Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* align.c - handle alignment exceptions for the Power PC.
3 *
4 * Copyright (c) 1996 Paul Mackerras <paulus@cs.anu.edu.au>
5 * Copyright (c) 1998-1999 TiVo, Inc.
6 * PowerPC 403GCX modifications.
7 * Copyright (c) 1999 Grant Erickson <grant@lcse.umn.edu>
8 * PowerPC 403GCX/405GP modifications.
9 * Copyright (c) 2001-2002 PPC64 team, IBM Corp
10 * 64-bit and Power4 support
11 * Copyright (c) 2005 Benjamin Herrenschmidt, IBM Corp
12 * <benh@kernel.crashing.org>
13 * Merge ppc32 and ppc64 implementations
14 */
15
16#include <linux/kernel.h>
17#include <linux/mm.h>
18#include <asm/processor.h>
19#include <linux/uaccess.h>
20#include <asm/cache.h>
21#include <asm/cputable.h>
22#include <asm/emulated_ops.h>
23#include <asm/switch_to.h>
24#include <asm/disassemble.h>
25#include <asm/cpu_has_feature.h>
26#include <asm/sstep.h>
27#include <asm/inst.h>
28
29struct aligninfo {
30 unsigned char len;
31 unsigned char flags;
32};
33
34
35#define INVALID { 0, 0 }
36
37/* Bits in the flags field */
38#define LD 0 /* load */
39#define ST 1 /* store */
40#define SE 2 /* sign-extend value, or FP ld/st as word */
41#define SW 0x20 /* byte swap */
42#define E4 0x40 /* SPE endianness is word */
43#define E8 0x80 /* SPE endianness is double word */
44
45#ifdef CONFIG_SPE
46
47static struct aligninfo spe_aligninfo[32] = {
48 { 8, LD+E8 }, /* 0 00 00: evldd[x] */
49 { 8, LD+E4 }, /* 0 00 01: evldw[x] */
50 { 8, LD }, /* 0 00 10: evldh[x] */
51 INVALID, /* 0 00 11 */
52 { 2, LD }, /* 0 01 00: evlhhesplat[x] */
53 INVALID, /* 0 01 01 */
54 { 2, LD }, /* 0 01 10: evlhhousplat[x] */
55 { 2, LD+SE }, /* 0 01 11: evlhhossplat[x] */
56 { 4, LD }, /* 0 10 00: evlwhe[x] */
57 INVALID, /* 0 10 01 */
58 { 4, LD }, /* 0 10 10: evlwhou[x] */
59 { 4, LD+SE }, /* 0 10 11: evlwhos[x] */
60 { 4, LD+E4 }, /* 0 11 00: evlwwsplat[x] */
61 INVALID, /* 0 11 01 */
62 { 4, LD }, /* 0 11 10: evlwhsplat[x] */
63 INVALID, /* 0 11 11 */
64
65 { 8, ST+E8 }, /* 1 00 00: evstdd[x] */
66 { 8, ST+E4 }, /* 1 00 01: evstdw[x] */
67 { 8, ST }, /* 1 00 10: evstdh[x] */
68 INVALID, /* 1 00 11 */
69 INVALID, /* 1 01 00 */
70 INVALID, /* 1 01 01 */
71 INVALID, /* 1 01 10 */
72 INVALID, /* 1 01 11 */
73 { 4, ST }, /* 1 10 00: evstwhe[x] */
74 INVALID, /* 1 10 01 */
75 { 4, ST }, /* 1 10 10: evstwho[x] */
76 INVALID, /* 1 10 11 */
77 { 4, ST+E4 }, /* 1 11 00: evstwwe[x] */
78 INVALID, /* 1 11 01 */
79 { 4, ST+E4 }, /* 1 11 10: evstwwo[x] */
80 INVALID, /* 1 11 11 */
81};
82
83#define EVLDD 0x00
84#define EVLDW 0x01
85#define EVLDH 0x02
86#define EVLHHESPLAT 0x04
87#define EVLHHOUSPLAT 0x06
88#define EVLHHOSSPLAT 0x07
89#define EVLWHE 0x08
90#define EVLWHOU 0x0A
91#define EVLWHOS 0x0B
92#define EVLWWSPLAT 0x0C
93#define EVLWHSPLAT 0x0E
94#define EVSTDD 0x10
95#define EVSTDW 0x11
96#define EVSTDH 0x12
97#define EVSTWHE 0x18
98#define EVSTWHO 0x1A
99#define EVSTWWE 0x1C
100#define EVSTWWO 0x1E
101
102/*
103 * Emulate SPE loads and stores.
104 * Only Book-E has these instructions, and it does true little-endian,
105 * so we don't need the address swizzling.
106 */
107static int emulate_spe(struct pt_regs *regs, unsigned int reg,
108 ppc_inst_t ppc_instr)
109{
110 union {
111 u64 ll;
112 u32 w[2];
113 u16 h[4];
114 u8 v[8];
115 } data, temp;
116 unsigned char __user *p, *addr;
117 unsigned long *evr = ¤t->thread.evr[reg];
118 unsigned int nb, flags, instr;
119
120 instr = ppc_inst_val(ppc_instr);
121 instr = (instr >> 1) & 0x1f;
122
123 /* DAR has the operand effective address */
124 addr = (unsigned char __user *)regs->dar;
125
126 nb = spe_aligninfo[instr].len;
127 flags = spe_aligninfo[instr].flags;
128
129 /* userland only */
130 if (unlikely(!user_mode(regs)))
131 return 0;
132
133 flush_spe_to_thread(current);
134
135 /* If we are loading, get the data from user space, else
136 * get it from register values
137 */
138 if (flags & ST) {
139 data.ll = 0;
140 switch (instr) {
141 case EVSTDD:
142 case EVSTDW:
143 case EVSTDH:
144 data.w[0] = *evr;
145 data.w[1] = regs->gpr[reg];
146 break;
147 case EVSTWHE:
148 data.h[2] = *evr >> 16;
149 data.h[3] = regs->gpr[reg] >> 16;
150 break;
151 case EVSTWHO:
152 data.h[2] = *evr & 0xffff;
153 data.h[3] = regs->gpr[reg] & 0xffff;
154 break;
155 case EVSTWWE:
156 data.w[1] = *evr;
157 break;
158 case EVSTWWO:
159 data.w[1] = regs->gpr[reg];
160 break;
161 default:
162 return -EINVAL;
163 }
164 } else {
165 temp.ll = data.ll = 0;
166 p = addr;
167
168 if (!user_read_access_begin(addr, nb))
169 return -EFAULT;
170
171 switch (nb) {
172 case 8:
173 unsafe_get_user(temp.v[0], p++, Efault_read);
174 unsafe_get_user(temp.v[1], p++, Efault_read);
175 unsafe_get_user(temp.v[2], p++, Efault_read);
176 unsafe_get_user(temp.v[3], p++, Efault_read);
177 fallthrough;
178 case 4:
179 unsafe_get_user(temp.v[4], p++, Efault_read);
180 unsafe_get_user(temp.v[5], p++, Efault_read);
181 fallthrough;
182 case 2:
183 unsafe_get_user(temp.v[6], p++, Efault_read);
184 unsafe_get_user(temp.v[7], p++, Efault_read);
185 }
186 user_read_access_end();
187
188 switch (instr) {
189 case EVLDD:
190 case EVLDW:
191 case EVLDH:
192 data.ll = temp.ll;
193 break;
194 case EVLHHESPLAT:
195 data.h[0] = temp.h[3];
196 data.h[2] = temp.h[3];
197 break;
198 case EVLHHOUSPLAT:
199 case EVLHHOSSPLAT:
200 data.h[1] = temp.h[3];
201 data.h[3] = temp.h[3];
202 break;
203 case EVLWHE:
204 data.h[0] = temp.h[2];
205 data.h[2] = temp.h[3];
206 break;
207 case EVLWHOU:
208 case EVLWHOS:
209 data.h[1] = temp.h[2];
210 data.h[3] = temp.h[3];
211 break;
212 case EVLWWSPLAT:
213 data.w[0] = temp.w[1];
214 data.w[1] = temp.w[1];
215 break;
216 case EVLWHSPLAT:
217 data.h[0] = temp.h[2];
218 data.h[1] = temp.h[2];
219 data.h[2] = temp.h[3];
220 data.h[3] = temp.h[3];
221 break;
222 default:
223 return -EINVAL;
224 }
225 }
226
227 if (flags & SW) {
228 switch (flags & 0xf0) {
229 case E8:
230 data.ll = swab64(data.ll);
231 break;
232 case E4:
233 data.w[0] = swab32(data.w[0]);
234 data.w[1] = swab32(data.w[1]);
235 break;
236 /* Its half word endian */
237 default:
238 data.h[0] = swab16(data.h[0]);
239 data.h[1] = swab16(data.h[1]);
240 data.h[2] = swab16(data.h[2]);
241 data.h[3] = swab16(data.h[3]);
242 break;
243 }
244 }
245
246 if (flags & SE) {
247 data.w[0] = (s16)data.h[1];
248 data.w[1] = (s16)data.h[3];
249 }
250
251 /* Store result to memory or update registers */
252 if (flags & ST) {
253 p = addr;
254
255 if (!user_write_access_begin(addr, nb))
256 return -EFAULT;
257
258 switch (nb) {
259 case 8:
260 unsafe_put_user(data.v[0], p++, Efault_write);
261 unsafe_put_user(data.v[1], p++, Efault_write);
262 unsafe_put_user(data.v[2], p++, Efault_write);
263 unsafe_put_user(data.v[3], p++, Efault_write);
264 fallthrough;
265 case 4:
266 unsafe_put_user(data.v[4], p++, Efault_write);
267 unsafe_put_user(data.v[5], p++, Efault_write);
268 fallthrough;
269 case 2:
270 unsafe_put_user(data.v[6], p++, Efault_write);
271 unsafe_put_user(data.v[7], p++, Efault_write);
272 }
273 user_write_access_end();
274 } else {
275 *evr = data.w[0];
276 regs->gpr[reg] = data.w[1];
277 }
278
279 return 1;
280
281Efault_read:
282 user_read_access_end();
283 return -EFAULT;
284
285Efault_write:
286 user_write_access_end();
287 return -EFAULT;
288}
289#endif /* CONFIG_SPE */
290
291/*
292 * Called on alignment exception. Attempts to fixup
293 *
294 * Return 1 on success
295 * Return 0 if unable to handle the interrupt
296 * Return -EFAULT if data address is bad
297 * Other negative return values indicate that the instruction can't
298 * be emulated, and the process should be given a SIGBUS.
299 */
300
301int fix_alignment(struct pt_regs *regs)
302{
303 ppc_inst_t instr;
304 struct instruction_op op;
305 int r, type;
306
307 if (is_kernel_addr(regs->nip))
308 r = copy_inst_from_kernel_nofault(&instr, (void *)regs->nip);
309 else
310 r = __get_user_instr(instr, (void __user *)regs->nip);
311
312 if (unlikely(r))
313 return -EFAULT;
314 if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE)) {
315 /* We don't handle PPC little-endian any more... */
316 if (cpu_has_feature(CPU_FTR_PPC_LE))
317 return -EIO;
318 instr = ppc_inst_swab(instr);
319 }
320
321#ifdef CONFIG_SPE
322 if (ppc_inst_primary_opcode(instr) == 0x4) {
323 int reg = (ppc_inst_val(instr) >> 21) & 0x1f;
324 PPC_WARN_ALIGNMENT(spe, regs);
325 return emulate_spe(regs, reg, instr);
326 }
327#endif
328
329
330 /*
331 * ISA 3.0 (such as P9) copy, copy_first, paste and paste_last alignment
332 * check.
333 *
334 * Send a SIGBUS to the process that caused the fault.
335 *
336 * We do not emulate these because paste may contain additional metadata
337 * when pasting to a co-processor. Furthermore, paste_last is the
338 * synchronisation point for preceding copy/paste sequences.
339 */
340 if ((ppc_inst_val(instr) & 0xfc0006fe) == (PPC_INST_COPY & 0xfc0006fe))
341 return -EIO;
342
343 r = analyse_instr(&op, regs, instr);
344 if (r < 0)
345 return -EINVAL;
346
347 type = GETTYPE(op.type);
348 if (!OP_IS_LOAD_STORE(type)) {
349 if (op.type != CACHEOP + DCBZ)
350 return -EINVAL;
351 PPC_WARN_ALIGNMENT(dcbz, regs);
352 WARN_ON_ONCE(!user_mode(regs));
353 r = emulate_dcbz(op.ea, regs);
354 } else {
355 if (type == LARX || type == STCX)
356 return -EIO;
357 PPC_WARN_ALIGNMENT(unaligned, regs);
358 r = emulate_loadstore(regs, &op);
359 }
360
361 if (!r)
362 return 1;
363 return r;
364}
1/* align.c - handle alignment exceptions for the Power PC.
2 *
3 * Copyright (c) 1996 Paul Mackerras <paulus@cs.anu.edu.au>
4 * Copyright (c) 1998-1999 TiVo, Inc.
5 * PowerPC 403GCX modifications.
6 * Copyright (c) 1999 Grant Erickson <grant@lcse.umn.edu>
7 * PowerPC 403GCX/405GP modifications.
8 * Copyright (c) 2001-2002 PPC64 team, IBM Corp
9 * 64-bit and Power4 support
10 * Copyright (c) 2005 Benjamin Herrenschmidt, IBM Corp
11 * <benh@kernel.crashing.org>
12 * Merge ppc32 and ppc64 implementations
13 *
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
18 */
19
20#include <linux/kernel.h>
21#include <linux/mm.h>
22#include <asm/processor.h>
23#include <linux/uaccess.h>
24#include <asm/cache.h>
25#include <asm/cputable.h>
26#include <asm/emulated_ops.h>
27#include <asm/switch_to.h>
28#include <asm/disassemble.h>
29#include <asm/cpu_has_feature.h>
30
31struct aligninfo {
32 unsigned char len;
33 unsigned char flags;
34};
35
36
37#define INVALID { 0, 0 }
38
39/* Bits in the flags field */
40#define LD 0 /* load */
41#define ST 1 /* store */
42#define SE 2 /* sign-extend value, or FP ld/st as word */
43#define F 4 /* to/from fp regs */
44#define U 8 /* update index register */
45#define M 0x10 /* multiple load/store */
46#define SW 0x20 /* byte swap */
47#define S 0x40 /* single-precision fp or... */
48#define SX 0x40 /* ... byte count in XER */
49#define HARD 0x80 /* string, stwcx. */
50#define E4 0x40 /* SPE endianness is word */
51#define E8 0x80 /* SPE endianness is double word */
52#define SPLT 0x80 /* VSX SPLAT load */
53
54/* DSISR bits reported for a DCBZ instruction: */
55#define DCBZ 0x5f /* 8xx/82xx dcbz faults when cache not enabled */
56
57/*
58 * The PowerPC stores certain bits of the instruction that caused the
59 * alignment exception in the DSISR register. This array maps those
60 * bits to information about the operand length and what the
61 * instruction would do.
62 */
63static struct aligninfo aligninfo[128] = {
64 { 4, LD }, /* 00 0 0000: lwz / lwarx */
65 INVALID, /* 00 0 0001 */
66 { 4, ST }, /* 00 0 0010: stw */
67 INVALID, /* 00 0 0011 */
68 { 2, LD }, /* 00 0 0100: lhz */
69 { 2, LD+SE }, /* 00 0 0101: lha */
70 { 2, ST }, /* 00 0 0110: sth */
71 { 4, LD+M }, /* 00 0 0111: lmw */
72 { 4, LD+F+S }, /* 00 0 1000: lfs */
73 { 8, LD+F }, /* 00 0 1001: lfd */
74 { 4, ST+F+S }, /* 00 0 1010: stfs */
75 { 8, ST+F }, /* 00 0 1011: stfd */
76 { 16, LD }, /* 00 0 1100: lq */
77 { 8, LD }, /* 00 0 1101: ld/ldu/lwa */
78 INVALID, /* 00 0 1110 */
79 { 8, ST }, /* 00 0 1111: std/stdu */
80 { 4, LD+U }, /* 00 1 0000: lwzu */
81 INVALID, /* 00 1 0001 */
82 { 4, ST+U }, /* 00 1 0010: stwu */
83 INVALID, /* 00 1 0011 */
84 { 2, LD+U }, /* 00 1 0100: lhzu */
85 { 2, LD+SE+U }, /* 00 1 0101: lhau */
86 { 2, ST+U }, /* 00 1 0110: sthu */
87 { 4, ST+M }, /* 00 1 0111: stmw */
88 { 4, LD+F+S+U }, /* 00 1 1000: lfsu */
89 { 8, LD+F+U }, /* 00 1 1001: lfdu */
90 { 4, ST+F+S+U }, /* 00 1 1010: stfsu */
91 { 8, ST+F+U }, /* 00 1 1011: stfdu */
92 { 16, LD+F }, /* 00 1 1100: lfdp */
93 INVALID, /* 00 1 1101 */
94 { 16, ST+F }, /* 00 1 1110: stfdp */
95 INVALID, /* 00 1 1111 */
96 { 8, LD }, /* 01 0 0000: ldx */
97 INVALID, /* 01 0 0001 */
98 { 8, ST }, /* 01 0 0010: stdx */
99 INVALID, /* 01 0 0011 */
100 INVALID, /* 01 0 0100 */
101 { 4, LD+SE }, /* 01 0 0101: lwax */
102 INVALID, /* 01 0 0110 */
103 INVALID, /* 01 0 0111 */
104 { 4, LD+M+HARD+SX }, /* 01 0 1000: lswx */
105 { 4, LD+M+HARD }, /* 01 0 1001: lswi */
106 { 4, ST+M+HARD+SX }, /* 01 0 1010: stswx */
107 { 4, ST+M+HARD }, /* 01 0 1011: stswi */
108 INVALID, /* 01 0 1100 */
109 { 8, LD+U }, /* 01 0 1101: ldu */
110 INVALID, /* 01 0 1110 */
111 { 8, ST+U }, /* 01 0 1111: stdu */
112 { 8, LD+U }, /* 01 1 0000: ldux */
113 INVALID, /* 01 1 0001 */
114 { 8, ST+U }, /* 01 1 0010: stdux */
115 INVALID, /* 01 1 0011 */
116 INVALID, /* 01 1 0100 */
117 { 4, LD+SE+U }, /* 01 1 0101: lwaux */
118 INVALID, /* 01 1 0110 */
119 INVALID, /* 01 1 0111 */
120 INVALID, /* 01 1 1000 */
121 INVALID, /* 01 1 1001 */
122 INVALID, /* 01 1 1010 */
123 INVALID, /* 01 1 1011 */
124 INVALID, /* 01 1 1100 */
125 INVALID, /* 01 1 1101 */
126 INVALID, /* 01 1 1110 */
127 INVALID, /* 01 1 1111 */
128 INVALID, /* 10 0 0000 */
129 INVALID, /* 10 0 0001 */
130 INVALID, /* 10 0 0010: stwcx. */
131 INVALID, /* 10 0 0011 */
132 INVALID, /* 10 0 0100 */
133 INVALID, /* 10 0 0101 */
134 INVALID, /* 10 0 0110 */
135 INVALID, /* 10 0 0111 */
136 { 4, LD+SW }, /* 10 0 1000: lwbrx */
137 INVALID, /* 10 0 1001 */
138 { 4, ST+SW }, /* 10 0 1010: stwbrx */
139 INVALID, /* 10 0 1011 */
140 { 2, LD+SW }, /* 10 0 1100: lhbrx */
141 { 4, LD+SE }, /* 10 0 1101 lwa */
142 { 2, ST+SW }, /* 10 0 1110: sthbrx */
143 { 16, ST }, /* 10 0 1111: stq */
144 INVALID, /* 10 1 0000 */
145 INVALID, /* 10 1 0001 */
146 INVALID, /* 10 1 0010 */
147 INVALID, /* 10 1 0011 */
148 INVALID, /* 10 1 0100 */
149 INVALID, /* 10 1 0101 */
150 INVALID, /* 10 1 0110 */
151 INVALID, /* 10 1 0111 */
152 INVALID, /* 10 1 1000 */
153 INVALID, /* 10 1 1001 */
154 INVALID, /* 10 1 1010 */
155 INVALID, /* 10 1 1011 */
156 INVALID, /* 10 1 1100 */
157 INVALID, /* 10 1 1101 */
158 INVALID, /* 10 1 1110 */
159 { 0, ST+HARD }, /* 10 1 1111: dcbz */
160 { 4, LD }, /* 11 0 0000: lwzx */
161 INVALID, /* 11 0 0001 */
162 { 4, ST }, /* 11 0 0010: stwx */
163 INVALID, /* 11 0 0011 */
164 { 2, LD }, /* 11 0 0100: lhzx */
165 { 2, LD+SE }, /* 11 0 0101: lhax */
166 { 2, ST }, /* 11 0 0110: sthx */
167 INVALID, /* 11 0 0111 */
168 { 4, LD+F+S }, /* 11 0 1000: lfsx */
169 { 8, LD+F }, /* 11 0 1001: lfdx */
170 { 4, ST+F+S }, /* 11 0 1010: stfsx */
171 { 8, ST+F }, /* 11 0 1011: stfdx */
172 { 16, LD+F }, /* 11 0 1100: lfdpx */
173 { 4, LD+F+SE }, /* 11 0 1101: lfiwax */
174 { 16, ST+F }, /* 11 0 1110: stfdpx */
175 { 4, ST+F }, /* 11 0 1111: stfiwx */
176 { 4, LD+U }, /* 11 1 0000: lwzux */
177 INVALID, /* 11 1 0001 */
178 { 4, ST+U }, /* 11 1 0010: stwux */
179 INVALID, /* 11 1 0011 */
180 { 2, LD+U }, /* 11 1 0100: lhzux */
181 { 2, LD+SE+U }, /* 11 1 0101: lhaux */
182 { 2, ST+U }, /* 11 1 0110: sthux */
183 INVALID, /* 11 1 0111 */
184 { 4, LD+F+S+U }, /* 11 1 1000: lfsux */
185 { 8, LD+F+U }, /* 11 1 1001: lfdux */
186 { 4, ST+F+S+U }, /* 11 1 1010: stfsux */
187 { 8, ST+F+U }, /* 11 1 1011: stfdux */
188 INVALID, /* 11 1 1100 */
189 { 4, LD+F }, /* 11 1 1101: lfiwzx */
190 INVALID, /* 11 1 1110 */
191 INVALID, /* 11 1 1111 */
192};
193
194/*
195 * The dcbz (data cache block zero) instruction
196 * gives an alignment fault if used on non-cacheable
197 * memory. We handle the fault mainly for the
198 * case when we are running with the cache disabled
199 * for debugging.
200 */
201static int emulate_dcbz(struct pt_regs *regs, unsigned char __user *addr)
202{
203 long __user *p;
204 int i, size;
205
206#ifdef __powerpc64__
207 size = ppc64_caches.dline_size;
208#else
209 size = L1_CACHE_BYTES;
210#endif
211 p = (long __user *) (regs->dar & -size);
212 if (user_mode(regs) && !access_ok(VERIFY_WRITE, p, size))
213 return -EFAULT;
214 for (i = 0; i < size / sizeof(long); ++i)
215 if (__put_user_inatomic(0, p+i))
216 return -EFAULT;
217 return 1;
218}
219
220/*
221 * Emulate load & store multiple instructions
222 * On 64-bit machines, these instructions only affect/use the
223 * bottom 4 bytes of each register, and the loads clear the
224 * top 4 bytes of the affected register.
225 */
226#ifdef __BIG_ENDIAN__
227#ifdef CONFIG_PPC64
228#define REG_BYTE(rp, i) *((u8 *)((rp) + ((i) >> 2)) + ((i) & 3) + 4)
229#else
230#define REG_BYTE(rp, i) *((u8 *)(rp) + (i))
231#endif
232#else
233#define REG_BYTE(rp, i) (*(((u8 *)((rp) + ((i)>>2)) + ((i)&3))))
234#endif
235
236#define SWIZ_PTR(p) ((unsigned char __user *)((p) ^ swiz))
237
238static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr,
239 unsigned int reg, unsigned int nb,
240 unsigned int flags, unsigned int instr,
241 unsigned long swiz)
242{
243 unsigned long *rptr;
244 unsigned int nb0, i, bswiz;
245 unsigned long p;
246
247 /*
248 * We do not try to emulate 8 bytes multiple as they aren't really
249 * available in our operating environments and we don't try to
250 * emulate multiples operations in kernel land as they should never
251 * be used/generated there at least not on unaligned boundaries
252 */
253 if (unlikely((nb > 4) || !user_mode(regs)))
254 return 0;
255
256 /* lmw, stmw, lswi/x, stswi/x */
257 nb0 = 0;
258 if (flags & HARD) {
259 if (flags & SX) {
260 nb = regs->xer & 127;
261 if (nb == 0)
262 return 1;
263 } else {
264 unsigned long pc = regs->nip ^ (swiz & 4);
265
266 if (__get_user_inatomic(instr,
267 (unsigned int __user *)pc))
268 return -EFAULT;
269 if (swiz == 0 && (flags & SW))
270 instr = cpu_to_le32(instr);
271 nb = (instr >> 11) & 0x1f;
272 if (nb == 0)
273 nb = 32;
274 }
275 if (nb + reg * 4 > 128) {
276 nb0 = nb + reg * 4 - 128;
277 nb = 128 - reg * 4;
278 }
279#ifdef __LITTLE_ENDIAN__
280 /*
281 * String instructions are endian neutral but the code
282 * below is not. Force byte swapping on so that the
283 * effects of swizzling are undone in the load/store
284 * loops below.
285 */
286 flags ^= SW;
287#endif
288 } else {
289 /* lwm, stmw */
290 nb = (32 - reg) * 4;
291 }
292
293 if (!access_ok((flags & ST ? VERIFY_WRITE: VERIFY_READ), addr, nb+nb0))
294 return -EFAULT; /* bad address */
295
296 rptr = ®s->gpr[reg];
297 p = (unsigned long) addr;
298 bswiz = (flags & SW)? 3: 0;
299
300 if (!(flags & ST)) {
301 /*
302 * This zeroes the top 4 bytes of the affected registers
303 * in 64-bit mode, and also zeroes out any remaining
304 * bytes of the last register for lsw*.
305 */
306 memset(rptr, 0, ((nb + 3) / 4) * sizeof(unsigned long));
307 if (nb0 > 0)
308 memset(®s->gpr[0], 0,
309 ((nb0 + 3) / 4) * sizeof(unsigned long));
310
311 for (i = 0; i < nb; ++i, ++p)
312 if (__get_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
313 SWIZ_PTR(p)))
314 return -EFAULT;
315 if (nb0 > 0) {
316 rptr = ®s->gpr[0];
317 addr += nb;
318 for (i = 0; i < nb0; ++i, ++p)
319 if (__get_user_inatomic(REG_BYTE(rptr,
320 i ^ bswiz),
321 SWIZ_PTR(p)))
322 return -EFAULT;
323 }
324
325 } else {
326 for (i = 0; i < nb; ++i, ++p)
327 if (__put_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
328 SWIZ_PTR(p)))
329 return -EFAULT;
330 if (nb0 > 0) {
331 rptr = ®s->gpr[0];
332 addr += nb;
333 for (i = 0; i < nb0; ++i, ++p)
334 if (__put_user_inatomic(REG_BYTE(rptr,
335 i ^ bswiz),
336 SWIZ_PTR(p)))
337 return -EFAULT;
338 }
339 }
340 return 1;
341}
342
343/*
344 * Emulate floating-point pair loads and stores.
345 * Only POWER6 has these instructions, and it does true little-endian,
346 * so we don't need the address swizzling.
347 */
348static int emulate_fp_pair(unsigned char __user *addr, unsigned int reg,
349 unsigned int flags)
350{
351 char *ptr0 = (char *) ¤t->thread.TS_FPR(reg);
352 char *ptr1 = (char *) ¤t->thread.TS_FPR(reg+1);
353 int i, ret, sw = 0;
354
355 if (reg & 1)
356 return 0; /* invalid form: FRS/FRT must be even */
357 if (flags & SW)
358 sw = 7;
359 ret = 0;
360 for (i = 0; i < 8; ++i) {
361 if (!(flags & ST)) {
362 ret |= __get_user(ptr0[i^sw], addr + i);
363 ret |= __get_user(ptr1[i^sw], addr + i + 8);
364 } else {
365 ret |= __put_user(ptr0[i^sw], addr + i);
366 ret |= __put_user(ptr1[i^sw], addr + i + 8);
367 }
368 }
369 if (ret)
370 return -EFAULT;
371 return 1; /* exception handled and fixed up */
372}
373
374#ifdef CONFIG_PPC64
375static int emulate_lq_stq(struct pt_regs *regs, unsigned char __user *addr,
376 unsigned int reg, unsigned int flags)
377{
378 char *ptr0 = (char *)®s->gpr[reg];
379 char *ptr1 = (char *)®s->gpr[reg+1];
380 int i, ret, sw = 0;
381
382 if (reg & 1)
383 return 0; /* invalid form: GPR must be even */
384 if (flags & SW)
385 sw = 7;
386 ret = 0;
387 for (i = 0; i < 8; ++i) {
388 if (!(flags & ST)) {
389 ret |= __get_user(ptr0[i^sw], addr + i);
390 ret |= __get_user(ptr1[i^sw], addr + i + 8);
391 } else {
392 ret |= __put_user(ptr0[i^sw], addr + i);
393 ret |= __put_user(ptr1[i^sw], addr + i + 8);
394 }
395 }
396 if (ret)
397 return -EFAULT;
398 return 1; /* exception handled and fixed up */
399}
400#endif /* CONFIG_PPC64 */
401
402#ifdef CONFIG_SPE
403
404static struct aligninfo spe_aligninfo[32] = {
405 { 8, LD+E8 }, /* 0 00 00: evldd[x] */
406 { 8, LD+E4 }, /* 0 00 01: evldw[x] */
407 { 8, LD }, /* 0 00 10: evldh[x] */
408 INVALID, /* 0 00 11 */
409 { 2, LD }, /* 0 01 00: evlhhesplat[x] */
410 INVALID, /* 0 01 01 */
411 { 2, LD }, /* 0 01 10: evlhhousplat[x] */
412 { 2, LD+SE }, /* 0 01 11: evlhhossplat[x] */
413 { 4, LD }, /* 0 10 00: evlwhe[x] */
414 INVALID, /* 0 10 01 */
415 { 4, LD }, /* 0 10 10: evlwhou[x] */
416 { 4, LD+SE }, /* 0 10 11: evlwhos[x] */
417 { 4, LD+E4 }, /* 0 11 00: evlwwsplat[x] */
418 INVALID, /* 0 11 01 */
419 { 4, LD }, /* 0 11 10: evlwhsplat[x] */
420 INVALID, /* 0 11 11 */
421
422 { 8, ST+E8 }, /* 1 00 00: evstdd[x] */
423 { 8, ST+E4 }, /* 1 00 01: evstdw[x] */
424 { 8, ST }, /* 1 00 10: evstdh[x] */
425 INVALID, /* 1 00 11 */
426 INVALID, /* 1 01 00 */
427 INVALID, /* 1 01 01 */
428 INVALID, /* 1 01 10 */
429 INVALID, /* 1 01 11 */
430 { 4, ST }, /* 1 10 00: evstwhe[x] */
431 INVALID, /* 1 10 01 */
432 { 4, ST }, /* 1 10 10: evstwho[x] */
433 INVALID, /* 1 10 11 */
434 { 4, ST+E4 }, /* 1 11 00: evstwwe[x] */
435 INVALID, /* 1 11 01 */
436 { 4, ST+E4 }, /* 1 11 10: evstwwo[x] */
437 INVALID, /* 1 11 11 */
438};
439
440#define EVLDD 0x00
441#define EVLDW 0x01
442#define EVLDH 0x02
443#define EVLHHESPLAT 0x04
444#define EVLHHOUSPLAT 0x06
445#define EVLHHOSSPLAT 0x07
446#define EVLWHE 0x08
447#define EVLWHOU 0x0A
448#define EVLWHOS 0x0B
449#define EVLWWSPLAT 0x0C
450#define EVLWHSPLAT 0x0E
451#define EVSTDD 0x10
452#define EVSTDW 0x11
453#define EVSTDH 0x12
454#define EVSTWHE 0x18
455#define EVSTWHO 0x1A
456#define EVSTWWE 0x1C
457#define EVSTWWO 0x1E
458
459/*
460 * Emulate SPE loads and stores.
461 * Only Book-E has these instructions, and it does true little-endian,
462 * so we don't need the address swizzling.
463 */
464static int emulate_spe(struct pt_regs *regs, unsigned int reg,
465 unsigned int instr)
466{
467 int ret;
468 union {
469 u64 ll;
470 u32 w[2];
471 u16 h[4];
472 u8 v[8];
473 } data, temp;
474 unsigned char __user *p, *addr;
475 unsigned long *evr = ¤t->thread.evr[reg];
476 unsigned int nb, flags;
477
478 instr = (instr >> 1) & 0x1f;
479
480 /* DAR has the operand effective address */
481 addr = (unsigned char __user *)regs->dar;
482
483 nb = spe_aligninfo[instr].len;
484 flags = spe_aligninfo[instr].flags;
485
486 /* Verify the address of the operand */
487 if (unlikely(user_mode(regs) &&
488 !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
489 addr, nb)))
490 return -EFAULT;
491
492 /* userland only */
493 if (unlikely(!user_mode(regs)))
494 return 0;
495
496 flush_spe_to_thread(current);
497
498 /* If we are loading, get the data from user space, else
499 * get it from register values
500 */
501 if (flags & ST) {
502 data.ll = 0;
503 switch (instr) {
504 case EVSTDD:
505 case EVSTDW:
506 case EVSTDH:
507 data.w[0] = *evr;
508 data.w[1] = regs->gpr[reg];
509 break;
510 case EVSTWHE:
511 data.h[2] = *evr >> 16;
512 data.h[3] = regs->gpr[reg] >> 16;
513 break;
514 case EVSTWHO:
515 data.h[2] = *evr & 0xffff;
516 data.h[3] = regs->gpr[reg] & 0xffff;
517 break;
518 case EVSTWWE:
519 data.w[1] = *evr;
520 break;
521 case EVSTWWO:
522 data.w[1] = regs->gpr[reg];
523 break;
524 default:
525 return -EINVAL;
526 }
527 } else {
528 temp.ll = data.ll = 0;
529 ret = 0;
530 p = addr;
531
532 switch (nb) {
533 case 8:
534 ret |= __get_user_inatomic(temp.v[0], p++);
535 ret |= __get_user_inatomic(temp.v[1], p++);
536 ret |= __get_user_inatomic(temp.v[2], p++);
537 ret |= __get_user_inatomic(temp.v[3], p++);
538 case 4:
539 ret |= __get_user_inatomic(temp.v[4], p++);
540 ret |= __get_user_inatomic(temp.v[5], p++);
541 case 2:
542 ret |= __get_user_inatomic(temp.v[6], p++);
543 ret |= __get_user_inatomic(temp.v[7], p++);
544 if (unlikely(ret))
545 return -EFAULT;
546 }
547
548 switch (instr) {
549 case EVLDD:
550 case EVLDW:
551 case EVLDH:
552 data.ll = temp.ll;
553 break;
554 case EVLHHESPLAT:
555 data.h[0] = temp.h[3];
556 data.h[2] = temp.h[3];
557 break;
558 case EVLHHOUSPLAT:
559 case EVLHHOSSPLAT:
560 data.h[1] = temp.h[3];
561 data.h[3] = temp.h[3];
562 break;
563 case EVLWHE:
564 data.h[0] = temp.h[2];
565 data.h[2] = temp.h[3];
566 break;
567 case EVLWHOU:
568 case EVLWHOS:
569 data.h[1] = temp.h[2];
570 data.h[3] = temp.h[3];
571 break;
572 case EVLWWSPLAT:
573 data.w[0] = temp.w[1];
574 data.w[1] = temp.w[1];
575 break;
576 case EVLWHSPLAT:
577 data.h[0] = temp.h[2];
578 data.h[1] = temp.h[2];
579 data.h[2] = temp.h[3];
580 data.h[3] = temp.h[3];
581 break;
582 default:
583 return -EINVAL;
584 }
585 }
586
587 if (flags & SW) {
588 switch (flags & 0xf0) {
589 case E8:
590 data.ll = swab64(data.ll);
591 break;
592 case E4:
593 data.w[0] = swab32(data.w[0]);
594 data.w[1] = swab32(data.w[1]);
595 break;
596 /* Its half word endian */
597 default:
598 data.h[0] = swab16(data.h[0]);
599 data.h[1] = swab16(data.h[1]);
600 data.h[2] = swab16(data.h[2]);
601 data.h[3] = swab16(data.h[3]);
602 break;
603 }
604 }
605
606 if (flags & SE) {
607 data.w[0] = (s16)data.h[1];
608 data.w[1] = (s16)data.h[3];
609 }
610
611 /* Store result to memory or update registers */
612 if (flags & ST) {
613 ret = 0;
614 p = addr;
615 switch (nb) {
616 case 8:
617 ret |= __put_user_inatomic(data.v[0], p++);
618 ret |= __put_user_inatomic(data.v[1], p++);
619 ret |= __put_user_inatomic(data.v[2], p++);
620 ret |= __put_user_inatomic(data.v[3], p++);
621 case 4:
622 ret |= __put_user_inatomic(data.v[4], p++);
623 ret |= __put_user_inatomic(data.v[5], p++);
624 case 2:
625 ret |= __put_user_inatomic(data.v[6], p++);
626 ret |= __put_user_inatomic(data.v[7], p++);
627 }
628 if (unlikely(ret))
629 return -EFAULT;
630 } else {
631 *evr = data.w[0];
632 regs->gpr[reg] = data.w[1];
633 }
634
635 return 1;
636}
637#endif /* CONFIG_SPE */
638
639#ifdef CONFIG_VSX
640/*
641 * Emulate VSX instructions...
642 */
643static int emulate_vsx(unsigned char __user *addr, unsigned int reg,
644 unsigned int areg, struct pt_regs *regs,
645 unsigned int flags, unsigned int length,
646 unsigned int elsize)
647{
648 char *ptr;
649 unsigned long *lptr;
650 int ret = 0;
651 int sw = 0;
652 int i, j;
653
654 /* userland only */
655 if (unlikely(!user_mode(regs)))
656 return 0;
657
658 flush_vsx_to_thread(current);
659
660 if (reg < 32)
661 ptr = (char *) ¤t->thread.fp_state.fpr[reg][0];
662 else
663 ptr = (char *) ¤t->thread.vr_state.vr[reg - 32];
664
665 lptr = (unsigned long *) ptr;
666
667#ifdef __LITTLE_ENDIAN__
668 if (flags & SW) {
669 elsize = length;
670 sw = length-1;
671 } else {
672 /*
673 * The elements are BE ordered, even in LE mode, so process
674 * them in reverse order.
675 */
676 addr += length - elsize;
677
678 /* 8 byte memory accesses go in the top 8 bytes of the VR */
679 if (length == 8)
680 ptr += 8;
681 }
682#else
683 if (flags & SW)
684 sw = elsize-1;
685#endif
686
687 for (j = 0; j < length; j += elsize) {
688 for (i = 0; i < elsize; ++i) {
689 if (flags & ST)
690 ret |= __put_user(ptr[i^sw], addr + i);
691 else
692 ret |= __get_user(ptr[i^sw], addr + i);
693 }
694 ptr += elsize;
695#ifdef __LITTLE_ENDIAN__
696 addr -= elsize;
697#else
698 addr += elsize;
699#endif
700 }
701
702#ifdef __BIG_ENDIAN__
703#define VSX_HI 0
704#define VSX_LO 1
705#else
706#define VSX_HI 1
707#define VSX_LO 0
708#endif
709
710 if (!ret) {
711 if (flags & U)
712 regs->gpr[areg] = regs->dar;
713
714 /* Splat load copies the same data to top and bottom 8 bytes */
715 if (flags & SPLT)
716 lptr[VSX_LO] = lptr[VSX_HI];
717 /* For 8 byte loads, zero the low 8 bytes */
718 else if (!(flags & ST) && (8 == length))
719 lptr[VSX_LO] = 0;
720 } else
721 return -EFAULT;
722
723 return 1;
724}
725#endif
726
727/*
728 * Called on alignment exception. Attempts to fixup
729 *
730 * Return 1 on success
731 * Return 0 if unable to handle the interrupt
732 * Return -EFAULT if data address is bad
733 */
734
735int fix_alignment(struct pt_regs *regs)
736{
737 unsigned int instr, nb, flags, instruction = 0;
738 unsigned int reg, areg;
739 unsigned int dsisr;
740 unsigned char __user *addr;
741 unsigned long p, swiz;
742 int ret, i;
743 union data {
744 u64 ll;
745 double dd;
746 unsigned char v[8];
747 struct {
748#ifdef __LITTLE_ENDIAN__
749 int low32;
750 unsigned hi32;
751#else
752 unsigned hi32;
753 int low32;
754#endif
755 } x32;
756 struct {
757#ifdef __LITTLE_ENDIAN__
758 short low16;
759 unsigned char hi48[6];
760#else
761 unsigned char hi48[6];
762 short low16;
763#endif
764 } x16;
765 } data;
766
767 /*
768 * We require a complete register set, if not, then our assembly
769 * is broken
770 */
771 CHECK_FULL_REGS(regs);
772
773 dsisr = regs->dsisr;
774
775 /* Some processors don't provide us with a DSISR we can use here,
776 * let's make one up from the instruction
777 */
778 if (cpu_has_feature(CPU_FTR_NODSISRALIGN)) {
779 unsigned long pc = regs->nip;
780
781 if (cpu_has_feature(CPU_FTR_PPC_LE) && (regs->msr & MSR_LE))
782 pc ^= 4;
783 if (unlikely(__get_user_inatomic(instr,
784 (unsigned int __user *)pc)))
785 return -EFAULT;
786 if (cpu_has_feature(CPU_FTR_REAL_LE) && (regs->msr & MSR_LE))
787 instr = cpu_to_le32(instr);
788 dsisr = make_dsisr(instr);
789 instruction = instr;
790 }
791
792 /* extract the operation and registers from the dsisr */
793 reg = (dsisr >> 5) & 0x1f; /* source/dest register */
794 areg = dsisr & 0x1f; /* register to update */
795
796#ifdef CONFIG_SPE
797 if ((instr >> 26) == 0x4) {
798 PPC_WARN_ALIGNMENT(spe, regs);
799 return emulate_spe(regs, reg, instr);
800 }
801#endif
802
803 instr = (dsisr >> 10) & 0x7f;
804 instr |= (dsisr >> 13) & 0x60;
805
806 /* Lookup the operation in our table */
807 nb = aligninfo[instr].len;
808 flags = aligninfo[instr].flags;
809
810 /*
811 * Handle some cases which give overlaps in the DSISR values.
812 */
813 if (IS_XFORM(instruction)) {
814 switch (get_xop(instruction)) {
815 case 532: /* ldbrx */
816 nb = 8;
817 flags = LD+SW;
818 break;
819 case 660: /* stdbrx */
820 nb = 8;
821 flags = ST+SW;
822 break;
823 case 20: /* lwarx */
824 case 84: /* ldarx */
825 case 116: /* lharx */
826 case 276: /* lqarx */
827 return 0; /* not emulated ever */
828 }
829 }
830
831 /* Byteswap little endian loads and stores */
832 swiz = 0;
833 if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE)) {
834 flags ^= SW;
835#ifdef __BIG_ENDIAN__
836 /*
837 * So-called "PowerPC little endian" mode works by
838 * swizzling addresses rather than by actually doing
839 * any byte-swapping. To emulate this, we XOR each
840 * byte address with 7. We also byte-swap, because
841 * the processor's address swizzling depends on the
842 * operand size (it xors the address with 7 for bytes,
843 * 6 for halfwords, 4 for words, 0 for doublewords) but
844 * we will xor with 7 and load/store each byte separately.
845 */
846 if (cpu_has_feature(CPU_FTR_PPC_LE))
847 swiz = 7;
848#endif
849 }
850
851 /* DAR has the operand effective address */
852 addr = (unsigned char __user *)regs->dar;
853
854#ifdef CONFIG_VSX
855 if ((instruction & 0xfc00003e) == 0x7c000018) {
856 unsigned int elsize;
857
858 /* Additional register addressing bit (64 VSX vs 32 FPR/GPR) */
859 reg |= (instruction & 0x1) << 5;
860 /* Simple inline decoder instead of a table */
861 /* VSX has only 8 and 16 byte memory accesses */
862 nb = 8;
863 if (instruction & 0x200)
864 nb = 16;
865
866 /* Vector stores in little-endian mode swap individual
867 elements, so process them separately */
868 elsize = 4;
869 if (instruction & 0x80)
870 elsize = 8;
871
872 flags = 0;
873 if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE))
874 flags |= SW;
875 if (instruction & 0x100)
876 flags |= ST;
877 if (instruction & 0x040)
878 flags |= U;
879 /* splat load needs a special decoder */
880 if ((instruction & 0x400) == 0){
881 flags |= SPLT;
882 nb = 8;
883 }
884 PPC_WARN_ALIGNMENT(vsx, regs);
885 return emulate_vsx(addr, reg, areg, regs, flags, nb, elsize);
886 }
887#endif
888
889 /*
890 * ISA 3.0 (such as P9) copy, copy_first, paste and paste_last alignment
891 * check.
892 *
893 * Send a SIGBUS to the process that caused the fault.
894 *
895 * We do not emulate these because paste may contain additional metadata
896 * when pasting to a co-processor. Furthermore, paste_last is the
897 * synchronisation point for preceding copy/paste sequences.
898 */
899 if ((instruction & 0xfc0006fe) == PPC_INST_COPY)
900 return -EIO;
901
902 /* A size of 0 indicates an instruction we don't support, with
903 * the exception of DCBZ which is handled as a special case here
904 */
905 if (instr == DCBZ) {
906 PPC_WARN_ALIGNMENT(dcbz, regs);
907 return emulate_dcbz(regs, addr);
908 }
909 if (unlikely(nb == 0))
910 return 0;
911
912 /* Load/Store Multiple instructions are handled in their own
913 * function
914 */
915 if (flags & M) {
916 PPC_WARN_ALIGNMENT(multiple, regs);
917 return emulate_multiple(regs, addr, reg, nb,
918 flags, instr, swiz);
919 }
920
921 /* Verify the address of the operand */
922 if (unlikely(user_mode(regs) &&
923 !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
924 addr, nb)))
925 return -EFAULT;
926
927 /* Force the fprs into the save area so we can reference them */
928 if (flags & F) {
929 /* userland only */
930 if (unlikely(!user_mode(regs)))
931 return 0;
932 flush_fp_to_thread(current);
933 }
934
935 if (nb == 16) {
936 if (flags & F) {
937 /* Special case for 16-byte FP loads and stores */
938 PPC_WARN_ALIGNMENT(fp_pair, regs);
939 return emulate_fp_pair(addr, reg, flags);
940 } else {
941#ifdef CONFIG_PPC64
942 /* Special case for 16-byte loads and stores */
943 PPC_WARN_ALIGNMENT(lq_stq, regs);
944 return emulate_lq_stq(regs, addr, reg, flags);
945#else
946 return 0;
947#endif
948 }
949 }
950
951 PPC_WARN_ALIGNMENT(unaligned, regs);
952
953 /* If we are loading, get the data from user space, else
954 * get it from register values
955 */
956 if (!(flags & ST)) {
957 unsigned int start = 0;
958
959 switch (nb) {
960 case 4:
961 start = offsetof(union data, x32.low32);
962 break;
963 case 2:
964 start = offsetof(union data, x16.low16);
965 break;
966 }
967
968 data.ll = 0;
969 ret = 0;
970 p = (unsigned long)addr;
971
972 for (i = 0; i < nb; i++)
973 ret |= __get_user_inatomic(data.v[start + i],
974 SWIZ_PTR(p++));
975
976 if (unlikely(ret))
977 return -EFAULT;
978
979 } else if (flags & F) {
980 data.ll = current->thread.TS_FPR(reg);
981 if (flags & S) {
982 /* Single-precision FP store requires conversion... */
983#ifdef CONFIG_PPC_FPU
984 preempt_disable();
985 enable_kernel_fp();
986 cvt_df(&data.dd, (float *)&data.x32.low32);
987 disable_kernel_fp();
988 preempt_enable();
989#else
990 return 0;
991#endif
992 }
993 } else
994 data.ll = regs->gpr[reg];
995
996 if (flags & SW) {
997 switch (nb) {
998 case 8:
999 data.ll = swab64(data.ll);
1000 break;
1001 case 4:
1002 data.x32.low32 = swab32(data.x32.low32);
1003 break;
1004 case 2:
1005 data.x16.low16 = swab16(data.x16.low16);
1006 break;
1007 }
1008 }
1009
1010 /* Perform other misc operations like sign extension
1011 * or floating point single precision conversion
1012 */
1013 switch (flags & ~(U|SW)) {
1014 case LD+SE: /* sign extending integer loads */
1015 case LD+F+SE: /* sign extend for lfiwax */
1016 if ( nb == 2 )
1017 data.ll = data.x16.low16;
1018 else /* nb must be 4 */
1019 data.ll = data.x32.low32;
1020 break;
1021
1022 /* Single-precision FP load requires conversion... */
1023 case LD+F+S:
1024#ifdef CONFIG_PPC_FPU
1025 preempt_disable();
1026 enable_kernel_fp();
1027 cvt_fd((float *)&data.x32.low32, &data.dd);
1028 disable_kernel_fp();
1029 preempt_enable();
1030#else
1031 return 0;
1032#endif
1033 break;
1034 }
1035
1036 /* Store result to memory or update registers */
1037 if (flags & ST) {
1038 unsigned int start = 0;
1039
1040 switch (nb) {
1041 case 4:
1042 start = offsetof(union data, x32.low32);
1043 break;
1044 case 2:
1045 start = offsetof(union data, x16.low16);
1046 break;
1047 }
1048
1049 ret = 0;
1050 p = (unsigned long)addr;
1051
1052 for (i = 0; i < nb; i++)
1053 ret |= __put_user_inatomic(data.v[start + i],
1054 SWIZ_PTR(p++));
1055
1056 if (unlikely(ret))
1057 return -EFAULT;
1058 } else if (flags & F)
1059 current->thread.TS_FPR(reg) = data.ll;
1060 else
1061 regs->gpr[reg] = data.ll;
1062
1063 /* Update RA as needed */
1064 if (flags & U)
1065 regs->gpr[areg] = regs->dar;
1066
1067 return 1;
1068}