectid > max_key->objectid)
1537			break;
1538
1539		inode = find_next_inode(root, objectid);
1540		if (!inode)
1541			break;
1542		ino = btrfs_ino(BTRFS_I(inode));
1543
1544		if (ino > max_key->objectid) {
1545			iput(inode);
1546			break;
1547		}
1548
1549		objectid = ino + 1;
1550		if (!S_ISREG(inode->i_mode))
1551			continue;
1552
1553		if (unlikely(min_key->objectid == ino)) {
1554			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1555				continue;
1556			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1557				start = 0;
1558			else {
1559				start = min_key->offset;
1560				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1561			}
1562		} else {
1563			start = 0;
1564		}
1565
1566		if (unlikely(max_key->objectid == ino)) {
1567			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1568				continue;
1569			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1570				end = (u64)-1;
1571			} else {
1572				if (max_key->offset == 0)
1573					continue;
1574				end = max_key->offset;
1575				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1576				end--;
1577			}
1578		} else {
1579			end = (u64)-1;
1580		}
1581
1582		/* the lock_extent waits for read_folio to complete */
1583		lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
1584		btrfs_drop_extent_map_range(BTRFS_I(inode), start, end, true);
1585		unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
1586	}
1587	return 0;
1588}
1589
1590static int find_next_key(struct btrfs_path *path, int level,
1591			 struct btrfs_key *key)
1592
1593{
1594	while (level < BTRFS_MAX_LEVEL) {
1595		if (!path->nodes[level])
1596			break;
1597		if (path->slots[level] + 1 <
1598		    btrfs_header_nritems(path->nodes[level])) {
1599			btrfs_node_key_to_cpu(path->nodes[level], key,
1600					      path->slots[level] + 1);
1601			return 0;
1602		}
1603		level++;
1604	}
1605	return 1;
1606}
1607
1608/*
1609 * Insert current subvolume into reloc_control::dirty_subvol_roots
1610 */
1611static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1612			       struct reloc_control *rc,
1613			       struct btrfs_root *root)
1614{
1615	struct btrfs_root *reloc_root = root->reloc_root;
1616	struct btrfs_root_item *reloc_root_item;
1617	int ret;
1618
1619	/* @root must be a subvolume tree root with a valid reloc tree */
1620	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1621	ASSERT(reloc_root);
1622
1623	reloc_root_item = &reloc_root->root_item;
1624	memset(&reloc_root_item->drop_progress, 0,
1625		sizeof(reloc_root_item->drop_progress));
1626	btrfs_set_root_drop_level(reloc_root_item, 0);
1627	btrfs_set_root_refs(reloc_root_item, 0);
1628	ret = btrfs_update_reloc_root(trans, root);
1629	if (ret)
1630		return ret;
1631
1632	if (list_empty(&root->reloc_dirty_list)) {
1633		btrfs_grab_root(root);
1634		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1635	}
1636
1637	return 0;
1638}
1639
1640static int clean_dirty_subvols(struct reloc_control *rc)
1641{
1642	struct btrfs_root *root;
1643	struct btrfs_root *next;
1644	int ret = 0;
1645	int ret2;
1646
1647	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1648				 reloc_dirty_list) {
1649		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1650			/* Merged subvolume, cleanup its reloc root */
1651			struct btrfs_root *reloc_root = root->reloc_root;
1652
1653			list_del_init(&root->reloc_dirty_list);
1654			root->reloc_root = NULL;
1655			/*
1656			 * Need barrier to ensure clear_bit() only happens after
1657			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1658			 */
1659			smp_wmb();
1660			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1661			if (reloc_root) {
1662				/*
1663				 * btrfs_drop_snapshot drops our ref we hold for
1664				 * ->reloc_root.  If it fails however we must
1665				 * drop the ref ourselves.
1666				 */
1667				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1668				if (ret2 < 0) {
1669					btrfs_put_root(reloc_root);
1670					if (!ret)
1671						ret = ret2;
1672				}
1673			}
1674			btrfs_put_root(root);
1675		} else {
1676			/* Orphan reloc tree, just clean it up */
1677			ret2 = btrfs_drop_snapshot(root, 0, 1);
1678			if (ret2 < 0) {
1679				btrfs_put_root(root);
1680				if (!ret)
1681					ret = ret2;
1682			}
1683		}
1684	}
1685	return ret;
1686}
1687
1688/*
1689 * merge the relocated tree blocks in reloc tree with corresponding
1690 * fs tree.
1691 */
1692static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1693					       struct btrfs_root *root)
1694{
1695	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1696	struct btrfs_key key;
1697	struct btrfs_key next_key;
1698	struct btrfs_trans_handle *trans = NULL;
1699	struct btrfs_root *reloc_root;
1700	struct btrfs_root_item *root_item;
1701	struct btrfs_path *path;
1702	struct extent_buffer *leaf;
1703	int reserve_level;
1704	int level;
1705	int max_level;
1706	int replaced = 0;
1707	int ret = 0;
 
1708	u32 min_reserved;
1709
1710	path = btrfs_alloc_path();
1711	if (!path)
1712		return -ENOMEM;
1713	path->reada = READA_FORWARD;
1714
1715	reloc_root = root->reloc_root;
1716	root_item = &reloc_root->root_item;
1717
1718	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1719		level = btrfs_root_level(root_item);
1720		atomic_inc(&reloc_root->node->refs);
1721		path->nodes[level] = reloc_root->node;
1722		path->slots[level] = 0;
1723	} else {
1724		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1725
1726		level = btrfs_root_drop_level(root_item);
1727		BUG_ON(level == 0);
1728		path->lowest_level = level;
1729		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1730		path->lowest_level = 0;
1731		if (ret < 0) {
1732			btrfs_free_path(path);
1733			return ret;
1734		}
1735
1736		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1737				      path->slots[level]);
1738		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1739
1740		btrfs_unlock_up_safe(path, 0);
1741	}
1742
1743	/*
1744	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1745	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1746	 * block COW, we COW at most from level 1 to root level for each tree.
1747	 *
1748	 * Thus the needed metadata size is at most root_level * nodesize,
1749	 * and * 2 since we have two trees to COW.
1750	 */
1751	reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1752	min_reserved = fs_info->nodesize * reserve_level * 2;
1753	memset(&next_key, 0, sizeof(next_key));
1754
1755	while (1) {
1756		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1757					     min_reserved,
1758					     BTRFS_RESERVE_FLUSH_LIMIT);
1759		if (ret)
1760			goto out;
 
1761		trans = btrfs_start_transaction(root, 0);
1762		if (IS_ERR(trans)) {
1763			ret = PTR_ERR(trans);
1764			trans = NULL;
1765			goto out;
1766		}
1767
1768		/*
1769		 * At this point we no longer have a reloc_control, so we can't
1770		 * depend on btrfs_init_reloc_root to update our last_trans.
1771		 *
1772		 * But that's ok, we started the trans handle on our
1773		 * corresponding fs_root, which means it's been added to the
1774		 * dirty list.  At commit time we'll still call
1775		 * btrfs_update_reloc_root() and update our root item
1776		 * appropriately.
1777		 */
1778		reloc_root->last_trans = trans->transid;
1779		trans->block_rsv = rc->block_rsv;
1780
1781		replaced = 0;
1782		max_level = level;
1783
1784		ret = walk_down_reloc_tree(reloc_root, path, &level);
1785		if (ret < 0)
 
1786			goto out;
 
1787		if (ret > 0)
1788			break;
1789
1790		if (!find_next_key(path, level, &key) &&
1791		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1792			ret = 0;
1793		} else {
1794			ret = replace_path(trans, rc, root, reloc_root, path,
1795					   &next_key, level, max_level);
1796		}
1797		if (ret < 0)
 
1798			goto out;
 
 
1799		if (ret > 0) {
1800			level = ret;
1801			btrfs_node_key_to_cpu(path->nodes[level], &key,
1802					      path->slots[level]);
1803			replaced = 1;
1804		}
1805
1806		ret = walk_up_reloc_tree(reloc_root, path, &level);
1807		if (ret > 0)
1808			break;
1809
1810		BUG_ON(level == 0);
1811		/*
1812		 * save the merging progress in the drop_progress.
1813		 * this is OK since root refs == 1 in this case.
1814		 */
1815		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1816			       path->slots[level]);
1817		btrfs_set_root_drop_level(root_item, level);
1818
1819		btrfs_end_transaction_throttle(trans);
1820		trans = NULL;
1821
1822		btrfs_btree_balance_dirty(fs_info);
1823
1824		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1825			invalidate_extent_cache(root, &key, &next_key);
1826	}
1827
1828	/*
1829	 * handle the case only one block in the fs tree need to be
1830	 * relocated and the block is tree root.
1831	 */
1832	leaf = btrfs_lock_root_node(root);
1833	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1834			      BTRFS_NESTING_COW);
1835	btrfs_tree_unlock(leaf);
1836	free_extent_buffer(leaf);
 
 
1837out:
1838	btrfs_free_path(path);
1839
1840	if (ret == 0) {
1841		ret = insert_dirty_subvol(trans, rc, root);
1842		if (ret)
1843			btrfs_abort_transaction(trans, ret);
 
 
1844	}
1845
1846	if (trans)
1847		btrfs_end_transaction_throttle(trans);
1848
1849	btrfs_btree_balance_dirty(fs_info);
1850
1851	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1852		invalidate_extent_cache(root, &key, &next_key);
1853
1854	return ret;
1855}
1856
1857static noinline_for_stack
1858int prepare_to_merge(struct reloc_control *rc, int err)
1859{
1860	struct btrfs_root *root = rc->extent_root;
1861	struct btrfs_fs_info *fs_info = root->fs_info;
1862	struct btrfs_root *reloc_root;
1863	struct btrfs_trans_handle *trans;
1864	LIST_HEAD(reloc_roots);
1865	u64 num_bytes = 0;
1866	int ret;
1867
1868	mutex_lock(&fs_info->reloc_mutex);
1869	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1870	rc->merging_rsv_size += rc->nodes_relocated * 2;
1871	mutex_unlock(&fs_info->reloc_mutex);
1872
1873again:
1874	if (!err) {
1875		num_bytes = rc->merging_rsv_size;
1876		ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1877					  BTRFS_RESERVE_FLUSH_ALL);
1878		if (ret)
1879			err = ret;
1880	}
1881
1882	trans = btrfs_join_transaction(rc->extent_root);
1883	if (IS_ERR(trans)) {
1884		if (!err)
1885			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1886						num_bytes, NULL);
1887		return PTR_ERR(trans);
1888	}
1889
1890	if (!err) {
1891		if (num_bytes != rc->merging_rsv_size) {
1892			btrfs_end_transaction(trans);
1893			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1894						num_bytes, NULL);
1895			goto again;
1896		}
1897	}
1898
1899	rc->merge_reloc_tree = 1;
1900
1901	while (!list_empty(&rc->reloc_roots)) {
1902		reloc_root = list_entry(rc->reloc_roots.next,
1903					struct btrfs_root, root_list);
1904		list_del_init(&reloc_root->root_list);
1905
1906		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1907				false);
1908		if (IS_ERR(root)) {
1909			/*
1910			 * Even if we have an error we need this reloc root
1911			 * back on our list so we can clean up properly.
1912			 */
1913			list_add(&reloc_root->root_list, &reloc_roots);
1914			btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1915			if (!err)
1916				err = PTR_ERR(root);
1917			break;
1918		}
1919		ASSERT(root->reloc_root == reloc_root);
1920
1921		/*
1922		 * set reference count to 1, so btrfs_recover_relocation
1923		 * knows it should resumes merging
1924		 */
1925		if (!err)
1926			btrfs_set_root_refs(&reloc_root->root_item, 1);
1927		ret = btrfs_update_reloc_root(trans, root);
1928
1929		/*
1930		 * Even if we have an error we need this reloc root back on our
1931		 * list so we can clean up properly.
1932		 */
1933		list_add(&reloc_root->root_list, &reloc_roots);
1934		btrfs_put_root(root);
1935
1936		if (ret) {
1937			btrfs_abort_transaction(trans, ret);
1938			if (!err)
1939				err = ret;
1940			break;
1941		}
1942	}
1943
1944	list_splice(&reloc_roots, &rc->reloc_roots);
1945
1946	if (!err)
1947		err = btrfs_commit_transaction(trans);
1948	else
1949		btrfs_end_transaction(trans);
1950	return err;
1951}
1952
1953static noinline_for_stack
1954void free_reloc_roots(struct list_head *list)
1955{
1956	struct btrfs_root *reloc_root, *tmp;
1957
1958	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
 
 
1959		__del_reloc_root(reloc_root);
 
1960}
1961
1962static noinline_for_stack
1963void merge_reloc_roots(struct reloc_control *rc)
1964{
1965	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1966	struct btrfs_root *root;
1967	struct btrfs_root *reloc_root;
 
 
 
1968	LIST_HEAD(reloc_roots);
1969	int found = 0;
1970	int ret = 0;
1971again:
1972	root = rc->extent_root;
1973
1974	/*
1975	 * this serializes us with btrfs_record_root_in_transaction,
1976	 * we have to make sure nobody is in the middle of
1977	 * adding their roots to the list while we are
1978	 * doing this splice
1979	 */
1980	mutex_lock(&fs_info->reloc_mutex);
1981	list_splice_init(&rc->reloc_roots, &reloc_roots);
1982	mutex_unlock(&fs_info->reloc_mutex);
1983
1984	while (!list_empty(&reloc_roots)) {
1985		found = 1;
1986		reloc_root = list_entry(reloc_roots.next,
1987					struct btrfs_root, root_list);
1988
1989		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1990					 false);
1991		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1992			if (IS_ERR(root)) {
1993				/*
1994				 * For recovery we read the fs roots on mount,
1995				 * and if we didn't find the root then we marked
1996				 * the reloc root as a garbage root.  For normal
1997				 * relocation obviously the root should exist in
1998				 * memory.  However there's no reason we can't
1999				 * handle the error properly here just in case.
2000				 */
2001				ASSERT(0);
2002				ret = PTR_ERR(root);
2003				goto out;
2004			}
2005			if (root->reloc_root != reloc_root) {
2006				/*
2007				 * This is actually impossible without something
2008				 * going really wrong (like weird race condition
2009				 * or cosmic rays).
2010				 */
2011				ASSERT(0);
2012				ret = -EINVAL;
2013				goto out;
2014			}
2015			ret = merge_reloc_root(rc, root);
2016			btrfs_put_root(root);
2017			if (ret) {
2018				if (list_empty(&reloc_root->root_list))
2019					list_add_tail(&reloc_root->root_list,
2020						      &reloc_roots);
2021				goto out;
2022			}
2023		} else {
2024			if (!IS_ERR(root)) {
2025				if (root->reloc_root == reloc_root) {
2026					root->reloc_root = NULL;
2027					btrfs_put_root(reloc_root);
2028				}
2029				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2030					  &root->state);
2031				btrfs_put_root(root);
2032			}
2033
2034			list_del_init(&reloc_root->root_list);
2035			/* Don't forget to queue this reloc root for cleanup */
2036			list_add_tail(&reloc_root->reloc_dirty_list,
2037				      &rc->dirty_subvol_roots);
 
 
 
 
 
 
 
 
 
 
 
 
 
2038		}
2039	}
2040
2041	if (found) {
2042		found = 0;
2043		goto again;
2044	}
2045out:
2046	if (ret) {
2047		btrfs_handle_fs_error(fs_info, ret, NULL);
2048		free_reloc_roots(&reloc_roots);
 
2049
2050		/* new reloc root may be added */
2051		mutex_lock(&fs_info->reloc_mutex);
2052		list_splice_init(&rc->reloc_roots, &reloc_roots);
2053		mutex_unlock(&fs_info->reloc_mutex);
2054		free_reloc_roots(&reloc_roots);
 
2055	}
2056
2057	/*
2058	 * We used to have
2059	 *
2060	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2061	 *
2062	 * here, but it's wrong.  If we fail to start the transaction in
2063	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2064	 * have actually been removed from the reloc_root_tree rb tree.  This is
2065	 * fine because we're bailing here, and we hold a reference on the root
2066	 * for the list that holds it, so these roots will be cleaned up when we
2067	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
2068	 * will be cleaned up on unmount.
2069	 *
2070	 * The remaining nodes will be cleaned up by free_reloc_control.
2071	 */
2072}
2073
2074static void free_block_list(struct rb_root *blocks)
2075{
2076	struct tree_block *block;
2077	struct rb_node *rb_node;
2078	while ((rb_node = rb_first(blocks))) {
2079		block = rb_entry(rb_node, struct tree_block, rb_node);
2080		rb_erase(rb_node, blocks);
2081		kfree(block);
2082	}
2083}
2084
2085static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2086				      struct btrfs_root *reloc_root)
2087{
2088	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2089	struct btrfs_root *root;
2090	int ret;
2091
2092	if (reloc_root->last_trans == trans->transid)
2093		return 0;
2094
2095	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
 
 
2096
2097	/*
2098	 * This should succeed, since we can't have a reloc root without having
2099	 * already looked up the actual root and created the reloc root for this
2100	 * root.
2101	 *
2102	 * However if there's some sort of corruption where we have a ref to a
2103	 * reloc root without a corresponding root this could return ENOENT.
2104	 */
2105	if (IS_ERR(root)) {
2106		ASSERT(0);
2107		return PTR_ERR(root);
2108	}
2109	if (root->reloc_root != reloc_root) {
2110		ASSERT(0);
2111		btrfs_err(fs_info,
2112			  "root %llu has two reloc roots associated with it",
2113			  reloc_root->root_key.offset);
2114		btrfs_put_root(root);
2115		return -EUCLEAN;
2116	}
2117	ret = btrfs_record_root_in_trans(trans, root);
2118	btrfs_put_root(root);
2119
2120	return ret;
2121}
2122
2123static noinline_for_stack
2124struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2125				     struct reloc_control *rc,
2126				     struct btrfs_backref_node *node,
2127				     struct btrfs_backref_edge *edges[])
2128{
2129	struct btrfs_backref_node *next;
2130	struct btrfs_root *root;
2131	int index = 0;
2132	int ret;
2133
2134	next = node;
2135	while (1) {
2136		cond_resched();
2137		next = walk_up_backref(next, edges, &index);
2138		root = next->root;
2139
2140		/*
2141		 * If there is no root, then our references for this block are
2142		 * incomplete, as we should be able to walk all the way up to a
2143		 * block that is owned by a root.
2144		 *
2145		 * This path is only for SHAREABLE roots, so if we come upon a
2146		 * non-SHAREABLE root then we have backrefs that resolve
2147		 * improperly.
2148		 *
2149		 * Both of these cases indicate file system corruption, or a bug
2150		 * in the backref walking code.
2151		 */
2152		if (!root) {
2153			ASSERT(0);
2154			btrfs_err(trans->fs_info,
2155		"bytenr %llu doesn't have a backref path ending in a root",
2156				  node->bytenr);
2157			return ERR_PTR(-EUCLEAN);
2158		}
2159		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2160			ASSERT(0);
2161			btrfs_err(trans->fs_info,
2162	"bytenr %llu has multiple refs with one ending in a non-shareable root",
2163				  node->bytenr);
2164			return ERR_PTR(-EUCLEAN);
2165		}
2166
2167		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2168			ret = record_reloc_root_in_trans(trans, root);
2169			if (ret)
2170				return ERR_PTR(ret);
2171			break;
2172		}
2173
2174		ret = btrfs_record_root_in_trans(trans, root);
2175		if (ret)
2176			return ERR_PTR(ret);
2177		root = root->reloc_root;
2178
2179		/*
2180		 * We could have raced with another thread which failed, so
2181		 * root->reloc_root may not be set, return ENOENT in this case.
2182		 */
2183		if (!root)
2184			return ERR_PTR(-ENOENT);
2185
2186		if (next->new_bytenr != root->node->start) {
2187			/*
2188			 * We just created the reloc root, so we shouldn't have
2189			 * ->new_bytenr set and this shouldn't be in the changed
2190			 *  list.  If it is then we have multiple roots pointing
2191			 *  at the same bytenr which indicates corruption, or
2192			 *  we've made a mistake in the backref walking code.
2193			 */
2194			ASSERT(next->new_bytenr == 0);
2195			ASSERT(list_empty(&next->list));
2196			if (next->new_bytenr || !list_empty(&next->list)) {
2197				btrfs_err(trans->fs_info,
2198	"bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2199					  node->bytenr, next->bytenr);
2200				return ERR_PTR(-EUCLEAN);
2201			}
2202
2203			next->new_bytenr = root->node->start;
2204			btrfs_put_root(next->root);
2205			next->root = btrfs_grab_root(root);
2206			ASSERT(next->root);
2207			list_add_tail(&next->list,
2208				      &rc->backref_cache.changed);
2209			mark_block_processed(rc, next);
2210			break;
2211		}
2212
2213		WARN_ON(1);
2214		root = NULL;
2215		next = walk_down_backref(edges, &index);
2216		if (!next || next->level <= node->level)
2217			break;
2218	}
2219	if (!root) {
2220		/*
2221		 * This can happen if there's fs corruption or if there's a bug
2222		 * in the backref lookup code.
2223		 */
2224		ASSERT(0);
2225		return ERR_PTR(-ENOENT);
2226	}
2227
2228	next = node;
2229	/* setup backref node path for btrfs_reloc_cow_block */
2230	while (1) {
2231		rc->backref_cache.path[next->level] = next;
2232		if (--index < 0)
2233			break;
2234		next = edges[index]->node[UPPER];
2235	}
2236	return root;
2237}
2238
2239/*
2240 * Select a tree root for relocation.
2241 *
2242 * Return NULL if the block is not shareable. We should use do_relocation() in
2243 * this case.
2244 *
2245 * Return a tree root pointer if the block is shareable.
2246 * Return -ENOENT if the block is root of reloc tree.
2247 */
2248static noinline_for_stack
2249struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2250{
2251	struct btrfs_backref_node *next;
2252	struct btrfs_root *root;
2253	struct btrfs_root *fs_root = NULL;
2254	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2255	int index = 0;
2256
2257	next = node;
2258	while (1) {
2259		cond_resched();
2260		next = walk_up_backref(next, edges, &index);
2261		root = next->root;
 
2262
2263		/*
2264		 * This can occur if we have incomplete extent refs leading all
2265		 * the way up a particular path, in this case return -EUCLEAN.
2266		 */
2267		if (!root)
2268			return ERR_PTR(-EUCLEAN);
2269
2270		/* No other choice for non-shareable tree */
2271		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2272			return root;
2273
2274		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2275			fs_root = root;
2276
2277		if (next != node)
2278			return NULL;
2279
2280		next = walk_down_backref(edges, &index);
2281		if (!next || next->level <= node->level)
2282			break;
2283	}
2284
2285	if (!fs_root)
2286		return ERR_PTR(-ENOENT);
2287	return fs_root;
2288}
2289
2290static noinline_for_stack
2291u64 calcu_metadata_size(struct reloc_control *rc,
2292			struct btrfs_backref_node *node, int reserve)
2293{
2294	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2295	struct btrfs_backref_node *next = node;
2296	struct btrfs_backref_edge *edge;
2297	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2298	u64 num_bytes = 0;
2299	int index = 0;
2300
2301	BUG_ON(reserve && node->processed);
2302
2303	while (next) {
2304		cond_resched();
2305		while (1) {
2306			if (next->processed && (reserve || next != node))
2307				break;
2308
2309			num_bytes += fs_info->nodesize;
2310
2311			if (list_empty(&next->upper))
2312				break;
2313
2314			edge = list_entry(next->upper.next,
2315					struct btrfs_backref_edge, list[LOWER]);
2316			edges[index++] = edge;
2317			next = edge->node[UPPER];
2318		}
2319		next = walk_down_backref(edges, &index);
2320	}
2321	return num_bytes;
2322}
2323
2324static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2325				  struct reloc_control *rc,
2326				  struct btrfs_backref_node *node)
2327{
2328	struct btrfs_root *root = rc->extent_root;
2329	struct btrfs_fs_info *fs_info = root->fs_info;
2330	u64 num_bytes;
2331	int ret;
2332	u64 tmp;
2333
2334	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2335
2336	trans->block_rsv = rc->block_rsv;
2337	rc->reserved_bytes += num_bytes;
2338
2339	/*
2340	 * We are under a transaction here so we can only do limited flushing.
2341	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2342	 * transaction and try to refill when we can flush all the things.
2343	 */
2344	ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2345				     BTRFS_RESERVE_FLUSH_LIMIT);
2346	if (ret) {
2347		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2348		while (tmp <= rc->reserved_bytes)
2349			tmp <<= 1;
2350		/*
2351		 * only one thread can access block_rsv at this point,
2352		 * so we don't need hold lock to protect block_rsv.
2353		 * we expand more reservation size here to allow enough
2354		 * space for relocation and we will return earlier in
2355		 * enospc case.
2356		 */
2357		rc->block_rsv->size = tmp + fs_info->nodesize *
2358				      RELOCATION_RESERVED_NODES;
2359		return -EAGAIN;
 
 
 
2360	}
2361
2362	return 0;
2363}
2364
2365/*
2366 * relocate a block tree, and then update pointers in upper level
2367 * blocks that reference the block to point to the new location.
2368 *
2369 * if called by link_to_upper, the block has already been relocated.
2370 * in that case this function just updates pointers.
2371 */
2372static int do_relocation(struct btrfs_trans_handle *trans,
2373			 struct reloc_control *rc,
2374			 struct btrfs_backref_node *node,
2375			 struct btrfs_key *key,
2376			 struct btrfs_path *path, int lowest)
2377{
2378	struct btrfs_backref_node *upper;
2379	struct btrfs_backref_edge *edge;
2380	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2381	struct btrfs_root *root;
2382	struct extent_buffer *eb;
2383	u32 blocksize;
2384	u64 bytenr;
 
2385	int slot;
2386	int ret = 0;
 
2387
2388	/*
2389	 * If we are lowest then this is the first time we're processing this
2390	 * block, and thus shouldn't have an eb associated with it yet.
2391	 */
2392	ASSERT(!lowest || !node->eb);
2393
2394	path->lowest_level = node->level + 1;
2395	rc->backref_cache.path[node->level] = node;
2396	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2397		struct btrfs_ref ref = { 0 };
2398
2399		cond_resched();
2400
2401		upper = edge->node[UPPER];
2402		root = select_reloc_root(trans, rc, upper, edges);
2403		if (IS_ERR(root)) {
2404			ret = PTR_ERR(root);
2405			goto next;
2406		}
2407
2408		if (upper->eb && !upper->locked) {
2409			if (!lowest) {
2410				ret = btrfs_bin_search(upper->eb, key, &slot);
2411				if (ret < 0)
2412					goto next;
2413				BUG_ON(ret);
2414				bytenr = btrfs_node_blockptr(upper->eb, slot);
2415				if (node->eb->start == bytenr)
2416					goto next;
2417			}
2418			btrfs_backref_drop_node_buffer(upper);
2419		}
2420
2421		if (!upper->eb) {
2422			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2423			if (ret) {
2424				if (ret > 0)
2425					ret = -ENOENT;
2426
2427				btrfs_release_path(path);
2428				break;
2429			}
 
2430
2431			if (!upper->eb) {
2432				upper->eb = path->nodes[upper->level];
2433				path->nodes[upper->level] = NULL;
2434			} else {
2435				BUG_ON(upper->eb != path->nodes[upper->level]);
2436			}
2437
2438			upper->locked = 1;
2439			path->locks[upper->level] = 0;
2440
2441			slot = path->slots[upper->level];
2442			btrfs_release_path(path);
2443		} else {
2444			ret = btrfs_bin_search(upper->eb, key, &slot);
2445			if (ret < 0)
2446				goto next;
2447			BUG_ON(ret);
2448		}
2449
2450		bytenr = btrfs_node_blockptr(upper->eb, slot);
2451		if (lowest) {
2452			if (bytenr != node->bytenr) {
2453				btrfs_err(root->fs_info,
2454		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2455					  bytenr, node->bytenr, slot,
2456					  upper->eb->start);
2457				ret = -EIO;
2458				goto next;
2459			}
2460		} else {
2461			if (node->eb->start == bytenr)
2462				goto next;
2463		}
2464
2465		blocksize = root->fs_info->nodesize;
2466		eb = btrfs_read_node_slot(upper->eb, slot);
 
2467		if (IS_ERR(eb)) {
2468			ret = PTR_ERR(eb);
 
 
 
 
2469			goto next;
2470		}
2471		btrfs_tree_lock(eb);
 
2472
2473		if (!node->eb) {
2474			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2475					      slot, &eb, BTRFS_NESTING_COW);
2476			btrfs_tree_unlock(eb);
2477			free_extent_buffer(eb);
2478			if (ret < 0)
 
2479				goto next;
2480			/*
2481			 * We've just COWed this block, it should have updated
2482			 * the correct backref node entry.
2483			 */
2484			ASSERT(node->eb == eb);
2485		} else {
2486			btrfs_set_node_blockptr(upper->eb, slot,
2487						node->eb->start);
2488			btrfs_set_node_ptr_generation(upper->eb, slot,
2489						      trans->transid);
2490			btrfs_mark_buffer_dirty(upper->eb);
2491
2492			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2493					       node->eb->start, blocksize,
2494					       upper->eb->start);
2495			btrfs_init_tree_ref(&ref, node->level,
2496					    btrfs_header_owner(upper->eb),
2497					    root->root_key.objectid, false);
2498			ret = btrfs_inc_extent_ref(trans, &ref);
2499			if (!ret)
2500				ret = btrfs_drop_subtree(trans, root, eb,
2501							 upper->eb);
2502			if (ret)
2503				btrfs_abort_transaction(trans, ret);
2504		}
2505next:
2506		if (!upper->pending)
2507			btrfs_backref_drop_node_buffer(upper);
2508		else
2509			btrfs_backref_unlock_node_buffer(upper);
2510		if (ret)
2511			break;
2512	}
2513
2514	if (!ret && node->pending) {
2515		btrfs_backref_drop_node_buffer(node);
2516		list_move_tail(&node->list, &rc->backref_cache.changed);
2517		node->pending = 0;
2518	}
2519
2520	path->lowest_level = 0;
2521
2522	/*
2523	 * We should have allocated all of our space in the block rsv and thus
2524	 * shouldn't ENOSPC.
2525	 */
2526	ASSERT(ret != -ENOSPC);
2527	return ret;
2528}
2529
2530static int link_to_upper(struct btrfs_trans_handle *trans,
2531			 struct reloc_control *rc,
2532			 struct btrfs_backref_node *node,
2533			 struct btrfs_path *path)
2534{
2535	struct btrfs_key key;
2536
2537	btrfs_node_key_to_cpu(node->eb, &key, 0);
2538	return do_relocation(trans, rc, node, &key, path, 0);
2539}
2540
2541static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2542				struct reloc_control *rc,
2543				struct btrfs_path *path, int err)
2544{
2545	LIST_HEAD(list);
2546	struct btrfs_backref_cache *cache = &rc->backref_cache;
2547	struct btrfs_backref_node *node;
2548	int level;
2549	int ret;
2550
2551	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2552		while (!list_empty(&cache->pending[level])) {
2553			node = list_entry(cache->pending[level].next,
2554					  struct btrfs_backref_node, list);
2555			list_move_tail(&node->list, &list);
2556			BUG_ON(!node->pending);
2557
2558			if (!err) {
2559				ret = link_to_upper(trans, rc, node, path);
2560				if (ret < 0)
2561					err = ret;
2562			}
2563		}
2564		list_splice_init(&list, &cache->pending[level]);
2565	}
2566	return err;
2567}
2568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2569/*
2570 * mark a block and all blocks directly/indirectly reference the block
2571 * as processed.
2572 */
2573static void update_processed_blocks(struct reloc_control *rc,
2574				    struct btrfs_backref_node *node)
2575{
2576	struct btrfs_backref_node *next = node;
2577	struct btrfs_backref_edge *edge;
2578	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2579	int index = 0;
2580
2581	while (next) {
2582		cond_resched();
2583		while (1) {
2584			if (next->processed)
2585				break;
2586
2587			mark_block_processed(rc, next);
2588
2589			if (list_empty(&next->upper))
2590				break;
2591
2592			edge = list_entry(next->upper.next,
2593					struct btrfs_backref_edge, list[LOWER]);
2594			edges[index++] = edge;
2595			next = edge->node[UPPER];
2596		}
2597		next = walk_down_backref(edges, &index);
2598	}
2599}
2600
2601static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2602{
2603	u32 blocksize = rc->extent_root->fs_info->nodesize;
2604
2605	if (test_range_bit(&rc->processed_blocks, bytenr,
2606			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2607		return 1;
2608	return 0;
2609}
2610
2611static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2612			      struct tree_block *block)
2613{
2614	struct btrfs_tree_parent_check check = {
2615		.level = block->level,
2616		.owner_root = block->owner,
2617		.transid = block->key.offset
2618	};
2619	struct extent_buffer *eb;
2620
2621	eb = read_tree_block(fs_info, block->bytenr, &check);
2622	if (IS_ERR(eb))
 
 
2623		return PTR_ERR(eb);
2624	if (!extent_buffer_uptodate(eb)) {
2625		free_extent_buffer(eb);
2626		return -EIO;
2627	}
 
2628	if (block->level == 0)
2629		btrfs_item_key_to_cpu(eb, &block->key, 0);
2630	else
2631		btrfs_node_key_to_cpu(eb, &block->key, 0);
2632	free_extent_buffer(eb);
2633	block->key_ready = 1;
2634	return 0;
2635}
2636
2637/*
2638 * helper function to relocate a tree block
2639 */
2640static int relocate_tree_block(struct btrfs_trans_handle *trans,
2641				struct reloc_control *rc,
2642				struct btrfs_backref_node *node,
2643				struct btrfs_key *key,
2644				struct btrfs_path *path)
2645{
2646	struct btrfs_root *root;
2647	int ret = 0;
2648
2649	if (!node)
2650		return 0;
2651
2652	/*
2653	 * If we fail here we want to drop our backref_node because we are going
2654	 * to start over and regenerate the tree for it.
2655	 */
2656	ret = reserve_metadata_space(trans, rc, node);
2657	if (ret)
2658		goto out;
2659
2660	BUG_ON(node->processed);
2661	root = select_one_root(node);
2662	if (IS_ERR(root)) {
2663		ret = PTR_ERR(root);
2664
2665		/* See explanation in select_one_root for the -EUCLEAN case. */
2666		ASSERT(ret == -ENOENT);
2667		if (ret == -ENOENT) {
2668			ret = 0;
2669			update_processed_blocks(rc, node);
2670		}
2671		goto out;
2672	}
2673
 
 
 
 
 
 
2674	if (root) {
2675		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2676			/*
2677			 * This block was the root block of a root, and this is
2678			 * the first time we're processing the block and thus it
2679			 * should not have had the ->new_bytenr modified and
2680			 * should have not been included on the changed list.
2681			 *
2682			 * However in the case of corruption we could have
2683			 * multiple refs pointing to the same block improperly,
2684			 * and thus we would trip over these checks.  ASSERT()
2685			 * for the developer case, because it could indicate a
2686			 * bug in the backref code, however error out for a
2687			 * normal user in the case of corruption.
2688			 */
2689			ASSERT(node->new_bytenr == 0);
2690			ASSERT(list_empty(&node->list));
2691			if (node->new_bytenr || !list_empty(&node->list)) {
2692				btrfs_err(root->fs_info,
2693				  "bytenr %llu has improper references to it",
2694					  node->bytenr);
2695				ret = -EUCLEAN;
2696				goto out;
2697			}
2698			ret = btrfs_record_root_in_trans(trans, root);
2699			if (ret)
2700				goto out;
2701			/*
2702			 * Another thread could have failed, need to check if we
2703			 * have reloc_root actually set.
2704			 */
2705			if (!root->reloc_root) {
2706				ret = -ENOENT;
2707				goto out;
2708			}
2709			root = root->reloc_root;
2710			node->new_bytenr = root->node->start;
2711			btrfs_put_root(node->root);
2712			node->root = btrfs_grab_root(root);
2713			ASSERT(node->root);
2714			list_add_tail(&node->list, &rc->backref_cache.changed);
2715		} else {
2716			path->lowest_level = node->level;
2717			if (root == root->fs_info->chunk_root)
2718				btrfs_reserve_chunk_metadata(trans, false);
2719			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2720			btrfs_release_path(path);
2721			if (root == root->fs_info->chunk_root)
2722				btrfs_trans_release_chunk_metadata(trans);
2723			if (ret > 0)
2724				ret = 0;
2725		}
2726		if (!ret)
2727			update_processed_blocks(rc, node);
2728	} else {
2729		ret = do_relocation(trans, rc, node, key, path, 1);
2730	}
2731out:
2732	if (ret || node->level == 0 || node->cowonly)
2733		btrfs_backref_cleanup_node(&rc->backref_cache, node);
2734	return ret;
2735}
2736
2737/*
2738 * relocate a list of blocks
2739 */
2740static noinline_for_stack
2741int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2742			 struct reloc_control *rc, struct rb_root *blocks)
2743{
2744	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2745	struct btrfs_backref_node *node;
2746	struct btrfs_path *path;
2747	struct tree_block *block;
2748	struct tree_block *next;
2749	int ret;
2750	int err = 0;
2751
2752	path = btrfs_alloc_path();
2753	if (!path) {
2754		err = -ENOMEM;
2755		goto out_free_blocks;
2756	}
2757
2758	/* Kick in readahead for tree blocks with missing keys */
2759	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
 
2760		if (!block->key_ready)
2761			btrfs_readahead_tree_block(fs_info, block->bytenr,
2762						   block->owner, 0,
2763						   block->level);
2764	}
2765
2766	/* Get first keys */
2767	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
 
2768		if (!block->key_ready) {
2769			err = get_tree_block_key(fs_info, block);
2770			if (err)
2771				goto out_free_path;
2772		}
 
2773	}
2774
2775	/* Do tree relocation */
2776	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
 
 
2777		node = build_backref_tree(rc, &block->key,
2778					  block->level, block->bytenr);
2779		if (IS_ERR(node)) {
2780			err = PTR_ERR(node);
2781			goto out;
2782		}
2783
2784		ret = relocate_tree_block(trans, rc, node, &block->key,
2785					  path);
2786		if (ret < 0) {
2787			err = ret;
2788			break;
 
2789		}
 
2790	}
2791out:
2792	err = finish_pending_nodes(trans, rc, path, err);
2793
2794out_free_path:
2795	btrfs_free_path(path);
2796out_free_blocks:
2797	free_block_list(blocks);
2798	return err;
2799}
2800
2801static noinline_for_stack int prealloc_file_extent_cluster(
2802				struct btrfs_inode *inode,
2803				struct file_extent_cluster *cluster)
2804{
2805	u64 alloc_hint = 0;
2806	u64 start;
2807	u64 end;
2808	u64 offset = inode->index_cnt;
2809	u64 num_bytes;
2810	int nr;
2811	int ret = 0;
2812	u64 i_size = i_size_read(&inode->vfs_inode);
2813	u64 prealloc_start = cluster->start - offset;
2814	u64 prealloc_end = cluster->end - offset;
2815	u64 cur_offset = prealloc_start;
2816
2817	/*
2818	 * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2819	 * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2820	 * btrfs_do_readpage() call of previously relocated file cluster.
2821	 *
2822	 * If the current cluster starts in the above range, btrfs_do_readpage()
2823	 * will skip the read, and relocate_one_page() will later writeback
2824	 * the padding zeros as new data, causing data corruption.
2825	 *
2826	 * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2827	 */
2828	if (!IS_ALIGNED(i_size, PAGE_SIZE)) {
2829		struct address_space *mapping = inode->vfs_inode.i_mapping;
2830		struct btrfs_fs_info *fs_info = inode->root->fs_info;
2831		const u32 sectorsize = fs_info->sectorsize;
2832		struct page *page;
2833
2834		ASSERT(sectorsize < PAGE_SIZE);
2835		ASSERT(IS_ALIGNED(i_size, sectorsize));
2836
2837		/*
2838		 * Subpage can't handle page with DIRTY but without UPTODATE
2839		 * bit as it can lead to the following deadlock:
2840		 *
2841		 * btrfs_read_folio()
2842		 * | Page already *locked*
2843		 * |- btrfs_lock_and_flush_ordered_range()
2844		 *    |- btrfs_start_ordered_extent()
2845		 *       |- extent_write_cache_pages()
2846		 *          |- lock_page()
2847		 *             We try to lock the page we already hold.
2848		 *
2849		 * Here we just writeback the whole data reloc inode, so that
2850		 * we will be ensured to have no dirty range in the page, and
2851		 * are safe to clear the uptodate bits.
2852		 *
2853		 * This shouldn't cause too much overhead, as we need to write
2854		 * the data back anyway.
2855		 */
2856		ret = filemap_write_and_wait(mapping);
2857		if (ret < 0)
2858			return ret;
2859
2860		clear_extent_bits(&inode->io_tree, i_size,
2861				  round_up(i_size, PAGE_SIZE) - 1,
2862				  EXTENT_UPTODATE);
2863		page = find_lock_page(mapping, i_size >> PAGE_SHIFT);
2864		/*
2865		 * If page is freed we don't need to do anything then, as we
2866		 * will re-read the whole page anyway.
2867		 */
2868		if (page) {
2869			btrfs_subpage_clear_uptodate(fs_info, page, i_size,
2870					round_up(i_size, PAGE_SIZE) - i_size);
2871			unlock_page(page);
2872			put_page(page);
2873		}
2874	}
2875
2876	BUG_ON(cluster->start != cluster->boundary[0]);
2877	ret = btrfs_alloc_data_chunk_ondemand(inode,
2878					      prealloc_end + 1 - prealloc_start);
2879	if (ret)
2880		return ret;
2881
2882	btrfs_inode_lock(inode, 0);
2883	for (nr = 0; nr < cluster->nr; nr++) {
2884		struct extent_state *cached_state = NULL;
 
2885
 
2886		start = cluster->boundary[nr] - offset;
2887		if (nr + 1 < cluster->nr)
2888			end = cluster->boundary[nr + 1] - 1 - offset;
2889		else
2890			end = cluster->end - offset;
2891
2892		lock_extent(&inode->io_tree, start, end, &cached_state);
2893		num_bytes = end + 1 - start;
2894		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2895						num_bytes, num_bytes,
2896						end + 1, &alloc_hint);
2897		cur_offset = end + 1;
2898		unlock_extent(&inode->io_tree, start, end, &cached_state);
2899		if (ret)
2900			break;
 
2901	}
2902	btrfs_inode_unlock(inode, 0);
2903
2904	if (cur_offset < prealloc_end)
2905		btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2906					       prealloc_end + 1 - cur_offset);
2907	return ret;
2908}
2909
2910static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode,
2911				u64 start, u64 end, u64 block_start)
 
2912{
 
 
2913	struct extent_map *em;
2914	struct extent_state *cached_state = NULL;
2915	int ret = 0;
2916
2917	em = alloc_extent_map();
2918	if (!em)
2919		return -ENOMEM;
2920
2921	em->start = start;
2922	em->len = end + 1 - start;
2923	em->block_len = em->len;
2924	em->block_start = block_start;
 
2925	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2926
2927	lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2928	ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, false);
2929	unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2930	free_extent_map(em);
2931
2932	return ret;
2933}
2934
2935/*
2936 * Allow error injection to test balance/relocation cancellation
2937 */
2938noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2939{
2940	return atomic_read(&fs_info->balance_cancel_req) ||
2941		atomic_read(&fs_info->reloc_cancel_req) ||
2942		fatal_signal_pending(current);
2943}
2944ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2945
2946static u64 get_cluster_boundary_end(struct file_extent_cluster *cluster,
2947				    int cluster_nr)
2948{
2949	/* Last extent, use cluster end directly */
2950	if (cluster_nr >= cluster->nr - 1)
2951		return cluster->end;
2952
2953	/* Use next boundary start*/
2954	return cluster->boundary[cluster_nr + 1] - 1;
2955}
2956
2957static int relocate_one_page(struct inode *inode, struct file_ra_state *ra,
2958			     struct file_extent_cluster *cluster,
2959			     int *cluster_nr, unsigned long page_index)
2960{
2961	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2962	u64 offset = BTRFS_I(inode)->index_cnt;
2963	const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2964	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2965	struct page *page;
2966	u64 page_start;
2967	u64 page_end;
2968	u64 cur;
2969	int ret;
2970
2971	ASSERT(page_index <= last_index);
2972	page = find_lock_page(inode->i_mapping, page_index);
2973	if (!page) {
2974		page_cache_sync_readahead(inode->i_mapping, ra, NULL,
2975				page_index, last_index + 1 - page_index);
2976		page = find_or_create_page(inode->i_mapping, page_index, mask);
2977		if (!page)
2978			return -ENOMEM;
2979	}
2980	ret = set_page_extent_mapped(page);
2981	if (ret < 0)
2982		goto release_page;
2983
2984	if (PageReadahead(page))
2985		page_cache_async_readahead(inode->i_mapping, ra, NULL,
2986				page_folio(page), page_index,
2987				last_index + 1 - page_index);
2988
2989	if (!PageUptodate(page)) {
2990		btrfs_read_folio(NULL, page_folio(page));
2991		lock_page(page);
2992		if (!PageUptodate(page)) {
2993			ret = -EIO;
2994			goto release_page;
2995		}
2996	}
2997
2998	page_start = page_offset(page);
2999	page_end = page_start + PAGE_SIZE - 1;
3000
3001	/*
3002	 * Start from the cluster, as for subpage case, the cluster can start
3003	 * inside the page.
3004	 */
3005	cur = max(page_start, cluster->boundary[*cluster_nr] - offset);
3006	while (cur <= page_end) {
3007		struct extent_state *cached_state = NULL;
3008		u64 extent_start = cluster->boundary[*cluster_nr] - offset;
3009		u64 extent_end = get_cluster_boundary_end(cluster,
3010						*cluster_nr) - offset;
3011		u64 clamped_start = max(page_start, extent_start);
3012		u64 clamped_end = min(page_end, extent_end);
3013		u32 clamped_len = clamped_end + 1 - clamped_start;
3014
3015		/* Reserve metadata for this range */
3016		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3017						      clamped_len, clamped_len,
3018						      false);
3019		if (ret)
3020			goto release_page;
3021
3022		/* Mark the range delalloc and dirty for later writeback */
3023		lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3024			    &cached_state);
3025		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
3026						clamped_end, 0, &cached_state);
3027		if (ret) {
3028			clear_extent_bit(&BTRFS_I(inode)->io_tree,
3029					 clamped_start, clamped_end,
3030					 EXTENT_LOCKED | EXTENT_BOUNDARY,
3031					 &cached_state);
3032			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3033							clamped_len, true);
3034			btrfs_delalloc_release_extents(BTRFS_I(inode),
3035						       clamped_len);
3036			goto release_page;
3037		}
3038		btrfs_page_set_dirty(fs_info, page, clamped_start, clamped_len);
3039
3040		/*
3041		 * Set the boundary if it's inside the page.
3042		 * Data relocation requires the destination extents to have the
3043		 * same size as the source.
3044		 * EXTENT_BOUNDARY bit prevents current extent from being merged
3045		 * with previous extent.
3046		 */
3047		if (in_range(cluster->boundary[*cluster_nr] - offset,
3048			     page_start, PAGE_SIZE)) {
3049			u64 boundary_start = cluster->boundary[*cluster_nr] -
3050						offset;
3051			u64 boundary_end = boundary_start +
3052					   fs_info->sectorsize - 1;
3053
3054			set_extent_bits(&BTRFS_I(inode)->io_tree,
3055					boundary_start, boundary_end,
3056					EXTENT_BOUNDARY);
3057		}
3058		unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3059			      &cached_state);
3060		btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
3061		cur += clamped_len;
3062
3063		/* Crossed extent end, go to next extent */
3064		if (cur >= extent_end) {
3065			(*cluster_nr)++;
3066			/* Just finished the last extent of the cluster, exit. */
3067			if (*cluster_nr >= cluster->nr)
3068				break;
3069		}
 
3070	}
3071	unlock_page(page);
3072	put_page(page);
3073
3074	balance_dirty_pages_ratelimited(inode->i_mapping);
3075	btrfs_throttle(fs_info);
3076	if (btrfs_should_cancel_balance(fs_info))
3077		ret = -ECANCELED;
3078	return ret;
3079
3080release_page:
3081	unlock_page(page);
3082	put_page(page);
3083	return ret;
3084}
3085
3086static int relocate_file_extent_cluster(struct inode *inode,
3087					struct file_extent_cluster *cluster)
3088{
 
 
3089	u64 offset = BTRFS_I(inode)->index_cnt;
3090	unsigned long index;
3091	unsigned long last_index;
 
3092	struct file_ra_state *ra;
3093	int cluster_nr = 0;
 
3094	int ret = 0;
3095
3096	if (!cluster->nr)
3097		return 0;
3098
3099	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3100	if (!ra)
3101		return -ENOMEM;
3102
3103	ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
3104	if (ret)
3105		goto out;
3106
3107	file_ra_state_init(ra, inode->i_mapping);
3108
3109	ret = setup_relocation_extent_mapping(inode, cluster->start - offset,
3110				   cluster->end - offset, cluster->start);
3111	if (ret)
3112		goto out;
3113
 
3114	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3115	for (index = (cluster->start - offset) >> PAGE_SHIFT;
3116	     index <= last_index && !ret; index++)
3117		ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index);
3118	if (ret == 0)
3119		WARN_ON(cluster_nr != cluster->nr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3120out:
3121	kfree(ra);
3122	return ret;
3123}
3124
3125static noinline_for_stack
3126int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3127			 struct file_extent_cluster *cluster)
3128{
3129	int ret;
3130
3131	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3132		ret = relocate_file_extent_cluster(inode, cluster);
3133		if (ret)
3134			return ret;
3135		cluster->nr = 0;
3136	}
3137
3138	if (!cluster->nr)
3139		cluster->start = extent_key->objectid;
3140	else
3141		BUG_ON(cluster->nr >= MAX_EXTENTS);
3142	cluster->end = extent_key->objectid + extent_key->offset - 1;
3143	cluster->boundary[cluster->nr] = extent_key->objectid;
3144	cluster->nr++;
3145
3146	if (cluster->nr >= MAX_EXTENTS) {
3147		ret = relocate_file_extent_cluster(inode, cluster);
3148		if (ret)
3149			return ret;
3150		cluster->nr = 0;
3151	}
3152	return 0;
3153}
3154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3155/*
3156 * helper to add a tree block to the list.
3157 * the major work is getting the generation and level of the block
3158 */
3159static int add_tree_block(struct reloc_control *rc,
3160			  struct btrfs_key *extent_key,
3161			  struct btrfs_path *path,
3162			  struct rb_root *blocks)
3163{
3164	struct extent_buffer *eb;
3165	struct btrfs_extent_item *ei;
3166	struct btrfs_tree_block_info *bi;
3167	struct tree_block *block;
3168	struct rb_node *rb_node;
3169	u32 item_size;
3170	int level = -1;
3171	u64 generation;
3172	u64 owner = 0;
3173
3174	eb =  path->nodes[0];
3175	item_size = btrfs_item_size(eb, path->slots[0]);
3176
3177	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3178	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3179		unsigned long ptr = 0, end;
3180
3181		ei = btrfs_item_ptr(eb, path->slots[0],
3182				struct btrfs_extent_item);
3183		end = (unsigned long)ei + item_size;
3184		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3185			bi = (struct btrfs_tree_block_info *)(ei + 1);
3186			level = btrfs_tree_block_level(eb, bi);
3187			ptr = (unsigned long)(bi + 1);
3188		} else {
3189			level = (int)extent_key->offset;
3190			ptr = (unsigned long)(ei + 1);
3191		}
3192		generation = btrfs_extent_generation(eb, ei);
3193
3194		/*
3195		 * We're reading random blocks without knowing their owner ahead
3196		 * of time.  This is ok most of the time, as all reloc roots and
3197		 * fs roots have the same lock type.  However normal trees do
3198		 * not, and the only way to know ahead of time is to read the
3199		 * inline ref offset.  We know it's an fs root if
3200		 *
3201		 * 1. There's more than one ref.
3202		 * 2. There's a SHARED_DATA_REF_KEY set.
3203		 * 3. FULL_BACKREF is set on the flags.
3204		 *
3205		 * Otherwise it's safe to assume that the ref offset == the
3206		 * owner of this block, so we can use that when calling
3207		 * read_tree_block.
3208		 */
3209		if (btrfs_extent_refs(eb, ei) == 1 &&
3210		    !(btrfs_extent_flags(eb, ei) &
3211		      BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3212		    ptr < end) {
3213			struct btrfs_extent_inline_ref *iref;
3214			int type;
3215
3216			iref = (struct btrfs_extent_inline_ref *)ptr;
3217			type = btrfs_get_extent_inline_ref_type(eb, iref,
3218							BTRFS_REF_TYPE_BLOCK);
3219			if (type == BTRFS_REF_TYPE_INVALID)
3220				return -EINVAL;
3221			if (type == BTRFS_TREE_BLOCK_REF_KEY)
3222				owner = btrfs_extent_inline_ref_offset(eb, iref);
3223		}
3224	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3225		btrfs_print_v0_err(eb->fs_info);
3226		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3227		return -EINVAL;
3228	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3229		BUG();
 
3230	}
3231
3232	btrfs_release_path(path);
3233
3234	BUG_ON(level == -1);
3235
3236	block = kmalloc(sizeof(*block), GFP_NOFS);
3237	if (!block)
3238		return -ENOMEM;
3239
3240	block->bytenr = extent_key->objectid;
3241	block->key.objectid = rc->extent_root->fs_info->nodesize;
3242	block->key.offset = generation;
3243	block->level = level;
3244	block->key_ready = 0;
3245	block->owner = owner;
3246
3247	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3248	if (rb_node)
3249		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3250				    -EEXIST);
3251
3252	return 0;
3253}
3254
3255/*
3256 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3257 */
3258static int __add_tree_block(struct reloc_control *rc,
3259			    u64 bytenr, u32 blocksize,
3260			    struct rb_root *blocks)
3261{
3262	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3263	struct btrfs_path *path;
3264	struct btrfs_key key;
3265	int ret;
3266	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
 
3267
3268	if (tree_block_processed(bytenr, rc))
3269		return 0;
3270
3271	if (rb_simple_search(blocks, bytenr))
3272		return 0;
3273
3274	path = btrfs_alloc_path();
3275	if (!path)
3276		return -ENOMEM;
3277again:
3278	key.objectid = bytenr;
3279	if (skinny) {
3280		key.type = BTRFS_METADATA_ITEM_KEY;
3281		key.offset = (u64)-1;
3282	} else {
3283		key.type = BTRFS_EXTENT_ITEM_KEY;
3284		key.offset = blocksize;
3285	}
3286
3287	path->search_commit_root = 1;
3288	path->skip_locking = 1;
3289	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3290	if (ret < 0)
3291		goto out;
3292
3293	if (ret > 0 && skinny) {
3294		if (path->slots[0]) {
3295			path->slots[0]--;
3296			btrfs_item_key_to_cpu(path->nodes[0], &key,
3297					      path->slots[0]);
3298			if (key.objectid == bytenr &&
3299			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3300			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3301			      key.offset == blocksize)))
3302				ret = 0;
3303		}
3304
3305		if (ret) {
3306			skinny = false;
3307			btrfs_release_path(path);
3308			goto again;
3309		}
3310	}
3311	if (ret) {
3312		ASSERT(ret == 1);
3313		btrfs_print_leaf(path->nodes[0]);
3314		btrfs_err(fs_info,
3315	     "tree block extent item (%llu) is not found in extent tree",
3316		     bytenr);
3317		WARN_ON(1);
3318		ret = -EINVAL;
3319		goto out;
3320	}
3321
3322	ret = add_tree_block(rc, &key, path, blocks);
3323out:
3324	btrfs_free_path(path);
3325	return ret;
3326}
3327
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3328static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3329				    struct btrfs_block_group *block_group,
3330				    struct inode *inode,
3331				    u64 ino)
3332{
 
3333	struct btrfs_root *root = fs_info->tree_root;
3334	struct btrfs_trans_handle *trans;
3335	int ret = 0;
3336
3337	if (inode)
3338		goto truncate;
3339
3340	inode = btrfs_iget(fs_info->sb, ino, root);
3341	if (IS_ERR(inode))
 
 
 
 
 
 
3342		return -ENOENT;
 
3343
3344truncate:
3345	ret = btrfs_check_trunc_cache_free_space(fs_info,
3346						 &fs_info->global_block_rsv);
3347	if (ret)
3348		goto out;
3349
3350	trans = btrfs_join_transaction(root);
3351	if (IS_ERR(trans)) {
3352		ret = PTR_ERR(trans);
3353		goto out;
3354	}
3355
3356	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3357
3358	btrfs_end_transaction(trans);
3359	btrfs_btree_balance_dirty(fs_info);
3360out:
3361	iput(inode);
3362	return ret;
3363}
3364
3365/*
3366 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3367 * cache inode, to avoid free space cache data extent blocking data relocation.
3368 */
3369static int delete_v1_space_cache(struct extent_buffer *leaf,
3370				 struct btrfs_block_group *block_group,
3371				 u64 data_bytenr)
 
 
3372{
3373	u64 space_cache_ino;
3374	struct btrfs_file_extent_item *ei;
 
 
 
3375	struct btrfs_key key;
3376	bool found = false;
3377	int i;
 
 
 
 
 
 
3378	int ret;
3379
3380	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3381		return 0;
 
 
3382
3383	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3384		u8 type;
 
 
 
 
 
 
 
 
 
 
3385
3386		btrfs_item_key_to_cpu(leaf, &key, i);
3387		if (key.type != BTRFS_EXTENT_DATA_KEY)
3388			continue;
3389		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3390		type = btrfs_file_extent_type(leaf, ei);
3391
3392		if ((type == BTRFS_FILE_EXTENT_REG ||
3393		     type == BTRFS_FILE_EXTENT_PREALLOC) &&
3394		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3395			found = true;
3396			space_cache_ino = key.objectid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3397			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3398		}
 
 
 
 
 
 
 
3399	}
3400	if (!found)
3401		return -ENOENT;
3402	ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3403					space_cache_ino);
3404	return ret;
3405}
3406
3407/*
3408 * helper to find all tree blocks that reference a given data extent
3409 */
3410static noinline_for_stack
3411int add_data_references(struct reloc_control *rc,
3412			struct btrfs_key *extent_key,
3413			struct btrfs_path *path,
3414			struct rb_root *blocks)
3415{
3416	struct btrfs_backref_walk_ctx ctx = { 0 };
3417	struct ulist_iterator leaf_uiter;
3418	struct ulist_node *ref_node = NULL;
3419	const u32 blocksize = rc->extent_root->fs_info->nodesize;
 
 
 
3420	int ret = 0;
 
3421
3422	btrfs_release_path(path);
3423
3424	ctx.bytenr = extent_key->objectid;
3425	ctx.ignore_extent_item_pos = true;
3426	ctx.fs_info = rc->extent_root->fs_info;
 
 
 
 
3427
3428	ret = btrfs_find_all_leafs(&ctx);
3429	if (ret < 0)
3430		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3431
3432	ULIST_ITER_INIT(&leaf_uiter);
3433	while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) {
3434		struct btrfs_tree_parent_check check = { 0 };
3435		struct extent_buffer *eb;
 
 
 
 
 
 
 
 
 
3436
3437		eb = read_tree_block(ctx.fs_info, ref_node->val, &check);
3438		if (IS_ERR(eb)) {
3439			ret = PTR_ERR(eb);
3440			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3441		}
3442		ret = delete_v1_space_cache(eb, rc->block_group,
3443					    extent_key->objectid);
3444		free_extent_buffer(eb);
3445		if (ret < 0)
3446			break;
3447		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3448		if (ret < 0)
3449			break;
 
 
3450	}
3451	if (ret < 0)
 
 
3452		free_block_list(blocks);
3453	ulist_free(ctx.refs);
3454	return ret;
3455}
3456
3457/*
3458 * helper to find next unprocessed extent
3459 */
3460static noinline_for_stack
3461int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3462		     struct btrfs_key *extent_key)
3463{
3464	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3465	struct btrfs_key key;
3466	struct extent_buffer *leaf;
3467	u64 start, end, last;
3468	int ret;
3469
3470	last = rc->block_group->start + rc->block_group->length;
3471	while (1) {
3472		cond_resched();
3473		if (rc->search_start >= last) {
3474			ret = 1;
3475			break;
3476		}
3477
3478		key.objectid = rc->search_start;
3479		key.type = BTRFS_EXTENT_ITEM_KEY;
3480		key.offset = 0;
3481
3482		path->search_commit_root = 1;
3483		path->skip_locking = 1;
3484		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3485					0, 0);
3486		if (ret < 0)
3487			break;
3488next:
3489		leaf = path->nodes[0];
3490		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3491			ret = btrfs_next_leaf(rc->extent_root, path);
3492			if (ret != 0)
3493				break;
3494			leaf = path->nodes[0];
3495		}
3496
3497		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3498		if (key.objectid >= last) {
3499			ret = 1;
3500			break;
3501		}
3502
3503		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3504		    key.type != BTRFS_METADATA_ITEM_KEY) {
3505			path->slots[0]++;
3506			goto next;
3507		}
3508
3509		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3510		    key.objectid + key.offset <= rc->search_start) {
3511			path->slots[0]++;
3512			goto next;
3513		}
3514
3515		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3516		    key.objectid + fs_info->nodesize <=
3517		    rc->search_start) {
3518			path->slots[0]++;
3519			goto next;
3520		}
3521
3522		ret = find_first_extent_bit(&rc->processed_blocks,
3523					    key.objectid, &start, &end,
3524					    EXTENT_DIRTY, NULL);
3525
3526		if (ret == 0 && start <= key.objectid) {
3527			btrfs_release_path(path);
3528			rc->search_start = end + 1;
3529		} else {
3530			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3531				rc->search_start = key.objectid + key.offset;
3532			else
3533				rc->search_start = key.objectid +
3534					fs_info->nodesize;
3535			memcpy(extent_key, &key, sizeof(key));
3536			return 0;
3537		}
3538	}
3539	btrfs_release_path(path);
3540	return ret;
3541}
3542
3543static void set_reloc_control(struct reloc_control *rc)
3544{
3545	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3546
3547	mutex_lock(&fs_info->reloc_mutex);
3548	fs_info->reloc_ctl = rc;
3549	mutex_unlock(&fs_info->reloc_mutex);
3550}
3551
3552static void unset_reloc_control(struct reloc_control *rc)
3553{
3554	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3555
3556	mutex_lock(&fs_info->reloc_mutex);
3557	fs_info->reloc_ctl = NULL;
3558	mutex_unlock(&fs_info->reloc_mutex);
3559}
3560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3561static noinline_for_stack
3562int prepare_to_relocate(struct reloc_control *rc)
3563{
3564	struct btrfs_trans_handle *trans;
3565	int ret;
3566
3567	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3568					      BTRFS_BLOCK_RSV_TEMP);
3569	if (!rc->block_rsv)
3570		return -ENOMEM;
3571
3572	memset(&rc->cluster, 0, sizeof(rc->cluster));
3573	rc->search_start = rc->block_group->start;
3574	rc->extents_found = 0;
3575	rc->nodes_relocated = 0;
3576	rc->merging_rsv_size = 0;
3577	rc->reserved_bytes = 0;
3578	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3579			      RELOCATION_RESERVED_NODES;
3580	ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3581				     rc->block_rsv, rc->block_rsv->size,
3582				     BTRFS_RESERVE_FLUSH_ALL);
3583	if (ret)
3584		return ret;
3585
3586	rc->create_reloc_tree = 1;
3587	set_reloc_control(rc);
3588
3589	trans = btrfs_join_transaction(rc->extent_root);
3590	if (IS_ERR(trans)) {
3591		unset_reloc_control(rc);
3592		/*
3593		 * extent tree is not a ref_cow tree and has no reloc_root to
3594		 * cleanup.  And callers are responsible to free the above
3595		 * block rsv.
3596		 */
3597		return PTR_ERR(trans);
3598	}
3599
3600	ret = btrfs_commit_transaction(trans);
3601	if (ret)
3602		unset_reloc_control(rc);
3603
3604	return ret;
3605}
3606
3607static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3608{
3609	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3610	struct rb_root blocks = RB_ROOT;
3611	struct btrfs_key key;
3612	struct btrfs_trans_handle *trans = NULL;
3613	struct btrfs_path *path;
3614	struct btrfs_extent_item *ei;
3615	u64 flags;
 
3616	int ret;
3617	int err = 0;
3618	int progress = 0;
3619
3620	path = btrfs_alloc_path();
3621	if (!path)
3622		return -ENOMEM;
3623	path->reada = READA_FORWARD;
3624
3625	ret = prepare_to_relocate(rc);
3626	if (ret) {
3627		err = ret;
3628		goto out_free;
3629	}
3630
3631	while (1) {
3632		rc->reserved_bytes = 0;
3633		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3634					     rc->block_rsv->size,
3635					     BTRFS_RESERVE_FLUSH_ALL);
3636		if (ret) {
3637			err = ret;
3638			break;
3639		}
3640		progress++;
3641		trans = btrfs_start_transaction(rc->extent_root, 0);
3642		if (IS_ERR(trans)) {
3643			err = PTR_ERR(trans);
3644			trans = NULL;
3645			break;
3646		}
3647restart:
3648		if (update_backref_cache(trans, &rc->backref_cache)) {
3649			btrfs_end_transaction(trans);
3650			trans = NULL;
3651			continue;
3652		}
3653
3654		ret = find_next_extent(rc, path, &key);
3655		if (ret < 0)
3656			err = ret;
3657		if (ret != 0)
3658			break;
3659
3660		rc->extents_found++;
3661
3662		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3663				    struct btrfs_extent_item);
3664		flags = btrfs_extent_flags(path->nodes[0], ei);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3665
3666		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3667			ret = add_tree_block(rc, &key, path, &blocks);
3668		} else if (rc->stage == UPDATE_DATA_PTRS &&
3669			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3670			ret = add_data_references(rc, &key, path, &blocks);
3671		} else {
3672			btrfs_release_path(path);
3673			ret = 0;
3674		}
3675		if (ret < 0) {
3676			err = ret;
3677			break;
3678		}
3679
3680		if (!RB_EMPTY_ROOT(&blocks)) {
3681			ret = relocate_tree_blocks(trans, rc, &blocks);
3682			if (ret < 0) {
 
 
 
 
 
 
3683				if (ret != -EAGAIN) {
3684					err = ret;
3685					break;
3686				}
3687				rc->extents_found--;
3688				rc->search_start = key.objectid;
3689			}
3690		}
3691
3692		btrfs_end_transaction_throttle(trans);
3693		btrfs_btree_balance_dirty(fs_info);
3694		trans = NULL;
3695
3696		if (rc->stage == MOVE_DATA_EXTENTS &&
3697		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3698			rc->found_file_extent = 1;
3699			ret = relocate_data_extent(rc->data_inode,
3700						   &key, &rc->cluster);
3701			if (ret < 0) {
3702				err = ret;
3703				break;
3704			}
3705		}
3706		if (btrfs_should_cancel_balance(fs_info)) {
3707			err = -ECANCELED;
3708			break;
3709		}
3710	}
3711	if (trans && progress && err == -ENOSPC) {
3712		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
 
3713		if (ret == 1) {
3714			err = 0;
3715			progress = 0;
3716			goto restart;
3717		}
3718	}
3719
3720	btrfs_release_path(path);
3721	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
 
3722
3723	if (trans) {
3724		btrfs_end_transaction_throttle(trans);
3725		btrfs_btree_balance_dirty(fs_info);
3726	}
3727
3728	if (!err) {
3729		ret = relocate_file_extent_cluster(rc->data_inode,
3730						   &rc->cluster);
3731		if (ret < 0)
3732			err = ret;
3733	}
3734
3735	rc->create_reloc_tree = 0;
3736	set_reloc_control(rc);
3737
3738	btrfs_backref_release_cache(&rc->backref_cache);
3739	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3740
3741	/*
3742	 * Even in the case when the relocation is cancelled, we should all go
3743	 * through prepare_to_merge() and merge_reloc_roots().
3744	 *
3745	 * For error (including cancelled balance), prepare_to_merge() will
3746	 * mark all reloc trees orphan, then queue them for cleanup in
3747	 * merge_reloc_roots()
3748	 */
3749	err = prepare_to_merge(rc, err);
3750
3751	merge_reloc_roots(rc);
3752
3753	rc->merge_reloc_tree = 0;
3754	unset_reloc_control(rc);
3755	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3756
3757	/* get rid of pinned extents */
3758	trans = btrfs_join_transaction(rc->extent_root);
3759	if (IS_ERR(trans)) {
3760		err = PTR_ERR(trans);
3761		goto out_free;
3762	}
3763	ret = btrfs_commit_transaction(trans);
3764	if (ret && !err)
3765		err = ret;
3766out_free:
3767	ret = clean_dirty_subvols(rc);
3768	if (ret < 0 && !err)
3769		err = ret;
3770	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3771	btrfs_free_path(path);
3772	return err;
3773}
3774
3775static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3776				 struct btrfs_root *root, u64 objectid)
3777{
3778	struct btrfs_path *path;
3779	struct btrfs_inode_item *item;
3780	struct extent_buffer *leaf;
3781	int ret;
3782
3783	path = btrfs_alloc_path();
3784	if (!path)
3785		return -ENOMEM;
3786
3787	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3788	if (ret)
3789		goto out;
3790
3791	leaf = path->nodes[0];
3792	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3793	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3794	btrfs_set_inode_generation(leaf, item, 1);
3795	btrfs_set_inode_size(leaf, item, 0);
3796	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3797	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3798					  BTRFS_INODE_PREALLOC);
3799	btrfs_mark_buffer_dirty(leaf);
3800out:
3801	btrfs_free_path(path);
3802	return ret;
3803}
3804
3805static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3806				struct btrfs_root *root, u64 objectid)
3807{
3808	struct btrfs_path *path;
3809	struct btrfs_key key;
3810	int ret = 0;
3811
3812	path = btrfs_alloc_path();
3813	if (!path) {
3814		ret = -ENOMEM;
3815		goto out;
3816	}
3817
3818	key.objectid = objectid;
3819	key.type = BTRFS_INODE_ITEM_KEY;
3820	key.offset = 0;
3821	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3822	if (ret) {
3823		if (ret > 0)
3824			ret = -ENOENT;
3825		goto out;
3826	}
3827	ret = btrfs_del_item(trans, root, path);
3828out:
3829	if (ret)
3830		btrfs_abort_transaction(trans, ret);
3831	btrfs_free_path(path);
3832}
3833
3834/*
3835 * helper to create inode for data relocation.
3836 * the inode is in data relocation tree and its link count is 0
3837 */
3838static noinline_for_stack
3839struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3840				 struct btrfs_block_group *group)
3841{
3842	struct inode *inode = NULL;
3843	struct btrfs_trans_handle *trans;
3844	struct btrfs_root *root;
 
3845	u64 objectid;
3846	int err = 0;
3847
3848	root = btrfs_grab_root(fs_info->data_reloc_root);
 
 
 
3849	trans = btrfs_start_transaction(root, 6);
3850	if (IS_ERR(trans)) {
3851		btrfs_put_root(root);
3852		return ERR_CAST(trans);
3853	}
3854
3855	err = btrfs_get_free_objectid(root, &objectid);
3856	if (err)
3857		goto out;
3858
3859	err = __insert_orphan_inode(trans, root, objectid);
3860	if (err)
3861		goto out;
3862
3863	inode = btrfs_iget(fs_info->sb, objectid, root);
3864	if (IS_ERR(inode)) {
3865		delete_orphan_inode(trans, root, objectid);
3866		err = PTR_ERR(inode);
3867		inode = NULL;
3868		goto out;
3869	}
3870	BTRFS_I(inode)->index_cnt = group->start;
3871
3872	err = btrfs_orphan_add(trans, BTRFS_I(inode));
3873out:
3874	btrfs_put_root(root);
3875	btrfs_end_transaction(trans);
3876	btrfs_btree_balance_dirty(fs_info);
3877	if (err) {
3878		iput(inode);
 
3879		inode = ERR_PTR(err);
3880	}
3881	return inode;
3882}
3883
3884/*
3885 * Mark start of chunk relocation that is cancellable. Check if the cancellation
3886 * has been requested meanwhile and don't start in that case.
3887 *
3888 * Return:
3889 *   0             success
3890 *   -EINPROGRESS  operation is already in progress, that's probably a bug
3891 *   -ECANCELED    cancellation request was set before the operation started
3892 */
3893static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3894{
3895	if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3896		/* This should not happen */
3897		btrfs_err(fs_info, "reloc already running, cannot start");
3898		return -EINPROGRESS;
3899	}
3900
3901	if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3902		btrfs_info(fs_info, "chunk relocation canceled on start");
3903		/*
3904		 * On cancel, clear all requests but let the caller mark
3905		 * the end after cleanup operations.
3906		 */
3907		atomic_set(&fs_info->reloc_cancel_req, 0);
3908		return -ECANCELED;
3909	}
3910	return 0;
3911}
3912
3913/*
3914 * Mark end of chunk relocation that is cancellable and wake any waiters.
3915 */
3916static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3917{
3918	/* Requested after start, clear bit first so any waiters can continue */
3919	if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3920		btrfs_info(fs_info, "chunk relocation canceled during operation");
3921	clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3922	atomic_set(&fs_info->reloc_cancel_req, 0);
3923}
3924
3925static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3926{
3927	struct reloc_control *rc;
3928
3929	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3930	if (!rc)
3931		return NULL;
3932
3933	INIT_LIST_HEAD(&rc->reloc_roots);
3934	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3935	btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3936	mapping_tree_init(&rc->reloc_root_tree);
3937	extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS);
 
3938	return rc;
3939}
3940
3941static void free_reloc_control(struct reloc_control *rc)
3942{
3943	struct mapping_node *node, *tmp;
3944
3945	free_reloc_roots(&rc->reloc_roots);
3946	rbtree_postorder_for_each_entry_safe(node, tmp,
3947			&rc->reloc_root_tree.rb_root, rb_node)
3948		kfree(node);
3949
3950	kfree(rc);
3951}
3952
3953/*
3954 * Print the block group being relocated
3955 */
3956static void describe_relocation(struct btrfs_fs_info *fs_info,
3957				struct btrfs_block_group *block_group)
3958{
3959	char buf[128] = {'\0'};
3960
3961	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3962
3963	btrfs_info(fs_info,
3964		   "relocating block group %llu flags %s",
3965		   block_group->start, buf);
3966}
3967
3968static const char *stage_to_string(int stage)
3969{
3970	if (stage == MOVE_DATA_EXTENTS)
3971		return "move data extents";
3972	if (stage == UPDATE_DATA_PTRS)
3973		return "update data pointers";
3974	return "unknown";
3975}
3976
3977/*
3978 * function to relocate all extents in a block group.
3979 */
3980int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3981{
3982	struct btrfs_block_group *bg;
3983	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
3984	struct reloc_control *rc;
3985	struct inode *inode;
3986	struct btrfs_path *path;
3987	int ret;
3988	int rw = 0;
3989	int err = 0;
3990
3991	/*
3992	 * This only gets set if we had a half-deleted snapshot on mount.  We
3993	 * cannot allow relocation to start while we're still trying to clean up
3994	 * these pending deletions.
3995	 */
3996	ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
3997	if (ret)
3998		return ret;
3999
4000	/* We may have been woken up by close_ctree, so bail if we're closing. */
4001	if (btrfs_fs_closing(fs_info))
4002		return -EINTR;
4003
4004	bg = btrfs_lookup_block_group(fs_info, group_start);
4005	if (!bg)
4006		return -ENOENT;
4007
4008	/*
4009	 * Relocation of a data block group creates ordered extents.  Without
4010	 * sb_start_write(), we can freeze the filesystem while unfinished
4011	 * ordered extents are left. Such ordered extents can cause a deadlock
4012	 * e.g. when syncfs() is waiting for their completion but they can't
4013	 * finish because they block when joining a transaction, due to the
4014	 * fact that the freeze locks are being held in write mode.
4015	 */
4016	if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
4017		ASSERT(sb_write_started(fs_info->sb));
4018
4019	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4020		btrfs_put_block_group(bg);
4021		return -ETXTBSY;
4022	}
4023
4024	rc = alloc_reloc_control(fs_info);
4025	if (!rc) {
4026		btrfs_put_block_group(bg);
4027		return -ENOMEM;
4028	}
4029
4030	ret = reloc_chunk_start(fs_info);
4031	if (ret < 0) {
4032		err = ret;
4033		goto out_put_bg;
4034	}
4035
4036	rc->extent_root = extent_root;
4037	rc->block_group = bg;
4038
4039	ret = btrfs_inc_block_group_ro(rc->block_group, true);
 
 
 
4040	if (ret) {
4041		err = ret;
4042		goto out;
4043	}
4044	rw = 1;
4045
4046	path = btrfs_alloc_path();
4047	if (!path) {
4048		err = -ENOMEM;
4049		goto out;
4050	}
4051
4052	inode = lookup_free_space_inode(rc->block_group, path);
 
4053	btrfs_free_path(path);
4054
4055	if (!IS_ERR(inode))
4056		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4057	else
4058		ret = PTR_ERR(inode);
4059
4060	if (ret && ret != -ENOENT) {
4061		err = ret;
4062		goto out;
4063	}
4064
4065	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4066	if (IS_ERR(rc->data_inode)) {
4067		err = PTR_ERR(rc->data_inode);
4068		rc->data_inode = NULL;
4069		goto out;
4070	}
4071
4072	describe_relocation(fs_info, rc->block_group);
4073
4074	btrfs_wait_block_group_reservations(rc->block_group);
4075	btrfs_wait_nocow_writers(rc->block_group);
4076	btrfs_wait_ordered_roots(fs_info, U64_MAX,
4077				 rc->block_group->start,
4078				 rc->block_group->length);
4079
4080	ret = btrfs_zone_finish(rc->block_group);
4081	WARN_ON(ret && ret != -EAGAIN);
 
 
 
 
4082
4083	while (1) {
4084		int finishes_stage;
4085
4086		mutex_lock(&fs_info->cleaner_mutex);
4087		ret = relocate_block_group(rc);
4088		mutex_unlock(&fs_info->cleaner_mutex);
4089		if (ret < 0)
4090			err = ret;
 
 
 
 
 
 
 
 
4091
4092		finishes_stage = rc->stage;
4093		/*
4094		 * We may have gotten ENOSPC after we already dirtied some
4095		 * extents.  If writeout happens while we're relocating a
4096		 * different block group we could end up hitting the
4097		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4098		 * btrfs_reloc_cow_block.  Make sure we write everything out
4099		 * properly so we don't trip over this problem, and then break
4100		 * out of the loop if we hit an error.
4101		 */
4102		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4103			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4104						       (u64)-1);
4105			if (ret)
4106				err = ret;
 
 
4107			invalidate_mapping_pages(rc->data_inode->i_mapping,
4108						 0, -1);
4109			rc->stage = UPDATE_DATA_PTRS;
4110		}
4111
4112		if (err < 0)
4113			goto out;
4114
4115		if (rc->extents_found == 0)
4116			break;
4117
4118		btrfs_info(fs_info, "found %llu extents, stage: %s",
4119			   rc->extents_found, stage_to_string(finishes_stage));
4120	}
4121
4122	WARN_ON(rc->block_group->pinned > 0);
4123	WARN_ON(rc->block_group->reserved > 0);
4124	WARN_ON(rc->block_group->used > 0);
4125out:
4126	if (err && rw)
4127		btrfs_dec_block_group_ro(rc->block_group);
4128	iput(rc->data_inode);
4129out_put_bg:
4130	btrfs_put_block_group(bg);
4131	reloc_chunk_end(fs_info);
4132	free_reloc_control(rc);
4133	return err;
4134}
4135
4136static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4137{
4138	struct btrfs_fs_info *fs_info = root->fs_info;
4139	struct btrfs_trans_handle *trans;
4140	int ret, err;
4141
4142	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4143	if (IS_ERR(trans))
4144		return PTR_ERR(trans);
4145
4146	memset(&root->root_item.drop_progress, 0,
4147		sizeof(root->root_item.drop_progress));
4148	btrfs_set_root_drop_level(&root->root_item, 0);
4149	btrfs_set_root_refs(&root->root_item, 0);
4150	ret = btrfs_update_root(trans, fs_info->tree_root,
4151				&root->root_key, &root->root_item);
4152
4153	err = btrfs_end_transaction(trans);
4154	if (err)
4155		return err;
4156	return ret;
4157}
4158
4159/*
4160 * recover relocation interrupted by system crash.
4161 *
4162 * this function resumes merging reloc trees with corresponding fs trees.
4163 * this is important for keeping the sharing of tree blocks
4164 */
4165int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4166{
4167	LIST_HEAD(reloc_roots);
4168	struct btrfs_key key;
4169	struct btrfs_root *fs_root;
4170	struct btrfs_root *reloc_root;
4171	struct btrfs_path *path;
4172	struct extent_buffer *leaf;
4173	struct reloc_control *rc = NULL;
4174	struct btrfs_trans_handle *trans;
4175	int ret;
4176	int err = 0;
4177
4178	path = btrfs_alloc_path();
4179	if (!path)
4180		return -ENOMEM;
4181	path->reada = READA_BACK;
4182
4183	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4184	key.type = BTRFS_ROOT_ITEM_KEY;
4185	key.offset = (u64)-1;
4186
4187	while (1) {
4188		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4189					path, 0, 0);
4190		if (ret < 0) {
4191			err = ret;
4192			goto out;
4193		}
4194		if (ret > 0) {
4195			if (path->slots[0] == 0)
4196				break;
4197			path->slots[0]--;
4198		}
4199		leaf = path->nodes[0];
4200		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4201		btrfs_release_path(path);
4202
4203		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4204		    key.type != BTRFS_ROOT_ITEM_KEY)
4205			break;
4206
4207		reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4208		if (IS_ERR(reloc_root)) {
4209			err = PTR_ERR(reloc_root);
4210			goto out;
4211		}
4212
4213		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4214		list_add(&reloc_root->root_list, &reloc_roots);
4215
4216		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4217			fs_root = btrfs_get_fs_root(fs_info,
4218					reloc_root->root_key.offset, false);
4219			if (IS_ERR(fs_root)) {
4220				ret = PTR_ERR(fs_root);
4221				if (ret != -ENOENT) {
4222					err = ret;
4223					goto out;
4224				}
4225				ret = mark_garbage_root(reloc_root);
4226				if (ret < 0) {
4227					err = ret;
4228					goto out;
4229				}
4230			} else {
4231				btrfs_put_root(fs_root);
4232			}
4233		}
4234
4235		if (key.offset == 0)
4236			break;
4237
4238		key.offset--;
4239	}
4240	btrfs_release_path(path);
4241
4242	if (list_empty(&reloc_roots))
4243		goto out;
4244
4245	rc = alloc_reloc_control(fs_info);
4246	if (!rc) {
4247		err = -ENOMEM;
4248		goto out;
4249	}
4250
4251	ret = reloc_chunk_start(fs_info);
4252	if (ret < 0) {
4253		err = ret;
4254		goto out_end;
4255	}
4256
4257	rc->extent_root = btrfs_extent_root(fs_info, 0);
4258
4259	set_reloc_control(rc);
4260
4261	trans = btrfs_join_transaction(rc->extent_root);
4262	if (IS_ERR(trans)) {
 
4263		err = PTR_ERR(trans);
4264		goto out_unset;
4265	}
4266
4267	rc->merge_reloc_tree = 1;
4268
4269	while (!list_empty(&reloc_roots)) {
4270		reloc_root = list_entry(reloc_roots.next,
4271					struct btrfs_root, root_list);
4272		list_del(&reloc_root->root_list);
4273
4274		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4275			list_add_tail(&reloc_root->root_list,
4276				      &rc->reloc_roots);
4277			continue;
4278		}
4279
4280		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4281					    false);
4282		if (IS_ERR(fs_root)) {
4283			err = PTR_ERR(fs_root);
4284			list_add_tail(&reloc_root->root_list, &reloc_roots);
4285			btrfs_end_transaction(trans);
4286			goto out_unset;
4287		}
4288
4289		err = __add_reloc_root(reloc_root);
4290		ASSERT(err != -EEXIST);
4291		if (err) {
4292			list_add_tail(&reloc_root->root_list, &reloc_roots);
4293			btrfs_put_root(fs_root);
4294			btrfs_end_transaction(trans);
4295			goto out_unset;
4296		}
4297		fs_root->reloc_root = btrfs_grab_root(reloc_root);
4298		btrfs_put_root(fs_root);
4299	}
4300
4301	err = btrfs_commit_transaction(trans);
4302	if (err)
4303		goto out_unset;
4304
4305	merge_reloc_roots(rc);
4306
4307	unset_reloc_control(rc);
4308
4309	trans = btrfs_join_transaction(rc->extent_root);
4310	if (IS_ERR(trans)) {
4311		err = PTR_ERR(trans);
4312		goto out_clean;
4313	}
4314	err = btrfs_commit_transaction(trans);
4315out_clean:
4316	ret = clean_dirty_subvols(rc);
4317	if (ret < 0 && !err)
4318		err = ret;
4319out_unset:
4320	unset_reloc_control(rc);
4321out_end:
4322	reloc_chunk_end(fs_info);
4323	free_reloc_control(rc);
4324out:
4325	free_reloc_roots(&reloc_roots);
 
4326
4327	btrfs_free_path(path);
4328
4329	if (err == 0) {
4330		/* cleanup orphan inode in data relocation tree */
4331		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4332		ASSERT(fs_root);
4333		err = btrfs_orphan_cleanup(fs_root);
4334		btrfs_put_root(fs_root);
 
 
4335	}
4336	return err;
4337}
4338
4339/*
4340 * helper to add ordered checksum for data relocation.
4341 *
4342 * cloning checksum properly handles the nodatasum extents.
4343 * it also saves CPU time to re-calculate the checksum.
4344 */
4345int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
4346{
4347	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4348	struct btrfs_root *csum_root;
4349	struct btrfs_ordered_sum *sums;
4350	struct btrfs_ordered_extent *ordered;
 
4351	int ret;
4352	u64 disk_bytenr;
4353	u64 new_bytenr;
4354	LIST_HEAD(list);
4355
4356	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4357	BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
4358
4359	disk_bytenr = file_pos + inode->index_cnt;
4360	csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4361	ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4362				      disk_bytenr + len - 1, &list, 0, false);
4363	if (ret)
4364		goto out;
4365
4366	while (!list_empty(&list)) {
4367		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4368		list_del_init(&sums->list);
4369
4370		/*
4371		 * We need to offset the new_bytenr based on where the csum is.
4372		 * We need to do this because we will read in entire prealloc
4373		 * extents but we may have written to say the middle of the
4374		 * prealloc extent, so we need to make sure the csum goes with
4375		 * the right disk offset.
4376		 *
4377		 * We can do this because the data reloc inode refers strictly
4378		 * to the on disk bytes, so we don't have to worry about
4379		 * disk_len vs real len like with real inodes since it's all
4380		 * disk length.
4381		 */
4382		new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
4383		sums->bytenr = new_bytenr;
4384
4385		btrfs_add_ordered_sum(ordered, sums);
4386	}
4387out:
4388	btrfs_put_ordered_extent(ordered);
4389	return ret;
4390}
4391
4392int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4393			  struct btrfs_root *root, struct extent_buffer *buf,
4394			  struct extent_buffer *cow)
4395{
4396	struct btrfs_fs_info *fs_info = root->fs_info;
4397	struct reloc_control *rc;
4398	struct btrfs_backref_node *node;
4399	int first_cow = 0;
4400	int level;
4401	int ret = 0;
4402
4403	rc = fs_info->reloc_ctl;
4404	if (!rc)
4405		return 0;
4406
4407	BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
 
 
 
 
 
 
4408
4409	level = btrfs_header_level(buf);
4410	if (btrfs_header_generation(buf) <=
4411	    btrfs_root_last_snapshot(&root->root_item))
4412		first_cow = 1;
4413
4414	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4415	    rc->create_reloc_tree) {
4416		WARN_ON(!first_cow && level == 0);
4417
4418		node = rc->backref_cache.path[level];
4419		BUG_ON(node->bytenr != buf->start &&
4420		       node->new_bytenr != buf->start);
4421
4422		btrfs_backref_drop_node_buffer(node);
4423		atomic_inc(&cow->refs);
4424		node->eb = cow;
4425		node->new_bytenr = cow->start;
4426
4427		if (!node->pending) {
4428			list_move_tail(&node->list,
4429				       &rc->backref_cache.pending[level]);
4430			node->pending = 1;
4431		}
4432
4433		if (first_cow)
4434			mark_block_processed(rc, node);
4435
4436		if (first_cow && level > 0)
4437			rc->nodes_relocated += buf->len;
4438	}
4439
4440	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4441		ret = replace_file_extents(trans, rc, root, cow);
4442	return ret;
4443}
4444
4445/*
4446 * called before creating snapshot. it calculates metadata reservation
4447 * required for relocating tree blocks in the snapshot
4448 */
4449void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4450			      u64 *bytes_to_reserve)
4451{
4452	struct btrfs_root *root = pending->root;
4453	struct reloc_control *rc = root->fs_info->reloc_ctl;
4454
4455	if (!rc || !have_reloc_root(root))
 
4456		return;
4457
 
4458	if (!rc->merge_reloc_tree)
4459		return;
4460
4461	root = root->reloc_root;
4462	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4463	/*
4464	 * relocation is in the stage of merging trees. the space
4465	 * used by merging a reloc tree is twice the size of
4466	 * relocated tree nodes in the worst case. half for cowing
4467	 * the reloc tree, half for cowing the fs tree. the space
4468	 * used by cowing the reloc tree will be freed after the
4469	 * tree is dropped. if we create snapshot, cowing the fs
4470	 * tree may use more space than it frees. so we need
4471	 * reserve extra space.
4472	 */
4473	*bytes_to_reserve += rc->nodes_relocated;
4474}
4475
4476/*
4477 * called after snapshot is created. migrate block reservation
4478 * and create reloc root for the newly created snapshot
4479 *
4480 * This is similar to btrfs_init_reloc_root(), we come out of here with two
4481 * references held on the reloc_root, one for root->reloc_root and one for
4482 * rc->reloc_roots.
4483 */
4484int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4485			       struct btrfs_pending_snapshot *pending)
4486{
4487	struct btrfs_root *root = pending->root;
4488	struct btrfs_root *reloc_root;
4489	struct btrfs_root *new_root;
4490	struct reloc_control *rc = root->fs_info->reloc_ctl;
4491	int ret;
4492
4493	if (!rc || !have_reloc_root(root))
4494		return 0;
4495
4496	rc = root->fs_info->reloc_ctl;
4497	rc->merging_rsv_size += rc->nodes_relocated;
4498
4499	if (rc->merge_reloc_tree) {
4500		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4501					      rc->block_rsv,
4502					      rc->nodes_relocated, true);
4503		if (ret)
4504			return ret;
4505	}
4506
4507	new_root = pending->snap;
4508	reloc_root = create_reloc_root(trans, root->reloc_root,
4509				       new_root->root_key.objectid);
4510	if (IS_ERR(reloc_root))
4511		return PTR_ERR(reloc_root);
4512
4513	ret = __add_reloc_root(reloc_root);
4514	ASSERT(ret != -EEXIST);
4515	if (ret) {
4516		/* Pairs with create_reloc_root */
4517		btrfs_put_root(reloc_root);
4518		return ret;
4519	}
4520	new_root->reloc_root = btrfs_grab_root(reloc_root);
4521
4522	if (rc->create_reloc_tree)
4523		ret = clone_backref_node(trans, rc, root, reloc_root);
4524	return ret;
4525}
v4.6
 
   1/*
   2 * Copyright (C) 2009 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/pagemap.h>
  21#include <linux/writeback.h>
  22#include <linux/blkdev.h>
  23#include <linux/rbtree.h>
  24#include <linux/slab.h>
 
  25#include "ctree.h"
  26#include "disk-io.h"
  27#include "transaction.h"
  28#include "volumes.h"
  29#include "locking.h"
  30#include "btrfs_inode.h"
  31#include "async-thread.h"
  32#include "free-space-cache.h"
  33#include "inode-map.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  34
  35/*
  36 * backref_node, mapping_node and tree_block start with this
  37 */
  38struct tree_entry {
  39	struct rb_node rb_node;
  40	u64 bytenr;
  41};
  42
  43/*
  44 * present a tree block in the backref cache
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  45 */
  46struct backref_node {
  47	struct rb_node rb_node;
  48	u64 bytenr;
  49
  50	u64 new_bytenr;
  51	/* objectid of tree block owner, can be not uptodate */
  52	u64 owner;
  53	/* link to pending, changed or detached list */
  54	struct list_head list;
  55	/* list of upper level blocks reference this block */
  56	struct list_head upper;
  57	/* list of child blocks in the cache */
  58	struct list_head lower;
  59	/* NULL if this node is not tree root */
  60	struct btrfs_root *root;
  61	/* extent buffer got by COW the block */
  62	struct extent_buffer *eb;
  63	/* level of tree block */
  64	unsigned int level:8;
  65	/* is the block in non-reference counted tree */
  66	unsigned int cowonly:1;
  67	/* 1 if no child node in the cache */
  68	unsigned int lowest:1;
  69	/* is the extent buffer locked */
  70	unsigned int locked:1;
  71	/* has the block been processed */
  72	unsigned int processed:1;
  73	/* have backrefs of this block been checked */
  74	unsigned int checked:1;
  75	/*
  76	 * 1 if corresponding block has been cowed but some upper
  77	 * level block pointers may not point to the new location
  78	 */
  79	unsigned int pending:1;
  80	/*
  81	 * 1 if the backref node isn't connected to any other
  82	 * backref node.
  83	 */
  84	unsigned int detached:1;
  85};
  86
  87/*
  88 * present a block pointer in the backref cache
  89 */
  90struct backref_edge {
  91	struct list_head list[2];
  92	struct backref_node *node[2];
  93};
  94
  95#define LOWER	0
  96#define UPPER	1
  97#define RELOCATION_RESERVED_NODES	256
  98
  99struct backref_cache {
 100	/* red black tree of all backref nodes in the cache */
 101	struct rb_root rb_root;
 102	/* for passing backref nodes to btrfs_reloc_cow_block */
 103	struct backref_node *path[BTRFS_MAX_LEVEL];
 104	/*
 105	 * list of blocks that have been cowed but some block
 106	 * pointers in upper level blocks may not reflect the
 107	 * new location
 108	 */
 109	struct list_head pending[BTRFS_MAX_LEVEL];
 110	/* list of backref nodes with no child node */
 111	struct list_head leaves;
 112	/* list of blocks that have been cowed in current transaction */
 113	struct list_head changed;
 114	/* list of detached backref node. */
 115	struct list_head detached;
 116
 117	u64 last_trans;
 118
 119	int nr_nodes;
 120	int nr_edges;
 121};
 122
 123/*
 124 * map address of tree root to tree
 125 */
 126struct mapping_node {
 127	struct rb_node rb_node;
 128	u64 bytenr;
 
 
 129	void *data;
 130};
 131
 132struct mapping_tree {
 133	struct rb_root rb_root;
 134	spinlock_t lock;
 135};
 136
 137/*
 138 * present a tree block to process
 139 */
 140struct tree_block {
 141	struct rb_node rb_node;
 142	u64 bytenr;
 
 
 
 143	struct btrfs_key key;
 144	unsigned int level:8;
 145	unsigned int key_ready:1;
 146};
 147
 148#define MAX_EXTENTS 128
 149
 150struct file_extent_cluster {
 151	u64 start;
 152	u64 end;
 153	u64 boundary[MAX_EXTENTS];
 154	unsigned int nr;
 155};
 156
 157struct reloc_control {
 158	/* block group to relocate */
 159	struct btrfs_block_group_cache *block_group;
 160	/* extent tree */
 161	struct btrfs_root *extent_root;
 162	/* inode for moving data */
 163	struct inode *data_inode;
 164
 165	struct btrfs_block_rsv *block_rsv;
 166
 167	struct backref_cache backref_cache;
 168
 169	struct file_extent_cluster cluster;
 170	/* tree blocks have been processed */
 171	struct extent_io_tree processed_blocks;
 172	/* map start of tree root to corresponding reloc tree */
 173	struct mapping_tree reloc_root_tree;
 174	/* list of reloc trees */
 175	struct list_head reloc_roots;
 
 
 176	/* size of metadata reservation for merging reloc trees */
 177	u64 merging_rsv_size;
 178	/* size of relocated tree nodes */
 179	u64 nodes_relocated;
 180	/* reserved size for block group relocation*/
 181	u64 reserved_bytes;
 182
 183	u64 search_start;
 184	u64 extents_found;
 185
 186	unsigned int stage:8;
 187	unsigned int create_reloc_tree:1;
 188	unsigned int merge_reloc_tree:1;
 189	unsigned int found_file_extent:1;
 190};
 191
 192/* stages of data relocation */
 193#define MOVE_DATA_EXTENTS	0
 194#define UPDATE_DATA_PTRS	1
 195
 196static void remove_backref_node(struct backref_cache *cache,
 197				struct backref_node *node);
 198static void __mark_block_processed(struct reloc_control *rc,
 199				   struct backref_node *node);
 200
 201static void mapping_tree_init(struct mapping_tree *tree)
 202{
 203	tree->rb_root = RB_ROOT;
 204	spin_lock_init(&tree->lock);
 205}
 206
 207static void backref_cache_init(struct backref_cache *cache)
 208{
 209	int i;
 210	cache->rb_root = RB_ROOT;
 211	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 212		INIT_LIST_HEAD(&cache->pending[i]);
 213	INIT_LIST_HEAD(&cache->changed);
 214	INIT_LIST_HEAD(&cache->detached);
 215	INIT_LIST_HEAD(&cache->leaves);
 216}
 217
 218static void backref_cache_cleanup(struct backref_cache *cache)
 219{
 220	struct backref_node *node;
 221	int i;
 222
 223	while (!list_empty(&cache->detached)) {
 224		node = list_entry(cache->detached.next,
 225				  struct backref_node, list);
 226		remove_backref_node(cache, node);
 227	}
 228
 229	while (!list_empty(&cache->leaves)) {
 230		node = list_entry(cache->leaves.next,
 231				  struct backref_node, lower);
 232		remove_backref_node(cache, node);
 233	}
 234
 235	cache->last_trans = 0;
 236
 237	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 238		BUG_ON(!list_empty(&cache->pending[i]));
 239	BUG_ON(!list_empty(&cache->changed));
 240	BUG_ON(!list_empty(&cache->detached));
 241	BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
 242	BUG_ON(cache->nr_nodes);
 243	BUG_ON(cache->nr_edges);
 244}
 245
 246static struct backref_node *alloc_backref_node(struct backref_cache *cache)
 247{
 248	struct backref_node *node;
 249
 250	node = kzalloc(sizeof(*node), GFP_NOFS);
 251	if (node) {
 252		INIT_LIST_HEAD(&node->list);
 253		INIT_LIST_HEAD(&node->upper);
 254		INIT_LIST_HEAD(&node->lower);
 255		RB_CLEAR_NODE(&node->rb_node);
 256		cache->nr_nodes++;
 257	}
 258	return node;
 259}
 260
 261static void free_backref_node(struct backref_cache *cache,
 262			      struct backref_node *node)
 263{
 264	if (node) {
 265		cache->nr_nodes--;
 266		kfree(node);
 267	}
 268}
 269
 270static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
 271{
 272	struct backref_edge *edge;
 273
 274	edge = kzalloc(sizeof(*edge), GFP_NOFS);
 275	if (edge)
 276		cache->nr_edges++;
 277	return edge;
 278}
 279
 280static void free_backref_edge(struct backref_cache *cache,
 281			      struct backref_edge *edge)
 282{
 283	if (edge) {
 284		cache->nr_edges--;
 285		kfree(edge);
 286	}
 287}
 288
 289static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
 290				   struct rb_node *node)
 291{
 292	struct rb_node **p = &root->rb_node;
 293	struct rb_node *parent = NULL;
 294	struct tree_entry *entry;
 295
 296	while (*p) {
 297		parent = *p;
 298		entry = rb_entry(parent, struct tree_entry, rb_node);
 299
 300		if (bytenr < entry->bytenr)
 301			p = &(*p)->rb_left;
 302		else if (bytenr > entry->bytenr)
 303			p = &(*p)->rb_right;
 304		else
 305			return parent;
 306	}
 307
 308	rb_link_node(node, parent, p);
 309	rb_insert_color(node, root);
 310	return NULL;
 311}
 312
 313static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
 314{
 315	struct rb_node *n = root->rb_node;
 316	struct tree_entry *entry;
 317
 318	while (n) {
 319		entry = rb_entry(n, struct tree_entry, rb_node);
 320
 321		if (bytenr < entry->bytenr)
 322			n = n->rb_left;
 323		else if (bytenr > entry->bytenr)
 324			n = n->rb_right;
 325		else
 326			return n;
 327	}
 328	return NULL;
 329}
 330
 331static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
 332{
 333
 334	struct btrfs_fs_info *fs_info = NULL;
 335	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
 336					      rb_node);
 337	if (bnode->root)
 338		fs_info = bnode->root->fs_info;
 339	btrfs_panic(fs_info, errno, "Inconsistency in backref cache "
 340		    "found at offset %llu", bytenr);
 341}
 342
 343/*
 344 * walk up backref nodes until reach node presents tree root
 345 */
 346static struct backref_node *walk_up_backref(struct backref_node *node,
 347					    struct backref_edge *edges[],
 348					    int *index)
 349{
 350	struct backref_edge *edge;
 351	int idx = *index;
 352
 353	while (!list_empty(&node->upper)) {
 354		edge = list_entry(node->upper.next,
 355				  struct backref_edge, list[LOWER]);
 356		edges[idx++] = edge;
 357		node = edge->node[UPPER];
 358	}
 359	BUG_ON(node->detached);
 360	*index = idx;
 361	return node;
 362}
 363
 364/*
 365 * walk down backref nodes to find start of next reference path
 366 */
 367static struct backref_node *walk_down_backref(struct backref_edge *edges[],
 368					      int *index)
 369{
 370	struct backref_edge *edge;
 371	struct backref_node *lower;
 372	int idx = *index;
 373
 374	while (idx > 0) {
 375		edge = edges[idx - 1];
 376		lower = edge->node[LOWER];
 377		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
 378			idx--;
 379			continue;
 380		}
 381		edge = list_entry(edge->list[LOWER].next,
 382				  struct backref_edge, list[LOWER]);
 383		edges[idx - 1] = edge;
 384		*index = idx;
 385		return edge->node[UPPER];
 386	}
 387	*index = 0;
 388	return NULL;
 389}
 390
 391static void unlock_node_buffer(struct backref_node *node)
 392{
 393	if (node->locked) {
 394		btrfs_tree_unlock(node->eb);
 395		node->locked = 0;
 396	}
 397}
 398
 399static void drop_node_buffer(struct backref_node *node)
 400{
 401	if (node->eb) {
 402		unlock_node_buffer(node);
 403		free_extent_buffer(node->eb);
 404		node->eb = NULL;
 405	}
 406}
 407
 408static void drop_backref_node(struct backref_cache *tree,
 409			      struct backref_node *node)
 410{
 411	BUG_ON(!list_empty(&node->upper));
 412
 413	drop_node_buffer(node);
 414	list_del(&node->list);
 415	list_del(&node->lower);
 416	if (!RB_EMPTY_NODE(&node->rb_node))
 417		rb_erase(&node->rb_node, &tree->rb_root);
 418	free_backref_node(tree, node);
 419}
 420
 421/*
 422 * remove a backref node from the backref cache
 423 */
 424static void remove_backref_node(struct backref_cache *cache,
 425				struct backref_node *node)
 426{
 427	struct backref_node *upper;
 428	struct backref_edge *edge;
 429
 430	if (!node)
 431		return;
 432
 433	BUG_ON(!node->lowest && !node->detached);
 434	while (!list_empty(&node->upper)) {
 435		edge = list_entry(node->upper.next, struct backref_edge,
 436				  list[LOWER]);
 437		upper = edge->node[UPPER];
 438		list_del(&edge->list[LOWER]);
 439		list_del(&edge->list[UPPER]);
 440		free_backref_edge(cache, edge);
 441
 442		if (RB_EMPTY_NODE(&upper->rb_node)) {
 443			BUG_ON(!list_empty(&node->upper));
 444			drop_backref_node(cache, node);
 445			node = upper;
 446			node->lowest = 1;
 447			continue;
 448		}
 449		/*
 450		 * add the node to leaf node list if no other
 451		 * child block cached.
 452		 */
 453		if (list_empty(&upper->lower)) {
 454			list_add_tail(&upper->lower, &cache->leaves);
 455			upper->lowest = 1;
 456		}
 457	}
 458
 459	drop_backref_node(cache, node);
 460}
 461
 462static void update_backref_node(struct backref_cache *cache,
 463				struct backref_node *node, u64 bytenr)
 464{
 465	struct rb_node *rb_node;
 466	rb_erase(&node->rb_node, &cache->rb_root);
 467	node->bytenr = bytenr;
 468	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
 469	if (rb_node)
 470		backref_tree_panic(rb_node, -EEXIST, bytenr);
 471}
 472
 473/*
 474 * update backref cache after a transaction commit
 475 */
 476static int update_backref_cache(struct btrfs_trans_handle *trans,
 477				struct backref_cache *cache)
 478{
 479	struct backref_node *node;
 480	int level = 0;
 481
 482	if (cache->last_trans == 0) {
 483		cache->last_trans = trans->transid;
 484		return 0;
 485	}
 486
 487	if (cache->last_trans == trans->transid)
 488		return 0;
 489
 490	/*
 491	 * detached nodes are used to avoid unnecessary backref
 492	 * lookup. transaction commit changes the extent tree.
 493	 * so the detached nodes are no longer useful.
 494	 */
 495	while (!list_empty(&cache->detached)) {
 496		node = list_entry(cache->detached.next,
 497				  struct backref_node, list);
 498		remove_backref_node(cache, node);
 499	}
 500
 501	while (!list_empty(&cache->changed)) {
 502		node = list_entry(cache->changed.next,
 503				  struct backref_node, list);
 504		list_del_init(&node->list);
 505		BUG_ON(node->pending);
 506		update_backref_node(cache, node, node->new_bytenr);
 507	}
 508
 509	/*
 510	 * some nodes can be left in the pending list if there were
 511	 * errors during processing the pending nodes.
 512	 */
 513	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
 514		list_for_each_entry(node, &cache->pending[level], list) {
 515			BUG_ON(!node->pending);
 516			if (node->bytenr == node->new_bytenr)
 517				continue;
 518			update_backref_node(cache, node, node->new_bytenr);
 519		}
 520	}
 521
 522	cache->last_trans = 0;
 523	return 1;
 524}
 525
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 526
 527static int should_ignore_root(struct btrfs_root *root)
 528{
 529	struct btrfs_root *reloc_root;
 530
 531	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
 532		return 0;
 533
 
 
 
 
 534	reloc_root = root->reloc_root;
 535	if (!reloc_root)
 536		return 0;
 537
 538	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
 539	    root->fs_info->running_transaction->transid - 1)
 540		return 0;
 541	/*
 542	 * if there is reloc tree and it was created in previous
 543	 * transaction backref lookup can find the reloc tree,
 544	 * so backref node for the fs tree root is useless for
 545	 * relocation.
 546	 */
 547	return 1;
 548}
 
 549/*
 550 * find reloc tree by address of tree root
 551 */
 552static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
 553					  u64 bytenr)
 554{
 
 555	struct rb_node *rb_node;
 556	struct mapping_node *node;
 557	struct btrfs_root *root = NULL;
 558
 
 559	spin_lock(&rc->reloc_root_tree.lock);
 560	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
 561	if (rb_node) {
 562		node = rb_entry(rb_node, struct mapping_node, rb_node);
 563		root = (struct btrfs_root *)node->data;
 564	}
 565	spin_unlock(&rc->reloc_root_tree.lock);
 566	return root;
 567}
 568
 569static int is_cowonly_root(u64 root_objectid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 570{
 571	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
 572	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
 573	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
 574	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
 575	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
 576	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
 577	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
 578	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
 579	    root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
 580		return 1;
 581	return 0;
 582}
 583
 584static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
 585					u64 root_objectid)
 586{
 587	struct btrfs_key key;
 588
 589	key.objectid = root_objectid;
 590	key.type = BTRFS_ROOT_ITEM_KEY;
 591	if (is_cowonly_root(root_objectid))
 592		key.offset = 0;
 593	else
 594		key.offset = (u64)-1;
 595
 596	return btrfs_get_fs_root(fs_info, &key, false);
 597}
 598
 599#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 600static noinline_for_stack
 601struct btrfs_root *find_tree_root(struct reloc_control *rc,
 602				  struct extent_buffer *leaf,
 603				  struct btrfs_extent_ref_v0 *ref0)
 604{
 605	struct btrfs_root *root;
 606	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
 607	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
 608
 609	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
 
 
 
 
 610
 611	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
 612	BUG_ON(IS_ERR(root));
 
 
 613
 614	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 615	    generation != btrfs_root_generation(&root->root_item))
 616		return NULL;
 
 
 
 617
 618	return root;
 619}
 620#endif
 
 
 
 621
 622static noinline_for_stack
 623int find_inline_backref(struct extent_buffer *leaf, int slot,
 624			unsigned long *ptr, unsigned long *end)
 625{
 626	struct btrfs_key key;
 627	struct btrfs_extent_item *ei;
 628	struct btrfs_tree_block_info *bi;
 629	u32 item_size;
 630
 631	btrfs_item_key_to_cpu(leaf, &key, slot);
 632
 633	item_size = btrfs_item_size_nr(leaf, slot);
 634#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 635	if (item_size < sizeof(*ei)) {
 636		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
 637		return 1;
 638	}
 639#endif
 640	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 641	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
 642		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
 643
 644	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
 645	    item_size <= sizeof(*ei) + sizeof(*bi)) {
 646		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
 647		return 1;
 648	}
 649	if (key.type == BTRFS_METADATA_ITEM_KEY &&
 650	    item_size <= sizeof(*ei)) {
 651		WARN_ON(item_size < sizeof(*ei));
 652		return 1;
 653	}
 654
 655	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
 656		bi = (struct btrfs_tree_block_info *)(ei + 1);
 657		*ptr = (unsigned long)(bi + 1);
 658	} else {
 659		*ptr = (unsigned long)(ei + 1);
 660	}
 661	*end = (unsigned long)ei + item_size;
 662	return 0;
 663}
 664
 665/*
 666 * build backref tree for a given tree block. root of the backref tree
 667 * corresponds the tree block, leaves of the backref tree correspond
 668 * roots of b-trees that reference the tree block.
 669 *
 670 * the basic idea of this function is check backrefs of a given block
 671 * to find upper level blocks that refernece the block, and then check
 672 * bakcrefs of these upper level blocks recursively. the recursion stop
 673 * when tree root is reached or backrefs for the block is cached.
 674 *
 675 * NOTE: if we find backrefs for a block are cached, we know backrefs
 676 * for all upper level blocks that directly/indirectly reference the
 677 * block are also cached.
 678 */
 679static noinline_for_stack
 680struct backref_node *build_backref_tree(struct reloc_control *rc,
 681					struct btrfs_key *node_key,
 682					int level, u64 bytenr)
 683{
 684	struct backref_cache *cache = &rc->backref_cache;
 685	struct btrfs_path *path1;
 686	struct btrfs_path *path2;
 687	struct extent_buffer *eb;
 688	struct btrfs_root *root;
 689	struct backref_node *cur;
 690	struct backref_node *upper;
 691	struct backref_node *lower;
 692	struct backref_node *node = NULL;
 693	struct backref_node *exist = NULL;
 694	struct backref_edge *edge;
 695	struct rb_node *rb_node;
 696	struct btrfs_key key;
 697	unsigned long end;
 698	unsigned long ptr;
 699	LIST_HEAD(list);
 700	LIST_HEAD(useless);
 701	int cowonly;
 702	int ret;
 703	int err = 0;
 704	bool need_check = true;
 705
 706	path1 = btrfs_alloc_path();
 707	path2 = btrfs_alloc_path();
 708	if (!path1 || !path2) {
 
 
 709		err = -ENOMEM;
 710		goto out;
 711	}
 712	path1->reada = READA_FORWARD;
 713	path2->reada = READA_FORWARD;
 714
 715	node = alloc_backref_node(cache);
 716	if (!node) {
 717		err = -ENOMEM;
 718		goto out;
 719	}
 720
 721	node->bytenr = bytenr;
 722	node->level = level;
 723	node->lowest = 1;
 724	cur = node;
 725again:
 726	end = 0;
 727	ptr = 0;
 728	key.objectid = cur->bytenr;
 729	key.type = BTRFS_METADATA_ITEM_KEY;
 730	key.offset = (u64)-1;
 731
 732	path1->search_commit_root = 1;
 733	path1->skip_locking = 1;
 734	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
 735				0, 0);
 736	if (ret < 0) {
 737		err = ret;
 738		goto out;
 739	}
 740	ASSERT(ret);
 741	ASSERT(path1->slots[0]);
 742
 743	path1->slots[0]--;
 744
 745	WARN_ON(cur->checked);
 746	if (!list_empty(&cur->upper)) {
 747		/*
 748		 * the backref was added previously when processing
 749		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
 750		 */
 751		ASSERT(list_is_singular(&cur->upper));
 752		edge = list_entry(cur->upper.next, struct backref_edge,
 753				  list[LOWER]);
 754		ASSERT(list_empty(&edge->list[UPPER]));
 755		exist = edge->node[UPPER];
 756		/*
 757		 * add the upper level block to pending list if we need
 758		 * check its backrefs
 759		 */
 760		if (!exist->checked)
 761			list_add_tail(&edge->list[UPPER], &list);
 762	} else {
 763		exist = NULL;
 764	}
 765
 766	while (1) {
 767		cond_resched();
 768		eb = path1->nodes[0];
 769
 770		if (ptr >= end) {
 771			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
 772				ret = btrfs_next_leaf(rc->extent_root, path1);
 773				if (ret < 0) {
 774					err = ret;
 775					goto out;
 776				}
 777				if (ret > 0)
 778					break;
 779				eb = path1->nodes[0];
 780			}
 781
 782			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
 783			if (key.objectid != cur->bytenr) {
 784				WARN_ON(exist);
 785				break;
 786			}
 787
 788			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
 789			    key.type == BTRFS_METADATA_ITEM_KEY) {
 790				ret = find_inline_backref(eb, path1->slots[0],
 791							  &ptr, &end);
 792				if (ret)
 793					goto next;
 794			}
 795		}
 796
 797		if (ptr < end) {
 798			/* update key for inline back ref */
 799			struct btrfs_extent_inline_ref *iref;
 800			iref = (struct btrfs_extent_inline_ref *)ptr;
 801			key.type = btrfs_extent_inline_ref_type(eb, iref);
 802			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
 803			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
 804				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
 805		}
 806
 807		if (exist &&
 808		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
 809		      exist->owner == key.offset) ||
 810		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
 811		      exist->bytenr == key.offset))) {
 812			exist = NULL;
 813			goto next;
 814		}
 815
 816#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 817		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
 818		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
 819			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
 820				struct btrfs_extent_ref_v0 *ref0;
 821				ref0 = btrfs_item_ptr(eb, path1->slots[0],
 822						struct btrfs_extent_ref_v0);
 823				if (key.objectid == key.offset) {
 824					root = find_tree_root(rc, eb, ref0);
 825					if (root && !should_ignore_root(root))
 826						cur->root = root;
 827					else
 828						list_add(&cur->list, &useless);
 829					break;
 830				}
 831				if (is_cowonly_root(btrfs_ref_root_v0(eb,
 832								      ref0)))
 833					cur->cowonly = 1;
 834			}
 835#else
 836		ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY);
 837		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
 838#endif
 839			if (key.objectid == key.offset) {
 840				/*
 841				 * only root blocks of reloc trees use
 842				 * backref of this type.
 843				 */
 844				root = find_reloc_root(rc, cur->bytenr);
 845				ASSERT(root);
 846				cur->root = root;
 847				break;
 848			}
 849
 850			edge = alloc_backref_edge(cache);
 851			if (!edge) {
 852				err = -ENOMEM;
 853				goto out;
 854			}
 855			rb_node = tree_search(&cache->rb_root, key.offset);
 856			if (!rb_node) {
 857				upper = alloc_backref_node(cache);
 858				if (!upper) {
 859					free_backref_edge(cache, edge);
 860					err = -ENOMEM;
 861					goto out;
 862				}
 863				upper->bytenr = key.offset;
 864				upper->level = cur->level + 1;
 865				/*
 866				 *  backrefs for the upper level block isn't
 867				 *  cached, add the block to pending list
 868				 */
 869				list_add_tail(&edge->list[UPPER], &list);
 870			} else {
 871				upper = rb_entry(rb_node, struct backref_node,
 872						 rb_node);
 873				ASSERT(upper->checked);
 874				INIT_LIST_HEAD(&edge->list[UPPER]);
 875			}
 876			list_add_tail(&edge->list[LOWER], &cur->upper);
 877			edge->node[LOWER] = cur;
 878			edge->node[UPPER] = upper;
 879
 880			goto next;
 881		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
 882			goto next;
 883		}
 884
 885		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
 886		root = read_fs_root(rc->extent_root->fs_info, key.offset);
 887		if (IS_ERR(root)) {
 888			err = PTR_ERR(root);
 889			goto out;
 890		}
 891
 892		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
 893			cur->cowonly = 1;
 894
 895		if (btrfs_root_level(&root->root_item) == cur->level) {
 896			/* tree root */
 897			ASSERT(btrfs_root_bytenr(&root->root_item) ==
 898			       cur->bytenr);
 899			if (should_ignore_root(root))
 900				list_add(&cur->list, &useless);
 901			else
 902				cur->root = root;
 903			break;
 904		}
 905
 906		level = cur->level + 1;
 907
 908		/*
 909		 * searching the tree to find upper level blocks
 910		 * reference the block.
 911		 */
 912		path2->search_commit_root = 1;
 913		path2->skip_locking = 1;
 914		path2->lowest_level = level;
 915		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
 916		path2->lowest_level = 0;
 917		if (ret < 0) {
 918			err = ret;
 919			goto out;
 920		}
 921		if (ret > 0 && path2->slots[level] > 0)
 922			path2->slots[level]--;
 923
 924		eb = path2->nodes[level];
 925		WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
 926			cur->bytenr);
 927
 928		lower = cur;
 929		need_check = true;
 930		for (; level < BTRFS_MAX_LEVEL; level++) {
 931			if (!path2->nodes[level]) {
 932				ASSERT(btrfs_root_bytenr(&root->root_item) ==
 933				       lower->bytenr);
 934				if (should_ignore_root(root))
 935					list_add(&lower->list, &useless);
 936				else
 937					lower->root = root;
 938				break;
 939			}
 940
 941			edge = alloc_backref_edge(cache);
 942			if (!edge) {
 943				err = -ENOMEM;
 944				goto out;
 945			}
 946
 947			eb = path2->nodes[level];
 948			rb_node = tree_search(&cache->rb_root, eb->start);
 949			if (!rb_node) {
 950				upper = alloc_backref_node(cache);
 951				if (!upper) {
 952					free_backref_edge(cache, edge);
 953					err = -ENOMEM;
 954					goto out;
 955				}
 956				upper->bytenr = eb->start;
 957				upper->owner = btrfs_header_owner(eb);
 958				upper->level = lower->level + 1;
 959				if (!test_bit(BTRFS_ROOT_REF_COWS,
 960					      &root->state))
 961					upper->cowonly = 1;
 962
 963				/*
 964				 * if we know the block isn't shared
 965				 * we can void checking its backrefs.
 966				 */
 967				if (btrfs_block_can_be_shared(root, eb))
 968					upper->checked = 0;
 969				else
 970					upper->checked = 1;
 971
 972				/*
 973				 * add the block to pending list if we
 974				 * need check its backrefs, we only do this once
 975				 * while walking up a tree as we will catch
 976				 * anything else later on.
 977				 */
 978				if (!upper->checked && need_check) {
 979					need_check = false;
 980					list_add_tail(&edge->list[UPPER],
 981						      &list);
 982				} else {
 983					if (upper->checked)
 984						need_check = true;
 985					INIT_LIST_HEAD(&edge->list[UPPER]);
 986				}
 987			} else {
 988				upper = rb_entry(rb_node, struct backref_node,
 989						 rb_node);
 990				ASSERT(upper->checked);
 991				INIT_LIST_HEAD(&edge->list[UPPER]);
 992				if (!upper->owner)
 993					upper->owner = btrfs_header_owner(eb);
 994			}
 995			list_add_tail(&edge->list[LOWER], &lower->upper);
 996			edge->node[LOWER] = lower;
 997			edge->node[UPPER] = upper;
 998
 999			if (rb_node)
1000				break;
1001			lower = upper;
1002			upper = NULL;
1003		}
1004		btrfs_release_path(path2);
1005next:
1006		if (ptr < end) {
1007			ptr += btrfs_extent_inline_ref_size(key.type);
1008			if (ptr >= end) {
1009				WARN_ON(ptr > end);
1010				ptr = 0;
1011				end = 0;
1012			}
1013		}
1014		if (ptr >= end)
1015			path1->slots[0]++;
1016	}
1017	btrfs_release_path(path1);
1018
1019	cur->checked = 1;
1020	WARN_ON(exist);
1021
1022	/* the pending list isn't empty, take the first block to process */
1023	if (!list_empty(&list)) {
1024		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1025		list_del_init(&edge->list[UPPER]);
1026		cur = edge->node[UPPER];
1027		goto again;
1028	}
1029
1030	/*
1031	 * everything goes well, connect backref nodes and insert backref nodes
1032	 * into the cache.
1033	 */
1034	ASSERT(node->checked);
1035	cowonly = node->cowonly;
1036	if (!cowonly) {
1037		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1038				      &node->rb_node);
1039		if (rb_node)
1040			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1041		list_add_tail(&node->lower, &cache->leaves);
1042	}
1043
1044	list_for_each_entry(edge, &node->upper, list[LOWER])
1045		list_add_tail(&edge->list[UPPER], &list);
1046
1047	while (!list_empty(&list)) {
1048		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1049		list_del_init(&edge->list[UPPER]);
1050		upper = edge->node[UPPER];
1051		if (upper->detached) {
1052			list_del(&edge->list[LOWER]);
1053			lower = edge->node[LOWER];
1054			free_backref_edge(cache, edge);
1055			if (list_empty(&lower->upper))
1056				list_add(&lower->list, &useless);
1057			continue;
1058		}
1059
1060		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1061			if (upper->lowest) {
1062				list_del_init(&upper->lower);
1063				upper->lowest = 0;
1064			}
1065
1066			list_add_tail(&edge->list[UPPER], &upper->lower);
1067			continue;
1068		}
1069
1070		if (!upper->checked) {
1071			/*
1072			 * Still want to blow up for developers since this is a
1073			 * logic bug.
1074			 */
1075			ASSERT(0);
1076			err = -EINVAL;
1077			goto out;
1078		}
1079		if (cowonly != upper->cowonly) {
1080			ASSERT(0);
1081			err = -EINVAL;
1082			goto out;
1083		}
1084
1085		if (!cowonly) {
1086			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1087					      &upper->rb_node);
1088			if (rb_node)
1089				backref_tree_panic(rb_node, -EEXIST,
1090						   upper->bytenr);
1091		}
1092
1093		list_add_tail(&edge->list[UPPER], &upper->lower);
1094
1095		list_for_each_entry(edge, &upper->upper, list[LOWER])
1096			list_add_tail(&edge->list[UPPER], &list);
1097	}
1098	/*
1099	 * process useless backref nodes. backref nodes for tree leaves
1100	 * are deleted from the cache. backref nodes for upper level
1101	 * tree blocks are left in the cache to avoid unnecessary backref
1102	 * lookup.
1103	 */
1104	while (!list_empty(&useless)) {
1105		upper = list_entry(useless.next, struct backref_node, list);
1106		list_del_init(&upper->list);
1107		ASSERT(list_empty(&upper->upper));
1108		if (upper == node)
1109			node = NULL;
1110		if (upper->lowest) {
1111			list_del_init(&upper->lower);
1112			upper->lowest = 0;
1113		}
1114		while (!list_empty(&upper->lower)) {
1115			edge = list_entry(upper->lower.next,
1116					  struct backref_edge, list[UPPER]);
1117			list_del(&edge->list[UPPER]);
1118			list_del(&edge->list[LOWER]);
1119			lower = edge->node[LOWER];
1120			free_backref_edge(cache, edge);
1121
1122			if (list_empty(&lower->upper))
1123				list_add(&lower->list, &useless);
1124		}
1125		__mark_block_processed(rc, upper);
1126		if (upper->level > 0) {
1127			list_add(&upper->list, &cache->detached);
1128			upper->detached = 1;
1129		} else {
1130			rb_erase(&upper->rb_node, &cache->rb_root);
1131			free_backref_node(cache, upper);
1132		}
1133	}
1134out:
1135	btrfs_free_path(path1);
1136	btrfs_free_path(path2);
1137	if (err) {
1138		while (!list_empty(&useless)) {
1139			lower = list_entry(useless.next,
1140					   struct backref_node, list);
1141			list_del_init(&lower->list);
1142		}
1143		while (!list_empty(&list)) {
1144			edge = list_first_entry(&list, struct backref_edge,
1145						list[UPPER]);
1146			list_del(&edge->list[UPPER]);
1147			list_del(&edge->list[LOWER]);
1148			lower = edge->node[LOWER];
1149			upper = edge->node[UPPER];
1150			free_backref_edge(cache, edge);
1151
1152			/*
1153			 * Lower is no longer linked to any upper backref nodes
1154			 * and isn't in the cache, we can free it ourselves.
1155			 */
1156			if (list_empty(&lower->upper) &&
1157			    RB_EMPTY_NODE(&lower->rb_node))
1158				list_add(&lower->list, &useless);
1159
1160			if (!RB_EMPTY_NODE(&upper->rb_node))
1161				continue;
1162
1163			/* Add this guy's upper edges to the list to proces */
1164			list_for_each_entry(edge, &upper->upper, list[LOWER])
1165				list_add_tail(&edge->list[UPPER], &list);
1166			if (list_empty(&upper->upper))
1167				list_add(&upper->list, &useless);
1168		}
1169
1170		while (!list_empty(&useless)) {
1171			lower = list_entry(useless.next,
1172					   struct backref_node, list);
1173			list_del_init(&lower->list);
1174			free_backref_node(cache, lower);
1175		}
1176		return ERR_PTR(err);
1177	}
1178	ASSERT(!node || !node->detached);
 
 
1179	return node;
1180}
1181
1182/*
1183 * helper to add backref node for the newly created snapshot.
1184 * the backref node is created by cloning backref node that
1185 * corresponds to root of source tree
1186 */
1187static int clone_backref_node(struct btrfs_trans_handle *trans,
1188			      struct reloc_control *rc,
1189			      struct btrfs_root *src,
1190			      struct btrfs_root *dest)
1191{
1192	struct btrfs_root *reloc_root = src->reloc_root;
1193	struct backref_cache *cache = &rc->backref_cache;
1194	struct backref_node *node = NULL;
1195	struct backref_node *new_node;
1196	struct backref_edge *edge;
1197	struct backref_edge *new_edge;
1198	struct rb_node *rb_node;
1199
1200	if (cache->last_trans > 0)
1201		update_backref_cache(trans, cache);
1202
1203	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1204	if (rb_node) {
1205		node = rb_entry(rb_node, struct backref_node, rb_node);
1206		if (node->detached)
1207			node = NULL;
1208		else
1209			BUG_ON(node->new_bytenr != reloc_root->node->start);
1210	}
1211
1212	if (!node) {
1213		rb_node = tree_search(&cache->rb_root,
1214				      reloc_root->commit_root->start);
1215		if (rb_node) {
1216			node = rb_entry(rb_node, struct backref_node,
1217					rb_node);
1218			BUG_ON(node->detached);
1219		}
1220	}
1221
1222	if (!node)
1223		return 0;
1224
1225	new_node = alloc_backref_node(cache);
 
1226	if (!new_node)
1227		return -ENOMEM;
1228
1229	new_node->bytenr = dest->node->start;
1230	new_node->level = node->level;
1231	new_node->lowest = node->lowest;
1232	new_node->checked = 1;
1233	new_node->root = dest;
 
1234
1235	if (!node->lowest) {
1236		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1237			new_edge = alloc_backref_edge(cache);
1238			if (!new_edge)
1239				goto fail;
1240
1241			new_edge->node[UPPER] = new_node;
1242			new_edge->node[LOWER] = edge->node[LOWER];
1243			list_add_tail(&new_edge->list[UPPER],
1244				      &new_node->lower);
1245		}
1246	} else {
1247		list_add_tail(&new_node->lower, &cache->leaves);
1248	}
1249
1250	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1251			      &new_node->rb_node);
1252	if (rb_node)
1253		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1254
1255	if (!new_node->lowest) {
1256		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1257			list_add_tail(&new_edge->list[LOWER],
1258				      &new_edge->node[LOWER]->upper);
1259		}
1260	}
1261	return 0;
1262fail:
1263	while (!list_empty(&new_node->lower)) {
1264		new_edge = list_entry(new_node->lower.next,
1265				      struct backref_edge, list[UPPER]);
1266		list_del(&new_edge->list[UPPER]);
1267		free_backref_edge(cache, new_edge);
1268	}
1269	free_backref_node(cache, new_node);
1270	return -ENOMEM;
1271}
1272
1273/*
1274 * helper to add 'address of tree root -> reloc tree' mapping
1275 */
1276static int __must_check __add_reloc_root(struct btrfs_root *root)
1277{
 
1278	struct rb_node *rb_node;
1279	struct mapping_node *node;
1280	struct reloc_control *rc = root->fs_info->reloc_ctl;
1281
1282	node = kmalloc(sizeof(*node), GFP_NOFS);
1283	if (!node)
1284		return -ENOMEM;
1285
1286	node->bytenr = root->node->start;
1287	node->data = root;
1288
1289	spin_lock(&rc->reloc_root_tree.lock);
1290	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1291			      node->bytenr, &node->rb_node);
1292	spin_unlock(&rc->reloc_root_tree.lock);
1293	if (rb_node) {
1294		btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found "
1295			    "for start=%llu while inserting into relocation "
1296			    "tree", node->bytenr);
1297		kfree(node);
1298		return -EEXIST;
1299	}
1300
1301	list_add_tail(&root->root_list, &rc->reloc_roots);
1302	return 0;
1303}
1304
1305/*
1306 * helper to delete the 'address of tree root -> reloc tree'
1307 * mapping
1308 */
1309static void __del_reloc_root(struct btrfs_root *root)
1310{
 
1311	struct rb_node *rb_node;
1312	struct mapping_node *node = NULL;
1313	struct reloc_control *rc = root->fs_info->reloc_ctl;
 
1314
1315	spin_lock(&rc->reloc_root_tree.lock);
1316	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1317			      root->node->start);
1318	if (rb_node) {
1319		node = rb_entry(rb_node, struct mapping_node, rb_node);
1320		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
 
 
 
 
 
1321	}
1322	spin_unlock(&rc->reloc_root_tree.lock);
1323
1324	if (!node)
1325		return;
1326	BUG_ON((struct btrfs_root *)node->data != root);
1327
1328	spin_lock(&root->fs_info->trans_lock);
1329	list_del_init(&root->root_list);
1330	spin_unlock(&root->fs_info->trans_lock);
 
 
 
 
 
 
 
 
 
1331	kfree(node);
1332}
1333
1334/*
1335 * helper to update the 'address of tree root -> reloc tree'
1336 * mapping
1337 */
1338static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1339{
 
1340	struct rb_node *rb_node;
1341	struct mapping_node *node = NULL;
1342	struct reloc_control *rc = root->fs_info->reloc_ctl;
1343
1344	spin_lock(&rc->reloc_root_tree.lock);
1345	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1346			      root->node->start);
1347	if (rb_node) {
1348		node = rb_entry(rb_node, struct mapping_node, rb_node);
1349		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1350	}
1351	spin_unlock(&rc->reloc_root_tree.lock);
1352
1353	if (!node)
1354		return 0;
1355	BUG_ON((struct btrfs_root *)node->data != root);
1356
1357	spin_lock(&rc->reloc_root_tree.lock);
1358	node->bytenr = new_bytenr;
1359	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1360			      node->bytenr, &node->rb_node);
1361	spin_unlock(&rc->reloc_root_tree.lock);
1362	if (rb_node)
1363		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1364	return 0;
1365}
1366
1367static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1368					struct btrfs_root *root, u64 objectid)
1369{
 
1370	struct btrfs_root *reloc_root;
1371	struct extent_buffer *eb;
1372	struct btrfs_root_item *root_item;
1373	struct btrfs_key root_key;
1374	u64 last_snap = 0;
1375	int ret;
1376
1377	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1378	BUG_ON(!root_item);
 
1379
1380	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1381	root_key.type = BTRFS_ROOT_ITEM_KEY;
1382	root_key.offset = objectid;
1383
1384	if (root->root_key.objectid == objectid) {
 
 
1385		/* called by btrfs_init_reloc_root */
1386		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1387				      BTRFS_TREE_RELOC_OBJECTID);
1388		BUG_ON(ret);
 
1389
1390		last_snap = btrfs_root_last_snapshot(&root->root_item);
1391		btrfs_set_root_last_snapshot(&root->root_item,
1392					     trans->transid - 1);
 
 
 
 
 
 
 
1393	} else {
1394		/*
1395		 * called by btrfs_reloc_post_snapshot_hook.
1396		 * the source tree is a reloc tree, all tree blocks
1397		 * modified after it was created have RELOC flag
1398		 * set in their headers. so it's OK to not update
1399		 * the 'last_snapshot'.
1400		 */
1401		ret = btrfs_copy_root(trans, root, root->node, &eb,
1402				      BTRFS_TREE_RELOC_OBJECTID);
1403		BUG_ON(ret);
 
1404	}
1405
 
 
 
 
 
 
1406	memcpy(root_item, &root->root_item, sizeof(*root_item));
1407	btrfs_set_root_bytenr(root_item, eb->start);
1408	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1409	btrfs_set_root_generation(root_item, trans->transid);
1410
1411	if (root->root_key.objectid == objectid) {
1412		btrfs_set_root_refs(root_item, 0);
1413		memset(&root_item->drop_progress, 0,
1414		       sizeof(struct btrfs_disk_key));
1415		root_item->drop_level = 0;
1416		/*
1417		 * abuse rtransid, it is safe because it is impossible to
1418		 * receive data into a relocation tree.
1419		 */
1420		btrfs_set_root_rtransid(root_item, last_snap);
1421		btrfs_set_root_otransid(root_item, trans->transid);
1422	}
1423
1424	btrfs_tree_unlock(eb);
1425	free_extent_buffer(eb);
1426
1427	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1428				&root_key, root_item);
1429	BUG_ON(ret);
 
 
1430	kfree(root_item);
1431
1432	reloc_root = btrfs_read_fs_root(root->fs_info->tree_root, &root_key);
1433	BUG_ON(IS_ERR(reloc_root));
 
 
 
 
1434	reloc_root->last_trans = trans->transid;
1435	return reloc_root;
 
 
 
 
 
 
1436}
1437
1438/*
1439 * create reloc tree for a given fs tree. reloc tree is just a
1440 * snapshot of the fs tree with special root objectid.
 
 
 
1441 */
1442int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1443			  struct btrfs_root *root)
1444{
 
1445	struct btrfs_root *reloc_root;
1446	struct reloc_control *rc = root->fs_info->reloc_ctl;
1447	struct btrfs_block_rsv *rsv;
1448	int clear_rsv = 0;
1449	int ret;
1450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1451	if (root->reloc_root) {
1452		reloc_root = root->reloc_root;
1453		reloc_root->last_trans = trans->transid;
1454		return 0;
1455	}
1456
1457	if (!rc || !rc->create_reloc_tree ||
 
 
 
 
1458	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1459		return 0;
1460
1461	if (!trans->reloc_reserved) {
1462		rsv = trans->block_rsv;
1463		trans->block_rsv = rc->block_rsv;
1464		clear_rsv = 1;
1465	}
1466	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1467	if (clear_rsv)
1468		trans->block_rsv = rsv;
 
 
1469
1470	ret = __add_reloc_root(reloc_root);
1471	BUG_ON(ret < 0);
1472	root->reloc_root = reloc_root;
 
 
 
 
 
1473	return 0;
1474}
1475
1476/*
1477 * update root item of reloc tree
1478 */
1479int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1480			    struct btrfs_root *root)
1481{
 
1482	struct btrfs_root *reloc_root;
1483	struct btrfs_root_item *root_item;
1484	int ret;
1485
1486	if (!root->reloc_root)
1487		goto out;
1488
1489	reloc_root = root->reloc_root;
1490	root_item = &reloc_root->root_item;
1491
1492	if (root->fs_info->reloc_ctl->merge_reloc_tree &&
 
 
 
 
 
 
 
 
1493	    btrfs_root_refs(root_item) == 0) {
1494		root->reloc_root = NULL;
 
 
 
 
 
1495		__del_reloc_root(reloc_root);
1496	}
1497
1498	if (reloc_root->commit_root != reloc_root->node) {
 
1499		btrfs_set_root_node(root_item, reloc_root->node);
1500		free_extent_buffer(reloc_root->commit_root);
1501		reloc_root->commit_root = btrfs_root_node(reloc_root);
1502	}
1503
1504	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1505				&reloc_root->root_key, root_item);
1506	BUG_ON(ret);
1507
1508out:
1509	return 0;
1510}
1511
1512/*
1513 * helper to find first cached inode with inode number >= objectid
1514 * in a subvolume
1515 */
1516static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1517{
1518	struct rb_node *node;
1519	struct rb_node *prev;
1520	struct btrfs_inode *entry;
1521	struct inode *inode;
1522
1523	spin_lock(&root->inode_lock);
1524again:
1525	node = root->inode_tree.rb_node;
1526	prev = NULL;
1527	while (node) {
1528		prev = node;
1529		entry = rb_entry(node, struct btrfs_inode, rb_node);
1530
1531		if (objectid < btrfs_ino(&entry->vfs_inode))
1532			node = node->rb_left;
1533		else if (objectid > btrfs_ino(&entry->vfs_inode))
1534			node = node->rb_right;
1535		else
1536			break;
1537	}
1538	if (!node) {
1539		while (prev) {
1540			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1541			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1542				node = prev;
1543				break;
1544			}
1545			prev = rb_next(prev);
1546		}
1547	}
1548	while (node) {
1549		entry = rb_entry(node, struct btrfs_inode, rb_node);
1550		inode = igrab(&entry->vfs_inode);
1551		if (inode) {
1552			spin_unlock(&root->inode_lock);
1553			return inode;
1554		}
1555
1556		objectid = btrfs_ino(&entry->vfs_inode) + 1;
1557		if (cond_resched_lock(&root->inode_lock))
1558			goto again;
1559
1560		node = rb_next(node);
1561	}
1562	spin_unlock(&root->inode_lock);
1563	return NULL;
1564}
1565
1566static int in_block_group(u64 bytenr,
1567			  struct btrfs_block_group_cache *block_group)
1568{
1569	if (bytenr >= block_group->key.objectid &&
1570	    bytenr < block_group->key.objectid + block_group->key.offset)
1571		return 1;
1572	return 0;
1573}
1574
1575/*
1576 * get new location of data
1577 */
1578static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1579			    u64 bytenr, u64 num_bytes)
1580{
1581	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1582	struct btrfs_path *path;
1583	struct btrfs_file_extent_item *fi;
1584	struct extent_buffer *leaf;
1585	int ret;
1586
1587	path = btrfs_alloc_path();
1588	if (!path)
1589		return -ENOMEM;
1590
1591	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1592	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1593				       bytenr, 0);
1594	if (ret < 0)
1595		goto out;
1596	if (ret > 0) {
1597		ret = -ENOENT;
1598		goto out;
1599	}
1600
1601	leaf = path->nodes[0];
1602	fi = btrfs_item_ptr(leaf, path->slots[0],
1603			    struct btrfs_file_extent_item);
1604
1605	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1606	       btrfs_file_extent_compression(leaf, fi) ||
1607	       btrfs_file_extent_encryption(leaf, fi) ||
1608	       btrfs_file_extent_other_encoding(leaf, fi));
1609
1610	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1611		ret = -EINVAL;
1612		goto out;
1613	}
1614
1615	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1616	ret = 0;
1617out:
1618	btrfs_free_path(path);
1619	return ret;
1620}
1621
1622/*
1623 * update file extent items in the tree leaf to point to
1624 * the new locations.
1625 */
1626static noinline_for_stack
1627int replace_file_extents(struct btrfs_trans_handle *trans,
1628			 struct reloc_control *rc,
1629			 struct btrfs_root *root,
1630			 struct extent_buffer *leaf)
1631{
 
1632	struct btrfs_key key;
1633	struct btrfs_file_extent_item *fi;
1634	struct inode *inode = NULL;
1635	u64 parent;
1636	u64 bytenr;
1637	u64 new_bytenr = 0;
1638	u64 num_bytes;
1639	u64 end;
1640	u32 nritems;
1641	u32 i;
1642	int ret = 0;
1643	int first = 1;
1644	int dirty = 0;
1645
1646	if (rc->stage != UPDATE_DATA_PTRS)
1647		return 0;
1648
1649	/* reloc trees always use full backref */
1650	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1651		parent = leaf->start;
1652	else
1653		parent = 0;
1654
1655	nritems = btrfs_header_nritems(leaf);
1656	for (i = 0; i < nritems; i++) {
 
 
1657		cond_resched();
1658		btrfs_item_key_to_cpu(leaf, &key, i);
1659		if (key.type != BTRFS_EXTENT_DATA_KEY)
1660			continue;
1661		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1662		if (btrfs_file_extent_type(leaf, fi) ==
1663		    BTRFS_FILE_EXTENT_INLINE)
1664			continue;
1665		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1666		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1667		if (bytenr == 0)
1668			continue;
1669		if (!in_block_group(bytenr, rc->block_group))
 
1670			continue;
1671
1672		/*
1673		 * if we are modifying block in fs tree, wait for readpage
1674		 * to complete and drop the extent cache
1675		 */
1676		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1677			if (first) {
1678				inode = find_next_inode(root, key.objectid);
1679				first = 0;
1680			} else if (inode && btrfs_ino(inode) < key.objectid) {
1681				btrfs_add_delayed_iput(inode);
1682				inode = find_next_inode(root, key.objectid);
1683			}
1684			if (inode && btrfs_ino(inode) == key.objectid) {
 
 
1685				end = key.offset +
1686				      btrfs_file_extent_num_bytes(leaf, fi);
1687				WARN_ON(!IS_ALIGNED(key.offset,
1688						    root->sectorsize));
1689				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1690				end--;
1691				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1692						      key.offset, end);
 
1693				if (!ret)
1694					continue;
1695
1696				btrfs_drop_extent_cache(inode, key.offset, end,
1697							1);
1698				unlock_extent(&BTRFS_I(inode)->io_tree,
1699					      key.offset, end);
1700			}
1701		}
1702
1703		ret = get_new_location(rc->data_inode, &new_bytenr,
1704				       bytenr, num_bytes);
1705		if (ret) {
1706			/*
1707			 * Don't have to abort since we've not changed anything
1708			 * in the file extent yet.
1709			 */
1710			break;
1711		}
1712
1713		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1714		dirty = 1;
1715
1716		key.offset -= btrfs_file_extent_offset(leaf, fi);
1717		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1718					   num_bytes, parent,
1719					   btrfs_header_owner(leaf),
1720					   key.objectid, key.offset);
 
 
1721		if (ret) {
1722			btrfs_abort_transaction(trans, root, ret);
1723			break;
1724		}
1725
1726		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1727					parent, btrfs_header_owner(leaf),
1728					key.objectid, key.offset);
 
 
 
1729		if (ret) {
1730			btrfs_abort_transaction(trans, root, ret);
1731			break;
1732		}
1733	}
1734	if (dirty)
1735		btrfs_mark_buffer_dirty(leaf);
1736	if (inode)
1737		btrfs_add_delayed_iput(inode);
1738	return ret;
1739}
1740
1741static noinline_for_stack
1742int memcmp_node_keys(struct extent_buffer *eb, int slot,
1743		     struct btrfs_path *path, int level)
1744{
1745	struct btrfs_disk_key key1;
1746	struct btrfs_disk_key key2;
1747	btrfs_node_key(eb, &key1, slot);
1748	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1749	return memcmp(&key1, &key2, sizeof(key1));
1750}
1751
1752/*
1753 * try to replace tree blocks in fs tree with the new blocks
1754 * in reloc tree. tree blocks haven't been modified since the
1755 * reloc tree was create can be replaced.
1756 *
1757 * if a block was replaced, level of the block + 1 is returned.
1758 * if no block got replaced, 0 is returned. if there are other
1759 * errors, a negative error number is returned.
1760 */
1761static noinline_for_stack
1762int replace_path(struct btrfs_trans_handle *trans,
1763		 struct btrfs_root *dest, struct btrfs_root *src,
1764		 struct btrfs_path *path, struct btrfs_key *next_key,
1765		 int lowest_level, int max_level)
1766{
 
1767	struct extent_buffer *eb;
1768	struct extent_buffer *parent;
 
1769	struct btrfs_key key;
1770	u64 old_bytenr;
1771	u64 new_bytenr;
1772	u64 old_ptr_gen;
1773	u64 new_ptr_gen;
1774	u64 last_snapshot;
1775	u32 blocksize;
1776	int cow = 0;
1777	int level;
1778	int ret;
1779	int slot;
1780
1781	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1782	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1783
1784	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1785again:
1786	slot = path->slots[lowest_level];
1787	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1788
1789	eb = btrfs_lock_root_node(dest);
1790	btrfs_set_lock_blocking(eb);
1791	level = btrfs_header_level(eb);
1792
1793	if (level < lowest_level) {
1794		btrfs_tree_unlock(eb);
1795		free_extent_buffer(eb);
1796		return 0;
1797	}
1798
1799	if (cow) {
1800		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1801		BUG_ON(ret);
 
 
 
 
 
1802	}
1803	btrfs_set_lock_blocking(eb);
1804
1805	if (next_key) {
1806		next_key->objectid = (u64)-1;
1807		next_key->type = (u8)-1;
1808		next_key->offset = (u64)-1;
1809	}
1810
1811	parent = eb;
1812	while (1) {
1813		level = btrfs_header_level(parent);
1814		BUG_ON(level < lowest_level);
1815
1816		ret = btrfs_bin_search(parent, &key, level, &slot);
 
 
1817		if (ret && slot > 0)
1818			slot--;
1819
1820		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1821			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1822
1823		old_bytenr = btrfs_node_blockptr(parent, slot);
1824		blocksize = dest->nodesize;
1825		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1826
1827		if (level <= max_level) {
1828			eb = path->nodes[level];
1829			new_bytenr = btrfs_node_blockptr(eb,
1830							path->slots[level]);
1831			new_ptr_gen = btrfs_node_ptr_generation(eb,
1832							path->slots[level]);
1833		} else {
1834			new_bytenr = 0;
1835			new_ptr_gen = 0;
1836		}
1837
1838		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1839			ret = level;
1840			break;
1841		}
1842
1843		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1844		    memcmp_node_keys(parent, slot, path, level)) {
1845			if (level <= lowest_level) {
1846				ret = 0;
1847				break;
1848			}
1849
1850			eb = read_tree_block(dest, old_bytenr, old_ptr_gen);
1851			if (IS_ERR(eb)) {
1852				ret = PTR_ERR(eb);
1853				break;
1854			} else if (!extent_buffer_uptodate(eb)) {
1855				ret = -EIO;
1856				free_extent_buffer(eb);
1857				break;
1858			}
1859			btrfs_tree_lock(eb);
1860			if (cow) {
1861				ret = btrfs_cow_block(trans, dest, eb, parent,
1862						      slot, &eb);
1863				BUG_ON(ret);
 
 
 
 
 
1864			}
1865			btrfs_set_lock_blocking(eb);
1866
1867			btrfs_tree_unlock(parent);
1868			free_extent_buffer(parent);
1869
1870			parent = eb;
1871			continue;
1872		}
1873
1874		if (!cow) {
1875			btrfs_tree_unlock(parent);
1876			free_extent_buffer(parent);
1877			cow = 1;
1878			goto again;
1879		}
1880
1881		btrfs_node_key_to_cpu(path->nodes[level], &key,
1882				      path->slots[level]);
1883		btrfs_release_path(path);
1884
1885		path->lowest_level = level;
 
1886		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
 
1887		path->lowest_level = 0;
1888		BUG_ON(ret);
 
 
 
 
1889
1890		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1891		 * swap blocks in fs tree and reloc tree.
1892		 */
1893		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1894		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1895		btrfs_mark_buffer_dirty(parent);
1896
1897		btrfs_set_node_blockptr(path->nodes[level],
1898					path->slots[level], old_bytenr);
1899		btrfs_set_node_ptr_generation(path->nodes[level],
1900					      path->slots[level], old_ptr_gen);
1901		btrfs_mark_buffer_dirty(path->nodes[level]);
1902
1903		ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1904					path->nodes[level]->start,
1905					src->root_key.objectid, level - 1, 0);
1906		BUG_ON(ret);
1907		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1908					0, dest->root_key.objectid, level - 1,
1909					0);
1910		BUG_ON(ret);
1911
1912		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1913					path->nodes[level]->start,
1914					src->root_key.objectid, level - 1, 0);
1915		BUG_ON(ret);
1916
1917		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1918					0, dest->root_key.objectid, level - 1,
1919					0);
1920		BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1921
1922		btrfs_unlock_up_safe(path, 0);
1923
1924		ret = level;
1925		break;
1926	}
1927	btrfs_tree_unlock(parent);
1928	free_extent_buffer(parent);
1929	return ret;
1930}
1931
1932/*
1933 * helper to find next relocated block in reloc tree
1934 */
1935static noinline_for_stack
1936int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1937		       int *level)
1938{
1939	struct extent_buffer *eb;
1940	int i;
1941	u64 last_snapshot;
1942	u32 nritems;
1943
1944	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1945
1946	for (i = 0; i < *level; i++) {
1947		free_extent_buffer(path->nodes[i]);
1948		path->nodes[i] = NULL;
1949	}
1950
1951	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1952		eb = path->nodes[i];
1953		nritems = btrfs_header_nritems(eb);
1954		while (path->slots[i] + 1 < nritems) {
1955			path->slots[i]++;
1956			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1957			    last_snapshot)
1958				continue;
1959
1960			*level = i;
1961			return 0;
1962		}
1963		free_extent_buffer(path->nodes[i]);
1964		path->nodes[i] = NULL;
1965	}
1966	return 1;
1967}
1968
1969/*
1970 * walk down reloc tree to find relocated block of lowest level
1971 */
1972static noinline_for_stack
1973int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1974			 int *level)
1975{
1976	struct extent_buffer *eb = NULL;
1977	int i;
1978	u64 bytenr;
1979	u64 ptr_gen = 0;
1980	u64 last_snapshot;
1981	u32 nritems;
1982
1983	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1984
1985	for (i = *level; i > 0; i--) {
1986		eb = path->nodes[i];
1987		nritems = btrfs_header_nritems(eb);
1988		while (path->slots[i] < nritems) {
1989			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1990			if (ptr_gen > last_snapshot)
1991				break;
1992			path->slots[i]++;
1993		}
1994		if (path->slots[i] >= nritems) {
1995			if (i == *level)
1996				break;
1997			*level = i + 1;
1998			return 0;
1999		}
2000		if (i == 1) {
2001			*level = i;
2002			return 0;
2003		}
2004
2005		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2006		eb = read_tree_block(root, bytenr, ptr_gen);
2007		if (IS_ERR(eb)) {
2008			return PTR_ERR(eb);
2009		} else if (!extent_buffer_uptodate(eb)) {
2010			free_extent_buffer(eb);
2011			return -EIO;
2012		}
2013		BUG_ON(btrfs_header_level(eb) != i - 1);
2014		path->nodes[i - 1] = eb;
2015		path->slots[i - 1] = 0;
2016	}
2017	return 1;
2018}
2019
2020/*
2021 * invalidate extent cache for file extents whose key in range of
2022 * [min_key, max_key)
2023 */
2024static int invalidate_extent_cache(struct btrfs_root *root,
2025				   struct btrfs_key *min_key,
2026				   struct btrfs_key *max_key)
2027{
 
2028	struct inode *inode = NULL;
2029	u64 objectid;
2030	u64 start, end;
2031	u64 ino;
2032
2033	objectid = min_key->objectid;
2034	while (1) {
 
 
2035		cond_resched();
2036		iput(inode);
2037
2038		if (objectid > max_key->objectid)
2039			break;
2040
2041		inode = find_next_inode(root, objectid);
2042		if (!inode)
2043			break;
2044		ino = btrfs_ino(inode);
2045
2046		if (ino > max_key->objectid) {
2047			iput(inode);
2048			break;
2049		}
2050
2051		objectid = ino + 1;
2052		if (!S_ISREG(inode->i_mode))
2053			continue;
2054
2055		if (unlikely(min_key->objectid == ino)) {
2056			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2057				continue;
2058			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2059				start = 0;
2060			else {
2061				start = min_key->offset;
2062				WARN_ON(!IS_ALIGNED(start, root->sectorsize));
2063			}
2064		} else {
2065			start = 0;
2066		}
2067
2068		if (unlikely(max_key->objectid == ino)) {
2069			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2070				continue;
2071			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2072				end = (u64)-1;
2073			} else {
2074				if (max_key->offset == 0)
2075					continue;
2076				end = max_key->offset;
2077				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
2078				end--;
2079			}
2080		} else {
2081			end = (u64)-1;
2082		}
2083
2084		/* the lock_extent waits for readpage to complete */
2085		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2086		btrfs_drop_extent_cache(inode, start, end, 1);
2087		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2088	}
2089	return 0;
2090}
2091
2092static int find_next_key(struct btrfs_path *path, int level,
2093			 struct btrfs_key *key)
2094
2095{
2096	while (level < BTRFS_MAX_LEVEL) {
2097		if (!path->nodes[level])
2098			break;
2099		if (path->slots[level] + 1 <
2100		    btrfs_header_nritems(path->nodes[level])) {
2101			btrfs_node_key_to_cpu(path->nodes[level], key,
2102					      path->slots[level] + 1);
2103			return 0;
2104		}
2105		level++;
2106	}
2107	return 1;
2108}
2109
2110/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2111 * merge the relocated tree blocks in reloc tree with corresponding
2112 * fs tree.
2113 */
2114static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2115					       struct btrfs_root *root)
2116{
2117	LIST_HEAD(inode_list);
2118	struct btrfs_key key;
2119	struct btrfs_key next_key;
2120	struct btrfs_trans_handle *trans = NULL;
2121	struct btrfs_root *reloc_root;
2122	struct btrfs_root_item *root_item;
2123	struct btrfs_path *path;
2124	struct extent_buffer *leaf;
 
2125	int level;
2126	int max_level;
2127	int replaced = 0;
2128	int ret;
2129	int err = 0;
2130	u32 min_reserved;
2131
2132	path = btrfs_alloc_path();
2133	if (!path)
2134		return -ENOMEM;
2135	path->reada = READA_FORWARD;
2136
2137	reloc_root = root->reloc_root;
2138	root_item = &reloc_root->root_item;
2139
2140	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2141		level = btrfs_root_level(root_item);
2142		extent_buffer_get(reloc_root->node);
2143		path->nodes[level] = reloc_root->node;
2144		path->slots[level] = 0;
2145	} else {
2146		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2147
2148		level = root_item->drop_level;
2149		BUG_ON(level == 0);
2150		path->lowest_level = level;
2151		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2152		path->lowest_level = 0;
2153		if (ret < 0) {
2154			btrfs_free_path(path);
2155			return ret;
2156		}
2157
2158		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2159				      path->slots[level]);
2160		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2161
2162		btrfs_unlock_up_safe(path, 0);
2163	}
2164
2165	min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
 
 
 
 
 
 
 
 
 
2166	memset(&next_key, 0, sizeof(next_key));
2167
2168	while (1) {
2169		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2170					     BTRFS_RESERVE_FLUSH_ALL);
2171		if (ret) {
2172			err = ret;
2173			goto out;
2174		}
2175		trans = btrfs_start_transaction(root, 0);
2176		if (IS_ERR(trans)) {
2177			err = PTR_ERR(trans);
2178			trans = NULL;
2179			goto out;
2180		}
 
 
 
 
 
 
 
 
 
 
 
 
2181		trans->block_rsv = rc->block_rsv;
2182
2183		replaced = 0;
2184		max_level = level;
2185
2186		ret = walk_down_reloc_tree(reloc_root, path, &level);
2187		if (ret < 0) {
2188			err = ret;
2189			goto out;
2190		}
2191		if (ret > 0)
2192			break;
2193
2194		if (!find_next_key(path, level, &key) &&
2195		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2196			ret = 0;
2197		} else {
2198			ret = replace_path(trans, root, reloc_root, path,
2199					   &next_key, level, max_level);
2200		}
2201		if (ret < 0) {
2202			err = ret;
2203			goto out;
2204		}
2205
2206		if (ret > 0) {
2207			level = ret;
2208			btrfs_node_key_to_cpu(path->nodes[level], &key,
2209					      path->slots[level]);
2210			replaced = 1;
2211		}
2212
2213		ret = walk_up_reloc_tree(reloc_root, path, &level);
2214		if (ret > 0)
2215			break;
2216
2217		BUG_ON(level == 0);
2218		/*
2219		 * save the merging progress in the drop_progress.
2220		 * this is OK since root refs == 1 in this case.
2221		 */
2222		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2223			       path->slots[level]);
2224		root_item->drop_level = level;
2225
2226		btrfs_end_transaction_throttle(trans, root);
2227		trans = NULL;
2228
2229		btrfs_btree_balance_dirty(root);
2230
2231		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2232			invalidate_extent_cache(root, &key, &next_key);
2233	}
2234
2235	/*
2236	 * handle the case only one block in the fs tree need to be
2237	 * relocated and the block is tree root.
2238	 */
2239	leaf = btrfs_lock_root_node(root);
2240	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
 
2241	btrfs_tree_unlock(leaf);
2242	free_extent_buffer(leaf);
2243	if (ret < 0)
2244		err = ret;
2245out:
2246	btrfs_free_path(path);
2247
2248	if (err == 0) {
2249		memset(&root_item->drop_progress, 0,
2250		       sizeof(root_item->drop_progress));
2251		root_item->drop_level = 0;
2252		btrfs_set_root_refs(root_item, 0);
2253		btrfs_update_reloc_root(trans, root);
2254	}
2255
2256	if (trans)
2257		btrfs_end_transaction_throttle(trans, root);
2258
2259	btrfs_btree_balance_dirty(root);
2260
2261	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2262		invalidate_extent_cache(root, &key, &next_key);
2263
2264	return err;
2265}
2266
2267static noinline_for_stack
2268int prepare_to_merge(struct reloc_control *rc, int err)
2269{
2270	struct btrfs_root *root = rc->extent_root;
 
2271	struct btrfs_root *reloc_root;
2272	struct btrfs_trans_handle *trans;
2273	LIST_HEAD(reloc_roots);
2274	u64 num_bytes = 0;
2275	int ret;
2276
2277	mutex_lock(&root->fs_info->reloc_mutex);
2278	rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2279	rc->merging_rsv_size += rc->nodes_relocated * 2;
2280	mutex_unlock(&root->fs_info->reloc_mutex);
2281
2282again:
2283	if (!err) {
2284		num_bytes = rc->merging_rsv_size;
2285		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2286					  BTRFS_RESERVE_FLUSH_ALL);
2287		if (ret)
2288			err = ret;
2289	}
2290
2291	trans = btrfs_join_transaction(rc->extent_root);
2292	if (IS_ERR(trans)) {
2293		if (!err)
2294			btrfs_block_rsv_release(rc->extent_root,
2295						rc->block_rsv, num_bytes);
2296		return PTR_ERR(trans);
2297	}
2298
2299	if (!err) {
2300		if (num_bytes != rc->merging_rsv_size) {
2301			btrfs_end_transaction(trans, rc->extent_root);
2302			btrfs_block_rsv_release(rc->extent_root,
2303						rc->block_rsv, num_bytes);
2304			goto again;
2305		}
2306	}
2307
2308	rc->merge_reloc_tree = 1;
2309
2310	while (!list_empty(&rc->reloc_roots)) {
2311		reloc_root = list_entry(rc->reloc_roots.next,
2312					struct btrfs_root, root_list);
2313		list_del_init(&reloc_root->root_list);
2314
2315		root = read_fs_root(reloc_root->fs_info,
2316				    reloc_root->root_key.offset);
2317		BUG_ON(IS_ERR(root));
2318		BUG_ON(root->reloc_root != reloc_root);
 
 
 
 
 
 
 
 
 
 
2319
2320		/*
2321		 * set reference count to 1, so btrfs_recover_relocation
2322		 * knows it should resumes merging
2323		 */
2324		if (!err)
2325			btrfs_set_root_refs(&reloc_root->root_item, 1);
2326		btrfs_update_reloc_root(trans, root);
2327
 
 
 
 
2328		list_add(&reloc_root->root_list, &reloc_roots);
 
 
 
 
 
 
 
 
2329	}
2330
2331	list_splice(&reloc_roots, &rc->reloc_roots);
2332
2333	if (!err)
2334		btrfs_commit_transaction(trans, rc->extent_root);
2335	else
2336		btrfs_end_transaction(trans, rc->extent_root);
2337	return err;
2338}
2339
2340static noinline_for_stack
2341void free_reloc_roots(struct list_head *list)
2342{
2343	struct btrfs_root *reloc_root;
2344
2345	while (!list_empty(list)) {
2346		reloc_root = list_entry(list->next, struct btrfs_root,
2347					root_list);
2348		__del_reloc_root(reloc_root);
2349	}
2350}
2351
2352static noinline_for_stack
2353void merge_reloc_roots(struct reloc_control *rc)
2354{
 
2355	struct btrfs_root *root;
2356	struct btrfs_root *reloc_root;
2357	u64 last_snap;
2358	u64 otransid;
2359	u64 objectid;
2360	LIST_HEAD(reloc_roots);
2361	int found = 0;
2362	int ret = 0;
2363again:
2364	root = rc->extent_root;
2365
2366	/*
2367	 * this serializes us with btrfs_record_root_in_transaction,
2368	 * we have to make sure nobody is in the middle of
2369	 * adding their roots to the list while we are
2370	 * doing this splice
2371	 */
2372	mutex_lock(&root->fs_info->reloc_mutex);
2373	list_splice_init(&rc->reloc_roots, &reloc_roots);
2374	mutex_unlock(&root->fs_info->reloc_mutex);
2375
2376	while (!list_empty(&reloc_roots)) {
2377		found = 1;
2378		reloc_root = list_entry(reloc_roots.next,
2379					struct btrfs_root, root_list);
2380
 
 
2381		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2382			root = read_fs_root(reloc_root->fs_info,
2383					    reloc_root->root_key.offset);
2384			BUG_ON(IS_ERR(root));
2385			BUG_ON(root->reloc_root != reloc_root);
2386
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2387			ret = merge_reloc_root(rc, root);
 
2388			if (ret) {
2389				if (list_empty(&reloc_root->root_list))
2390					list_add_tail(&reloc_root->root_list,
2391						      &reloc_roots);
2392				goto out;
2393			}
2394		} else {
 
 
 
 
 
 
 
 
 
 
2395			list_del_init(&reloc_root->root_list);
2396		}
2397
2398		/*
2399		 * we keep the old last snapshod transid in rtranid when we
2400		 * created the relocation tree.
2401		 */
2402		last_snap = btrfs_root_rtransid(&reloc_root->root_item);
2403		otransid = btrfs_root_otransid(&reloc_root->root_item);
2404		objectid = reloc_root->root_key.offset;
2405
2406		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2407		if (ret < 0) {
2408			if (list_empty(&reloc_root->root_list))
2409				list_add_tail(&reloc_root->root_list,
2410					      &reloc_roots);
2411			goto out;
2412		}
2413	}
2414
2415	if (found) {
2416		found = 0;
2417		goto again;
2418	}
2419out:
2420	if (ret) {
2421		btrfs_std_error(root->fs_info, ret, NULL);
2422		if (!list_empty(&reloc_roots))
2423			free_reloc_roots(&reloc_roots);
2424
2425		/* new reloc root may be added */
2426		mutex_lock(&root->fs_info->reloc_mutex);
2427		list_splice_init(&rc->reloc_roots, &reloc_roots);
2428		mutex_unlock(&root->fs_info->reloc_mutex);
2429		if (!list_empty(&reloc_roots))
2430			free_reloc_roots(&reloc_roots);
2431	}
2432
2433	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2434}
2435
2436static void free_block_list(struct rb_root *blocks)
2437{
2438	struct tree_block *block;
2439	struct rb_node *rb_node;
2440	while ((rb_node = rb_first(blocks))) {
2441		block = rb_entry(rb_node, struct tree_block, rb_node);
2442		rb_erase(rb_node, blocks);
2443		kfree(block);
2444	}
2445}
2446
2447static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2448				      struct btrfs_root *reloc_root)
2449{
 
2450	struct btrfs_root *root;
 
2451
2452	if (reloc_root->last_trans == trans->transid)
2453		return 0;
2454
2455	root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2456	BUG_ON(IS_ERR(root));
2457	BUG_ON(root->reloc_root != reloc_root);
2458
2459	return btrfs_record_root_in_trans(trans, root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2460}
2461
2462static noinline_for_stack
2463struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2464				     struct reloc_control *rc,
2465				     struct backref_node *node,
2466				     struct backref_edge *edges[])
2467{
2468	struct backref_node *next;
2469	struct btrfs_root *root;
2470	int index = 0;
 
2471
2472	next = node;
2473	while (1) {
2474		cond_resched();
2475		next = walk_up_backref(next, edges, &index);
2476		root = next->root;
2477		BUG_ON(!root);
2478		BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2479
2480		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2481			record_reloc_root_in_trans(trans, root);
 
 
2482			break;
2483		}
2484
2485		btrfs_record_root_in_trans(trans, root);
 
 
2486		root = root->reloc_root;
2487
 
 
 
 
 
 
 
2488		if (next->new_bytenr != root->node->start) {
2489			BUG_ON(next->new_bytenr);
2490			BUG_ON(!list_empty(&next->list));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2491			next->new_bytenr = root->node->start;
2492			next->root = root;
 
 
2493			list_add_tail(&next->list,
2494				      &rc->backref_cache.changed);
2495			__mark_block_processed(rc, next);
2496			break;
2497		}
2498
2499		WARN_ON(1);
2500		root = NULL;
2501		next = walk_down_backref(edges, &index);
2502		if (!next || next->level <= node->level)
2503			break;
2504	}
2505	if (!root)
2506		return NULL;
 
 
 
 
 
 
2507
2508	next = node;
2509	/* setup backref node path for btrfs_reloc_cow_block */
2510	while (1) {
2511		rc->backref_cache.path[next->level] = next;
2512		if (--index < 0)
2513			break;
2514		next = edges[index]->node[UPPER];
2515	}
2516	return root;
2517}
2518
2519/*
2520 * select a tree root for relocation. return NULL if the block
2521 * is reference counted. we should use do_relocation() in this
2522 * case. return a tree root pointer if the block isn't reference
2523 * counted. return -ENOENT if the block is root of reloc tree.
 
 
 
2524 */
2525static noinline_for_stack
2526struct btrfs_root *select_one_root(struct backref_node *node)
2527{
2528	struct backref_node *next;
2529	struct btrfs_root *root;
2530	struct btrfs_root *fs_root = NULL;
2531	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2532	int index = 0;
2533
2534	next = node;
2535	while (1) {
2536		cond_resched();
2537		next = walk_up_backref(next, edges, &index);
2538		root = next->root;
2539		BUG_ON(!root);
2540
2541		/* no other choice for non-references counted tree */
2542		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
 
 
 
 
 
 
 
2543			return root;
2544
2545		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2546			fs_root = root;
2547
2548		if (next != node)
2549			return NULL;
2550
2551		next = walk_down_backref(edges, &index);
2552		if (!next || next->level <= node->level)
2553			break;
2554	}
2555
2556	if (!fs_root)
2557		return ERR_PTR(-ENOENT);
2558	return fs_root;
2559}
2560
2561static noinline_for_stack
2562u64 calcu_metadata_size(struct reloc_control *rc,
2563			struct backref_node *node, int reserve)
2564{
2565	struct backref_node *next = node;
2566	struct backref_edge *edge;
2567	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
 
2568	u64 num_bytes = 0;
2569	int index = 0;
2570
2571	BUG_ON(reserve && node->processed);
2572
2573	while (next) {
2574		cond_resched();
2575		while (1) {
2576			if (next->processed && (reserve || next != node))
2577				break;
2578
2579			num_bytes += rc->extent_root->nodesize;
2580
2581			if (list_empty(&next->upper))
2582				break;
2583
2584			edge = list_entry(next->upper.next,
2585					  struct backref_edge, list[LOWER]);
2586			edges[index++] = edge;
2587			next = edge->node[UPPER];
2588		}
2589		next = walk_down_backref(edges, &index);
2590	}
2591	return num_bytes;
2592}
2593
2594static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2595				  struct reloc_control *rc,
2596				  struct backref_node *node)
2597{
2598	struct btrfs_root *root = rc->extent_root;
 
2599	u64 num_bytes;
2600	int ret;
2601	u64 tmp;
2602
2603	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2604
2605	trans->block_rsv = rc->block_rsv;
2606	rc->reserved_bytes += num_bytes;
2607	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2608				BTRFS_RESERVE_FLUSH_ALL);
 
 
 
 
 
 
2609	if (ret) {
2610		if (ret == -EAGAIN) {
2611			tmp = rc->extent_root->nodesize *
2612				RELOCATION_RESERVED_NODES;
2613			while (tmp <= rc->reserved_bytes)
2614				tmp <<= 1;
2615			/*
2616			 * only one thread can access block_rsv at this point,
2617			 * so we don't need hold lock to protect block_rsv.
2618			 * we expand more reservation size here to allow enough
2619			 * space for relocation and we will return eailer in
2620			 * enospc case.
2621			 */
2622			rc->block_rsv->size = tmp + rc->extent_root->nodesize *
2623					      RELOCATION_RESERVED_NODES;
2624		}
2625		return ret;
2626	}
2627
2628	return 0;
2629}
2630
2631/*
2632 * relocate a block tree, and then update pointers in upper level
2633 * blocks that reference the block to point to the new location.
2634 *
2635 * if called by link_to_upper, the block has already been relocated.
2636 * in that case this function just updates pointers.
2637 */
2638static int do_relocation(struct btrfs_trans_handle *trans,
2639			 struct reloc_control *rc,
2640			 struct backref_node *node,
2641			 struct btrfs_key *key,
2642			 struct btrfs_path *path, int lowest)
2643{
2644	struct backref_node *upper;
2645	struct backref_edge *edge;
2646	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2647	struct btrfs_root *root;
2648	struct extent_buffer *eb;
2649	u32 blocksize;
2650	u64 bytenr;
2651	u64 generation;
2652	int slot;
2653	int ret;
2654	int err = 0;
2655
2656	BUG_ON(lowest && node->eb);
 
 
 
 
2657
2658	path->lowest_level = node->level + 1;
2659	rc->backref_cache.path[node->level] = node;
2660	list_for_each_entry(edge, &node->upper, list[LOWER]) {
 
 
2661		cond_resched();
2662
2663		upper = edge->node[UPPER];
2664		root = select_reloc_root(trans, rc, upper, edges);
2665		BUG_ON(!root);
 
 
 
2666
2667		if (upper->eb && !upper->locked) {
2668			if (!lowest) {
2669				ret = btrfs_bin_search(upper->eb, key,
2670						       upper->level, &slot);
 
2671				BUG_ON(ret);
2672				bytenr = btrfs_node_blockptr(upper->eb, slot);
2673				if (node->eb->start == bytenr)
2674					goto next;
2675			}
2676			drop_node_buffer(upper);
2677		}
2678
2679		if (!upper->eb) {
2680			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2681			if (ret < 0) {
2682				err = ret;
 
 
 
2683				break;
2684			}
2685			BUG_ON(ret > 0);
2686
2687			if (!upper->eb) {
2688				upper->eb = path->nodes[upper->level];
2689				path->nodes[upper->level] = NULL;
2690			} else {
2691				BUG_ON(upper->eb != path->nodes[upper->level]);
2692			}
2693
2694			upper->locked = 1;
2695			path->locks[upper->level] = 0;
2696
2697			slot = path->slots[upper->level];
2698			btrfs_release_path(path);
2699		} else {
2700			ret = btrfs_bin_search(upper->eb, key, upper->level,
2701					       &slot);
 
2702			BUG_ON(ret);
2703		}
2704
2705		bytenr = btrfs_node_blockptr(upper->eb, slot);
2706		if (lowest) {
2707			BUG_ON(bytenr != node->bytenr);
 
 
 
 
 
 
 
2708		} else {
2709			if (node->eb->start == bytenr)
2710				goto next;
2711		}
2712
2713		blocksize = root->nodesize;
2714		generation = btrfs_node_ptr_generation(upper->eb, slot);
2715		eb = read_tree_block(root, bytenr, generation);
2716		if (IS_ERR(eb)) {
2717			err = PTR_ERR(eb);
2718			goto next;
2719		} else if (!extent_buffer_uptodate(eb)) {
2720			free_extent_buffer(eb);
2721			err = -EIO;
2722			goto next;
2723		}
2724		btrfs_tree_lock(eb);
2725		btrfs_set_lock_blocking(eb);
2726
2727		if (!node->eb) {
2728			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2729					      slot, &eb);
2730			btrfs_tree_unlock(eb);
2731			free_extent_buffer(eb);
2732			if (ret < 0) {
2733				err = ret;
2734				goto next;
2735			}
2736			BUG_ON(node->eb != eb);
 
 
 
2737		} else {
2738			btrfs_set_node_blockptr(upper->eb, slot,
2739						node->eb->start);
2740			btrfs_set_node_ptr_generation(upper->eb, slot,
2741						      trans->transid);
2742			btrfs_mark_buffer_dirty(upper->eb);
2743
2744			ret = btrfs_inc_extent_ref(trans, root,
2745						node->eb->start, blocksize,
2746						upper->eb->start,
2747						btrfs_header_owner(upper->eb),
2748						node->level, 0);
2749			BUG_ON(ret);
2750
2751			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2752			BUG_ON(ret);
 
 
 
2753		}
2754next:
2755		if (!upper->pending)
2756			drop_node_buffer(upper);
2757		else
2758			unlock_node_buffer(upper);
2759		if (err)
2760			break;
2761	}
2762
2763	if (!err && node->pending) {
2764		drop_node_buffer(node);
2765		list_move_tail(&node->list, &rc->backref_cache.changed);
2766		node->pending = 0;
2767	}
2768
2769	path->lowest_level = 0;
2770	BUG_ON(err == -ENOSPC);
2771	return err;
 
 
 
 
 
2772}
2773
2774static int link_to_upper(struct btrfs_trans_handle *trans,
2775			 struct reloc_control *rc,
2776			 struct backref_node *node,
2777			 struct btrfs_path *path)
2778{
2779	struct btrfs_key key;
2780
2781	btrfs_node_key_to_cpu(node->eb, &key, 0);
2782	return do_relocation(trans, rc, node, &key, path, 0);
2783}
2784
2785static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2786				struct reloc_control *rc,
2787				struct btrfs_path *path, int err)
2788{
2789	LIST_HEAD(list);
2790	struct backref_cache *cache = &rc->backref_cache;
2791	struct backref_node *node;
2792	int level;
2793	int ret;
2794
2795	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2796		while (!list_empty(&cache->pending[level])) {
2797			node = list_entry(cache->pending[level].next,
2798					  struct backref_node, list);
2799			list_move_tail(&node->list, &list);
2800			BUG_ON(!node->pending);
2801
2802			if (!err) {
2803				ret = link_to_upper(trans, rc, node, path);
2804				if (ret < 0)
2805					err = ret;
2806			}
2807		}
2808		list_splice_init(&list, &cache->pending[level]);
2809	}
2810	return err;
2811}
2812
2813static void mark_block_processed(struct reloc_control *rc,
2814				 u64 bytenr, u32 blocksize)
2815{
2816	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2817			EXTENT_DIRTY, GFP_NOFS);
2818}
2819
2820static void __mark_block_processed(struct reloc_control *rc,
2821				   struct backref_node *node)
2822{
2823	u32 blocksize;
2824	if (node->level == 0 ||
2825	    in_block_group(node->bytenr, rc->block_group)) {
2826		blocksize = rc->extent_root->nodesize;
2827		mark_block_processed(rc, node->bytenr, blocksize);
2828	}
2829	node->processed = 1;
2830}
2831
2832/*
2833 * mark a block and all blocks directly/indirectly reference the block
2834 * as processed.
2835 */
2836static void update_processed_blocks(struct reloc_control *rc,
2837				    struct backref_node *node)
2838{
2839	struct backref_node *next = node;
2840	struct backref_edge *edge;
2841	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2842	int index = 0;
2843
2844	while (next) {
2845		cond_resched();
2846		while (1) {
2847			if (next->processed)
2848				break;
2849
2850			__mark_block_processed(rc, next);
2851
2852			if (list_empty(&next->upper))
2853				break;
2854
2855			edge = list_entry(next->upper.next,
2856					  struct backref_edge, list[LOWER]);
2857			edges[index++] = edge;
2858			next = edge->node[UPPER];
2859		}
2860		next = walk_down_backref(edges, &index);
2861	}
2862}
2863
2864static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2865{
2866	u32 blocksize = rc->extent_root->nodesize;
2867
2868	if (test_range_bit(&rc->processed_blocks, bytenr,
2869			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2870		return 1;
2871	return 0;
2872}
2873
2874static int get_tree_block_key(struct reloc_control *rc,
2875			      struct tree_block *block)
2876{
 
 
 
 
 
2877	struct extent_buffer *eb;
2878
2879	BUG_ON(block->key_ready);
2880	eb = read_tree_block(rc->extent_root, block->bytenr,
2881			     block->key.offset);
2882	if (IS_ERR(eb)) {
2883		return PTR_ERR(eb);
2884	} else if (!extent_buffer_uptodate(eb)) {
2885		free_extent_buffer(eb);
2886		return -EIO;
2887	}
2888	WARN_ON(btrfs_header_level(eb) != block->level);
2889	if (block->level == 0)
2890		btrfs_item_key_to_cpu(eb, &block->key, 0);
2891	else
2892		btrfs_node_key_to_cpu(eb, &block->key, 0);
2893	free_extent_buffer(eb);
2894	block->key_ready = 1;
2895	return 0;
2896}
2897
2898/*
2899 * helper function to relocate a tree block
2900 */
2901static int relocate_tree_block(struct btrfs_trans_handle *trans,
2902				struct reloc_control *rc,
2903				struct backref_node *node,
2904				struct btrfs_key *key,
2905				struct btrfs_path *path)
2906{
2907	struct btrfs_root *root;
2908	int ret = 0;
2909
2910	if (!node)
2911		return 0;
2912
 
 
 
 
 
 
 
 
2913	BUG_ON(node->processed);
2914	root = select_one_root(node);
2915	if (root == ERR_PTR(-ENOENT)) {
2916		update_processed_blocks(rc, node);
 
 
 
 
 
 
 
2917		goto out;
2918	}
2919
2920	if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2921		ret = reserve_metadata_space(trans, rc, node);
2922		if (ret)
2923			goto out;
2924	}
2925
2926	if (root) {
2927		if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2928			BUG_ON(node->new_bytenr);
2929			BUG_ON(!list_empty(&node->list));
2930			btrfs_record_root_in_trans(trans, root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2931			root = root->reloc_root;
2932			node->new_bytenr = root->node->start;
2933			node->root = root;
 
 
2934			list_add_tail(&node->list, &rc->backref_cache.changed);
2935		} else {
2936			path->lowest_level = node->level;
 
 
2937			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2938			btrfs_release_path(path);
 
 
2939			if (ret > 0)
2940				ret = 0;
2941		}
2942		if (!ret)
2943			update_processed_blocks(rc, node);
2944	} else {
2945		ret = do_relocation(trans, rc, node, key, path, 1);
2946	}
2947out:
2948	if (ret || node->level == 0 || node->cowonly)
2949		remove_backref_node(&rc->backref_cache, node);
2950	return ret;
2951}
2952
2953/*
2954 * relocate a list of blocks
2955 */
2956static noinline_for_stack
2957int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2958			 struct reloc_control *rc, struct rb_root *blocks)
2959{
2960	struct backref_node *node;
 
2961	struct btrfs_path *path;
2962	struct tree_block *block;
2963	struct rb_node *rb_node;
2964	int ret;
2965	int err = 0;
2966
2967	path = btrfs_alloc_path();
2968	if (!path) {
2969		err = -ENOMEM;
2970		goto out_free_blocks;
2971	}
2972
2973	rb_node = rb_first(blocks);
2974	while (rb_node) {
2975		block = rb_entry(rb_node, struct tree_block, rb_node);
2976		if (!block->key_ready)
2977			readahead_tree_block(rc->extent_root, block->bytenr);
2978		rb_node = rb_next(rb_node);
 
2979	}
2980
2981	rb_node = rb_first(blocks);
2982	while (rb_node) {
2983		block = rb_entry(rb_node, struct tree_block, rb_node);
2984		if (!block->key_ready) {
2985			err = get_tree_block_key(rc, block);
2986			if (err)
2987				goto out_free_path;
2988		}
2989		rb_node = rb_next(rb_node);
2990	}
2991
2992	rb_node = rb_first(blocks);
2993	while (rb_node) {
2994		block = rb_entry(rb_node, struct tree_block, rb_node);
2995
2996		node = build_backref_tree(rc, &block->key,
2997					  block->level, block->bytenr);
2998		if (IS_ERR(node)) {
2999			err = PTR_ERR(node);
3000			goto out;
3001		}
3002
3003		ret = relocate_tree_block(trans, rc, node, &block->key,
3004					  path);
3005		if (ret < 0) {
3006			if (ret != -EAGAIN || rb_node == rb_first(blocks))
3007				err = ret;
3008			goto out;
3009		}
3010		rb_node = rb_next(rb_node);
3011	}
3012out:
3013	err = finish_pending_nodes(trans, rc, path, err);
3014
3015out_free_path:
3016	btrfs_free_path(path);
3017out_free_blocks:
3018	free_block_list(blocks);
3019	return err;
3020}
3021
3022static noinline_for_stack
3023int prealloc_file_extent_cluster(struct inode *inode,
3024				 struct file_extent_cluster *cluster)
3025{
3026	u64 alloc_hint = 0;
3027	u64 start;
3028	u64 end;
3029	u64 offset = BTRFS_I(inode)->index_cnt;
3030	u64 num_bytes;
3031	int nr = 0;
3032	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3033
3034	BUG_ON(cluster->start != cluster->boundary[0]);
3035	inode_lock(inode);
 
 
 
3036
3037	ret = btrfs_check_data_free_space(inode, cluster->start,
3038					  cluster->end + 1 - cluster->start);
3039	if (ret)
3040		goto out;
3041
3042	while (nr < cluster->nr) {
3043		start = cluster->boundary[nr] - offset;
3044		if (nr + 1 < cluster->nr)
3045			end = cluster->boundary[nr + 1] - 1 - offset;
3046		else
3047			end = cluster->end - offset;
3048
3049		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3050		num_bytes = end + 1 - start;
3051		ret = btrfs_prealloc_file_range(inode, 0, start,
3052						num_bytes, num_bytes,
3053						end + 1, &alloc_hint);
3054		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
 
3055		if (ret)
3056			break;
3057		nr++;
3058	}
3059	btrfs_free_reserved_data_space(inode, cluster->start,
3060				       cluster->end + 1 - cluster->start);
3061out:
3062	inode_unlock(inode);
 
3063	return ret;
3064}
3065
3066static noinline_for_stack
3067int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3068			 u64 block_start)
3069{
3070	struct btrfs_root *root = BTRFS_I(inode)->root;
3071	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3072	struct extent_map *em;
 
3073	int ret = 0;
3074
3075	em = alloc_extent_map();
3076	if (!em)
3077		return -ENOMEM;
3078
3079	em->start = start;
3080	em->len = end + 1 - start;
3081	em->block_len = em->len;
3082	em->block_start = block_start;
3083	em->bdev = root->fs_info->fs_devices->latest_bdev;
3084	set_bit(EXTENT_FLAG_PINNED, &em->flags);
3085
3086	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3087	while (1) {
3088		write_lock(&em_tree->lock);
3089		ret = add_extent_mapping(em_tree, em, 0);
3090		write_unlock(&em_tree->lock);
3091		if (ret != -EEXIST) {
3092			free_extent_map(em);
3093			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3094		}
3095		btrfs_drop_extent_cache(inode, start, end, 0);
3096	}
3097	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
 
 
 
 
 
 
 
 
 
 
 
3098	return ret;
3099}
3100
3101static int relocate_file_extent_cluster(struct inode *inode,
3102					struct file_extent_cluster *cluster)
3103{
3104	u64 page_start;
3105	u64 page_end;
3106	u64 offset = BTRFS_I(inode)->index_cnt;
3107	unsigned long index;
3108	unsigned long last_index;
3109	struct page *page;
3110	struct file_ra_state *ra;
3111	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3112	int nr = 0;
3113	int ret = 0;
3114
3115	if (!cluster->nr)
3116		return 0;
3117
3118	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3119	if (!ra)
3120		return -ENOMEM;
3121
3122	ret = prealloc_file_extent_cluster(inode, cluster);
3123	if (ret)
3124		goto out;
3125
3126	file_ra_state_init(ra, inode->i_mapping);
3127
3128	ret = setup_extent_mapping(inode, cluster->start - offset,
3129				   cluster->end - offset, cluster->start);
3130	if (ret)
3131		goto out;
3132
3133	index = (cluster->start - offset) >> PAGE_SHIFT;
3134	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3135	while (index <= last_index) {
3136		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_SIZE);
3137		if (ret)
3138			goto out;
3139
3140		page = find_lock_page(inode->i_mapping, index);
3141		if (!page) {
3142			page_cache_sync_readahead(inode->i_mapping,
3143						  ra, NULL, index,
3144						  last_index + 1 - index);
3145			page = find_or_create_page(inode->i_mapping, index,
3146						   mask);
3147			if (!page) {
3148				btrfs_delalloc_release_metadata(inode,
3149							PAGE_SIZE);
3150				ret = -ENOMEM;
3151				goto out;
3152			}
3153		}
3154
3155		if (PageReadahead(page)) {
3156			page_cache_async_readahead(inode->i_mapping,
3157						   ra, NULL, page, index,
3158						   last_index + 1 - index);
3159		}
3160
3161		if (!PageUptodate(page)) {
3162			btrfs_readpage(NULL, page);
3163			lock_page(page);
3164			if (!PageUptodate(page)) {
3165				unlock_page(page);
3166				put_page(page);
3167				btrfs_delalloc_release_metadata(inode,
3168							PAGE_SIZE);
3169				ret = -EIO;
3170				goto out;
3171			}
3172		}
3173
3174		page_start = page_offset(page);
3175		page_end = page_start + PAGE_SIZE - 1;
3176
3177		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3178
3179		set_page_extent_mapped(page);
3180
3181		if (nr < cluster->nr &&
3182		    page_start + offset == cluster->boundary[nr]) {
3183			set_extent_bits(&BTRFS_I(inode)->io_tree,
3184					page_start, page_end,
3185					EXTENT_BOUNDARY, GFP_NOFS);
3186			nr++;
3187		}
3188
3189		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
3190		set_page_dirty(page);
3191
3192		unlock_extent(&BTRFS_I(inode)->io_tree,
3193			      page_start, page_end);
3194		unlock_page(page);
3195		put_page(page);
3196
3197		index++;
3198		balance_dirty_pages_ratelimited(inode->i_mapping);
3199		btrfs_throttle(BTRFS_I(inode)->root);
3200	}
3201	WARN_ON(nr != cluster->nr);
3202out:
3203	kfree(ra);
3204	return ret;
3205}
3206
3207static noinline_for_stack
3208int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3209			 struct file_extent_cluster *cluster)
3210{
3211	int ret;
3212
3213	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3214		ret = relocate_file_extent_cluster(inode, cluster);
3215		if (ret)
3216			return ret;
3217		cluster->nr = 0;
3218	}
3219
3220	if (!cluster->nr)
3221		cluster->start = extent_key->objectid;
3222	else
3223		BUG_ON(cluster->nr >= MAX_EXTENTS);
3224	cluster->end = extent_key->objectid + extent_key->offset - 1;
3225	cluster->boundary[cluster->nr] = extent_key->objectid;
3226	cluster->nr++;
3227
3228	if (cluster->nr >= MAX_EXTENTS) {
3229		ret = relocate_file_extent_cluster(inode, cluster);
3230		if (ret)
3231			return ret;
3232		cluster->nr = 0;
3233	}
3234	return 0;
3235}
3236
3237#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3238static int get_ref_objectid_v0(struct reloc_control *rc,
3239			       struct btrfs_path *path,
3240			       struct btrfs_key *extent_key,
3241			       u64 *ref_objectid, int *path_change)
3242{
3243	struct btrfs_key key;
3244	struct extent_buffer *leaf;
3245	struct btrfs_extent_ref_v0 *ref0;
3246	int ret;
3247	int slot;
3248
3249	leaf = path->nodes[0];
3250	slot = path->slots[0];
3251	while (1) {
3252		if (slot >= btrfs_header_nritems(leaf)) {
3253			ret = btrfs_next_leaf(rc->extent_root, path);
3254			if (ret < 0)
3255				return ret;
3256			BUG_ON(ret > 0);
3257			leaf = path->nodes[0];
3258			slot = path->slots[0];
3259			if (path_change)
3260				*path_change = 1;
3261		}
3262		btrfs_item_key_to_cpu(leaf, &key, slot);
3263		if (key.objectid != extent_key->objectid)
3264			return -ENOENT;
3265
3266		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3267			slot++;
3268			continue;
3269		}
3270		ref0 = btrfs_item_ptr(leaf, slot,
3271				struct btrfs_extent_ref_v0);
3272		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3273		break;
3274	}
3275	return 0;
3276}
3277#endif
3278
3279/*
3280 * helper to add a tree block to the list.
3281 * the major work is getting the generation and level of the block
3282 */
3283static int add_tree_block(struct reloc_control *rc,
3284			  struct btrfs_key *extent_key,
3285			  struct btrfs_path *path,
3286			  struct rb_root *blocks)
3287{
3288	struct extent_buffer *eb;
3289	struct btrfs_extent_item *ei;
3290	struct btrfs_tree_block_info *bi;
3291	struct tree_block *block;
3292	struct rb_node *rb_node;
3293	u32 item_size;
3294	int level = -1;
3295	u64 generation;
 
3296
3297	eb =  path->nodes[0];
3298	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3299
3300	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3301	    item_size >= sizeof(*ei) + sizeof(*bi)) {
 
 
3302		ei = btrfs_item_ptr(eb, path->slots[0],
3303				struct btrfs_extent_item);
 
3304		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3305			bi = (struct btrfs_tree_block_info *)(ei + 1);
3306			level = btrfs_tree_block_level(eb, bi);
 
3307		} else {
3308			level = (int)extent_key->offset;
 
3309		}
3310		generation = btrfs_extent_generation(eb, ei);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3311	} else {
3312#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3313		u64 ref_owner;
3314		int ret;
3315
3316		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3317		ret = get_ref_objectid_v0(rc, path, extent_key,
3318					  &ref_owner, NULL);
3319		if (ret < 0)
3320			return ret;
3321		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3322		level = (int)ref_owner;
3323		/* FIXME: get real generation */
3324		generation = 0;
3325#else
3326		BUG();
3327#endif
3328	}
3329
3330	btrfs_release_path(path);
3331
3332	BUG_ON(level == -1);
3333
3334	block = kmalloc(sizeof(*block), GFP_NOFS);
3335	if (!block)
3336		return -ENOMEM;
3337
3338	block->bytenr = extent_key->objectid;
3339	block->key.objectid = rc->extent_root->nodesize;
3340	block->key.offset = generation;
3341	block->level = level;
3342	block->key_ready = 0;
 
3343
3344	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3345	if (rb_node)
3346		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
 
3347
3348	return 0;
3349}
3350
3351/*
3352 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3353 */
3354static int __add_tree_block(struct reloc_control *rc,
3355			    u64 bytenr, u32 blocksize,
3356			    struct rb_root *blocks)
3357{
 
3358	struct btrfs_path *path;
3359	struct btrfs_key key;
3360	int ret;
3361	bool skinny = btrfs_fs_incompat(rc->extent_root->fs_info,
3362					SKINNY_METADATA);
3363
3364	if (tree_block_processed(bytenr, rc))
3365		return 0;
3366
3367	if (tree_search(blocks, bytenr))
3368		return 0;
3369
3370	path = btrfs_alloc_path();
3371	if (!path)
3372		return -ENOMEM;
3373again:
3374	key.objectid = bytenr;
3375	if (skinny) {
3376		key.type = BTRFS_METADATA_ITEM_KEY;
3377		key.offset = (u64)-1;
3378	} else {
3379		key.type = BTRFS_EXTENT_ITEM_KEY;
3380		key.offset = blocksize;
3381	}
3382
3383	path->search_commit_root = 1;
3384	path->skip_locking = 1;
3385	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3386	if (ret < 0)
3387		goto out;
3388
3389	if (ret > 0 && skinny) {
3390		if (path->slots[0]) {
3391			path->slots[0]--;
3392			btrfs_item_key_to_cpu(path->nodes[0], &key,
3393					      path->slots[0]);
3394			if (key.objectid == bytenr &&
3395			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3396			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3397			      key.offset == blocksize)))
3398				ret = 0;
3399		}
3400
3401		if (ret) {
3402			skinny = false;
3403			btrfs_release_path(path);
3404			goto again;
3405		}
3406	}
3407	BUG_ON(ret);
 
 
 
 
 
 
 
 
 
3408
3409	ret = add_tree_block(rc, &key, path, blocks);
3410out:
3411	btrfs_free_path(path);
3412	return ret;
3413}
3414
3415/*
3416 * helper to check if the block use full backrefs for pointers in it
3417 */
3418static int block_use_full_backref(struct reloc_control *rc,
3419				  struct extent_buffer *eb)
3420{
3421	u64 flags;
3422	int ret;
3423
3424	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3425	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3426		return 1;
3427
3428	ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3429				       eb->start, btrfs_header_level(eb), 1,
3430				       NULL, &flags);
3431	BUG_ON(ret);
3432
3433	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3434		ret = 1;
3435	else
3436		ret = 0;
3437	return ret;
3438}
3439
3440static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3441				    struct btrfs_block_group_cache *block_group,
3442				    struct inode *inode,
3443				    u64 ino)
3444{
3445	struct btrfs_key key;
3446	struct btrfs_root *root = fs_info->tree_root;
3447	struct btrfs_trans_handle *trans;
3448	int ret = 0;
3449
3450	if (inode)
3451		goto truncate;
3452
3453	key.objectid = ino;
3454	key.type = BTRFS_INODE_ITEM_KEY;
3455	key.offset = 0;
3456
3457	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3458	if (IS_ERR(inode) || is_bad_inode(inode)) {
3459		if (!IS_ERR(inode))
3460			iput(inode);
3461		return -ENOENT;
3462	}
3463
3464truncate:
3465	ret = btrfs_check_trunc_cache_free_space(root,
3466						 &fs_info->global_block_rsv);
3467	if (ret)
3468		goto out;
3469
3470	trans = btrfs_join_transaction(root);
3471	if (IS_ERR(trans)) {
3472		ret = PTR_ERR(trans);
3473		goto out;
3474	}
3475
3476	ret = btrfs_truncate_free_space_cache(root, trans, block_group, inode);
3477
3478	btrfs_end_transaction(trans, root);
3479	btrfs_btree_balance_dirty(root);
3480out:
3481	iput(inode);
3482	return ret;
3483}
3484
3485/*
3486 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3487 * this function scans fs tree to find blocks reference the data extent
3488 */
3489static int find_data_references(struct reloc_control *rc,
3490				struct btrfs_key *extent_key,
3491				struct extent_buffer *leaf,
3492				struct btrfs_extent_data_ref *ref,
3493				struct rb_root *blocks)
3494{
3495	struct btrfs_path *path;
3496	struct tree_block *block;
3497	struct btrfs_root *root;
3498	struct btrfs_file_extent_item *fi;
3499	struct rb_node *rb_node;
3500	struct btrfs_key key;
3501	u64 ref_root;
3502	u64 ref_objectid;
3503	u64 ref_offset;
3504	u32 ref_count;
3505	u32 nritems;
3506	int err = 0;
3507	int added = 0;
3508	int counted;
3509	int ret;
3510
3511	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3512	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3513	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3514	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3515
3516	/*
3517	 * This is an extent belonging to the free space cache, lets just delete
3518	 * it and redo the search.
3519	 */
3520	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3521		ret = delete_block_group_cache(rc->extent_root->fs_info,
3522					       rc->block_group,
3523					       NULL, ref_objectid);
3524		if (ret != -ENOENT)
3525			return ret;
3526		ret = 0;
3527	}
3528
3529	path = btrfs_alloc_path();
3530	if (!path)
3531		return -ENOMEM;
3532	path->reada = READA_FORWARD;
 
3533
3534	root = read_fs_root(rc->extent_root->fs_info, ref_root);
3535	if (IS_ERR(root)) {
3536		err = PTR_ERR(root);
3537		goto out;
3538	}
3539
3540	key.objectid = ref_objectid;
3541	key.type = BTRFS_EXTENT_DATA_KEY;
3542	if (ref_offset > ((u64)-1 << 32))
3543		key.offset = 0;
3544	else
3545		key.offset = ref_offset;
3546
3547	path->search_commit_root = 1;
3548	path->skip_locking = 1;
3549	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3550	if (ret < 0) {
3551		err = ret;
3552		goto out;
3553	}
3554
3555	leaf = path->nodes[0];
3556	nritems = btrfs_header_nritems(leaf);
3557	/*
3558	 * the references in tree blocks that use full backrefs
3559	 * are not counted in
3560	 */
3561	if (block_use_full_backref(rc, leaf))
3562		counted = 0;
3563	else
3564		counted = 1;
3565	rb_node = tree_search(blocks, leaf->start);
3566	if (rb_node) {
3567		if (counted)
3568			added = 1;
3569		else
3570			path->slots[0] = nritems;
3571	}
3572
3573	while (ref_count > 0) {
3574		while (path->slots[0] >= nritems) {
3575			ret = btrfs_next_leaf(root, path);
3576			if (ret < 0) {
3577				err = ret;
3578				goto out;
3579			}
3580			if (WARN_ON(ret > 0))
3581				goto out;
3582
3583			leaf = path->nodes[0];
3584			nritems = btrfs_header_nritems(leaf);
3585			added = 0;
3586
3587			if (block_use_full_backref(rc, leaf))
3588				counted = 0;
3589			else
3590				counted = 1;
3591			rb_node = tree_search(blocks, leaf->start);
3592			if (rb_node) {
3593				if (counted)
3594					added = 1;
3595				else
3596					path->slots[0] = nritems;
3597			}
3598		}
3599
3600		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3601		if (WARN_ON(key.objectid != ref_objectid ||
3602		    key.type != BTRFS_EXTENT_DATA_KEY))
3603			break;
3604
3605		fi = btrfs_item_ptr(leaf, path->slots[0],
3606				    struct btrfs_file_extent_item);
3607
3608		if (btrfs_file_extent_type(leaf, fi) ==
3609		    BTRFS_FILE_EXTENT_INLINE)
3610			goto next;
3611
3612		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3613		    extent_key->objectid)
3614			goto next;
3615
3616		key.offset -= btrfs_file_extent_offset(leaf, fi);
3617		if (key.offset != ref_offset)
3618			goto next;
3619
3620		if (counted)
3621			ref_count--;
3622		if (added)
3623			goto next;
3624
3625		if (!tree_block_processed(leaf->start, rc)) {
3626			block = kmalloc(sizeof(*block), GFP_NOFS);
3627			if (!block) {
3628				err = -ENOMEM;
3629				break;
3630			}
3631			block->bytenr = leaf->start;
3632			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3633			block->level = 0;
3634			block->key_ready = 1;
3635			rb_node = tree_insert(blocks, block->bytenr,
3636					      &block->rb_node);
3637			if (rb_node)
3638				backref_tree_panic(rb_node, -EEXIST,
3639						   block->bytenr);
3640		}
3641		if (counted)
3642			added = 1;
3643		else
3644			path->slots[0] = nritems;
3645next:
3646		path->slots[0]++;
3647
3648	}
3649out:
3650	btrfs_free_path(path);
3651	return err;
 
 
3652}
3653
3654/*
3655 * helper to find all tree blocks that reference a given data extent
3656 */
3657static noinline_for_stack
3658int add_data_references(struct reloc_control *rc,
3659			struct btrfs_key *extent_key,
3660			struct btrfs_path *path,
3661			struct rb_root *blocks)
3662{
3663	struct btrfs_key key;
3664	struct extent_buffer *eb;
3665	struct btrfs_extent_data_ref *dref;
3666	struct btrfs_extent_inline_ref *iref;
3667	unsigned long ptr;
3668	unsigned long end;
3669	u32 blocksize = rc->extent_root->nodesize;
3670	int ret = 0;
3671	int err = 0;
3672
3673	eb = path->nodes[0];
3674	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3675	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3676#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3677	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3678		ptr = end;
3679	else
3680#endif
3681		ptr += sizeof(struct btrfs_extent_item);
3682
3683	while (ptr < end) {
3684		iref = (struct btrfs_extent_inline_ref *)ptr;
3685		key.type = btrfs_extent_inline_ref_type(eb, iref);
3686		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3687			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3688			ret = __add_tree_block(rc, key.offset, blocksize,
3689					       blocks);
3690		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3691			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3692			ret = find_data_references(rc, extent_key,
3693						   eb, dref, blocks);
3694		} else {
3695			BUG();
3696		}
3697		if (ret) {
3698			err = ret;
3699			goto out;
3700		}
3701		ptr += btrfs_extent_inline_ref_size(key.type);
3702	}
3703	WARN_ON(ptr > end);
3704
3705	while (1) {
3706		cond_resched();
3707		eb = path->nodes[0];
3708		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3709			ret = btrfs_next_leaf(rc->extent_root, path);
3710			if (ret < 0) {
3711				err = ret;
3712				break;
3713			}
3714			if (ret > 0)
3715				break;
3716			eb = path->nodes[0];
3717		}
3718
3719		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3720		if (key.objectid != extent_key->objectid)
 
3721			break;
3722
3723#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3724		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3725		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3726#else
3727		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3728		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3729#endif
3730			ret = __add_tree_block(rc, key.offset, blocksize,
3731					       blocks);
3732		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3733			dref = btrfs_item_ptr(eb, path->slots[0],
3734					      struct btrfs_extent_data_ref);
3735			ret = find_data_references(rc, extent_key,
3736						   eb, dref, blocks);
3737		} else {
3738			ret = 0;
3739		}
3740		if (ret) {
3741			err = ret;
 
 
 
 
 
3742			break;
3743		}
3744		path->slots[0]++;
3745	}
3746out:
3747	btrfs_release_path(path);
3748	if (err)
3749		free_block_list(blocks);
3750	return err;
 
3751}
3752
3753/*
3754 * helper to find next unprocessed extent
3755 */
3756static noinline_for_stack
3757int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3758		     struct btrfs_key *extent_key)
3759{
 
3760	struct btrfs_key key;
3761	struct extent_buffer *leaf;
3762	u64 start, end, last;
3763	int ret;
3764
3765	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3766	while (1) {
3767		cond_resched();
3768		if (rc->search_start >= last) {
3769			ret = 1;
3770			break;
3771		}
3772
3773		key.objectid = rc->search_start;
3774		key.type = BTRFS_EXTENT_ITEM_KEY;
3775		key.offset = 0;
3776
3777		path->search_commit_root = 1;
3778		path->skip_locking = 1;
3779		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3780					0, 0);
3781		if (ret < 0)
3782			break;
3783next:
3784		leaf = path->nodes[0];
3785		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3786			ret = btrfs_next_leaf(rc->extent_root, path);
3787			if (ret != 0)
3788				break;
3789			leaf = path->nodes[0];
3790		}
3791
3792		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3793		if (key.objectid >= last) {
3794			ret = 1;
3795			break;
3796		}
3797
3798		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3799		    key.type != BTRFS_METADATA_ITEM_KEY) {
3800			path->slots[0]++;
3801			goto next;
3802		}
3803
3804		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3805		    key.objectid + key.offset <= rc->search_start) {
3806			path->slots[0]++;
3807			goto next;
3808		}
3809
3810		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3811		    key.objectid + rc->extent_root->nodesize <=
3812		    rc->search_start) {
3813			path->slots[0]++;
3814			goto next;
3815		}
3816
3817		ret = find_first_extent_bit(&rc->processed_blocks,
3818					    key.objectid, &start, &end,
3819					    EXTENT_DIRTY, NULL);
3820
3821		if (ret == 0 && start <= key.objectid) {
3822			btrfs_release_path(path);
3823			rc->search_start = end + 1;
3824		} else {
3825			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3826				rc->search_start = key.objectid + key.offset;
3827			else
3828				rc->search_start = key.objectid +
3829					rc->extent_root->nodesize;
3830			memcpy(extent_key, &key, sizeof(key));
3831			return 0;
3832		}
3833	}
3834	btrfs_release_path(path);
3835	return ret;
3836}
3837
3838static void set_reloc_control(struct reloc_control *rc)
3839{
3840	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3841
3842	mutex_lock(&fs_info->reloc_mutex);
3843	fs_info->reloc_ctl = rc;
3844	mutex_unlock(&fs_info->reloc_mutex);
3845}
3846
3847static void unset_reloc_control(struct reloc_control *rc)
3848{
3849	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3850
3851	mutex_lock(&fs_info->reloc_mutex);
3852	fs_info->reloc_ctl = NULL;
3853	mutex_unlock(&fs_info->reloc_mutex);
3854}
3855
3856static int check_extent_flags(u64 flags)
3857{
3858	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3859	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3860		return 1;
3861	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3862	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3863		return 1;
3864	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3865	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3866		return 1;
3867	return 0;
3868}
3869
3870static noinline_for_stack
3871int prepare_to_relocate(struct reloc_control *rc)
3872{
3873	struct btrfs_trans_handle *trans;
 
3874
3875	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root,
3876					      BTRFS_BLOCK_RSV_TEMP);
3877	if (!rc->block_rsv)
3878		return -ENOMEM;
3879
3880	memset(&rc->cluster, 0, sizeof(rc->cluster));
3881	rc->search_start = rc->block_group->key.objectid;
3882	rc->extents_found = 0;
3883	rc->nodes_relocated = 0;
3884	rc->merging_rsv_size = 0;
3885	rc->reserved_bytes = 0;
3886	rc->block_rsv->size = rc->extent_root->nodesize *
3887			      RELOCATION_RESERVED_NODES;
 
 
 
 
 
3888
3889	rc->create_reloc_tree = 1;
3890	set_reloc_control(rc);
3891
3892	trans = btrfs_join_transaction(rc->extent_root);
3893	if (IS_ERR(trans)) {
3894		unset_reloc_control(rc);
3895		/*
3896		 * extent tree is not a ref_cow tree and has no reloc_root to
3897		 * cleanup.  And callers are responsible to free the above
3898		 * block rsv.
3899		 */
3900		return PTR_ERR(trans);
3901	}
3902	btrfs_commit_transaction(trans, rc->extent_root);
3903	return 0;
 
 
 
 
3904}
3905
3906static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3907{
 
3908	struct rb_root blocks = RB_ROOT;
3909	struct btrfs_key key;
3910	struct btrfs_trans_handle *trans = NULL;
3911	struct btrfs_path *path;
3912	struct btrfs_extent_item *ei;
3913	u64 flags;
3914	u32 item_size;
3915	int ret;
3916	int err = 0;
3917	int progress = 0;
3918
3919	path = btrfs_alloc_path();
3920	if (!path)
3921		return -ENOMEM;
3922	path->reada = READA_FORWARD;
3923
3924	ret = prepare_to_relocate(rc);
3925	if (ret) {
3926		err = ret;
3927		goto out_free;
3928	}
3929
3930	while (1) {
3931		rc->reserved_bytes = 0;
3932		ret = btrfs_block_rsv_refill(rc->extent_root,
3933					rc->block_rsv, rc->block_rsv->size,
3934					BTRFS_RESERVE_FLUSH_ALL);
3935		if (ret) {
3936			err = ret;
3937			break;
3938		}
3939		progress++;
3940		trans = btrfs_start_transaction(rc->extent_root, 0);
3941		if (IS_ERR(trans)) {
3942			err = PTR_ERR(trans);
3943			trans = NULL;
3944			break;
3945		}
3946restart:
3947		if (update_backref_cache(trans, &rc->backref_cache)) {
3948			btrfs_end_transaction(trans, rc->extent_root);
 
3949			continue;
3950		}
3951
3952		ret = find_next_extent(rc, path, &key);
3953		if (ret < 0)
3954			err = ret;
3955		if (ret != 0)
3956			break;
3957
3958		rc->extents_found++;
3959
3960		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3961				    struct btrfs_extent_item);
3962		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3963		if (item_size >= sizeof(*ei)) {
3964			flags = btrfs_extent_flags(path->nodes[0], ei);
3965			ret = check_extent_flags(flags);
3966			BUG_ON(ret);
3967
3968		} else {
3969#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3970			u64 ref_owner;
3971			int path_change = 0;
3972
3973			BUG_ON(item_size !=
3974			       sizeof(struct btrfs_extent_item_v0));
3975			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3976						  &path_change);
3977			if (ret < 0) {
3978				err = ret;
3979				break;
3980			}
3981			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3982				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3983			else
3984				flags = BTRFS_EXTENT_FLAG_DATA;
3985
3986			if (path_change) {
3987				btrfs_release_path(path);
3988
3989				path->search_commit_root = 1;
3990				path->skip_locking = 1;
3991				ret = btrfs_search_slot(NULL, rc->extent_root,
3992							&key, path, 0, 0);
3993				if (ret < 0) {
3994					err = ret;
3995					break;
3996				}
3997				BUG_ON(ret > 0);
3998			}
3999#else
4000			BUG();
4001#endif
4002		}
4003
4004		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4005			ret = add_tree_block(rc, &key, path, &blocks);
4006		} else if (rc->stage == UPDATE_DATA_PTRS &&
4007			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
4008			ret = add_data_references(rc, &key, path, &blocks);
4009		} else {
4010			btrfs_release_path(path);
4011			ret = 0;
4012		}
4013		if (ret < 0) {
4014			err = ret;
4015			break;
4016		}
4017
4018		if (!RB_EMPTY_ROOT(&blocks)) {
4019			ret = relocate_tree_blocks(trans, rc, &blocks);
4020			if (ret < 0) {
4021				/*
4022				 * if we fail to relocate tree blocks, force to update
4023				 * backref cache when committing transaction.
4024				 */
4025				rc->backref_cache.last_trans = trans->transid - 1;
4026
4027				if (ret != -EAGAIN) {
4028					err = ret;
4029					break;
4030				}
4031				rc->extents_found--;
4032				rc->search_start = key.objectid;
4033			}
4034		}
4035
4036		btrfs_end_transaction_throttle(trans, rc->extent_root);
4037		btrfs_btree_balance_dirty(rc->extent_root);
4038		trans = NULL;
4039
4040		if (rc->stage == MOVE_DATA_EXTENTS &&
4041		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
4042			rc->found_file_extent = 1;
4043			ret = relocate_data_extent(rc->data_inode,
4044						   &key, &rc->cluster);
4045			if (ret < 0) {
4046				err = ret;
4047				break;
4048			}
4049		}
 
 
 
 
4050	}
4051	if (trans && progress && err == -ENOSPC) {
4052		ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
4053					      rc->block_group->flags);
4054		if (ret == 1) {
4055			err = 0;
4056			progress = 0;
4057			goto restart;
4058		}
4059	}
4060
4061	btrfs_release_path(path);
4062	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
4063			  GFP_NOFS);
4064
4065	if (trans) {
4066		btrfs_end_transaction_throttle(trans, rc->extent_root);
4067		btrfs_btree_balance_dirty(rc->extent_root);
4068	}
4069
4070	if (!err) {
4071		ret = relocate_file_extent_cluster(rc->data_inode,
4072						   &rc->cluster);
4073		if (ret < 0)
4074			err = ret;
4075	}
4076
4077	rc->create_reloc_tree = 0;
4078	set_reloc_control(rc);
4079
4080	backref_cache_cleanup(&rc->backref_cache);
4081	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4082
 
 
 
 
 
 
 
 
4083	err = prepare_to_merge(rc, err);
4084
4085	merge_reloc_roots(rc);
4086
4087	rc->merge_reloc_tree = 0;
4088	unset_reloc_control(rc);
4089	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4090
4091	/* get rid of pinned extents */
4092	trans = btrfs_join_transaction(rc->extent_root);
4093	if (IS_ERR(trans))
4094		err = PTR_ERR(trans);
4095	else
4096		btrfs_commit_transaction(trans, rc->extent_root);
 
 
 
4097out_free:
4098	btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
 
 
 
4099	btrfs_free_path(path);
4100	return err;
4101}
4102
4103static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4104				 struct btrfs_root *root, u64 objectid)
4105{
4106	struct btrfs_path *path;
4107	struct btrfs_inode_item *item;
4108	struct extent_buffer *leaf;
4109	int ret;
4110
4111	path = btrfs_alloc_path();
4112	if (!path)
4113		return -ENOMEM;
4114
4115	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4116	if (ret)
4117		goto out;
4118
4119	leaf = path->nodes[0];
4120	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4121	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
4122	btrfs_set_inode_generation(leaf, item, 1);
4123	btrfs_set_inode_size(leaf, item, 0);
4124	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4125	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4126					  BTRFS_INODE_PREALLOC);
4127	btrfs_mark_buffer_dirty(leaf);
4128out:
4129	btrfs_free_path(path);
4130	return ret;
4131}
4132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4133/*
4134 * helper to create inode for data relocation.
4135 * the inode is in data relocation tree and its link count is 0
4136 */
4137static noinline_for_stack
4138struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4139				 struct btrfs_block_group_cache *group)
4140{
4141	struct inode *inode = NULL;
4142	struct btrfs_trans_handle *trans;
4143	struct btrfs_root *root;
4144	struct btrfs_key key;
4145	u64 objectid;
4146	int err = 0;
4147
4148	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4149	if (IS_ERR(root))
4150		return ERR_CAST(root);
4151
4152	trans = btrfs_start_transaction(root, 6);
4153	if (IS_ERR(trans))
 
4154		return ERR_CAST(trans);
 
4155
4156	err = btrfs_find_free_objectid(root, &objectid);
4157	if (err)
4158		goto out;
4159
4160	err = __insert_orphan_inode(trans, root, objectid);
4161	BUG_ON(err);
 
4162
4163	key.objectid = objectid;
4164	key.type = BTRFS_INODE_ITEM_KEY;
4165	key.offset = 0;
4166	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
4167	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
4168	BTRFS_I(inode)->index_cnt = group->key.objectid;
 
 
4169
4170	err = btrfs_orphan_add(trans, inode);
4171out:
4172	btrfs_end_transaction(trans, root);
4173	btrfs_btree_balance_dirty(root);
 
4174	if (err) {
4175		if (inode)
4176			iput(inode);
4177		inode = ERR_PTR(err);
4178	}
4179	return inode;
4180}
4181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4182static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4183{
4184	struct reloc_control *rc;
4185
4186	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4187	if (!rc)
4188		return NULL;
4189
4190	INIT_LIST_HEAD(&rc->reloc_roots);
4191	backref_cache_init(&rc->backref_cache);
 
4192	mapping_tree_init(&rc->reloc_root_tree);
4193	extent_io_tree_init(&rc->processed_blocks,
4194			    fs_info->btree_inode->i_mapping);
4195	return rc;
4196}
4197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4198/*
4199 * function to relocate all extents in a block group.
4200 */
4201int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
4202{
4203	struct btrfs_fs_info *fs_info = extent_root->fs_info;
 
4204	struct reloc_control *rc;
4205	struct inode *inode;
4206	struct btrfs_path *path;
4207	int ret;
4208	int rw = 0;
4209	int err = 0;
4210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4211	rc = alloc_reloc_control(fs_info);
4212	if (!rc)
 
4213		return -ENOMEM;
 
 
 
 
 
 
 
4214
4215	rc->extent_root = extent_root;
 
4216
4217	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4218	BUG_ON(!rc->block_group);
4219
4220	ret = btrfs_inc_block_group_ro(extent_root, rc->block_group);
4221	if (ret) {
4222		err = ret;
4223		goto out;
4224	}
4225	rw = 1;
4226
4227	path = btrfs_alloc_path();
4228	if (!path) {
4229		err = -ENOMEM;
4230		goto out;
4231	}
4232
4233	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4234					path);
4235	btrfs_free_path(path);
4236
4237	if (!IS_ERR(inode))
4238		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4239	else
4240		ret = PTR_ERR(inode);
4241
4242	if (ret && ret != -ENOENT) {
4243		err = ret;
4244		goto out;
4245	}
4246
4247	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4248	if (IS_ERR(rc->data_inode)) {
4249		err = PTR_ERR(rc->data_inode);
4250		rc->data_inode = NULL;
4251		goto out;
4252	}
4253
4254	btrfs_info(extent_root->fs_info, "relocating block group %llu flags %llu",
4255	       rc->block_group->key.objectid, rc->block_group->flags);
 
 
 
 
 
4256
4257	ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
4258	if (ret < 0) {
4259		err = ret;
4260		goto out;
4261	}
4262	btrfs_wait_ordered_roots(fs_info, -1);
4263
4264	while (1) {
 
 
4265		mutex_lock(&fs_info->cleaner_mutex);
4266		ret = relocate_block_group(rc);
4267		mutex_unlock(&fs_info->cleaner_mutex);
4268		if (ret < 0) {
4269			err = ret;
4270			goto out;
4271		}
4272
4273		if (rc->extents_found == 0)
4274			break;
4275
4276		btrfs_info(extent_root->fs_info, "found %llu extents",
4277			rc->extents_found);
4278
 
 
 
 
 
 
 
 
 
 
4279		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4280			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4281						       (u64)-1);
4282			if (ret) {
4283				err = ret;
4284				goto out;
4285			}
4286			invalidate_mapping_pages(rc->data_inode->i_mapping,
4287						 0, -1);
4288			rc->stage = UPDATE_DATA_PTRS;
4289		}
 
 
 
 
 
 
 
 
 
4290	}
4291
4292	WARN_ON(rc->block_group->pinned > 0);
4293	WARN_ON(rc->block_group->reserved > 0);
4294	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4295out:
4296	if (err && rw)
4297		btrfs_dec_block_group_ro(extent_root, rc->block_group);
4298	iput(rc->data_inode);
4299	btrfs_put_block_group(rc->block_group);
4300	kfree(rc);
 
 
4301	return err;
4302}
4303
4304static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4305{
 
4306	struct btrfs_trans_handle *trans;
4307	int ret, err;
4308
4309	trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4310	if (IS_ERR(trans))
4311		return PTR_ERR(trans);
4312
4313	memset(&root->root_item.drop_progress, 0,
4314		sizeof(root->root_item.drop_progress));
4315	root->root_item.drop_level = 0;
4316	btrfs_set_root_refs(&root->root_item, 0);
4317	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4318				&root->root_key, &root->root_item);
4319
4320	err = btrfs_end_transaction(trans, root->fs_info->tree_root);
4321	if (err)
4322		return err;
4323	return ret;
4324}
4325
4326/*
4327 * recover relocation interrupted by system crash.
4328 *
4329 * this function resumes merging reloc trees with corresponding fs trees.
4330 * this is important for keeping the sharing of tree blocks
4331 */
4332int btrfs_recover_relocation(struct btrfs_root *root)
4333{
4334	LIST_HEAD(reloc_roots);
4335	struct btrfs_key key;
4336	struct btrfs_root *fs_root;
4337	struct btrfs_root *reloc_root;
4338	struct btrfs_path *path;
4339	struct extent_buffer *leaf;
4340	struct reloc_control *rc = NULL;
4341	struct btrfs_trans_handle *trans;
4342	int ret;
4343	int err = 0;
4344
4345	path = btrfs_alloc_path();
4346	if (!path)
4347		return -ENOMEM;
4348	path->reada = READA_BACK;
4349
4350	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4351	key.type = BTRFS_ROOT_ITEM_KEY;
4352	key.offset = (u64)-1;
4353
4354	while (1) {
4355		ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4356					path, 0, 0);
4357		if (ret < 0) {
4358			err = ret;
4359			goto out;
4360		}
4361		if (ret > 0) {
4362			if (path->slots[0] == 0)
4363				break;
4364			path->slots[0]--;
4365		}
4366		leaf = path->nodes[0];
4367		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4368		btrfs_release_path(path);
4369
4370		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4371		    key.type != BTRFS_ROOT_ITEM_KEY)
4372			break;
4373
4374		reloc_root = btrfs_read_fs_root(root, &key);
4375		if (IS_ERR(reloc_root)) {
4376			err = PTR_ERR(reloc_root);
4377			goto out;
4378		}
4379
 
4380		list_add(&reloc_root->root_list, &reloc_roots);
4381
4382		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4383			fs_root = read_fs_root(root->fs_info,
4384					       reloc_root->root_key.offset);
4385			if (IS_ERR(fs_root)) {
4386				ret = PTR_ERR(fs_root);
4387				if (ret != -ENOENT) {
4388					err = ret;
4389					goto out;
4390				}
4391				ret = mark_garbage_root(reloc_root);
4392				if (ret < 0) {
4393					err = ret;
4394					goto out;
4395				}
 
 
4396			}
4397		}
4398
4399		if (key.offset == 0)
4400			break;
4401
4402		key.offset--;
4403	}
4404	btrfs_release_path(path);
4405
4406	if (list_empty(&reloc_roots))
4407		goto out;
4408
4409	rc = alloc_reloc_control(root->fs_info);
4410	if (!rc) {
4411		err = -ENOMEM;
4412		goto out;
4413	}
4414
4415	rc->extent_root = root->fs_info->extent_root;
 
 
 
 
 
 
4416
4417	set_reloc_control(rc);
4418
4419	trans = btrfs_join_transaction(rc->extent_root);
4420	if (IS_ERR(trans)) {
4421		unset_reloc_control(rc);
4422		err = PTR_ERR(trans);
4423		goto out_free;
4424	}
4425
4426	rc->merge_reloc_tree = 1;
4427
4428	while (!list_empty(&reloc_roots)) {
4429		reloc_root = list_entry(reloc_roots.next,
4430					struct btrfs_root, root_list);
4431		list_del(&reloc_root->root_list);
4432
4433		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4434			list_add_tail(&reloc_root->root_list,
4435				      &rc->reloc_roots);
4436			continue;
4437		}
4438
4439		fs_root = read_fs_root(root->fs_info,
4440				       reloc_root->root_key.offset);
4441		if (IS_ERR(fs_root)) {
4442			err = PTR_ERR(fs_root);
4443			goto out_free;
 
 
4444		}
4445
4446		err = __add_reloc_root(reloc_root);
4447		BUG_ON(err < 0); /* -ENOMEM or logic error */
4448		fs_root->reloc_root = reloc_root;
 
 
 
 
 
 
 
4449	}
4450
4451	err = btrfs_commit_transaction(trans, rc->extent_root);
4452	if (err)
4453		goto out_free;
4454
4455	merge_reloc_roots(rc);
4456
4457	unset_reloc_control(rc);
4458
4459	trans = btrfs_join_transaction(rc->extent_root);
4460	if (IS_ERR(trans))
4461		err = PTR_ERR(trans);
4462	else
4463		err = btrfs_commit_transaction(trans, rc->extent_root);
4464out_free:
4465	kfree(rc);
 
 
 
 
 
 
 
 
4466out:
4467	if (!list_empty(&reloc_roots))
4468		free_reloc_roots(&reloc_roots);
4469
4470	btrfs_free_path(path);
4471
4472	if (err == 0) {
4473		/* cleanup orphan inode in data relocation tree */
4474		fs_root = read_fs_root(root->fs_info,
4475				       BTRFS_DATA_RELOC_TREE_OBJECTID);
4476		if (IS_ERR(fs_root))
4477			err = PTR_ERR(fs_root);
4478		else
4479			err = btrfs_orphan_cleanup(fs_root);
4480	}
4481	return err;
4482}
4483
4484/*
4485 * helper to add ordered checksum for data relocation.
4486 *
4487 * cloning checksum properly handles the nodatasum extents.
4488 * it also saves CPU time to re-calculate the checksum.
4489 */
4490int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4491{
 
 
4492	struct btrfs_ordered_sum *sums;
4493	struct btrfs_ordered_extent *ordered;
4494	struct btrfs_root *root = BTRFS_I(inode)->root;
4495	int ret;
4496	u64 disk_bytenr;
4497	u64 new_bytenr;
4498	LIST_HEAD(list);
4499
4500	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4501	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4502
4503	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4504	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4505				       disk_bytenr + len - 1, &list, 0);
 
4506	if (ret)
4507		goto out;
4508
4509	while (!list_empty(&list)) {
4510		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4511		list_del_init(&sums->list);
4512
4513		/*
4514		 * We need to offset the new_bytenr based on where the csum is.
4515		 * We need to do this because we will read in entire prealloc
4516		 * extents but we may have written to say the middle of the
4517		 * prealloc extent, so we need to make sure the csum goes with
4518		 * the right disk offset.
4519		 *
4520		 * We can do this because the data reloc inode refers strictly
4521		 * to the on disk bytes, so we don't have to worry about
4522		 * disk_len vs real len like with real inodes since it's all
4523		 * disk length.
4524		 */
4525		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4526		sums->bytenr = new_bytenr;
4527
4528		btrfs_add_ordered_sum(inode, ordered, sums);
4529	}
4530out:
4531	btrfs_put_ordered_extent(ordered);
4532	return ret;
4533}
4534
4535int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4536			  struct btrfs_root *root, struct extent_buffer *buf,
4537			  struct extent_buffer *cow)
4538{
 
4539	struct reloc_control *rc;
4540	struct backref_node *node;
4541	int first_cow = 0;
4542	int level;
4543	int ret = 0;
4544
4545	rc = root->fs_info->reloc_ctl;
4546	if (!rc)
4547		return 0;
4548
4549	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4550	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4551
4552	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4553		if (buf == root->node)
4554			__update_reloc_root(root, cow->start);
4555	}
4556
4557	level = btrfs_header_level(buf);
4558	if (btrfs_header_generation(buf) <=
4559	    btrfs_root_last_snapshot(&root->root_item))
4560		first_cow = 1;
4561
4562	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4563	    rc->create_reloc_tree) {
4564		WARN_ON(!first_cow && level == 0);
4565
4566		node = rc->backref_cache.path[level];
4567		BUG_ON(node->bytenr != buf->start &&
4568		       node->new_bytenr != buf->start);
4569
4570		drop_node_buffer(node);
4571		extent_buffer_get(cow);
4572		node->eb = cow;
4573		node->new_bytenr = cow->start;
4574
4575		if (!node->pending) {
4576			list_move_tail(&node->list,
4577				       &rc->backref_cache.pending[level]);
4578			node->pending = 1;
4579		}
4580
4581		if (first_cow)
4582			__mark_block_processed(rc, node);
4583
4584		if (first_cow && level > 0)
4585			rc->nodes_relocated += buf->len;
4586	}
4587
4588	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4589		ret = replace_file_extents(trans, rc, root, cow);
4590	return ret;
4591}
4592
4593/*
4594 * called before creating snapshot. it calculates metadata reservation
4595 * requried for relocating tree blocks in the snapshot
4596 */
4597void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4598			      u64 *bytes_to_reserve)
4599{
4600	struct btrfs_root *root;
4601	struct reloc_control *rc;
4602
4603	root = pending->root;
4604	if (!root->reloc_root)
4605		return;
4606
4607	rc = root->fs_info->reloc_ctl;
4608	if (!rc->merge_reloc_tree)
4609		return;
4610
4611	root = root->reloc_root;
4612	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4613	/*
4614	 * relocation is in the stage of merging trees. the space
4615	 * used by merging a reloc tree is twice the size of
4616	 * relocated tree nodes in the worst case. half for cowing
4617	 * the reloc tree, half for cowing the fs tree. the space
4618	 * used by cowing the reloc tree will be freed after the
4619	 * tree is dropped. if we create snapshot, cowing the fs
4620	 * tree may use more space than it frees. so we need
4621	 * reserve extra space.
4622	 */
4623	*bytes_to_reserve += rc->nodes_relocated;
4624}
4625
4626/*
4627 * called after snapshot is created. migrate block reservation
4628 * and create reloc root for the newly created snapshot
 
 
 
 
4629 */
4630int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4631			       struct btrfs_pending_snapshot *pending)
4632{
4633	struct btrfs_root *root = pending->root;
4634	struct btrfs_root *reloc_root;
4635	struct btrfs_root *new_root;
4636	struct reloc_control *rc;
4637	int ret;
4638
4639	if (!root->reloc_root)
4640		return 0;
4641
4642	rc = root->fs_info->reloc_ctl;
4643	rc->merging_rsv_size += rc->nodes_relocated;
4644
4645	if (rc->merge_reloc_tree) {
4646		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4647					      rc->block_rsv,
4648					      rc->nodes_relocated);
4649		if (ret)
4650			return ret;
4651	}
4652
4653	new_root = pending->snap;
4654	reloc_root = create_reloc_root(trans, root->reloc_root,
4655				       new_root->root_key.objectid);
4656	if (IS_ERR(reloc_root))
4657		return PTR_ERR(reloc_root);
4658
4659	ret = __add_reloc_root(reloc_root);
4660	BUG_ON(ret < 0);
4661	new_root->reloc_root = reloc_root;
 
 
 
 
 
4662
4663	if (rc->create_reloc_tree)
4664		ret = clone_backref_node(trans, rc, root, reloc_root);
4665	return ret;
4666}