Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Implementation of the SID table type.
  4 *
  5 * Original author: Stephen Smalley, <sds@tycho.nsa.gov>
  6 * Author: Ondrej Mosnacek, <omosnacek@gmail.com>
  7 *
  8 * Copyright (C) 2018 Red Hat, Inc.
  9 */
 10#include <linux/errno.h>
 11#include <linux/kernel.h>
 12#include <linux/list.h>
 13#include <linux/rcupdate.h>
 14#include <linux/slab.h>
 15#include <linux/sched.h>
 16#include <linux/spinlock.h>
 17#include <asm/barrier.h>
 18#include "flask.h"
 19#include "security.h"
 20#include "sidtab.h"
 21#include "services.h"
 22
 23struct sidtab_str_cache {
 24	struct rcu_head rcu_member;
 25	struct list_head lru_member;
 26	struct sidtab_entry *parent;
 27	u32 len;
 28	char str[];
 29};
 30
 31#define index_to_sid(index) ((index) + SECINITSID_NUM + 1)
 32#define sid_to_index(sid) ((sid) - (SECINITSID_NUM + 1))
 33
 34int sidtab_init(struct sidtab *s)
 35{
 36	u32 i;
 37
 38	memset(s->roots, 0, sizeof(s->roots));
 39
 40	for (i = 0; i < SECINITSID_NUM; i++)
 41		s->isids[i].set = 0;
 42
 43	s->frozen = false;
 44	s->count = 0;
 45	s->convert = NULL;
 46	hash_init(s->context_to_sid);
 47
 
 
 
 
 
 
 
 
 48	spin_lock_init(&s->lock);
 49
 50#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
 51	s->cache_free_slots = CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE;
 52	INIT_LIST_HEAD(&s->cache_lru_list);
 53	spin_lock_init(&s->cache_lock);
 54#endif
 55
 56	return 0;
 57}
 58
 59static u32 context_to_sid(struct sidtab *s, struct context *context, u32 hash)
 60{
 61	struct sidtab_entry *entry;
 62	u32 sid = 0;
 63
 64	rcu_read_lock();
 65	hash_for_each_possible_rcu(s->context_to_sid, entry, list, hash) {
 66		if (entry->hash != hash)
 67			continue;
 68		if (context_cmp(&entry->context, context)) {
 69			sid = entry->sid;
 70			break;
 71		}
 72	}
 73	rcu_read_unlock();
 74	return sid;
 75}
 76
 77int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context)
 78{
 79	struct sidtab_isid_entry *isid;
 80	u32 hash;
 81	int rc;
 82
 83	if (sid == 0 || sid > SECINITSID_NUM)
 84		return -EINVAL;
 85
 86	isid = &s->isids[sid - 1];
 87
 88	rc = context_cpy(&isid->entry.context, context);
 89	if (rc)
 90		return rc;
 91
 92#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
 93	isid->entry.cache = NULL;
 94#endif
 95	isid->set = 1;
 96
 97	hash = context_compute_hash(context);
 98
 99	/*
100	 * Multiple initial sids may map to the same context. Check that this
101	 * context is not already represented in the context_to_sid hashtable
102	 * to avoid duplicate entries and long linked lists upon hash
103	 * collision.
104	 */
105	if (!context_to_sid(s, context, hash)) {
106		isid->entry.sid = sid;
107		isid->entry.hash = hash;
108		hash_add(s->context_to_sid, &isid->entry.list, hash);
109	}
110
111	return 0;
112}
113
114int sidtab_hash_stats(struct sidtab *sidtab, char *page)
115{
116	int i;
117	int chain_len = 0;
118	int slots_used = 0;
119	int entries = 0;
120	int max_chain_len = 0;
121	int cur_bucket = 0;
122	struct sidtab_entry *entry;
123
124	rcu_read_lock();
125	hash_for_each_rcu(sidtab->context_to_sid, i, entry, list) {
126		entries++;
127		if (i == cur_bucket) {
128			chain_len++;
129			if (chain_len == 1)
130				slots_used++;
131		} else {
132			cur_bucket = i;
133			if (chain_len > max_chain_len)
134				max_chain_len = chain_len;
135			chain_len = 0;
136		}
137	}
138	rcu_read_unlock();
139
140	if (chain_len > max_chain_len)
141		max_chain_len = chain_len;
142
143	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
144			 "longest chain: %d\n", entries,
145			 slots_used, SIDTAB_HASH_BUCKETS, max_chain_len);
146}
147
148static u32 sidtab_level_from_count(u32 count)
149{
150	u32 capacity = SIDTAB_LEAF_ENTRIES;
151	u32 level = 0;
152
153	while (count > capacity) {
154		capacity <<= SIDTAB_INNER_SHIFT;
155		++level;
 
156	}
157	return level;
158}
159
160static int sidtab_alloc_roots(struct sidtab *s, u32 level)
161{
162	u32 l;
163
164	if (!s->roots[0].ptr_leaf) {
165		s->roots[0].ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
166					       GFP_ATOMIC);
167		if (!s->roots[0].ptr_leaf)
168			return -ENOMEM;
 
 
 
169	}
170	for (l = 1; l <= level; ++l)
171		if (!s->roots[l].ptr_inner) {
172			s->roots[l].ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
173							GFP_ATOMIC);
174			if (!s->roots[l].ptr_inner)
175				return -ENOMEM;
176			s->roots[l].ptr_inner->entries[0] = s->roots[l - 1];
177		}
178	return 0;
179}
180
181static struct sidtab_entry *sidtab_do_lookup(struct sidtab *s, u32 index,
182					     int alloc)
183{
184	union sidtab_entry_inner *entry;
185	u32 level, capacity_shift, leaf_index = index / SIDTAB_LEAF_ENTRIES;
186
187	/* find the level of the subtree we need */
188	level = sidtab_level_from_count(index + 1);
189	capacity_shift = level * SIDTAB_INNER_SHIFT;
190
191	/* allocate roots if needed */
192	if (alloc && sidtab_alloc_roots(s, level) != 0)
193		return NULL;
194
195	/* lookup inside the subtree */
196	entry = &s->roots[level];
197	while (level != 0) {
198		capacity_shift -= SIDTAB_INNER_SHIFT;
199		--level;
200
201		entry = &entry->ptr_inner->entries[leaf_index >> capacity_shift];
202		leaf_index &= ((u32)1 << capacity_shift) - 1;
203
204		if (!entry->ptr_inner) {
205			if (alloc)
206				entry->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
207							   GFP_ATOMIC);
208			if (!entry->ptr_inner)
209				return NULL;
210		}
211	}
212	if (!entry->ptr_leaf) {
213		if (alloc)
214			entry->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
215						  GFP_ATOMIC);
216		if (!entry->ptr_leaf)
217			return NULL;
218	}
219	return &entry->ptr_leaf->entries[index % SIDTAB_LEAF_ENTRIES];
220}
221
222static struct sidtab_entry *sidtab_lookup(struct sidtab *s, u32 index)
223{
224	/* read entries only after reading count */
225	u32 count = smp_load_acquire(&s->count);
226
227	if (index >= count)
228		return NULL;
229
230	return sidtab_do_lookup(s, index, 0);
231}
232
233static struct sidtab_entry *sidtab_lookup_initial(struct sidtab *s, u32 sid)
234{
235	return s->isids[sid - 1].set ? &s->isids[sid - 1].entry : NULL;
236}
237
238static struct sidtab_entry *sidtab_search_core(struct sidtab *s, u32 sid,
239					       int force)
240{
241	if (sid != 0) {
242		struct sidtab_entry *entry;
243
244		if (sid > SECINITSID_NUM)
245			entry = sidtab_lookup(s, sid_to_index(sid));
246		else
247			entry = sidtab_lookup_initial(s, sid);
248		if (entry && (!entry->context.len || force))
249			return entry;
250	}
251
252	return sidtab_lookup_initial(s, SECINITSID_UNLABELED);
253}
254
255struct sidtab_entry *sidtab_search_entry(struct sidtab *s, u32 sid)
256{
257	return sidtab_search_core(s, sid, 0);
258}
259
260struct sidtab_entry *sidtab_search_entry_force(struct sidtab *s, u32 sid)
261{
262	return sidtab_search_core(s, sid, 1);
263}
264
265int sidtab_context_to_sid(struct sidtab *s, struct context *context,
266			  u32 *sid)
267{
268	unsigned long flags;
269	u32 count, hash = context_compute_hash(context);
270	struct sidtab_convert_params *convert;
271	struct sidtab_entry *dst, *dst_convert;
272	int rc;
273
274	*sid = context_to_sid(s, context, hash);
275	if (*sid)
276		return 0;
277
278	/* lock-free search failed: lock, re-search, and insert if not found */
279	spin_lock_irqsave(&s->lock, flags);
280
281	rc = 0;
282	*sid = context_to_sid(s, context, hash);
283	if (*sid)
284		goto out_unlock;
285
286	if (unlikely(s->frozen)) {
287		/*
288		 * This sidtab is now frozen - tell the caller to abort and
289		 * get the new one.
290		 */
291		rc = -ESTALE;
292		goto out_unlock;
293	}
294
295	count = s->count;
296
297	/* bail out if we already reached max entries */
298	rc = -EOVERFLOW;
299	if (count >= SIDTAB_MAX)
300		goto out_unlock;
301
302	/* insert context into new entry */
303	rc = -ENOMEM;
304	dst = sidtab_do_lookup(s, count, 1);
305	if (!dst)
306		goto out_unlock;
307
308	dst->sid = index_to_sid(count);
309	dst->hash = hash;
310
311	rc = context_cpy(&dst->context, context);
312	if (rc)
313		goto out_unlock;
314
315	/*
316	 * if we are building a new sidtab, we need to convert the context
317	 * and insert it there as well
318	 */
319	convert = s->convert;
320	if (convert) {
321		struct sidtab *target = convert->target;
322
323		rc = -ENOMEM;
324		dst_convert = sidtab_do_lookup(target, count, 1);
325		if (!dst_convert) {
326			context_destroy(&dst->context);
327			goto out_unlock;
328		}
329
330		rc = services_convert_context(convert->args,
331					      context, &dst_convert->context,
332					      GFP_ATOMIC);
333		if (rc) {
334			context_destroy(&dst->context);
335			goto out_unlock;
336		}
337		dst_convert->sid = index_to_sid(count);
338		dst_convert->hash = context_compute_hash(&dst_convert->context);
339		target->count = count + 1;
340
341		hash_add_rcu(target->context_to_sid,
342			     &dst_convert->list, dst_convert->hash);
343	}
344
345	if (context->len)
346		pr_info("SELinux:  Context %s is not valid (left unmapped).\n",
347			context->str);
348
349	*sid = index_to_sid(count);
350
351	/* write entries before updating count */
352	smp_store_release(&s->count, count + 1);
353	hash_add_rcu(s->context_to_sid, &dst->list, dst->hash);
354
355	rc = 0;
356out_unlock:
357	spin_unlock_irqrestore(&s->lock, flags);
358	return rc;
359}
360
361static void sidtab_convert_hashtable(struct sidtab *s, u32 count)
362{
363	struct sidtab_entry *entry;
364	u32 i;
365
366	for (i = 0; i < count; i++) {
367		entry = sidtab_do_lookup(s, i, 0);
368		entry->sid = index_to_sid(i);
369		entry->hash = context_compute_hash(&entry->context);
370
371		hash_add_rcu(s->context_to_sid, &entry->list, entry->hash);
372	}
 
373}
374
375static int sidtab_convert_tree(union sidtab_entry_inner *edst,
376			       union sidtab_entry_inner *esrc,
377			       u32 *pos, u32 count, u32 level,
378			       struct sidtab_convert_params *convert)
379{
380	int rc;
381	u32 i;
382
383	if (level != 0) {
384		if (!edst->ptr_inner) {
385			edst->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
386						  GFP_KERNEL);
387			if (!edst->ptr_inner)
388				return -ENOMEM;
389		}
390		i = 0;
391		while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
392			rc = sidtab_convert_tree(&edst->ptr_inner->entries[i],
393						 &esrc->ptr_inner->entries[i],
394						 pos, count, level - 1,
395						 convert);
396			if (rc)
397				return rc;
398			i++;
399		}
400	} else {
401		if (!edst->ptr_leaf) {
402			edst->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
403						 GFP_KERNEL);
404			if (!edst->ptr_leaf)
405				return -ENOMEM;
406		}
407		i = 0;
408		while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
409			rc = services_convert_context(convert->args,
410					&esrc->ptr_leaf->entries[i].context,
411					&edst->ptr_leaf->entries[i].context,
412					GFP_KERNEL);
413			if (rc)
414				return rc;
415			(*pos)++;
416			i++;
417		}
418		cond_resched();
419	}
420	return 0;
421}
422
423int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params)
424{
425	unsigned long flags;
426	u32 count, level, pos;
427	int rc;
428
429	spin_lock_irqsave(&s->lock, flags);
430
431	/* concurrent policy loads are not allowed */
432	if (s->convert) {
433		spin_unlock_irqrestore(&s->lock, flags);
434		return -EBUSY;
435	}
436
437	count = s->count;
438	level = sidtab_level_from_count(count);
439
440	/* allocate last leaf in the new sidtab (to avoid race with
441	 * live convert)
442	 */
443	rc = sidtab_do_lookup(params->target, count - 1, 1) ? 0 : -ENOMEM;
444	if (rc) {
445		spin_unlock_irqrestore(&s->lock, flags);
446		return rc;
447	}
448
449	/* set count in case no new entries are added during conversion */
450	params->target->count = count;
451
452	/* enable live convert of new entries */
453	s->convert = params;
454
455	/* we can safely convert the tree outside the lock */
456	spin_unlock_irqrestore(&s->lock, flags);
457
458	pr_info("SELinux:  Converting %u SID table entries...\n", count);
459
460	/* convert all entries not covered by live convert */
461	pos = 0;
462	rc = sidtab_convert_tree(&params->target->roots[level],
463				 &s->roots[level], &pos, count, level, params);
464	if (rc) {
465		/* we need to keep the old table - disable live convert */
466		spin_lock_irqsave(&s->lock, flags);
467		s->convert = NULL;
468		spin_unlock_irqrestore(&s->lock, flags);
469		return rc;
470	}
471	/*
472	 * The hashtable can also be modified in sidtab_context_to_sid()
473	 * so we must re-acquire the lock here.
474	 */
475	spin_lock_irqsave(&s->lock, flags);
476	sidtab_convert_hashtable(params->target, count);
477	spin_unlock_irqrestore(&s->lock, flags);
478
479	return 0;
480}
481
482void sidtab_cancel_convert(struct sidtab *s)
 
 
483{
 
 
484	unsigned long flags;
485
486	/* cancelling policy load - disable live convert of sidtab */
487	spin_lock_irqsave(&s->lock, flags);
488	s->convert = NULL;
489	spin_unlock_irqrestore(&s->lock, flags);
490}
491
492void sidtab_freeze_begin(struct sidtab *s, unsigned long *flags) __acquires(&s->lock)
493{
494	spin_lock_irqsave(&s->lock, *flags);
495	s->frozen = true;
496	s->convert = NULL;
497}
498void sidtab_freeze_end(struct sidtab *s, unsigned long *flags) __releases(&s->lock)
499{
500	spin_unlock_irqrestore(&s->lock, *flags);
501}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
502
503static void sidtab_destroy_entry(struct sidtab_entry *entry)
504{
505	context_destroy(&entry->context);
506#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
507	kfree(rcu_dereference_raw(entry->cache));
508#endif
509}
510
511static void sidtab_destroy_tree(union sidtab_entry_inner entry, u32 level)
512{
513	u32 i;
514
515	if (level != 0) {
516		struct sidtab_node_inner *node = entry.ptr_inner;
517
518		if (!node)
519			return;
520
521		for (i = 0; i < SIDTAB_INNER_ENTRIES; i++)
522			sidtab_destroy_tree(node->entries[i], level - 1);
523		kfree(node);
524	} else {
525		struct sidtab_node_leaf *node = entry.ptr_leaf;
526
527		if (!node)
528			return;
529
530		for (i = 0; i < SIDTAB_LEAF_ENTRIES; i++)
531			sidtab_destroy_entry(&node->entries[i]);
532		kfree(node);
533	}
 
 
 
 
534}
535
536void sidtab_destroy(struct sidtab *s)
537{
538	u32 i, level;
539
540	for (i = 0; i < SECINITSID_NUM; i++)
541		if (s->isids[i].set)
542			sidtab_destroy_entry(&s->isids[i].entry);
543
544	level = SIDTAB_MAX_LEVEL;
545	while (level && !s->roots[level].ptr_inner)
546		--level;
547
548	sidtab_destroy_tree(s->roots[level], level);
549	/*
550	 * The context_to_sid hashtable's objects are all shared
551	 * with the isids array and context tree, and so don't need
552	 * to be cleaned up here.
553	 */
 
 
 
 
 
 
 
 
554}
555
556#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
557
558void sidtab_sid2str_put(struct sidtab *s, struct sidtab_entry *entry,
559			const char *str, u32 str_len)
560{
561	struct sidtab_str_cache *cache, *victim = NULL;
562	unsigned long flags;
 
563
564	/* do not cache invalid contexts */
565	if (entry->context.len)
566		return;
567
568	spin_lock_irqsave(&s->cache_lock, flags);
569
570	cache = rcu_dereference_protected(entry->cache,
571					  lockdep_is_held(&s->cache_lock));
572	if (cache) {
573		/* entry in cache - just bump to the head of LRU list */
574		list_move(&cache->lru_member, &s->cache_lru_list);
575		goto out_unlock;
576	}
577
578	cache = kmalloc(struct_size(cache, str, str_len), GFP_ATOMIC);
579	if (!cache)
580		goto out_unlock;
581
582	if (s->cache_free_slots == 0) {
583		/* pop a cache entry from the tail and free it */
584		victim = container_of(s->cache_lru_list.prev,
585				      struct sidtab_str_cache, lru_member);
586		list_del(&victim->lru_member);
587		rcu_assign_pointer(victim->parent->cache, NULL);
588	} else {
589		s->cache_free_slots--;
590	}
591	cache->parent = entry;
592	cache->len = str_len;
593	memcpy(cache->str, str, str_len);
594	list_add(&cache->lru_member, &s->cache_lru_list);
595
596	rcu_assign_pointer(entry->cache, cache);
597
598out_unlock:
599	spin_unlock_irqrestore(&s->cache_lock, flags);
600	kfree_rcu(victim, rcu_member);
601}
602
603int sidtab_sid2str_get(struct sidtab *s, struct sidtab_entry *entry,
604		       char **out, u32 *out_len)
605{
606	struct sidtab_str_cache *cache;
607	int rc = 0;
608
609	if (entry->context.len)
610		return -ENOENT; /* do not cache invalid contexts */
611
612	rcu_read_lock();
613
614	cache = rcu_dereference(entry->cache);
615	if (!cache) {
616		rc = -ENOENT;
617	} else {
618		*out_len = cache->len;
619		if (out) {
620			*out = kmemdup(cache->str, cache->len, GFP_ATOMIC);
621			if (!*out)
622				rc = -ENOMEM;
623		}
624	}
625
626	rcu_read_unlock();
627
628	if (!rc && out)
629		sidtab_sid2str_put(s, entry, *out, *out_len);
630	return rc;
631}
632
633#endif /* CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 */
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Implementation of the SID table type.
  4 *
  5 * Author : Stephen Smalley, <sds@tycho.nsa.gov>
 
 
 
  6 */
 
  7#include <linux/kernel.h>
 
 
  8#include <linux/slab.h>
 
  9#include <linux/spinlock.h>
 10#include <linux/errno.h>
 11#include "flask.h"
 12#include "security.h"
 13#include "sidtab.h"
 
 
 
 
 
 
 
 
 
 14
 15#define SIDTAB_HASH(sid) \
 16(sid & SIDTAB_HASH_MASK)
 17
 18int sidtab_init(struct sidtab *s)
 19{
 20	int i;
 
 
 
 
 
 
 
 
 
 
 21
 22	s->htable = kmalloc_array(SIDTAB_SIZE, sizeof(*s->htable), GFP_ATOMIC);
 23	if (!s->htable)
 24		return -ENOMEM;
 25	for (i = 0; i < SIDTAB_SIZE; i++)
 26		s->htable[i] = NULL;
 27	s->nel = 0;
 28	s->next_sid = 1;
 29	s->shutdown = 0;
 30	spin_lock_init(&s->lock);
 
 
 
 
 
 
 
 31	return 0;
 32}
 33
 34int sidtab_insert(struct sidtab *s, u32 sid, struct context *context)
 35{
 36	int hvalue;
 37	struct sidtab_node *prev, *cur, *newnode;
 38
 39	if (!s)
 40		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 41
 42	hvalue = SIDTAB_HASH(sid);
 43	prev = NULL;
 44	cur = s->htable[hvalue];
 45	while (cur && sid > cur->sid) {
 46		prev = cur;
 47		cur = cur->next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 48	}
 49
 50	if (cur && sid == cur->sid)
 51		return -EEXIST;
 52
 53	newnode = kmalloc(sizeof(*newnode), GFP_ATOMIC);
 54	if (!newnode)
 55		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 56
 57	newnode->sid = sid;
 58	if (context_cpy(&newnode->context, context)) {
 59		kfree(newnode);
 60		return -ENOMEM;
 61	}
 
 
 
 
 
 
 62
 63	if (prev) {
 64		newnode->next = prev->next;
 65		wmb();
 66		prev->next = newnode;
 67	} else {
 68		newnode->next = s->htable[hvalue];
 69		wmb();
 70		s->htable[hvalue] = newnode;
 71	}
 72
 73	s->nel++;
 74	if (sid >= s->next_sid)
 75		s->next_sid = sid + 1;
 
 
 
 
 76	return 0;
 77}
 78
 79static struct context *sidtab_search_core(struct sidtab *s, u32 sid, int force)
 
 80{
 81	int hvalue;
 82	struct sidtab_node *cur;
 83
 84	if (!s)
 
 
 
 
 
 85		return NULL;
 86
 87	hvalue = SIDTAB_HASH(sid);
 88	cur = s->htable[hvalue];
 89	while (cur && sid > cur->sid)
 90		cur = cur->next;
 91
 92	if (force && cur && sid == cur->sid && cur->context.len)
 93		return &cur->context;
 94
 95	if (!cur || sid != cur->sid || cur->context.len) {
 96		/* Remap invalid SIDs to the unlabeled SID. */
 97		sid = SECINITSID_UNLABELED;
 98		hvalue = SIDTAB_HASH(sid);
 99		cur = s->htable[hvalue];
100		while (cur && sid > cur->sid)
101			cur = cur->next;
102		if (!cur || sid != cur->sid)
 
 
 
 
 
 
103			return NULL;
104	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105
106	return &cur->context;
107}
108
109struct context *sidtab_search(struct sidtab *s, u32 sid)
110{
111	return sidtab_search_core(s, sid, 0);
112}
113
114struct context *sidtab_search_force(struct sidtab *s, u32 sid)
115{
116	return sidtab_search_core(s, sid, 1);
117}
118
119int sidtab_map(struct sidtab *s,
120	       int (*apply) (u32 sid,
121			     struct context *context,
122			     void *args),
123	       void *args)
124{
125	int i, rc = 0;
126	struct sidtab_node *cur;
127
128	if (!s)
129		goto out;
130
131	for (i = 0; i < SIDTAB_SIZE; i++) {
132		cur = s->htable[i];
133		while (cur) {
134			rc = apply(cur->sid, &cur->context, args);
135			if (rc)
136				goto out;
137			cur = cur->next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138		}
 
 
 
 
 
 
139	}
140out:
 
 
 
 
 
 
 
 
 
 
 
 
 
141	return rc;
142}
143
144static void sidtab_update_cache(struct sidtab *s, struct sidtab_node *n, int loc)
145{
146	BUG_ON(loc >= SIDTAB_CACHE_LEN);
 
147
148	while (loc > 0) {
149		s->cache[loc] = s->cache[loc - 1];
150		loc--;
 
 
 
151	}
152	s->cache[0] = n;
153}
154
155static inline u32 sidtab_search_context(struct sidtab *s,
156						  struct context *context)
 
 
157{
158	int i;
159	struct sidtab_node *cur;
160
161	for (i = 0; i < SIDTAB_SIZE; i++) {
162		cur = s->htable[i];
163		while (cur) {
164			if (context_cmp(&cur->context, context)) {
165				sidtab_update_cache(s, cur, SIDTAB_CACHE_LEN - 1);
166				return cur->sid;
167			}
168			cur = cur->next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169		}
 
 
 
 
 
 
 
 
 
 
 
 
170	}
171	return 0;
172}
173
174static inline u32 sidtab_search_cache(struct sidtab *s, struct context *context)
175{
176	int i;
177	struct sidtab_node *node;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178
179	for (i = 0; i < SIDTAB_CACHE_LEN; i++) {
180		node = s->cache[i];
181		if (unlikely(!node))
182			return 0;
183		if (context_cmp(&node->context, context)) {
184			sidtab_update_cache(s, node, i);
185			return node->sid;
186		}
 
 
187	}
 
 
 
 
 
 
 
 
188	return 0;
189}
190
191int sidtab_context_to_sid(struct sidtab *s,
192			  struct context *context,
193			  u32 *out_sid)
194{
195	u32 sid;
196	int ret = 0;
197	unsigned long flags;
198
199	*out_sid = SECSID_NULL;
 
 
 
 
200
201	sid  = sidtab_search_cache(s, context);
202	if (!sid)
203		sid = sidtab_search_context(s, context);
204	if (!sid) {
205		spin_lock_irqsave(&s->lock, flags);
206		/* Rescan now that we hold the lock. */
207		sid = sidtab_search_context(s, context);
208		if (sid)
209			goto unlock_out;
210		/* No SID exists for the context.  Allocate a new one. */
211		if (s->next_sid == UINT_MAX || s->shutdown) {
212			ret = -ENOMEM;
213			goto unlock_out;
214		}
215		sid = s->next_sid++;
216		if (context->len)
217			printk(KERN_INFO
218		       "SELinux:  Context %s is not valid (left unmapped).\n",
219			       context->str);
220		ret = sidtab_insert(s, sid, context);
221		if (ret)
222			s->next_sid--;
223unlock_out:
224		spin_unlock_irqrestore(&s->lock, flags);
225	}
226
227	if (ret)
228		return ret;
229
230	*out_sid = sid;
231	return 0;
 
232}
233
234void sidtab_hash_eval(struct sidtab *h, char *tag)
235{
236	int i, chain_len, slots_used, max_chain_len;
237	struct sidtab_node *cur;
 
 
238
239	slots_used = 0;
240	max_chain_len = 0;
241	for (i = 0; i < SIDTAB_SIZE; i++) {
242		cur = h->htable[i];
243		if (cur) {
244			slots_used++;
245			chain_len = 0;
246			while (cur) {
247				chain_len++;
248				cur = cur->next;
249			}
250
251			if (chain_len > max_chain_len)
252				max_chain_len = chain_len;
253		}
254	}
255
256	printk(KERN_DEBUG "%s:  %d entries and %d/%d buckets used, longest "
257	       "chain length %d\n", tag, h->nel, slots_used, SIDTAB_SIZE,
258	       max_chain_len);
259}
260
261void sidtab_destroy(struct sidtab *s)
262{
263	int i;
264	struct sidtab_node *cur, *temp;
 
 
 
265
266	if (!s)
267		return;
 
268
269	for (i = 0; i < SIDTAB_SIZE; i++) {
270		cur = s->htable[i];
271		while (cur) {
272			temp = cur;
273			cur = cur->next;
274			context_destroy(&temp->context);
275			kfree(temp);
276		}
277		s->htable[i] = NULL;
278	}
279	kfree(s->htable);
280	s->htable = NULL;
281	s->nel = 0;
282	s->next_sid = 1;
283}
284
285void sidtab_set(struct sidtab *dst, struct sidtab *src)
 
 
 
286{
 
287	unsigned long flags;
288	int i;
289
290	spin_lock_irqsave(&src->lock, flags);
291	dst->htable = src->htable;
292	dst->nel = src->nel;
293	dst->next_sid = src->next_sid;
294	dst->shutdown = 0;
295	for (i = 0; i < SIDTAB_CACHE_LEN; i++)
296		dst->cache[i] = NULL;
297	spin_unlock_irqrestore(&src->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
298}
299
300void sidtab_shutdown(struct sidtab *s)
 
301{
302	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
303
304	spin_lock_irqsave(&s->lock, flags);
305	s->shutdown = 1;
306	spin_unlock_irqrestore(&s->lock, flags);
307}