Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/pagemap.h>
   8#include <linux/writeback.h>
   9#include <linux/blkdev.h>
  10#include <linux/rbtree.h>
  11#include <linux/slab.h>
  12#include <linux/error-injection.h>
  13#include "ctree.h"
  14#include "disk-io.h"
  15#include "transaction.h"
  16#include "volumes.h"
  17#include "locking.h"
  18#include "btrfs_inode.h"
  19#include "async-thread.h"
  20#include "free-space-cache.h"
  21#include "qgroup.h"
  22#include "print-tree.h"
  23#include "delalloc-space.h"
  24#include "block-group.h"
  25#include "backref.h"
  26#include "misc.h"
  27#include "subpage.h"
  28#include "zoned.h"
  29#include "inode-item.h"
  30#include "space-info.h"
  31#include "fs.h"
  32#include "accessors.h"
  33#include "extent-tree.h"
  34#include "root-tree.h"
  35#include "file-item.h"
  36#include "relocation.h"
  37#include "super.h"
  38#include "tree-checker.h"
  39
  40/*
  41 * Relocation overview
  42 *
  43 * [What does relocation do]
  44 *
  45 * The objective of relocation is to relocate all extents of the target block
  46 * group to other block groups.
  47 * This is utilized by resize (shrink only), profile converting, compacting
  48 * space, or balance routine to spread chunks over devices.
  49 *
  50 * 		Before		|		After
  51 * ------------------------------------------------------------------
  52 *  BG A: 10 data extents	| BG A: deleted
  53 *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
  54 *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
  55 *
  56 * [How does relocation work]
  57 *
  58 * 1.   Mark the target block group read-only
  59 *      New extents won't be allocated from the target block group.
  60 *
  61 * 2.1  Record each extent in the target block group
  62 *      To build a proper map of extents to be relocated.
  63 *
  64 * 2.2  Build data reloc tree and reloc trees
  65 *      Data reloc tree will contain an inode, recording all newly relocated
  66 *      data extents.
  67 *      There will be only one data reloc tree for one data block group.
  68 *
  69 *      Reloc tree will be a special snapshot of its source tree, containing
  70 *      relocated tree blocks.
  71 *      Each tree referring to a tree block in target block group will get its
  72 *      reloc tree built.
  73 *
  74 * 2.3  Swap source tree with its corresponding reloc tree
  75 *      Each involved tree only refers to new extents after swap.
  76 *
  77 * 3.   Cleanup reloc trees and data reloc tree.
  78 *      As old extents in the target block group are still referenced by reloc
  79 *      trees, we need to clean them up before really freeing the target block
  80 *      group.
  81 *
  82 * The main complexity is in steps 2.2 and 2.3.
  83 *
  84 * The entry point of relocation is relocate_block_group() function.
  85 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  86
  87#define RELOCATION_RESERVED_NODES	256
  88/*
  89 * map address of tree root to tree
  90 */
  91struct mapping_node {
  92	struct {
  93		struct rb_node rb_node;
  94		u64 bytenr;
  95	}; /* Use rb_simle_node for search/insert */
  96	void *data;
  97};
  98
  99struct mapping_tree {
 100	struct rb_root rb_root;
 101	spinlock_t lock;
 102};
 103
 104/*
 105 * present a tree block to process
 106 */
 107struct tree_block {
 108	struct {
 109		struct rb_node rb_node;
 110		u64 bytenr;
 111	}; /* Use rb_simple_node for search/insert */
 112	u64 owner;
 113	struct btrfs_key key;
 114	unsigned int level:8;
 115	unsigned int key_ready:1;
 116};
 117
 118#define MAX_EXTENTS 128
 119
 120struct file_extent_cluster {
 121	u64 start;
 122	u64 end;
 123	u64 boundary[MAX_EXTENTS];
 124	unsigned int nr;
 125};
 126
 127struct reloc_control {
 128	/* block group to relocate */
 129	struct btrfs_block_group *block_group;
 130	/* extent tree */
 131	struct btrfs_root *extent_root;
 132	/* inode for moving data */
 133	struct inode *data_inode;
 134
 135	struct btrfs_block_rsv *block_rsv;
 136
 137	struct btrfs_backref_cache backref_cache;
 138
 139	struct file_extent_cluster cluster;
 140	/* tree blocks have been processed */
 141	struct extent_io_tree processed_blocks;
 142	/* map start of tree root to corresponding reloc tree */
 143	struct mapping_tree reloc_root_tree;
 144	/* list of reloc trees */
 145	struct list_head reloc_roots;
 146	/* list of subvolume trees that get relocated */
 147	struct list_head dirty_subvol_roots;
 148	/* size of metadata reservation for merging reloc trees */
 149	u64 merging_rsv_size;
 150	/* size of relocated tree nodes */
 151	u64 nodes_relocated;
 152	/* reserved size for block group relocation*/
 153	u64 reserved_bytes;
 154
 155	u64 search_start;
 156	u64 extents_found;
 157
 158	unsigned int stage:8;
 159	unsigned int create_reloc_tree:1;
 160	unsigned int merge_reloc_tree:1;
 161	unsigned int found_file_extent:1;
 
 162};
 163
 164/* stages of data relocation */
 165#define MOVE_DATA_EXTENTS	0
 166#define UPDATE_DATA_PTRS	1
 167
 168static void mark_block_processed(struct reloc_control *rc,
 169				 struct btrfs_backref_node *node)
 
 
 
 
 170{
 171	u32 blocksize;
 
 
 172
 173	if (node->level == 0 ||
 174	    in_range(node->bytenr, rc->block_group->start,
 175		     rc->block_group->length)) {
 176		blocksize = rc->extent_root->fs_info->nodesize;
 177		set_extent_bits(&rc->processed_blocks, node->bytenr,
 178				node->bytenr + blocksize - 1, EXTENT_DIRTY);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 179	}
 180	node->processed = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 181}
 182
 
 
 
 
 
 
 
 
 183
 184static void mapping_tree_init(struct mapping_tree *tree)
 185{
 186	tree->rb_root = RB_ROOT;
 187	spin_lock_init(&tree->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188}
 189
 190/*
 191 * walk up backref nodes until reach node presents tree root
 192 */
 193static struct btrfs_backref_node *walk_up_backref(
 194		struct btrfs_backref_node *node,
 195		struct btrfs_backref_edge *edges[], int *index)
 196{
 197	struct btrfs_backref_edge *edge;
 198	int idx = *index;
 199
 200	while (!list_empty(&node->upper)) {
 201		edge = list_entry(node->upper.next,
 202				  struct btrfs_backref_edge, list[LOWER]);
 203		edges[idx++] = edge;
 204		node = edge->node[UPPER];
 205	}
 206	BUG_ON(node->detached);
 207	*index = idx;
 208	return node;
 209}
 210
 211/*
 212 * walk down backref nodes to find start of next reference path
 213 */
 214static struct btrfs_backref_node *walk_down_backref(
 215		struct btrfs_backref_edge *edges[], int *index)
 216{
 217	struct btrfs_backref_edge *edge;
 218	struct btrfs_backref_node *lower;
 219	int idx = *index;
 220
 221	while (idx > 0) {
 222		edge = edges[idx - 1];
 223		lower = edge->node[LOWER];
 224		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
 225			idx--;
 226			continue;
 227		}
 228		edge = list_entry(edge->list[LOWER].next,
 229				  struct btrfs_backref_edge, list[LOWER]);
 230		edges[idx - 1] = edge;
 231		*index = idx;
 232		return edge->node[UPPER];
 233	}
 234	*index = 0;
 235	return NULL;
 236}
 237
 238static void update_backref_node(struct btrfs_backref_cache *cache,
 239				struct btrfs_backref_node *node, u64 bytenr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 240{
 241	struct rb_node *rb_node;
 242	rb_erase(&node->rb_node, &cache->rb_root);
 243	node->bytenr = bytenr;
 244	rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
 245	if (rb_node)
 246		btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
 247}
 248
 249/*
 250 * update backref cache after a transaction commit
 251 */
 252static int update_backref_cache(struct btrfs_trans_handle *trans,
 253				struct btrfs_backref_cache *cache)
 254{
 255	struct btrfs_backref_node *node;
 256	int level = 0;
 257
 258	if (cache->last_trans == 0) {
 259		cache->last_trans = trans->transid;
 260		return 0;
 261	}
 262
 263	if (cache->last_trans == trans->transid)
 264		return 0;
 265
 266	/*
 267	 * detached nodes are used to avoid unnecessary backref
 268	 * lookup. transaction commit changes the extent tree.
 269	 * so the detached nodes are no longer useful.
 270	 */
 271	while (!list_empty(&cache->detached)) {
 272		node = list_entry(cache->detached.next,
 273				  struct btrfs_backref_node, list);
 274		btrfs_backref_cleanup_node(cache, node);
 275	}
 276
 277	while (!list_empty(&cache->changed)) {
 278		node = list_entry(cache->changed.next,
 279				  struct btrfs_backref_node, list);
 280		list_del_init(&node->list);
 281		BUG_ON(node->pending);
 282		update_backref_node(cache, node, node->new_bytenr);
 283	}
 284
 285	/*
 286	 * some nodes can be left in the pending list if there were
 287	 * errors during processing the pending nodes.
 288	 */
 289	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
 290		list_for_each_entry(node, &cache->pending[level], list) {
 291			BUG_ON(!node->pending);
 292			if (node->bytenr == node->new_bytenr)
 293				continue;
 294			update_backref_node(cache, node, node->new_bytenr);
 295		}
 296	}
 297
 298	cache->last_trans = 0;
 299	return 1;
 300}
 301
 302static bool reloc_root_is_dead(struct btrfs_root *root)
 303{
 304	/*
 305	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
 306	 * btrfs_update_reloc_root. We need to see the updated bit before
 307	 * trying to access reloc_root
 308	 */
 309	smp_rmb();
 310	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
 311		return true;
 312	return false;
 313}
 314
 315/*
 316 * Check if this subvolume tree has valid reloc tree.
 317 *
 318 * Reloc tree after swap is considered dead, thus not considered as valid.
 319 * This is enough for most callers, as they don't distinguish dead reloc root
 320 * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
 321 * special case.
 322 */
 323static bool have_reloc_root(struct btrfs_root *root)
 324{
 325	if (reloc_root_is_dead(root))
 326		return false;
 327	if (!root->reloc_root)
 328		return false;
 329	return true;
 330}
 331
 332int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
 333{
 334	struct btrfs_root *reloc_root;
 335
 336	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 337		return 0;
 338
 339	/* This root has been merged with its reloc tree, we can ignore it */
 340	if (reloc_root_is_dead(root))
 341		return 1;
 342
 343	reloc_root = root->reloc_root;
 344	if (!reloc_root)
 345		return 0;
 346
 347	if (btrfs_header_generation(reloc_root->commit_root) ==
 348	    root->fs_info->running_transaction->transid)
 349		return 0;
 350	/*
 351	 * if there is reloc tree and it was created in previous
 352	 * transaction backref lookup can find the reloc tree,
 353	 * so backref node for the fs tree root is useless for
 354	 * relocation.
 355	 */
 356	return 1;
 357}
 358
 359/*
 360 * find reloc tree by address of tree root
 361 */
 362struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
 
 363{
 364	struct reloc_control *rc = fs_info->reloc_ctl;
 365	struct rb_node *rb_node;
 366	struct mapping_node *node;
 367	struct btrfs_root *root = NULL;
 368
 369	ASSERT(rc);
 370	spin_lock(&rc->reloc_root_tree.lock);
 371	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
 372	if (rb_node) {
 373		node = rb_entry(rb_node, struct mapping_node, rb_node);
 374		root = node->data;
 375	}
 376	spin_unlock(&rc->reloc_root_tree.lock);
 377	return btrfs_grab_root(root);
 378}
 379
 380/*
 381 * For useless nodes, do two major clean ups:
 382 *
 383 * - Cleanup the children edges and nodes
 384 *   If child node is also orphan (no parent) during cleanup, then the child
 385 *   node will also be cleaned up.
 386 *
 387 * - Freeing up leaves (level 0), keeps nodes detached
 388 *   For nodes, the node is still cached as "detached"
 389 *
 390 * Return false if @node is not in the @useless_nodes list.
 391 * Return true if @node is in the @useless_nodes list.
 392 */
 393static bool handle_useless_nodes(struct reloc_control *rc,
 394				 struct btrfs_backref_node *node)
 395{
 396	struct btrfs_backref_cache *cache = &rc->backref_cache;
 397	struct list_head *useless_node = &cache->useless_node;
 398	bool ret = false;
 
 
 
 
 
 
 399
 400	while (!list_empty(useless_node)) {
 401		struct btrfs_backref_node *cur;
 
 
 402
 403		cur = list_first_entry(useless_node, struct btrfs_backref_node,
 404				 list);
 405		list_del_init(&cur->list);
 
 
 
 406
 407		/* Only tree root nodes can be added to @useless_nodes */
 408		ASSERT(list_empty(&cur->upper));
 409
 410		if (cur == node)
 411			ret = true;
 
 
 
 
 
 
 
 412
 413		/* The node is the lowest node */
 414		if (cur->lowest) {
 415			list_del_init(&cur->lower);
 416			cur->lowest = 0;
 417		}
 418
 419		/* Cleanup the lower edges */
 420		while (!list_empty(&cur->lower)) {
 421			struct btrfs_backref_edge *edge;
 422			struct btrfs_backref_node *lower;
 423
 424			edge = list_entry(cur->lower.next,
 425					struct btrfs_backref_edge, list[UPPER]);
 426			list_del(&edge->list[UPPER]);
 427			list_del(&edge->list[LOWER]);
 428			lower = edge->node[LOWER];
 429			btrfs_backref_free_edge(cache, edge);
 430
 431			/* Child node is also orphan, queue for cleanup */
 432			if (list_empty(&lower->upper))
 433				list_add(&lower->list, useless_node);
 434		}
 435		/* Mark this block processed for relocation */
 436		mark_block_processed(rc, cur);
 437
 438		/*
 439		 * Backref nodes for tree leaves are deleted from the cache.
 440		 * Backref nodes for upper level tree blocks are left in the
 441		 * cache to avoid unnecessary backref lookup.
 442		 */
 443		if (cur->level > 0) {
 444			list_add(&cur->list, &cache->detached);
 445			cur->detached = 1;
 446		} else {
 447			rb_erase(&cur->rb_node, &cache->rb_root);
 448			btrfs_backref_free_node(cache, cur);
 449		}
 
 450	}
 451	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 452}
 453
 454/*
 455 * Build backref tree for a given tree block. Root of the backref tree
 456 * corresponds the tree block, leaves of the backref tree correspond roots of
 457 * b-trees that reference the tree block.
 458 *
 459 * The basic idea of this function is check backrefs of a given block to find
 460 * upper level blocks that reference the block, and then check backrefs of
 461 * these upper level blocks recursively. The recursion stops when tree root is
 462 * reached or backrefs for the block is cached.
 463 *
 464 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
 465 * all upper level blocks that directly/indirectly reference the block are also
 466 * cached.
 467 */
 468static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
 469			struct reloc_control *rc, struct btrfs_key *node_key,
 470			int level, u64 bytenr)
 471{
 472	struct btrfs_backref_iter *iter;
 473	struct btrfs_backref_cache *cache = &rc->backref_cache;
 474	/* For searching parent of TREE_BLOCK_REF */
 475	struct btrfs_path *path;
 476	struct btrfs_backref_node *cur;
 477	struct btrfs_backref_node *node = NULL;
 478	struct btrfs_backref_edge *edge;
 
 
 
 
 
 
 
 
 
 
 
 
 479	int ret;
 480	int err = 0;
 481
 482	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info);
 483	if (!iter)
 484		return ERR_PTR(-ENOMEM);
 485	path = btrfs_alloc_path();
 486	if (!path) {
 487		err = -ENOMEM;
 488		goto out;
 489	}
 
 
 490
 491	node = btrfs_backref_alloc_node(cache, bytenr, level);
 492	if (!node) {
 493		err = -ENOMEM;
 494		goto out;
 495	}
 496
 
 
 497	node->lowest = 1;
 498	cur = node;
 
 
 
 
 
 
 499
 500	/* Breadth-first search to build backref cache */
 501	do {
 502		ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
 503						  cur);
 504		if (ret < 0) {
 505			err = ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 506			goto out;
 507		}
 508		edge = list_first_entry_or_null(&cache->pending_edge,
 509				struct btrfs_backref_edge, list[UPPER]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 510		/*
 511		 * The pending list isn't empty, take the first block to
 512		 * process
 513		 */
 514		if (edge) {
 515			list_del_init(&edge->list[UPPER]);
 516			cur = edge->node[UPPER];
 
 
 
 
 
 517		}
 518	} while (edge);
 
 519
 520	/* Finish the upper linkage of newly added edges/nodes */
 521	ret = btrfs_backref_finish_upper_links(cache, node);
 522	if (ret < 0) {
 523		err = ret;
 524		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 525	}
 526
 527	if (handle_useless_nodes(rc, node))
 528		node = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 529out:
 530	btrfs_backref_iter_free(iter);
 531	btrfs_free_path(path);
 532	if (err) {
 533		btrfs_backref_error_cleanup(cache, node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 534		return ERR_PTR(err);
 535	}
 536	ASSERT(!node || !node->detached);
 537	ASSERT(list_empty(&cache->useless_node) &&
 538	       list_empty(&cache->pending_edge));
 539	return node;
 540}
 541
 542/*
 543 * helper to add backref node for the newly created snapshot.
 544 * the backref node is created by cloning backref node that
 545 * corresponds to root of source tree
 546 */
 547static int clone_backref_node(struct btrfs_trans_handle *trans,
 548			      struct reloc_control *rc,
 549			      struct btrfs_root *src,
 550			      struct btrfs_root *dest)
 551{
 552	struct btrfs_root *reloc_root = src->reloc_root;
 553	struct btrfs_backref_cache *cache = &rc->backref_cache;
 554	struct btrfs_backref_node *node = NULL;
 555	struct btrfs_backref_node *new_node;
 556	struct btrfs_backref_edge *edge;
 557	struct btrfs_backref_edge *new_edge;
 558	struct rb_node *rb_node;
 559
 560	if (cache->last_trans > 0)
 561		update_backref_cache(trans, cache);
 562
 563	rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
 564	if (rb_node) {
 565		node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
 566		if (node->detached)
 567			node = NULL;
 568		else
 569			BUG_ON(node->new_bytenr != reloc_root->node->start);
 570	}
 571
 572	if (!node) {
 573		rb_node = rb_simple_search(&cache->rb_root,
 574					   reloc_root->commit_root->start);
 575		if (rb_node) {
 576			node = rb_entry(rb_node, struct btrfs_backref_node,
 577					rb_node);
 578			BUG_ON(node->detached);
 579		}
 580	}
 581
 582	if (!node)
 583		return 0;
 584
 585	new_node = btrfs_backref_alloc_node(cache, dest->node->start,
 586					    node->level);
 587	if (!new_node)
 588		return -ENOMEM;
 589
 
 
 590	new_node->lowest = node->lowest;
 591	new_node->checked = 1;
 592	new_node->root = btrfs_grab_root(dest);
 593	ASSERT(new_node->root);
 594
 595	if (!node->lowest) {
 596		list_for_each_entry(edge, &node->lower, list[UPPER]) {
 597			new_edge = btrfs_backref_alloc_edge(cache);
 598			if (!new_edge)
 599				goto fail;
 600
 601			btrfs_backref_link_edge(new_edge, edge->node[LOWER],
 602						new_node, LINK_UPPER);
 
 
 603		}
 604	} else {
 605		list_add_tail(&new_node->lower, &cache->leaves);
 606	}
 607
 608	rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
 609				   &new_node->rb_node);
 610	if (rb_node)
 611		btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
 612
 613	if (!new_node->lowest) {
 614		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
 615			list_add_tail(&new_edge->list[LOWER],
 616				      &new_edge->node[LOWER]->upper);
 617		}
 618	}
 619	return 0;
 620fail:
 621	while (!list_empty(&new_node->lower)) {
 622		new_edge = list_entry(new_node->lower.next,
 623				      struct btrfs_backref_edge, list[UPPER]);
 624		list_del(&new_edge->list[UPPER]);
 625		btrfs_backref_free_edge(cache, new_edge);
 626	}
 627	btrfs_backref_free_node(cache, new_node);
 628	return -ENOMEM;
 629}
 630
 631/*
 632 * helper to add 'address of tree root -> reloc tree' mapping
 633 */
 634static int __must_check __add_reloc_root(struct btrfs_root *root)
 635{
 636	struct btrfs_fs_info *fs_info = root->fs_info;
 637	struct rb_node *rb_node;
 638	struct mapping_node *node;
 639	struct reloc_control *rc = fs_info->reloc_ctl;
 640
 641	node = kmalloc(sizeof(*node), GFP_NOFS);
 642	if (!node)
 643		return -ENOMEM;
 644
 645	node->bytenr = root->commit_root->start;
 646	node->data = root;
 647
 648	spin_lock(&rc->reloc_root_tree.lock);
 649	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
 650				   node->bytenr, &node->rb_node);
 651	spin_unlock(&rc->reloc_root_tree.lock);
 652	if (rb_node) {
 653		btrfs_err(fs_info,
 654			    "Duplicate root found for start=%llu while inserting into relocation tree",
 655			    node->bytenr);
 656		return -EEXIST;
 657	}
 658
 659	list_add_tail(&root->root_list, &rc->reloc_roots);
 660	return 0;
 661}
 662
 663/*
 664 * helper to delete the 'address of tree root -> reloc tree'
 665 * mapping
 666 */
 667static void __del_reloc_root(struct btrfs_root *root)
 668{
 669	struct btrfs_fs_info *fs_info = root->fs_info;
 670	struct rb_node *rb_node;
 671	struct mapping_node *node = NULL;
 672	struct reloc_control *rc = fs_info->reloc_ctl;
 673	bool put_ref = false;
 674
 675	if (rc && root->node) {
 676		spin_lock(&rc->reloc_root_tree.lock);
 677		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
 678					   root->commit_root->start);
 679		if (rb_node) {
 680			node = rb_entry(rb_node, struct mapping_node, rb_node);
 681			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
 682			RB_CLEAR_NODE(&node->rb_node);
 683		}
 684		spin_unlock(&rc->reloc_root_tree.lock);
 685		ASSERT(!node || (struct btrfs_root *)node->data == root);
 686	}
 687
 688	/*
 689	 * We only put the reloc root here if it's on the list.  There's a lot
 690	 * of places where the pattern is to splice the rc->reloc_roots, process
 691	 * the reloc roots, and then add the reloc root back onto
 692	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
 693	 * list we don't want the reference being dropped, because the guy
 694	 * messing with the list is in charge of the reference.
 695	 */
 696	spin_lock(&fs_info->trans_lock);
 697	if (!list_empty(&root->root_list)) {
 698		put_ref = true;
 699		list_del_init(&root->root_list);
 700	}
 701	spin_unlock(&fs_info->trans_lock);
 702	if (put_ref)
 703		btrfs_put_root(root);
 704	kfree(node);
 705}
 706
 707/*
 708 * helper to update the 'address of tree root -> reloc tree'
 709 * mapping
 710 */
 711static int __update_reloc_root(struct btrfs_root *root)
 712{
 713	struct btrfs_fs_info *fs_info = root->fs_info;
 714	struct rb_node *rb_node;
 715	struct mapping_node *node = NULL;
 716	struct reloc_control *rc = fs_info->reloc_ctl;
 717
 718	spin_lock(&rc->reloc_root_tree.lock);
 719	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
 720				   root->commit_root->start);
 721	if (rb_node) {
 722		node = rb_entry(rb_node, struct mapping_node, rb_node);
 723		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
 724	}
 725	spin_unlock(&rc->reloc_root_tree.lock);
 726
 727	if (!node)
 728		return 0;
 729	BUG_ON((struct btrfs_root *)node->data != root);
 730
 731	spin_lock(&rc->reloc_root_tree.lock);
 732	node->bytenr = root->node->start;
 733	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
 734				   node->bytenr, &node->rb_node);
 735	spin_unlock(&rc->reloc_root_tree.lock);
 736	if (rb_node)
 737		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
 
 
 
 
 738	return 0;
 739}
 740
 741static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
 742					struct btrfs_root *root, u64 objectid)
 743{
 744	struct btrfs_fs_info *fs_info = root->fs_info;
 745	struct btrfs_root *reloc_root;
 746	struct extent_buffer *eb;
 747	struct btrfs_root_item *root_item;
 748	struct btrfs_key root_key;
 749	int ret = 0;
 750	bool must_abort = false;
 751
 752	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
 753	if (!root_item)
 754		return ERR_PTR(-ENOMEM);
 755
 756	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
 757	root_key.type = BTRFS_ROOT_ITEM_KEY;
 758	root_key.offset = objectid;
 759
 760	if (root->root_key.objectid == objectid) {
 761		u64 commit_root_gen;
 762
 763		/* called by btrfs_init_reloc_root */
 764		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
 765				      BTRFS_TREE_RELOC_OBJECTID);
 766		if (ret)
 767			goto fail;
 768
 769		/*
 770		 * Set the last_snapshot field to the generation of the commit
 771		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
 772		 * correctly (returns true) when the relocation root is created
 773		 * either inside the critical section of a transaction commit
 774		 * (through transaction.c:qgroup_account_snapshot()) and when
 775		 * it's created before the transaction commit is started.
 776		 */
 777		commit_root_gen = btrfs_header_generation(root->commit_root);
 778		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
 779	} else {
 780		/*
 781		 * called by btrfs_reloc_post_snapshot_hook.
 782		 * the source tree is a reloc tree, all tree blocks
 783		 * modified after it was created have RELOC flag
 784		 * set in their headers. so it's OK to not update
 785		 * the 'last_snapshot'.
 786		 */
 787		ret = btrfs_copy_root(trans, root, root->node, &eb,
 788				      BTRFS_TREE_RELOC_OBJECTID);
 789		if (ret)
 790			goto fail;
 791	}
 792
 793	/*
 794	 * We have changed references at this point, we must abort the
 795	 * transaction if anything fails.
 796	 */
 797	must_abort = true;
 798
 799	memcpy(root_item, &root->root_item, sizeof(*root_item));
 800	btrfs_set_root_bytenr(root_item, eb->start);
 801	btrfs_set_root_level(root_item, btrfs_header_level(eb));
 802	btrfs_set_root_generation(root_item, trans->transid);
 803
 804	if (root->root_key.objectid == objectid) {
 805		btrfs_set_root_refs(root_item, 0);
 806		memset(&root_item->drop_progress, 0,
 807		       sizeof(struct btrfs_disk_key));
 808		btrfs_set_root_drop_level(root_item, 0);
 809	}
 810
 811	btrfs_tree_unlock(eb);
 812	free_extent_buffer(eb);
 813
 814	ret = btrfs_insert_root(trans, fs_info->tree_root,
 815				&root_key, root_item);
 816	if (ret)
 817		goto fail;
 818
 819	kfree(root_item);
 820
 821	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
 822	if (IS_ERR(reloc_root)) {
 823		ret = PTR_ERR(reloc_root);
 824		goto abort;
 825	}
 826	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
 827	reloc_root->last_trans = trans->transid;
 828	return reloc_root;
 829fail:
 830	kfree(root_item);
 831abort:
 832	if (must_abort)
 833		btrfs_abort_transaction(trans, ret);
 834	return ERR_PTR(ret);
 835}
 836
 837/*
 838 * create reloc tree for a given fs tree. reloc tree is just a
 839 * snapshot of the fs tree with special root objectid.
 840 *
 841 * The reloc_root comes out of here with two references, one for
 842 * root->reloc_root, and another for being on the rc->reloc_roots list.
 843 */
 844int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
 845			  struct btrfs_root *root)
 846{
 847	struct btrfs_fs_info *fs_info = root->fs_info;
 848	struct btrfs_root *reloc_root;
 849	struct reloc_control *rc = fs_info->reloc_ctl;
 850	struct btrfs_block_rsv *rsv;
 851	int clear_rsv = 0;
 852	int ret;
 853
 854	if (!rc)
 855		return 0;
 856
 857	/*
 858	 * The subvolume has reloc tree but the swap is finished, no need to
 859	 * create/update the dead reloc tree
 860	 */
 861	if (reloc_root_is_dead(root))
 862		return 0;
 863
 864	/*
 865	 * This is subtle but important.  We do not do
 866	 * record_root_in_transaction for reloc roots, instead we record their
 867	 * corresponding fs root, and then here we update the last trans for the
 868	 * reloc root.  This means that we have to do this for the entire life
 869	 * of the reloc root, regardless of which stage of the relocation we are
 870	 * in.
 871	 */
 872	if (root->reloc_root) {
 873		reloc_root = root->reloc_root;
 874		reloc_root->last_trans = trans->transid;
 875		return 0;
 876	}
 877
 878	/*
 879	 * We are merging reloc roots, we do not need new reloc trees.  Also
 880	 * reloc trees never need their own reloc tree.
 881	 */
 882	if (!rc->create_reloc_tree ||
 883	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
 884		return 0;
 885
 886	if (!trans->reloc_reserved) {
 887		rsv = trans->block_rsv;
 888		trans->block_rsv = rc->block_rsv;
 889		clear_rsv = 1;
 890	}
 891	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
 892	if (clear_rsv)
 893		trans->block_rsv = rsv;
 894	if (IS_ERR(reloc_root))
 895		return PTR_ERR(reloc_root);
 896
 897	ret = __add_reloc_root(reloc_root);
 898	ASSERT(ret != -EEXIST);
 899	if (ret) {
 900		/* Pairs with create_reloc_root */
 901		btrfs_put_root(reloc_root);
 902		return ret;
 903	}
 904	root->reloc_root = btrfs_grab_root(reloc_root);
 905	return 0;
 906}
 907
 908/*
 909 * update root item of reloc tree
 910 */
 911int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
 912			    struct btrfs_root *root)
 913{
 914	struct btrfs_fs_info *fs_info = root->fs_info;
 915	struct btrfs_root *reloc_root;
 916	struct btrfs_root_item *root_item;
 
 917	int ret;
 918
 919	if (!have_reloc_root(root))
 920		return 0;
 921
 922	reloc_root = root->reloc_root;
 923	root_item = &reloc_root->root_item;
 924
 925	/*
 926	 * We are probably ok here, but __del_reloc_root() will drop its ref of
 927	 * the root.  We have the ref for root->reloc_root, but just in case
 928	 * hold it while we update the reloc root.
 929	 */
 930	btrfs_grab_root(reloc_root);
 931
 932	/* root->reloc_root will stay until current relocation finished */
 933	if (fs_info->reloc_ctl->merge_reloc_tree &&
 934	    btrfs_root_refs(root_item) == 0) {
 935		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
 936		/*
 937		 * Mark the tree as dead before we change reloc_root so
 938		 * have_reloc_root will not touch it from now on.
 939		 */
 940		smp_wmb();
 941		__del_reloc_root(reloc_root);
 942	}
 943
 
 
 944	if (reloc_root->commit_root != reloc_root->node) {
 945		__update_reloc_root(reloc_root);
 946		btrfs_set_root_node(root_item, reloc_root->node);
 947		free_extent_buffer(reloc_root->commit_root);
 948		reloc_root->commit_root = btrfs_root_node(reloc_root);
 949	}
 950
 951	ret = btrfs_update_root(trans, fs_info->tree_root,
 952				&reloc_root->root_key, root_item);
 953	btrfs_put_root(reloc_root);
 954	return ret;
 
 
 955}
 956
 957/*
 958 * helper to find first cached inode with inode number >= objectid
 959 * in a subvolume
 960 */
 961static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
 962{
 963	struct rb_node *node;
 964	struct rb_node *prev;
 965	struct btrfs_inode *entry;
 966	struct inode *inode;
 967
 968	spin_lock(&root->inode_lock);
 969again:
 970	node = root->inode_tree.rb_node;
 971	prev = NULL;
 972	while (node) {
 973		prev = node;
 974		entry = rb_entry(node, struct btrfs_inode, rb_node);
 975
 976		if (objectid < btrfs_ino(entry))
 977			node = node->rb_left;
 978		else if (objectid > btrfs_ino(entry))
 979			node = node->rb_right;
 980		else
 981			break;
 982	}
 983	if (!node) {
 984		while (prev) {
 985			entry = rb_entry(prev, struct btrfs_inode, rb_node);
 986			if (objectid <= btrfs_ino(entry)) {
 987				node = prev;
 988				break;
 989			}
 990			prev = rb_next(prev);
 991		}
 992	}
 993	while (node) {
 994		entry = rb_entry(node, struct btrfs_inode, rb_node);
 995		inode = igrab(&entry->vfs_inode);
 996		if (inode) {
 997			spin_unlock(&root->inode_lock);
 998			return inode;
 999		}
1000
1001		objectid = btrfs_ino(entry) + 1;
1002		if (cond_resched_lock(&root->inode_lock))
1003			goto again;
1004
1005		node = rb_next(node);
1006	}
1007	spin_unlock(&root->inode_lock);
1008	return NULL;
1009}
1010
 
 
 
 
 
 
 
 
 
1011/*
1012 * get new location of data
1013 */
1014static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1015			    u64 bytenr, u64 num_bytes)
1016{
1017	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1018	struct btrfs_path *path;
1019	struct btrfs_file_extent_item *fi;
1020	struct extent_buffer *leaf;
1021	int ret;
1022
1023	path = btrfs_alloc_path();
1024	if (!path)
1025		return -ENOMEM;
1026
1027	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1028	ret = btrfs_lookup_file_extent(NULL, root, path,
1029			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1030	if (ret < 0)
1031		goto out;
1032	if (ret > 0) {
1033		ret = -ENOENT;
1034		goto out;
1035	}
1036
1037	leaf = path->nodes[0];
1038	fi = btrfs_item_ptr(leaf, path->slots[0],
1039			    struct btrfs_file_extent_item);
1040
1041	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1042	       btrfs_file_extent_compression(leaf, fi) ||
1043	       btrfs_file_extent_encryption(leaf, fi) ||
1044	       btrfs_file_extent_other_encoding(leaf, fi));
1045
1046	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1047		ret = -EINVAL;
1048		goto out;
1049	}
1050
1051	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1052	ret = 0;
1053out:
1054	btrfs_free_path(path);
1055	return ret;
1056}
1057
1058/*
1059 * update file extent items in the tree leaf to point to
1060 * the new locations.
1061 */
1062static noinline_for_stack
1063int replace_file_extents(struct btrfs_trans_handle *trans,
1064			 struct reloc_control *rc,
1065			 struct btrfs_root *root,
1066			 struct extent_buffer *leaf)
1067{
1068	struct btrfs_fs_info *fs_info = root->fs_info;
1069	struct btrfs_key key;
1070	struct btrfs_file_extent_item *fi;
1071	struct inode *inode = NULL;
1072	u64 parent;
1073	u64 bytenr;
1074	u64 new_bytenr = 0;
1075	u64 num_bytes;
1076	u64 end;
1077	u32 nritems;
1078	u32 i;
1079	int ret = 0;
1080	int first = 1;
1081	int dirty = 0;
1082
1083	if (rc->stage != UPDATE_DATA_PTRS)
1084		return 0;
1085
1086	/* reloc trees always use full backref */
1087	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1088		parent = leaf->start;
1089	else
1090		parent = 0;
1091
1092	nritems = btrfs_header_nritems(leaf);
1093	for (i = 0; i < nritems; i++) {
1094		struct btrfs_ref ref = { 0 };
1095
1096		cond_resched();
1097		btrfs_item_key_to_cpu(leaf, &key, i);
1098		if (key.type != BTRFS_EXTENT_DATA_KEY)
1099			continue;
1100		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1101		if (btrfs_file_extent_type(leaf, fi) ==
1102		    BTRFS_FILE_EXTENT_INLINE)
1103			continue;
1104		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1105		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1106		if (bytenr == 0)
1107			continue;
1108		if (!in_range(bytenr, rc->block_group->start,
1109			      rc->block_group->length))
1110			continue;
1111
1112		/*
1113		 * if we are modifying block in fs tree, wait for read_folio
1114		 * to complete and drop the extent cache
1115		 */
1116		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1117			if (first) {
1118				inode = find_next_inode(root, key.objectid);
1119				first = 0;
1120			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1121				btrfs_add_delayed_iput(BTRFS_I(inode));
1122				inode = find_next_inode(root, key.objectid);
1123			}
1124			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1125				struct extent_state *cached_state = NULL;
1126
1127				end = key.offset +
1128				      btrfs_file_extent_num_bytes(leaf, fi);
1129				WARN_ON(!IS_ALIGNED(key.offset,
1130						    fs_info->sectorsize));
1131				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1132				end--;
1133				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1134						      key.offset, end,
1135						      &cached_state);
1136				if (!ret)
1137					continue;
1138
1139				btrfs_drop_extent_map_range(BTRFS_I(inode),
1140							    key.offset, end, true);
1141				unlock_extent(&BTRFS_I(inode)->io_tree,
1142					      key.offset, end, &cached_state);
1143			}
1144		}
1145
1146		ret = get_new_location(rc->data_inode, &new_bytenr,
1147				       bytenr, num_bytes);
1148		if (ret) {
1149			/*
1150			 * Don't have to abort since we've not changed anything
1151			 * in the file extent yet.
1152			 */
1153			break;
1154		}
 
1155
1156		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1157		dirty = 1;
1158
1159		key.offset -= btrfs_file_extent_offset(leaf, fi);
1160		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1161				       num_bytes, parent);
1162		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1163				    key.objectid, key.offset,
1164				    root->root_key.objectid, false);
1165		ret = btrfs_inc_extent_ref(trans, &ref);
1166		if (ret) {
1167			btrfs_abort_transaction(trans, ret);
1168			break;
1169		}
1170
1171		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1172				       num_bytes, parent);
1173		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1174				    key.objectid, key.offset,
1175				    root->root_key.objectid, false);
1176		ret = btrfs_free_extent(trans, &ref);
1177		if (ret) {
1178			btrfs_abort_transaction(trans, ret);
1179			break;
1180		}
1181	}
1182	if (dirty)
1183		btrfs_mark_buffer_dirty(leaf);
1184	if (inode)
1185		btrfs_add_delayed_iput(BTRFS_I(inode));
1186	return ret;
1187}
1188
1189static noinline_for_stack
1190int memcmp_node_keys(struct extent_buffer *eb, int slot,
1191		     struct btrfs_path *path, int level)
1192{
1193	struct btrfs_disk_key key1;
1194	struct btrfs_disk_key key2;
1195	btrfs_node_key(eb, &key1, slot);
1196	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1197	return memcmp(&key1, &key2, sizeof(key1));
1198}
1199
1200/*
1201 * try to replace tree blocks in fs tree with the new blocks
1202 * in reloc tree. tree blocks haven't been modified since the
1203 * reloc tree was create can be replaced.
1204 *
1205 * if a block was replaced, level of the block + 1 is returned.
1206 * if no block got replaced, 0 is returned. if there are other
1207 * errors, a negative error number is returned.
1208 */
1209static noinline_for_stack
1210int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1211		 struct btrfs_root *dest, struct btrfs_root *src,
1212		 struct btrfs_path *path, struct btrfs_key *next_key,
1213		 int lowest_level, int max_level)
1214{
1215	struct btrfs_fs_info *fs_info = dest->fs_info;
1216	struct extent_buffer *eb;
1217	struct extent_buffer *parent;
1218	struct btrfs_ref ref = { 0 };
1219	struct btrfs_key key;
1220	u64 old_bytenr;
1221	u64 new_bytenr;
1222	u64 old_ptr_gen;
1223	u64 new_ptr_gen;
1224	u64 last_snapshot;
1225	u32 blocksize;
1226	int cow = 0;
1227	int level;
1228	int ret;
1229	int slot;
1230
1231	ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1232	ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1233
1234	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1235again:
1236	slot = path->slots[lowest_level];
1237	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1238
1239	eb = btrfs_lock_root_node(dest);
 
1240	level = btrfs_header_level(eb);
1241
1242	if (level < lowest_level) {
1243		btrfs_tree_unlock(eb);
1244		free_extent_buffer(eb);
1245		return 0;
1246	}
1247
1248	if (cow) {
1249		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1250				      BTRFS_NESTING_COW);
1251		if (ret) {
1252			btrfs_tree_unlock(eb);
1253			free_extent_buffer(eb);
1254			return ret;
1255		}
1256	}
 
1257
1258	if (next_key) {
1259		next_key->objectid = (u64)-1;
1260		next_key->type = (u8)-1;
1261		next_key->offset = (u64)-1;
1262	}
1263
1264	parent = eb;
1265	while (1) {
1266		level = btrfs_header_level(parent);
1267		ASSERT(level >= lowest_level);
1268
1269		ret = btrfs_bin_search(parent, &key, &slot);
1270		if (ret < 0)
1271			break;
1272		if (ret && slot > 0)
1273			slot--;
1274
1275		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1276			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1277
1278		old_bytenr = btrfs_node_blockptr(parent, slot);
1279		blocksize = fs_info->nodesize;
1280		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1281
1282		if (level <= max_level) {
1283			eb = path->nodes[level];
1284			new_bytenr = btrfs_node_blockptr(eb,
1285							path->slots[level]);
1286			new_ptr_gen = btrfs_node_ptr_generation(eb,
1287							path->slots[level]);
1288		} else {
1289			new_bytenr = 0;
1290			new_ptr_gen = 0;
1291		}
1292
1293		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
 
1294			ret = level;
1295			break;
1296		}
1297
1298		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1299		    memcmp_node_keys(parent, slot, path, level)) {
1300			if (level <= lowest_level) {
1301				ret = 0;
1302				break;
1303			}
1304
1305			eb = btrfs_read_node_slot(parent, slot);
1306			if (IS_ERR(eb)) {
1307				ret = PTR_ERR(eb);
1308				break;
1309			}
1310			btrfs_tree_lock(eb);
1311			if (cow) {
1312				ret = btrfs_cow_block(trans, dest, eb, parent,
1313						      slot, &eb,
1314						      BTRFS_NESTING_COW);
1315				if (ret) {
1316					btrfs_tree_unlock(eb);
1317					free_extent_buffer(eb);
1318					break;
1319				}
1320			}
 
1321
1322			btrfs_tree_unlock(parent);
1323			free_extent_buffer(parent);
1324
1325			parent = eb;
1326			continue;
1327		}
1328
1329		if (!cow) {
1330			btrfs_tree_unlock(parent);
1331			free_extent_buffer(parent);
1332			cow = 1;
1333			goto again;
1334		}
1335
1336		btrfs_node_key_to_cpu(path->nodes[level], &key,
1337				      path->slots[level]);
1338		btrfs_release_path(path);
1339
1340		path->lowest_level = level;
1341		set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1342		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1343		clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1344		path->lowest_level = 0;
1345		if (ret) {
1346			if (ret > 0)
1347				ret = -ENOENT;
1348			break;
1349		}
1350
1351		/*
1352		 * Info qgroup to trace both subtrees.
1353		 *
1354		 * We must trace both trees.
1355		 * 1) Tree reloc subtree
1356		 *    If not traced, we will leak data numbers
1357		 * 2) Fs subtree
1358		 *    If not traced, we will double count old data
1359		 *
1360		 * We don't scan the subtree right now, but only record
1361		 * the swapped tree blocks.
1362		 * The real subtree rescan is delayed until we have new
1363		 * CoW on the subtree root node before transaction commit.
1364		 */
1365		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1366				rc->block_group, parent, slot,
1367				path->nodes[level], path->slots[level],
1368				last_snapshot);
1369		if (ret < 0)
1370			break;
1371		/*
1372		 * swap blocks in fs tree and reloc tree.
1373		 */
1374		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1375		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1376		btrfs_mark_buffer_dirty(parent);
1377
1378		btrfs_set_node_blockptr(path->nodes[level],
1379					path->slots[level], old_bytenr);
1380		btrfs_set_node_ptr_generation(path->nodes[level],
1381					      path->slots[level], old_ptr_gen);
1382		btrfs_mark_buffer_dirty(path->nodes[level]);
1383
1384		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1385				       blocksize, path->nodes[level]->start);
1386		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1387				    0, true);
1388		ret = btrfs_inc_extent_ref(trans, &ref);
1389		if (ret) {
1390			btrfs_abort_transaction(trans, ret);
1391			break;
1392		}
1393		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1394				       blocksize, 0);
1395		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 0,
1396				    true);
1397		ret = btrfs_inc_extent_ref(trans, &ref);
1398		if (ret) {
1399			btrfs_abort_transaction(trans, ret);
1400			break;
1401		}
1402
1403		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1404				       blocksize, path->nodes[level]->start);
1405		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1406				    0, true);
1407		ret = btrfs_free_extent(trans, &ref);
1408		if (ret) {
1409			btrfs_abort_transaction(trans, ret);
1410			break;
1411		}
1412
1413		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1414				       blocksize, 0);
1415		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid,
1416				    0, true);
1417		ret = btrfs_free_extent(trans, &ref);
1418		if (ret) {
1419			btrfs_abort_transaction(trans, ret);
1420			break;
1421		}
1422
1423		btrfs_unlock_up_safe(path, 0);
1424
1425		ret = level;
1426		break;
1427	}
1428	btrfs_tree_unlock(parent);
1429	free_extent_buffer(parent);
1430	return ret;
1431}
1432
1433/*
1434 * helper to find next relocated block in reloc tree
1435 */
1436static noinline_for_stack
1437int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1438		       int *level)
1439{
1440	struct extent_buffer *eb;
1441	int i;
1442	u64 last_snapshot;
1443	u32 nritems;
1444
1445	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1446
1447	for (i = 0; i < *level; i++) {
1448		free_extent_buffer(path->nodes[i]);
1449		path->nodes[i] = NULL;
1450	}
1451
1452	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1453		eb = path->nodes[i];
1454		nritems = btrfs_header_nritems(eb);
1455		while (path->slots[i] + 1 < nritems) {
1456			path->slots[i]++;
1457			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1458			    last_snapshot)
1459				continue;
1460
1461			*level = i;
1462			return 0;
1463		}
1464		free_extent_buffer(path->nodes[i]);
1465		path->nodes[i] = NULL;
1466	}
1467	return 1;
1468}
1469
1470/*
1471 * walk down reloc tree to find relocated block of lowest level
1472 */
1473static noinline_for_stack
1474int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1475			 int *level)
1476{
1477	struct extent_buffer *eb = NULL;
1478	int i;
 
1479	u64 ptr_gen = 0;
1480	u64 last_snapshot;
 
1481	u32 nritems;
1482
1483	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1484
1485	for (i = *level; i > 0; i--) {
1486		eb = path->nodes[i];
1487		nritems = btrfs_header_nritems(eb);
1488		while (path->slots[i] < nritems) {
1489			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1490			if (ptr_gen > last_snapshot)
1491				break;
1492			path->slots[i]++;
1493		}
1494		if (path->slots[i] >= nritems) {
1495			if (i == *level)
1496				break;
1497			*level = i + 1;
1498			return 0;
1499		}
1500		if (i == 1) {
1501			*level = i;
1502			return 0;
1503		}
1504
1505		eb = btrfs_read_node_slot(eb, path->slots[i]);
1506		if (IS_ERR(eb))
1507			return PTR_ERR(eb);
1508		BUG_ON(btrfs_header_level(eb) != i - 1);
1509		path->nodes[i - 1] = eb;
1510		path->slots[i - 1] = 0;
1511	}
1512	return 1;
1513}
1514
1515/*
1516 * invalidate extent cache for file extents whose key in range of
1517 * [min_key, max_key)
1518 */
1519static int invalidate_extent_cache(struct btrfs_root *root,
1520				   struct btrfs_key *min_key,
1521				   struct btrfs_key *max_key)
1522{
1523	struct btrfs_fs_info *fs_info = root->fs_info;
1524	struct inode *inode = NULL;
1525	u64 objectid;
1526	u64 start, end;
1527	u64 ino;
1528
1529	objectid = min_key->objectid;
1530	while (1) {
1531		struct extent_state *cached_state = NULL;
1532
1533		cond_resched();
1534		iput(inode);
1535
1536		if (objectid > max_key->objectid)
1537			break;
1538
1539		inode = find_next_inode(root, objectid);
1540		if (!inode)
1541			break;
1542		ino = btrfs_ino(BTRFS_I(inode));
1543
1544		if (ino > max_key->objectid) {
1545			iput(inode);
1546			break;
1547		}
1548
1549		objectid = ino + 1;
1550		if (!S_ISREG(inode->i_mode))
1551			continue;
1552
1553		if (unlikely(min_key->objectid == ino)) {
1554			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1555				continue;
1556			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1557				start = 0;
1558			else {
1559				start = min_key->offset;
1560				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1561			}
1562		} else {
1563			start = 0;
1564		}
1565
1566		if (unlikely(max_key->objectid == ino)) {
1567			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1568				continue;
1569			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1570				end = (u64)-1;
1571			} else {
1572				if (max_key->offset == 0)
1573					continue;
1574				end = max_key->offset;
1575				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1576				end--;
1577			}
1578		} else {
1579			end = (u64)-1;
1580		}
1581
1582		/* the lock_extent waits for read_folio to complete */
1583		lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
1584		btrfs_drop_extent_map_range(BTRFS_I(inode), start, end, true);
1585		unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
1586	}
1587	return 0;
1588}
1589
1590static int find_next_key(struct btrfs_path *path, int level,
1591			 struct btrfs_key *key)
1592
1593{
1594	while (level < BTRFS_MAX_LEVEL) {
1595		if (!path->nodes[level])
1596			break;
1597		if (path->slots[level] + 1 <
1598		    btrfs_header_nritems(path->nodes[level])) {
1599			btrfs_node_key_to_cpu(path->nodes[level], key,
1600					      path->slots[level] + 1);
1601			return 0;
1602		}
1603		level++;
1604	}
1605	return 1;
1606}
1607
1608/*
1609 * Insert current subvolume into reloc_control::dirty_subvol_roots
1610 */
1611static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1612			       struct reloc_control *rc,
1613			       struct btrfs_root *root)
1614{
1615	struct btrfs_root *reloc_root = root->reloc_root;
1616	struct btrfs_root_item *reloc_root_item;
1617	int ret;
1618
1619	/* @root must be a subvolume tree root with a valid reloc tree */
1620	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1621	ASSERT(reloc_root);
1622
1623	reloc_root_item = &reloc_root->root_item;
1624	memset(&reloc_root_item->drop_progress, 0,
1625		sizeof(reloc_root_item->drop_progress));
1626	btrfs_set_root_drop_level(reloc_root_item, 0);
1627	btrfs_set_root_refs(reloc_root_item, 0);
1628	ret = btrfs_update_reloc_root(trans, root);
1629	if (ret)
1630		return ret;
1631
1632	if (list_empty(&root->reloc_dirty_list)) {
1633		btrfs_grab_root(root);
1634		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1635	}
1636
1637	return 0;
1638}
1639
1640static int clean_dirty_subvols(struct reloc_control *rc)
1641{
1642	struct btrfs_root *root;
1643	struct btrfs_root *next;
1644	int ret = 0;
1645	int ret2;
1646
1647	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1648				 reloc_dirty_list) {
1649		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1650			/* Merged subvolume, cleanup its reloc root */
1651			struct btrfs_root *reloc_root = root->reloc_root;
1652
1653			list_del_init(&root->reloc_dirty_list);
1654			root->reloc_root = NULL;
1655			/*
1656			 * Need barrier to ensure clear_bit() only happens after
1657			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1658			 */
1659			smp_wmb();
1660			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1661			if (reloc_root) {
1662				/*
1663				 * btrfs_drop_snapshot drops our ref we hold for
1664				 * ->reloc_root.  If it fails however we must
1665				 * drop the ref ourselves.
1666				 */
1667				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1668				if (ret2 < 0) {
1669					btrfs_put_root(reloc_root);
1670					if (!ret)
1671						ret = ret2;
1672				}
1673			}
1674			btrfs_put_root(root);
1675		} else {
1676			/* Orphan reloc tree, just clean it up */
1677			ret2 = btrfs_drop_snapshot(root, 0, 1);
1678			if (ret2 < 0) {
1679				btrfs_put_root(root);
1680				if (!ret)
1681					ret = ret2;
1682			}
1683		}
1684	}
1685	return ret;
1686}
1687
1688/*
1689 * merge the relocated tree blocks in reloc tree with corresponding
1690 * fs tree.
1691 */
1692static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1693					       struct btrfs_root *root)
1694{
1695	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1696	struct btrfs_key key;
1697	struct btrfs_key next_key;
1698	struct btrfs_trans_handle *trans = NULL;
1699	struct btrfs_root *reloc_root;
1700	struct btrfs_root_item *root_item;
1701	struct btrfs_path *path;
1702	struct extent_buffer *leaf;
1703	int reserve_level;
1704	int level;
1705	int max_level;
1706	int replaced = 0;
1707	int ret = 0;
 
1708	u32 min_reserved;
1709
1710	path = btrfs_alloc_path();
1711	if (!path)
1712		return -ENOMEM;
1713	path->reada = READA_FORWARD;
1714
1715	reloc_root = root->reloc_root;
1716	root_item = &reloc_root->root_item;
1717
1718	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1719		level = btrfs_root_level(root_item);
1720		atomic_inc(&reloc_root->node->refs);
1721		path->nodes[level] = reloc_root->node;
1722		path->slots[level] = 0;
1723	} else {
1724		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1725
1726		level = btrfs_root_drop_level(root_item);
1727		BUG_ON(level == 0);
1728		path->lowest_level = level;
1729		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1730		path->lowest_level = 0;
1731		if (ret < 0) {
1732			btrfs_free_path(path);
1733			return ret;
1734		}
1735
1736		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1737				      path->slots[level]);
1738		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1739
1740		btrfs_unlock_up_safe(path, 0);
1741	}
1742
1743	/*
1744	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1745	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1746	 * block COW, we COW at most from level 1 to root level for each tree.
1747	 *
1748	 * Thus the needed metadata size is at most root_level * nodesize,
1749	 * and * 2 since we have two trees to COW.
1750	 */
1751	reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1752	min_reserved = fs_info->nodesize * reserve_level * 2;
1753	memset(&next_key, 0, sizeof(next_key));
1754
1755	while (1) {
1756		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1757					     min_reserved,
1758					     BTRFS_RESERVE_FLUSH_LIMIT);
1759		if (ret)
1760			goto out;
1761		trans = btrfs_start_transaction(root, 0);
1762		if (IS_ERR(trans)) {
1763			ret = PTR_ERR(trans);
1764			trans = NULL;
1765			goto out;
1766		}
1767
1768		/*
1769		 * At this point we no longer have a reloc_control, so we can't
1770		 * depend on btrfs_init_reloc_root to update our last_trans.
1771		 *
1772		 * But that's ok, we started the trans handle on our
1773		 * corresponding fs_root, which means it's been added to the
1774		 * dirty list.  At commit time we'll still call
1775		 * btrfs_update_reloc_root() and update our root item
1776		 * appropriately.
1777		 */
1778		reloc_root->last_trans = trans->transid;
1779		trans->block_rsv = rc->block_rsv;
1780
 
 
 
 
 
 
 
 
 
1781		replaced = 0;
1782		max_level = level;
1783
1784		ret = walk_down_reloc_tree(reloc_root, path, &level);
1785		if (ret < 0)
 
1786			goto out;
 
1787		if (ret > 0)
1788			break;
1789
1790		if (!find_next_key(path, level, &key) &&
1791		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1792			ret = 0;
1793		} else {
1794			ret = replace_path(trans, rc, root, reloc_root, path,
1795					   &next_key, level, max_level);
1796		}
1797		if (ret < 0)
 
1798			goto out;
 
 
1799		if (ret > 0) {
1800			level = ret;
1801			btrfs_node_key_to_cpu(path->nodes[level], &key,
1802					      path->slots[level]);
1803			replaced = 1;
1804		}
1805
1806		ret = walk_up_reloc_tree(reloc_root, path, &level);
1807		if (ret > 0)
1808			break;
1809
1810		BUG_ON(level == 0);
1811		/*
1812		 * save the merging progress in the drop_progress.
1813		 * this is OK since root refs == 1 in this case.
1814		 */
1815		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1816			       path->slots[level]);
1817		btrfs_set_root_drop_level(root_item, level);
1818
1819		btrfs_end_transaction_throttle(trans);
1820		trans = NULL;
1821
1822		btrfs_btree_balance_dirty(fs_info);
1823
1824		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1825			invalidate_extent_cache(root, &key, &next_key);
1826	}
1827
1828	/*
1829	 * handle the case only one block in the fs tree need to be
1830	 * relocated and the block is tree root.
1831	 */
1832	leaf = btrfs_lock_root_node(root);
1833	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1834			      BTRFS_NESTING_COW);
1835	btrfs_tree_unlock(leaf);
1836	free_extent_buffer(leaf);
 
 
1837out:
1838	btrfs_free_path(path);
1839
1840	if (ret == 0) {
1841		ret = insert_dirty_subvol(trans, rc, root);
1842		if (ret)
1843			btrfs_abort_transaction(trans, ret);
 
 
1844	}
1845
1846	if (trans)
1847		btrfs_end_transaction_throttle(trans);
1848
1849	btrfs_btree_balance_dirty(fs_info);
1850
1851	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1852		invalidate_extent_cache(root, &key, &next_key);
1853
1854	return ret;
1855}
1856
1857static noinline_for_stack
1858int prepare_to_merge(struct reloc_control *rc, int err)
1859{
1860	struct btrfs_root *root = rc->extent_root;
1861	struct btrfs_fs_info *fs_info = root->fs_info;
1862	struct btrfs_root *reloc_root;
1863	struct btrfs_trans_handle *trans;
1864	LIST_HEAD(reloc_roots);
1865	u64 num_bytes = 0;
1866	int ret;
1867
1868	mutex_lock(&fs_info->reloc_mutex);
1869	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1870	rc->merging_rsv_size += rc->nodes_relocated * 2;
1871	mutex_unlock(&fs_info->reloc_mutex);
1872
1873again:
1874	if (!err) {
1875		num_bytes = rc->merging_rsv_size;
1876		ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1877					  BTRFS_RESERVE_FLUSH_ALL);
1878		if (ret)
1879			err = ret;
1880	}
1881
1882	trans = btrfs_join_transaction(rc->extent_root);
1883	if (IS_ERR(trans)) {
1884		if (!err)
1885			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1886						num_bytes, NULL);
1887		return PTR_ERR(trans);
1888	}
1889
1890	if (!err) {
1891		if (num_bytes != rc->merging_rsv_size) {
1892			btrfs_end_transaction(trans);
1893			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1894						num_bytes, NULL);
1895			goto again;
1896		}
1897	}
1898
1899	rc->merge_reloc_tree = 1;
1900
1901	while (!list_empty(&rc->reloc_roots)) {
1902		reloc_root = list_entry(rc->reloc_roots.next,
1903					struct btrfs_root, root_list);
1904		list_del_init(&reloc_root->root_list);
1905
1906		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1907				false);
1908		if (IS_ERR(root)) {
1909			/*
1910			 * Even if we have an error we need this reloc root
1911			 * back on our list so we can clean up properly.
1912			 */
1913			list_add(&reloc_root->root_list, &reloc_roots);
1914			btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1915			if (!err)
1916				err = PTR_ERR(root);
1917			break;
1918		}
1919		ASSERT(root->reloc_root == reloc_root);
1920
1921		/*
1922		 * set reference count to 1, so btrfs_recover_relocation
1923		 * knows it should resumes merging
1924		 */
1925		if (!err)
1926			btrfs_set_root_refs(&reloc_root->root_item, 1);
1927		ret = btrfs_update_reloc_root(trans, root);
1928
1929		/*
1930		 * Even if we have an error we need this reloc root back on our
1931		 * list so we can clean up properly.
1932		 */
1933		list_add(&reloc_root->root_list, &reloc_roots);
1934		btrfs_put_root(root);
1935
1936		if (ret) {
1937			btrfs_abort_transaction(trans, ret);
1938			if (!err)
1939				err = ret;
1940			break;
1941		}
1942	}
1943
1944	list_splice(&reloc_roots, &rc->reloc_roots);
1945
1946	if (!err)
1947		err = btrfs_commit_transaction(trans);
1948	else
1949		btrfs_end_transaction(trans);
1950	return err;
1951}
1952
1953static noinline_for_stack
1954void free_reloc_roots(struct list_head *list)
1955{
1956	struct btrfs_root *reloc_root, *tmp;
1957
1958	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1959		__del_reloc_root(reloc_root);
1960}
1961
1962static noinline_for_stack
1963void merge_reloc_roots(struct reloc_control *rc)
1964{
1965	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1966	struct btrfs_root *root;
1967	struct btrfs_root *reloc_root;
1968	LIST_HEAD(reloc_roots);
1969	int found = 0;
1970	int ret = 0;
1971again:
1972	root = rc->extent_root;
1973
1974	/*
1975	 * this serializes us with btrfs_record_root_in_transaction,
1976	 * we have to make sure nobody is in the middle of
1977	 * adding their roots to the list while we are
1978	 * doing this splice
1979	 */
1980	mutex_lock(&fs_info->reloc_mutex);
1981	list_splice_init(&rc->reloc_roots, &reloc_roots);
1982	mutex_unlock(&fs_info->reloc_mutex);
1983
1984	while (!list_empty(&reloc_roots)) {
1985		found = 1;
1986		reloc_root = list_entry(reloc_roots.next,
1987					struct btrfs_root, root_list);
1988
1989		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1990					 false);
1991		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1992			if (IS_ERR(root)) {
1993				/*
1994				 * For recovery we read the fs roots on mount,
1995				 * and if we didn't find the root then we marked
1996				 * the reloc root as a garbage root.  For normal
1997				 * relocation obviously the root should exist in
1998				 * memory.  However there's no reason we can't
1999				 * handle the error properly here just in case.
2000				 */
2001				ASSERT(0);
2002				ret = PTR_ERR(root);
2003				goto out;
2004			}
2005			if (root->reloc_root != reloc_root) {
2006				/*
2007				 * This is actually impossible without something
2008				 * going really wrong (like weird race condition
2009				 * or cosmic rays).
2010				 */
2011				ASSERT(0);
2012				ret = -EINVAL;
2013				goto out;
2014			}
2015			ret = merge_reloc_root(rc, root);
2016			btrfs_put_root(root);
2017			if (ret) {
2018				if (list_empty(&reloc_root->root_list))
2019					list_add_tail(&reloc_root->root_list,
2020						      &reloc_roots);
2021				goto out;
2022			}
2023		} else {
2024			if (!IS_ERR(root)) {
2025				if (root->reloc_root == reloc_root) {
2026					root->reloc_root = NULL;
2027					btrfs_put_root(reloc_root);
2028				}
2029				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2030					  &root->state);
2031				btrfs_put_root(root);
2032			}
2033
2034			list_del_init(&reloc_root->root_list);
2035			/* Don't forget to queue this reloc root for cleanup */
2036			list_add_tail(&reloc_root->reloc_dirty_list,
2037				      &rc->dirty_subvol_roots);
2038		}
 
2039	}
2040
2041	if (found) {
2042		found = 0;
2043		goto again;
2044	}
2045out:
2046	if (ret) {
2047		btrfs_handle_fs_error(fs_info, ret, NULL);
2048		free_reloc_roots(&reloc_roots);
2049
2050		/* new reloc root may be added */
2051		mutex_lock(&fs_info->reloc_mutex);
2052		list_splice_init(&rc->reloc_roots, &reloc_roots);
2053		mutex_unlock(&fs_info->reloc_mutex);
2054		free_reloc_roots(&reloc_roots);
2055	}
2056
2057	/*
2058	 * We used to have
2059	 *
2060	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2061	 *
2062	 * here, but it's wrong.  If we fail to start the transaction in
2063	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2064	 * have actually been removed from the reloc_root_tree rb tree.  This is
2065	 * fine because we're bailing here, and we hold a reference on the root
2066	 * for the list that holds it, so these roots will be cleaned up when we
2067	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
2068	 * will be cleaned up on unmount.
2069	 *
2070	 * The remaining nodes will be cleaned up by free_reloc_control.
2071	 */
2072}
2073
2074static void free_block_list(struct rb_root *blocks)
2075{
2076	struct tree_block *block;
2077	struct rb_node *rb_node;
2078	while ((rb_node = rb_first(blocks))) {
2079		block = rb_entry(rb_node, struct tree_block, rb_node);
2080		rb_erase(rb_node, blocks);
2081		kfree(block);
2082	}
2083}
2084
2085static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2086				      struct btrfs_root *reloc_root)
2087{
2088	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2089	struct btrfs_root *root;
2090	int ret;
2091
2092	if (reloc_root->last_trans == trans->transid)
2093		return 0;
2094
2095	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2096
2097	/*
2098	 * This should succeed, since we can't have a reloc root without having
2099	 * already looked up the actual root and created the reloc root for this
2100	 * root.
2101	 *
2102	 * However if there's some sort of corruption where we have a ref to a
2103	 * reloc root without a corresponding root this could return ENOENT.
2104	 */
2105	if (IS_ERR(root)) {
2106		ASSERT(0);
2107		return PTR_ERR(root);
2108	}
2109	if (root->reloc_root != reloc_root) {
2110		ASSERT(0);
2111		btrfs_err(fs_info,
2112			  "root %llu has two reloc roots associated with it",
2113			  reloc_root->root_key.offset);
2114		btrfs_put_root(root);
2115		return -EUCLEAN;
2116	}
2117	ret = btrfs_record_root_in_trans(trans, root);
2118	btrfs_put_root(root);
2119
2120	return ret;
2121}
2122
2123static noinline_for_stack
2124struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2125				     struct reloc_control *rc,
2126				     struct btrfs_backref_node *node,
2127				     struct btrfs_backref_edge *edges[])
2128{
2129	struct btrfs_backref_node *next;
2130	struct btrfs_root *root;
2131	int index = 0;
2132	int ret;
2133
2134	next = node;
2135	while (1) {
2136		cond_resched();
2137		next = walk_up_backref(next, edges, &index);
2138		root = next->root;
2139
2140		/*
2141		 * If there is no root, then our references for this block are
2142		 * incomplete, as we should be able to walk all the way up to a
2143		 * block that is owned by a root.
2144		 *
2145		 * This path is only for SHAREABLE roots, so if we come upon a
2146		 * non-SHAREABLE root then we have backrefs that resolve
2147		 * improperly.
2148		 *
2149		 * Both of these cases indicate file system corruption, or a bug
2150		 * in the backref walking code.
2151		 */
2152		if (!root) {
2153			ASSERT(0);
2154			btrfs_err(trans->fs_info,
2155		"bytenr %llu doesn't have a backref path ending in a root",
2156				  node->bytenr);
2157			return ERR_PTR(-EUCLEAN);
2158		}
2159		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2160			ASSERT(0);
2161			btrfs_err(trans->fs_info,
2162	"bytenr %llu has multiple refs with one ending in a non-shareable root",
2163				  node->bytenr);
2164			return ERR_PTR(-EUCLEAN);
2165		}
2166
2167		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2168			ret = record_reloc_root_in_trans(trans, root);
2169			if (ret)
2170				return ERR_PTR(ret);
2171			break;
2172		}
2173
2174		ret = btrfs_record_root_in_trans(trans, root);
2175		if (ret)
2176			return ERR_PTR(ret);
2177		root = root->reloc_root;
2178
2179		/*
2180		 * We could have raced with another thread which failed, so
2181		 * root->reloc_root may not be set, return ENOENT in this case.
2182		 */
2183		if (!root)
2184			return ERR_PTR(-ENOENT);
2185
2186		if (next->new_bytenr != root->node->start) {
2187			/*
2188			 * We just created the reloc root, so we shouldn't have
2189			 * ->new_bytenr set and this shouldn't be in the changed
2190			 *  list.  If it is then we have multiple roots pointing
2191			 *  at the same bytenr which indicates corruption, or
2192			 *  we've made a mistake in the backref walking code.
2193			 */
2194			ASSERT(next->new_bytenr == 0);
2195			ASSERT(list_empty(&next->list));
2196			if (next->new_bytenr || !list_empty(&next->list)) {
2197				btrfs_err(trans->fs_info,
2198	"bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2199					  node->bytenr, next->bytenr);
2200				return ERR_PTR(-EUCLEAN);
2201			}
2202
2203			next->new_bytenr = root->node->start;
2204			btrfs_put_root(next->root);
2205			next->root = btrfs_grab_root(root);
2206			ASSERT(next->root);
2207			list_add_tail(&next->list,
2208				      &rc->backref_cache.changed);
2209			mark_block_processed(rc, next);
2210			break;
2211		}
2212
2213		WARN_ON(1);
2214		root = NULL;
2215		next = walk_down_backref(edges, &index);
2216		if (!next || next->level <= node->level)
2217			break;
2218	}
2219	if (!root) {
2220		/*
2221		 * This can happen if there's fs corruption or if there's a bug
2222		 * in the backref lookup code.
2223		 */
2224		ASSERT(0);
2225		return ERR_PTR(-ENOENT);
2226	}
2227
 
2228	next = node;
2229	/* setup backref node path for btrfs_reloc_cow_block */
2230	while (1) {
2231		rc->backref_cache.path[next->level] = next;
2232		if (--index < 0)
2233			break;
2234		next = edges[index]->node[UPPER];
2235	}
2236	return root;
2237}
2238
2239/*
2240 * Select a tree root for relocation.
2241 *
2242 * Return NULL if the block is not shareable. We should use do_relocation() in
2243 * this case.
2244 *
2245 * Return a tree root pointer if the block is shareable.
2246 * Return -ENOENT if the block is root of reloc tree.
2247 */
2248static noinline_for_stack
2249struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
 
2250{
2251	struct btrfs_backref_node *next;
2252	struct btrfs_root *root;
2253	struct btrfs_root *fs_root = NULL;
2254	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2255	int index = 0;
2256
2257	next = node;
2258	while (1) {
2259		cond_resched();
2260		next = walk_up_backref(next, edges, &index);
2261		root = next->root;
 
2262
2263		/*
2264		 * This can occur if we have incomplete extent refs leading all
2265		 * the way up a particular path, in this case return -EUCLEAN.
2266		 */
2267		if (!root)
2268			return ERR_PTR(-EUCLEAN);
2269
2270		/* No other choice for non-shareable tree */
2271		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2272			return root;
2273
2274		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2275			fs_root = root;
2276
2277		if (next != node)
2278			return NULL;
2279
2280		next = walk_down_backref(edges, &index);
2281		if (!next || next->level <= node->level)
2282			break;
2283	}
2284
2285	if (!fs_root)
2286		return ERR_PTR(-ENOENT);
2287	return fs_root;
2288}
2289
2290static noinline_for_stack
2291u64 calcu_metadata_size(struct reloc_control *rc,
2292			struct btrfs_backref_node *node, int reserve)
2293{
2294	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2295	struct btrfs_backref_node *next = node;
2296	struct btrfs_backref_edge *edge;
2297	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2298	u64 num_bytes = 0;
2299	int index = 0;
2300
2301	BUG_ON(reserve && node->processed);
2302
2303	while (next) {
2304		cond_resched();
2305		while (1) {
2306			if (next->processed && (reserve || next != node))
2307				break;
2308
2309			num_bytes += fs_info->nodesize;
 
2310
2311			if (list_empty(&next->upper))
2312				break;
2313
2314			edge = list_entry(next->upper.next,
2315					struct btrfs_backref_edge, list[LOWER]);
2316			edges[index++] = edge;
2317			next = edge->node[UPPER];
2318		}
2319		next = walk_down_backref(edges, &index);
2320	}
2321	return num_bytes;
2322}
2323
2324static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2325				  struct reloc_control *rc,
2326				  struct btrfs_backref_node *node)
2327{
2328	struct btrfs_root *root = rc->extent_root;
2329	struct btrfs_fs_info *fs_info = root->fs_info;
2330	u64 num_bytes;
2331	int ret;
2332	u64 tmp;
2333
2334	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2335
2336	trans->block_rsv = rc->block_rsv;
2337	rc->reserved_bytes += num_bytes;
2338
2339	/*
2340	 * We are under a transaction here so we can only do limited flushing.
2341	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2342	 * transaction and try to refill when we can flush all the things.
2343	 */
2344	ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2345				     BTRFS_RESERVE_FLUSH_LIMIT);
2346	if (ret) {
2347		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2348		while (tmp <= rc->reserved_bytes)
2349			tmp <<= 1;
2350		/*
2351		 * only one thread can access block_rsv at this point,
2352		 * so we don't need hold lock to protect block_rsv.
2353		 * we expand more reservation size here to allow enough
2354		 * space for relocation and we will return earlier in
2355		 * enospc case.
2356		 */
2357		rc->block_rsv->size = tmp + fs_info->nodesize *
2358				      RELOCATION_RESERVED_NODES;
2359		return -EAGAIN;
2360	}
2361
2362	return 0;
2363}
2364
 
 
 
 
 
 
 
2365/*
2366 * relocate a block tree, and then update pointers in upper level
2367 * blocks that reference the block to point to the new location.
2368 *
2369 * if called by link_to_upper, the block has already been relocated.
2370 * in that case this function just updates pointers.
2371 */
2372static int do_relocation(struct btrfs_trans_handle *trans,
2373			 struct reloc_control *rc,
2374			 struct btrfs_backref_node *node,
2375			 struct btrfs_key *key,
2376			 struct btrfs_path *path, int lowest)
2377{
2378	struct btrfs_backref_node *upper;
2379	struct btrfs_backref_edge *edge;
2380	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2381	struct btrfs_root *root;
2382	struct extent_buffer *eb;
2383	u32 blocksize;
2384	u64 bytenr;
 
 
2385	int slot;
2386	int ret = 0;
 
2387
2388	/*
2389	 * If we are lowest then this is the first time we're processing this
2390	 * block, and thus shouldn't have an eb associated with it yet.
2391	 */
2392	ASSERT(!lowest || !node->eb);
2393
2394	path->lowest_level = node->level + 1;
2395	rc->backref_cache.path[node->level] = node;
2396	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2397		struct btrfs_ref ref = { 0 };
2398
2399		cond_resched();
2400
2401		upper = edge->node[UPPER];
2402		root = select_reloc_root(trans, rc, upper, edges);
2403		if (IS_ERR(root)) {
2404			ret = PTR_ERR(root);
2405			goto next;
2406		}
2407
2408		if (upper->eb && !upper->locked) {
2409			if (!lowest) {
2410				ret = btrfs_bin_search(upper->eb, key, &slot);
2411				if (ret < 0)
2412					goto next;
2413				BUG_ON(ret);
2414				bytenr = btrfs_node_blockptr(upper->eb, slot);
2415				if (node->eb->start == bytenr)
2416					goto next;
2417			}
2418			btrfs_backref_drop_node_buffer(upper);
2419		}
2420
2421		if (!upper->eb) {
2422			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2423			if (ret) {
2424				if (ret > 0)
2425					ret = -ENOENT;
2426
2427				btrfs_release_path(path);
2428				break;
2429			}
 
2430
2431			if (!upper->eb) {
2432				upper->eb = path->nodes[upper->level];
2433				path->nodes[upper->level] = NULL;
2434			} else {
2435				BUG_ON(upper->eb != path->nodes[upper->level]);
2436			}
2437
2438			upper->locked = 1;
2439			path->locks[upper->level] = 0;
2440
2441			slot = path->slots[upper->level];
2442			btrfs_release_path(path);
2443		} else {
2444			ret = btrfs_bin_search(upper->eb, key, &slot);
2445			if (ret < 0)
2446				goto next;
2447			BUG_ON(ret);
2448		}
2449
2450		bytenr = btrfs_node_blockptr(upper->eb, slot);
2451		if (lowest) {
2452			if (bytenr != node->bytenr) {
2453				btrfs_err(root->fs_info,
2454		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2455					  bytenr, node->bytenr, slot,
2456					  upper->eb->start);
2457				ret = -EIO;
2458				goto next;
2459			}
2460		} else {
2461			if (node->eb->start == bytenr)
2462				goto next;
2463		}
2464
2465		blocksize = root->fs_info->nodesize;
2466		eb = btrfs_read_node_slot(upper->eb, slot);
2467		if (IS_ERR(eb)) {
2468			ret = PTR_ERR(eb);
 
2469			goto next;
2470		}
2471		btrfs_tree_lock(eb);
 
2472
2473		if (!node->eb) {
2474			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2475					      slot, &eb, BTRFS_NESTING_COW);
2476			btrfs_tree_unlock(eb);
2477			free_extent_buffer(eb);
2478			if (ret < 0)
 
2479				goto next;
2480			/*
2481			 * We've just COWed this block, it should have updated
2482			 * the correct backref node entry.
2483			 */
2484			ASSERT(node->eb == eb);
2485		} else {
2486			btrfs_set_node_blockptr(upper->eb, slot,
2487						node->eb->start);
2488			btrfs_set_node_ptr_generation(upper->eb, slot,
2489						      trans->transid);
2490			btrfs_mark_buffer_dirty(upper->eb);
2491
2492			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2493					       node->eb->start, blocksize,
2494					       upper->eb->start);
2495			btrfs_init_tree_ref(&ref, node->level,
2496					    btrfs_header_owner(upper->eb),
2497					    root->root_key.objectid, false);
2498			ret = btrfs_inc_extent_ref(trans, &ref);
2499			if (!ret)
2500				ret = btrfs_drop_subtree(trans, root, eb,
2501							 upper->eb);
2502			if (ret)
2503				btrfs_abort_transaction(trans, ret);
2504		}
2505next:
2506		if (!upper->pending)
2507			btrfs_backref_drop_node_buffer(upper);
2508		else
2509			btrfs_backref_unlock_node_buffer(upper);
2510		if (ret)
2511			break;
2512	}
2513
2514	if (!ret && node->pending) {
2515		btrfs_backref_drop_node_buffer(node);
2516		list_move_tail(&node->list, &rc->backref_cache.changed);
2517		node->pending = 0;
2518	}
2519
2520	path->lowest_level = 0;
2521
2522	/*
2523	 * We should have allocated all of our space in the block rsv and thus
2524	 * shouldn't ENOSPC.
2525	 */
2526	ASSERT(ret != -ENOSPC);
2527	return ret;
2528}
2529
2530static int link_to_upper(struct btrfs_trans_handle *trans,
2531			 struct reloc_control *rc,
2532			 struct btrfs_backref_node *node,
2533			 struct btrfs_path *path)
2534{
2535	struct btrfs_key key;
2536
2537	btrfs_node_key_to_cpu(node->eb, &key, 0);
2538	return do_relocation(trans, rc, node, &key, path, 0);
2539}
2540
2541static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2542				struct reloc_control *rc,
2543				struct btrfs_path *path, int err)
2544{
2545	LIST_HEAD(list);
2546	struct btrfs_backref_cache *cache = &rc->backref_cache;
2547	struct btrfs_backref_node *node;
2548	int level;
2549	int ret;
2550
2551	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2552		while (!list_empty(&cache->pending[level])) {
2553			node = list_entry(cache->pending[level].next,
2554					  struct btrfs_backref_node, list);
2555			list_move_tail(&node->list, &list);
2556			BUG_ON(!node->pending);
2557
2558			if (!err) {
2559				ret = link_to_upper(trans, rc, node, path);
2560				if (ret < 0)
2561					err = ret;
2562			}
2563		}
2564		list_splice_init(&list, &cache->pending[level]);
2565	}
2566	return err;
2567}
2568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2569/*
2570 * mark a block and all blocks directly/indirectly reference the block
2571 * as processed.
2572 */
2573static void update_processed_blocks(struct reloc_control *rc,
2574				    struct btrfs_backref_node *node)
2575{
2576	struct btrfs_backref_node *next = node;
2577	struct btrfs_backref_edge *edge;
2578	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2579	int index = 0;
2580
2581	while (next) {
2582		cond_resched();
2583		while (1) {
2584			if (next->processed)
2585				break;
2586
2587			mark_block_processed(rc, next);
2588
2589			if (list_empty(&next->upper))
2590				break;
2591
2592			edge = list_entry(next->upper.next,
2593					struct btrfs_backref_edge, list[LOWER]);
2594			edges[index++] = edge;
2595			next = edge->node[UPPER];
2596		}
2597		next = walk_down_backref(edges, &index);
2598	}
2599}
2600
2601static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
 
2602{
2603	u32 blocksize = rc->extent_root->fs_info->nodesize;
2604
2605	if (test_range_bit(&rc->processed_blocks, bytenr,
2606			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2607		return 1;
2608	return 0;
2609}
2610
2611static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2612			      struct tree_block *block)
2613{
2614	struct btrfs_tree_parent_check check = {
2615		.level = block->level,
2616		.owner_root = block->owner,
2617		.transid = block->key.offset
2618	};
2619	struct extent_buffer *eb;
2620
2621	eb = read_tree_block(fs_info, block->bytenr, &check);
2622	if (IS_ERR(eb))
2623		return PTR_ERR(eb);
2624	if (!extent_buffer_uptodate(eb)) {
2625		free_extent_buffer(eb);
2626		return -EIO;
2627	}
2628	if (block->level == 0)
2629		btrfs_item_key_to_cpu(eb, &block->key, 0);
2630	else
2631		btrfs_node_key_to_cpu(eb, &block->key, 0);
2632	free_extent_buffer(eb);
2633	block->key_ready = 1;
2634	return 0;
2635}
2636
 
 
 
 
 
 
 
 
 
2637/*
2638 * helper function to relocate a tree block
2639 */
2640static int relocate_tree_block(struct btrfs_trans_handle *trans,
2641				struct reloc_control *rc,
2642				struct btrfs_backref_node *node,
2643				struct btrfs_key *key,
2644				struct btrfs_path *path)
2645{
2646	struct btrfs_root *root;
 
2647	int ret = 0;
2648
2649	if (!node)
2650		return 0;
2651
2652	/*
2653	 * If we fail here we want to drop our backref_node because we are going
2654	 * to start over and regenerate the tree for it.
2655	 */
2656	ret = reserve_metadata_space(trans, rc, node);
2657	if (ret)
2658		goto out;
2659
2660	BUG_ON(node->processed);
2661	root = select_one_root(node);
2662	if (IS_ERR(root)) {
2663		ret = PTR_ERR(root);
2664
2665		/* See explanation in select_one_root for the -EUCLEAN case. */
2666		ASSERT(ret == -ENOENT);
2667		if (ret == -ENOENT) {
2668			ret = 0;
2669			update_processed_blocks(rc, node);
2670		}
2671		goto out;
2672	}
2673
 
 
 
 
 
 
 
2674	if (root) {
2675		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2676			/*
2677			 * This block was the root block of a root, and this is
2678			 * the first time we're processing the block and thus it
2679			 * should not have had the ->new_bytenr modified and
2680			 * should have not been included on the changed list.
2681			 *
2682			 * However in the case of corruption we could have
2683			 * multiple refs pointing to the same block improperly,
2684			 * and thus we would trip over these checks.  ASSERT()
2685			 * for the developer case, because it could indicate a
2686			 * bug in the backref code, however error out for a
2687			 * normal user in the case of corruption.
2688			 */
2689			ASSERT(node->new_bytenr == 0);
2690			ASSERT(list_empty(&node->list));
2691			if (node->new_bytenr || !list_empty(&node->list)) {
2692				btrfs_err(root->fs_info,
2693				  "bytenr %llu has improper references to it",
2694					  node->bytenr);
2695				ret = -EUCLEAN;
2696				goto out;
2697			}
2698			ret = btrfs_record_root_in_trans(trans, root);
2699			if (ret)
2700				goto out;
2701			/*
2702			 * Another thread could have failed, need to check if we
2703			 * have reloc_root actually set.
2704			 */
2705			if (!root->reloc_root) {
2706				ret = -ENOENT;
2707				goto out;
2708			}
2709			root = root->reloc_root;
2710			node->new_bytenr = root->node->start;
2711			btrfs_put_root(node->root);
2712			node->root = btrfs_grab_root(root);
2713			ASSERT(node->root);
2714			list_add_tail(&node->list, &rc->backref_cache.changed);
2715		} else {
2716			path->lowest_level = node->level;
2717			if (root == root->fs_info->chunk_root)
2718				btrfs_reserve_chunk_metadata(trans, false);
2719			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2720			btrfs_release_path(path);
2721			if (root == root->fs_info->chunk_root)
2722				btrfs_trans_release_chunk_metadata(trans);
2723			if (ret > 0)
2724				ret = 0;
2725		}
2726		if (!ret)
2727			update_processed_blocks(rc, node);
2728	} else {
2729		ret = do_relocation(trans, rc, node, key, path, 1);
2730	}
2731out:
2732	if (ret || node->level == 0 || node->cowonly)
2733		btrfs_backref_cleanup_node(&rc->backref_cache, node);
 
 
 
2734	return ret;
2735}
2736
2737/*
2738 * relocate a list of blocks
2739 */
2740static noinline_for_stack
2741int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2742			 struct reloc_control *rc, struct rb_root *blocks)
2743{
2744	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2745	struct btrfs_backref_node *node;
2746	struct btrfs_path *path;
2747	struct tree_block *block;
2748	struct tree_block *next;
2749	int ret;
2750	int err = 0;
2751
2752	path = btrfs_alloc_path();
2753	if (!path) {
2754		err = -ENOMEM;
2755		goto out_free_blocks;
2756	}
2757
2758	/* Kick in readahead for tree blocks with missing keys */
2759	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
 
2760		if (!block->key_ready)
2761			btrfs_readahead_tree_block(fs_info, block->bytenr,
2762						   block->owner, 0,
2763						   block->level);
2764	}
2765
2766	/* Get first keys */
2767	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2768		if (!block->key_ready) {
2769			err = get_tree_block_key(fs_info, block);
2770			if (err)
2771				goto out_free_path;
2772		}
2773	}
2774
2775	/* Do tree relocation */
2776	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
 
 
2777		node = build_backref_tree(rc, &block->key,
2778					  block->level, block->bytenr);
2779		if (IS_ERR(node)) {
2780			err = PTR_ERR(node);
2781			goto out;
2782		}
2783
2784		ret = relocate_tree_block(trans, rc, node, &block->key,
2785					  path);
2786		if (ret < 0) {
2787			err = ret;
2788			break;
 
2789		}
 
2790	}
2791out:
 
2792	err = finish_pending_nodes(trans, rc, path, err);
2793
2794out_free_path:
2795	btrfs_free_path(path);
2796out_free_blocks:
2797	free_block_list(blocks);
2798	return err;
2799}
2800
2801static noinline_for_stack int prealloc_file_extent_cluster(
2802				struct btrfs_inode *inode,
2803				struct file_extent_cluster *cluster)
2804{
2805	u64 alloc_hint = 0;
2806	u64 start;
2807	u64 end;
2808	u64 offset = inode->index_cnt;
2809	u64 num_bytes;
2810	int nr;
2811	int ret = 0;
2812	u64 i_size = i_size_read(&inode->vfs_inode);
2813	u64 prealloc_start = cluster->start - offset;
2814	u64 prealloc_end = cluster->end - offset;
2815	u64 cur_offset = prealloc_start;
2816
2817	/*
2818	 * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2819	 * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2820	 * btrfs_do_readpage() call of previously relocated file cluster.
2821	 *
2822	 * If the current cluster starts in the above range, btrfs_do_readpage()
2823	 * will skip the read, and relocate_one_page() will later writeback
2824	 * the padding zeros as new data, causing data corruption.
2825	 *
2826	 * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2827	 */
2828	if (!IS_ALIGNED(i_size, PAGE_SIZE)) {
2829		struct address_space *mapping = inode->vfs_inode.i_mapping;
2830		struct btrfs_fs_info *fs_info = inode->root->fs_info;
2831		const u32 sectorsize = fs_info->sectorsize;
2832		struct page *page;
2833
2834		ASSERT(sectorsize < PAGE_SIZE);
2835		ASSERT(IS_ALIGNED(i_size, sectorsize));
2836
2837		/*
2838		 * Subpage can't handle page with DIRTY but without UPTODATE
2839		 * bit as it can lead to the following deadlock:
2840		 *
2841		 * btrfs_read_folio()
2842		 * | Page already *locked*
2843		 * |- btrfs_lock_and_flush_ordered_range()
2844		 *    |- btrfs_start_ordered_extent()
2845		 *       |- extent_write_cache_pages()
2846		 *          |- lock_page()
2847		 *             We try to lock the page we already hold.
2848		 *
2849		 * Here we just writeback the whole data reloc inode, so that
2850		 * we will be ensured to have no dirty range in the page, and
2851		 * are safe to clear the uptodate bits.
2852		 *
2853		 * This shouldn't cause too much overhead, as we need to write
2854		 * the data back anyway.
2855		 */
2856		ret = filemap_write_and_wait(mapping);
2857		if (ret < 0)
2858			return ret;
2859
2860		clear_extent_bits(&inode->io_tree, i_size,
2861				  round_up(i_size, PAGE_SIZE) - 1,
2862				  EXTENT_UPTODATE);
2863		page = find_lock_page(mapping, i_size >> PAGE_SHIFT);
2864		/*
2865		 * If page is freed we don't need to do anything then, as we
2866		 * will re-read the whole page anyway.
2867		 */
2868		if (page) {
2869			btrfs_subpage_clear_uptodate(fs_info, page, i_size,
2870					round_up(i_size, PAGE_SIZE) - i_size);
2871			unlock_page(page);
2872			put_page(page);
2873		}
2874	}
2875
2876	BUG_ON(cluster->start != cluster->boundary[0]);
2877	ret = btrfs_alloc_data_chunk_ondemand(inode,
2878					      prealloc_end + 1 - prealloc_start);
2879	if (ret)
2880		return ret;
2881
2882	btrfs_inode_lock(inode, 0);
2883	for (nr = 0; nr < cluster->nr; nr++) {
2884		struct extent_state *cached_state = NULL;
 
2885
 
2886		start = cluster->boundary[nr] - offset;
2887		if (nr + 1 < cluster->nr)
2888			end = cluster->boundary[nr + 1] - 1 - offset;
2889		else
2890			end = cluster->end - offset;
2891
2892		lock_extent(&inode->io_tree, start, end, &cached_state);
2893		num_bytes = end + 1 - start;
2894		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2895						num_bytes, num_bytes,
2896						end + 1, &alloc_hint);
2897		cur_offset = end + 1;
2898		unlock_extent(&inode->io_tree, start, end, &cached_state);
2899		if (ret)
2900			break;
 
2901	}
2902	btrfs_inode_unlock(inode, 0);
2903
2904	if (cur_offset < prealloc_end)
2905		btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2906					       prealloc_end + 1 - cur_offset);
2907	return ret;
2908}
2909
2910static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode,
2911				u64 start, u64 end, u64 block_start)
 
2912{
 
 
2913	struct extent_map *em;
2914	struct extent_state *cached_state = NULL;
2915	int ret = 0;
2916
2917	em = alloc_extent_map();
2918	if (!em)
2919		return -ENOMEM;
2920
2921	em->start = start;
2922	em->len = end + 1 - start;
2923	em->block_len = em->len;
2924	em->block_start = block_start;
 
2925	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2926
2927	lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2928	ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, false);
2929	unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2930	free_extent_map(em);
2931
2932	return ret;
2933}
2934
2935/*
2936 * Allow error injection to test balance/relocation cancellation
2937 */
2938noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2939{
2940	return atomic_read(&fs_info->balance_cancel_req) ||
2941		atomic_read(&fs_info->reloc_cancel_req) ||
2942		fatal_signal_pending(current);
2943}
2944ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2945
2946static u64 get_cluster_boundary_end(struct file_extent_cluster *cluster,
2947				    int cluster_nr)
2948{
2949	/* Last extent, use cluster end directly */
2950	if (cluster_nr >= cluster->nr - 1)
2951		return cluster->end;
2952
2953	/* Use next boundary start*/
2954	return cluster->boundary[cluster_nr + 1] - 1;
2955}
2956
2957static int relocate_one_page(struct inode *inode, struct file_ra_state *ra,
2958			     struct file_extent_cluster *cluster,
2959			     int *cluster_nr, unsigned long page_index)
2960{
2961	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2962	u64 offset = BTRFS_I(inode)->index_cnt;
2963	const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2964	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2965	struct page *page;
2966	u64 page_start;
2967	u64 page_end;
2968	u64 cur;
2969	int ret;
2970
2971	ASSERT(page_index <= last_index);
2972	page = find_lock_page(inode->i_mapping, page_index);
2973	if (!page) {
2974		page_cache_sync_readahead(inode->i_mapping, ra, NULL,
2975				page_index, last_index + 1 - page_index);
2976		page = find_or_create_page(inode->i_mapping, page_index, mask);
2977		if (!page)
2978			return -ENOMEM;
2979	}
2980	ret = set_page_extent_mapped(page);
2981	if (ret < 0)
2982		goto release_page;
2983
2984	if (PageReadahead(page))
2985		page_cache_async_readahead(inode->i_mapping, ra, NULL,
2986				page_folio(page), page_index,
2987				last_index + 1 - page_index);
2988
2989	if (!PageUptodate(page)) {
2990		btrfs_read_folio(NULL, page_folio(page));
2991		lock_page(page);
2992		if (!PageUptodate(page)) {
2993			ret = -EIO;
2994			goto release_page;
2995		}
2996	}
2997
2998	page_start = page_offset(page);
2999	page_end = page_start + PAGE_SIZE - 1;
3000
3001	/*
3002	 * Start from the cluster, as for subpage case, the cluster can start
3003	 * inside the page.
3004	 */
3005	cur = max(page_start, cluster->boundary[*cluster_nr] - offset);
3006	while (cur <= page_end) {
3007		struct extent_state *cached_state = NULL;
3008		u64 extent_start = cluster->boundary[*cluster_nr] - offset;
3009		u64 extent_end = get_cluster_boundary_end(cluster,
3010						*cluster_nr) - offset;
3011		u64 clamped_start = max(page_start, extent_start);
3012		u64 clamped_end = min(page_end, extent_end);
3013		u32 clamped_len = clamped_end + 1 - clamped_start;
3014
3015		/* Reserve metadata for this range */
3016		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3017						      clamped_len, clamped_len,
3018						      false);
3019		if (ret)
3020			goto release_page;
3021
3022		/* Mark the range delalloc and dirty for later writeback */
3023		lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3024			    &cached_state);
3025		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
3026						clamped_end, 0, &cached_state);
3027		if (ret) {
3028			clear_extent_bit(&BTRFS_I(inode)->io_tree,
3029					 clamped_start, clamped_end,
3030					 EXTENT_LOCKED | EXTENT_BOUNDARY,
3031					 &cached_state);
3032			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3033							clamped_len, true);
3034			btrfs_delalloc_release_extents(BTRFS_I(inode),
3035						       clamped_len);
3036			goto release_page;
3037		}
3038		btrfs_page_set_dirty(fs_info, page, clamped_start, clamped_len);
3039
3040		/*
3041		 * Set the boundary if it's inside the page.
3042		 * Data relocation requires the destination extents to have the
3043		 * same size as the source.
3044		 * EXTENT_BOUNDARY bit prevents current extent from being merged
3045		 * with previous extent.
3046		 */
3047		if (in_range(cluster->boundary[*cluster_nr] - offset,
3048			     page_start, PAGE_SIZE)) {
3049			u64 boundary_start = cluster->boundary[*cluster_nr] -
3050						offset;
3051			u64 boundary_end = boundary_start +
3052					   fs_info->sectorsize - 1;
3053
3054			set_extent_bits(&BTRFS_I(inode)->io_tree,
3055					boundary_start, boundary_end,
3056					EXTENT_BOUNDARY);
3057		}
3058		unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3059			      &cached_state);
3060		btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
3061		cur += clamped_len;
3062
3063		/* Crossed extent end, go to next extent */
3064		if (cur >= extent_end) {
3065			(*cluster_nr)++;
3066			/* Just finished the last extent of the cluster, exit. */
3067			if (*cluster_nr >= cluster->nr)
3068				break;
3069		}
 
3070	}
3071	unlock_page(page);
3072	put_page(page);
3073
3074	balance_dirty_pages_ratelimited(inode->i_mapping);
3075	btrfs_throttle(fs_info);
3076	if (btrfs_should_cancel_balance(fs_info))
3077		ret = -ECANCELED;
3078	return ret;
3079
3080release_page:
3081	unlock_page(page);
3082	put_page(page);
3083	return ret;
3084}
3085
3086static int relocate_file_extent_cluster(struct inode *inode,
3087					struct file_extent_cluster *cluster)
3088{
 
 
3089	u64 offset = BTRFS_I(inode)->index_cnt;
3090	unsigned long index;
3091	unsigned long last_index;
 
3092	struct file_ra_state *ra;
3093	int cluster_nr = 0;
3094	int ret = 0;
3095
3096	if (!cluster->nr)
3097		return 0;
3098
3099	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3100	if (!ra)
3101		return -ENOMEM;
3102
3103	ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
3104	if (ret)
3105		goto out;
3106
3107	file_ra_state_init(ra, inode->i_mapping);
3108
3109	ret = setup_relocation_extent_mapping(inode, cluster->start - offset,
3110				   cluster->end - offset, cluster->start);
3111	if (ret)
3112		goto out;
3113
3114	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3115	for (index = (cluster->start - offset) >> PAGE_SHIFT;
3116	     index <= last_index && !ret; index++)
3117		ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index);
3118	if (ret == 0)
3119		WARN_ON(cluster_nr != cluster->nr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3120out:
3121	kfree(ra);
3122	return ret;
3123}
3124
3125static noinline_for_stack
3126int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3127			 struct file_extent_cluster *cluster)
3128{
3129	int ret;
3130
3131	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3132		ret = relocate_file_extent_cluster(inode, cluster);
3133		if (ret)
3134			return ret;
3135		cluster->nr = 0;
3136	}
3137
3138	if (!cluster->nr)
3139		cluster->start = extent_key->objectid;
3140	else
3141		BUG_ON(cluster->nr >= MAX_EXTENTS);
3142	cluster->end = extent_key->objectid + extent_key->offset - 1;
3143	cluster->boundary[cluster->nr] = extent_key->objectid;
3144	cluster->nr++;
3145
3146	if (cluster->nr >= MAX_EXTENTS) {
3147		ret = relocate_file_extent_cluster(inode, cluster);
3148		if (ret)
3149			return ret;
3150		cluster->nr = 0;
3151	}
3152	return 0;
3153}
3154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3155/*
3156 * helper to add a tree block to the list.
3157 * the major work is getting the generation and level of the block
3158 */
3159static int add_tree_block(struct reloc_control *rc,
3160			  struct btrfs_key *extent_key,
3161			  struct btrfs_path *path,
3162			  struct rb_root *blocks)
3163{
3164	struct extent_buffer *eb;
3165	struct btrfs_extent_item *ei;
3166	struct btrfs_tree_block_info *bi;
3167	struct tree_block *block;
3168	struct rb_node *rb_node;
3169	u32 item_size;
3170	int level = -1;
3171	u64 generation;
3172	u64 owner = 0;
3173
3174	eb =  path->nodes[0];
3175	item_size = btrfs_item_size(eb, path->slots[0]);
3176
3177	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3178	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3179		unsigned long ptr = 0, end;
3180
 
3181		ei = btrfs_item_ptr(eb, path->slots[0],
3182				struct btrfs_extent_item);
3183		end = (unsigned long)ei + item_size;
3184		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3185			bi = (struct btrfs_tree_block_info *)(ei + 1);
3186			level = btrfs_tree_block_level(eb, bi);
3187			ptr = (unsigned long)(bi + 1);
3188		} else {
3189			level = (int)extent_key->offset;
3190			ptr = (unsigned long)(ei + 1);
3191		}
3192		generation = btrfs_extent_generation(eb, ei);
3193
3194		/*
3195		 * We're reading random blocks without knowing their owner ahead
3196		 * of time.  This is ok most of the time, as all reloc roots and
3197		 * fs roots have the same lock type.  However normal trees do
3198		 * not, and the only way to know ahead of time is to read the
3199		 * inline ref offset.  We know it's an fs root if
3200		 *
3201		 * 1. There's more than one ref.
3202		 * 2. There's a SHARED_DATA_REF_KEY set.
3203		 * 3. FULL_BACKREF is set on the flags.
3204		 *
3205		 * Otherwise it's safe to assume that the ref offset == the
3206		 * owner of this block, so we can use that when calling
3207		 * read_tree_block.
3208		 */
3209		if (btrfs_extent_refs(eb, ei) == 1 &&
3210		    !(btrfs_extent_flags(eb, ei) &
3211		      BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3212		    ptr < end) {
3213			struct btrfs_extent_inline_ref *iref;
3214			int type;
3215
3216			iref = (struct btrfs_extent_inline_ref *)ptr;
3217			type = btrfs_get_extent_inline_ref_type(eb, iref,
3218							BTRFS_REF_TYPE_BLOCK);
3219			if (type == BTRFS_REF_TYPE_INVALID)
3220				return -EINVAL;
3221			if (type == BTRFS_TREE_BLOCK_REF_KEY)
3222				owner = btrfs_extent_inline_ref_offset(eb, iref);
3223		}
3224	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3225		btrfs_print_v0_err(eb->fs_info);
3226		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3227		return -EINVAL;
3228	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3229		BUG();
 
3230	}
3231
3232	btrfs_release_path(path);
3233
3234	BUG_ON(level == -1);
3235
3236	block = kmalloc(sizeof(*block), GFP_NOFS);
3237	if (!block)
3238		return -ENOMEM;
3239
3240	block->bytenr = extent_key->objectid;
3241	block->key.objectid = rc->extent_root->fs_info->nodesize;
3242	block->key.offset = generation;
3243	block->level = level;
3244	block->key_ready = 0;
3245	block->owner = owner;
3246
3247	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3248	if (rb_node)
3249		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3250				    -EEXIST);
3251
3252	return 0;
3253}
3254
3255/*
3256 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3257 */
3258static int __add_tree_block(struct reloc_control *rc,
3259			    u64 bytenr, u32 blocksize,
3260			    struct rb_root *blocks)
3261{
3262	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3263	struct btrfs_path *path;
3264	struct btrfs_key key;
3265	int ret;
3266	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3267
3268	if (tree_block_processed(bytenr, rc))
3269		return 0;
3270
3271	if (rb_simple_search(blocks, bytenr))
3272		return 0;
3273
3274	path = btrfs_alloc_path();
3275	if (!path)
3276		return -ENOMEM;
3277again:
3278	key.objectid = bytenr;
3279	if (skinny) {
3280		key.type = BTRFS_METADATA_ITEM_KEY;
3281		key.offset = (u64)-1;
3282	} else {
3283		key.type = BTRFS_EXTENT_ITEM_KEY;
3284		key.offset = blocksize;
3285	}
3286
3287	path->search_commit_root = 1;
3288	path->skip_locking = 1;
3289	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3290	if (ret < 0)
3291		goto out;
 
3292
3293	if (ret > 0 && skinny) {
3294		if (path->slots[0]) {
3295			path->slots[0]--;
3296			btrfs_item_key_to_cpu(path->nodes[0], &key,
3297					      path->slots[0]);
3298			if (key.objectid == bytenr &&
3299			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3300			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3301			      key.offset == blocksize)))
3302				ret = 0;
3303		}
3304
3305		if (ret) {
3306			skinny = false;
3307			btrfs_release_path(path);
3308			goto again;
3309		}
3310	}
3311	if (ret) {
3312		ASSERT(ret == 1);
3313		btrfs_print_leaf(path->nodes[0]);
3314		btrfs_err(fs_info,
3315	     "tree block extent item (%llu) is not found in extent tree",
3316		     bytenr);
3317		WARN_ON(1);
3318		ret = -EINVAL;
3319		goto out;
3320	}
3321
3322	ret = add_tree_block(rc, &key, path, blocks);
3323out:
3324	btrfs_free_path(path);
3325	return ret;
3326}
3327
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3328static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3329				    struct btrfs_block_group *block_group,
3330				    struct inode *inode,
3331				    u64 ino)
3332{
 
 
3333	struct btrfs_root *root = fs_info->tree_root;
3334	struct btrfs_trans_handle *trans;
 
3335	int ret = 0;
3336
3337	if (inode)
3338		goto truncate;
3339
3340	inode = btrfs_iget(fs_info->sb, ino, root);
3341	if (IS_ERR(inode))
 
 
 
 
 
 
3342		return -ENOENT;
 
3343
3344truncate:
3345	ret = btrfs_check_trunc_cache_free_space(fs_info,
3346						 &fs_info->global_block_rsv);
3347	if (ret)
3348		goto out;
 
3349
3350	trans = btrfs_join_transaction(root);
3351	if (IS_ERR(trans)) {
 
3352		ret = PTR_ERR(trans);
3353		goto out;
3354	}
3355
3356	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3357
3358	btrfs_end_transaction(trans);
3359	btrfs_btree_balance_dirty(fs_info);
 
 
3360out:
3361	iput(inode);
3362	return ret;
3363}
3364
3365/*
3366 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3367 * cache inode, to avoid free space cache data extent blocking data relocation.
3368 */
3369static int delete_v1_space_cache(struct extent_buffer *leaf,
3370				 struct btrfs_block_group *block_group,
3371				 u64 data_bytenr)
 
 
3372{
3373	u64 space_cache_ino;
3374	struct btrfs_file_extent_item *ei;
 
 
 
3375	struct btrfs_key key;
3376	bool found = false;
3377	int i;
 
 
 
 
 
 
3378	int ret;
3379
3380	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3381		return 0;
 
 
3382
3383	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3384		u8 type;
 
 
 
 
 
 
 
 
 
3385
3386		btrfs_item_key_to_cpu(leaf, &key, i);
3387		if (key.type != BTRFS_EXTENT_DATA_KEY)
3388			continue;
3389		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3390		type = btrfs_file_extent_type(leaf, ei);
 
 
 
 
 
3391
3392		if ((type == BTRFS_FILE_EXTENT_REG ||
3393		     type == BTRFS_FILE_EXTENT_PREALLOC) &&
3394		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3395			found = true;
3396			space_cache_ino = key.objectid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3397			break;
3398		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3399	}
3400	if (!found)
3401		return -ENOENT;
3402	ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3403					space_cache_ino);
3404	return ret;
3405}
3406
3407/*
3408 * helper to find all tree blocks that reference a given data extent
3409 */
3410static noinline_for_stack
3411int add_data_references(struct reloc_control *rc,
3412			struct btrfs_key *extent_key,
3413			struct btrfs_path *path,
3414			struct rb_root *blocks)
3415{
3416	struct btrfs_backref_walk_ctx ctx = { 0 };
3417	struct ulist_iterator leaf_uiter;
3418	struct ulist_node *ref_node = NULL;
3419	const u32 blocksize = rc->extent_root->fs_info->nodesize;
3420	int ret = 0;
 
 
 
 
3421
3422	btrfs_release_path(path);
 
 
 
 
 
 
 
 
3423
3424	ctx.bytenr = extent_key->objectid;
3425	ctx.ignore_extent_item_pos = true;
3426	ctx.fs_info = rc->extent_root->fs_info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3427
3428	ret = btrfs_find_all_leafs(&ctx);
3429	if (ret < 0)
3430		return ret;
 
 
 
 
 
 
 
 
 
 
3431
3432	ULIST_ITER_INIT(&leaf_uiter);
3433	while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) {
3434		struct btrfs_tree_parent_check check = { 0 };
3435		struct extent_buffer *eb;
3436
3437		eb = read_tree_block(ctx.fs_info, ref_node->val, &check);
3438		if (IS_ERR(eb)) {
3439			ret = PTR_ERR(eb);
3440			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3441		}
3442		ret = delete_v1_space_cache(eb, rc->block_group,
3443					    extent_key->objectid);
3444		free_extent_buffer(eb);
3445		if (ret < 0)
3446			break;
3447		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3448		if (ret < 0)
3449			break;
 
 
3450	}
3451	if (ret < 0)
 
3452		free_block_list(blocks);
3453	ulist_free(ctx.refs);
3454	return ret;
3455}
3456
3457/*
3458 * helper to find next unprocessed extent
3459 */
3460static noinline_for_stack
3461int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
 
3462		     struct btrfs_key *extent_key)
3463{
3464	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3465	struct btrfs_key key;
3466	struct extent_buffer *leaf;
3467	u64 start, end, last;
3468	int ret;
3469
3470	last = rc->block_group->start + rc->block_group->length;
3471	while (1) {
3472		cond_resched();
3473		if (rc->search_start >= last) {
3474			ret = 1;
3475			break;
3476		}
3477
3478		key.objectid = rc->search_start;
3479		key.type = BTRFS_EXTENT_ITEM_KEY;
3480		key.offset = 0;
3481
3482		path->search_commit_root = 1;
3483		path->skip_locking = 1;
3484		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3485					0, 0);
3486		if (ret < 0)
3487			break;
3488next:
3489		leaf = path->nodes[0];
3490		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3491			ret = btrfs_next_leaf(rc->extent_root, path);
3492			if (ret != 0)
3493				break;
3494			leaf = path->nodes[0];
3495		}
3496
3497		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3498		if (key.objectid >= last) {
3499			ret = 1;
3500			break;
3501		}
3502
3503		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3504		    key.type != BTRFS_METADATA_ITEM_KEY) {
3505			path->slots[0]++;
3506			goto next;
3507		}
3508
3509		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3510		    key.objectid + key.offset <= rc->search_start) {
3511			path->slots[0]++;
3512			goto next;
3513		}
3514
3515		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3516		    key.objectid + fs_info->nodesize <=
3517		    rc->search_start) {
3518			path->slots[0]++;
3519			goto next;
3520		}
3521
3522		ret = find_first_extent_bit(&rc->processed_blocks,
3523					    key.objectid, &start, &end,
3524					    EXTENT_DIRTY, NULL);
3525
3526		if (ret == 0 && start <= key.objectid) {
3527			btrfs_release_path(path);
3528			rc->search_start = end + 1;
3529		} else {
3530			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3531				rc->search_start = key.objectid + key.offset;
3532			else
3533				rc->search_start = key.objectid +
3534					fs_info->nodesize;
3535			memcpy(extent_key, &key, sizeof(key));
3536			return 0;
3537		}
3538	}
3539	btrfs_release_path(path);
3540	return ret;
3541}
3542
3543static void set_reloc_control(struct reloc_control *rc)
3544{
3545	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3546
3547	mutex_lock(&fs_info->reloc_mutex);
3548	fs_info->reloc_ctl = rc;
3549	mutex_unlock(&fs_info->reloc_mutex);
3550}
3551
3552static void unset_reloc_control(struct reloc_control *rc)
3553{
3554	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3555
3556	mutex_lock(&fs_info->reloc_mutex);
3557	fs_info->reloc_ctl = NULL;
3558	mutex_unlock(&fs_info->reloc_mutex);
3559}
3560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3561static noinline_for_stack
3562int prepare_to_relocate(struct reloc_control *rc)
3563{
3564	struct btrfs_trans_handle *trans;
3565	int ret;
3566
3567	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3568					      BTRFS_BLOCK_RSV_TEMP);
3569	if (!rc->block_rsv)
3570		return -ENOMEM;
3571
 
 
 
 
 
 
 
 
 
 
 
 
 
3572	memset(&rc->cluster, 0, sizeof(rc->cluster));
3573	rc->search_start = rc->block_group->start;
3574	rc->extents_found = 0;
3575	rc->nodes_relocated = 0;
3576	rc->merging_rsv_size = 0;
3577	rc->reserved_bytes = 0;
3578	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3579			      RELOCATION_RESERVED_NODES;
3580	ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3581				     rc->block_rsv, rc->block_rsv->size,
3582				     BTRFS_RESERVE_FLUSH_ALL);
3583	if (ret)
3584		return ret;
3585
3586	rc->create_reloc_tree = 1;
3587	set_reloc_control(rc);
3588
3589	trans = btrfs_join_transaction(rc->extent_root);
3590	if (IS_ERR(trans)) {
3591		unset_reloc_control(rc);
3592		/*
3593		 * extent tree is not a ref_cow tree and has no reloc_root to
3594		 * cleanup.  And callers are responsible to free the above
3595		 * block rsv.
3596		 */
3597		return PTR_ERR(trans);
3598	}
3599
3600	ret = btrfs_commit_transaction(trans);
3601	if (ret)
3602		unset_reloc_control(rc);
3603
3604	return ret;
3605}
3606
3607static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3608{
3609	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3610	struct rb_root blocks = RB_ROOT;
3611	struct btrfs_key key;
3612	struct btrfs_trans_handle *trans = NULL;
3613	struct btrfs_path *path;
3614	struct btrfs_extent_item *ei;
 
3615	u64 flags;
 
3616	int ret;
3617	int err = 0;
3618	int progress = 0;
3619
3620	path = btrfs_alloc_path();
3621	if (!path)
3622		return -ENOMEM;
3623	path->reada = READA_FORWARD;
3624
3625	ret = prepare_to_relocate(rc);
3626	if (ret) {
3627		err = ret;
3628		goto out_free;
3629	}
3630
3631	while (1) {
3632		rc->reserved_bytes = 0;
3633		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3634					     rc->block_rsv->size,
3635					     BTRFS_RESERVE_FLUSH_ALL);
3636		if (ret) {
3637			err = ret;
3638			break;
3639		}
3640		progress++;
3641		trans = btrfs_start_transaction(rc->extent_root, 0);
3642		if (IS_ERR(trans)) {
3643			err = PTR_ERR(trans);
3644			trans = NULL;
3645			break;
3646		}
3647restart:
3648		if (update_backref_cache(trans, &rc->backref_cache)) {
3649			btrfs_end_transaction(trans);
3650			trans = NULL;
3651			continue;
3652		}
3653
3654		ret = find_next_extent(rc, path, &key);
3655		if (ret < 0)
3656			err = ret;
3657		if (ret != 0)
3658			break;
3659
3660		rc->extents_found++;
3661
3662		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3663				    struct btrfs_extent_item);
3664		flags = btrfs_extent_flags(path->nodes[0], ei);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3665
3666		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3667			ret = add_tree_block(rc, &key, path, &blocks);
3668		} else if (rc->stage == UPDATE_DATA_PTRS &&
3669			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3670			ret = add_data_references(rc, &key, path, &blocks);
3671		} else {
3672			btrfs_release_path(path);
3673			ret = 0;
3674		}
3675		if (ret < 0) {
3676			err = ret;
3677			break;
3678		}
3679
3680		if (!RB_EMPTY_ROOT(&blocks)) {
3681			ret = relocate_tree_blocks(trans, rc, &blocks);
3682			if (ret < 0) {
3683				if (ret != -EAGAIN) {
3684					err = ret;
3685					break;
3686				}
3687				rc->extents_found--;
3688				rc->search_start = key.objectid;
3689			}
3690		}
3691
3692		btrfs_end_transaction_throttle(trans);
3693		btrfs_btree_balance_dirty(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3694		trans = NULL;
3695
3696		if (rc->stage == MOVE_DATA_EXTENTS &&
3697		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3698			rc->found_file_extent = 1;
3699			ret = relocate_data_extent(rc->data_inode,
3700						   &key, &rc->cluster);
3701			if (ret < 0) {
3702				err = ret;
3703				break;
3704			}
3705		}
3706		if (btrfs_should_cancel_balance(fs_info)) {
3707			err = -ECANCELED;
3708			break;
3709		}
3710	}
3711	if (trans && progress && err == -ENOSPC) {
3712		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3713		if (ret == 1) {
 
3714			err = 0;
3715			progress = 0;
3716			goto restart;
3717		}
3718	}
3719
3720	btrfs_release_path(path);
3721	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
 
3722
3723	if (trans) {
3724		btrfs_end_transaction_throttle(trans);
3725		btrfs_btree_balance_dirty(fs_info);
 
3726	}
3727
3728	if (!err) {
3729		ret = relocate_file_extent_cluster(rc->data_inode,
3730						   &rc->cluster);
3731		if (ret < 0)
3732			err = ret;
3733	}
3734
3735	rc->create_reloc_tree = 0;
3736	set_reloc_control(rc);
3737
3738	btrfs_backref_release_cache(&rc->backref_cache);
3739	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3740
3741	/*
3742	 * Even in the case when the relocation is cancelled, we should all go
3743	 * through prepare_to_merge() and merge_reloc_roots().
3744	 *
3745	 * For error (including cancelled balance), prepare_to_merge() will
3746	 * mark all reloc trees orphan, then queue them for cleanup in
3747	 * merge_reloc_roots()
3748	 */
3749	err = prepare_to_merge(rc, err);
3750
3751	merge_reloc_roots(rc);
3752
3753	rc->merge_reloc_tree = 0;
3754	unset_reloc_control(rc);
3755	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3756
3757	/* get rid of pinned extents */
3758	trans = btrfs_join_transaction(rc->extent_root);
3759	if (IS_ERR(trans)) {
3760		err = PTR_ERR(trans);
3761		goto out_free;
3762	}
3763	ret = btrfs_commit_transaction(trans);
3764	if (ret && !err)
3765		err = ret;
3766out_free:
3767	ret = clean_dirty_subvols(rc);
3768	if (ret < 0 && !err)
3769		err = ret;
3770	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3771	btrfs_free_path(path);
3772	return err;
3773}
3774
3775static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3776				 struct btrfs_root *root, u64 objectid)
3777{
3778	struct btrfs_path *path;
3779	struct btrfs_inode_item *item;
3780	struct extent_buffer *leaf;
3781	int ret;
3782
3783	path = btrfs_alloc_path();
3784	if (!path)
3785		return -ENOMEM;
3786
3787	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3788	if (ret)
3789		goto out;
3790
3791	leaf = path->nodes[0];
3792	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3793	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3794	btrfs_set_inode_generation(leaf, item, 1);
3795	btrfs_set_inode_size(leaf, item, 0);
3796	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3797	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3798					  BTRFS_INODE_PREALLOC);
3799	btrfs_mark_buffer_dirty(leaf);
 
3800out:
3801	btrfs_free_path(path);
3802	return ret;
3803}
3804
3805static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3806				struct btrfs_root *root, u64 objectid)
3807{
3808	struct btrfs_path *path;
3809	struct btrfs_key key;
3810	int ret = 0;
3811
3812	path = btrfs_alloc_path();
3813	if (!path) {
3814		ret = -ENOMEM;
3815		goto out;
3816	}
3817
3818	key.objectid = objectid;
3819	key.type = BTRFS_INODE_ITEM_KEY;
3820	key.offset = 0;
3821	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3822	if (ret) {
3823		if (ret > 0)
3824			ret = -ENOENT;
3825		goto out;
3826	}
3827	ret = btrfs_del_item(trans, root, path);
3828out:
3829	if (ret)
3830		btrfs_abort_transaction(trans, ret);
3831	btrfs_free_path(path);
3832}
3833
3834/*
3835 * helper to create inode for data relocation.
3836 * the inode is in data relocation tree and its link count is 0
3837 */
3838static noinline_for_stack
3839struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3840				 struct btrfs_block_group *group)
3841{
3842	struct inode *inode = NULL;
3843	struct btrfs_trans_handle *trans;
3844	struct btrfs_root *root;
3845	u64 objectid;
 
 
3846	int err = 0;
3847
3848	root = btrfs_grab_root(fs_info->data_reloc_root);
 
 
 
3849	trans = btrfs_start_transaction(root, 6);
3850	if (IS_ERR(trans)) {
3851		btrfs_put_root(root);
3852		return ERR_CAST(trans);
3853	}
3854
3855	err = btrfs_get_free_objectid(root, &objectid);
3856	if (err)
3857		goto out;
3858
3859	err = __insert_orphan_inode(trans, root, objectid);
3860	if (err)
3861		goto out;
3862
3863	inode = btrfs_iget(fs_info->sb, objectid, root);
3864	if (IS_ERR(inode)) {
3865		delete_orphan_inode(trans, root, objectid);
3866		err = PTR_ERR(inode);
3867		inode = NULL;
3868		goto out;
3869	}
3870	BTRFS_I(inode)->index_cnt = group->start;
3871
3872	err = btrfs_orphan_add(trans, BTRFS_I(inode));
3873out:
3874	btrfs_put_root(root);
3875	btrfs_end_transaction(trans);
3876	btrfs_btree_balance_dirty(fs_info);
3877	if (err) {
3878		iput(inode);
 
3879		inode = ERR_PTR(err);
3880	}
3881	return inode;
3882}
3883
3884/*
3885 * Mark start of chunk relocation that is cancellable. Check if the cancellation
3886 * has been requested meanwhile and don't start in that case.
3887 *
3888 * Return:
3889 *   0             success
3890 *   -EINPROGRESS  operation is already in progress, that's probably a bug
3891 *   -ECANCELED    cancellation request was set before the operation started
3892 */
3893static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3894{
3895	if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3896		/* This should not happen */
3897		btrfs_err(fs_info, "reloc already running, cannot start");
3898		return -EINPROGRESS;
3899	}
3900
3901	if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3902		btrfs_info(fs_info, "chunk relocation canceled on start");
3903		/*
3904		 * On cancel, clear all requests but let the caller mark
3905		 * the end after cleanup operations.
3906		 */
3907		atomic_set(&fs_info->reloc_cancel_req, 0);
3908		return -ECANCELED;
3909	}
3910	return 0;
3911}
3912
3913/*
3914 * Mark end of chunk relocation that is cancellable and wake any waiters.
3915 */
3916static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3917{
3918	/* Requested after start, clear bit first so any waiters can continue */
3919	if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3920		btrfs_info(fs_info, "chunk relocation canceled during operation");
3921	clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3922	atomic_set(&fs_info->reloc_cancel_req, 0);
3923}
3924
3925static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3926{
3927	struct reloc_control *rc;
3928
3929	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3930	if (!rc)
3931		return NULL;
3932
3933	INIT_LIST_HEAD(&rc->reloc_roots);
3934	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3935	btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3936	mapping_tree_init(&rc->reloc_root_tree);
3937	extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS);
3938	return rc;
3939}
3940
3941static void free_reloc_control(struct reloc_control *rc)
3942{
3943	struct mapping_node *node, *tmp;
3944
3945	free_reloc_roots(&rc->reloc_roots);
3946	rbtree_postorder_for_each_entry_safe(node, tmp,
3947			&rc->reloc_root_tree.rb_root, rb_node)
3948		kfree(node);
3949
3950	kfree(rc);
3951}
3952
3953/*
3954 * Print the block group being relocated
3955 */
3956static void describe_relocation(struct btrfs_fs_info *fs_info,
3957				struct btrfs_block_group *block_group)
3958{
3959	char buf[128] = {'\0'};
3960
3961	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3962
3963	btrfs_info(fs_info,
3964		   "relocating block group %llu flags %s",
3965		   block_group->start, buf);
3966}
3967
3968static const char *stage_to_string(int stage)
3969{
3970	if (stage == MOVE_DATA_EXTENTS)
3971		return "move data extents";
3972	if (stage == UPDATE_DATA_PTRS)
3973		return "update data pointers";
3974	return "unknown";
3975}
3976
3977/*
3978 * function to relocate all extents in a block group.
3979 */
3980int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3981{
3982	struct btrfs_block_group *bg;
3983	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
3984	struct reloc_control *rc;
3985	struct inode *inode;
3986	struct btrfs_path *path;
3987	int ret;
3988	int rw = 0;
3989	int err = 0;
3990
3991	/*
3992	 * This only gets set if we had a half-deleted snapshot on mount.  We
3993	 * cannot allow relocation to start while we're still trying to clean up
3994	 * these pending deletions.
3995	 */
3996	ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
3997	if (ret)
3998		return ret;
3999
4000	/* We may have been woken up by close_ctree, so bail if we're closing. */
4001	if (btrfs_fs_closing(fs_info))
4002		return -EINTR;
4003
4004	bg = btrfs_lookup_block_group(fs_info, group_start);
4005	if (!bg)
4006		return -ENOENT;
4007
4008	/*
4009	 * Relocation of a data block group creates ordered extents.  Without
4010	 * sb_start_write(), we can freeze the filesystem while unfinished
4011	 * ordered extents are left. Such ordered extents can cause a deadlock
4012	 * e.g. when syncfs() is waiting for their completion but they can't
4013	 * finish because they block when joining a transaction, due to the
4014	 * fact that the freeze locks are being held in write mode.
4015	 */
4016	if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
4017		ASSERT(sb_write_started(fs_info->sb));
4018
4019	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4020		btrfs_put_block_group(bg);
4021		return -ETXTBSY;
4022	}
4023
4024	rc = alloc_reloc_control(fs_info);
4025	if (!rc) {
4026		btrfs_put_block_group(bg);
4027		return -ENOMEM;
4028	}
4029
4030	ret = reloc_chunk_start(fs_info);
4031	if (ret < 0) {
4032		err = ret;
4033		goto out_put_bg;
4034	}
4035
4036	rc->extent_root = extent_root;
4037	rc->block_group = bg;
4038
4039	ret = btrfs_inc_block_group_ro(rc->block_group, true);
4040	if (ret) {
4041		err = ret;
4042		goto out;
 
 
 
 
 
 
4043	}
4044	rw = 1;
4045
4046	path = btrfs_alloc_path();
4047	if (!path) {
4048		err = -ENOMEM;
4049		goto out;
4050	}
4051
4052	inode = lookup_free_space_inode(rc->block_group, path);
 
4053	btrfs_free_path(path);
4054
4055	if (!IS_ERR(inode))
4056		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4057	else
4058		ret = PTR_ERR(inode);
4059
4060	if (ret && ret != -ENOENT) {
4061		err = ret;
4062		goto out;
4063	}
4064
4065	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4066	if (IS_ERR(rc->data_inode)) {
4067		err = PTR_ERR(rc->data_inode);
4068		rc->data_inode = NULL;
4069		goto out;
4070	}
4071
4072	describe_relocation(fs_info, rc->block_group);
4073
4074	btrfs_wait_block_group_reservations(rc->block_group);
4075	btrfs_wait_nocow_writers(rc->block_group);
4076	btrfs_wait_ordered_roots(fs_info, U64_MAX,
4077				 rc->block_group->start,
4078				 rc->block_group->length);
4079
4080	ret = btrfs_zone_finish(rc->block_group);
4081	WARN_ON(ret && ret != -EAGAIN);
4082
4083	while (1) {
4084		int finishes_stage;
4085
4086		mutex_lock(&fs_info->cleaner_mutex);
 
 
4087		ret = relocate_block_group(rc);
 
4088		mutex_unlock(&fs_info->cleaner_mutex);
4089		if (ret < 0)
4090			err = ret;
 
 
 
 
 
 
 
 
4091
4092		finishes_stage = rc->stage;
4093		/*
4094		 * We may have gotten ENOSPC after we already dirtied some
4095		 * extents.  If writeout happens while we're relocating a
4096		 * different block group we could end up hitting the
4097		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4098		 * btrfs_reloc_cow_block.  Make sure we write everything out
4099		 * properly so we don't trip over this problem, and then break
4100		 * out of the loop if we hit an error.
4101		 */
4102		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4103			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4104						       (u64)-1);
4105			if (ret)
4106				err = ret;
4107			invalidate_mapping_pages(rc->data_inode->i_mapping,
4108						 0, -1);
4109			rc->stage = UPDATE_DATA_PTRS;
4110		}
4111
4112		if (err < 0)
4113			goto out;
4114
4115		if (rc->extents_found == 0)
4116			break;
4117
4118		btrfs_info(fs_info, "found %llu extents, stage: %s",
4119			   rc->extents_found, stage_to_string(finishes_stage));
4120	}
4121
 
 
 
 
 
4122	WARN_ON(rc->block_group->pinned > 0);
4123	WARN_ON(rc->block_group->reserved > 0);
4124	WARN_ON(rc->block_group->used > 0);
4125out:
4126	if (err && rw)
4127		btrfs_dec_block_group_ro(rc->block_group);
4128	iput(rc->data_inode);
4129out_put_bg:
4130	btrfs_put_block_group(bg);
4131	reloc_chunk_end(fs_info);
4132	free_reloc_control(rc);
4133	return err;
4134}
4135
4136static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4137{
4138	struct btrfs_fs_info *fs_info = root->fs_info;
4139	struct btrfs_trans_handle *trans;
4140	int ret, err;
4141
4142	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4143	if (IS_ERR(trans))
4144		return PTR_ERR(trans);
4145
4146	memset(&root->root_item.drop_progress, 0,
4147		sizeof(root->root_item.drop_progress));
4148	btrfs_set_root_drop_level(&root->root_item, 0);
4149	btrfs_set_root_refs(&root->root_item, 0);
4150	ret = btrfs_update_root(trans, fs_info->tree_root,
4151				&root->root_key, &root->root_item);
 
4152
4153	err = btrfs_end_transaction(trans);
4154	if (err)
4155		return err;
4156	return ret;
4157}
4158
4159/*
4160 * recover relocation interrupted by system crash.
4161 *
4162 * this function resumes merging reloc trees with corresponding fs trees.
4163 * this is important for keeping the sharing of tree blocks
4164 */
4165int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4166{
4167	LIST_HEAD(reloc_roots);
4168	struct btrfs_key key;
4169	struct btrfs_root *fs_root;
4170	struct btrfs_root *reloc_root;
4171	struct btrfs_path *path;
4172	struct extent_buffer *leaf;
4173	struct reloc_control *rc = NULL;
4174	struct btrfs_trans_handle *trans;
4175	int ret;
4176	int err = 0;
4177
4178	path = btrfs_alloc_path();
4179	if (!path)
4180		return -ENOMEM;
4181	path->reada = READA_BACK;
4182
4183	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4184	key.type = BTRFS_ROOT_ITEM_KEY;
4185	key.offset = (u64)-1;
4186
4187	while (1) {
4188		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4189					path, 0, 0);
4190		if (ret < 0) {
4191			err = ret;
4192			goto out;
4193		}
4194		if (ret > 0) {
4195			if (path->slots[0] == 0)
4196				break;
4197			path->slots[0]--;
4198		}
4199		leaf = path->nodes[0];
4200		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4201		btrfs_release_path(path);
4202
4203		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4204		    key.type != BTRFS_ROOT_ITEM_KEY)
4205			break;
4206
4207		reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4208		if (IS_ERR(reloc_root)) {
4209			err = PTR_ERR(reloc_root);
4210			goto out;
4211		}
4212
4213		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4214		list_add(&reloc_root->root_list, &reloc_roots);
4215
4216		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4217			fs_root = btrfs_get_fs_root(fs_info,
4218					reloc_root->root_key.offset, false);
4219			if (IS_ERR(fs_root)) {
4220				ret = PTR_ERR(fs_root);
4221				if (ret != -ENOENT) {
4222					err = ret;
4223					goto out;
4224				}
4225				ret = mark_garbage_root(reloc_root);
4226				if (ret < 0) {
4227					err = ret;
4228					goto out;
4229				}
4230			} else {
4231				btrfs_put_root(fs_root);
4232			}
4233		}
4234
4235		if (key.offset == 0)
4236			break;
4237
4238		key.offset--;
4239	}
4240	btrfs_release_path(path);
4241
4242	if (list_empty(&reloc_roots))
4243		goto out;
4244
4245	rc = alloc_reloc_control(fs_info);
4246	if (!rc) {
4247		err = -ENOMEM;
4248		goto out;
4249	}
4250
4251	ret = reloc_chunk_start(fs_info);
4252	if (ret < 0) {
4253		err = ret;
4254		goto out_end;
4255	}
4256
4257	rc->extent_root = btrfs_extent_root(fs_info, 0);
4258
4259	set_reloc_control(rc);
4260
4261	trans = btrfs_join_transaction(rc->extent_root);
4262	if (IS_ERR(trans)) {
 
4263		err = PTR_ERR(trans);
4264		goto out_unset;
4265	}
4266
4267	rc->merge_reloc_tree = 1;
4268
4269	while (!list_empty(&reloc_roots)) {
4270		reloc_root = list_entry(reloc_roots.next,
4271					struct btrfs_root, root_list);
4272		list_del(&reloc_root->root_list);
4273
4274		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4275			list_add_tail(&reloc_root->root_list,
4276				      &rc->reloc_roots);
4277			continue;
4278		}
4279
4280		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4281					    false);
4282		if (IS_ERR(fs_root)) {
4283			err = PTR_ERR(fs_root);
4284			list_add_tail(&reloc_root->root_list, &reloc_roots);
4285			btrfs_end_transaction(trans);
4286			goto out_unset;
4287		}
4288
4289		err = __add_reloc_root(reloc_root);
4290		ASSERT(err != -EEXIST);
4291		if (err) {
4292			list_add_tail(&reloc_root->root_list, &reloc_roots);
4293			btrfs_put_root(fs_root);
4294			btrfs_end_transaction(trans);
4295			goto out_unset;
4296		}
4297		fs_root->reloc_root = btrfs_grab_root(reloc_root);
4298		btrfs_put_root(fs_root);
4299	}
4300
4301	err = btrfs_commit_transaction(trans);
4302	if (err)
4303		goto out_unset;
4304
4305	merge_reloc_roots(rc);
4306
4307	unset_reloc_control(rc);
4308
4309	trans = btrfs_join_transaction(rc->extent_root);
4310	if (IS_ERR(trans)) {
4311		err = PTR_ERR(trans);
4312		goto out_clean;
4313	}
4314	err = btrfs_commit_transaction(trans);
4315out_clean:
4316	ret = clean_dirty_subvols(rc);
4317	if (ret < 0 && !err)
4318		err = ret;
4319out_unset:
4320	unset_reloc_control(rc);
4321out_end:
4322	reloc_chunk_end(fs_info);
4323	free_reloc_control(rc);
4324out:
4325	free_reloc_roots(&reloc_roots);
4326
 
 
 
 
 
 
4327	btrfs_free_path(path);
4328
4329	if (err == 0) {
4330		/* cleanup orphan inode in data relocation tree */
4331		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4332		ASSERT(fs_root);
4333		err = btrfs_orphan_cleanup(fs_root);
4334		btrfs_put_root(fs_root);
 
 
4335	}
4336	return err;
4337}
4338
4339/*
4340 * helper to add ordered checksum for data relocation.
4341 *
4342 * cloning checksum properly handles the nodatasum extents.
4343 * it also saves CPU time to re-calculate the checksum.
4344 */
4345int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
4346{
4347	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4348	struct btrfs_root *csum_root;
4349	struct btrfs_ordered_sum *sums;
 
4350	struct btrfs_ordered_extent *ordered;
 
 
4351	int ret;
4352	u64 disk_bytenr;
4353	u64 new_bytenr;
4354	LIST_HEAD(list);
4355
4356	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4357	BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
4358
4359	disk_bytenr = file_pos + inode->index_cnt;
4360	csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4361	ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4362				      disk_bytenr + len - 1, &list, 0, false);
4363	if (ret)
4364		goto out;
4365
4366	while (!list_empty(&list)) {
4367		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4368		list_del_init(&sums->list);
4369
4370		/*
4371		 * We need to offset the new_bytenr based on where the csum is.
4372		 * We need to do this because we will read in entire prealloc
4373		 * extents but we may have written to say the middle of the
4374		 * prealloc extent, so we need to make sure the csum goes with
4375		 * the right disk offset.
4376		 *
4377		 * We can do this because the data reloc inode refers strictly
4378		 * to the on disk bytes, so we don't have to worry about
4379		 * disk_len vs real len like with real inodes since it's all
4380		 * disk length.
4381		 */
4382		new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
4383		sums->bytenr = new_bytenr;
4384
4385		btrfs_add_ordered_sum(ordered, sums);
4386	}
4387out:
4388	btrfs_put_ordered_extent(ordered);
4389	return ret;
4390}
4391
4392int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4393			  struct btrfs_root *root, struct extent_buffer *buf,
4394			  struct extent_buffer *cow)
4395{
4396	struct btrfs_fs_info *fs_info = root->fs_info;
4397	struct reloc_control *rc;
4398	struct btrfs_backref_node *node;
4399	int first_cow = 0;
4400	int level;
4401	int ret = 0;
4402
4403	rc = fs_info->reloc_ctl;
4404	if (!rc)
4405		return 0;
4406
4407	BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
 
4408
4409	level = btrfs_header_level(buf);
4410	if (btrfs_header_generation(buf) <=
4411	    btrfs_root_last_snapshot(&root->root_item))
4412		first_cow = 1;
4413
4414	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4415	    rc->create_reloc_tree) {
4416		WARN_ON(!first_cow && level == 0);
4417
4418		node = rc->backref_cache.path[level];
4419		BUG_ON(node->bytenr != buf->start &&
4420		       node->new_bytenr != buf->start);
4421
4422		btrfs_backref_drop_node_buffer(node);
4423		atomic_inc(&cow->refs);
4424		node->eb = cow;
4425		node->new_bytenr = cow->start;
4426
4427		if (!node->pending) {
4428			list_move_tail(&node->list,
4429				       &rc->backref_cache.pending[level]);
4430			node->pending = 1;
4431		}
4432
4433		if (first_cow)
4434			mark_block_processed(rc, node);
4435
4436		if (first_cow && level > 0)
4437			rc->nodes_relocated += buf->len;
4438	}
4439
4440	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4441		ret = replace_file_extents(trans, rc, root, cow);
4442	return ret;
 
4443}
4444
4445/*
4446 * called before creating snapshot. it calculates metadata reservation
4447 * required for relocating tree blocks in the snapshot
4448 */
4449void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
 
4450			      u64 *bytes_to_reserve)
4451{
4452	struct btrfs_root *root = pending->root;
4453	struct reloc_control *rc = root->fs_info->reloc_ctl;
4454
4455	if (!rc || !have_reloc_root(root))
 
4456		return;
4457
 
4458	if (!rc->merge_reloc_tree)
4459		return;
4460
4461	root = root->reloc_root;
4462	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4463	/*
4464	 * relocation is in the stage of merging trees. the space
4465	 * used by merging a reloc tree is twice the size of
4466	 * relocated tree nodes in the worst case. half for cowing
4467	 * the reloc tree, half for cowing the fs tree. the space
4468	 * used by cowing the reloc tree will be freed after the
4469	 * tree is dropped. if we create snapshot, cowing the fs
4470	 * tree may use more space than it frees. so we need
4471	 * reserve extra space.
4472	 */
4473	*bytes_to_reserve += rc->nodes_relocated;
4474}
4475
4476/*
4477 * called after snapshot is created. migrate block reservation
4478 * and create reloc root for the newly created snapshot
4479 *
4480 * This is similar to btrfs_init_reloc_root(), we come out of here with two
4481 * references held on the reloc_root, one for root->reloc_root and one for
4482 * rc->reloc_roots.
4483 */
4484int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4485			       struct btrfs_pending_snapshot *pending)
4486{
4487	struct btrfs_root *root = pending->root;
4488	struct btrfs_root *reloc_root;
4489	struct btrfs_root *new_root;
4490	struct reloc_control *rc = root->fs_info->reloc_ctl;
4491	int ret;
4492
4493	if (!rc || !have_reloc_root(root))
4494		return 0;
4495
4496	rc = root->fs_info->reloc_ctl;
4497	rc->merging_rsv_size += rc->nodes_relocated;
4498
4499	if (rc->merge_reloc_tree) {
4500		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4501					      rc->block_rsv,
4502					      rc->nodes_relocated, true);
4503		if (ret)
4504			return ret;
4505	}
4506
4507	new_root = pending->snap;
4508	reloc_root = create_reloc_root(trans, root->reloc_root,
4509				       new_root->root_key.objectid);
4510	if (IS_ERR(reloc_root))
4511		return PTR_ERR(reloc_root);
4512
4513	ret = __add_reloc_root(reloc_root);
4514	ASSERT(ret != -EEXIST);
4515	if (ret) {
4516		/* Pairs with create_reloc_root */
4517		btrfs_put_root(reloc_root);
4518		return ret;
4519	}
4520	new_root->reloc_root = btrfs_grab_root(reloc_root);
4521
4522	if (rc->create_reloc_tree)
4523		ret = clone_backref_node(trans, rc, root, reloc_root);
4524	return ret;
 
4525}
v3.1
 
   1/*
   2 * Copyright (C) 2009 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/pagemap.h>
  21#include <linux/writeback.h>
  22#include <linux/blkdev.h>
  23#include <linux/rbtree.h>
  24#include <linux/slab.h>
 
  25#include "ctree.h"
  26#include "disk-io.h"
  27#include "transaction.h"
  28#include "volumes.h"
  29#include "locking.h"
  30#include "btrfs_inode.h"
  31#include "async-thread.h"
  32#include "free-space-cache.h"
  33#include "inode-map.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  34
  35/*
  36 * backref_node, mapping_node and tree_block start with this
  37 */
  38struct tree_entry {
  39	struct rb_node rb_node;
  40	u64 bytenr;
  41};
  42
  43/*
  44 * present a tree block in the backref cache
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  45 */
  46struct backref_node {
  47	struct rb_node rb_node;
  48	u64 bytenr;
  49
  50	u64 new_bytenr;
  51	/* objectid of tree block owner, can be not uptodate */
  52	u64 owner;
  53	/* link to pending, changed or detached list */
  54	struct list_head list;
  55	/* list of upper level blocks reference this block */
  56	struct list_head upper;
  57	/* list of child blocks in the cache */
  58	struct list_head lower;
  59	/* NULL if this node is not tree root */
  60	struct btrfs_root *root;
  61	/* extent buffer got by COW the block */
  62	struct extent_buffer *eb;
  63	/* level of tree block */
  64	unsigned int level:8;
  65	/* is the block in non-reference counted tree */
  66	unsigned int cowonly:1;
  67	/* 1 if no child node in the cache */
  68	unsigned int lowest:1;
  69	/* is the extent buffer locked */
  70	unsigned int locked:1;
  71	/* has the block been processed */
  72	unsigned int processed:1;
  73	/* have backrefs of this block been checked */
  74	unsigned int checked:1;
  75	/*
  76	 * 1 if corresponding block has been cowed but some upper
  77	 * level block pointers may not point to the new location
  78	 */
  79	unsigned int pending:1;
  80	/*
  81	 * 1 if the backref node isn't connected to any other
  82	 * backref node.
  83	 */
  84	unsigned int detached:1;
  85};
  86
  87/*
  88 * present a block pointer in the backref cache
  89 */
  90struct backref_edge {
  91	struct list_head list[2];
  92	struct backref_node *node[2];
  93};
  94
  95#define LOWER	0
  96#define UPPER	1
  97
  98struct backref_cache {
  99	/* red black tree of all backref nodes in the cache */
 100	struct rb_root rb_root;
 101	/* for passing backref nodes to btrfs_reloc_cow_block */
 102	struct backref_node *path[BTRFS_MAX_LEVEL];
 103	/*
 104	 * list of blocks that have been cowed but some block
 105	 * pointers in upper level blocks may not reflect the
 106	 * new location
 107	 */
 108	struct list_head pending[BTRFS_MAX_LEVEL];
 109	/* list of backref nodes with no child node */
 110	struct list_head leaves;
 111	/* list of blocks that have been cowed in current transaction */
 112	struct list_head changed;
 113	/* list of detached backref node. */
 114	struct list_head detached;
 115
 116	u64 last_trans;
 117
 118	int nr_nodes;
 119	int nr_edges;
 120};
 121
 
 122/*
 123 * map address of tree root to tree
 124 */
 125struct mapping_node {
 126	struct rb_node rb_node;
 127	u64 bytenr;
 
 
 128	void *data;
 129};
 130
 131struct mapping_tree {
 132	struct rb_root rb_root;
 133	spinlock_t lock;
 134};
 135
 136/*
 137 * present a tree block to process
 138 */
 139struct tree_block {
 140	struct rb_node rb_node;
 141	u64 bytenr;
 
 
 
 142	struct btrfs_key key;
 143	unsigned int level:8;
 144	unsigned int key_ready:1;
 145};
 146
 147#define MAX_EXTENTS 128
 148
 149struct file_extent_cluster {
 150	u64 start;
 151	u64 end;
 152	u64 boundary[MAX_EXTENTS];
 153	unsigned int nr;
 154};
 155
 156struct reloc_control {
 157	/* block group to relocate */
 158	struct btrfs_block_group_cache *block_group;
 159	/* extent tree */
 160	struct btrfs_root *extent_root;
 161	/* inode for moving data */
 162	struct inode *data_inode;
 163
 164	struct btrfs_block_rsv *block_rsv;
 165
 166	struct backref_cache backref_cache;
 167
 168	struct file_extent_cluster cluster;
 169	/* tree blocks have been processed */
 170	struct extent_io_tree processed_blocks;
 171	/* map start of tree root to corresponding reloc tree */
 172	struct mapping_tree reloc_root_tree;
 173	/* list of reloc trees */
 174	struct list_head reloc_roots;
 
 
 175	/* size of metadata reservation for merging reloc trees */
 176	u64 merging_rsv_size;
 177	/* size of relocated tree nodes */
 178	u64 nodes_relocated;
 
 
 179
 180	u64 search_start;
 181	u64 extents_found;
 182
 183	unsigned int stage:8;
 184	unsigned int create_reloc_tree:1;
 185	unsigned int merge_reloc_tree:1;
 186	unsigned int found_file_extent:1;
 187	unsigned int commit_transaction:1;
 188};
 189
 190/* stages of data relocation */
 191#define MOVE_DATA_EXTENTS	0
 192#define UPDATE_DATA_PTRS	1
 193
 194static void remove_backref_node(struct backref_cache *cache,
 195				struct backref_node *node);
 196static void __mark_block_processed(struct reloc_control *rc,
 197				   struct backref_node *node);
 198
 199static void mapping_tree_init(struct mapping_tree *tree)
 200{
 201	tree->rb_root = RB_ROOT;
 202	spin_lock_init(&tree->lock);
 203}
 204
 205static void backref_cache_init(struct backref_cache *cache)
 206{
 207	int i;
 208	cache->rb_root = RB_ROOT;
 209	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 210		INIT_LIST_HEAD(&cache->pending[i]);
 211	INIT_LIST_HEAD(&cache->changed);
 212	INIT_LIST_HEAD(&cache->detached);
 213	INIT_LIST_HEAD(&cache->leaves);
 214}
 215
 216static void backref_cache_cleanup(struct backref_cache *cache)
 217{
 218	struct backref_node *node;
 219	int i;
 220
 221	while (!list_empty(&cache->detached)) {
 222		node = list_entry(cache->detached.next,
 223				  struct backref_node, list);
 224		remove_backref_node(cache, node);
 225	}
 226
 227	while (!list_empty(&cache->leaves)) {
 228		node = list_entry(cache->leaves.next,
 229				  struct backref_node, lower);
 230		remove_backref_node(cache, node);
 231	}
 232
 233	cache->last_trans = 0;
 234
 235	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 236		BUG_ON(!list_empty(&cache->pending[i]));
 237	BUG_ON(!list_empty(&cache->changed));
 238	BUG_ON(!list_empty(&cache->detached));
 239	BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
 240	BUG_ON(cache->nr_nodes);
 241	BUG_ON(cache->nr_edges);
 242}
 243
 244static struct backref_node *alloc_backref_node(struct backref_cache *cache)
 245{
 246	struct backref_node *node;
 247
 248	node = kzalloc(sizeof(*node), GFP_NOFS);
 249	if (node) {
 250		INIT_LIST_HEAD(&node->list);
 251		INIT_LIST_HEAD(&node->upper);
 252		INIT_LIST_HEAD(&node->lower);
 253		RB_CLEAR_NODE(&node->rb_node);
 254		cache->nr_nodes++;
 255	}
 256	return node;
 257}
 258
 259static void free_backref_node(struct backref_cache *cache,
 260			      struct backref_node *node)
 261{
 262	if (node) {
 263		cache->nr_nodes--;
 264		kfree(node);
 265	}
 266}
 267
 268static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
 269{
 270	struct backref_edge *edge;
 271
 272	edge = kzalloc(sizeof(*edge), GFP_NOFS);
 273	if (edge)
 274		cache->nr_edges++;
 275	return edge;
 276}
 277
 278static void free_backref_edge(struct backref_cache *cache,
 279			      struct backref_edge *edge)
 280{
 281	if (edge) {
 282		cache->nr_edges--;
 283		kfree(edge);
 284	}
 285}
 286
 287static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
 288				   struct rb_node *node)
 289{
 290	struct rb_node **p = &root->rb_node;
 291	struct rb_node *parent = NULL;
 292	struct tree_entry *entry;
 293
 294	while (*p) {
 295		parent = *p;
 296		entry = rb_entry(parent, struct tree_entry, rb_node);
 297
 298		if (bytenr < entry->bytenr)
 299			p = &(*p)->rb_left;
 300		else if (bytenr > entry->bytenr)
 301			p = &(*p)->rb_right;
 302		else
 303			return parent;
 304	}
 305
 306	rb_link_node(node, parent, p);
 307	rb_insert_color(node, root);
 308	return NULL;
 309}
 310
 311static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
 312{
 313	struct rb_node *n = root->rb_node;
 314	struct tree_entry *entry;
 315
 316	while (n) {
 317		entry = rb_entry(n, struct tree_entry, rb_node);
 318
 319		if (bytenr < entry->bytenr)
 320			n = n->rb_left;
 321		else if (bytenr > entry->bytenr)
 322			n = n->rb_right;
 323		else
 324			return n;
 325	}
 326	return NULL;
 327}
 328
 329/*
 330 * walk up backref nodes until reach node presents tree root
 331 */
 332static struct backref_node *walk_up_backref(struct backref_node *node,
 333					    struct backref_edge *edges[],
 334					    int *index)
 335{
 336	struct backref_edge *edge;
 337	int idx = *index;
 338
 339	while (!list_empty(&node->upper)) {
 340		edge = list_entry(node->upper.next,
 341				  struct backref_edge, list[LOWER]);
 342		edges[idx++] = edge;
 343		node = edge->node[UPPER];
 344	}
 345	BUG_ON(node->detached);
 346	*index = idx;
 347	return node;
 348}
 349
 350/*
 351 * walk down backref nodes to find start of next reference path
 352 */
 353static struct backref_node *walk_down_backref(struct backref_edge *edges[],
 354					      int *index)
 355{
 356	struct backref_edge *edge;
 357	struct backref_node *lower;
 358	int idx = *index;
 359
 360	while (idx > 0) {
 361		edge = edges[idx - 1];
 362		lower = edge->node[LOWER];
 363		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
 364			idx--;
 365			continue;
 366		}
 367		edge = list_entry(edge->list[LOWER].next,
 368				  struct backref_edge, list[LOWER]);
 369		edges[idx - 1] = edge;
 370		*index = idx;
 371		return edge->node[UPPER];
 372	}
 373	*index = 0;
 374	return NULL;
 375}
 376
 377static void unlock_node_buffer(struct backref_node *node)
 378{
 379	if (node->locked) {
 380		btrfs_tree_unlock(node->eb);
 381		node->locked = 0;
 382	}
 383}
 384
 385static void drop_node_buffer(struct backref_node *node)
 386{
 387	if (node->eb) {
 388		unlock_node_buffer(node);
 389		free_extent_buffer(node->eb);
 390		node->eb = NULL;
 391	}
 392}
 393
 394static void drop_backref_node(struct backref_cache *tree,
 395			      struct backref_node *node)
 396{
 397	BUG_ON(!list_empty(&node->upper));
 398
 399	drop_node_buffer(node);
 400	list_del(&node->list);
 401	list_del(&node->lower);
 402	if (!RB_EMPTY_NODE(&node->rb_node))
 403		rb_erase(&node->rb_node, &tree->rb_root);
 404	free_backref_node(tree, node);
 405}
 406
 407/*
 408 * remove a backref node from the backref cache
 409 */
 410static void remove_backref_node(struct backref_cache *cache,
 411				struct backref_node *node)
 412{
 413	struct backref_node *upper;
 414	struct backref_edge *edge;
 415
 416	if (!node)
 417		return;
 418
 419	BUG_ON(!node->lowest && !node->detached);
 420	while (!list_empty(&node->upper)) {
 421		edge = list_entry(node->upper.next, struct backref_edge,
 422				  list[LOWER]);
 423		upper = edge->node[UPPER];
 424		list_del(&edge->list[LOWER]);
 425		list_del(&edge->list[UPPER]);
 426		free_backref_edge(cache, edge);
 427
 428		if (RB_EMPTY_NODE(&upper->rb_node)) {
 429			BUG_ON(!list_empty(&node->upper));
 430			drop_backref_node(cache, node);
 431			node = upper;
 432			node->lowest = 1;
 433			continue;
 434		}
 435		/*
 436		 * add the node to leaf node list if no other
 437		 * child block cached.
 438		 */
 439		if (list_empty(&upper->lower)) {
 440			list_add_tail(&upper->lower, &cache->leaves);
 441			upper->lowest = 1;
 442		}
 443	}
 444
 445	drop_backref_node(cache, node);
 446}
 447
 448static void update_backref_node(struct backref_cache *cache,
 449				struct backref_node *node, u64 bytenr)
 450{
 451	struct rb_node *rb_node;
 452	rb_erase(&node->rb_node, &cache->rb_root);
 453	node->bytenr = bytenr;
 454	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
 455	BUG_ON(rb_node);
 
 456}
 457
 458/*
 459 * update backref cache after a transaction commit
 460 */
 461static int update_backref_cache(struct btrfs_trans_handle *trans,
 462				struct backref_cache *cache)
 463{
 464	struct backref_node *node;
 465	int level = 0;
 466
 467	if (cache->last_trans == 0) {
 468		cache->last_trans = trans->transid;
 469		return 0;
 470	}
 471
 472	if (cache->last_trans == trans->transid)
 473		return 0;
 474
 475	/*
 476	 * detached nodes are used to avoid unnecessary backref
 477	 * lookup. transaction commit changes the extent tree.
 478	 * so the detached nodes are no longer useful.
 479	 */
 480	while (!list_empty(&cache->detached)) {
 481		node = list_entry(cache->detached.next,
 482				  struct backref_node, list);
 483		remove_backref_node(cache, node);
 484	}
 485
 486	while (!list_empty(&cache->changed)) {
 487		node = list_entry(cache->changed.next,
 488				  struct backref_node, list);
 489		list_del_init(&node->list);
 490		BUG_ON(node->pending);
 491		update_backref_node(cache, node, node->new_bytenr);
 492	}
 493
 494	/*
 495	 * some nodes can be left in the pending list if there were
 496	 * errors during processing the pending nodes.
 497	 */
 498	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
 499		list_for_each_entry(node, &cache->pending[level], list) {
 500			BUG_ON(!node->pending);
 501			if (node->bytenr == node->new_bytenr)
 502				continue;
 503			update_backref_node(cache, node, node->new_bytenr);
 504		}
 505	}
 506
 507	cache->last_trans = 0;
 508	return 1;
 509}
 510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 511
 512static int should_ignore_root(struct btrfs_root *root)
 513{
 514	struct btrfs_root *reloc_root;
 515
 516	if (!root->ref_cows)
 517		return 0;
 518
 
 
 
 
 519	reloc_root = root->reloc_root;
 520	if (!reloc_root)
 521		return 0;
 522
 523	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
 524	    root->fs_info->running_transaction->transid - 1)
 525		return 0;
 526	/*
 527	 * if there is reloc tree and it was created in previous
 528	 * transaction backref lookup can find the reloc tree,
 529	 * so backref node for the fs tree root is useless for
 530	 * relocation.
 531	 */
 532	return 1;
 533}
 
 534/*
 535 * find reloc tree by address of tree root
 536 */
 537static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
 538					  u64 bytenr)
 539{
 
 540	struct rb_node *rb_node;
 541	struct mapping_node *node;
 542	struct btrfs_root *root = NULL;
 543
 
 544	spin_lock(&rc->reloc_root_tree.lock);
 545	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
 546	if (rb_node) {
 547		node = rb_entry(rb_node, struct mapping_node, rb_node);
 548		root = (struct btrfs_root *)node->data;
 549	}
 550	spin_unlock(&rc->reloc_root_tree.lock);
 551	return root;
 552}
 553
 554static int is_cowonly_root(u64 root_objectid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 555{
 556	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
 557	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
 558	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
 559	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
 560	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
 561	    root_objectid == BTRFS_CSUM_TREE_OBJECTID)
 562		return 1;
 563	return 0;
 564}
 565
 566static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
 567					u64 root_objectid)
 568{
 569	struct btrfs_key key;
 570
 571	key.objectid = root_objectid;
 572	key.type = BTRFS_ROOT_ITEM_KEY;
 573	if (is_cowonly_root(root_objectid))
 574		key.offset = 0;
 575	else
 576		key.offset = (u64)-1;
 577
 578	return btrfs_read_fs_root_no_name(fs_info, &key);
 579}
 580
 581#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 582static noinline_for_stack
 583struct btrfs_root *find_tree_root(struct reloc_control *rc,
 584				  struct extent_buffer *leaf,
 585				  struct btrfs_extent_ref_v0 *ref0)
 586{
 587	struct btrfs_root *root;
 588	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
 589	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
 590
 591	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
 
 
 
 
 592
 593	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
 594	BUG_ON(IS_ERR(root));
 
 
 595
 596	if (root->ref_cows &&
 597	    generation != btrfs_root_generation(&root->root_item))
 598		return NULL;
 
 
 
 599
 600	return root;
 601}
 602#endif
 
 
 
 603
 604static noinline_for_stack
 605int find_inline_backref(struct extent_buffer *leaf, int slot,
 606			unsigned long *ptr, unsigned long *end)
 607{
 608	struct btrfs_extent_item *ei;
 609	struct btrfs_tree_block_info *bi;
 610	u32 item_size;
 611
 612	item_size = btrfs_item_size_nr(leaf, slot);
 613#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 614	if (item_size < sizeof(*ei)) {
 615		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
 616		return 1;
 617	}
 618#endif
 619	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 620	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
 621		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
 622
 623	if (item_size <= sizeof(*ei) + sizeof(*bi)) {
 624		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
 625		return 1;
 626	}
 627
 628	bi = (struct btrfs_tree_block_info *)(ei + 1);
 629	*ptr = (unsigned long)(bi + 1);
 630	*end = (unsigned long)ei + item_size;
 631	return 0;
 632}
 633
 634/*
 635 * build backref tree for a given tree block. root of the backref tree
 636 * corresponds the tree block, leaves of the backref tree correspond
 637 * roots of b-trees that reference the tree block.
 638 *
 639 * the basic idea of this function is check backrefs of a given block
 640 * to find upper level blocks that refernece the block, and then check
 641 * bakcrefs of these upper level blocks recursively. the recursion stop
 642 * when tree root is reached or backrefs for the block is cached.
 643 *
 644 * NOTE: if we find backrefs for a block are cached, we know backrefs
 645 * for all upper level blocks that directly/indirectly reference the
 646 * block are also cached.
 647 */
 648static noinline_for_stack
 649struct backref_node *build_backref_tree(struct reloc_control *rc,
 650					struct btrfs_key *node_key,
 651					int level, u64 bytenr)
 652{
 653	struct backref_cache *cache = &rc->backref_cache;
 654	struct btrfs_path *path1;
 655	struct btrfs_path *path2;
 656	struct extent_buffer *eb;
 657	struct btrfs_root *root;
 658	struct backref_node *cur;
 659	struct backref_node *upper;
 660	struct backref_node *lower;
 661	struct backref_node *node = NULL;
 662	struct backref_node *exist = NULL;
 663	struct backref_edge *edge;
 664	struct rb_node *rb_node;
 665	struct btrfs_key key;
 666	unsigned long end;
 667	unsigned long ptr;
 668	LIST_HEAD(list);
 669	LIST_HEAD(useless);
 670	int cowonly;
 671	int ret;
 672	int err = 0;
 673
 674	path1 = btrfs_alloc_path();
 675	path2 = btrfs_alloc_path();
 676	if (!path1 || !path2) {
 
 
 677		err = -ENOMEM;
 678		goto out;
 679	}
 680	path1->reada = 1;
 681	path2->reada = 2;
 682
 683	node = alloc_backref_node(cache);
 684	if (!node) {
 685		err = -ENOMEM;
 686		goto out;
 687	}
 688
 689	node->bytenr = bytenr;
 690	node->level = level;
 691	node->lowest = 1;
 692	cur = node;
 693again:
 694	end = 0;
 695	ptr = 0;
 696	key.objectid = cur->bytenr;
 697	key.type = BTRFS_EXTENT_ITEM_KEY;
 698	key.offset = (u64)-1;
 699
 700	path1->search_commit_root = 1;
 701	path1->skip_locking = 1;
 702	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
 703				0, 0);
 704	if (ret < 0) {
 705		err = ret;
 706		goto out;
 707	}
 708	BUG_ON(!ret || !path1->slots[0]);
 709
 710	path1->slots[0]--;
 711
 712	WARN_ON(cur->checked);
 713	if (!list_empty(&cur->upper)) {
 714		/*
 715		 * the backref was added previously when processing
 716		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
 717		 */
 718		BUG_ON(!list_is_singular(&cur->upper));
 719		edge = list_entry(cur->upper.next, struct backref_edge,
 720				  list[LOWER]);
 721		BUG_ON(!list_empty(&edge->list[UPPER]));
 722		exist = edge->node[UPPER];
 723		/*
 724		 * add the upper level block to pending list if we need
 725		 * check its backrefs
 726		 */
 727		if (!exist->checked)
 728			list_add_tail(&edge->list[UPPER], &list);
 729	} else {
 730		exist = NULL;
 731	}
 732
 733	while (1) {
 734		cond_resched();
 735		eb = path1->nodes[0];
 736
 737		if (ptr >= end) {
 738			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
 739				ret = btrfs_next_leaf(rc->extent_root, path1);
 740				if (ret < 0) {
 741					err = ret;
 742					goto out;
 743				}
 744				if (ret > 0)
 745					break;
 746				eb = path1->nodes[0];
 747			}
 748
 749			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
 750			if (key.objectid != cur->bytenr) {
 751				WARN_ON(exist);
 752				break;
 753			}
 754
 755			if (key.type == BTRFS_EXTENT_ITEM_KEY) {
 756				ret = find_inline_backref(eb, path1->slots[0],
 757							  &ptr, &end);
 758				if (ret)
 759					goto next;
 760			}
 761		}
 762
 763		if (ptr < end) {
 764			/* update key for inline back ref */
 765			struct btrfs_extent_inline_ref *iref;
 766			iref = (struct btrfs_extent_inline_ref *)ptr;
 767			key.type = btrfs_extent_inline_ref_type(eb, iref);
 768			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
 769			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
 770				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
 771		}
 772
 773		if (exist &&
 774		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
 775		      exist->owner == key.offset) ||
 776		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
 777		      exist->bytenr == key.offset))) {
 778			exist = NULL;
 779			goto next;
 780		}
 781
 782#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 783		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
 784		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
 785			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
 786				struct btrfs_extent_ref_v0 *ref0;
 787				ref0 = btrfs_item_ptr(eb, path1->slots[0],
 788						struct btrfs_extent_ref_v0);
 789				if (key.objectid == key.offset) {
 790					root = find_tree_root(rc, eb, ref0);
 791					if (root && !should_ignore_root(root))
 792						cur->root = root;
 793					else
 794						list_add(&cur->list, &useless);
 795					break;
 796				}
 797				if (is_cowonly_root(btrfs_ref_root_v0(eb,
 798								      ref0)))
 799					cur->cowonly = 1;
 800			}
 801#else
 802		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
 803		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
 804#endif
 805			if (key.objectid == key.offset) {
 806				/*
 807				 * only root blocks of reloc trees use
 808				 * backref of this type.
 809				 */
 810				root = find_reloc_root(rc, cur->bytenr);
 811				BUG_ON(!root);
 812				cur->root = root;
 813				break;
 814			}
 815
 816			edge = alloc_backref_edge(cache);
 817			if (!edge) {
 818				err = -ENOMEM;
 819				goto out;
 820			}
 821			rb_node = tree_search(&cache->rb_root, key.offset);
 822			if (!rb_node) {
 823				upper = alloc_backref_node(cache);
 824				if (!upper) {
 825					free_backref_edge(cache, edge);
 826					err = -ENOMEM;
 827					goto out;
 828				}
 829				upper->bytenr = key.offset;
 830				upper->level = cur->level + 1;
 831				/*
 832				 *  backrefs for the upper level block isn't
 833				 *  cached, add the block to pending list
 834				 */
 835				list_add_tail(&edge->list[UPPER], &list);
 836			} else {
 837				upper = rb_entry(rb_node, struct backref_node,
 838						 rb_node);
 839				BUG_ON(!upper->checked);
 840				INIT_LIST_HEAD(&edge->list[UPPER]);
 841			}
 842			list_add_tail(&edge->list[LOWER], &cur->upper);
 843			edge->node[LOWER] = cur;
 844			edge->node[UPPER] = upper;
 845
 846			goto next;
 847		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
 848			goto next;
 849		}
 850
 851		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
 852		root = read_fs_root(rc->extent_root->fs_info, key.offset);
 853		if (IS_ERR(root)) {
 854			err = PTR_ERR(root);
 855			goto out;
 856		}
 857
 858		if (!root->ref_cows)
 859			cur->cowonly = 1;
 860
 861		if (btrfs_root_level(&root->root_item) == cur->level) {
 862			/* tree root */
 863			BUG_ON(btrfs_root_bytenr(&root->root_item) !=
 864			       cur->bytenr);
 865			if (should_ignore_root(root))
 866				list_add(&cur->list, &useless);
 867			else
 868				cur->root = root;
 869			break;
 870		}
 871
 872		level = cur->level + 1;
 873
 874		/*
 875		 * searching the tree to find upper level blocks
 876		 * reference the block.
 877		 */
 878		path2->search_commit_root = 1;
 879		path2->skip_locking = 1;
 880		path2->lowest_level = level;
 881		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
 882		path2->lowest_level = 0;
 883		if (ret < 0) {
 884			err = ret;
 885			goto out;
 886		}
 887		if (ret > 0 && path2->slots[level] > 0)
 888			path2->slots[level]--;
 889
 890		eb = path2->nodes[level];
 891		WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
 892			cur->bytenr);
 893
 894		lower = cur;
 895		for (; level < BTRFS_MAX_LEVEL; level++) {
 896			if (!path2->nodes[level]) {
 897				BUG_ON(btrfs_root_bytenr(&root->root_item) !=
 898				       lower->bytenr);
 899				if (should_ignore_root(root))
 900					list_add(&lower->list, &useless);
 901				else
 902					lower->root = root;
 903				break;
 904			}
 905
 906			edge = alloc_backref_edge(cache);
 907			if (!edge) {
 908				err = -ENOMEM;
 909				goto out;
 910			}
 911
 912			eb = path2->nodes[level];
 913			rb_node = tree_search(&cache->rb_root, eb->start);
 914			if (!rb_node) {
 915				upper = alloc_backref_node(cache);
 916				if (!upper) {
 917					free_backref_edge(cache, edge);
 918					err = -ENOMEM;
 919					goto out;
 920				}
 921				upper->bytenr = eb->start;
 922				upper->owner = btrfs_header_owner(eb);
 923				upper->level = lower->level + 1;
 924				if (!root->ref_cows)
 925					upper->cowonly = 1;
 926
 927				/*
 928				 * if we know the block isn't shared
 929				 * we can void checking its backrefs.
 930				 */
 931				if (btrfs_block_can_be_shared(root, eb))
 932					upper->checked = 0;
 933				else
 934					upper->checked = 1;
 935
 936				/*
 937				 * add the block to pending list if we
 938				 * need check its backrefs. only block
 939				 * at 'cur->level + 1' is added to the
 940				 * tail of pending list. this guarantees
 941				 * we check backrefs from lower level
 942				 * blocks to upper level blocks.
 943				 */
 944				if (!upper->checked &&
 945				    level == cur->level + 1) {
 946					list_add_tail(&edge->list[UPPER],
 947						      &list);
 948				} else
 949					INIT_LIST_HEAD(&edge->list[UPPER]);
 950			} else {
 951				upper = rb_entry(rb_node, struct backref_node,
 952						 rb_node);
 953				BUG_ON(!upper->checked);
 954				INIT_LIST_HEAD(&edge->list[UPPER]);
 955				if (!upper->owner)
 956					upper->owner = btrfs_header_owner(eb);
 957			}
 958			list_add_tail(&edge->list[LOWER], &lower->upper);
 959			edge->node[LOWER] = lower;
 960			edge->node[UPPER] = upper;
 961
 962			if (rb_node)
 963				break;
 964			lower = upper;
 965			upper = NULL;
 966		}
 967		btrfs_release_path(path2);
 968next:
 969		if (ptr < end) {
 970			ptr += btrfs_extent_inline_ref_size(key.type);
 971			if (ptr >= end) {
 972				WARN_ON(ptr > end);
 973				ptr = 0;
 974				end = 0;
 975			}
 976		}
 977		if (ptr >= end)
 978			path1->slots[0]++;
 979	}
 980	btrfs_release_path(path1);
 981
 982	cur->checked = 1;
 983	WARN_ON(exist);
 984
 985	/* the pending list isn't empty, take the first block to process */
 986	if (!list_empty(&list)) {
 987		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
 988		list_del_init(&edge->list[UPPER]);
 989		cur = edge->node[UPPER];
 990		goto again;
 991	}
 992
 993	/*
 994	 * everything goes well, connect backref nodes and insert backref nodes
 995	 * into the cache.
 996	 */
 997	BUG_ON(!node->checked);
 998	cowonly = node->cowonly;
 999	if (!cowonly) {
1000		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1001				      &node->rb_node);
1002		BUG_ON(rb_node);
1003		list_add_tail(&node->lower, &cache->leaves);
1004	}
1005
1006	list_for_each_entry(edge, &node->upper, list[LOWER])
1007		list_add_tail(&edge->list[UPPER], &list);
1008
1009	while (!list_empty(&list)) {
1010		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1011		list_del_init(&edge->list[UPPER]);
1012		upper = edge->node[UPPER];
1013		if (upper->detached) {
1014			list_del(&edge->list[LOWER]);
1015			lower = edge->node[LOWER];
1016			free_backref_edge(cache, edge);
1017			if (list_empty(&lower->upper))
1018				list_add(&lower->list, &useless);
1019			continue;
1020		}
1021
1022		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1023			if (upper->lowest) {
1024				list_del_init(&upper->lower);
1025				upper->lowest = 0;
1026			}
1027
1028			list_add_tail(&edge->list[UPPER], &upper->lower);
1029			continue;
1030		}
1031
1032		BUG_ON(!upper->checked);
1033		BUG_ON(cowonly != upper->cowonly);
1034		if (!cowonly) {
1035			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1036					      &upper->rb_node);
1037			BUG_ON(rb_node);
1038		}
1039
1040		list_add_tail(&edge->list[UPPER], &upper->lower);
1041
1042		list_for_each_entry(edge, &upper->upper, list[LOWER])
1043			list_add_tail(&edge->list[UPPER], &list);
1044	}
1045	/*
1046	 * process useless backref nodes. backref nodes for tree leaves
1047	 * are deleted from the cache. backref nodes for upper level
1048	 * tree blocks are left in the cache to avoid unnecessary backref
1049	 * lookup.
1050	 */
1051	while (!list_empty(&useless)) {
1052		upper = list_entry(useless.next, struct backref_node, list);
1053		list_del_init(&upper->list);
1054		BUG_ON(!list_empty(&upper->upper));
1055		if (upper == node)
1056			node = NULL;
1057		if (upper->lowest) {
1058			list_del_init(&upper->lower);
1059			upper->lowest = 0;
1060		}
1061		while (!list_empty(&upper->lower)) {
1062			edge = list_entry(upper->lower.next,
1063					  struct backref_edge, list[UPPER]);
1064			list_del(&edge->list[UPPER]);
1065			list_del(&edge->list[LOWER]);
1066			lower = edge->node[LOWER];
1067			free_backref_edge(cache, edge);
1068
1069			if (list_empty(&lower->upper))
1070				list_add(&lower->list, &useless);
1071		}
1072		__mark_block_processed(rc, upper);
1073		if (upper->level > 0) {
1074			list_add(&upper->list, &cache->detached);
1075			upper->detached = 1;
1076		} else {
1077			rb_erase(&upper->rb_node, &cache->rb_root);
1078			free_backref_node(cache, upper);
1079		}
1080	}
1081out:
1082	btrfs_free_path(path1);
1083	btrfs_free_path(path2);
1084	if (err) {
1085		while (!list_empty(&useless)) {
1086			lower = list_entry(useless.next,
1087					   struct backref_node, upper);
1088			list_del_init(&lower->upper);
1089		}
1090		upper = node;
1091		INIT_LIST_HEAD(&list);
1092		while (upper) {
1093			if (RB_EMPTY_NODE(&upper->rb_node)) {
1094				list_splice_tail(&upper->upper, &list);
1095				free_backref_node(cache, upper);
1096			}
1097
1098			if (list_empty(&list))
1099				break;
1100
1101			edge = list_entry(list.next, struct backref_edge,
1102					  list[LOWER]);
1103			list_del(&edge->list[LOWER]);
1104			upper = edge->node[UPPER];
1105			free_backref_edge(cache, edge);
1106		}
1107		return ERR_PTR(err);
1108	}
1109	BUG_ON(node && node->detached);
 
 
1110	return node;
1111}
1112
1113/*
1114 * helper to add backref node for the newly created snapshot.
1115 * the backref node is created by cloning backref node that
1116 * corresponds to root of source tree
1117 */
1118static int clone_backref_node(struct btrfs_trans_handle *trans,
1119			      struct reloc_control *rc,
1120			      struct btrfs_root *src,
1121			      struct btrfs_root *dest)
1122{
1123	struct btrfs_root *reloc_root = src->reloc_root;
1124	struct backref_cache *cache = &rc->backref_cache;
1125	struct backref_node *node = NULL;
1126	struct backref_node *new_node;
1127	struct backref_edge *edge;
1128	struct backref_edge *new_edge;
1129	struct rb_node *rb_node;
1130
1131	if (cache->last_trans > 0)
1132		update_backref_cache(trans, cache);
1133
1134	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1135	if (rb_node) {
1136		node = rb_entry(rb_node, struct backref_node, rb_node);
1137		if (node->detached)
1138			node = NULL;
1139		else
1140			BUG_ON(node->new_bytenr != reloc_root->node->start);
1141	}
1142
1143	if (!node) {
1144		rb_node = tree_search(&cache->rb_root,
1145				      reloc_root->commit_root->start);
1146		if (rb_node) {
1147			node = rb_entry(rb_node, struct backref_node,
1148					rb_node);
1149			BUG_ON(node->detached);
1150		}
1151	}
1152
1153	if (!node)
1154		return 0;
1155
1156	new_node = alloc_backref_node(cache);
 
1157	if (!new_node)
1158		return -ENOMEM;
1159
1160	new_node->bytenr = dest->node->start;
1161	new_node->level = node->level;
1162	new_node->lowest = node->lowest;
1163	new_node->checked = 1;
1164	new_node->root = dest;
 
1165
1166	if (!node->lowest) {
1167		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1168			new_edge = alloc_backref_edge(cache);
1169			if (!new_edge)
1170				goto fail;
1171
1172			new_edge->node[UPPER] = new_node;
1173			new_edge->node[LOWER] = edge->node[LOWER];
1174			list_add_tail(&new_edge->list[UPPER],
1175				      &new_node->lower);
1176		}
 
 
1177	}
1178
1179	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1180			      &new_node->rb_node);
1181	BUG_ON(rb_node);
 
1182
1183	if (!new_node->lowest) {
1184		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1185			list_add_tail(&new_edge->list[LOWER],
1186				      &new_edge->node[LOWER]->upper);
1187		}
1188	}
1189	return 0;
1190fail:
1191	while (!list_empty(&new_node->lower)) {
1192		new_edge = list_entry(new_node->lower.next,
1193				      struct backref_edge, list[UPPER]);
1194		list_del(&new_edge->list[UPPER]);
1195		free_backref_edge(cache, new_edge);
1196	}
1197	free_backref_node(cache, new_node);
1198	return -ENOMEM;
1199}
1200
1201/*
1202 * helper to add 'address of tree root -> reloc tree' mapping
1203 */
1204static int __add_reloc_root(struct btrfs_root *root)
1205{
 
1206	struct rb_node *rb_node;
1207	struct mapping_node *node;
1208	struct reloc_control *rc = root->fs_info->reloc_ctl;
1209
1210	node = kmalloc(sizeof(*node), GFP_NOFS);
1211	BUG_ON(!node);
 
1212
1213	node->bytenr = root->node->start;
1214	node->data = root;
1215
1216	spin_lock(&rc->reloc_root_tree.lock);
1217	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1218			      node->bytenr, &node->rb_node);
1219	spin_unlock(&rc->reloc_root_tree.lock);
1220	BUG_ON(rb_node);
 
 
 
 
 
1221
1222	list_add_tail(&root->root_list, &rc->reloc_roots);
1223	return 0;
1224}
1225
1226/*
1227 * helper to update/delete the 'address of tree root -> reloc tree'
1228 * mapping
1229 */
1230static int __update_reloc_root(struct btrfs_root *root, int del)
1231{
 
1232	struct rb_node *rb_node;
1233	struct mapping_node *node = NULL;
1234	struct reloc_control *rc = root->fs_info->reloc_ctl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1235
1236	spin_lock(&rc->reloc_root_tree.lock);
1237	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1238			      root->commit_root->start);
1239	if (rb_node) {
1240		node = rb_entry(rb_node, struct mapping_node, rb_node);
1241		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1242	}
1243	spin_unlock(&rc->reloc_root_tree.lock);
1244
 
 
1245	BUG_ON((struct btrfs_root *)node->data != root);
1246
1247	if (!del) {
1248		spin_lock(&rc->reloc_root_tree.lock);
1249		node->bytenr = root->node->start;
1250		rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1251				      node->bytenr, &node->rb_node);
1252		spin_unlock(&rc->reloc_root_tree.lock);
1253		BUG_ON(rb_node);
1254	} else {
1255		list_del_init(&root->root_list);
1256		kfree(node);
1257	}
1258	return 0;
1259}
1260
1261static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1262					struct btrfs_root *root, u64 objectid)
1263{
 
1264	struct btrfs_root *reloc_root;
1265	struct extent_buffer *eb;
1266	struct btrfs_root_item *root_item;
1267	struct btrfs_key root_key;
1268	int ret;
 
1269
1270	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1271	BUG_ON(!root_item);
 
1272
1273	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1274	root_key.type = BTRFS_ROOT_ITEM_KEY;
1275	root_key.offset = objectid;
1276
1277	if (root->root_key.objectid == objectid) {
 
 
1278		/* called by btrfs_init_reloc_root */
1279		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1280				      BTRFS_TREE_RELOC_OBJECTID);
1281		BUG_ON(ret);
 
1282
1283		btrfs_set_root_last_snapshot(&root->root_item,
1284					     trans->transid - 1);
 
 
 
 
 
 
 
 
1285	} else {
1286		/*
1287		 * called by btrfs_reloc_post_snapshot_hook.
1288		 * the source tree is a reloc tree, all tree blocks
1289		 * modified after it was created have RELOC flag
1290		 * set in their headers. so it's OK to not update
1291		 * the 'last_snapshot'.
1292		 */
1293		ret = btrfs_copy_root(trans, root, root->node, &eb,
1294				      BTRFS_TREE_RELOC_OBJECTID);
1295		BUG_ON(ret);
 
1296	}
1297
 
 
 
 
 
 
1298	memcpy(root_item, &root->root_item, sizeof(*root_item));
1299	btrfs_set_root_bytenr(root_item, eb->start);
1300	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1301	btrfs_set_root_generation(root_item, trans->transid);
1302
1303	if (root->root_key.objectid == objectid) {
1304		btrfs_set_root_refs(root_item, 0);
1305		memset(&root_item->drop_progress, 0,
1306		       sizeof(struct btrfs_disk_key));
1307		root_item->drop_level = 0;
1308	}
1309
1310	btrfs_tree_unlock(eb);
1311	free_extent_buffer(eb);
1312
1313	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1314				&root_key, root_item);
1315	BUG_ON(ret);
 
 
1316	kfree(root_item);
1317
1318	reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
1319						 &root_key);
1320	BUG_ON(IS_ERR(reloc_root));
 
 
 
1321	reloc_root->last_trans = trans->transid;
1322	return reloc_root;
 
 
 
 
 
 
1323}
1324
1325/*
1326 * create reloc tree for a given fs tree. reloc tree is just a
1327 * snapshot of the fs tree with special root objectid.
 
 
 
1328 */
1329int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1330			  struct btrfs_root *root)
1331{
 
1332	struct btrfs_root *reloc_root;
1333	struct reloc_control *rc = root->fs_info->reloc_ctl;
 
1334	int clear_rsv = 0;
 
 
 
 
 
 
 
 
 
 
 
1335
 
 
 
 
 
 
 
 
1336	if (root->reloc_root) {
1337		reloc_root = root->reloc_root;
1338		reloc_root->last_trans = trans->transid;
1339		return 0;
1340	}
1341
1342	if (!rc || !rc->create_reloc_tree ||
 
 
 
 
1343	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1344		return 0;
1345
1346	if (!trans->block_rsv) {
 
1347		trans->block_rsv = rc->block_rsv;
1348		clear_rsv = 1;
1349	}
1350	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1351	if (clear_rsv)
1352		trans->block_rsv = NULL;
 
 
1353
1354	__add_reloc_root(reloc_root);
1355	root->reloc_root = reloc_root;
 
 
 
 
 
 
1356	return 0;
1357}
1358
1359/*
1360 * update root item of reloc tree
1361 */
1362int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1363			    struct btrfs_root *root)
1364{
 
1365	struct btrfs_root *reloc_root;
1366	struct btrfs_root_item *root_item;
1367	int del = 0;
1368	int ret;
1369
1370	if (!root->reloc_root)
1371		goto out;
1372
1373	reloc_root = root->reloc_root;
1374	root_item = &reloc_root->root_item;
1375
1376	if (root->fs_info->reloc_ctl->merge_reloc_tree &&
 
 
 
 
 
 
 
 
1377	    btrfs_root_refs(root_item) == 0) {
1378		root->reloc_root = NULL;
1379		del = 1;
 
 
 
 
 
1380	}
1381
1382	__update_reloc_root(reloc_root, del);
1383
1384	if (reloc_root->commit_root != reloc_root->node) {
 
1385		btrfs_set_root_node(root_item, reloc_root->node);
1386		free_extent_buffer(reloc_root->commit_root);
1387		reloc_root->commit_root = btrfs_root_node(reloc_root);
1388	}
1389
1390	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1391				&reloc_root->root_key, root_item);
1392	BUG_ON(ret);
1393
1394out:
1395	return 0;
1396}
1397
1398/*
1399 * helper to find first cached inode with inode number >= objectid
1400 * in a subvolume
1401 */
1402static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1403{
1404	struct rb_node *node;
1405	struct rb_node *prev;
1406	struct btrfs_inode *entry;
1407	struct inode *inode;
1408
1409	spin_lock(&root->inode_lock);
1410again:
1411	node = root->inode_tree.rb_node;
1412	prev = NULL;
1413	while (node) {
1414		prev = node;
1415		entry = rb_entry(node, struct btrfs_inode, rb_node);
1416
1417		if (objectid < btrfs_ino(&entry->vfs_inode))
1418			node = node->rb_left;
1419		else if (objectid > btrfs_ino(&entry->vfs_inode))
1420			node = node->rb_right;
1421		else
1422			break;
1423	}
1424	if (!node) {
1425		while (prev) {
1426			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1427			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1428				node = prev;
1429				break;
1430			}
1431			prev = rb_next(prev);
1432		}
1433	}
1434	while (node) {
1435		entry = rb_entry(node, struct btrfs_inode, rb_node);
1436		inode = igrab(&entry->vfs_inode);
1437		if (inode) {
1438			spin_unlock(&root->inode_lock);
1439			return inode;
1440		}
1441
1442		objectid = btrfs_ino(&entry->vfs_inode) + 1;
1443		if (cond_resched_lock(&root->inode_lock))
1444			goto again;
1445
1446		node = rb_next(node);
1447	}
1448	spin_unlock(&root->inode_lock);
1449	return NULL;
1450}
1451
1452static int in_block_group(u64 bytenr,
1453			  struct btrfs_block_group_cache *block_group)
1454{
1455	if (bytenr >= block_group->key.objectid &&
1456	    bytenr < block_group->key.objectid + block_group->key.offset)
1457		return 1;
1458	return 0;
1459}
1460
1461/*
1462 * get new location of data
1463 */
1464static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1465			    u64 bytenr, u64 num_bytes)
1466{
1467	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1468	struct btrfs_path *path;
1469	struct btrfs_file_extent_item *fi;
1470	struct extent_buffer *leaf;
1471	int ret;
1472
1473	path = btrfs_alloc_path();
1474	if (!path)
1475		return -ENOMEM;
1476
1477	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1478	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1479				       bytenr, 0);
1480	if (ret < 0)
1481		goto out;
1482	if (ret > 0) {
1483		ret = -ENOENT;
1484		goto out;
1485	}
1486
1487	leaf = path->nodes[0];
1488	fi = btrfs_item_ptr(leaf, path->slots[0],
1489			    struct btrfs_file_extent_item);
1490
1491	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1492	       btrfs_file_extent_compression(leaf, fi) ||
1493	       btrfs_file_extent_encryption(leaf, fi) ||
1494	       btrfs_file_extent_other_encoding(leaf, fi));
1495
1496	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1497		ret = 1;
1498		goto out;
1499	}
1500
1501	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1502	ret = 0;
1503out:
1504	btrfs_free_path(path);
1505	return ret;
1506}
1507
1508/*
1509 * update file extent items in the tree leaf to point to
1510 * the new locations.
1511 */
1512static noinline_for_stack
1513int replace_file_extents(struct btrfs_trans_handle *trans,
1514			 struct reloc_control *rc,
1515			 struct btrfs_root *root,
1516			 struct extent_buffer *leaf)
1517{
 
1518	struct btrfs_key key;
1519	struct btrfs_file_extent_item *fi;
1520	struct inode *inode = NULL;
1521	u64 parent;
1522	u64 bytenr;
1523	u64 new_bytenr = 0;
1524	u64 num_bytes;
1525	u64 end;
1526	u32 nritems;
1527	u32 i;
1528	int ret;
1529	int first = 1;
1530	int dirty = 0;
1531
1532	if (rc->stage != UPDATE_DATA_PTRS)
1533		return 0;
1534
1535	/* reloc trees always use full backref */
1536	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1537		parent = leaf->start;
1538	else
1539		parent = 0;
1540
1541	nritems = btrfs_header_nritems(leaf);
1542	for (i = 0; i < nritems; i++) {
 
 
1543		cond_resched();
1544		btrfs_item_key_to_cpu(leaf, &key, i);
1545		if (key.type != BTRFS_EXTENT_DATA_KEY)
1546			continue;
1547		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1548		if (btrfs_file_extent_type(leaf, fi) ==
1549		    BTRFS_FILE_EXTENT_INLINE)
1550			continue;
1551		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1552		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1553		if (bytenr == 0)
1554			continue;
1555		if (!in_block_group(bytenr, rc->block_group))
 
1556			continue;
1557
1558		/*
1559		 * if we are modifying block in fs tree, wait for readpage
1560		 * to complete and drop the extent cache
1561		 */
1562		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1563			if (first) {
1564				inode = find_next_inode(root, key.objectid);
1565				first = 0;
1566			} else if (inode && btrfs_ino(inode) < key.objectid) {
1567				btrfs_add_delayed_iput(inode);
1568				inode = find_next_inode(root, key.objectid);
1569			}
1570			if (inode && btrfs_ino(inode) == key.objectid) {
 
 
1571				end = key.offset +
1572				      btrfs_file_extent_num_bytes(leaf, fi);
1573				WARN_ON(!IS_ALIGNED(key.offset,
1574						    root->sectorsize));
1575				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1576				end--;
1577				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1578						      key.offset, end,
1579						      GFP_NOFS);
1580				if (!ret)
1581					continue;
1582
1583				btrfs_drop_extent_cache(inode, key.offset, end,
1584							1);
1585				unlock_extent(&BTRFS_I(inode)->io_tree,
1586					      key.offset, end, GFP_NOFS);
1587			}
1588		}
1589
1590		ret = get_new_location(rc->data_inode, &new_bytenr,
1591				       bytenr, num_bytes);
1592		if (ret > 0) {
1593			WARN_ON(1);
1594			continue;
 
 
 
1595		}
1596		BUG_ON(ret < 0);
1597
1598		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1599		dirty = 1;
1600
1601		key.offset -= btrfs_file_extent_offset(leaf, fi);
1602		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1603					   num_bytes, parent,
1604					   btrfs_header_owner(leaf),
1605					   key.objectid, key.offset);
1606		BUG_ON(ret);
1607
1608		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1609					parent, btrfs_header_owner(leaf),
1610					key.objectid, key.offset);
1611		BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
1612	}
1613	if (dirty)
1614		btrfs_mark_buffer_dirty(leaf);
1615	if (inode)
1616		btrfs_add_delayed_iput(inode);
1617	return 0;
1618}
1619
1620static noinline_for_stack
1621int memcmp_node_keys(struct extent_buffer *eb, int slot,
1622		     struct btrfs_path *path, int level)
1623{
1624	struct btrfs_disk_key key1;
1625	struct btrfs_disk_key key2;
1626	btrfs_node_key(eb, &key1, slot);
1627	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1628	return memcmp(&key1, &key2, sizeof(key1));
1629}
1630
1631/*
1632 * try to replace tree blocks in fs tree with the new blocks
1633 * in reloc tree. tree blocks haven't been modified since the
1634 * reloc tree was create can be replaced.
1635 *
1636 * if a block was replaced, level of the block + 1 is returned.
1637 * if no block got replaced, 0 is returned. if there are other
1638 * errors, a negative error number is returned.
1639 */
1640static noinline_for_stack
1641int replace_path(struct btrfs_trans_handle *trans,
1642		 struct btrfs_root *dest, struct btrfs_root *src,
1643		 struct btrfs_path *path, struct btrfs_key *next_key,
1644		 int lowest_level, int max_level)
1645{
 
1646	struct extent_buffer *eb;
1647	struct extent_buffer *parent;
 
1648	struct btrfs_key key;
1649	u64 old_bytenr;
1650	u64 new_bytenr;
1651	u64 old_ptr_gen;
1652	u64 new_ptr_gen;
1653	u64 last_snapshot;
1654	u32 blocksize;
1655	int cow = 0;
1656	int level;
1657	int ret;
1658	int slot;
1659
1660	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1661	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1662
1663	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1664again:
1665	slot = path->slots[lowest_level];
1666	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1667
1668	eb = btrfs_lock_root_node(dest);
1669	btrfs_set_lock_blocking(eb);
1670	level = btrfs_header_level(eb);
1671
1672	if (level < lowest_level) {
1673		btrfs_tree_unlock(eb);
1674		free_extent_buffer(eb);
1675		return 0;
1676	}
1677
1678	if (cow) {
1679		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1680		BUG_ON(ret);
 
 
 
 
 
1681	}
1682	btrfs_set_lock_blocking(eb);
1683
1684	if (next_key) {
1685		next_key->objectid = (u64)-1;
1686		next_key->type = (u8)-1;
1687		next_key->offset = (u64)-1;
1688	}
1689
1690	parent = eb;
1691	while (1) {
1692		level = btrfs_header_level(parent);
1693		BUG_ON(level < lowest_level);
1694
1695		ret = btrfs_bin_search(parent, &key, level, &slot);
 
 
1696		if (ret && slot > 0)
1697			slot--;
1698
1699		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1700			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1701
1702		old_bytenr = btrfs_node_blockptr(parent, slot);
1703		blocksize = btrfs_level_size(dest, level - 1);
1704		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1705
1706		if (level <= max_level) {
1707			eb = path->nodes[level];
1708			new_bytenr = btrfs_node_blockptr(eb,
1709							path->slots[level]);
1710			new_ptr_gen = btrfs_node_ptr_generation(eb,
1711							path->slots[level]);
1712		} else {
1713			new_bytenr = 0;
1714			new_ptr_gen = 0;
1715		}
1716
1717		if (new_bytenr > 0 && new_bytenr == old_bytenr) {
1718			WARN_ON(1);
1719			ret = level;
1720			break;
1721		}
1722
1723		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1724		    memcmp_node_keys(parent, slot, path, level)) {
1725			if (level <= lowest_level) {
1726				ret = 0;
1727				break;
1728			}
1729
1730			eb = read_tree_block(dest, old_bytenr, blocksize,
1731					     old_ptr_gen);
1732			BUG_ON(!eb);
 
 
1733			btrfs_tree_lock(eb);
1734			if (cow) {
1735				ret = btrfs_cow_block(trans, dest, eb, parent,
1736						      slot, &eb);
1737				BUG_ON(ret);
 
 
 
 
 
1738			}
1739			btrfs_set_lock_blocking(eb);
1740
1741			btrfs_tree_unlock(parent);
1742			free_extent_buffer(parent);
1743
1744			parent = eb;
1745			continue;
1746		}
1747
1748		if (!cow) {
1749			btrfs_tree_unlock(parent);
1750			free_extent_buffer(parent);
1751			cow = 1;
1752			goto again;
1753		}
1754
1755		btrfs_node_key_to_cpu(path->nodes[level], &key,
1756				      path->slots[level]);
1757		btrfs_release_path(path);
1758
1759		path->lowest_level = level;
 
1760		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
 
1761		path->lowest_level = 0;
1762		BUG_ON(ret);
 
 
 
 
1763
1764		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1765		 * swap blocks in fs tree and reloc tree.
1766		 */
1767		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1768		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1769		btrfs_mark_buffer_dirty(parent);
1770
1771		btrfs_set_node_blockptr(path->nodes[level],
1772					path->slots[level], old_bytenr);
1773		btrfs_set_node_ptr_generation(path->nodes[level],
1774					      path->slots[level], old_ptr_gen);
1775		btrfs_mark_buffer_dirty(path->nodes[level]);
1776
1777		ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1778					path->nodes[level]->start,
1779					src->root_key.objectid, level - 1, 0);
1780		BUG_ON(ret);
1781		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1782					0, dest->root_key.objectid, level - 1,
1783					0);
1784		BUG_ON(ret);
1785
1786		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1787					path->nodes[level]->start,
1788					src->root_key.objectid, level - 1, 0);
1789		BUG_ON(ret);
1790
1791		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1792					0, dest->root_key.objectid, level - 1,
1793					0);
1794		BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1795
1796		btrfs_unlock_up_safe(path, 0);
1797
1798		ret = level;
1799		break;
1800	}
1801	btrfs_tree_unlock(parent);
1802	free_extent_buffer(parent);
1803	return ret;
1804}
1805
1806/*
1807 * helper to find next relocated block in reloc tree
1808 */
1809static noinline_for_stack
1810int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1811		       int *level)
1812{
1813	struct extent_buffer *eb;
1814	int i;
1815	u64 last_snapshot;
1816	u32 nritems;
1817
1818	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1819
1820	for (i = 0; i < *level; i++) {
1821		free_extent_buffer(path->nodes[i]);
1822		path->nodes[i] = NULL;
1823	}
1824
1825	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1826		eb = path->nodes[i];
1827		nritems = btrfs_header_nritems(eb);
1828		while (path->slots[i] + 1 < nritems) {
1829			path->slots[i]++;
1830			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1831			    last_snapshot)
1832				continue;
1833
1834			*level = i;
1835			return 0;
1836		}
1837		free_extent_buffer(path->nodes[i]);
1838		path->nodes[i] = NULL;
1839	}
1840	return 1;
1841}
1842
1843/*
1844 * walk down reloc tree to find relocated block of lowest level
1845 */
1846static noinline_for_stack
1847int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1848			 int *level)
1849{
1850	struct extent_buffer *eb = NULL;
1851	int i;
1852	u64 bytenr;
1853	u64 ptr_gen = 0;
1854	u64 last_snapshot;
1855	u32 blocksize;
1856	u32 nritems;
1857
1858	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1859
1860	for (i = *level; i > 0; i--) {
1861		eb = path->nodes[i];
1862		nritems = btrfs_header_nritems(eb);
1863		while (path->slots[i] < nritems) {
1864			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1865			if (ptr_gen > last_snapshot)
1866				break;
1867			path->slots[i]++;
1868		}
1869		if (path->slots[i] >= nritems) {
1870			if (i == *level)
1871				break;
1872			*level = i + 1;
1873			return 0;
1874		}
1875		if (i == 1) {
1876			*level = i;
1877			return 0;
1878		}
1879
1880		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1881		blocksize = btrfs_level_size(root, i - 1);
1882		eb = read_tree_block(root, bytenr, blocksize, ptr_gen);
1883		BUG_ON(btrfs_header_level(eb) != i - 1);
1884		path->nodes[i - 1] = eb;
1885		path->slots[i - 1] = 0;
1886	}
1887	return 1;
1888}
1889
1890/*
1891 * invalidate extent cache for file extents whose key in range of
1892 * [min_key, max_key)
1893 */
1894static int invalidate_extent_cache(struct btrfs_root *root,
1895				   struct btrfs_key *min_key,
1896				   struct btrfs_key *max_key)
1897{
 
1898	struct inode *inode = NULL;
1899	u64 objectid;
1900	u64 start, end;
1901	u64 ino;
1902
1903	objectid = min_key->objectid;
1904	while (1) {
 
 
1905		cond_resched();
1906		iput(inode);
1907
1908		if (objectid > max_key->objectid)
1909			break;
1910
1911		inode = find_next_inode(root, objectid);
1912		if (!inode)
1913			break;
1914		ino = btrfs_ino(inode);
1915
1916		if (ino > max_key->objectid) {
1917			iput(inode);
1918			break;
1919		}
1920
1921		objectid = ino + 1;
1922		if (!S_ISREG(inode->i_mode))
1923			continue;
1924
1925		if (unlikely(min_key->objectid == ino)) {
1926			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1927				continue;
1928			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1929				start = 0;
1930			else {
1931				start = min_key->offset;
1932				WARN_ON(!IS_ALIGNED(start, root->sectorsize));
1933			}
1934		} else {
1935			start = 0;
1936		}
1937
1938		if (unlikely(max_key->objectid == ino)) {
1939			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1940				continue;
1941			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1942				end = (u64)-1;
1943			} else {
1944				if (max_key->offset == 0)
1945					continue;
1946				end = max_key->offset;
1947				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1948				end--;
1949			}
1950		} else {
1951			end = (u64)-1;
1952		}
1953
1954		/* the lock_extent waits for readpage to complete */
1955		lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
1956		btrfs_drop_extent_cache(inode, start, end, 1);
1957		unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
1958	}
1959	return 0;
1960}
1961
1962static int find_next_key(struct btrfs_path *path, int level,
1963			 struct btrfs_key *key)
1964
1965{
1966	while (level < BTRFS_MAX_LEVEL) {
1967		if (!path->nodes[level])
1968			break;
1969		if (path->slots[level] + 1 <
1970		    btrfs_header_nritems(path->nodes[level])) {
1971			btrfs_node_key_to_cpu(path->nodes[level], key,
1972					      path->slots[level] + 1);
1973			return 0;
1974		}
1975		level++;
1976	}
1977	return 1;
1978}
1979
1980/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1981 * merge the relocated tree blocks in reloc tree with corresponding
1982 * fs tree.
1983 */
1984static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1985					       struct btrfs_root *root)
1986{
1987	LIST_HEAD(inode_list);
1988	struct btrfs_key key;
1989	struct btrfs_key next_key;
1990	struct btrfs_trans_handle *trans;
1991	struct btrfs_root *reloc_root;
1992	struct btrfs_root_item *root_item;
1993	struct btrfs_path *path;
1994	struct extent_buffer *leaf;
1995	unsigned long nr;
1996	int level;
1997	int max_level;
1998	int replaced = 0;
1999	int ret;
2000	int err = 0;
2001	u32 min_reserved;
2002
2003	path = btrfs_alloc_path();
2004	if (!path)
2005		return -ENOMEM;
2006	path->reada = 1;
2007
2008	reloc_root = root->reloc_root;
2009	root_item = &reloc_root->root_item;
2010
2011	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2012		level = btrfs_root_level(root_item);
2013		extent_buffer_get(reloc_root->node);
2014		path->nodes[level] = reloc_root->node;
2015		path->slots[level] = 0;
2016	} else {
2017		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2018
2019		level = root_item->drop_level;
2020		BUG_ON(level == 0);
2021		path->lowest_level = level;
2022		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2023		path->lowest_level = 0;
2024		if (ret < 0) {
2025			btrfs_free_path(path);
2026			return ret;
2027		}
2028
2029		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2030				      path->slots[level]);
2031		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2032
2033		btrfs_unlock_up_safe(path, 0);
2034	}
2035
2036	min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
 
 
 
 
 
 
 
 
 
2037	memset(&next_key, 0, sizeof(next_key));
2038
2039	while (1) {
 
 
 
 
 
2040		trans = btrfs_start_transaction(root, 0);
2041		BUG_ON(IS_ERR(trans));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2042		trans->block_rsv = rc->block_rsv;
2043
2044		ret = btrfs_block_rsv_check(trans, root, rc->block_rsv,
2045					    min_reserved, 0);
2046		if (ret) {
2047			BUG_ON(ret != -EAGAIN);
2048			ret = btrfs_commit_transaction(trans, root);
2049			BUG_ON(ret);
2050			continue;
2051		}
2052
2053		replaced = 0;
2054		max_level = level;
2055
2056		ret = walk_down_reloc_tree(reloc_root, path, &level);
2057		if (ret < 0) {
2058			err = ret;
2059			goto out;
2060		}
2061		if (ret > 0)
2062			break;
2063
2064		if (!find_next_key(path, level, &key) &&
2065		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2066			ret = 0;
2067		} else {
2068			ret = replace_path(trans, root, reloc_root, path,
2069					   &next_key, level, max_level);
2070		}
2071		if (ret < 0) {
2072			err = ret;
2073			goto out;
2074		}
2075
2076		if (ret > 0) {
2077			level = ret;
2078			btrfs_node_key_to_cpu(path->nodes[level], &key,
2079					      path->slots[level]);
2080			replaced = 1;
2081		}
2082
2083		ret = walk_up_reloc_tree(reloc_root, path, &level);
2084		if (ret > 0)
2085			break;
2086
2087		BUG_ON(level == 0);
2088		/*
2089		 * save the merging progress in the drop_progress.
2090		 * this is OK since root refs == 1 in this case.
2091		 */
2092		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2093			       path->slots[level]);
2094		root_item->drop_level = level;
2095
2096		nr = trans->blocks_used;
2097		btrfs_end_transaction_throttle(trans, root);
2098
2099		btrfs_btree_balance_dirty(root, nr);
2100
2101		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2102			invalidate_extent_cache(root, &key, &next_key);
2103	}
2104
2105	/*
2106	 * handle the case only one block in the fs tree need to be
2107	 * relocated and the block is tree root.
2108	 */
2109	leaf = btrfs_lock_root_node(root);
2110	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
 
2111	btrfs_tree_unlock(leaf);
2112	free_extent_buffer(leaf);
2113	if (ret < 0)
2114		err = ret;
2115out:
2116	btrfs_free_path(path);
2117
2118	if (err == 0) {
2119		memset(&root_item->drop_progress, 0,
2120		       sizeof(root_item->drop_progress));
2121		root_item->drop_level = 0;
2122		btrfs_set_root_refs(root_item, 0);
2123		btrfs_update_reloc_root(trans, root);
2124	}
2125
2126	nr = trans->blocks_used;
2127	btrfs_end_transaction_throttle(trans, root);
2128
2129	btrfs_btree_balance_dirty(root, nr);
2130
2131	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2132		invalidate_extent_cache(root, &key, &next_key);
2133
2134	return err;
2135}
2136
2137static noinline_for_stack
2138int prepare_to_merge(struct reloc_control *rc, int err)
2139{
2140	struct btrfs_root *root = rc->extent_root;
 
2141	struct btrfs_root *reloc_root;
2142	struct btrfs_trans_handle *trans;
2143	LIST_HEAD(reloc_roots);
2144	u64 num_bytes = 0;
2145	int ret;
2146
2147	mutex_lock(&root->fs_info->reloc_mutex);
2148	rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2149	rc->merging_rsv_size += rc->nodes_relocated * 2;
2150	mutex_unlock(&root->fs_info->reloc_mutex);
2151
2152again:
2153	if (!err) {
2154		num_bytes = rc->merging_rsv_size;
2155		ret = btrfs_block_rsv_add(NULL, root, rc->block_rsv,
2156					  num_bytes);
2157		if (ret)
2158			err = ret;
2159	}
2160
2161	trans = btrfs_join_transaction(rc->extent_root);
2162	if (IS_ERR(trans)) {
2163		if (!err)
2164			btrfs_block_rsv_release(rc->extent_root,
2165						rc->block_rsv, num_bytes);
2166		return PTR_ERR(trans);
2167	}
2168
2169	if (!err) {
2170		if (num_bytes != rc->merging_rsv_size) {
2171			btrfs_end_transaction(trans, rc->extent_root);
2172			btrfs_block_rsv_release(rc->extent_root,
2173						rc->block_rsv, num_bytes);
2174			goto again;
2175		}
2176	}
2177
2178	rc->merge_reloc_tree = 1;
2179
2180	while (!list_empty(&rc->reloc_roots)) {
2181		reloc_root = list_entry(rc->reloc_roots.next,
2182					struct btrfs_root, root_list);
2183		list_del_init(&reloc_root->root_list);
2184
2185		root = read_fs_root(reloc_root->fs_info,
2186				    reloc_root->root_key.offset);
2187		BUG_ON(IS_ERR(root));
2188		BUG_ON(root->reloc_root != reloc_root);
 
 
 
 
 
 
 
 
 
 
2189
2190		/*
2191		 * set reference count to 1, so btrfs_recover_relocation
2192		 * knows it should resumes merging
2193		 */
2194		if (!err)
2195			btrfs_set_root_refs(&reloc_root->root_item, 1);
2196		btrfs_update_reloc_root(trans, root);
2197
 
 
 
 
2198		list_add(&reloc_root->root_list, &reloc_roots);
 
 
 
 
 
 
 
 
2199	}
2200
2201	list_splice(&reloc_roots, &rc->reloc_roots);
2202
2203	if (!err)
2204		btrfs_commit_transaction(trans, rc->extent_root);
2205	else
2206		btrfs_end_transaction(trans, rc->extent_root);
2207	return err;
2208}
2209
2210static noinline_for_stack
2211int merge_reloc_roots(struct reloc_control *rc)
 
 
 
 
 
 
 
 
 
2212{
 
2213	struct btrfs_root *root;
2214	struct btrfs_root *reloc_root;
2215	LIST_HEAD(reloc_roots);
2216	int found = 0;
2217	int ret;
2218again:
2219	root = rc->extent_root;
2220
2221	/*
2222	 * this serializes us with btrfs_record_root_in_transaction,
2223	 * we have to make sure nobody is in the middle of
2224	 * adding their roots to the list while we are
2225	 * doing this splice
2226	 */
2227	mutex_lock(&root->fs_info->reloc_mutex);
2228	list_splice_init(&rc->reloc_roots, &reloc_roots);
2229	mutex_unlock(&root->fs_info->reloc_mutex);
2230
2231	while (!list_empty(&reloc_roots)) {
2232		found = 1;
2233		reloc_root = list_entry(reloc_roots.next,
2234					struct btrfs_root, root_list);
2235
 
 
2236		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2237			root = read_fs_root(reloc_root->fs_info,
2238					    reloc_root->root_key.offset);
2239			BUG_ON(IS_ERR(root));
2240			BUG_ON(root->reloc_root != reloc_root);
2241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2242			ret = merge_reloc_root(rc, root);
2243			BUG_ON(ret);
 
 
 
 
 
 
2244		} else {
 
 
 
 
 
 
 
 
 
 
2245			list_del_init(&reloc_root->root_list);
 
 
 
2246		}
2247		btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0);
2248	}
2249
2250	if (found) {
2251		found = 0;
2252		goto again;
2253	}
2254	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2255	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2256}
2257
2258static void free_block_list(struct rb_root *blocks)
2259{
2260	struct tree_block *block;
2261	struct rb_node *rb_node;
2262	while ((rb_node = rb_first(blocks))) {
2263		block = rb_entry(rb_node, struct tree_block, rb_node);
2264		rb_erase(rb_node, blocks);
2265		kfree(block);
2266	}
2267}
2268
2269static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2270				      struct btrfs_root *reloc_root)
2271{
 
2272	struct btrfs_root *root;
 
2273
2274	if (reloc_root->last_trans == trans->transid)
2275		return 0;
2276
2277	root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2278	BUG_ON(IS_ERR(root));
2279	BUG_ON(root->reloc_root != reloc_root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2280
2281	return btrfs_record_root_in_trans(trans, root);
2282}
2283
2284static noinline_for_stack
2285struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2286				     struct reloc_control *rc,
2287				     struct backref_node *node,
2288				     struct backref_edge *edges[], int *nr)
2289{
2290	struct backref_node *next;
2291	struct btrfs_root *root;
2292	int index = 0;
 
2293
2294	next = node;
2295	while (1) {
2296		cond_resched();
2297		next = walk_up_backref(next, edges, &index);
2298		root = next->root;
2299		BUG_ON(!root);
2300		BUG_ON(!root->ref_cows);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2301
2302		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2303			record_reloc_root_in_trans(trans, root);
 
 
2304			break;
2305		}
2306
2307		btrfs_record_root_in_trans(trans, root);
 
 
2308		root = root->reloc_root;
2309
 
 
 
 
 
 
 
2310		if (next->new_bytenr != root->node->start) {
2311			BUG_ON(next->new_bytenr);
2312			BUG_ON(!list_empty(&next->list));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2313			next->new_bytenr = root->node->start;
2314			next->root = root;
 
 
2315			list_add_tail(&next->list,
2316				      &rc->backref_cache.changed);
2317			__mark_block_processed(rc, next);
2318			break;
2319		}
2320
2321		WARN_ON(1);
2322		root = NULL;
2323		next = walk_down_backref(edges, &index);
2324		if (!next || next->level <= node->level)
2325			break;
2326	}
2327	if (!root)
2328		return NULL;
 
 
 
 
 
 
2329
2330	*nr = index;
2331	next = node;
2332	/* setup backref node path for btrfs_reloc_cow_block */
2333	while (1) {
2334		rc->backref_cache.path[next->level] = next;
2335		if (--index < 0)
2336			break;
2337		next = edges[index]->node[UPPER];
2338	}
2339	return root;
2340}
2341
2342/*
2343 * select a tree root for relocation. return NULL if the block
2344 * is reference counted. we should use do_relocation() in this
2345 * case. return a tree root pointer if the block isn't reference
2346 * counted. return -ENOENT if the block is root of reloc tree.
 
 
 
2347 */
2348static noinline_for_stack
2349struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans,
2350				   struct backref_node *node)
2351{
2352	struct backref_node *next;
2353	struct btrfs_root *root;
2354	struct btrfs_root *fs_root = NULL;
2355	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2356	int index = 0;
2357
2358	next = node;
2359	while (1) {
2360		cond_resched();
2361		next = walk_up_backref(next, edges, &index);
2362		root = next->root;
2363		BUG_ON(!root);
2364
2365		/* no other choice for non-references counted tree */
2366		if (!root->ref_cows)
 
 
 
 
 
 
 
2367			return root;
2368
2369		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2370			fs_root = root;
2371
2372		if (next != node)
2373			return NULL;
2374
2375		next = walk_down_backref(edges, &index);
2376		if (!next || next->level <= node->level)
2377			break;
2378	}
2379
2380	if (!fs_root)
2381		return ERR_PTR(-ENOENT);
2382	return fs_root;
2383}
2384
2385static noinline_for_stack
2386u64 calcu_metadata_size(struct reloc_control *rc,
2387			struct backref_node *node, int reserve)
2388{
2389	struct backref_node *next = node;
2390	struct backref_edge *edge;
2391	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
 
2392	u64 num_bytes = 0;
2393	int index = 0;
2394
2395	BUG_ON(reserve && node->processed);
2396
2397	while (next) {
2398		cond_resched();
2399		while (1) {
2400			if (next->processed && (reserve || next != node))
2401				break;
2402
2403			num_bytes += btrfs_level_size(rc->extent_root,
2404						      next->level);
2405
2406			if (list_empty(&next->upper))
2407				break;
2408
2409			edge = list_entry(next->upper.next,
2410					  struct backref_edge, list[LOWER]);
2411			edges[index++] = edge;
2412			next = edge->node[UPPER];
2413		}
2414		next = walk_down_backref(edges, &index);
2415	}
2416	return num_bytes;
2417}
2418
2419static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2420				  struct reloc_control *rc,
2421				  struct backref_node *node)
2422{
2423	struct btrfs_root *root = rc->extent_root;
 
2424	u64 num_bytes;
2425	int ret;
 
2426
2427	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2428
2429	trans->block_rsv = rc->block_rsv;
2430	ret = btrfs_block_rsv_add(trans, root, rc->block_rsv, num_bytes);
 
 
 
 
 
 
 
 
2431	if (ret) {
2432		if (ret == -EAGAIN)
2433			rc->commit_transaction = 1;
2434		return ret;
 
 
 
 
 
 
 
 
 
 
2435	}
2436
2437	return 0;
2438}
2439
2440static void release_metadata_space(struct reloc_control *rc,
2441				   struct backref_node *node)
2442{
2443	u64 num_bytes = calcu_metadata_size(rc, node, 0) * 2;
2444	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, num_bytes);
2445}
2446
2447/*
2448 * relocate a block tree, and then update pointers in upper level
2449 * blocks that reference the block to point to the new location.
2450 *
2451 * if called by link_to_upper, the block has already been relocated.
2452 * in that case this function just updates pointers.
2453 */
2454static int do_relocation(struct btrfs_trans_handle *trans,
2455			 struct reloc_control *rc,
2456			 struct backref_node *node,
2457			 struct btrfs_key *key,
2458			 struct btrfs_path *path, int lowest)
2459{
2460	struct backref_node *upper;
2461	struct backref_edge *edge;
2462	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2463	struct btrfs_root *root;
2464	struct extent_buffer *eb;
2465	u32 blocksize;
2466	u64 bytenr;
2467	u64 generation;
2468	int nr;
2469	int slot;
2470	int ret;
2471	int err = 0;
2472
2473	BUG_ON(lowest && node->eb);
 
 
 
 
2474
2475	path->lowest_level = node->level + 1;
2476	rc->backref_cache.path[node->level] = node;
2477	list_for_each_entry(edge, &node->upper, list[LOWER]) {
 
 
2478		cond_resched();
2479
2480		upper = edge->node[UPPER];
2481		root = select_reloc_root(trans, rc, upper, edges, &nr);
2482		BUG_ON(!root);
 
 
 
2483
2484		if (upper->eb && !upper->locked) {
2485			if (!lowest) {
2486				ret = btrfs_bin_search(upper->eb, key,
2487						       upper->level, &slot);
 
2488				BUG_ON(ret);
2489				bytenr = btrfs_node_blockptr(upper->eb, slot);
2490				if (node->eb->start == bytenr)
2491					goto next;
2492			}
2493			drop_node_buffer(upper);
2494		}
2495
2496		if (!upper->eb) {
2497			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2498			if (ret < 0) {
2499				err = ret;
 
 
 
2500				break;
2501			}
2502			BUG_ON(ret > 0);
2503
2504			if (!upper->eb) {
2505				upper->eb = path->nodes[upper->level];
2506				path->nodes[upper->level] = NULL;
2507			} else {
2508				BUG_ON(upper->eb != path->nodes[upper->level]);
2509			}
2510
2511			upper->locked = 1;
2512			path->locks[upper->level] = 0;
2513
2514			slot = path->slots[upper->level];
2515			btrfs_release_path(path);
2516		} else {
2517			ret = btrfs_bin_search(upper->eb, key, upper->level,
2518					       &slot);
 
2519			BUG_ON(ret);
2520		}
2521
2522		bytenr = btrfs_node_blockptr(upper->eb, slot);
2523		if (lowest) {
2524			BUG_ON(bytenr != node->bytenr);
 
 
 
 
 
 
 
2525		} else {
2526			if (node->eb->start == bytenr)
2527				goto next;
2528		}
2529
2530		blocksize = btrfs_level_size(root, node->level);
2531		generation = btrfs_node_ptr_generation(upper->eb, slot);
2532		eb = read_tree_block(root, bytenr, blocksize, generation);
2533		if (!eb) {
2534			err = -EIO;
2535			goto next;
2536		}
2537		btrfs_tree_lock(eb);
2538		btrfs_set_lock_blocking(eb);
2539
2540		if (!node->eb) {
2541			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2542					      slot, &eb);
2543			btrfs_tree_unlock(eb);
2544			free_extent_buffer(eb);
2545			if (ret < 0) {
2546				err = ret;
2547				goto next;
2548			}
2549			BUG_ON(node->eb != eb);
 
 
 
2550		} else {
2551			btrfs_set_node_blockptr(upper->eb, slot,
2552						node->eb->start);
2553			btrfs_set_node_ptr_generation(upper->eb, slot,
2554						      trans->transid);
2555			btrfs_mark_buffer_dirty(upper->eb);
2556
2557			ret = btrfs_inc_extent_ref(trans, root,
2558						node->eb->start, blocksize,
2559						upper->eb->start,
2560						btrfs_header_owner(upper->eb),
2561						node->level, 0);
2562			BUG_ON(ret);
2563
2564			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2565			BUG_ON(ret);
 
 
 
2566		}
2567next:
2568		if (!upper->pending)
2569			drop_node_buffer(upper);
2570		else
2571			unlock_node_buffer(upper);
2572		if (err)
2573			break;
2574	}
2575
2576	if (!err && node->pending) {
2577		drop_node_buffer(node);
2578		list_move_tail(&node->list, &rc->backref_cache.changed);
2579		node->pending = 0;
2580	}
2581
2582	path->lowest_level = 0;
2583	BUG_ON(err == -ENOSPC);
2584	return err;
 
 
 
 
 
2585}
2586
2587static int link_to_upper(struct btrfs_trans_handle *trans,
2588			 struct reloc_control *rc,
2589			 struct backref_node *node,
2590			 struct btrfs_path *path)
2591{
2592	struct btrfs_key key;
2593
2594	btrfs_node_key_to_cpu(node->eb, &key, 0);
2595	return do_relocation(trans, rc, node, &key, path, 0);
2596}
2597
2598static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2599				struct reloc_control *rc,
2600				struct btrfs_path *path, int err)
2601{
2602	LIST_HEAD(list);
2603	struct backref_cache *cache = &rc->backref_cache;
2604	struct backref_node *node;
2605	int level;
2606	int ret;
2607
2608	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2609		while (!list_empty(&cache->pending[level])) {
2610			node = list_entry(cache->pending[level].next,
2611					  struct backref_node, list);
2612			list_move_tail(&node->list, &list);
2613			BUG_ON(!node->pending);
2614
2615			if (!err) {
2616				ret = link_to_upper(trans, rc, node, path);
2617				if (ret < 0)
2618					err = ret;
2619			}
2620		}
2621		list_splice_init(&list, &cache->pending[level]);
2622	}
2623	return err;
2624}
2625
2626static void mark_block_processed(struct reloc_control *rc,
2627				 u64 bytenr, u32 blocksize)
2628{
2629	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2630			EXTENT_DIRTY, GFP_NOFS);
2631}
2632
2633static void __mark_block_processed(struct reloc_control *rc,
2634				   struct backref_node *node)
2635{
2636	u32 blocksize;
2637	if (node->level == 0 ||
2638	    in_block_group(node->bytenr, rc->block_group)) {
2639		blocksize = btrfs_level_size(rc->extent_root, node->level);
2640		mark_block_processed(rc, node->bytenr, blocksize);
2641	}
2642	node->processed = 1;
2643}
2644
2645/*
2646 * mark a block and all blocks directly/indirectly reference the block
2647 * as processed.
2648 */
2649static void update_processed_blocks(struct reloc_control *rc,
2650				    struct backref_node *node)
2651{
2652	struct backref_node *next = node;
2653	struct backref_edge *edge;
2654	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2655	int index = 0;
2656
2657	while (next) {
2658		cond_resched();
2659		while (1) {
2660			if (next->processed)
2661				break;
2662
2663			__mark_block_processed(rc, next);
2664
2665			if (list_empty(&next->upper))
2666				break;
2667
2668			edge = list_entry(next->upper.next,
2669					  struct backref_edge, list[LOWER]);
2670			edges[index++] = edge;
2671			next = edge->node[UPPER];
2672		}
2673		next = walk_down_backref(edges, &index);
2674	}
2675}
2676
2677static int tree_block_processed(u64 bytenr, u32 blocksize,
2678				struct reloc_control *rc)
2679{
 
 
2680	if (test_range_bit(&rc->processed_blocks, bytenr,
2681			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2682		return 1;
2683	return 0;
2684}
2685
2686static int get_tree_block_key(struct reloc_control *rc,
2687			      struct tree_block *block)
2688{
 
 
 
 
 
2689	struct extent_buffer *eb;
2690
2691	BUG_ON(block->key_ready);
2692	eb = read_tree_block(rc->extent_root, block->bytenr,
2693			     block->key.objectid, block->key.offset);
2694	BUG_ON(!eb);
2695	WARN_ON(btrfs_header_level(eb) != block->level);
 
 
2696	if (block->level == 0)
2697		btrfs_item_key_to_cpu(eb, &block->key, 0);
2698	else
2699		btrfs_node_key_to_cpu(eb, &block->key, 0);
2700	free_extent_buffer(eb);
2701	block->key_ready = 1;
2702	return 0;
2703}
2704
2705static int reada_tree_block(struct reloc_control *rc,
2706			    struct tree_block *block)
2707{
2708	BUG_ON(block->key_ready);
2709	readahead_tree_block(rc->extent_root, block->bytenr,
2710			     block->key.objectid, block->key.offset);
2711	return 0;
2712}
2713
2714/*
2715 * helper function to relocate a tree block
2716 */
2717static int relocate_tree_block(struct btrfs_trans_handle *trans,
2718				struct reloc_control *rc,
2719				struct backref_node *node,
2720				struct btrfs_key *key,
2721				struct btrfs_path *path)
2722{
2723	struct btrfs_root *root;
2724	int release = 0;
2725	int ret = 0;
2726
2727	if (!node)
2728		return 0;
2729
 
 
 
 
 
 
 
 
2730	BUG_ON(node->processed);
2731	root = select_one_root(trans, node);
2732	if (root == ERR_PTR(-ENOENT)) {
2733		update_processed_blocks(rc, node);
 
 
 
 
 
 
 
2734		goto out;
2735	}
2736
2737	if (!root || root->ref_cows) {
2738		ret = reserve_metadata_space(trans, rc, node);
2739		if (ret)
2740			goto out;
2741		release = 1;
2742	}
2743
2744	if (root) {
2745		if (root->ref_cows) {
2746			BUG_ON(node->new_bytenr);
2747			BUG_ON(!list_empty(&node->list));
2748			btrfs_record_root_in_trans(trans, root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2749			root = root->reloc_root;
2750			node->new_bytenr = root->node->start;
2751			node->root = root;
 
 
2752			list_add_tail(&node->list, &rc->backref_cache.changed);
2753		} else {
2754			path->lowest_level = node->level;
 
 
2755			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2756			btrfs_release_path(path);
 
 
2757			if (ret > 0)
2758				ret = 0;
2759		}
2760		if (!ret)
2761			update_processed_blocks(rc, node);
2762	} else {
2763		ret = do_relocation(trans, rc, node, key, path, 1);
2764	}
2765out:
2766	if (ret || node->level == 0 || node->cowonly) {
2767		if (release)
2768			release_metadata_space(rc, node);
2769		remove_backref_node(&rc->backref_cache, node);
2770	}
2771	return ret;
2772}
2773
2774/*
2775 * relocate a list of blocks
2776 */
2777static noinline_for_stack
2778int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2779			 struct reloc_control *rc, struct rb_root *blocks)
2780{
2781	struct backref_node *node;
 
2782	struct btrfs_path *path;
2783	struct tree_block *block;
2784	struct rb_node *rb_node;
2785	int ret;
2786	int err = 0;
2787
2788	path = btrfs_alloc_path();
2789	if (!path)
2790		return -ENOMEM;
 
 
2791
2792	rb_node = rb_first(blocks);
2793	while (rb_node) {
2794		block = rb_entry(rb_node, struct tree_block, rb_node);
2795		if (!block->key_ready)
2796			reada_tree_block(rc, block);
2797		rb_node = rb_next(rb_node);
 
2798	}
2799
2800	rb_node = rb_first(blocks);
2801	while (rb_node) {
2802		block = rb_entry(rb_node, struct tree_block, rb_node);
2803		if (!block->key_ready)
2804			get_tree_block_key(rc, block);
2805		rb_node = rb_next(rb_node);
 
2806	}
2807
2808	rb_node = rb_first(blocks);
2809	while (rb_node) {
2810		block = rb_entry(rb_node, struct tree_block, rb_node);
2811
2812		node = build_backref_tree(rc, &block->key,
2813					  block->level, block->bytenr);
2814		if (IS_ERR(node)) {
2815			err = PTR_ERR(node);
2816			goto out;
2817		}
2818
2819		ret = relocate_tree_block(trans, rc, node, &block->key,
2820					  path);
2821		if (ret < 0) {
2822			if (ret != -EAGAIN || rb_node == rb_first(blocks))
2823				err = ret;
2824			goto out;
2825		}
2826		rb_node = rb_next(rb_node);
2827	}
2828out:
2829	free_block_list(blocks);
2830	err = finish_pending_nodes(trans, rc, path, err);
2831
 
2832	btrfs_free_path(path);
 
 
2833	return err;
2834}
2835
2836static noinline_for_stack
2837int prealloc_file_extent_cluster(struct inode *inode,
2838				 struct file_extent_cluster *cluster)
2839{
2840	u64 alloc_hint = 0;
2841	u64 start;
2842	u64 end;
2843	u64 offset = BTRFS_I(inode)->index_cnt;
2844	u64 num_bytes;
2845	int nr = 0;
2846	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2847
2848	BUG_ON(cluster->start != cluster->boundary[0]);
2849	mutex_lock(&inode->i_mutex);
 
 
 
2850
2851	ret = btrfs_check_data_free_space(inode, cluster->end +
2852					  1 - cluster->start);
2853	if (ret)
2854		goto out;
2855
2856	while (nr < cluster->nr) {
2857		start = cluster->boundary[nr] - offset;
2858		if (nr + 1 < cluster->nr)
2859			end = cluster->boundary[nr + 1] - 1 - offset;
2860		else
2861			end = cluster->end - offset;
2862
2863		lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2864		num_bytes = end + 1 - start;
2865		ret = btrfs_prealloc_file_range(inode, 0, start,
2866						num_bytes, num_bytes,
2867						end + 1, &alloc_hint);
2868		unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
 
2869		if (ret)
2870			break;
2871		nr++;
2872	}
2873	btrfs_free_reserved_data_space(inode, cluster->end +
2874				       1 - cluster->start);
2875out:
2876	mutex_unlock(&inode->i_mutex);
 
2877	return ret;
2878}
2879
2880static noinline_for_stack
2881int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2882			 u64 block_start)
2883{
2884	struct btrfs_root *root = BTRFS_I(inode)->root;
2885	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2886	struct extent_map *em;
 
2887	int ret = 0;
2888
2889	em = alloc_extent_map();
2890	if (!em)
2891		return -ENOMEM;
2892
2893	em->start = start;
2894	em->len = end + 1 - start;
2895	em->block_len = em->len;
2896	em->block_start = block_start;
2897	em->bdev = root->fs_info->fs_devices->latest_bdev;
2898	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2899
2900	lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2901	while (1) {
2902		write_lock(&em_tree->lock);
2903		ret = add_extent_mapping(em_tree, em);
2904		write_unlock(&em_tree->lock);
2905		if (ret != -EEXIST) {
2906			free_extent_map(em);
2907			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2908		}
2909		btrfs_drop_extent_cache(inode, start, end, 0);
2910	}
2911	unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
 
 
 
 
 
 
 
 
 
 
 
2912	return ret;
2913}
2914
2915static int relocate_file_extent_cluster(struct inode *inode,
2916					struct file_extent_cluster *cluster)
2917{
2918	u64 page_start;
2919	u64 page_end;
2920	u64 offset = BTRFS_I(inode)->index_cnt;
2921	unsigned long index;
2922	unsigned long last_index;
2923	struct page *page;
2924	struct file_ra_state *ra;
2925	int nr = 0;
2926	int ret = 0;
2927
2928	if (!cluster->nr)
2929		return 0;
2930
2931	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2932	if (!ra)
2933		return -ENOMEM;
2934
2935	ret = prealloc_file_extent_cluster(inode, cluster);
2936	if (ret)
2937		goto out;
2938
2939	file_ra_state_init(ra, inode->i_mapping);
2940
2941	ret = setup_extent_mapping(inode, cluster->start - offset,
2942				   cluster->end - offset, cluster->start);
2943	if (ret)
2944		goto out;
2945
2946	index = (cluster->start - offset) >> PAGE_CACHE_SHIFT;
2947	last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT;
2948	while (index <= last_index) {
2949		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE);
2950		if (ret)
2951			goto out;
2952
2953		page = find_lock_page(inode->i_mapping, index);
2954		if (!page) {
2955			page_cache_sync_readahead(inode->i_mapping,
2956						  ra, NULL, index,
2957						  last_index + 1 - index);
2958			page = find_or_create_page(inode->i_mapping, index,
2959						   GFP_NOFS);
2960			if (!page) {
2961				btrfs_delalloc_release_metadata(inode,
2962							PAGE_CACHE_SIZE);
2963				ret = -ENOMEM;
2964				goto out;
2965			}
2966		}
2967
2968		if (PageReadahead(page)) {
2969			page_cache_async_readahead(inode->i_mapping,
2970						   ra, NULL, page, index,
2971						   last_index + 1 - index);
2972		}
2973
2974		if (!PageUptodate(page)) {
2975			btrfs_readpage(NULL, page);
2976			lock_page(page);
2977			if (!PageUptodate(page)) {
2978				unlock_page(page);
2979				page_cache_release(page);
2980				btrfs_delalloc_release_metadata(inode,
2981							PAGE_CACHE_SIZE);
2982				ret = -EIO;
2983				goto out;
2984			}
2985		}
2986
2987		page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2988		page_end = page_start + PAGE_CACHE_SIZE - 1;
2989
2990		lock_extent(&BTRFS_I(inode)->io_tree,
2991			    page_start, page_end, GFP_NOFS);
2992
2993		set_page_extent_mapped(page);
2994
2995		if (nr < cluster->nr &&
2996		    page_start + offset == cluster->boundary[nr]) {
2997			set_extent_bits(&BTRFS_I(inode)->io_tree,
2998					page_start, page_end,
2999					EXTENT_BOUNDARY, GFP_NOFS);
3000			nr++;
3001		}
3002
3003		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
3004		set_page_dirty(page);
3005
3006		unlock_extent(&BTRFS_I(inode)->io_tree,
3007			      page_start, page_end, GFP_NOFS);
3008		unlock_page(page);
3009		page_cache_release(page);
3010
3011		index++;
3012		balance_dirty_pages_ratelimited(inode->i_mapping);
3013		btrfs_throttle(BTRFS_I(inode)->root);
3014	}
3015	WARN_ON(nr != cluster->nr);
3016out:
3017	kfree(ra);
3018	return ret;
3019}
3020
3021static noinline_for_stack
3022int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3023			 struct file_extent_cluster *cluster)
3024{
3025	int ret;
3026
3027	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3028		ret = relocate_file_extent_cluster(inode, cluster);
3029		if (ret)
3030			return ret;
3031		cluster->nr = 0;
3032	}
3033
3034	if (!cluster->nr)
3035		cluster->start = extent_key->objectid;
3036	else
3037		BUG_ON(cluster->nr >= MAX_EXTENTS);
3038	cluster->end = extent_key->objectid + extent_key->offset - 1;
3039	cluster->boundary[cluster->nr] = extent_key->objectid;
3040	cluster->nr++;
3041
3042	if (cluster->nr >= MAX_EXTENTS) {
3043		ret = relocate_file_extent_cluster(inode, cluster);
3044		if (ret)
3045			return ret;
3046		cluster->nr = 0;
3047	}
3048	return 0;
3049}
3050
3051#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3052static int get_ref_objectid_v0(struct reloc_control *rc,
3053			       struct btrfs_path *path,
3054			       struct btrfs_key *extent_key,
3055			       u64 *ref_objectid, int *path_change)
3056{
3057	struct btrfs_key key;
3058	struct extent_buffer *leaf;
3059	struct btrfs_extent_ref_v0 *ref0;
3060	int ret;
3061	int slot;
3062
3063	leaf = path->nodes[0];
3064	slot = path->slots[0];
3065	while (1) {
3066		if (slot >= btrfs_header_nritems(leaf)) {
3067			ret = btrfs_next_leaf(rc->extent_root, path);
3068			if (ret < 0)
3069				return ret;
3070			BUG_ON(ret > 0);
3071			leaf = path->nodes[0];
3072			slot = path->slots[0];
3073			if (path_change)
3074				*path_change = 1;
3075		}
3076		btrfs_item_key_to_cpu(leaf, &key, slot);
3077		if (key.objectid != extent_key->objectid)
3078			return -ENOENT;
3079
3080		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3081			slot++;
3082			continue;
3083		}
3084		ref0 = btrfs_item_ptr(leaf, slot,
3085				struct btrfs_extent_ref_v0);
3086		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3087		break;
3088	}
3089	return 0;
3090}
3091#endif
3092
3093/*
3094 * helper to add a tree block to the list.
3095 * the major work is getting the generation and level of the block
3096 */
3097static int add_tree_block(struct reloc_control *rc,
3098			  struct btrfs_key *extent_key,
3099			  struct btrfs_path *path,
3100			  struct rb_root *blocks)
3101{
3102	struct extent_buffer *eb;
3103	struct btrfs_extent_item *ei;
3104	struct btrfs_tree_block_info *bi;
3105	struct tree_block *block;
3106	struct rb_node *rb_node;
3107	u32 item_size;
3108	int level = -1;
3109	int generation;
 
3110
3111	eb =  path->nodes[0];
3112	item_size = btrfs_item_size_nr(eb, path->slots[0]);
 
 
 
 
3113
3114	if (item_size >= sizeof(*ei) + sizeof(*bi)) {
3115		ei = btrfs_item_ptr(eb, path->slots[0],
3116				struct btrfs_extent_item);
3117		bi = (struct btrfs_tree_block_info *)(ei + 1);
 
 
 
 
 
 
 
 
3118		generation = btrfs_extent_generation(eb, ei);
3119		level = btrfs_tree_block_level(eb, bi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3120	} else {
3121#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3122		u64 ref_owner;
3123		int ret;
3124
3125		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3126		ret = get_ref_objectid_v0(rc, path, extent_key,
3127					  &ref_owner, NULL);
3128		if (ret < 0)
3129			return ret;
3130		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3131		level = (int)ref_owner;
3132		/* FIXME: get real generation */
3133		generation = 0;
3134#else
3135		BUG();
3136#endif
3137	}
3138
3139	btrfs_release_path(path);
3140
3141	BUG_ON(level == -1);
3142
3143	block = kmalloc(sizeof(*block), GFP_NOFS);
3144	if (!block)
3145		return -ENOMEM;
3146
3147	block->bytenr = extent_key->objectid;
3148	block->key.objectid = extent_key->offset;
3149	block->key.offset = generation;
3150	block->level = level;
3151	block->key_ready = 0;
 
3152
3153	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3154	BUG_ON(rb_node);
 
 
3155
3156	return 0;
3157}
3158
3159/*
3160 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3161 */
3162static int __add_tree_block(struct reloc_control *rc,
3163			    u64 bytenr, u32 blocksize,
3164			    struct rb_root *blocks)
3165{
 
3166	struct btrfs_path *path;
3167	struct btrfs_key key;
3168	int ret;
 
3169
3170	if (tree_block_processed(bytenr, blocksize, rc))
3171		return 0;
3172
3173	if (tree_search(blocks, bytenr))
3174		return 0;
3175
3176	path = btrfs_alloc_path();
3177	if (!path)
3178		return -ENOMEM;
3179
3180	key.objectid = bytenr;
3181	key.type = BTRFS_EXTENT_ITEM_KEY;
3182	key.offset = blocksize;
 
 
 
 
 
3183
3184	path->search_commit_root = 1;
3185	path->skip_locking = 1;
3186	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3187	if (ret < 0)
3188		goto out;
3189	BUG_ON(ret);
3190
3191	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3192	ret = add_tree_block(rc, &key, path, blocks);
3193out:
3194	btrfs_free_path(path);
3195	return ret;
3196}
3197
3198/*
3199 * helper to check if the block use full backrefs for pointers in it
3200 */
3201static int block_use_full_backref(struct reloc_control *rc,
3202				  struct extent_buffer *eb)
3203{
3204	u64 flags;
3205	int ret;
3206
3207	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3208	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3209		return 1;
3210
3211	ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3212				       eb->start, eb->len, NULL, &flags);
3213	BUG_ON(ret);
3214
3215	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3216		ret = 1;
3217	else
3218		ret = 0;
3219	return ret;
3220}
3221
3222static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3223				    struct inode *inode, u64 ino)
 
 
3224{
3225	struct btrfs_key key;
3226	struct btrfs_path *path;
3227	struct btrfs_root *root = fs_info->tree_root;
3228	struct btrfs_trans_handle *trans;
3229	unsigned long nr;
3230	int ret = 0;
3231
3232	if (inode)
3233		goto truncate;
3234
3235	key.objectid = ino;
3236	key.type = BTRFS_INODE_ITEM_KEY;
3237	key.offset = 0;
3238
3239	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3240	if (IS_ERR_OR_NULL(inode) || is_bad_inode(inode)) {
3241		if (inode && !IS_ERR(inode))
3242			iput(inode);
3243		return -ENOENT;
3244	}
3245
3246truncate:
3247	path = btrfs_alloc_path();
3248	if (!path) {
3249		ret = -ENOMEM;
3250		goto out;
3251	}
3252
3253	trans = btrfs_join_transaction(root);
3254	if (IS_ERR(trans)) {
3255		btrfs_free_path(path);
3256		ret = PTR_ERR(trans);
3257		goto out;
3258	}
3259
3260	ret = btrfs_truncate_free_space_cache(root, trans, path, inode);
3261
3262	btrfs_free_path(path);
3263	nr = trans->blocks_used;
3264	btrfs_end_transaction(trans, root);
3265	btrfs_btree_balance_dirty(root, nr);
3266out:
3267	iput(inode);
3268	return ret;
3269}
3270
3271/*
3272 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3273 * this function scans fs tree to find blocks reference the data extent
3274 */
3275static int find_data_references(struct reloc_control *rc,
3276				struct btrfs_key *extent_key,
3277				struct extent_buffer *leaf,
3278				struct btrfs_extent_data_ref *ref,
3279				struct rb_root *blocks)
3280{
3281	struct btrfs_path *path;
3282	struct tree_block *block;
3283	struct btrfs_root *root;
3284	struct btrfs_file_extent_item *fi;
3285	struct rb_node *rb_node;
3286	struct btrfs_key key;
3287	u64 ref_root;
3288	u64 ref_objectid;
3289	u64 ref_offset;
3290	u32 ref_count;
3291	u32 nritems;
3292	int err = 0;
3293	int added = 0;
3294	int counted;
3295	int ret;
3296
3297	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3298	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3299	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3300	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3301
3302	/*
3303	 * This is an extent belonging to the free space cache, lets just delete
3304	 * it and redo the search.
3305	 */
3306	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3307		ret = delete_block_group_cache(rc->extent_root->fs_info,
3308					       NULL, ref_objectid);
3309		if (ret != -ENOENT)
3310			return ret;
3311		ret = 0;
3312	}
3313
3314	path = btrfs_alloc_path();
3315	if (!path)
3316		return -ENOMEM;
3317	path->reada = 1;
3318
3319	root = read_fs_root(rc->extent_root->fs_info, ref_root);
3320	if (IS_ERR(root)) {
3321		err = PTR_ERR(root);
3322		goto out;
3323	}
3324
3325	key.objectid = ref_objectid;
3326	key.offset = ref_offset;
3327	key.type = BTRFS_EXTENT_DATA_KEY;
3328
3329	path->search_commit_root = 1;
3330	path->skip_locking = 1;
3331	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3332	if (ret < 0) {
3333		err = ret;
3334		goto out;
3335	}
3336
3337	leaf = path->nodes[0];
3338	nritems = btrfs_header_nritems(leaf);
3339	/*
3340	 * the references in tree blocks that use full backrefs
3341	 * are not counted in
3342	 */
3343	if (block_use_full_backref(rc, leaf))
3344		counted = 0;
3345	else
3346		counted = 1;
3347	rb_node = tree_search(blocks, leaf->start);
3348	if (rb_node) {
3349		if (counted)
3350			added = 1;
3351		else
3352			path->slots[0] = nritems;
3353	}
3354
3355	while (ref_count > 0) {
3356		while (path->slots[0] >= nritems) {
3357			ret = btrfs_next_leaf(root, path);
3358			if (ret < 0) {
3359				err = ret;
3360				goto out;
3361			}
3362			if (ret > 0) {
3363				WARN_ON(1);
3364				goto out;
3365			}
3366
3367			leaf = path->nodes[0];
3368			nritems = btrfs_header_nritems(leaf);
3369			added = 0;
3370
3371			if (block_use_full_backref(rc, leaf))
3372				counted = 0;
3373			else
3374				counted = 1;
3375			rb_node = tree_search(blocks, leaf->start);
3376			if (rb_node) {
3377				if (counted)
3378					added = 1;
3379				else
3380					path->slots[0] = nritems;
3381			}
3382		}
3383
3384		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3385		if (key.objectid != ref_objectid ||
3386		    key.type != BTRFS_EXTENT_DATA_KEY) {
3387			WARN_ON(1);
3388			break;
3389		}
3390
3391		fi = btrfs_item_ptr(leaf, path->slots[0],
3392				    struct btrfs_file_extent_item);
3393
3394		if (btrfs_file_extent_type(leaf, fi) ==
3395		    BTRFS_FILE_EXTENT_INLINE)
3396			goto next;
3397
3398		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3399		    extent_key->objectid)
3400			goto next;
3401
3402		key.offset -= btrfs_file_extent_offset(leaf, fi);
3403		if (key.offset != ref_offset)
3404			goto next;
3405
3406		if (counted)
3407			ref_count--;
3408		if (added)
3409			goto next;
3410
3411		if (!tree_block_processed(leaf->start, leaf->len, rc)) {
3412			block = kmalloc(sizeof(*block), GFP_NOFS);
3413			if (!block) {
3414				err = -ENOMEM;
3415				break;
3416			}
3417			block->bytenr = leaf->start;
3418			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3419			block->level = 0;
3420			block->key_ready = 1;
3421			rb_node = tree_insert(blocks, block->bytenr,
3422					      &block->rb_node);
3423			BUG_ON(rb_node);
3424		}
3425		if (counted)
3426			added = 1;
3427		else
3428			path->slots[0] = nritems;
3429next:
3430		path->slots[0]++;
3431
3432	}
3433out:
3434	btrfs_free_path(path);
3435	return err;
 
 
3436}
3437
3438/*
3439 * hepler to find all tree blocks that reference a given data extent
3440 */
3441static noinline_for_stack
3442int add_data_references(struct reloc_control *rc,
3443			struct btrfs_key *extent_key,
3444			struct btrfs_path *path,
3445			struct rb_root *blocks)
3446{
3447	struct btrfs_key key;
3448	struct extent_buffer *eb;
3449	struct btrfs_extent_data_ref *dref;
3450	struct btrfs_extent_inline_ref *iref;
3451	unsigned long ptr;
3452	unsigned long end;
3453	u32 blocksize = btrfs_level_size(rc->extent_root, 0);
3454	int ret;
3455	int err = 0;
3456
3457	eb = path->nodes[0];
3458	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3459	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3460#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3461	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3462		ptr = end;
3463	else
3464#endif
3465		ptr += sizeof(struct btrfs_extent_item);
3466
3467	while (ptr < end) {
3468		iref = (struct btrfs_extent_inline_ref *)ptr;
3469		key.type = btrfs_extent_inline_ref_type(eb, iref);
3470		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3471			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3472			ret = __add_tree_block(rc, key.offset, blocksize,
3473					       blocks);
3474		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3475			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3476			ret = find_data_references(rc, extent_key,
3477						   eb, dref, blocks);
3478		} else {
3479			BUG();
3480		}
3481		ptr += btrfs_extent_inline_ref_size(key.type);
3482	}
3483	WARN_ON(ptr > end);
3484
3485	while (1) {
3486		cond_resched();
3487		eb = path->nodes[0];
3488		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3489			ret = btrfs_next_leaf(rc->extent_root, path);
3490			if (ret < 0) {
3491				err = ret;
3492				break;
3493			}
3494			if (ret > 0)
3495				break;
3496			eb = path->nodes[0];
3497		}
3498
3499		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3500		if (key.objectid != extent_key->objectid)
 
 
 
 
 
 
3501			break;
3502
3503#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3504		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3505		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3506#else
3507		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3508		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3509#endif
3510			ret = __add_tree_block(rc, key.offset, blocksize,
3511					       blocks);
3512		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3513			dref = btrfs_item_ptr(eb, path->slots[0],
3514					      struct btrfs_extent_data_ref);
3515			ret = find_data_references(rc, extent_key,
3516						   eb, dref, blocks);
3517		} else {
3518			ret = 0;
3519		}
3520		if (ret) {
3521			err = ret;
 
 
 
 
 
3522			break;
3523		}
3524		path->slots[0]++;
3525	}
3526	btrfs_release_path(path);
3527	if (err)
3528		free_block_list(blocks);
3529	return err;
 
3530}
3531
3532/*
3533 * hepler to find next unprocessed extent
3534 */
3535static noinline_for_stack
3536int find_next_extent(struct btrfs_trans_handle *trans,
3537		     struct reloc_control *rc, struct btrfs_path *path,
3538		     struct btrfs_key *extent_key)
3539{
 
3540	struct btrfs_key key;
3541	struct extent_buffer *leaf;
3542	u64 start, end, last;
3543	int ret;
3544
3545	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3546	while (1) {
3547		cond_resched();
3548		if (rc->search_start >= last) {
3549			ret = 1;
3550			break;
3551		}
3552
3553		key.objectid = rc->search_start;
3554		key.type = BTRFS_EXTENT_ITEM_KEY;
3555		key.offset = 0;
3556
3557		path->search_commit_root = 1;
3558		path->skip_locking = 1;
3559		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3560					0, 0);
3561		if (ret < 0)
3562			break;
3563next:
3564		leaf = path->nodes[0];
3565		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3566			ret = btrfs_next_leaf(rc->extent_root, path);
3567			if (ret != 0)
3568				break;
3569			leaf = path->nodes[0];
3570		}
3571
3572		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3573		if (key.objectid >= last) {
3574			ret = 1;
3575			break;
3576		}
3577
3578		if (key.type != BTRFS_EXTENT_ITEM_KEY ||
 
 
 
 
 
 
3579		    key.objectid + key.offset <= rc->search_start) {
3580			path->slots[0]++;
3581			goto next;
3582		}
3583
 
 
 
 
 
 
 
3584		ret = find_first_extent_bit(&rc->processed_blocks,
3585					    key.objectid, &start, &end,
3586					    EXTENT_DIRTY);
3587
3588		if (ret == 0 && start <= key.objectid) {
3589			btrfs_release_path(path);
3590			rc->search_start = end + 1;
3591		} else {
3592			rc->search_start = key.objectid + key.offset;
 
 
 
 
3593			memcpy(extent_key, &key, sizeof(key));
3594			return 0;
3595		}
3596	}
3597	btrfs_release_path(path);
3598	return ret;
3599}
3600
3601static void set_reloc_control(struct reloc_control *rc)
3602{
3603	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3604
3605	mutex_lock(&fs_info->reloc_mutex);
3606	fs_info->reloc_ctl = rc;
3607	mutex_unlock(&fs_info->reloc_mutex);
3608}
3609
3610static void unset_reloc_control(struct reloc_control *rc)
3611{
3612	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3613
3614	mutex_lock(&fs_info->reloc_mutex);
3615	fs_info->reloc_ctl = NULL;
3616	mutex_unlock(&fs_info->reloc_mutex);
3617}
3618
3619static int check_extent_flags(u64 flags)
3620{
3621	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3622	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3623		return 1;
3624	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3625	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3626		return 1;
3627	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3628	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3629		return 1;
3630	return 0;
3631}
3632
3633static noinline_for_stack
3634int prepare_to_relocate(struct reloc_control *rc)
3635{
3636	struct btrfs_trans_handle *trans;
3637	int ret;
3638
3639	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root);
 
3640	if (!rc->block_rsv)
3641		return -ENOMEM;
3642
3643	/*
3644	 * reserve some space for creating reloc trees.
3645	 * btrfs_init_reloc_root will use them when there
3646	 * is no reservation in transaction handle.
3647	 */
3648	ret = btrfs_block_rsv_add(NULL, rc->extent_root, rc->block_rsv,
3649				  rc->extent_root->nodesize * 256);
3650	if (ret)
3651		return ret;
3652
3653	rc->block_rsv->refill_used = 1;
3654	btrfs_add_durable_block_rsv(rc->extent_root->fs_info, rc->block_rsv);
3655
3656	memset(&rc->cluster, 0, sizeof(rc->cluster));
3657	rc->search_start = rc->block_group->key.objectid;
3658	rc->extents_found = 0;
3659	rc->nodes_relocated = 0;
3660	rc->merging_rsv_size = 0;
 
 
 
 
 
 
 
 
3661
3662	rc->create_reloc_tree = 1;
3663	set_reloc_control(rc);
3664
3665	trans = btrfs_join_transaction(rc->extent_root);
3666	BUG_ON(IS_ERR(trans));
3667	btrfs_commit_transaction(trans, rc->extent_root);
3668	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
3669}
3670
3671static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3672{
 
3673	struct rb_root blocks = RB_ROOT;
3674	struct btrfs_key key;
3675	struct btrfs_trans_handle *trans = NULL;
3676	struct btrfs_path *path;
3677	struct btrfs_extent_item *ei;
3678	unsigned long nr;
3679	u64 flags;
3680	u32 item_size;
3681	int ret;
3682	int err = 0;
3683	int progress = 0;
3684
3685	path = btrfs_alloc_path();
3686	if (!path)
3687		return -ENOMEM;
3688	path->reada = 1;
3689
3690	ret = prepare_to_relocate(rc);
3691	if (ret) {
3692		err = ret;
3693		goto out_free;
3694	}
3695
3696	while (1) {
 
 
 
 
 
 
 
 
3697		progress++;
3698		trans = btrfs_start_transaction(rc->extent_root, 0);
3699		BUG_ON(IS_ERR(trans));
 
 
 
 
3700restart:
3701		if (update_backref_cache(trans, &rc->backref_cache)) {
3702			btrfs_end_transaction(trans, rc->extent_root);
 
3703			continue;
3704		}
3705
3706		ret = find_next_extent(trans, rc, path, &key);
3707		if (ret < 0)
3708			err = ret;
3709		if (ret != 0)
3710			break;
3711
3712		rc->extents_found++;
3713
3714		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3715				    struct btrfs_extent_item);
3716		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3717		if (item_size >= sizeof(*ei)) {
3718			flags = btrfs_extent_flags(path->nodes[0], ei);
3719			ret = check_extent_flags(flags);
3720			BUG_ON(ret);
3721
3722		} else {
3723#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3724			u64 ref_owner;
3725			int path_change = 0;
3726
3727			BUG_ON(item_size !=
3728			       sizeof(struct btrfs_extent_item_v0));
3729			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3730						  &path_change);
3731			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3732				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3733			else
3734				flags = BTRFS_EXTENT_FLAG_DATA;
3735
3736			if (path_change) {
3737				btrfs_release_path(path);
3738
3739				path->search_commit_root = 1;
3740				path->skip_locking = 1;
3741				ret = btrfs_search_slot(NULL, rc->extent_root,
3742							&key, path, 0, 0);
3743				if (ret < 0) {
3744					err = ret;
3745					break;
3746				}
3747				BUG_ON(ret > 0);
3748			}
3749#else
3750			BUG();
3751#endif
3752		}
3753
3754		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3755			ret = add_tree_block(rc, &key, path, &blocks);
3756		} else if (rc->stage == UPDATE_DATA_PTRS &&
3757			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3758			ret = add_data_references(rc, &key, path, &blocks);
3759		} else {
3760			btrfs_release_path(path);
3761			ret = 0;
3762		}
3763		if (ret < 0) {
3764			err = ret;
3765			break;
3766		}
3767
3768		if (!RB_EMPTY_ROOT(&blocks)) {
3769			ret = relocate_tree_blocks(trans, rc, &blocks);
3770			if (ret < 0) {
3771				if (ret != -EAGAIN) {
3772					err = ret;
3773					break;
3774				}
3775				rc->extents_found--;
3776				rc->search_start = key.objectid;
3777			}
3778		}
3779
3780		ret = btrfs_block_rsv_check(trans, rc->extent_root,
3781					    rc->block_rsv, 0, 5);
3782		if (ret < 0) {
3783			if (ret != -EAGAIN) {
3784				err = ret;
3785				WARN_ON(1);
3786				break;
3787			}
3788			rc->commit_transaction = 1;
3789		}
3790
3791		if (rc->commit_transaction) {
3792			rc->commit_transaction = 0;
3793			ret = btrfs_commit_transaction(trans, rc->extent_root);
3794			BUG_ON(ret);
3795		} else {
3796			nr = trans->blocks_used;
3797			btrfs_end_transaction_throttle(trans, rc->extent_root);
3798			btrfs_btree_balance_dirty(rc->extent_root, nr);
3799		}
3800		trans = NULL;
3801
3802		if (rc->stage == MOVE_DATA_EXTENTS &&
3803		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3804			rc->found_file_extent = 1;
3805			ret = relocate_data_extent(rc->data_inode,
3806						   &key, &rc->cluster);
3807			if (ret < 0) {
3808				err = ret;
3809				break;
3810			}
3811		}
 
 
 
 
3812	}
3813	if (trans && progress && err == -ENOSPC) {
3814		ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
3815					      rc->block_group->flags);
3816		if (ret == 0) {
3817			err = 0;
3818			progress = 0;
3819			goto restart;
3820		}
3821	}
3822
3823	btrfs_release_path(path);
3824	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
3825			  GFP_NOFS);
3826
3827	if (trans) {
3828		nr = trans->blocks_used;
3829		btrfs_end_transaction_throttle(trans, rc->extent_root);
3830		btrfs_btree_balance_dirty(rc->extent_root, nr);
3831	}
3832
3833	if (!err) {
3834		ret = relocate_file_extent_cluster(rc->data_inode,
3835						   &rc->cluster);
3836		if (ret < 0)
3837			err = ret;
3838	}
3839
3840	rc->create_reloc_tree = 0;
3841	set_reloc_control(rc);
3842
3843	backref_cache_cleanup(&rc->backref_cache);
3844	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
3845
 
 
 
 
 
 
 
 
3846	err = prepare_to_merge(rc, err);
3847
3848	merge_reloc_roots(rc);
3849
3850	rc->merge_reloc_tree = 0;
3851	unset_reloc_control(rc);
3852	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
3853
3854	/* get rid of pinned extents */
3855	trans = btrfs_join_transaction(rc->extent_root);
3856	if (IS_ERR(trans))
3857		err = PTR_ERR(trans);
3858	else
3859		btrfs_commit_transaction(trans, rc->extent_root);
 
 
 
3860out_free:
3861	btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
 
 
 
3862	btrfs_free_path(path);
3863	return err;
3864}
3865
3866static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3867				 struct btrfs_root *root, u64 objectid)
3868{
3869	struct btrfs_path *path;
3870	struct btrfs_inode_item *item;
3871	struct extent_buffer *leaf;
3872	int ret;
3873
3874	path = btrfs_alloc_path();
3875	if (!path)
3876		return -ENOMEM;
3877
3878	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3879	if (ret)
3880		goto out;
3881
3882	leaf = path->nodes[0];
3883	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3884	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3885	btrfs_set_inode_generation(leaf, item, 1);
3886	btrfs_set_inode_size(leaf, item, 0);
3887	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3888	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3889					  BTRFS_INODE_PREALLOC);
3890	btrfs_mark_buffer_dirty(leaf);
3891	btrfs_release_path(path);
3892out:
3893	btrfs_free_path(path);
3894	return ret;
3895}
3896
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3897/*
3898 * helper to create inode for data relocation.
3899 * the inode is in data relocation tree and its link count is 0
3900 */
3901static noinline_for_stack
3902struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3903				 struct btrfs_block_group_cache *group)
3904{
3905	struct inode *inode = NULL;
3906	struct btrfs_trans_handle *trans;
3907	struct btrfs_root *root;
3908	struct btrfs_key key;
3909	unsigned long nr;
3910	u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
3911	int err = 0;
3912
3913	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
3914	if (IS_ERR(root))
3915		return ERR_CAST(root);
3916
3917	trans = btrfs_start_transaction(root, 6);
3918	if (IS_ERR(trans))
 
3919		return ERR_CAST(trans);
 
3920
3921	err = btrfs_find_free_objectid(root, &objectid);
3922	if (err)
3923		goto out;
3924
3925	err = __insert_orphan_inode(trans, root, objectid);
3926	BUG_ON(err);
 
3927
3928	key.objectid = objectid;
3929	key.type = BTRFS_INODE_ITEM_KEY;
3930	key.offset = 0;
3931	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
3932	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
3933	BTRFS_I(inode)->index_cnt = group->key.objectid;
 
 
3934
3935	err = btrfs_orphan_add(trans, inode);
3936out:
3937	nr = trans->blocks_used;
3938	btrfs_end_transaction(trans, root);
3939	btrfs_btree_balance_dirty(root, nr);
3940	if (err) {
3941		if (inode)
3942			iput(inode);
3943		inode = ERR_PTR(err);
3944	}
3945	return inode;
3946}
3947
3948static struct reloc_control *alloc_reloc_control(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3949{
3950	struct reloc_control *rc;
3951
3952	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3953	if (!rc)
3954		return NULL;
3955
3956	INIT_LIST_HEAD(&rc->reloc_roots);
3957	backref_cache_init(&rc->backref_cache);
 
3958	mapping_tree_init(&rc->reloc_root_tree);
3959	extent_io_tree_init(&rc->processed_blocks, NULL);
3960	return rc;
3961}
3962
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3963/*
3964 * function to relocate all extents in a block group.
3965 */
3966int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
3967{
3968	struct btrfs_fs_info *fs_info = extent_root->fs_info;
 
3969	struct reloc_control *rc;
3970	struct inode *inode;
3971	struct btrfs_path *path;
3972	int ret;
3973	int rw = 0;
3974	int err = 0;
3975
3976	rc = alloc_reloc_control();
3977	if (!rc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3978		return -ENOMEM;
 
 
 
 
 
 
 
3979
3980	rc->extent_root = extent_root;
 
3981
3982	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
3983	BUG_ON(!rc->block_group);
3984
3985	if (!rc->block_group->ro) {
3986		ret = btrfs_set_block_group_ro(extent_root, rc->block_group);
3987		if (ret) {
3988			err = ret;
3989			goto out;
3990		}
3991		rw = 1;
3992	}
 
3993
3994	path = btrfs_alloc_path();
3995	if (!path) {
3996		err = -ENOMEM;
3997		goto out;
3998	}
3999
4000	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4001					path);
4002	btrfs_free_path(path);
4003
4004	if (!IS_ERR(inode))
4005		ret = delete_block_group_cache(fs_info, inode, 0);
4006	else
4007		ret = PTR_ERR(inode);
4008
4009	if (ret && ret != -ENOENT) {
4010		err = ret;
4011		goto out;
4012	}
4013
4014	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4015	if (IS_ERR(rc->data_inode)) {
4016		err = PTR_ERR(rc->data_inode);
4017		rc->data_inode = NULL;
4018		goto out;
4019	}
4020
4021	printk(KERN_INFO "btrfs: relocating block group %llu flags %llu\n",
4022	       (unsigned long long)rc->block_group->key.objectid,
4023	       (unsigned long long)rc->block_group->flags);
 
 
 
 
4024
4025	btrfs_start_delalloc_inodes(fs_info->tree_root, 0);
4026	btrfs_wait_ordered_extents(fs_info->tree_root, 0, 0);
4027
4028	while (1) {
 
 
4029		mutex_lock(&fs_info->cleaner_mutex);
4030
4031		btrfs_clean_old_snapshots(fs_info->tree_root);
4032		ret = relocate_block_group(rc);
4033
4034		mutex_unlock(&fs_info->cleaner_mutex);
4035		if (ret < 0) {
4036			err = ret;
4037			goto out;
4038		}
4039
4040		if (rc->extents_found == 0)
4041			break;
4042
4043		printk(KERN_INFO "btrfs: found %llu extents\n",
4044			(unsigned long long)rc->extents_found);
4045
 
 
 
 
 
 
 
 
 
 
4046		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4047			btrfs_wait_ordered_range(rc->data_inode, 0, (u64)-1);
 
 
 
4048			invalidate_mapping_pages(rc->data_inode->i_mapping,
4049						 0, -1);
4050			rc->stage = UPDATE_DATA_PTRS;
4051		}
 
 
 
 
 
 
 
 
 
4052	}
4053
4054	filemap_write_and_wait_range(fs_info->btree_inode->i_mapping,
4055				     rc->block_group->key.objectid,
4056				     rc->block_group->key.objectid +
4057				     rc->block_group->key.offset - 1);
4058
4059	WARN_ON(rc->block_group->pinned > 0);
4060	WARN_ON(rc->block_group->reserved > 0);
4061	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4062out:
4063	if (err && rw)
4064		btrfs_set_block_group_rw(extent_root, rc->block_group);
4065	iput(rc->data_inode);
4066	btrfs_put_block_group(rc->block_group);
4067	kfree(rc);
 
 
4068	return err;
4069}
4070
4071static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4072{
 
4073	struct btrfs_trans_handle *trans;
4074	int ret;
4075
4076	trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4077	BUG_ON(IS_ERR(trans));
 
4078
4079	memset(&root->root_item.drop_progress, 0,
4080		sizeof(root->root_item.drop_progress));
4081	root->root_item.drop_level = 0;
4082	btrfs_set_root_refs(&root->root_item, 0);
4083	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4084				&root->root_key, &root->root_item);
4085	BUG_ON(ret);
4086
4087	ret = btrfs_end_transaction(trans, root->fs_info->tree_root);
4088	BUG_ON(ret);
4089	return 0;
 
4090}
4091
4092/*
4093 * recover relocation interrupted by system crash.
4094 *
4095 * this function resumes merging reloc trees with corresponding fs trees.
4096 * this is important for keeping the sharing of tree blocks
4097 */
4098int btrfs_recover_relocation(struct btrfs_root *root)
4099{
4100	LIST_HEAD(reloc_roots);
4101	struct btrfs_key key;
4102	struct btrfs_root *fs_root;
4103	struct btrfs_root *reloc_root;
4104	struct btrfs_path *path;
4105	struct extent_buffer *leaf;
4106	struct reloc_control *rc = NULL;
4107	struct btrfs_trans_handle *trans;
4108	int ret;
4109	int err = 0;
4110
4111	path = btrfs_alloc_path();
4112	if (!path)
4113		return -ENOMEM;
4114	path->reada = -1;
4115
4116	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4117	key.type = BTRFS_ROOT_ITEM_KEY;
4118	key.offset = (u64)-1;
4119
4120	while (1) {
4121		ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4122					path, 0, 0);
4123		if (ret < 0) {
4124			err = ret;
4125			goto out;
4126		}
4127		if (ret > 0) {
4128			if (path->slots[0] == 0)
4129				break;
4130			path->slots[0]--;
4131		}
4132		leaf = path->nodes[0];
4133		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4134		btrfs_release_path(path);
4135
4136		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4137		    key.type != BTRFS_ROOT_ITEM_KEY)
4138			break;
4139
4140		reloc_root = btrfs_read_fs_root_no_radix(root, &key);
4141		if (IS_ERR(reloc_root)) {
4142			err = PTR_ERR(reloc_root);
4143			goto out;
4144		}
4145
 
4146		list_add(&reloc_root->root_list, &reloc_roots);
4147
4148		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4149			fs_root = read_fs_root(root->fs_info,
4150					       reloc_root->root_key.offset);
4151			if (IS_ERR(fs_root)) {
4152				ret = PTR_ERR(fs_root);
4153				if (ret != -ENOENT) {
4154					err = ret;
4155					goto out;
4156				}
4157				mark_garbage_root(reloc_root);
 
 
 
 
 
 
4158			}
4159		}
4160
4161		if (key.offset == 0)
4162			break;
4163
4164		key.offset--;
4165	}
4166	btrfs_release_path(path);
4167
4168	if (list_empty(&reloc_roots))
4169		goto out;
4170
4171	rc = alloc_reloc_control();
4172	if (!rc) {
4173		err = -ENOMEM;
4174		goto out;
4175	}
4176
4177	rc->extent_root = root->fs_info->extent_root;
 
 
 
 
 
 
4178
4179	set_reloc_control(rc);
4180
4181	trans = btrfs_join_transaction(rc->extent_root);
4182	if (IS_ERR(trans)) {
4183		unset_reloc_control(rc);
4184		err = PTR_ERR(trans);
4185		goto out_free;
4186	}
4187
4188	rc->merge_reloc_tree = 1;
4189
4190	while (!list_empty(&reloc_roots)) {
4191		reloc_root = list_entry(reloc_roots.next,
4192					struct btrfs_root, root_list);
4193		list_del(&reloc_root->root_list);
4194
4195		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4196			list_add_tail(&reloc_root->root_list,
4197				      &rc->reloc_roots);
4198			continue;
4199		}
4200
4201		fs_root = read_fs_root(root->fs_info,
4202				       reloc_root->root_key.offset);
4203		BUG_ON(IS_ERR(fs_root));
 
 
 
 
 
4204
4205		__add_reloc_root(reloc_root);
4206		fs_root->reloc_root = reloc_root;
 
 
 
 
 
 
 
 
4207	}
4208
4209	btrfs_commit_transaction(trans, rc->extent_root);
 
 
4210
4211	merge_reloc_roots(rc);
4212
4213	unset_reloc_control(rc);
4214
4215	trans = btrfs_join_transaction(rc->extent_root);
4216	if (IS_ERR(trans))
4217		err = PTR_ERR(trans);
4218	else
4219		btrfs_commit_transaction(trans, rc->extent_root);
4220out_free:
4221	kfree(rc);
 
 
 
 
 
 
 
 
4222out:
4223	while (!list_empty(&reloc_roots)) {
4224		reloc_root = list_entry(reloc_roots.next,
4225					struct btrfs_root, root_list);
4226		list_del(&reloc_root->root_list);
4227		free_extent_buffer(reloc_root->node);
4228		free_extent_buffer(reloc_root->commit_root);
4229		kfree(reloc_root);
4230	}
4231	btrfs_free_path(path);
4232
4233	if (err == 0) {
4234		/* cleanup orphan inode in data relocation tree */
4235		fs_root = read_fs_root(root->fs_info,
4236				       BTRFS_DATA_RELOC_TREE_OBJECTID);
4237		if (IS_ERR(fs_root))
4238			err = PTR_ERR(fs_root);
4239		else
4240			err = btrfs_orphan_cleanup(fs_root);
4241	}
4242	return err;
4243}
4244
4245/*
4246 * helper to add ordered checksum for data relocation.
4247 *
4248 * cloning checksum properly handles the nodatasum extents.
4249 * it also saves CPU time to re-calculate the checksum.
4250 */
4251int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4252{
 
 
4253	struct btrfs_ordered_sum *sums;
4254	struct btrfs_sector_sum *sector_sum;
4255	struct btrfs_ordered_extent *ordered;
4256	struct btrfs_root *root = BTRFS_I(inode)->root;
4257	size_t offset;
4258	int ret;
4259	u64 disk_bytenr;
 
4260	LIST_HEAD(list);
4261
4262	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4263	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4264
4265	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4266	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4267				       disk_bytenr + len - 1, &list, 0);
 
 
 
4268
4269	while (!list_empty(&list)) {
4270		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4271		list_del_init(&sums->list);
4272
4273		sector_sum = sums->sums;
4274		sums->bytenr = ordered->start;
4275
4276		offset = 0;
4277		while (offset < sums->len) {
4278			sector_sum->bytenr += ordered->start - disk_bytenr;
4279			sector_sum++;
4280			offset += root->sectorsize;
4281		}
 
 
 
 
 
4282
4283		btrfs_add_ordered_sum(inode, ordered, sums);
4284	}
 
4285	btrfs_put_ordered_extent(ordered);
4286	return ret;
4287}
4288
4289void btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4290			   struct btrfs_root *root, struct extent_buffer *buf,
4291			   struct extent_buffer *cow)
4292{
 
4293	struct reloc_control *rc;
4294	struct backref_node *node;
4295	int first_cow = 0;
4296	int level;
4297	int ret;
4298
4299	rc = root->fs_info->reloc_ctl;
4300	if (!rc)
4301		return;
4302
4303	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4304	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4305
4306	level = btrfs_header_level(buf);
4307	if (btrfs_header_generation(buf) <=
4308	    btrfs_root_last_snapshot(&root->root_item))
4309		first_cow = 1;
4310
4311	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4312	    rc->create_reloc_tree) {
4313		WARN_ON(!first_cow && level == 0);
4314
4315		node = rc->backref_cache.path[level];
4316		BUG_ON(node->bytenr != buf->start &&
4317		       node->new_bytenr != buf->start);
4318
4319		drop_node_buffer(node);
4320		extent_buffer_get(cow);
4321		node->eb = cow;
4322		node->new_bytenr = cow->start;
4323
4324		if (!node->pending) {
4325			list_move_tail(&node->list,
4326				       &rc->backref_cache.pending[level]);
4327			node->pending = 1;
4328		}
4329
4330		if (first_cow)
4331			__mark_block_processed(rc, node);
4332
4333		if (first_cow && level > 0)
4334			rc->nodes_relocated += buf->len;
4335	}
4336
4337	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) {
4338		ret = replace_file_extents(trans, rc, root, cow);
4339		BUG_ON(ret);
4340	}
4341}
4342
4343/*
4344 * called before creating snapshot. it calculates metadata reservation
4345 * requried for relocating tree blocks in the snapshot
4346 */
4347void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4348			      struct btrfs_pending_snapshot *pending,
4349			      u64 *bytes_to_reserve)
4350{
4351	struct btrfs_root *root;
4352	struct reloc_control *rc;
4353
4354	root = pending->root;
4355	if (!root->reloc_root)
4356		return;
4357
4358	rc = root->fs_info->reloc_ctl;
4359	if (!rc->merge_reloc_tree)
4360		return;
4361
4362	root = root->reloc_root;
4363	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4364	/*
4365	 * relocation is in the stage of merging trees. the space
4366	 * used by merging a reloc tree is twice the size of
4367	 * relocated tree nodes in the worst case. half for cowing
4368	 * the reloc tree, half for cowing the fs tree. the space
4369	 * used by cowing the reloc tree will be freed after the
4370	 * tree is dropped. if we create snapshot, cowing the fs
4371	 * tree may use more space than it frees. so we need
4372	 * reserve extra space.
4373	 */
4374	*bytes_to_reserve += rc->nodes_relocated;
4375}
4376
4377/*
4378 * called after snapshot is created. migrate block reservation
4379 * and create reloc root for the newly created snapshot
 
 
 
 
4380 */
4381void btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4382			       struct btrfs_pending_snapshot *pending)
4383{
4384	struct btrfs_root *root = pending->root;
4385	struct btrfs_root *reloc_root;
4386	struct btrfs_root *new_root;
4387	struct reloc_control *rc;
4388	int ret;
4389
4390	if (!root->reloc_root)
4391		return;
4392
4393	rc = root->fs_info->reloc_ctl;
4394	rc->merging_rsv_size += rc->nodes_relocated;
4395
4396	if (rc->merge_reloc_tree) {
4397		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4398					      rc->block_rsv,
4399					      rc->nodes_relocated);
4400		BUG_ON(ret);
 
4401	}
4402
4403	new_root = pending->snap;
4404	reloc_root = create_reloc_root(trans, root->reloc_root,
4405				       new_root->root_key.objectid);
 
 
4406
4407	__add_reloc_root(reloc_root);
4408	new_root->reloc_root = reloc_root;
 
 
 
 
 
 
4409
4410	if (rc->create_reloc_tree) {
4411		ret = clone_backref_node(trans, rc, root, reloc_root);
4412		BUG_ON(ret);
4413	}
4414}