Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* align.c - handle alignment exceptions for the Power PC.
3 *
4 * Copyright (c) 1996 Paul Mackerras <paulus@cs.anu.edu.au>
5 * Copyright (c) 1998-1999 TiVo, Inc.
6 * PowerPC 403GCX modifications.
7 * Copyright (c) 1999 Grant Erickson <grant@lcse.umn.edu>
8 * PowerPC 403GCX/405GP modifications.
9 * Copyright (c) 2001-2002 PPC64 team, IBM Corp
10 * 64-bit and Power4 support
11 * Copyright (c) 2005 Benjamin Herrenschmidt, IBM Corp
12 * <benh@kernel.crashing.org>
13 * Merge ppc32 and ppc64 implementations
14 */
15
16#include <linux/kernel.h>
17#include <linux/mm.h>
18#include <asm/processor.h>
19#include <linux/uaccess.h>
20#include <asm/cache.h>
21#include <asm/cputable.h>
22#include <asm/emulated_ops.h>
23#include <asm/switch_to.h>
24#include <asm/disassemble.h>
25#include <asm/cpu_has_feature.h>
26#include <asm/sstep.h>
27#include <asm/inst.h>
28
29struct aligninfo {
30 unsigned char len;
31 unsigned char flags;
32};
33
34
35#define INVALID { 0, 0 }
36
37/* Bits in the flags field */
38#define LD 0 /* load */
39#define ST 1 /* store */
40#define SE 2 /* sign-extend value, or FP ld/st as word */
41#define SW 0x20 /* byte swap */
42#define E4 0x40 /* SPE endianness is word */
43#define E8 0x80 /* SPE endianness is double word */
44
45#ifdef CONFIG_SPE
46
47static struct aligninfo spe_aligninfo[32] = {
48 { 8, LD+E8 }, /* 0 00 00: evldd[x] */
49 { 8, LD+E4 }, /* 0 00 01: evldw[x] */
50 { 8, LD }, /* 0 00 10: evldh[x] */
51 INVALID, /* 0 00 11 */
52 { 2, LD }, /* 0 01 00: evlhhesplat[x] */
53 INVALID, /* 0 01 01 */
54 { 2, LD }, /* 0 01 10: evlhhousplat[x] */
55 { 2, LD+SE }, /* 0 01 11: evlhhossplat[x] */
56 { 4, LD }, /* 0 10 00: evlwhe[x] */
57 INVALID, /* 0 10 01 */
58 { 4, LD }, /* 0 10 10: evlwhou[x] */
59 { 4, LD+SE }, /* 0 10 11: evlwhos[x] */
60 { 4, LD+E4 }, /* 0 11 00: evlwwsplat[x] */
61 INVALID, /* 0 11 01 */
62 { 4, LD }, /* 0 11 10: evlwhsplat[x] */
63 INVALID, /* 0 11 11 */
64
65 { 8, ST+E8 }, /* 1 00 00: evstdd[x] */
66 { 8, ST+E4 }, /* 1 00 01: evstdw[x] */
67 { 8, ST }, /* 1 00 10: evstdh[x] */
68 INVALID, /* 1 00 11 */
69 INVALID, /* 1 01 00 */
70 INVALID, /* 1 01 01 */
71 INVALID, /* 1 01 10 */
72 INVALID, /* 1 01 11 */
73 { 4, ST }, /* 1 10 00: evstwhe[x] */
74 INVALID, /* 1 10 01 */
75 { 4, ST }, /* 1 10 10: evstwho[x] */
76 INVALID, /* 1 10 11 */
77 { 4, ST+E4 }, /* 1 11 00: evstwwe[x] */
78 INVALID, /* 1 11 01 */
79 { 4, ST+E4 }, /* 1 11 10: evstwwo[x] */
80 INVALID, /* 1 11 11 */
81};
82
83#define EVLDD 0x00
84#define EVLDW 0x01
85#define EVLDH 0x02
86#define EVLHHESPLAT 0x04
87#define EVLHHOUSPLAT 0x06
88#define EVLHHOSSPLAT 0x07
89#define EVLWHE 0x08
90#define EVLWHOU 0x0A
91#define EVLWHOS 0x0B
92#define EVLWWSPLAT 0x0C
93#define EVLWHSPLAT 0x0E
94#define EVSTDD 0x10
95#define EVSTDW 0x11
96#define EVSTDH 0x12
97#define EVSTWHE 0x18
98#define EVSTWHO 0x1A
99#define EVSTWWE 0x1C
100#define EVSTWWO 0x1E
101
102/*
103 * Emulate SPE loads and stores.
104 * Only Book-E has these instructions, and it does true little-endian,
105 * so we don't need the address swizzling.
106 */
107static int emulate_spe(struct pt_regs *regs, unsigned int reg,
108 ppc_inst_t ppc_instr)
109{
110 union {
111 u64 ll;
112 u32 w[2];
113 u16 h[4];
114 u8 v[8];
115 } data, temp;
116 unsigned char __user *p, *addr;
117 unsigned long *evr = ¤t->thread.evr[reg];
118 unsigned int nb, flags, instr;
119
120 instr = ppc_inst_val(ppc_instr);
121 instr = (instr >> 1) & 0x1f;
122
123 /* DAR has the operand effective address */
124 addr = (unsigned char __user *)regs->dar;
125
126 nb = spe_aligninfo[instr].len;
127 flags = spe_aligninfo[instr].flags;
128
129 /* userland only */
130 if (unlikely(!user_mode(regs)))
131 return 0;
132
133 flush_spe_to_thread(current);
134
135 /* If we are loading, get the data from user space, else
136 * get it from register values
137 */
138 if (flags & ST) {
139 data.ll = 0;
140 switch (instr) {
141 case EVSTDD:
142 case EVSTDW:
143 case EVSTDH:
144 data.w[0] = *evr;
145 data.w[1] = regs->gpr[reg];
146 break;
147 case EVSTWHE:
148 data.h[2] = *evr >> 16;
149 data.h[3] = regs->gpr[reg] >> 16;
150 break;
151 case EVSTWHO:
152 data.h[2] = *evr & 0xffff;
153 data.h[3] = regs->gpr[reg] & 0xffff;
154 break;
155 case EVSTWWE:
156 data.w[1] = *evr;
157 break;
158 case EVSTWWO:
159 data.w[1] = regs->gpr[reg];
160 break;
161 default:
162 return -EINVAL;
163 }
164 } else {
165 temp.ll = data.ll = 0;
166 p = addr;
167
168 if (!user_read_access_begin(addr, nb))
169 return -EFAULT;
170
171 switch (nb) {
172 case 8:
173 unsafe_get_user(temp.v[0], p++, Efault_read);
174 unsafe_get_user(temp.v[1], p++, Efault_read);
175 unsafe_get_user(temp.v[2], p++, Efault_read);
176 unsafe_get_user(temp.v[3], p++, Efault_read);
177 fallthrough;
178 case 4:
179 unsafe_get_user(temp.v[4], p++, Efault_read);
180 unsafe_get_user(temp.v[5], p++, Efault_read);
181 fallthrough;
182 case 2:
183 unsafe_get_user(temp.v[6], p++, Efault_read);
184 unsafe_get_user(temp.v[7], p++, Efault_read);
185 }
186 user_read_access_end();
187
188 switch (instr) {
189 case EVLDD:
190 case EVLDW:
191 case EVLDH:
192 data.ll = temp.ll;
193 break;
194 case EVLHHESPLAT:
195 data.h[0] = temp.h[3];
196 data.h[2] = temp.h[3];
197 break;
198 case EVLHHOUSPLAT:
199 case EVLHHOSSPLAT:
200 data.h[1] = temp.h[3];
201 data.h[3] = temp.h[3];
202 break;
203 case EVLWHE:
204 data.h[0] = temp.h[2];
205 data.h[2] = temp.h[3];
206 break;
207 case EVLWHOU:
208 case EVLWHOS:
209 data.h[1] = temp.h[2];
210 data.h[3] = temp.h[3];
211 break;
212 case EVLWWSPLAT:
213 data.w[0] = temp.w[1];
214 data.w[1] = temp.w[1];
215 break;
216 case EVLWHSPLAT:
217 data.h[0] = temp.h[2];
218 data.h[1] = temp.h[2];
219 data.h[2] = temp.h[3];
220 data.h[3] = temp.h[3];
221 break;
222 default:
223 return -EINVAL;
224 }
225 }
226
227 if (flags & SW) {
228 switch (flags & 0xf0) {
229 case E8:
230 data.ll = swab64(data.ll);
231 break;
232 case E4:
233 data.w[0] = swab32(data.w[0]);
234 data.w[1] = swab32(data.w[1]);
235 break;
236 /* Its half word endian */
237 default:
238 data.h[0] = swab16(data.h[0]);
239 data.h[1] = swab16(data.h[1]);
240 data.h[2] = swab16(data.h[2]);
241 data.h[3] = swab16(data.h[3]);
242 break;
243 }
244 }
245
246 if (flags & SE) {
247 data.w[0] = (s16)data.h[1];
248 data.w[1] = (s16)data.h[3];
249 }
250
251 /* Store result to memory or update registers */
252 if (flags & ST) {
253 p = addr;
254
255 if (!user_write_access_begin(addr, nb))
256 return -EFAULT;
257
258 switch (nb) {
259 case 8:
260 unsafe_put_user(data.v[0], p++, Efault_write);
261 unsafe_put_user(data.v[1], p++, Efault_write);
262 unsafe_put_user(data.v[2], p++, Efault_write);
263 unsafe_put_user(data.v[3], p++, Efault_write);
264 fallthrough;
265 case 4:
266 unsafe_put_user(data.v[4], p++, Efault_write);
267 unsafe_put_user(data.v[5], p++, Efault_write);
268 fallthrough;
269 case 2:
270 unsafe_put_user(data.v[6], p++, Efault_write);
271 unsafe_put_user(data.v[7], p++, Efault_write);
272 }
273 user_write_access_end();
274 } else {
275 *evr = data.w[0];
276 regs->gpr[reg] = data.w[1];
277 }
278
279 return 1;
280
281Efault_read:
282 user_read_access_end();
283 return -EFAULT;
284
285Efault_write:
286 user_write_access_end();
287 return -EFAULT;
288}
289#endif /* CONFIG_SPE */
290
291/*
292 * Called on alignment exception. Attempts to fixup
293 *
294 * Return 1 on success
295 * Return 0 if unable to handle the interrupt
296 * Return -EFAULT if data address is bad
297 * Other negative return values indicate that the instruction can't
298 * be emulated, and the process should be given a SIGBUS.
299 */
300
301int fix_alignment(struct pt_regs *regs)
302{
303 ppc_inst_t instr;
304 struct instruction_op op;
305 int r, type;
306
307 if (is_kernel_addr(regs->nip))
308 r = copy_inst_from_kernel_nofault(&instr, (void *)regs->nip);
309 else
310 r = __get_user_instr(instr, (void __user *)regs->nip);
311
312 if (unlikely(r))
313 return -EFAULT;
314 if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE)) {
315 /* We don't handle PPC little-endian any more... */
316 if (cpu_has_feature(CPU_FTR_PPC_LE))
317 return -EIO;
318 instr = ppc_inst_swab(instr);
319 }
320
321#ifdef CONFIG_SPE
322 if (ppc_inst_primary_opcode(instr) == 0x4) {
323 int reg = (ppc_inst_val(instr) >> 21) & 0x1f;
324 PPC_WARN_ALIGNMENT(spe, regs);
325 return emulate_spe(regs, reg, instr);
326 }
327#endif
328
329
330 /*
331 * ISA 3.0 (such as P9) copy, copy_first, paste and paste_last alignment
332 * check.
333 *
334 * Send a SIGBUS to the process that caused the fault.
335 *
336 * We do not emulate these because paste may contain additional metadata
337 * when pasting to a co-processor. Furthermore, paste_last is the
338 * synchronisation point for preceding copy/paste sequences.
339 */
340 if ((ppc_inst_val(instr) & 0xfc0006fe) == (PPC_INST_COPY & 0xfc0006fe))
341 return -EIO;
342
343 r = analyse_instr(&op, regs, instr);
344 if (r < 0)
345 return -EINVAL;
346
347 type = GETTYPE(op.type);
348 if (!OP_IS_LOAD_STORE(type)) {
349 if (op.type != CACHEOP + DCBZ)
350 return -EINVAL;
351 PPC_WARN_ALIGNMENT(dcbz, regs);
352 WARN_ON_ONCE(!user_mode(regs));
353 r = emulate_dcbz(op.ea, regs);
354 } else {
355 if (type == LARX || type == STCX)
356 return -EIO;
357 PPC_WARN_ALIGNMENT(unaligned, regs);
358 r = emulate_loadstore(regs, &op);
359 }
360
361 if (!r)
362 return 1;
363 return r;
364}
1/* align.c - handle alignment exceptions for the Power PC.
2 *
3 * Copyright (c) 1996 Paul Mackerras <paulus@cs.anu.edu.au>
4 * Copyright (c) 1998-1999 TiVo, Inc.
5 * PowerPC 403GCX modifications.
6 * Copyright (c) 1999 Grant Erickson <grant@lcse.umn.edu>
7 * PowerPC 403GCX/405GP modifications.
8 * Copyright (c) 2001-2002 PPC64 team, IBM Corp
9 * 64-bit and Power4 support
10 * Copyright (c) 2005 Benjamin Herrenschmidt, IBM Corp
11 * <benh@kernel.crashing.org>
12 * Merge ppc32 and ppc64 implementations
13 *
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
18 */
19
20#include <linux/kernel.h>
21#include <linux/mm.h>
22#include <asm/processor.h>
23#include <asm/uaccess.h>
24#include <asm/cache.h>
25#include <asm/cputable.h>
26#include <asm/emulated_ops.h>
27#include <asm/switch_to.h>
28#include <asm/disassemble.h>
29
30struct aligninfo {
31 unsigned char len;
32 unsigned char flags;
33};
34
35
36#define INVALID { 0, 0 }
37
38/* Bits in the flags field */
39#define LD 0 /* load */
40#define ST 1 /* store */
41#define SE 2 /* sign-extend value, or FP ld/st as word */
42#define F 4 /* to/from fp regs */
43#define U 8 /* update index register */
44#define M 0x10 /* multiple load/store */
45#define SW 0x20 /* byte swap */
46#define S 0x40 /* single-precision fp or... */
47#define SX 0x40 /* ... byte count in XER */
48#define HARD 0x80 /* string, stwcx. */
49#define E4 0x40 /* SPE endianness is word */
50#define E8 0x80 /* SPE endianness is double word */
51#define SPLT 0x80 /* VSX SPLAT load */
52
53/* DSISR bits reported for a DCBZ instruction: */
54#define DCBZ 0x5f /* 8xx/82xx dcbz faults when cache not enabled */
55
56/*
57 * The PowerPC stores certain bits of the instruction that caused the
58 * alignment exception in the DSISR register. This array maps those
59 * bits to information about the operand length and what the
60 * instruction would do.
61 */
62static struct aligninfo aligninfo[128] = {
63 { 4, LD }, /* 00 0 0000: lwz / lwarx */
64 INVALID, /* 00 0 0001 */
65 { 4, ST }, /* 00 0 0010: stw */
66 INVALID, /* 00 0 0011 */
67 { 2, LD }, /* 00 0 0100: lhz */
68 { 2, LD+SE }, /* 00 0 0101: lha */
69 { 2, ST }, /* 00 0 0110: sth */
70 { 4, LD+M }, /* 00 0 0111: lmw */
71 { 4, LD+F+S }, /* 00 0 1000: lfs */
72 { 8, LD+F }, /* 00 0 1001: lfd */
73 { 4, ST+F+S }, /* 00 0 1010: stfs */
74 { 8, ST+F }, /* 00 0 1011: stfd */
75 { 16, LD }, /* 00 0 1100: lq */
76 { 8, LD }, /* 00 0 1101: ld/ldu/lwa */
77 INVALID, /* 00 0 1110 */
78 { 8, ST }, /* 00 0 1111: std/stdu */
79 { 4, LD+U }, /* 00 1 0000: lwzu */
80 INVALID, /* 00 1 0001 */
81 { 4, ST+U }, /* 00 1 0010: stwu */
82 INVALID, /* 00 1 0011 */
83 { 2, LD+U }, /* 00 1 0100: lhzu */
84 { 2, LD+SE+U }, /* 00 1 0101: lhau */
85 { 2, ST+U }, /* 00 1 0110: sthu */
86 { 4, ST+M }, /* 00 1 0111: stmw */
87 { 4, LD+F+S+U }, /* 00 1 1000: lfsu */
88 { 8, LD+F+U }, /* 00 1 1001: lfdu */
89 { 4, ST+F+S+U }, /* 00 1 1010: stfsu */
90 { 8, ST+F+U }, /* 00 1 1011: stfdu */
91 { 16, LD+F }, /* 00 1 1100: lfdp */
92 INVALID, /* 00 1 1101 */
93 { 16, ST+F }, /* 00 1 1110: stfdp */
94 INVALID, /* 00 1 1111 */
95 { 8, LD }, /* 01 0 0000: ldx */
96 INVALID, /* 01 0 0001 */
97 { 8, ST }, /* 01 0 0010: stdx */
98 INVALID, /* 01 0 0011 */
99 INVALID, /* 01 0 0100 */
100 { 4, LD+SE }, /* 01 0 0101: lwax */
101 INVALID, /* 01 0 0110 */
102 INVALID, /* 01 0 0111 */
103 { 4, LD+M+HARD+SX }, /* 01 0 1000: lswx */
104 { 4, LD+M+HARD }, /* 01 0 1001: lswi */
105 { 4, ST+M+HARD+SX }, /* 01 0 1010: stswx */
106 { 4, ST+M+HARD }, /* 01 0 1011: stswi */
107 INVALID, /* 01 0 1100 */
108 { 8, LD+U }, /* 01 0 1101: ldu */
109 INVALID, /* 01 0 1110 */
110 { 8, ST+U }, /* 01 0 1111: stdu */
111 { 8, LD+U }, /* 01 1 0000: ldux */
112 INVALID, /* 01 1 0001 */
113 { 8, ST+U }, /* 01 1 0010: stdux */
114 INVALID, /* 01 1 0011 */
115 INVALID, /* 01 1 0100 */
116 { 4, LD+SE+U }, /* 01 1 0101: lwaux */
117 INVALID, /* 01 1 0110 */
118 INVALID, /* 01 1 0111 */
119 INVALID, /* 01 1 1000 */
120 INVALID, /* 01 1 1001 */
121 INVALID, /* 01 1 1010 */
122 INVALID, /* 01 1 1011 */
123 INVALID, /* 01 1 1100 */
124 INVALID, /* 01 1 1101 */
125 INVALID, /* 01 1 1110 */
126 INVALID, /* 01 1 1111 */
127 INVALID, /* 10 0 0000 */
128 INVALID, /* 10 0 0001 */
129 INVALID, /* 10 0 0010: stwcx. */
130 INVALID, /* 10 0 0011 */
131 INVALID, /* 10 0 0100 */
132 INVALID, /* 10 0 0101 */
133 INVALID, /* 10 0 0110 */
134 INVALID, /* 10 0 0111 */
135 { 4, LD+SW }, /* 10 0 1000: lwbrx */
136 INVALID, /* 10 0 1001 */
137 { 4, ST+SW }, /* 10 0 1010: stwbrx */
138 INVALID, /* 10 0 1011 */
139 { 2, LD+SW }, /* 10 0 1100: lhbrx */
140 { 4, LD+SE }, /* 10 0 1101 lwa */
141 { 2, ST+SW }, /* 10 0 1110: sthbrx */
142 { 16, ST }, /* 10 0 1111: stq */
143 INVALID, /* 10 1 0000 */
144 INVALID, /* 10 1 0001 */
145 INVALID, /* 10 1 0010 */
146 INVALID, /* 10 1 0011 */
147 INVALID, /* 10 1 0100 */
148 INVALID, /* 10 1 0101 */
149 INVALID, /* 10 1 0110 */
150 INVALID, /* 10 1 0111 */
151 INVALID, /* 10 1 1000 */
152 INVALID, /* 10 1 1001 */
153 INVALID, /* 10 1 1010 */
154 INVALID, /* 10 1 1011 */
155 INVALID, /* 10 1 1100 */
156 INVALID, /* 10 1 1101 */
157 INVALID, /* 10 1 1110 */
158 { 0, ST+HARD }, /* 10 1 1111: dcbz */
159 { 4, LD }, /* 11 0 0000: lwzx */
160 INVALID, /* 11 0 0001 */
161 { 4, ST }, /* 11 0 0010: stwx */
162 INVALID, /* 11 0 0011 */
163 { 2, LD }, /* 11 0 0100: lhzx */
164 { 2, LD+SE }, /* 11 0 0101: lhax */
165 { 2, ST }, /* 11 0 0110: sthx */
166 INVALID, /* 11 0 0111 */
167 { 4, LD+F+S }, /* 11 0 1000: lfsx */
168 { 8, LD+F }, /* 11 0 1001: lfdx */
169 { 4, ST+F+S }, /* 11 0 1010: stfsx */
170 { 8, ST+F }, /* 11 0 1011: stfdx */
171 { 16, LD+F }, /* 11 0 1100: lfdpx */
172 { 4, LD+F+SE }, /* 11 0 1101: lfiwax */
173 { 16, ST+F }, /* 11 0 1110: stfdpx */
174 { 4, ST+F }, /* 11 0 1111: stfiwx */
175 { 4, LD+U }, /* 11 1 0000: lwzux */
176 INVALID, /* 11 1 0001 */
177 { 4, ST+U }, /* 11 1 0010: stwux */
178 INVALID, /* 11 1 0011 */
179 { 2, LD+U }, /* 11 1 0100: lhzux */
180 { 2, LD+SE+U }, /* 11 1 0101: lhaux */
181 { 2, ST+U }, /* 11 1 0110: sthux */
182 INVALID, /* 11 1 0111 */
183 { 4, LD+F+S+U }, /* 11 1 1000: lfsux */
184 { 8, LD+F+U }, /* 11 1 1001: lfdux */
185 { 4, ST+F+S+U }, /* 11 1 1010: stfsux */
186 { 8, ST+F+U }, /* 11 1 1011: stfdux */
187 INVALID, /* 11 1 1100 */
188 { 4, LD+F }, /* 11 1 1101: lfiwzx */
189 INVALID, /* 11 1 1110 */
190 INVALID, /* 11 1 1111 */
191};
192
193/*
194 * The dcbz (data cache block zero) instruction
195 * gives an alignment fault if used on non-cacheable
196 * memory. We handle the fault mainly for the
197 * case when we are running with the cache disabled
198 * for debugging.
199 */
200static int emulate_dcbz(struct pt_regs *regs, unsigned char __user *addr)
201{
202 long __user *p;
203 int i, size;
204
205#ifdef __powerpc64__
206 size = ppc64_caches.dline_size;
207#else
208 size = L1_CACHE_BYTES;
209#endif
210 p = (long __user *) (regs->dar & -size);
211 if (user_mode(regs) && !access_ok(VERIFY_WRITE, p, size))
212 return -EFAULT;
213 for (i = 0; i < size / sizeof(long); ++i)
214 if (__put_user_inatomic(0, p+i))
215 return -EFAULT;
216 return 1;
217}
218
219/*
220 * Emulate load & store multiple instructions
221 * On 64-bit machines, these instructions only affect/use the
222 * bottom 4 bytes of each register, and the loads clear the
223 * top 4 bytes of the affected register.
224 */
225#ifdef __BIG_ENDIAN__
226#ifdef CONFIG_PPC64
227#define REG_BYTE(rp, i) *((u8 *)((rp) + ((i) >> 2)) + ((i) & 3) + 4)
228#else
229#define REG_BYTE(rp, i) *((u8 *)(rp) + (i))
230#endif
231#endif
232
233#ifdef __LITTLE_ENDIAN__
234#define REG_BYTE(rp, i) (*(((u8 *)((rp) + ((i)>>2)) + ((i)&3))))
235#endif
236
237#define SWIZ_PTR(p) ((unsigned char __user *)((p) ^ swiz))
238
239static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr,
240 unsigned int reg, unsigned int nb,
241 unsigned int flags, unsigned int instr,
242 unsigned long swiz)
243{
244 unsigned long *rptr;
245 unsigned int nb0, i, bswiz;
246 unsigned long p;
247
248 /*
249 * We do not try to emulate 8 bytes multiple as they aren't really
250 * available in our operating environments and we don't try to
251 * emulate multiples operations in kernel land as they should never
252 * be used/generated there at least not on unaligned boundaries
253 */
254 if (unlikely((nb > 4) || !user_mode(regs)))
255 return 0;
256
257 /* lmw, stmw, lswi/x, stswi/x */
258 nb0 = 0;
259 if (flags & HARD) {
260 if (flags & SX) {
261 nb = regs->xer & 127;
262 if (nb == 0)
263 return 1;
264 } else {
265 unsigned long pc = regs->nip ^ (swiz & 4);
266
267 if (__get_user_inatomic(instr,
268 (unsigned int __user *)pc))
269 return -EFAULT;
270 if (swiz == 0 && (flags & SW))
271 instr = cpu_to_le32(instr);
272 nb = (instr >> 11) & 0x1f;
273 if (nb == 0)
274 nb = 32;
275 }
276 if (nb + reg * 4 > 128) {
277 nb0 = nb + reg * 4 - 128;
278 nb = 128 - reg * 4;
279 }
280#ifdef __LITTLE_ENDIAN__
281 /*
282 * String instructions are endian neutral but the code
283 * below is not. Force byte swapping on so that the
284 * effects of swizzling are undone in the load/store
285 * loops below.
286 */
287 flags ^= SW;
288#endif
289 } else {
290 /* lwm, stmw */
291 nb = (32 - reg) * 4;
292 }
293
294 if (!access_ok((flags & ST ? VERIFY_WRITE: VERIFY_READ), addr, nb+nb0))
295 return -EFAULT; /* bad address */
296
297 rptr = ®s->gpr[reg];
298 p = (unsigned long) addr;
299 bswiz = (flags & SW)? 3: 0;
300
301 if (!(flags & ST)) {
302 /*
303 * This zeroes the top 4 bytes of the affected registers
304 * in 64-bit mode, and also zeroes out any remaining
305 * bytes of the last register for lsw*.
306 */
307 memset(rptr, 0, ((nb + 3) / 4) * sizeof(unsigned long));
308 if (nb0 > 0)
309 memset(®s->gpr[0], 0,
310 ((nb0 + 3) / 4) * sizeof(unsigned long));
311
312 for (i = 0; i < nb; ++i, ++p)
313 if (__get_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
314 SWIZ_PTR(p)))
315 return -EFAULT;
316 if (nb0 > 0) {
317 rptr = ®s->gpr[0];
318 addr += nb;
319 for (i = 0; i < nb0; ++i, ++p)
320 if (__get_user_inatomic(REG_BYTE(rptr,
321 i ^ bswiz),
322 SWIZ_PTR(p)))
323 return -EFAULT;
324 }
325
326 } else {
327 for (i = 0; i < nb; ++i, ++p)
328 if (__put_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
329 SWIZ_PTR(p)))
330 return -EFAULT;
331 if (nb0 > 0) {
332 rptr = ®s->gpr[0];
333 addr += nb;
334 for (i = 0; i < nb0; ++i, ++p)
335 if (__put_user_inatomic(REG_BYTE(rptr,
336 i ^ bswiz),
337 SWIZ_PTR(p)))
338 return -EFAULT;
339 }
340 }
341 return 1;
342}
343
344/*
345 * Emulate floating-point pair loads and stores.
346 * Only POWER6 has these instructions, and it does true little-endian,
347 * so we don't need the address swizzling.
348 */
349static int emulate_fp_pair(unsigned char __user *addr, unsigned int reg,
350 unsigned int flags)
351{
352 char *ptr0 = (char *) ¤t->thread.TS_FPR(reg);
353 char *ptr1 = (char *) ¤t->thread.TS_FPR(reg+1);
354 int i, ret, sw = 0;
355
356 if (reg & 1)
357 return 0; /* invalid form: FRS/FRT must be even */
358 if (flags & SW)
359 sw = 7;
360 ret = 0;
361 for (i = 0; i < 8; ++i) {
362 if (!(flags & ST)) {
363 ret |= __get_user(ptr0[i^sw], addr + i);
364 ret |= __get_user(ptr1[i^sw], addr + i + 8);
365 } else {
366 ret |= __put_user(ptr0[i^sw], addr + i);
367 ret |= __put_user(ptr1[i^sw], addr + i + 8);
368 }
369 }
370 if (ret)
371 return -EFAULT;
372 return 1; /* exception handled and fixed up */
373}
374
375#ifdef CONFIG_PPC64
376static int emulate_lq_stq(struct pt_regs *regs, unsigned char __user *addr,
377 unsigned int reg, unsigned int flags)
378{
379 char *ptr0 = (char *)®s->gpr[reg];
380 char *ptr1 = (char *)®s->gpr[reg+1];
381 int i, ret, sw = 0;
382
383 if (reg & 1)
384 return 0; /* invalid form: GPR must be even */
385 if (flags & SW)
386 sw = 7;
387 ret = 0;
388 for (i = 0; i < 8; ++i) {
389 if (!(flags & ST)) {
390 ret |= __get_user(ptr0[i^sw], addr + i);
391 ret |= __get_user(ptr1[i^sw], addr + i + 8);
392 } else {
393 ret |= __put_user(ptr0[i^sw], addr + i);
394 ret |= __put_user(ptr1[i^sw], addr + i + 8);
395 }
396 }
397 if (ret)
398 return -EFAULT;
399 return 1; /* exception handled and fixed up */
400}
401#endif /* CONFIG_PPC64 */
402
403#ifdef CONFIG_SPE
404
405static struct aligninfo spe_aligninfo[32] = {
406 { 8, LD+E8 }, /* 0 00 00: evldd[x] */
407 { 8, LD+E4 }, /* 0 00 01: evldw[x] */
408 { 8, LD }, /* 0 00 10: evldh[x] */
409 INVALID, /* 0 00 11 */
410 { 2, LD }, /* 0 01 00: evlhhesplat[x] */
411 INVALID, /* 0 01 01 */
412 { 2, LD }, /* 0 01 10: evlhhousplat[x] */
413 { 2, LD+SE }, /* 0 01 11: evlhhossplat[x] */
414 { 4, LD }, /* 0 10 00: evlwhe[x] */
415 INVALID, /* 0 10 01 */
416 { 4, LD }, /* 0 10 10: evlwhou[x] */
417 { 4, LD+SE }, /* 0 10 11: evlwhos[x] */
418 { 4, LD+E4 }, /* 0 11 00: evlwwsplat[x] */
419 INVALID, /* 0 11 01 */
420 { 4, LD }, /* 0 11 10: evlwhsplat[x] */
421 INVALID, /* 0 11 11 */
422
423 { 8, ST+E8 }, /* 1 00 00: evstdd[x] */
424 { 8, ST+E4 }, /* 1 00 01: evstdw[x] */
425 { 8, ST }, /* 1 00 10: evstdh[x] */
426 INVALID, /* 1 00 11 */
427 INVALID, /* 1 01 00 */
428 INVALID, /* 1 01 01 */
429 INVALID, /* 1 01 10 */
430 INVALID, /* 1 01 11 */
431 { 4, ST }, /* 1 10 00: evstwhe[x] */
432 INVALID, /* 1 10 01 */
433 { 4, ST }, /* 1 10 10: evstwho[x] */
434 INVALID, /* 1 10 11 */
435 { 4, ST+E4 }, /* 1 11 00: evstwwe[x] */
436 INVALID, /* 1 11 01 */
437 { 4, ST+E4 }, /* 1 11 10: evstwwo[x] */
438 INVALID, /* 1 11 11 */
439};
440
441#define EVLDD 0x00
442#define EVLDW 0x01
443#define EVLDH 0x02
444#define EVLHHESPLAT 0x04
445#define EVLHHOUSPLAT 0x06
446#define EVLHHOSSPLAT 0x07
447#define EVLWHE 0x08
448#define EVLWHOU 0x0A
449#define EVLWHOS 0x0B
450#define EVLWWSPLAT 0x0C
451#define EVLWHSPLAT 0x0E
452#define EVSTDD 0x10
453#define EVSTDW 0x11
454#define EVSTDH 0x12
455#define EVSTWHE 0x18
456#define EVSTWHO 0x1A
457#define EVSTWWE 0x1C
458#define EVSTWWO 0x1E
459
460/*
461 * Emulate SPE loads and stores.
462 * Only Book-E has these instructions, and it does true little-endian,
463 * so we don't need the address swizzling.
464 */
465static int emulate_spe(struct pt_regs *regs, unsigned int reg,
466 unsigned int instr)
467{
468 int ret;
469 union {
470 u64 ll;
471 u32 w[2];
472 u16 h[4];
473 u8 v[8];
474 } data, temp;
475 unsigned char __user *p, *addr;
476 unsigned long *evr = ¤t->thread.evr[reg];
477 unsigned int nb, flags;
478
479 instr = (instr >> 1) & 0x1f;
480
481 /* DAR has the operand effective address */
482 addr = (unsigned char __user *)regs->dar;
483
484 nb = spe_aligninfo[instr].len;
485 flags = spe_aligninfo[instr].flags;
486
487 /* Verify the address of the operand */
488 if (unlikely(user_mode(regs) &&
489 !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
490 addr, nb)))
491 return -EFAULT;
492
493 /* userland only */
494 if (unlikely(!user_mode(regs)))
495 return 0;
496
497 flush_spe_to_thread(current);
498
499 /* If we are loading, get the data from user space, else
500 * get it from register values
501 */
502 if (flags & ST) {
503 data.ll = 0;
504 switch (instr) {
505 case EVSTDD:
506 case EVSTDW:
507 case EVSTDH:
508 data.w[0] = *evr;
509 data.w[1] = regs->gpr[reg];
510 break;
511 case EVSTWHE:
512 data.h[2] = *evr >> 16;
513 data.h[3] = regs->gpr[reg] >> 16;
514 break;
515 case EVSTWHO:
516 data.h[2] = *evr & 0xffff;
517 data.h[3] = regs->gpr[reg] & 0xffff;
518 break;
519 case EVSTWWE:
520 data.w[1] = *evr;
521 break;
522 case EVSTWWO:
523 data.w[1] = regs->gpr[reg];
524 break;
525 default:
526 return -EINVAL;
527 }
528 } else {
529 temp.ll = data.ll = 0;
530 ret = 0;
531 p = addr;
532
533 switch (nb) {
534 case 8:
535 ret |= __get_user_inatomic(temp.v[0], p++);
536 ret |= __get_user_inatomic(temp.v[1], p++);
537 ret |= __get_user_inatomic(temp.v[2], p++);
538 ret |= __get_user_inatomic(temp.v[3], p++);
539 case 4:
540 ret |= __get_user_inatomic(temp.v[4], p++);
541 ret |= __get_user_inatomic(temp.v[5], p++);
542 case 2:
543 ret |= __get_user_inatomic(temp.v[6], p++);
544 ret |= __get_user_inatomic(temp.v[7], p++);
545 if (unlikely(ret))
546 return -EFAULT;
547 }
548
549 switch (instr) {
550 case EVLDD:
551 case EVLDW:
552 case EVLDH:
553 data.ll = temp.ll;
554 break;
555 case EVLHHESPLAT:
556 data.h[0] = temp.h[3];
557 data.h[2] = temp.h[3];
558 break;
559 case EVLHHOUSPLAT:
560 case EVLHHOSSPLAT:
561 data.h[1] = temp.h[3];
562 data.h[3] = temp.h[3];
563 break;
564 case EVLWHE:
565 data.h[0] = temp.h[2];
566 data.h[2] = temp.h[3];
567 break;
568 case EVLWHOU:
569 case EVLWHOS:
570 data.h[1] = temp.h[2];
571 data.h[3] = temp.h[3];
572 break;
573 case EVLWWSPLAT:
574 data.w[0] = temp.w[1];
575 data.w[1] = temp.w[1];
576 break;
577 case EVLWHSPLAT:
578 data.h[0] = temp.h[2];
579 data.h[1] = temp.h[2];
580 data.h[2] = temp.h[3];
581 data.h[3] = temp.h[3];
582 break;
583 default:
584 return -EINVAL;
585 }
586 }
587
588 if (flags & SW) {
589 switch (flags & 0xf0) {
590 case E8:
591 data.ll = swab64(data.ll);
592 break;
593 case E4:
594 data.w[0] = swab32(data.w[0]);
595 data.w[1] = swab32(data.w[1]);
596 break;
597 /* Its half word endian */
598 default:
599 data.h[0] = swab16(data.h[0]);
600 data.h[1] = swab16(data.h[1]);
601 data.h[2] = swab16(data.h[2]);
602 data.h[3] = swab16(data.h[3]);
603 break;
604 }
605 }
606
607 if (flags & SE) {
608 data.w[0] = (s16)data.h[1];
609 data.w[1] = (s16)data.h[3];
610 }
611
612 /* Store result to memory or update registers */
613 if (flags & ST) {
614 ret = 0;
615 p = addr;
616 switch (nb) {
617 case 8:
618 ret |= __put_user_inatomic(data.v[0], p++);
619 ret |= __put_user_inatomic(data.v[1], p++);
620 ret |= __put_user_inatomic(data.v[2], p++);
621 ret |= __put_user_inatomic(data.v[3], p++);
622 case 4:
623 ret |= __put_user_inatomic(data.v[4], p++);
624 ret |= __put_user_inatomic(data.v[5], p++);
625 case 2:
626 ret |= __put_user_inatomic(data.v[6], p++);
627 ret |= __put_user_inatomic(data.v[7], p++);
628 }
629 if (unlikely(ret))
630 return -EFAULT;
631 } else {
632 *evr = data.w[0];
633 regs->gpr[reg] = data.w[1];
634 }
635
636 return 1;
637}
638#endif /* CONFIG_SPE */
639
640#ifdef CONFIG_VSX
641/*
642 * Emulate VSX instructions...
643 */
644static int emulate_vsx(unsigned char __user *addr, unsigned int reg,
645 unsigned int areg, struct pt_regs *regs,
646 unsigned int flags, unsigned int length,
647 unsigned int elsize)
648{
649 char *ptr;
650 unsigned long *lptr;
651 int ret = 0;
652 int sw = 0;
653 int i, j;
654
655 /* userland only */
656 if (unlikely(!user_mode(regs)))
657 return 0;
658
659 flush_vsx_to_thread(current);
660
661 if (reg < 32)
662 ptr = (char *) ¤t->thread.fp_state.fpr[reg][0];
663 else
664 ptr = (char *) ¤t->thread.vr_state.vr[reg - 32];
665
666 lptr = (unsigned long *) ptr;
667
668#ifdef __LITTLE_ENDIAN__
669 if (flags & SW) {
670 elsize = length;
671 sw = length-1;
672 } else {
673 /*
674 * The elements are BE ordered, even in LE mode, so process
675 * them in reverse order.
676 */
677 addr += length - elsize;
678
679 /* 8 byte memory accesses go in the top 8 bytes of the VR */
680 if (length == 8)
681 ptr += 8;
682 }
683#else
684 if (flags & SW)
685 sw = elsize-1;
686#endif
687
688 for (j = 0; j < length; j += elsize) {
689 for (i = 0; i < elsize; ++i) {
690 if (flags & ST)
691 ret |= __put_user(ptr[i^sw], addr + i);
692 else
693 ret |= __get_user(ptr[i^sw], addr + i);
694 }
695 ptr += elsize;
696#ifdef __LITTLE_ENDIAN__
697 addr -= elsize;
698#else
699 addr += elsize;
700#endif
701 }
702
703#ifdef __BIG_ENDIAN__
704#define VSX_HI 0
705#define VSX_LO 1
706#else
707#define VSX_HI 1
708#define VSX_LO 0
709#endif
710
711 if (!ret) {
712 if (flags & U)
713 regs->gpr[areg] = regs->dar;
714
715 /* Splat load copies the same data to top and bottom 8 bytes */
716 if (flags & SPLT)
717 lptr[VSX_LO] = lptr[VSX_HI];
718 /* For 8 byte loads, zero the low 8 bytes */
719 else if (!(flags & ST) && (8 == length))
720 lptr[VSX_LO] = 0;
721 } else
722 return -EFAULT;
723
724 return 1;
725}
726#endif
727
728/*
729 * Called on alignment exception. Attempts to fixup
730 *
731 * Return 1 on success
732 * Return 0 if unable to handle the interrupt
733 * Return -EFAULT if data address is bad
734 */
735
736int fix_alignment(struct pt_regs *regs)
737{
738 unsigned int instr, nb, flags, instruction = 0;
739 unsigned int reg, areg;
740 unsigned int dsisr;
741 unsigned char __user *addr;
742 unsigned long p, swiz;
743 int ret, i;
744 union data {
745 u64 ll;
746 double dd;
747 unsigned char v[8];
748 struct {
749#ifdef __LITTLE_ENDIAN__
750 int low32;
751 unsigned hi32;
752#else
753 unsigned hi32;
754 int low32;
755#endif
756 } x32;
757 struct {
758#ifdef __LITTLE_ENDIAN__
759 short low16;
760 unsigned char hi48[6];
761#else
762 unsigned char hi48[6];
763 short low16;
764#endif
765 } x16;
766 } data;
767
768 /*
769 * We require a complete register set, if not, then our assembly
770 * is broken
771 */
772 CHECK_FULL_REGS(regs);
773
774 dsisr = regs->dsisr;
775
776 /* Some processors don't provide us with a DSISR we can use here,
777 * let's make one up from the instruction
778 */
779 if (cpu_has_feature(CPU_FTR_NODSISRALIGN)) {
780 unsigned long pc = regs->nip;
781
782 if (cpu_has_feature(CPU_FTR_PPC_LE) && (regs->msr & MSR_LE))
783 pc ^= 4;
784 if (unlikely(__get_user_inatomic(instr,
785 (unsigned int __user *)pc)))
786 return -EFAULT;
787 if (cpu_has_feature(CPU_FTR_REAL_LE) && (regs->msr & MSR_LE))
788 instr = cpu_to_le32(instr);
789 dsisr = make_dsisr(instr);
790 instruction = instr;
791 }
792
793 /* extract the operation and registers from the dsisr */
794 reg = (dsisr >> 5) & 0x1f; /* source/dest register */
795 areg = dsisr & 0x1f; /* register to update */
796
797#ifdef CONFIG_SPE
798 if ((instr >> 26) == 0x4) {
799 PPC_WARN_ALIGNMENT(spe, regs);
800 return emulate_spe(regs, reg, instr);
801 }
802#endif
803
804 instr = (dsisr >> 10) & 0x7f;
805 instr |= (dsisr >> 13) & 0x60;
806
807 /* Lookup the operation in our table */
808 nb = aligninfo[instr].len;
809 flags = aligninfo[instr].flags;
810
811 /* ldbrx/stdbrx overlap lfs/stfs in the DSISR unfortunately */
812 if (IS_XFORM(instruction) && ((instruction >> 1) & 0x3ff) == 532) {
813 nb = 8;
814 flags = LD+SW;
815 } else if (IS_XFORM(instruction) &&
816 ((instruction >> 1) & 0x3ff) == 660) {
817 nb = 8;
818 flags = ST+SW;
819 }
820
821 /* Byteswap little endian loads and stores */
822 swiz = 0;
823 if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE)) {
824 flags ^= SW;
825#ifdef __BIG_ENDIAN__
826 /*
827 * So-called "PowerPC little endian" mode works by
828 * swizzling addresses rather than by actually doing
829 * any byte-swapping. To emulate this, we XOR each
830 * byte address with 7. We also byte-swap, because
831 * the processor's address swizzling depends on the
832 * operand size (it xors the address with 7 for bytes,
833 * 6 for halfwords, 4 for words, 0 for doublewords) but
834 * we will xor with 7 and load/store each byte separately.
835 */
836 if (cpu_has_feature(CPU_FTR_PPC_LE))
837 swiz = 7;
838#endif
839 }
840
841 /* DAR has the operand effective address */
842 addr = (unsigned char __user *)regs->dar;
843
844#ifdef CONFIG_VSX
845 if ((instruction & 0xfc00003e) == 0x7c000018) {
846 unsigned int elsize;
847
848 /* Additional register addressing bit (64 VSX vs 32 FPR/GPR) */
849 reg |= (instruction & 0x1) << 5;
850 /* Simple inline decoder instead of a table */
851 /* VSX has only 8 and 16 byte memory accesses */
852 nb = 8;
853 if (instruction & 0x200)
854 nb = 16;
855
856 /* Vector stores in little-endian mode swap individual
857 elements, so process them separately */
858 elsize = 4;
859 if (instruction & 0x80)
860 elsize = 8;
861
862 flags = 0;
863 if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE))
864 flags |= SW;
865 if (instruction & 0x100)
866 flags |= ST;
867 if (instruction & 0x040)
868 flags |= U;
869 /* splat load needs a special decoder */
870 if ((instruction & 0x400) == 0){
871 flags |= SPLT;
872 nb = 8;
873 }
874 PPC_WARN_ALIGNMENT(vsx, regs);
875 return emulate_vsx(addr, reg, areg, regs, flags, nb, elsize);
876 }
877#endif
878 /* A size of 0 indicates an instruction we don't support, with
879 * the exception of DCBZ which is handled as a special case here
880 */
881 if (instr == DCBZ) {
882 PPC_WARN_ALIGNMENT(dcbz, regs);
883 return emulate_dcbz(regs, addr);
884 }
885 if (unlikely(nb == 0))
886 return 0;
887
888 /* Load/Store Multiple instructions are handled in their own
889 * function
890 */
891 if (flags & M) {
892 PPC_WARN_ALIGNMENT(multiple, regs);
893 return emulate_multiple(regs, addr, reg, nb,
894 flags, instr, swiz);
895 }
896
897 /* Verify the address of the operand */
898 if (unlikely(user_mode(regs) &&
899 !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
900 addr, nb)))
901 return -EFAULT;
902
903 /* Force the fprs into the save area so we can reference them */
904 if (flags & F) {
905 /* userland only */
906 if (unlikely(!user_mode(regs)))
907 return 0;
908 flush_fp_to_thread(current);
909 }
910
911 if (nb == 16) {
912 if (flags & F) {
913 /* Special case for 16-byte FP loads and stores */
914 PPC_WARN_ALIGNMENT(fp_pair, regs);
915 return emulate_fp_pair(addr, reg, flags);
916 } else {
917#ifdef CONFIG_PPC64
918 /* Special case for 16-byte loads and stores */
919 PPC_WARN_ALIGNMENT(lq_stq, regs);
920 return emulate_lq_stq(regs, addr, reg, flags);
921#else
922 return 0;
923#endif
924 }
925 }
926
927 PPC_WARN_ALIGNMENT(unaligned, regs);
928
929 /* If we are loading, get the data from user space, else
930 * get it from register values
931 */
932 if (!(flags & ST)) {
933 unsigned int start = 0;
934
935 switch (nb) {
936 case 4:
937 start = offsetof(union data, x32.low32);
938 break;
939 case 2:
940 start = offsetof(union data, x16.low16);
941 break;
942 }
943
944 data.ll = 0;
945 ret = 0;
946 p = (unsigned long)addr;
947
948 for (i = 0; i < nb; i++)
949 ret |= __get_user_inatomic(data.v[start + i],
950 SWIZ_PTR(p++));
951
952 if (unlikely(ret))
953 return -EFAULT;
954
955 } else if (flags & F) {
956 data.ll = current->thread.TS_FPR(reg);
957 if (flags & S) {
958 /* Single-precision FP store requires conversion... */
959#ifdef CONFIG_PPC_FPU
960 preempt_disable();
961 enable_kernel_fp();
962 cvt_df(&data.dd, (float *)&data.x32.low32);
963 disable_kernel_fp();
964 preempt_enable();
965#else
966 return 0;
967#endif
968 }
969 } else
970 data.ll = regs->gpr[reg];
971
972 if (flags & SW) {
973 switch (nb) {
974 case 8:
975 data.ll = swab64(data.ll);
976 break;
977 case 4:
978 data.x32.low32 = swab32(data.x32.low32);
979 break;
980 case 2:
981 data.x16.low16 = swab16(data.x16.low16);
982 break;
983 }
984 }
985
986 /* Perform other misc operations like sign extension
987 * or floating point single precision conversion
988 */
989 switch (flags & ~(U|SW)) {
990 case LD+SE: /* sign extending integer loads */
991 case LD+F+SE: /* sign extend for lfiwax */
992 if ( nb == 2 )
993 data.ll = data.x16.low16;
994 else /* nb must be 4 */
995 data.ll = data.x32.low32;
996 break;
997
998 /* Single-precision FP load requires conversion... */
999 case LD+F+S:
1000#ifdef CONFIG_PPC_FPU
1001 preempt_disable();
1002 enable_kernel_fp();
1003 cvt_fd((float *)&data.x32.low32, &data.dd);
1004 disable_kernel_fp();
1005 preempt_enable();
1006#else
1007 return 0;
1008#endif
1009 break;
1010 }
1011
1012 /* Store result to memory or update registers */
1013 if (flags & ST) {
1014 unsigned int start = 0;
1015
1016 switch (nb) {
1017 case 4:
1018 start = offsetof(union data, x32.low32);
1019 break;
1020 case 2:
1021 start = offsetof(union data, x16.low16);
1022 break;
1023 }
1024
1025 ret = 0;
1026 p = (unsigned long)addr;
1027
1028 for (i = 0; i < nb; i++)
1029 ret |= __put_user_inatomic(data.v[start + i],
1030 SWIZ_PTR(p++));
1031
1032 if (unlikely(ret))
1033 return -EFAULT;
1034 } else if (flags & F)
1035 current->thread.TS_FPR(reg) = data.ll;
1036 else
1037 regs->gpr[reg] = data.ll;
1038
1039 /* Update RA as needed */
1040 if (flags & U)
1041 regs->gpr[areg] = regs->dar;
1042
1043 return 1;
1044}