Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *		Changes to use preallocated sigqueue structures
  11 *		to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/proc_fs.h>
  26#include <linux/tty.h>
  27#include <linux/binfmts.h>
  28#include <linux/coredump.h>
  29#include <linux/security.h>
  30#include <linux/syscalls.h>
  31#include <linux/ptrace.h>
  32#include <linux/signal.h>
  33#include <linux/signalfd.h>
  34#include <linux/ratelimit.h>
  35#include <linux/task_work.h>
  36#include <linux/capability.h>
  37#include <linux/freezer.h>
  38#include <linux/pid_namespace.h>
  39#include <linux/nsproxy.h>
  40#include <linux/user_namespace.h>
  41#include <linux/uprobes.h>
  42#include <linux/compat.h>
  43#include <linux/cn_proc.h>
  44#include <linux/compiler.h>
  45#include <linux/posix-timers.h>
  46#include <linux/cgroup.h>
  47#include <linux/audit.h>
  48
  49#define CREATE_TRACE_POINTS
  50#include <trace/events/signal.h>
  51
  52#include <asm/param.h>
  53#include <linux/uaccess.h>
  54#include <asm/unistd.h>
  55#include <asm/siginfo.h>
  56#include <asm/cacheflush.h>
  57#include <asm/syscall.h>	/* for syscall_get_* */
  58
  59/*
  60 * SLAB caches for signal bits.
  61 */
  62
  63static struct kmem_cache *sigqueue_cachep;
  64
  65int print_fatal_signals __read_mostly;
  66
  67static void __user *sig_handler(struct task_struct *t, int sig)
  68{
  69	return t->sighand->action[sig - 1].sa.sa_handler;
  70}
  71
  72static inline bool sig_handler_ignored(void __user *handler, int sig)
  73{
  74	/* Is it explicitly or implicitly ignored? */
  75	return handler == SIG_IGN ||
  76	       (handler == SIG_DFL && sig_kernel_ignore(sig));
  77}
  78
  79static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  80{
  81	void __user *handler;
  82
  83	handler = sig_handler(t, sig);
  84
  85	/* SIGKILL and SIGSTOP may not be sent to the global init */
  86	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  87		return true;
  88
  89	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  90	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  91		return true;
  92
  93	/* Only allow kernel generated signals to this kthread */
  94	if (unlikely((t->flags & PF_KTHREAD) &&
  95		     (handler == SIG_KTHREAD_KERNEL) && !force))
  96		return true;
  97
  98	return sig_handler_ignored(handler, sig);
  99}
 100
 101static bool sig_ignored(struct task_struct *t, int sig, bool force)
 102{
 103	/*
 104	 * Blocked signals are never ignored, since the
 105	 * signal handler may change by the time it is
 106	 * unblocked.
 107	 */
 108	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 109		return false;
 110
 111	/*
 112	 * Tracers may want to know about even ignored signal unless it
 113	 * is SIGKILL which can't be reported anyway but can be ignored
 114	 * by SIGNAL_UNKILLABLE task.
 115	 */
 116	if (t->ptrace && sig != SIGKILL)
 117		return false;
 118
 119	return sig_task_ignored(t, sig, force);
 120}
 121
 122/*
 123 * Re-calculate pending state from the set of locally pending
 124 * signals, globally pending signals, and blocked signals.
 125 */
 126static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 127{
 128	unsigned long ready;
 129	long i;
 130
 131	switch (_NSIG_WORDS) {
 132	default:
 133		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 134			ready |= signal->sig[i] &~ blocked->sig[i];
 135		break;
 136
 137	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 138		ready |= signal->sig[2] &~ blocked->sig[2];
 139		ready |= signal->sig[1] &~ blocked->sig[1];
 140		ready |= signal->sig[0] &~ blocked->sig[0];
 141		break;
 142
 143	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 144		ready |= signal->sig[0] &~ blocked->sig[0];
 145		break;
 146
 147	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 148	}
 149	return ready !=	0;
 150}
 151
 152#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 153
 154static bool recalc_sigpending_tsk(struct task_struct *t)
 155{
 156	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 157	    PENDING(&t->pending, &t->blocked) ||
 158	    PENDING(&t->signal->shared_pending, &t->blocked) ||
 159	    cgroup_task_frozen(t)) {
 160		set_tsk_thread_flag(t, TIF_SIGPENDING);
 161		return true;
 162	}
 163
 164	/*
 165	 * We must never clear the flag in another thread, or in current
 166	 * when it's possible the current syscall is returning -ERESTART*.
 167	 * So we don't clear it here, and only callers who know they should do.
 168	 */
 169	return false;
 170}
 171
 172/*
 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 174 * This is superfluous when called on current, the wakeup is a harmless no-op.
 175 */
 176void recalc_sigpending_and_wake(struct task_struct *t)
 177{
 178	if (recalc_sigpending_tsk(t))
 179		signal_wake_up(t, 0);
 180}
 181
 182void recalc_sigpending(void)
 183{
 184	if (!recalc_sigpending_tsk(current) && !freezing(current))
 
 185		clear_thread_flag(TIF_SIGPENDING);
 186
 187}
 188EXPORT_SYMBOL(recalc_sigpending);
 189
 190void calculate_sigpending(void)
 191{
 192	/* Have any signals or users of TIF_SIGPENDING been delayed
 193	 * until after fork?
 194	 */
 195	spin_lock_irq(&current->sighand->siglock);
 196	set_tsk_thread_flag(current, TIF_SIGPENDING);
 197	recalc_sigpending();
 198	spin_unlock_irq(&current->sighand->siglock);
 199}
 200
 201/* Given the mask, find the first available signal that should be serviced. */
 202
 203#define SYNCHRONOUS_MASK \
 204	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 205	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 206
 207int next_signal(struct sigpending *pending, sigset_t *mask)
 208{
 209	unsigned long i, *s, *m, x;
 210	int sig = 0;
 211
 212	s = pending->signal.sig;
 213	m = mask->sig;
 214
 215	/*
 216	 * Handle the first word specially: it contains the
 217	 * synchronous signals that need to be dequeued first.
 218	 */
 219	x = *s &~ *m;
 220	if (x) {
 221		if (x & SYNCHRONOUS_MASK)
 222			x &= SYNCHRONOUS_MASK;
 223		sig = ffz(~x) + 1;
 224		return sig;
 225	}
 226
 227	switch (_NSIG_WORDS) {
 228	default:
 229		for (i = 1; i < _NSIG_WORDS; ++i) {
 230			x = *++s &~ *++m;
 231			if (!x)
 232				continue;
 233			sig = ffz(~x) + i*_NSIG_BPW + 1;
 234			break;
 235		}
 236		break;
 237
 238	case 2:
 239		x = s[1] &~ m[1];
 240		if (!x)
 241			break;
 242		sig = ffz(~x) + _NSIG_BPW + 1;
 243		break;
 244
 245	case 1:
 246		/* Nothing to do */
 247		break;
 248	}
 249
 250	return sig;
 251}
 252
 253static inline void print_dropped_signal(int sig)
 254{
 255	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 256
 257	if (!print_fatal_signals)
 258		return;
 259
 260	if (!__ratelimit(&ratelimit_state))
 261		return;
 262
 263	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 264				current->comm, current->pid, sig);
 265}
 266
 267/**
 268 * task_set_jobctl_pending - set jobctl pending bits
 269 * @task: target task
 270 * @mask: pending bits to set
 271 *
 272 * Clear @mask from @task->jobctl.  @mask must be subset of
 273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 274 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 275 * cleared.  If @task is already being killed or exiting, this function
 276 * becomes noop.
 277 *
 278 * CONTEXT:
 279 * Must be called with @task->sighand->siglock held.
 280 *
 281 * RETURNS:
 282 * %true if @mask is set, %false if made noop because @task was dying.
 283 */
 284bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 285{
 286	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 287			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 288	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 289
 290	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 291		return false;
 292
 293	if (mask & JOBCTL_STOP_SIGMASK)
 294		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 295
 296	task->jobctl |= mask;
 297	return true;
 298}
 299
 300/**
 301 * task_clear_jobctl_trapping - clear jobctl trapping bit
 302 * @task: target task
 303 *
 304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 305 * Clear it and wake up the ptracer.  Note that we don't need any further
 306 * locking.  @task->siglock guarantees that @task->parent points to the
 307 * ptracer.
 308 *
 309 * CONTEXT:
 310 * Must be called with @task->sighand->siglock held.
 311 */
 312void task_clear_jobctl_trapping(struct task_struct *task)
 313{
 314	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 315		task->jobctl &= ~JOBCTL_TRAPPING;
 316		smp_mb();	/* advised by wake_up_bit() */
 317		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 318	}
 319}
 320
 321/**
 322 * task_clear_jobctl_pending - clear jobctl pending bits
 323 * @task: target task
 324 * @mask: pending bits to clear
 325 *
 326 * Clear @mask from @task->jobctl.  @mask must be subset of
 327 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 328 * STOP bits are cleared together.
 329 *
 330 * If clearing of @mask leaves no stop or trap pending, this function calls
 331 * task_clear_jobctl_trapping().
 332 *
 333 * CONTEXT:
 334 * Must be called with @task->sighand->siglock held.
 335 */
 336void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 337{
 338	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 339
 340	if (mask & JOBCTL_STOP_PENDING)
 341		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 342
 343	task->jobctl &= ~mask;
 344
 345	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 346		task_clear_jobctl_trapping(task);
 347}
 348
 349/**
 350 * task_participate_group_stop - participate in a group stop
 351 * @task: task participating in a group stop
 352 *
 353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 354 * Group stop states are cleared and the group stop count is consumed if
 355 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 356 * stop, the appropriate `SIGNAL_*` flags are set.
 357 *
 358 * CONTEXT:
 359 * Must be called with @task->sighand->siglock held.
 360 *
 361 * RETURNS:
 362 * %true if group stop completion should be notified to the parent, %false
 363 * otherwise.
 364 */
 365static bool task_participate_group_stop(struct task_struct *task)
 366{
 367	struct signal_struct *sig = task->signal;
 368	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 369
 370	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 371
 372	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 373
 374	if (!consume)
 375		return false;
 376
 377	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 378		sig->group_stop_count--;
 379
 380	/*
 381	 * Tell the caller to notify completion iff we are entering into a
 382	 * fresh group stop.  Read comment in do_signal_stop() for details.
 383	 */
 384	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 385		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 386		return true;
 387	}
 388	return false;
 389}
 390
 391void task_join_group_stop(struct task_struct *task)
 392{
 393	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
 394	struct signal_struct *sig = current->signal;
 395
 396	if (sig->group_stop_count) {
 397		sig->group_stop_count++;
 398		mask |= JOBCTL_STOP_CONSUME;
 399	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
 400		return;
 401
 402	/* Have the new thread join an on-going signal group stop */
 403	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
 404}
 405
 406/*
 407 * allocate a new signal queue record
 408 * - this may be called without locks if and only if t == current, otherwise an
 409 *   appropriate lock must be held to stop the target task from exiting
 410 */
 411static struct sigqueue *
 412__sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
 413		 int override_rlimit, const unsigned int sigqueue_flags)
 414{
 415	struct sigqueue *q = NULL;
 416	struct ucounts *ucounts = NULL;
 417	long sigpending;
 418
 419	/*
 420	 * Protect access to @t credentials. This can go away when all
 421	 * callers hold rcu read lock.
 422	 *
 423	 * NOTE! A pending signal will hold on to the user refcount,
 424	 * and we get/put the refcount only when the sigpending count
 425	 * changes from/to zero.
 426	 */
 427	rcu_read_lock();
 428	ucounts = task_ucounts(t);
 429	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 430	rcu_read_unlock();
 431	if (!sigpending)
 432		return NULL;
 433
 434	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
 435		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
 
 
 436	} else {
 437		print_dropped_signal(sig);
 438	}
 439
 440	if (unlikely(q == NULL)) {
 441		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 
 442	} else {
 443		INIT_LIST_HEAD(&q->list);
 444		q->flags = sigqueue_flags;
 445		q->ucounts = ucounts;
 446	}
 
 447	return q;
 448}
 449
 450static void __sigqueue_free(struct sigqueue *q)
 451{
 452	if (q->flags & SIGQUEUE_PREALLOC)
 453		return;
 454	if (q->ucounts) {
 455		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
 456		q->ucounts = NULL;
 457	}
 458	kmem_cache_free(sigqueue_cachep, q);
 459}
 460
 461void flush_sigqueue(struct sigpending *queue)
 462{
 463	struct sigqueue *q;
 464
 465	sigemptyset(&queue->signal);
 466	while (!list_empty(&queue->list)) {
 467		q = list_entry(queue->list.next, struct sigqueue , list);
 468		list_del_init(&q->list);
 469		__sigqueue_free(q);
 470	}
 471}
 472
 473/*
 474 * Flush all pending signals for this kthread.
 475 */
 476void flush_signals(struct task_struct *t)
 477{
 478	unsigned long flags;
 479
 480	spin_lock_irqsave(&t->sighand->siglock, flags);
 481	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 482	flush_sigqueue(&t->pending);
 483	flush_sigqueue(&t->signal->shared_pending);
 484	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 485}
 486EXPORT_SYMBOL(flush_signals);
 487
 488#ifdef CONFIG_POSIX_TIMERS
 489static void __flush_itimer_signals(struct sigpending *pending)
 490{
 491	sigset_t signal, retain;
 492	struct sigqueue *q, *n;
 493
 494	signal = pending->signal;
 495	sigemptyset(&retain);
 496
 497	list_for_each_entry_safe(q, n, &pending->list, list) {
 498		int sig = q->info.si_signo;
 499
 500		if (likely(q->info.si_code != SI_TIMER)) {
 501			sigaddset(&retain, sig);
 502		} else {
 503			sigdelset(&signal, sig);
 504			list_del_init(&q->list);
 505			__sigqueue_free(q);
 506		}
 507	}
 508
 509	sigorsets(&pending->signal, &signal, &retain);
 510}
 511
 512void flush_itimer_signals(void)
 513{
 514	struct task_struct *tsk = current;
 515	unsigned long flags;
 516
 517	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 518	__flush_itimer_signals(&tsk->pending);
 519	__flush_itimer_signals(&tsk->signal->shared_pending);
 520	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 521}
 522#endif
 523
 524void ignore_signals(struct task_struct *t)
 525{
 526	int i;
 527
 528	for (i = 0; i < _NSIG; ++i)
 529		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 530
 531	flush_signals(t);
 532}
 533
 534/*
 535 * Flush all handlers for a task.
 536 */
 537
 538void
 539flush_signal_handlers(struct task_struct *t, int force_default)
 540{
 541	int i;
 542	struct k_sigaction *ka = &t->sighand->action[0];
 543	for (i = _NSIG ; i != 0 ; i--) {
 544		if (force_default || ka->sa.sa_handler != SIG_IGN)
 545			ka->sa.sa_handler = SIG_DFL;
 546		ka->sa.sa_flags = 0;
 547#ifdef __ARCH_HAS_SA_RESTORER
 548		ka->sa.sa_restorer = NULL;
 549#endif
 550		sigemptyset(&ka->sa.sa_mask);
 551		ka++;
 552	}
 553}
 554
 555bool unhandled_signal(struct task_struct *tsk, int sig)
 556{
 557	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 558	if (is_global_init(tsk))
 559		return true;
 560
 561	if (handler != SIG_IGN && handler != SIG_DFL)
 562		return false;
 563
 564	/* if ptraced, let the tracer determine */
 565	return !tsk->ptrace;
 566}
 567
 568static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 569			   bool *resched_timer)
 570{
 571	struct sigqueue *q, *first = NULL;
 572
 573	/*
 574	 * Collect the siginfo appropriate to this signal.  Check if
 575	 * there is another siginfo for the same signal.
 576	*/
 577	list_for_each_entry(q, &list->list, list) {
 578		if (q->info.si_signo == sig) {
 579			if (first)
 580				goto still_pending;
 581			first = q;
 582		}
 583	}
 584
 585	sigdelset(&list->signal, sig);
 586
 587	if (first) {
 588still_pending:
 589		list_del_init(&first->list);
 590		copy_siginfo(info, &first->info);
 591
 592		*resched_timer =
 593			(first->flags & SIGQUEUE_PREALLOC) &&
 594			(info->si_code == SI_TIMER) &&
 595			(info->si_sys_private);
 596
 597		__sigqueue_free(first);
 598	} else {
 599		/*
 600		 * Ok, it wasn't in the queue.  This must be
 601		 * a fast-pathed signal or we must have been
 602		 * out of queue space.  So zero out the info.
 603		 */
 604		clear_siginfo(info);
 605		info->si_signo = sig;
 606		info->si_errno = 0;
 607		info->si_code = SI_USER;
 608		info->si_pid = 0;
 609		info->si_uid = 0;
 610	}
 611}
 612
 613static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 614			kernel_siginfo_t *info, bool *resched_timer)
 615{
 616	int sig = next_signal(pending, mask);
 617
 618	if (sig)
 619		collect_signal(sig, pending, info, resched_timer);
 620	return sig;
 621}
 622
 623/*
 624 * Dequeue a signal and return the element to the caller, which is
 625 * expected to free it.
 626 *
 627 * All callers have to hold the siglock.
 628 */
 629int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
 630		   kernel_siginfo_t *info, enum pid_type *type)
 631{
 632	bool resched_timer = false;
 633	int signr;
 634
 635	/* We only dequeue private signals from ourselves, we don't let
 636	 * signalfd steal them
 637	 */
 638	*type = PIDTYPE_PID;
 639	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 640	if (!signr) {
 641		*type = PIDTYPE_TGID;
 642		signr = __dequeue_signal(&tsk->signal->shared_pending,
 643					 mask, info, &resched_timer);
 644#ifdef CONFIG_POSIX_TIMERS
 645		/*
 646		 * itimer signal ?
 647		 *
 648		 * itimers are process shared and we restart periodic
 649		 * itimers in the signal delivery path to prevent DoS
 650		 * attacks in the high resolution timer case. This is
 651		 * compliant with the old way of self-restarting
 652		 * itimers, as the SIGALRM is a legacy signal and only
 653		 * queued once. Changing the restart behaviour to
 654		 * restart the timer in the signal dequeue path is
 655		 * reducing the timer noise on heavy loaded !highres
 656		 * systems too.
 657		 */
 658		if (unlikely(signr == SIGALRM)) {
 659			struct hrtimer *tmr = &tsk->signal->real_timer;
 660
 661			if (!hrtimer_is_queued(tmr) &&
 662			    tsk->signal->it_real_incr != 0) {
 663				hrtimer_forward(tmr, tmr->base->get_time(),
 664						tsk->signal->it_real_incr);
 665				hrtimer_restart(tmr);
 666			}
 667		}
 668#endif
 669	}
 670
 671	recalc_sigpending();
 672	if (!signr)
 673		return 0;
 674
 675	if (unlikely(sig_kernel_stop(signr))) {
 676		/*
 677		 * Set a marker that we have dequeued a stop signal.  Our
 678		 * caller might release the siglock and then the pending
 679		 * stop signal it is about to process is no longer in the
 680		 * pending bitmasks, but must still be cleared by a SIGCONT
 681		 * (and overruled by a SIGKILL).  So those cases clear this
 682		 * shared flag after we've set it.  Note that this flag may
 683		 * remain set after the signal we return is ignored or
 684		 * handled.  That doesn't matter because its only purpose
 685		 * is to alert stop-signal processing code when another
 686		 * processor has come along and cleared the flag.
 687		 */
 688		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 689	}
 690#ifdef CONFIG_POSIX_TIMERS
 691	if (resched_timer) {
 692		/*
 693		 * Release the siglock to ensure proper locking order
 694		 * of timer locks outside of siglocks.  Note, we leave
 695		 * irqs disabled here, since the posix-timers code is
 696		 * about to disable them again anyway.
 697		 */
 698		spin_unlock(&tsk->sighand->siglock);
 699		posixtimer_rearm(info);
 700		spin_lock(&tsk->sighand->siglock);
 701
 702		/* Don't expose the si_sys_private value to userspace */
 703		info->si_sys_private = 0;
 704	}
 705#endif
 706	return signr;
 707}
 708EXPORT_SYMBOL_GPL(dequeue_signal);
 709
 710static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 711{
 712	struct task_struct *tsk = current;
 713	struct sigpending *pending = &tsk->pending;
 714	struct sigqueue *q, *sync = NULL;
 715
 716	/*
 717	 * Might a synchronous signal be in the queue?
 718	 */
 719	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 720		return 0;
 721
 722	/*
 723	 * Return the first synchronous signal in the queue.
 724	 */
 725	list_for_each_entry(q, &pending->list, list) {
 726		/* Synchronous signals have a positive si_code */
 727		if ((q->info.si_code > SI_USER) &&
 728		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 729			sync = q;
 730			goto next;
 731		}
 732	}
 733	return 0;
 734next:
 735	/*
 736	 * Check if there is another siginfo for the same signal.
 737	 */
 738	list_for_each_entry_continue(q, &pending->list, list) {
 739		if (q->info.si_signo == sync->info.si_signo)
 740			goto still_pending;
 741	}
 742
 743	sigdelset(&pending->signal, sync->info.si_signo);
 744	recalc_sigpending();
 745still_pending:
 746	list_del_init(&sync->list);
 747	copy_siginfo(info, &sync->info);
 748	__sigqueue_free(sync);
 749	return info->si_signo;
 750}
 751
 752/*
 753 * Tell a process that it has a new active signal..
 754 *
 755 * NOTE! we rely on the previous spin_lock to
 756 * lock interrupts for us! We can only be called with
 757 * "siglock" held, and the local interrupt must
 758 * have been disabled when that got acquired!
 759 *
 760 * No need to set need_resched since signal event passing
 761 * goes through ->blocked
 762 */
 763void signal_wake_up_state(struct task_struct *t, unsigned int state)
 764{
 765	lockdep_assert_held(&t->sighand->siglock);
 766
 767	set_tsk_thread_flag(t, TIF_SIGPENDING);
 768
 769	/*
 770	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 771	 * case. We don't check t->state here because there is a race with it
 772	 * executing another processor and just now entering stopped state.
 773	 * By using wake_up_state, we ensure the process will wake up and
 774	 * handle its death signal.
 775	 */
 776	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 777		kick_process(t);
 778}
 779
 780/*
 781 * Remove signals in mask from the pending set and queue.
 782 * Returns 1 if any signals were found.
 783 *
 784 * All callers must be holding the siglock.
 785 */
 786static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 787{
 788	struct sigqueue *q, *n;
 789	sigset_t m;
 790
 791	sigandsets(&m, mask, &s->signal);
 792	if (sigisemptyset(&m))
 793		return;
 794
 795	sigandnsets(&s->signal, &s->signal, mask);
 796	list_for_each_entry_safe(q, n, &s->list, list) {
 797		if (sigismember(mask, q->info.si_signo)) {
 798			list_del_init(&q->list);
 799			__sigqueue_free(q);
 800		}
 801	}
 
 802}
 803
 804static inline int is_si_special(const struct kernel_siginfo *info)
 805{
 806	return info <= SEND_SIG_PRIV;
 807}
 808
 809static inline bool si_fromuser(const struct kernel_siginfo *info)
 810{
 811	return info == SEND_SIG_NOINFO ||
 812		(!is_si_special(info) && SI_FROMUSER(info));
 813}
 814
 815/*
 816 * called with RCU read lock from check_kill_permission()
 817 */
 818static bool kill_ok_by_cred(struct task_struct *t)
 819{
 820	const struct cred *cred = current_cred();
 821	const struct cred *tcred = __task_cred(t);
 822
 823	return uid_eq(cred->euid, tcred->suid) ||
 824	       uid_eq(cred->euid, tcred->uid) ||
 825	       uid_eq(cred->uid, tcred->suid) ||
 826	       uid_eq(cred->uid, tcred->uid) ||
 827	       ns_capable(tcred->user_ns, CAP_KILL);
 
 
 
 
 
 828}
 829
 830/*
 831 * Bad permissions for sending the signal
 832 * - the caller must hold the RCU read lock
 833 */
 834static int check_kill_permission(int sig, struct kernel_siginfo *info,
 835				 struct task_struct *t)
 836{
 837	struct pid *sid;
 838	int error;
 839
 840	if (!valid_signal(sig))
 841		return -EINVAL;
 842
 843	if (!si_fromuser(info))
 844		return 0;
 845
 846	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 847	if (error)
 848		return error;
 849
 850	if (!same_thread_group(current, t) &&
 851	    !kill_ok_by_cred(t)) {
 852		switch (sig) {
 853		case SIGCONT:
 854			sid = task_session(t);
 855			/*
 856			 * We don't return the error if sid == NULL. The
 857			 * task was unhashed, the caller must notice this.
 858			 */
 859			if (!sid || sid == task_session(current))
 860				break;
 861			fallthrough;
 862		default:
 863			return -EPERM;
 864		}
 865	}
 866
 867	return security_task_kill(t, info, sig, NULL);
 868}
 869
 870/**
 871 * ptrace_trap_notify - schedule trap to notify ptracer
 872 * @t: tracee wanting to notify tracer
 873 *
 874 * This function schedules sticky ptrace trap which is cleared on the next
 875 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 876 * ptracer.
 877 *
 878 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 879 * ptracer is listening for events, tracee is woken up so that it can
 880 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 881 * eventually taken without returning to userland after the existing traps
 882 * are finished by PTRACE_CONT.
 883 *
 884 * CONTEXT:
 885 * Must be called with @task->sighand->siglock held.
 886 */
 887static void ptrace_trap_notify(struct task_struct *t)
 888{
 889	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 890	lockdep_assert_held(&t->sighand->siglock);
 891
 892	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 893	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 894}
 895
 896/*
 897 * Handle magic process-wide effects of stop/continue signals. Unlike
 898 * the signal actions, these happen immediately at signal-generation
 899 * time regardless of blocking, ignoring, or handling.  This does the
 900 * actual continuing for SIGCONT, but not the actual stopping for stop
 901 * signals. The process stop is done as a signal action for SIG_DFL.
 902 *
 903 * Returns true if the signal should be actually delivered, otherwise
 904 * it should be dropped.
 905 */
 906static bool prepare_signal(int sig, struct task_struct *p, bool force)
 907{
 908	struct signal_struct *signal = p->signal;
 909	struct task_struct *t;
 910	sigset_t flush;
 911
 912	if (signal->flags & SIGNAL_GROUP_EXIT) {
 913		if (signal->core_state)
 914			return sig == SIGKILL;
 915		/*
 916		 * The process is in the middle of dying, drop the signal.
 917		 */
 918		return false;
 919	} else if (sig_kernel_stop(sig)) {
 920		/*
 921		 * This is a stop signal.  Remove SIGCONT from all queues.
 922		 */
 923		siginitset(&flush, sigmask(SIGCONT));
 924		flush_sigqueue_mask(&flush, &signal->shared_pending);
 925		for_each_thread(p, t)
 926			flush_sigqueue_mask(&flush, &t->pending);
 927	} else if (sig == SIGCONT) {
 928		unsigned int why;
 929		/*
 930		 * Remove all stop signals from all queues, wake all threads.
 931		 */
 932		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 933		flush_sigqueue_mask(&flush, &signal->shared_pending);
 934		for_each_thread(p, t) {
 935			flush_sigqueue_mask(&flush, &t->pending);
 936			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 937			if (likely(!(t->ptrace & PT_SEIZED))) {
 938				t->jobctl &= ~JOBCTL_STOPPED;
 939				wake_up_state(t, __TASK_STOPPED);
 940			} else
 941				ptrace_trap_notify(t);
 942		}
 943
 944		/*
 945		 * Notify the parent with CLD_CONTINUED if we were stopped.
 946		 *
 947		 * If we were in the middle of a group stop, we pretend it
 948		 * was already finished, and then continued. Since SIGCHLD
 949		 * doesn't queue we report only CLD_STOPPED, as if the next
 950		 * CLD_CONTINUED was dropped.
 951		 */
 952		why = 0;
 953		if (signal->flags & SIGNAL_STOP_STOPPED)
 954			why |= SIGNAL_CLD_CONTINUED;
 955		else if (signal->group_stop_count)
 956			why |= SIGNAL_CLD_STOPPED;
 957
 958		if (why) {
 959			/*
 960			 * The first thread which returns from do_signal_stop()
 961			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 962			 * notify its parent. See get_signal().
 963			 */
 964			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 965			signal->group_stop_count = 0;
 966			signal->group_exit_code = 0;
 967		}
 968	}
 969
 970	return !sig_ignored(p, sig, force);
 971}
 972
 973/*
 974 * Test if P wants to take SIG.  After we've checked all threads with this,
 975 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 976 * blocking SIG were ruled out because they are not running and already
 977 * have pending signals.  Such threads will dequeue from the shared queue
 978 * as soon as they're available, so putting the signal on the shared queue
 979 * will be equivalent to sending it to one such thread.
 980 */
 981static inline bool wants_signal(int sig, struct task_struct *p)
 982{
 983	if (sigismember(&p->blocked, sig))
 984		return false;
 985
 986	if (p->flags & PF_EXITING)
 987		return false;
 988
 989	if (sig == SIGKILL)
 990		return true;
 991
 992	if (task_is_stopped_or_traced(p))
 993		return false;
 994
 995	return task_curr(p) || !task_sigpending(p);
 996}
 997
 998static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 999{
1000	struct signal_struct *signal = p->signal;
1001	struct task_struct *t;
1002
1003	/*
1004	 * Now find a thread we can wake up to take the signal off the queue.
1005	 *
1006	 * If the main thread wants the signal, it gets first crack.
1007	 * Probably the least surprising to the average bear.
1008	 */
1009	if (wants_signal(sig, p))
1010		t = p;
1011	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1012		/*
1013		 * There is just one thread and it does not need to be woken.
1014		 * It will dequeue unblocked signals before it runs again.
1015		 */
1016		return;
1017	else {
1018		/*
1019		 * Otherwise try to find a suitable thread.
1020		 */
1021		t = signal->curr_target;
1022		while (!wants_signal(sig, t)) {
1023			t = next_thread(t);
1024			if (t == signal->curr_target)
1025				/*
1026				 * No thread needs to be woken.
1027				 * Any eligible threads will see
1028				 * the signal in the queue soon.
1029				 */
1030				return;
1031		}
1032		signal->curr_target = t;
1033	}
1034
1035	/*
1036	 * Found a killable thread.  If the signal will be fatal,
1037	 * then start taking the whole group down immediately.
1038	 */
1039	if (sig_fatal(p, sig) &&
1040	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1041	    !sigismember(&t->real_blocked, sig) &&
1042	    (sig == SIGKILL || !p->ptrace)) {
1043		/*
1044		 * This signal will be fatal to the whole group.
1045		 */
1046		if (!sig_kernel_coredump(sig)) {
1047			/*
1048			 * Start a group exit and wake everybody up.
1049			 * This way we don't have other threads
1050			 * running and doing things after a slower
1051			 * thread has the fatal signal pending.
1052			 */
1053			signal->flags = SIGNAL_GROUP_EXIT;
1054			signal->group_exit_code = sig;
1055			signal->group_stop_count = 0;
1056			t = p;
1057			do {
1058				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1059				sigaddset(&t->pending.signal, SIGKILL);
1060				signal_wake_up(t, 1);
1061			} while_each_thread(p, t);
1062			return;
1063		}
1064	}
1065
1066	/*
1067	 * The signal is already in the shared-pending queue.
1068	 * Tell the chosen thread to wake up and dequeue it.
1069	 */
1070	signal_wake_up(t, sig == SIGKILL);
1071	return;
1072}
1073
1074static inline bool legacy_queue(struct sigpending *signals, int sig)
1075{
1076	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1077}
1078
1079static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1080				struct task_struct *t, enum pid_type type, bool force)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1081{
1082	struct sigpending *pending;
1083	struct sigqueue *q;
1084	int override_rlimit;
1085	int ret = 0, result;
1086
1087	lockdep_assert_held(&t->sighand->siglock);
1088
1089	result = TRACE_SIGNAL_IGNORED;
1090	if (!prepare_signal(sig, t, force))
 
1091		goto ret;
1092
1093	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1094	/*
1095	 * Short-circuit ignored signals and support queuing
1096	 * exactly one non-rt signal, so that we can get more
1097	 * detailed information about the cause of the signal.
1098	 */
1099	result = TRACE_SIGNAL_ALREADY_PENDING;
1100	if (legacy_queue(pending, sig))
1101		goto ret;
1102
1103	result = TRACE_SIGNAL_DELIVERED;
1104	/*
1105	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
 
1106	 */
1107	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1108		goto out_set;
1109
1110	/*
1111	 * Real-time signals must be queued if sent by sigqueue, or
1112	 * some other real-time mechanism.  It is implementation
1113	 * defined whether kill() does so.  We attempt to do so, on
1114	 * the principle of least surprise, but since kill is not
1115	 * allowed to fail with EAGAIN when low on memory we just
1116	 * make sure at least one signal gets delivered and don't
1117	 * pass on the info struct.
1118	 */
1119	if (sig < SIGRTMIN)
1120		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1121	else
1122		override_rlimit = 0;
1123
1124	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1125
1126	if (q) {
1127		list_add_tail(&q->list, &pending->list);
1128		switch ((unsigned long) info) {
1129		case (unsigned long) SEND_SIG_NOINFO:
1130			clear_siginfo(&q->info);
1131			q->info.si_signo = sig;
1132			q->info.si_errno = 0;
1133			q->info.si_code = SI_USER;
1134			q->info.si_pid = task_tgid_nr_ns(current,
1135							task_active_pid_ns(t));
1136			rcu_read_lock();
1137			q->info.si_uid =
1138				from_kuid_munged(task_cred_xxx(t, user_ns),
1139						 current_uid());
1140			rcu_read_unlock();
1141			break;
1142		case (unsigned long) SEND_SIG_PRIV:
1143			clear_siginfo(&q->info);
1144			q->info.si_signo = sig;
1145			q->info.si_errno = 0;
1146			q->info.si_code = SI_KERNEL;
1147			q->info.si_pid = 0;
1148			q->info.si_uid = 0;
1149			break;
1150		default:
1151			copy_siginfo(&q->info, info);
 
 
1152			break;
1153		}
1154	} else if (!is_si_special(info) &&
1155		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1156		/*
1157		 * Queue overflow, abort.  We may abort if the
1158		 * signal was rt and sent by user using something
1159		 * other than kill().
1160		 */
1161		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1162		ret = -EAGAIN;
1163		goto ret;
1164	} else {
1165		/*
1166		 * This is a silent loss of information.  We still
1167		 * send the signal, but the *info bits are lost.
1168		 */
1169		result = TRACE_SIGNAL_LOSE_INFO;
1170	}
1171
1172out_set:
1173	signalfd_notify(t, sig);
1174	sigaddset(&pending->signal, sig);
1175
1176	/* Let multiprocess signals appear after on-going forks */
1177	if (type > PIDTYPE_TGID) {
1178		struct multiprocess_signals *delayed;
1179		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1180			sigset_t *signal = &delayed->signal;
1181			/* Can't queue both a stop and a continue signal */
1182			if (sig == SIGCONT)
1183				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1184			else if (sig_kernel_stop(sig))
1185				sigdelset(signal, SIGCONT);
1186			sigaddset(signal, sig);
 
 
 
 
 
1187		}
1188	}
1189
1190	complete_signal(sig, t, type);
 
 
 
1191ret:
1192	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1193	return ret;
1194}
1195
1196static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1197{
1198	bool ret = false;
1199	switch (siginfo_layout(info->si_signo, info->si_code)) {
1200	case SIL_KILL:
1201	case SIL_CHLD:
1202	case SIL_RT:
1203		ret = true;
1204		break;
1205	case SIL_TIMER:
1206	case SIL_POLL:
1207	case SIL_FAULT:
1208	case SIL_FAULT_TRAPNO:
1209	case SIL_FAULT_MCEERR:
1210	case SIL_FAULT_BNDERR:
1211	case SIL_FAULT_PKUERR:
1212	case SIL_FAULT_PERF_EVENT:
1213	case SIL_SYS:
1214		ret = false;
1215		break;
1216	}
1217	return ret;
1218}
1219
1220int send_signal_locked(int sig, struct kernel_siginfo *info,
1221		       struct task_struct *t, enum pid_type type)
1222{
1223	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1224	bool force = false;
1225
1226	if (info == SEND_SIG_NOINFO) {
1227		/* Force if sent from an ancestor pid namespace */
1228		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1229	} else if (info == SEND_SIG_PRIV) {
1230		/* Don't ignore kernel generated signals */
1231		force = true;
1232	} else if (has_si_pid_and_uid(info)) {
1233		/* SIGKILL and SIGSTOP is special or has ids */
1234		struct user_namespace *t_user_ns;
1235
1236		rcu_read_lock();
1237		t_user_ns = task_cred_xxx(t, user_ns);
1238		if (current_user_ns() != t_user_ns) {
1239			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1240			info->si_uid = from_kuid_munged(t_user_ns, uid);
1241		}
1242		rcu_read_unlock();
1243
1244		/* A kernel generated signal? */
1245		force = (info->si_code == SI_KERNEL);
1246
1247		/* From an ancestor pid namespace? */
1248		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1249			info->si_pid = 0;
1250			force = true;
1251		}
1252	}
1253	return __send_signal_locked(sig, info, t, type, force);
1254}
1255
1256static void print_fatal_signal(int signr)
1257{
1258	struct pt_regs *regs = task_pt_regs(current);
1259	pr_info("potentially unexpected fatal signal %d.\n", signr);
1260
1261#if defined(__i386__) && !defined(__arch_um__)
1262	pr_info("code at %08lx: ", regs->ip);
1263	{
1264		int i;
1265		for (i = 0; i < 16; i++) {
1266			unsigned char insn;
1267
1268			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1269				break;
1270			pr_cont("%02x ", insn);
1271		}
1272	}
1273	pr_cont("\n");
1274#endif
1275	preempt_disable();
1276	show_regs(regs);
1277	preempt_enable();
1278}
1279
1280static int __init setup_print_fatal_signals(char *str)
1281{
1282	get_option (&str, &print_fatal_signals);
1283
1284	return 1;
1285}
1286
1287__setup("print-fatal-signals=", setup_print_fatal_signals);
1288
1289int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1290			enum pid_type type)
 
 
 
 
 
 
 
 
 
 
 
 
1291{
1292	unsigned long flags;
1293	int ret = -ESRCH;
1294
1295	if (lock_task_sighand(p, &flags)) {
1296		ret = send_signal_locked(sig, info, p, type);
1297		unlock_task_sighand(p, &flags);
1298	}
1299
1300	return ret;
1301}
1302
1303enum sig_handler {
1304	HANDLER_CURRENT, /* If reachable use the current handler */
1305	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1306	HANDLER_EXIT,	 /* Only visible as the process exit code */
1307};
1308
1309/*
1310 * Force a signal that the process can't ignore: if necessary
1311 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1312 *
1313 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1314 * since we do not want to have a signal handler that was blocked
1315 * be invoked when user space had explicitly blocked it.
1316 *
1317 * We don't want to have recursive SIGSEGV's etc, for example,
1318 * that is why we also clear SIGNAL_UNKILLABLE.
1319 */
1320static int
1321force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1322	enum sig_handler handler)
1323{
1324	unsigned long int flags;
1325	int ret, blocked, ignored;
1326	struct k_sigaction *action;
1327	int sig = info->si_signo;
1328
1329	spin_lock_irqsave(&t->sighand->siglock, flags);
1330	action = &t->sighand->action[sig-1];
1331	ignored = action->sa.sa_handler == SIG_IGN;
1332	blocked = sigismember(&t->blocked, sig);
1333	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1334		action->sa.sa_handler = SIG_DFL;
1335		if (handler == HANDLER_EXIT)
1336			action->sa.sa_flags |= SA_IMMUTABLE;
1337		if (blocked) {
1338			sigdelset(&t->blocked, sig);
1339			recalc_sigpending_and_wake(t);
1340		}
1341	}
1342	/*
1343	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1344	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1345	 */
1346	if (action->sa.sa_handler == SIG_DFL &&
1347	    (!t->ptrace || (handler == HANDLER_EXIT)))
1348		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1349	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1350	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1351
1352	return ret;
1353}
1354
1355int force_sig_info(struct kernel_siginfo *info)
1356{
1357	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1358}
1359
1360/*
1361 * Nuke all other threads in the group.
1362 */
1363int zap_other_threads(struct task_struct *p)
1364{
1365	struct task_struct *t = p;
1366	int count = 0;
1367
1368	p->signal->group_stop_count = 0;
1369
1370	while_each_thread(p, t) {
1371		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1372		count++;
1373
1374		/* Don't bother with already dead threads */
1375		if (t->exit_state)
1376			continue;
1377		sigaddset(&t->pending.signal, SIGKILL);
1378		signal_wake_up(t, 1);
1379	}
1380
1381	return count;
1382}
1383
1384struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1385					   unsigned long *flags)
1386{
1387	struct sighand_struct *sighand;
1388
1389	rcu_read_lock();
1390	for (;;) {
 
 
 
 
 
 
1391		sighand = rcu_dereference(tsk->sighand);
1392		if (unlikely(sighand == NULL))
 
 
1393			break;
1394
1395		/*
1396		 * This sighand can be already freed and even reused, but
1397		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1398		 * initializes ->siglock: this slab can't go away, it has
1399		 * the same object type, ->siglock can't be reinitialized.
1400		 *
1401		 * We need to ensure that tsk->sighand is still the same
1402		 * after we take the lock, we can race with de_thread() or
1403		 * __exit_signal(). In the latter case the next iteration
1404		 * must see ->sighand == NULL.
1405		 */
1406		spin_lock_irqsave(&sighand->siglock, *flags);
1407		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
 
1408			break;
1409		spin_unlock_irqrestore(&sighand->siglock, *flags);
 
 
 
1410	}
1411	rcu_read_unlock();
1412
1413	return sighand;
1414}
1415
1416#ifdef CONFIG_LOCKDEP
1417void lockdep_assert_task_sighand_held(struct task_struct *task)
1418{
1419	struct sighand_struct *sighand;
1420
1421	rcu_read_lock();
1422	sighand = rcu_dereference(task->sighand);
1423	if (sighand)
1424		lockdep_assert_held(&sighand->siglock);
1425	else
1426		WARN_ON_ONCE(1);
1427	rcu_read_unlock();
1428}
1429#endif
1430
1431/*
1432 * send signal info to all the members of a group
1433 */
1434int group_send_sig_info(int sig, struct kernel_siginfo *info,
1435			struct task_struct *p, enum pid_type type)
1436{
1437	int ret;
1438
1439	rcu_read_lock();
1440	ret = check_kill_permission(sig, info, p);
1441	rcu_read_unlock();
1442
1443	if (!ret && sig)
1444		ret = do_send_sig_info(sig, info, p, type);
1445
1446	return ret;
1447}
1448
1449/*
1450 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1451 * control characters do (^C, ^Z etc)
1452 * - the caller must hold at least a readlock on tasklist_lock
1453 */
1454int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1455{
1456	struct task_struct *p = NULL;
1457	int retval, success;
1458
1459	success = 0;
1460	retval = -ESRCH;
1461	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1462		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1463		success |= !err;
1464		retval = err;
1465	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1466	return success ? 0 : retval;
1467}
1468
1469int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1470{
1471	int error = -ESRCH;
1472	struct task_struct *p;
1473
1474	for (;;) {
1475		rcu_read_lock();
1476		p = pid_task(pid, PIDTYPE_PID);
1477		if (p)
1478			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1479		rcu_read_unlock();
1480		if (likely(!p || error != -ESRCH))
1481			return error;
1482
1483		/*
1484		 * The task was unhashed in between, try again.  If it
1485		 * is dead, pid_task() will return NULL, if we race with
1486		 * de_thread() it will find the new leader.
1487		 */
1488	}
1489}
1490
1491static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1492{
1493	int error;
1494	rcu_read_lock();
1495	error = kill_pid_info(sig, info, find_vpid(pid));
1496	rcu_read_unlock();
1497	return error;
1498}
1499
1500static inline bool kill_as_cred_perm(const struct cred *cred,
1501				     struct task_struct *target)
1502{
1503	const struct cred *pcred = __task_cred(target);
1504
1505	return uid_eq(cred->euid, pcred->suid) ||
1506	       uid_eq(cred->euid, pcred->uid) ||
1507	       uid_eq(cred->uid, pcred->suid) ||
1508	       uid_eq(cred->uid, pcred->uid);
1509}
1510
1511/*
1512 * The usb asyncio usage of siginfo is wrong.  The glibc support
1513 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1514 * AKA after the generic fields:
1515 *	kernel_pid_t	si_pid;
1516 *	kernel_uid32_t	si_uid;
1517 *	sigval_t	si_value;
1518 *
1519 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1520 * after the generic fields is:
1521 *	void __user 	*si_addr;
1522 *
1523 * This is a practical problem when there is a 64bit big endian kernel
1524 * and a 32bit userspace.  As the 32bit address will encoded in the low
1525 * 32bits of the pointer.  Those low 32bits will be stored at higher
1526 * address than appear in a 32 bit pointer.  So userspace will not
1527 * see the address it was expecting for it's completions.
1528 *
1529 * There is nothing in the encoding that can allow
1530 * copy_siginfo_to_user32 to detect this confusion of formats, so
1531 * handle this by requiring the caller of kill_pid_usb_asyncio to
1532 * notice when this situration takes place and to store the 32bit
1533 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1534 * parameter.
1535 */
1536int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1537			 struct pid *pid, const struct cred *cred)
1538{
1539	struct kernel_siginfo info;
1540	struct task_struct *p;
1541	unsigned long flags;
1542	int ret = -EINVAL;
1543
1544	if (!valid_signal(sig))
1545		return ret;
1546
1547	clear_siginfo(&info);
1548	info.si_signo = sig;
1549	info.si_errno = errno;
1550	info.si_code = SI_ASYNCIO;
1551	*((sigval_t *)&info.si_pid) = addr;
1552
1553	rcu_read_lock();
1554	p = pid_task(pid, PIDTYPE_PID);
1555	if (!p) {
1556		ret = -ESRCH;
1557		goto out_unlock;
1558	}
1559	if (!kill_as_cred_perm(cred, p)) {
1560		ret = -EPERM;
1561		goto out_unlock;
1562	}
1563	ret = security_task_kill(p, &info, sig, cred);
1564	if (ret)
1565		goto out_unlock;
1566
1567	if (sig) {
1568		if (lock_task_sighand(p, &flags)) {
1569			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1570			unlock_task_sighand(p, &flags);
1571		} else
1572			ret = -ESRCH;
1573	}
1574out_unlock:
1575	rcu_read_unlock();
1576	return ret;
1577}
1578EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1579
1580/*
1581 * kill_something_info() interprets pid in interesting ways just like kill(2).
1582 *
1583 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1584 * is probably wrong.  Should make it like BSD or SYSV.
1585 */
1586
1587static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1588{
1589	int ret;
1590
1591	if (pid > 0)
1592		return kill_proc_info(sig, info, pid);
 
 
 
 
1593
1594	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1595	if (pid == INT_MIN)
1596		return -ESRCH;
1597
1598	read_lock(&tasklist_lock);
1599	if (pid != -1) {
1600		ret = __kill_pgrp_info(sig, info,
1601				pid ? find_vpid(-pid) : task_pgrp(current));
1602	} else {
1603		int retval = 0, count = 0;
1604		struct task_struct * p;
1605
1606		for_each_process(p) {
1607			if (task_pid_vnr(p) > 1 &&
1608					!same_thread_group(p, current)) {
1609				int err = group_send_sig_info(sig, info, p,
1610							      PIDTYPE_MAX);
1611				++count;
1612				if (err != -EPERM)
1613					retval = err;
1614			}
1615		}
1616		ret = count ? retval : -ESRCH;
1617	}
1618	read_unlock(&tasklist_lock);
1619
1620	return ret;
1621}
1622
1623/*
1624 * These are for backward compatibility with the rest of the kernel source.
1625 */
1626
1627int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1628{
1629	/*
1630	 * Make sure legacy kernel users don't send in bad values
1631	 * (normal paths check this in check_kill_permission).
1632	 */
1633	if (!valid_signal(sig))
1634		return -EINVAL;
1635
1636	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1637}
1638EXPORT_SYMBOL(send_sig_info);
1639
1640#define __si_special(priv) \
1641	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1642
1643int
1644send_sig(int sig, struct task_struct *p, int priv)
1645{
1646	return send_sig_info(sig, __si_special(priv), p);
1647}
1648EXPORT_SYMBOL(send_sig);
1649
1650void force_sig(int sig)
1651{
1652	struct kernel_siginfo info;
1653
1654	clear_siginfo(&info);
1655	info.si_signo = sig;
1656	info.si_errno = 0;
1657	info.si_code = SI_KERNEL;
1658	info.si_pid = 0;
1659	info.si_uid = 0;
1660	force_sig_info(&info);
1661}
1662EXPORT_SYMBOL(force_sig);
1663
1664void force_fatal_sig(int sig)
1665{
1666	struct kernel_siginfo info;
1667
1668	clear_siginfo(&info);
1669	info.si_signo = sig;
1670	info.si_errno = 0;
1671	info.si_code = SI_KERNEL;
1672	info.si_pid = 0;
1673	info.si_uid = 0;
1674	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1675}
1676
1677void force_exit_sig(int sig)
1678{
1679	struct kernel_siginfo info;
1680
1681	clear_siginfo(&info);
1682	info.si_signo = sig;
1683	info.si_errno = 0;
1684	info.si_code = SI_KERNEL;
1685	info.si_pid = 0;
1686	info.si_uid = 0;
1687	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1688}
1689
1690/*
1691 * When things go south during signal handling, we
1692 * will force a SIGSEGV. And if the signal that caused
1693 * the problem was already a SIGSEGV, we'll want to
1694 * make sure we don't even try to deliver the signal..
1695 */
1696void force_sigsegv(int sig)
 
1697{
1698	if (sig == SIGSEGV)
1699		force_fatal_sig(SIGSEGV);
1700	else
1701		force_sig(SIGSEGV);
 
 
 
 
1702}
1703
1704int force_sig_fault_to_task(int sig, int code, void __user *addr
 
1705	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1706	, struct task_struct *t)
1707{
1708	struct kernel_siginfo info;
1709
1710	clear_siginfo(&info);
1711	info.si_signo = sig;
1712	info.si_errno = 0;
1713	info.si_code  = code;
1714	info.si_addr  = addr;
 
 
 
1715#ifdef __ia64__
1716	info.si_imm = imm;
1717	info.si_flags = flags;
1718	info.si_isr = isr;
1719#endif
1720	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1721}
1722
1723int force_sig_fault(int sig, int code, void __user *addr
1724	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1725{
1726	return force_sig_fault_to_task(sig, code, addr
1727				       ___ARCH_SI_IA64(imm, flags, isr), current);
1728}
1729
1730int send_sig_fault(int sig, int code, void __user *addr
 
1731	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1732	, struct task_struct *t)
1733{
1734	struct kernel_siginfo info;
1735
1736	clear_siginfo(&info);
1737	info.si_signo = sig;
1738	info.si_errno = 0;
1739	info.si_code  = code;
1740	info.si_addr  = addr;
 
 
 
1741#ifdef __ia64__
1742	info.si_imm = imm;
1743	info.si_flags = flags;
1744	info.si_isr = isr;
1745#endif
1746	return send_sig_info(info.si_signo, &info, t);
1747}
1748
1749int force_sig_mceerr(int code, void __user *addr, short lsb)
 
1750{
1751	struct kernel_siginfo info;
1752
1753	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1754	clear_siginfo(&info);
1755	info.si_signo = SIGBUS;
1756	info.si_errno = 0;
1757	info.si_code = code;
1758	info.si_addr = addr;
1759	info.si_addr_lsb = lsb;
1760	return force_sig_info(&info);
1761}
1762
1763int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1764{
1765	struct kernel_siginfo info;
1766
1767	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1768	clear_siginfo(&info);
1769	info.si_signo = SIGBUS;
1770	info.si_errno = 0;
1771	info.si_code = code;
1772	info.si_addr = addr;
1773	info.si_addr_lsb = lsb;
1774	return send_sig_info(info.si_signo, &info, t);
1775}
1776EXPORT_SYMBOL(send_sig_mceerr);
 
1777
 
1778int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1779{
1780	struct kernel_siginfo info;
1781
1782	clear_siginfo(&info);
1783	info.si_signo = SIGSEGV;
1784	info.si_errno = 0;
1785	info.si_code  = SEGV_BNDERR;
1786	info.si_addr  = addr;
1787	info.si_lower = lower;
1788	info.si_upper = upper;
1789	return force_sig_info(&info);
1790}
 
1791
1792#ifdef SEGV_PKUERR
1793int force_sig_pkuerr(void __user *addr, u32 pkey)
1794{
1795	struct kernel_siginfo info;
1796
1797	clear_siginfo(&info);
1798	info.si_signo = SIGSEGV;
1799	info.si_errno = 0;
1800	info.si_code  = SEGV_PKUERR;
1801	info.si_addr  = addr;
1802	info.si_pkey  = pkey;
1803	return force_sig_info(&info);
1804}
1805#endif
1806
1807int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1808{
1809	struct kernel_siginfo info;
1810
1811	clear_siginfo(&info);
1812	info.si_signo     = SIGTRAP;
1813	info.si_errno     = 0;
1814	info.si_code      = TRAP_PERF;
1815	info.si_addr      = addr;
1816	info.si_perf_data = sig_data;
1817	info.si_perf_type = type;
1818
1819	/*
1820	 * Signals generated by perf events should not terminate the whole
1821	 * process if SIGTRAP is blocked, however, delivering the signal
1822	 * asynchronously is better than not delivering at all. But tell user
1823	 * space if the signal was asynchronous, so it can clearly be
1824	 * distinguished from normal synchronous ones.
1825	 */
1826	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1827				     TRAP_PERF_FLAG_ASYNC :
1828				     0;
1829
1830	return send_sig_info(info.si_signo, &info, current);
1831}
1832
1833/**
1834 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1835 * @syscall: syscall number to send to userland
1836 * @reason: filter-supplied reason code to send to userland (via si_errno)
1837 * @force_coredump: true to trigger a coredump
1838 *
1839 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1840 */
1841int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1842{
1843	struct kernel_siginfo info;
1844
1845	clear_siginfo(&info);
1846	info.si_signo = SIGSYS;
1847	info.si_code = SYS_SECCOMP;
1848	info.si_call_addr = (void __user *)KSTK_EIP(current);
1849	info.si_errno = reason;
1850	info.si_arch = syscall_get_arch(current);
1851	info.si_syscall = syscall;
1852	return force_sig_info_to_task(&info, current,
1853		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1854}
1855
1856/* For the crazy architectures that include trap information in
1857 * the errno field, instead of an actual errno value.
1858 */
1859int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1860{
1861	struct kernel_siginfo info;
1862
1863	clear_siginfo(&info);
1864	info.si_signo = SIGTRAP;
1865	info.si_errno = errno;
1866	info.si_code  = TRAP_HWBKPT;
1867	info.si_addr  = addr;
1868	return force_sig_info(&info);
1869}
1870
1871/* For the rare architectures that include trap information using
1872 * si_trapno.
1873 */
1874int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1875{
1876	struct kernel_siginfo info;
1877
1878	clear_siginfo(&info);
1879	info.si_signo = sig;
1880	info.si_errno = 0;
1881	info.si_code  = code;
1882	info.si_addr  = addr;
1883	info.si_trapno = trapno;
1884	return force_sig_info(&info);
1885}
1886
1887/* For the rare architectures that include trap information using
1888 * si_trapno.
1889 */
1890int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1891			  struct task_struct *t)
1892{
1893	struct kernel_siginfo info;
1894
1895	clear_siginfo(&info);
1896	info.si_signo = sig;
1897	info.si_errno = 0;
1898	info.si_code  = code;
1899	info.si_addr  = addr;
1900	info.si_trapno = trapno;
1901	return send_sig_info(info.si_signo, &info, t);
1902}
1903
1904int kill_pgrp(struct pid *pid, int sig, int priv)
1905{
1906	int ret;
1907
1908	read_lock(&tasklist_lock);
1909	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1910	read_unlock(&tasklist_lock);
1911
1912	return ret;
1913}
1914EXPORT_SYMBOL(kill_pgrp);
1915
1916int kill_pid(struct pid *pid, int sig, int priv)
1917{
1918	return kill_pid_info(sig, __si_special(priv), pid);
1919}
1920EXPORT_SYMBOL(kill_pid);
1921
1922/*
1923 * These functions support sending signals using preallocated sigqueue
1924 * structures.  This is needed "because realtime applications cannot
1925 * afford to lose notifications of asynchronous events, like timer
1926 * expirations or I/O completions".  In the case of POSIX Timers
1927 * we allocate the sigqueue structure from the timer_create.  If this
1928 * allocation fails we are able to report the failure to the application
1929 * with an EAGAIN error.
1930 */
1931struct sigqueue *sigqueue_alloc(void)
1932{
1933	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
 
 
 
 
 
1934}
1935
1936void sigqueue_free(struct sigqueue *q)
1937{
1938	unsigned long flags;
1939	spinlock_t *lock = &current->sighand->siglock;
1940
1941	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1942	/*
1943	 * We must hold ->siglock while testing q->list
1944	 * to serialize with collect_signal() or with
1945	 * __exit_signal()->flush_sigqueue().
1946	 */
1947	spin_lock_irqsave(lock, flags);
1948	q->flags &= ~SIGQUEUE_PREALLOC;
1949	/*
1950	 * If it is queued it will be freed when dequeued,
1951	 * like the "regular" sigqueue.
1952	 */
1953	if (!list_empty(&q->list))
1954		q = NULL;
1955	spin_unlock_irqrestore(lock, flags);
1956
1957	if (q)
1958		__sigqueue_free(q);
1959}
1960
1961int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1962{
1963	int sig = q->info.si_signo;
1964	struct sigpending *pending;
1965	struct task_struct *t;
1966	unsigned long flags;
1967	int ret, result;
1968
1969	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1970
1971	ret = -1;
1972	rcu_read_lock();
1973	t = pid_task(pid, type);
1974	if (!t || !likely(lock_task_sighand(t, &flags)))
1975		goto ret;
1976
1977	ret = 1; /* the signal is ignored */
1978	result = TRACE_SIGNAL_IGNORED;
1979	if (!prepare_signal(sig, t, false))
1980		goto out;
1981
1982	ret = 0;
1983	if (unlikely(!list_empty(&q->list))) {
1984		/*
1985		 * If an SI_TIMER entry is already queue just increment
1986		 * the overrun count.
1987		 */
1988		BUG_ON(q->info.si_code != SI_TIMER);
1989		q->info.si_overrun++;
1990		result = TRACE_SIGNAL_ALREADY_PENDING;
1991		goto out;
1992	}
1993	q->info.si_overrun = 0;
1994
1995	signalfd_notify(t, sig);
1996	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1997	list_add_tail(&q->list, &pending->list);
1998	sigaddset(&pending->signal, sig);
1999	complete_signal(sig, t, type);
2000	result = TRACE_SIGNAL_DELIVERED;
2001out:
2002	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2003	unlock_task_sighand(t, &flags);
2004ret:
2005	rcu_read_unlock();
2006	return ret;
2007}
2008
2009static void do_notify_pidfd(struct task_struct *task)
2010{
2011	struct pid *pid;
2012
2013	WARN_ON(task->exit_state == 0);
2014	pid = task_pid(task);
2015	wake_up_all(&pid->wait_pidfd);
2016}
2017
2018/*
2019 * Let a parent know about the death of a child.
2020 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2021 *
2022 * Returns true if our parent ignored us and so we've switched to
2023 * self-reaping.
2024 */
2025bool do_notify_parent(struct task_struct *tsk, int sig)
2026{
2027	struct kernel_siginfo info;
2028	unsigned long flags;
2029	struct sighand_struct *psig;
2030	bool autoreap = false;
2031	u64 utime, stime;
2032
2033	WARN_ON_ONCE(sig == -1);
2034
2035	/* do_notify_parent_cldstop should have been called instead.  */
2036	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2037
2038	WARN_ON_ONCE(!tsk->ptrace &&
2039	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2040
2041	/* Wake up all pidfd waiters */
2042	do_notify_pidfd(tsk);
2043
2044	if (sig != SIGCHLD) {
2045		/*
2046		 * This is only possible if parent == real_parent.
2047		 * Check if it has changed security domain.
2048		 */
2049		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2050			sig = SIGCHLD;
2051	}
2052
2053	clear_siginfo(&info);
2054	info.si_signo = sig;
2055	info.si_errno = 0;
2056	/*
2057	 * We are under tasklist_lock here so our parent is tied to
2058	 * us and cannot change.
2059	 *
2060	 * task_active_pid_ns will always return the same pid namespace
2061	 * until a task passes through release_task.
2062	 *
2063	 * write_lock() currently calls preempt_disable() which is the
2064	 * same as rcu_read_lock(), but according to Oleg, this is not
2065	 * correct to rely on this
2066	 */
2067	rcu_read_lock();
2068	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2069	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2070				       task_uid(tsk));
2071	rcu_read_unlock();
2072
2073	task_cputime(tsk, &utime, &stime);
2074	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2075	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2076
2077	info.si_status = tsk->exit_code & 0x7f;
2078	if (tsk->exit_code & 0x80)
2079		info.si_code = CLD_DUMPED;
2080	else if (tsk->exit_code & 0x7f)
2081		info.si_code = CLD_KILLED;
2082	else {
2083		info.si_code = CLD_EXITED;
2084		info.si_status = tsk->exit_code >> 8;
2085	}
2086
2087	psig = tsk->parent->sighand;
2088	spin_lock_irqsave(&psig->siglock, flags);
2089	if (!tsk->ptrace && sig == SIGCHLD &&
2090	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2091	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2092		/*
2093		 * We are exiting and our parent doesn't care.  POSIX.1
2094		 * defines special semantics for setting SIGCHLD to SIG_IGN
2095		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2096		 * automatically and not left for our parent's wait4 call.
2097		 * Rather than having the parent do it as a magic kind of
2098		 * signal handler, we just set this to tell do_exit that we
2099		 * can be cleaned up without becoming a zombie.  Note that
2100		 * we still call __wake_up_parent in this case, because a
2101		 * blocked sys_wait4 might now return -ECHILD.
2102		 *
2103		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2104		 * is implementation-defined: we do (if you don't want
2105		 * it, just use SIG_IGN instead).
2106		 */
2107		autoreap = true;
2108		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2109			sig = 0;
2110	}
2111	/*
2112	 * Send with __send_signal as si_pid and si_uid are in the
2113	 * parent's namespaces.
2114	 */
2115	if (valid_signal(sig) && sig)
2116		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2117	__wake_up_parent(tsk, tsk->parent);
2118	spin_unlock_irqrestore(&psig->siglock, flags);
2119
2120	return autoreap;
2121}
2122
2123/**
2124 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2125 * @tsk: task reporting the state change
2126 * @for_ptracer: the notification is for ptracer
2127 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2128 *
2129 * Notify @tsk's parent that the stopped/continued state has changed.  If
2130 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2131 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2132 *
2133 * CONTEXT:
2134 * Must be called with tasklist_lock at least read locked.
2135 */
2136static void do_notify_parent_cldstop(struct task_struct *tsk,
2137				     bool for_ptracer, int why)
2138{
2139	struct kernel_siginfo info;
2140	unsigned long flags;
2141	struct task_struct *parent;
2142	struct sighand_struct *sighand;
2143	u64 utime, stime;
2144
2145	if (for_ptracer) {
2146		parent = tsk->parent;
2147	} else {
2148		tsk = tsk->group_leader;
2149		parent = tsk->real_parent;
2150	}
2151
2152	clear_siginfo(&info);
2153	info.si_signo = SIGCHLD;
2154	info.si_errno = 0;
2155	/*
2156	 * see comment in do_notify_parent() about the following 4 lines
2157	 */
2158	rcu_read_lock();
2159	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2160	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2161	rcu_read_unlock();
2162
2163	task_cputime(tsk, &utime, &stime);
2164	info.si_utime = nsec_to_clock_t(utime);
2165	info.si_stime = nsec_to_clock_t(stime);
2166
2167 	info.si_code = why;
2168 	switch (why) {
2169 	case CLD_CONTINUED:
2170 		info.si_status = SIGCONT;
2171 		break;
2172 	case CLD_STOPPED:
2173 		info.si_status = tsk->signal->group_exit_code & 0x7f;
2174 		break;
2175 	case CLD_TRAPPED:
2176 		info.si_status = tsk->exit_code & 0x7f;
2177 		break;
2178 	default:
2179 		BUG();
2180 	}
2181
2182	sighand = parent->sighand;
2183	spin_lock_irqsave(&sighand->siglock, flags);
2184	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2185	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2186		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2187	/*
2188	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2189	 */
2190	__wake_up_parent(tsk, parent);
2191	spin_unlock_irqrestore(&sighand->siglock, flags);
2192}
2193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2194/*
2195 * This must be called with current->sighand->siglock held.
2196 *
2197 * This should be the path for all ptrace stops.
2198 * We always set current->last_siginfo while stopped here.
2199 * That makes it a way to test a stopped process for
2200 * being ptrace-stopped vs being job-control-stopped.
2201 *
2202 * Returns the signal the ptracer requested the code resume
2203 * with.  If the code did not stop because the tracer is gone,
2204 * the stop signal remains unchanged unless clear_code.
2205 */
2206static int ptrace_stop(int exit_code, int why, unsigned long message,
2207		       kernel_siginfo_t *info)
2208	__releases(&current->sighand->siglock)
2209	__acquires(&current->sighand->siglock)
2210{
2211	bool gstop_done = false;
2212
2213	if (arch_ptrace_stop_needed()) {
2214		/*
2215		 * The arch code has something special to do before a
2216		 * ptrace stop.  This is allowed to block, e.g. for faults
2217		 * on user stack pages.  We can't keep the siglock while
2218		 * calling arch_ptrace_stop, so we must release it now.
2219		 * To preserve proper semantics, we must do this before
2220		 * any signal bookkeeping like checking group_stop_count.
 
 
 
2221		 */
2222		spin_unlock_irq(&current->sighand->siglock);
2223		arch_ptrace_stop();
2224		spin_lock_irq(&current->sighand->siglock);
 
 
2225	}
2226
2227	/*
2228	 * After this point ptrace_signal_wake_up or signal_wake_up
2229	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2230	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2231	 * signals here to prevent ptrace_stop sleeping in schedule.
2232	 */
2233	if (!current->ptrace || __fatal_signal_pending(current))
2234		return exit_code;
2235
2236	set_special_state(TASK_TRACED);
2237	current->jobctl |= JOBCTL_TRACED;
2238
2239	/*
2240	 * We're committing to trapping.  TRACED should be visible before
2241	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2242	 * Also, transition to TRACED and updates to ->jobctl should be
2243	 * atomic with respect to siglock and should be done after the arch
2244	 * hook as siglock is released and regrabbed across it.
2245	 *
2246	 *     TRACER				    TRACEE
2247	 *
2248	 *     ptrace_attach()
2249	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2250	 *     do_wait()
2251	 *       set_current_state()                smp_wmb();
2252	 *       ptrace_do_wait()
2253	 *         wait_task_stopped()
2254	 *           task_stopped_code()
2255	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2256	 */
2257	smp_wmb();
2258
2259	current->ptrace_message = message;
2260	current->last_siginfo = info;
2261	current->exit_code = exit_code;
2262
2263	/*
2264	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2265	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2266	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2267	 * could be clear now.  We act as if SIGCONT is received after
2268	 * TASK_TRACED is entered - ignore it.
2269	 */
2270	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2271		gstop_done = task_participate_group_stop(current);
2272
2273	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2274	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2275	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2276		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2277
2278	/* entering a trap, clear TRAPPING */
2279	task_clear_jobctl_trapping(current);
2280
2281	spin_unlock_irq(&current->sighand->siglock);
2282	read_lock(&tasklist_lock);
2283	/*
2284	 * Notify parents of the stop.
2285	 *
2286	 * While ptraced, there are two parents - the ptracer and
2287	 * the real_parent of the group_leader.  The ptracer should
2288	 * know about every stop while the real parent is only
2289	 * interested in the completion of group stop.  The states
2290	 * for the two don't interact with each other.  Notify
2291	 * separately unless they're gonna be duplicates.
2292	 */
2293	if (current->ptrace)
2294		do_notify_parent_cldstop(current, true, why);
2295	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2296		do_notify_parent_cldstop(current, false, why);
2297
2298	/*
2299	 * Don't want to allow preemption here, because
2300	 * sys_ptrace() needs this task to be inactive.
2301	 *
2302	 * XXX: implement read_unlock_no_resched().
2303	 */
2304	preempt_disable();
2305	read_unlock(&tasklist_lock);
2306	cgroup_enter_frozen();
2307	preempt_enable_no_resched();
2308	schedule();
2309	cgroup_leave_frozen(true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2310
2311	/*
2312	 * We are back.  Now reacquire the siglock before touching
2313	 * last_siginfo, so that we are sure to have synchronized with
2314	 * any signal-sending on another CPU that wants to examine it.
2315	 */
2316	spin_lock_irq(&current->sighand->siglock);
2317	exit_code = current->exit_code;
2318	current->last_siginfo = NULL;
2319	current->ptrace_message = 0;
2320	current->exit_code = 0;
2321
2322	/* LISTENING can be set only during STOP traps, clear it */
2323	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2324
2325	/*
2326	 * Queued signals ignored us while we were stopped for tracing.
2327	 * So check for any that we should take before resuming user mode.
2328	 * This sets TIF_SIGPENDING, but never clears it.
2329	 */
2330	recalc_sigpending_tsk(current);
2331	return exit_code;
2332}
2333
2334static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2335{
2336	kernel_siginfo_t info;
2337
2338	clear_siginfo(&info);
2339	info.si_signo = signr;
2340	info.si_code = exit_code;
2341	info.si_pid = task_pid_vnr(current);
2342	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2343
2344	/* Let the debugger run.  */
2345	return ptrace_stop(exit_code, why, message, &info);
2346}
2347
2348int ptrace_notify(int exit_code, unsigned long message)
2349{
2350	int signr;
2351
2352	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2353	if (unlikely(task_work_pending(current)))
2354		task_work_run();
2355
2356	spin_lock_irq(&current->sighand->siglock);
2357	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2358	spin_unlock_irq(&current->sighand->siglock);
2359	return signr;
2360}
2361
2362/**
2363 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2364 * @signr: signr causing group stop if initiating
2365 *
2366 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2367 * and participate in it.  If already set, participate in the existing
2368 * group stop.  If participated in a group stop (and thus slept), %true is
2369 * returned with siglock released.
2370 *
2371 * If ptraced, this function doesn't handle stop itself.  Instead,
2372 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2373 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2374 * places afterwards.
2375 *
2376 * CONTEXT:
2377 * Must be called with @current->sighand->siglock held, which is released
2378 * on %true return.
2379 *
2380 * RETURNS:
2381 * %false if group stop is already cancelled or ptrace trap is scheduled.
2382 * %true if participated in group stop.
2383 */
2384static bool do_signal_stop(int signr)
2385	__releases(&current->sighand->siglock)
2386{
2387	struct signal_struct *sig = current->signal;
2388
2389	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2390		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2391		struct task_struct *t;
2392
2393		/* signr will be recorded in task->jobctl for retries */
2394		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2395
2396		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2397		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2398		    unlikely(sig->group_exec_task))
2399			return false;
2400		/*
2401		 * There is no group stop already in progress.  We must
2402		 * initiate one now.
2403		 *
2404		 * While ptraced, a task may be resumed while group stop is
2405		 * still in effect and then receive a stop signal and
2406		 * initiate another group stop.  This deviates from the
2407		 * usual behavior as two consecutive stop signals can't
2408		 * cause two group stops when !ptraced.  That is why we
2409		 * also check !task_is_stopped(t) below.
2410		 *
2411		 * The condition can be distinguished by testing whether
2412		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2413		 * group_exit_code in such case.
2414		 *
2415		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2416		 * an intervening stop signal is required to cause two
2417		 * continued events regardless of ptrace.
2418		 */
2419		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2420			sig->group_exit_code = signr;
2421
2422		sig->group_stop_count = 0;
2423
2424		if (task_set_jobctl_pending(current, signr | gstop))
2425			sig->group_stop_count++;
2426
2427		t = current;
2428		while_each_thread(current, t) {
2429			/*
2430			 * Setting state to TASK_STOPPED for a group
2431			 * stop is always done with the siglock held,
2432			 * so this check has no races.
2433			 */
2434			if (!task_is_stopped(t) &&
2435			    task_set_jobctl_pending(t, signr | gstop)) {
2436				sig->group_stop_count++;
2437				if (likely(!(t->ptrace & PT_SEIZED)))
2438					signal_wake_up(t, 0);
2439				else
2440					ptrace_trap_notify(t);
2441			}
2442		}
2443	}
2444
2445	if (likely(!current->ptrace)) {
2446		int notify = 0;
2447
2448		/*
2449		 * If there are no other threads in the group, or if there
2450		 * is a group stop in progress and we are the last to stop,
2451		 * report to the parent.
2452		 */
2453		if (task_participate_group_stop(current))
2454			notify = CLD_STOPPED;
2455
2456		current->jobctl |= JOBCTL_STOPPED;
2457		set_special_state(TASK_STOPPED);
2458		spin_unlock_irq(&current->sighand->siglock);
2459
2460		/*
2461		 * Notify the parent of the group stop completion.  Because
2462		 * we're not holding either the siglock or tasklist_lock
2463		 * here, ptracer may attach inbetween; however, this is for
2464		 * group stop and should always be delivered to the real
2465		 * parent of the group leader.  The new ptracer will get
2466		 * its notification when this task transitions into
2467		 * TASK_TRACED.
2468		 */
2469		if (notify) {
2470			read_lock(&tasklist_lock);
2471			do_notify_parent_cldstop(current, false, notify);
2472			read_unlock(&tasklist_lock);
2473		}
2474
2475		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2476		cgroup_enter_frozen();
2477		schedule();
2478		return true;
2479	} else {
2480		/*
2481		 * While ptraced, group stop is handled by STOP trap.
2482		 * Schedule it and let the caller deal with it.
2483		 */
2484		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2485		return false;
2486	}
2487}
2488
2489/**
2490 * do_jobctl_trap - take care of ptrace jobctl traps
2491 *
2492 * When PT_SEIZED, it's used for both group stop and explicit
2493 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2494 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2495 * the stop signal; otherwise, %SIGTRAP.
2496 *
2497 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2498 * number as exit_code and no siginfo.
2499 *
2500 * CONTEXT:
2501 * Must be called with @current->sighand->siglock held, which may be
2502 * released and re-acquired before returning with intervening sleep.
2503 */
2504static void do_jobctl_trap(void)
2505{
2506	struct signal_struct *signal = current->signal;
2507	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2508
2509	if (current->ptrace & PT_SEIZED) {
2510		if (!signal->group_stop_count &&
2511		    !(signal->flags & SIGNAL_STOP_STOPPED))
2512			signr = SIGTRAP;
2513		WARN_ON_ONCE(!signr);
2514		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2515				 CLD_STOPPED, 0);
2516	} else {
2517		WARN_ON_ONCE(!signr);
2518		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
 
2519	}
2520}
2521
2522/**
2523 * do_freezer_trap - handle the freezer jobctl trap
2524 *
2525 * Puts the task into frozen state, if only the task is not about to quit.
2526 * In this case it drops JOBCTL_TRAP_FREEZE.
2527 *
2528 * CONTEXT:
2529 * Must be called with @current->sighand->siglock held,
2530 * which is always released before returning.
2531 */
2532static void do_freezer_trap(void)
2533	__releases(&current->sighand->siglock)
2534{
2535	/*
2536	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2537	 * let's make another loop to give it a chance to be handled.
2538	 * In any case, we'll return back.
2539	 */
2540	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2541	     JOBCTL_TRAP_FREEZE) {
2542		spin_unlock_irq(&current->sighand->siglock);
2543		return;
2544	}
2545
2546	/*
2547	 * Now we're sure that there is no pending fatal signal and no
2548	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2549	 * immediately (if there is a non-fatal signal pending), and
2550	 * put the task into sleep.
2551	 */
2552	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2553	clear_thread_flag(TIF_SIGPENDING);
2554	spin_unlock_irq(&current->sighand->siglock);
2555	cgroup_enter_frozen();
2556	schedule();
2557}
2558
2559static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2560{
2561	/*
2562	 * We do not check sig_kernel_stop(signr) but set this marker
2563	 * unconditionally because we do not know whether debugger will
2564	 * change signr. This flag has no meaning unless we are going
2565	 * to stop after return from ptrace_stop(). In this case it will
2566	 * be checked in do_signal_stop(), we should only stop if it was
2567	 * not cleared by SIGCONT while we were sleeping. See also the
2568	 * comment in dequeue_signal().
2569	 */
2570	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2571	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2572
2573	/* We're back.  Did the debugger cancel the sig?  */
 
2574	if (signr == 0)
2575		return signr;
2576
 
 
2577	/*
2578	 * Update the siginfo structure if the signal has
2579	 * changed.  If the debugger wanted something
2580	 * specific in the siginfo structure then it should
2581	 * have updated *info via PTRACE_SETSIGINFO.
2582	 */
2583	if (signr != info->si_signo) {
2584		clear_siginfo(info);
2585		info->si_signo = signr;
2586		info->si_errno = 0;
2587		info->si_code = SI_USER;
2588		rcu_read_lock();
2589		info->si_pid = task_pid_vnr(current->parent);
2590		info->si_uid = from_kuid_munged(current_user_ns(),
2591						task_uid(current->parent));
2592		rcu_read_unlock();
2593	}
2594
2595	/* If the (new) signal is now blocked, requeue it.  */
2596	if (sigismember(&current->blocked, signr) ||
2597	    fatal_signal_pending(current)) {
2598		send_signal_locked(signr, info, current, type);
2599		signr = 0;
2600	}
2601
2602	return signr;
2603}
2604
2605static void hide_si_addr_tag_bits(struct ksignal *ksig)
2606{
2607	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2608	case SIL_FAULT:
2609	case SIL_FAULT_TRAPNO:
2610	case SIL_FAULT_MCEERR:
2611	case SIL_FAULT_BNDERR:
2612	case SIL_FAULT_PKUERR:
2613	case SIL_FAULT_PERF_EVENT:
2614		ksig->info.si_addr = arch_untagged_si_addr(
2615			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2616		break;
2617	case SIL_KILL:
2618	case SIL_TIMER:
2619	case SIL_POLL:
2620	case SIL_CHLD:
2621	case SIL_RT:
2622	case SIL_SYS:
2623		break;
2624	}
2625}
2626
2627bool get_signal(struct ksignal *ksig)
2628{
2629	struct sighand_struct *sighand = current->sighand;
2630	struct signal_struct *signal = current->signal;
2631	int signr;
2632
2633	clear_notify_signal();
2634	if (unlikely(task_work_pending(current)))
2635		task_work_run();
2636
2637	if (!task_sigpending(current))
2638		return false;
2639
2640	if (unlikely(uprobe_deny_signal()))
2641		return false;
2642
2643	/*
2644	 * Do this once, we can't return to user-mode if freezing() == T.
2645	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2646	 * thus do not need another check after return.
2647	 */
2648	try_to_freeze();
2649
2650relock:
2651	spin_lock_irq(&sighand->siglock);
2652
2653	/*
2654	 * Every stopped thread goes here after wakeup. Check to see if
2655	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2656	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2657	 */
2658	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2659		int why;
2660
2661		if (signal->flags & SIGNAL_CLD_CONTINUED)
2662			why = CLD_CONTINUED;
2663		else
2664			why = CLD_STOPPED;
2665
2666		signal->flags &= ~SIGNAL_CLD_MASK;
2667
2668		spin_unlock_irq(&sighand->siglock);
2669
2670		/*
2671		 * Notify the parent that we're continuing.  This event is
2672		 * always per-process and doesn't make whole lot of sense
2673		 * for ptracers, who shouldn't consume the state via
2674		 * wait(2) either, but, for backward compatibility, notify
2675		 * the ptracer of the group leader too unless it's gonna be
2676		 * a duplicate.
2677		 */
2678		read_lock(&tasklist_lock);
2679		do_notify_parent_cldstop(current, false, why);
2680
2681		if (ptrace_reparented(current->group_leader))
2682			do_notify_parent_cldstop(current->group_leader,
2683						true, why);
2684		read_unlock(&tasklist_lock);
2685
2686		goto relock;
2687	}
2688
2689	for (;;) {
2690		struct k_sigaction *ka;
2691		enum pid_type type;
2692
2693		/* Has this task already been marked for death? */
2694		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2695		     signal->group_exec_task) {
2696			clear_siginfo(&ksig->info);
2697			ksig->info.si_signo = signr = SIGKILL;
2698			sigdelset(&current->pending.signal, SIGKILL);
2699			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2700				&sighand->action[SIGKILL - 1]);
2701			recalc_sigpending();
2702			goto fatal;
2703		}
2704
2705		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2706		    do_signal_stop(0))
2707			goto relock;
2708
2709		if (unlikely(current->jobctl &
2710			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2711			if (current->jobctl & JOBCTL_TRAP_MASK) {
2712				do_jobctl_trap();
2713				spin_unlock_irq(&sighand->siglock);
2714			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2715				do_freezer_trap();
2716
2717			goto relock;
2718		}
2719
2720		/*
2721		 * If the task is leaving the frozen state, let's update
2722		 * cgroup counters and reset the frozen bit.
2723		 */
2724		if (unlikely(cgroup_task_frozen(current))) {
2725			spin_unlock_irq(&sighand->siglock);
2726			cgroup_leave_frozen(false);
2727			goto relock;
2728		}
2729
2730		/*
2731		 * Signals generated by the execution of an instruction
2732		 * need to be delivered before any other pending signals
2733		 * so that the instruction pointer in the signal stack
2734		 * frame points to the faulting instruction.
2735		 */
2736		type = PIDTYPE_PID;
2737		signr = dequeue_synchronous_signal(&ksig->info);
2738		if (!signr)
2739			signr = dequeue_signal(current, &current->blocked,
2740					       &ksig->info, &type);
2741
2742		if (!signr)
2743			break; /* will return 0 */
2744
2745		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2746		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2747			signr = ptrace_signal(signr, &ksig->info, type);
2748			if (!signr)
2749				continue;
2750		}
2751
2752		ka = &sighand->action[signr-1];
2753
2754		/* Trace actually delivered signals. */
2755		trace_signal_deliver(signr, &ksig->info, ka);
2756
2757		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2758			continue;
2759		if (ka->sa.sa_handler != SIG_DFL) {
2760			/* Run the handler.  */
2761			ksig->ka = *ka;
2762
2763			if (ka->sa.sa_flags & SA_ONESHOT)
2764				ka->sa.sa_handler = SIG_DFL;
2765
2766			break; /* will return non-zero "signr" value */
2767		}
2768
2769		/*
2770		 * Now we are doing the default action for this signal.
2771		 */
2772		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2773			continue;
2774
2775		/*
2776		 * Global init gets no signals it doesn't want.
2777		 * Container-init gets no signals it doesn't want from same
2778		 * container.
2779		 *
2780		 * Note that if global/container-init sees a sig_kernel_only()
2781		 * signal here, the signal must have been generated internally
2782		 * or must have come from an ancestor namespace. In either
2783		 * case, the signal cannot be dropped.
2784		 */
2785		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2786				!sig_kernel_only(signr))
2787			continue;
2788
2789		if (sig_kernel_stop(signr)) {
2790			/*
2791			 * The default action is to stop all threads in
2792			 * the thread group.  The job control signals
2793			 * do nothing in an orphaned pgrp, but SIGSTOP
2794			 * always works.  Note that siglock needs to be
2795			 * dropped during the call to is_orphaned_pgrp()
2796			 * because of lock ordering with tasklist_lock.
2797			 * This allows an intervening SIGCONT to be posted.
2798			 * We need to check for that and bail out if necessary.
2799			 */
2800			if (signr != SIGSTOP) {
2801				spin_unlock_irq(&sighand->siglock);
2802
2803				/* signals can be posted during this window */
2804
2805				if (is_current_pgrp_orphaned())
2806					goto relock;
2807
2808				spin_lock_irq(&sighand->siglock);
2809			}
2810
2811			if (likely(do_signal_stop(ksig->info.si_signo))) {
2812				/* It released the siglock.  */
2813				goto relock;
2814			}
2815
2816			/*
2817			 * We didn't actually stop, due to a race
2818			 * with SIGCONT or something like that.
2819			 */
2820			continue;
2821		}
2822
2823	fatal:
2824		spin_unlock_irq(&sighand->siglock);
2825		if (unlikely(cgroup_task_frozen(current)))
2826			cgroup_leave_frozen(true);
2827
2828		/*
2829		 * Anything else is fatal, maybe with a core dump.
2830		 */
2831		current->flags |= PF_SIGNALED;
2832
2833		if (sig_kernel_coredump(signr)) {
2834			if (print_fatal_signals)
2835				print_fatal_signal(ksig->info.si_signo);
2836			proc_coredump_connector(current);
2837			/*
2838			 * If it was able to dump core, this kills all
2839			 * other threads in the group and synchronizes with
2840			 * their demise.  If we lost the race with another
2841			 * thread getting here, it set group_exit_code
2842			 * first and our do_group_exit call below will use
2843			 * that value and ignore the one we pass it.
2844			 */
2845			do_coredump(&ksig->info);
2846		}
2847
2848		/*
2849		 * PF_IO_WORKER threads will catch and exit on fatal signals
2850		 * themselves. They have cleanup that must be performed, so
2851		 * we cannot call do_exit() on their behalf.
2852		 */
2853		if (current->flags & PF_IO_WORKER)
2854			goto out;
2855
2856		/*
2857		 * Death signals, no core dump.
2858		 */
2859		do_group_exit(ksig->info.si_signo);
2860		/* NOTREACHED */
2861	}
2862	spin_unlock_irq(&sighand->siglock);
2863out:
2864	ksig->sig = signr;
2865
2866	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2867		hide_si_addr_tag_bits(ksig);
2868
 
2869	return ksig->sig > 0;
2870}
2871
2872/**
2873 * signal_delivered - called after signal delivery to update blocked signals
2874 * @ksig:		kernel signal struct
2875 * @stepping:		nonzero if debugger single-step or block-step in use
2876 *
2877 * This function should be called when a signal has successfully been
2878 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2879 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2880 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2881 */
2882static void signal_delivered(struct ksignal *ksig, int stepping)
2883{
2884	sigset_t blocked;
2885
2886	/* A signal was successfully delivered, and the
2887	   saved sigmask was stored on the signal frame,
2888	   and will be restored by sigreturn.  So we can
2889	   simply clear the restore sigmask flag.  */
2890	clear_restore_sigmask();
2891
2892	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2893	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2894		sigaddset(&blocked, ksig->sig);
2895	set_current_blocked(&blocked);
2896	if (current->sas_ss_flags & SS_AUTODISARM)
2897		sas_ss_reset(current);
2898	if (stepping)
2899		ptrace_notify(SIGTRAP, 0);
2900}
2901
2902void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2903{
2904	if (failed)
2905		force_sigsegv(ksig->sig);
2906	else
2907		signal_delivered(ksig, stepping);
2908}
2909
2910/*
2911 * It could be that complete_signal() picked us to notify about the
2912 * group-wide signal. Other threads should be notified now to take
2913 * the shared signals in @which since we will not.
2914 */
2915static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2916{
2917	sigset_t retarget;
2918	struct task_struct *t;
2919
2920	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2921	if (sigisemptyset(&retarget))
2922		return;
2923
2924	t = tsk;
2925	while_each_thread(tsk, t) {
2926		if (t->flags & PF_EXITING)
2927			continue;
2928
2929		if (!has_pending_signals(&retarget, &t->blocked))
2930			continue;
2931		/* Remove the signals this thread can handle. */
2932		sigandsets(&retarget, &retarget, &t->blocked);
2933
2934		if (!task_sigpending(t))
2935			signal_wake_up(t, 0);
2936
2937		if (sigisemptyset(&retarget))
2938			break;
2939	}
2940}
2941
2942void exit_signals(struct task_struct *tsk)
2943{
2944	int group_stop = 0;
2945	sigset_t unblocked;
2946
2947	/*
2948	 * @tsk is about to have PF_EXITING set - lock out users which
2949	 * expect stable threadgroup.
2950	 */
2951	cgroup_threadgroup_change_begin(tsk);
2952
2953	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
2954		tsk->flags |= PF_EXITING;
2955		cgroup_threadgroup_change_end(tsk);
2956		return;
2957	}
2958
2959	spin_lock_irq(&tsk->sighand->siglock);
2960	/*
2961	 * From now this task is not visible for group-wide signals,
2962	 * see wants_signal(), do_signal_stop().
2963	 */
2964	tsk->flags |= PF_EXITING;
2965
2966	cgroup_threadgroup_change_end(tsk);
2967
2968	if (!task_sigpending(tsk))
2969		goto out;
2970
2971	unblocked = tsk->blocked;
2972	signotset(&unblocked);
2973	retarget_shared_pending(tsk, &unblocked);
2974
2975	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2976	    task_participate_group_stop(tsk))
2977		group_stop = CLD_STOPPED;
2978out:
2979	spin_unlock_irq(&tsk->sighand->siglock);
2980
2981	/*
2982	 * If group stop has completed, deliver the notification.  This
2983	 * should always go to the real parent of the group leader.
2984	 */
2985	if (unlikely(group_stop)) {
2986		read_lock(&tasklist_lock);
2987		do_notify_parent_cldstop(tsk, false, group_stop);
2988		read_unlock(&tasklist_lock);
2989	}
2990}
2991
 
 
 
 
 
 
 
 
2992/*
2993 * System call entry points.
2994 */
2995
2996/**
2997 *  sys_restart_syscall - restart a system call
2998 */
2999SYSCALL_DEFINE0(restart_syscall)
3000{
3001	struct restart_block *restart = &current->restart_block;
3002	return restart->fn(restart);
3003}
3004
3005long do_no_restart_syscall(struct restart_block *param)
3006{
3007	return -EINTR;
3008}
3009
3010static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3011{
3012	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3013		sigset_t newblocked;
3014		/* A set of now blocked but previously unblocked signals. */
3015		sigandnsets(&newblocked, newset, &current->blocked);
3016		retarget_shared_pending(tsk, &newblocked);
3017	}
3018	tsk->blocked = *newset;
3019	recalc_sigpending();
3020}
3021
3022/**
3023 * set_current_blocked - change current->blocked mask
3024 * @newset: new mask
3025 *
3026 * It is wrong to change ->blocked directly, this helper should be used
3027 * to ensure the process can't miss a shared signal we are going to block.
3028 */
3029void set_current_blocked(sigset_t *newset)
3030{
3031	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3032	__set_current_blocked(newset);
3033}
3034
3035void __set_current_blocked(const sigset_t *newset)
3036{
3037	struct task_struct *tsk = current;
3038
3039	/*
3040	 * In case the signal mask hasn't changed, there is nothing we need
3041	 * to do. The current->blocked shouldn't be modified by other task.
3042	 */
3043	if (sigequalsets(&tsk->blocked, newset))
3044		return;
3045
3046	spin_lock_irq(&tsk->sighand->siglock);
3047	__set_task_blocked(tsk, newset);
3048	spin_unlock_irq(&tsk->sighand->siglock);
3049}
3050
3051/*
3052 * This is also useful for kernel threads that want to temporarily
3053 * (or permanently) block certain signals.
3054 *
3055 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3056 * interface happily blocks "unblockable" signals like SIGKILL
3057 * and friends.
3058 */
3059int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3060{
3061	struct task_struct *tsk = current;
3062	sigset_t newset;
3063
3064	/* Lockless, only current can change ->blocked, never from irq */
3065	if (oldset)
3066		*oldset = tsk->blocked;
3067
3068	switch (how) {
3069	case SIG_BLOCK:
3070		sigorsets(&newset, &tsk->blocked, set);
3071		break;
3072	case SIG_UNBLOCK:
3073		sigandnsets(&newset, &tsk->blocked, set);
3074		break;
3075	case SIG_SETMASK:
3076		newset = *set;
3077		break;
3078	default:
3079		return -EINVAL;
3080	}
3081
3082	__set_current_blocked(&newset);
3083	return 0;
3084}
3085EXPORT_SYMBOL(sigprocmask);
3086
3087/*
3088 * The api helps set app-provided sigmasks.
3089 *
3090 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3091 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3092 *
3093 * Note that it does set_restore_sigmask() in advance, so it must be always
3094 * paired with restore_saved_sigmask_unless() before return from syscall.
3095 */
3096int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3097{
3098	sigset_t kmask;
3099
3100	if (!umask)
3101		return 0;
3102	if (sigsetsize != sizeof(sigset_t))
3103		return -EINVAL;
3104	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3105		return -EFAULT;
3106
3107	set_restore_sigmask();
3108	current->saved_sigmask = current->blocked;
3109	set_current_blocked(&kmask);
3110
3111	return 0;
3112}
3113
3114#ifdef CONFIG_COMPAT
3115int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3116			    size_t sigsetsize)
3117{
3118	sigset_t kmask;
3119
3120	if (!umask)
3121		return 0;
3122	if (sigsetsize != sizeof(compat_sigset_t))
3123		return -EINVAL;
3124	if (get_compat_sigset(&kmask, umask))
3125		return -EFAULT;
3126
3127	set_restore_sigmask();
3128	current->saved_sigmask = current->blocked;
3129	set_current_blocked(&kmask);
3130
3131	return 0;
3132}
3133#endif
3134
3135/**
3136 *  sys_rt_sigprocmask - change the list of currently blocked signals
3137 *  @how: whether to add, remove, or set signals
3138 *  @nset: stores pending signals
3139 *  @oset: previous value of signal mask if non-null
3140 *  @sigsetsize: size of sigset_t type
3141 */
3142SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3143		sigset_t __user *, oset, size_t, sigsetsize)
3144{
3145	sigset_t old_set, new_set;
3146	int error;
3147
3148	/* XXX: Don't preclude handling different sized sigset_t's.  */
3149	if (sigsetsize != sizeof(sigset_t))
3150		return -EINVAL;
3151
3152	old_set = current->blocked;
3153
3154	if (nset) {
3155		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3156			return -EFAULT;
3157		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3158
3159		error = sigprocmask(how, &new_set, NULL);
3160		if (error)
3161			return error;
3162	}
3163
3164	if (oset) {
3165		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3166			return -EFAULT;
3167	}
3168
3169	return 0;
3170}
3171
3172#ifdef CONFIG_COMPAT
3173COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3174		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3175{
3176	sigset_t old_set = current->blocked;
3177
3178	/* XXX: Don't preclude handling different sized sigset_t's.  */
3179	if (sigsetsize != sizeof(sigset_t))
3180		return -EINVAL;
3181
3182	if (nset) {
3183		sigset_t new_set;
3184		int error;
3185		if (get_compat_sigset(&new_set, nset))
3186			return -EFAULT;
3187		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3188
3189		error = sigprocmask(how, &new_set, NULL);
3190		if (error)
3191			return error;
3192	}
3193	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3194}
3195#endif
3196
3197static void do_sigpending(sigset_t *set)
3198{
3199	spin_lock_irq(&current->sighand->siglock);
3200	sigorsets(set, &current->pending.signal,
3201		  &current->signal->shared_pending.signal);
3202	spin_unlock_irq(&current->sighand->siglock);
3203
3204	/* Outside the lock because only this thread touches it.  */
3205	sigandsets(set, &current->blocked, set);
 
3206}
3207
3208/**
3209 *  sys_rt_sigpending - examine a pending signal that has been raised
3210 *			while blocked
3211 *  @uset: stores pending signals
3212 *  @sigsetsize: size of sigset_t type or larger
3213 */
3214SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3215{
3216	sigset_t set;
 
3217
3218	if (sigsetsize > sizeof(*uset))
3219		return -EINVAL;
3220
3221	do_sigpending(&set);
3222
3223	if (copy_to_user(uset, &set, sigsetsize))
3224		return -EFAULT;
3225
3226	return 0;
3227}
3228
3229#ifdef CONFIG_COMPAT
3230COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3231		compat_size_t, sigsetsize)
3232{
3233	sigset_t set;
 
3234
3235	if (sigsetsize > sizeof(*uset))
3236		return -EINVAL;
3237
3238	do_sigpending(&set);
3239
3240	return put_compat_sigset(uset, &set, sigsetsize);
 
3241}
3242#endif
3243
3244static const struct {
3245	unsigned char limit, layout;
3246} sig_sicodes[] = {
3247	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3248	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3249	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3250	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3251	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3252#if defined(SIGEMT)
3253	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3254#endif
3255	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3256	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3257	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3258};
3259
3260static bool known_siginfo_layout(unsigned sig, int si_code)
3261{
3262	if (si_code == SI_KERNEL)
3263		return true;
3264	else if ((si_code > SI_USER)) {
3265		if (sig_specific_sicodes(sig)) {
3266			if (si_code <= sig_sicodes[sig].limit)
3267				return true;
3268		}
3269		else if (si_code <= NSIGPOLL)
3270			return true;
3271	}
3272	else if (si_code >= SI_DETHREAD)
3273		return true;
3274	else if (si_code == SI_ASYNCNL)
3275		return true;
3276	return false;
3277}
3278
3279enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3280{
3281	enum siginfo_layout layout = SIL_KILL;
3282	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3283		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3284		    (si_code <= sig_sicodes[sig].limit)) {
3285			layout = sig_sicodes[sig].layout;
3286			/* Handle the exceptions */
3287			if ((sig == SIGBUS) &&
3288			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3289				layout = SIL_FAULT_MCEERR;
3290			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3291				layout = SIL_FAULT_BNDERR;
3292#ifdef SEGV_PKUERR
3293			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3294				layout = SIL_FAULT_PKUERR;
3295#endif
3296			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3297				layout = SIL_FAULT_PERF_EVENT;
3298			else if (IS_ENABLED(CONFIG_SPARC) &&
3299				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3300				layout = SIL_FAULT_TRAPNO;
3301			else if (IS_ENABLED(CONFIG_ALPHA) &&
3302				 ((sig == SIGFPE) ||
3303				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3304				layout = SIL_FAULT_TRAPNO;
3305		}
3306		else if (si_code <= NSIGPOLL)
3307			layout = SIL_POLL;
3308	} else {
3309		if (si_code == SI_TIMER)
3310			layout = SIL_TIMER;
3311		else if (si_code == SI_SIGIO)
3312			layout = SIL_POLL;
3313		else if (si_code < 0)
3314			layout = SIL_RT;
 
 
 
 
 
 
 
 
 
3315	}
3316	return layout;
3317}
3318
3319static inline char __user *si_expansion(const siginfo_t __user *info)
3320{
3321	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3322}
3323
3324int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3325{
3326	char __user *expansion = si_expansion(to);
3327	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3328		return -EFAULT;
3329	if (clear_user(expansion, SI_EXPANSION_SIZE))
3330		return -EFAULT;
3331	return 0;
3332}
3333
3334static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3335				       const siginfo_t __user *from)
3336{
3337	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3338		char __user *expansion = si_expansion(from);
3339		char buf[SI_EXPANSION_SIZE];
3340		int i;
3341		/*
3342		 * An unknown si_code might need more than
3343		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3344		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3345		 * will return this data to userspace exactly.
3346		 */
3347		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3348			return -EFAULT;
3349		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3350			if (buf[i] != 0)
3351				return -E2BIG;
3352		}
3353	}
3354	return 0;
3355}
3356
3357static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3358				    const siginfo_t __user *from)
3359{
3360	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3361		return -EFAULT;
3362	to->si_signo = signo;
3363	return post_copy_siginfo_from_user(to, from);
3364}
3365
3366int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3367{
3368	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3369		return -EFAULT;
3370	return post_copy_siginfo_from_user(to, from);
3371}
3372
3373#ifdef CONFIG_COMPAT
3374/**
3375 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3376 * @to: compat siginfo destination
3377 * @from: kernel siginfo source
3378 *
3379 * Note: This function does not work properly for the SIGCHLD on x32, but
3380 * fortunately it doesn't have to.  The only valid callers for this function are
3381 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3382 * The latter does not care because SIGCHLD will never cause a coredump.
3383 */
3384void copy_siginfo_to_external32(struct compat_siginfo *to,
3385		const struct kernel_siginfo *from)
3386{
3387	memset(to, 0, sizeof(*to));
3388
3389	to->si_signo = from->si_signo;
3390	to->si_errno = from->si_errno;
3391	to->si_code  = from->si_code;
3392	switch(siginfo_layout(from->si_signo, from->si_code)) {
3393	case SIL_KILL:
3394		to->si_pid = from->si_pid;
3395		to->si_uid = from->si_uid;
3396		break;
3397	case SIL_TIMER:
3398		to->si_tid     = from->si_tid;
3399		to->si_overrun = from->si_overrun;
3400		to->si_int     = from->si_int;
3401		break;
3402	case SIL_POLL:
3403		to->si_band = from->si_band;
3404		to->si_fd   = from->si_fd;
3405		break;
3406	case SIL_FAULT:
3407		to->si_addr = ptr_to_compat(from->si_addr);
3408		break;
3409	case SIL_FAULT_TRAPNO:
3410		to->si_addr = ptr_to_compat(from->si_addr);
3411		to->si_trapno = from->si_trapno;
3412		break;
3413	case SIL_FAULT_MCEERR:
3414		to->si_addr = ptr_to_compat(from->si_addr);
3415		to->si_addr_lsb = from->si_addr_lsb;
3416		break;
3417	case SIL_FAULT_BNDERR:
3418		to->si_addr = ptr_to_compat(from->si_addr);
3419		to->si_lower = ptr_to_compat(from->si_lower);
3420		to->si_upper = ptr_to_compat(from->si_upper);
3421		break;
3422	case SIL_FAULT_PKUERR:
3423		to->si_addr = ptr_to_compat(from->si_addr);
3424		to->si_pkey = from->si_pkey;
3425		break;
3426	case SIL_FAULT_PERF_EVENT:
3427		to->si_addr = ptr_to_compat(from->si_addr);
3428		to->si_perf_data = from->si_perf_data;
3429		to->si_perf_type = from->si_perf_type;
3430		to->si_perf_flags = from->si_perf_flags;
 
 
 
 
 
 
 
3431		break;
3432	case SIL_CHLD:
3433		to->si_pid = from->si_pid;
3434		to->si_uid = from->si_uid;
3435		to->si_status = from->si_status;
3436		to->si_utime = from->si_utime;
3437		to->si_stime = from->si_stime;
3438		break;
3439	case SIL_RT:
3440		to->si_pid = from->si_pid;
3441		to->si_uid = from->si_uid;
3442		to->si_int = from->si_int;
3443		break;
3444	case SIL_SYS:
3445		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3446		to->si_syscall   = from->si_syscall;
3447		to->si_arch      = from->si_arch;
3448		break;
3449	}
 
3450}
3451
 
 
 
 
 
 
 
3452int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3453			   const struct kernel_siginfo *from)
 
3454{
3455	struct compat_siginfo new;
 
3456
3457	copy_siginfo_to_external32(&new, from);
3458	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3459		return -EFAULT;
3460	return 0;
3461}
3462
3463static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3464					 const struct compat_siginfo *from)
3465{
3466	clear_siginfo(to);
3467	to->si_signo = from->si_signo;
3468	to->si_errno = from->si_errno;
3469	to->si_code  = from->si_code;
3470	switch(siginfo_layout(from->si_signo, from->si_code)) {
3471	case SIL_KILL:
3472		to->si_pid = from->si_pid;
3473		to->si_uid = from->si_uid;
3474		break;
3475	case SIL_TIMER:
3476		to->si_tid     = from->si_tid;
3477		to->si_overrun = from->si_overrun;
3478		to->si_int     = from->si_int;
3479		break;
3480	case SIL_POLL:
3481		to->si_band = from->si_band;
3482		to->si_fd   = from->si_fd;
3483		break;
3484	case SIL_FAULT:
3485		to->si_addr = compat_ptr(from->si_addr);
3486		break;
3487	case SIL_FAULT_TRAPNO:
3488		to->si_addr = compat_ptr(from->si_addr);
3489		to->si_trapno = from->si_trapno;
3490		break;
3491	case SIL_FAULT_MCEERR:
3492		to->si_addr = compat_ptr(from->si_addr);
3493		to->si_addr_lsb = from->si_addr_lsb;
3494		break;
3495	case SIL_FAULT_BNDERR:
3496		to->si_addr = compat_ptr(from->si_addr);
3497		to->si_lower = compat_ptr(from->si_lower);
3498		to->si_upper = compat_ptr(from->si_upper);
3499		break;
3500	case SIL_FAULT_PKUERR:
3501		to->si_addr = compat_ptr(from->si_addr);
3502		to->si_pkey = from->si_pkey;
3503		break;
3504	case SIL_FAULT_PERF_EVENT:
3505		to->si_addr = compat_ptr(from->si_addr);
3506		to->si_perf_data = from->si_perf_data;
3507		to->si_perf_type = from->si_perf_type;
3508		to->si_perf_flags = from->si_perf_flags;
 
3509		break;
3510	case SIL_CHLD:
3511		to->si_pid    = from->si_pid;
3512		to->si_uid    = from->si_uid;
3513		to->si_status = from->si_status;
3514#ifdef CONFIG_X86_X32_ABI
3515		if (in_x32_syscall()) {
3516			to->si_utime = from->_sifields._sigchld_x32._utime;
3517			to->si_stime = from->_sifields._sigchld_x32._stime;
3518		} else
3519#endif
3520		{
3521			to->si_utime = from->si_utime;
3522			to->si_stime = from->si_stime;
3523		}
3524		break;
3525	case SIL_RT:
3526		to->si_pid = from->si_pid;
3527		to->si_uid = from->si_uid;
3528		to->si_int = from->si_int;
3529		break;
3530	case SIL_SYS:
3531		to->si_call_addr = compat_ptr(from->si_call_addr);
3532		to->si_syscall   = from->si_syscall;
3533		to->si_arch      = from->si_arch;
3534		break;
3535	}
3536	return 0;
3537}
3538
3539static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3540				      const struct compat_siginfo __user *ufrom)
3541{
3542	struct compat_siginfo from;
3543
3544	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3545		return -EFAULT;
3546
3547	from.si_signo = signo;
3548	return post_copy_siginfo_from_user32(to, &from);
3549}
3550
3551int copy_siginfo_from_user32(struct kernel_siginfo *to,
3552			     const struct compat_siginfo __user *ufrom)
3553{
3554	struct compat_siginfo from;
3555
3556	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3557		return -EFAULT;
3558
3559	return post_copy_siginfo_from_user32(to, &from);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3560}
3561#endif /* CONFIG_COMPAT */
3562
3563/**
3564 *  do_sigtimedwait - wait for queued signals specified in @which
3565 *  @which: queued signals to wait for
3566 *  @info: if non-null, the signal's siginfo is returned here
3567 *  @ts: upper bound on process time suspension
3568 */
3569static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3570		    const struct timespec64 *ts)
3571{
3572	ktime_t *to = NULL, timeout = KTIME_MAX;
3573	struct task_struct *tsk = current;
3574	sigset_t mask = *which;
3575	enum pid_type type;
3576	int sig, ret = 0;
3577
3578	if (ts) {
3579		if (!timespec64_valid(ts))
3580			return -EINVAL;
3581		timeout = timespec64_to_ktime(*ts);
3582		to = &timeout;
3583	}
3584
3585	/*
3586	 * Invert the set of allowed signals to get those we want to block.
3587	 */
3588	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3589	signotset(&mask);
3590
3591	spin_lock_irq(&tsk->sighand->siglock);
3592	sig = dequeue_signal(tsk, &mask, info, &type);
3593	if (!sig && timeout) {
3594		/*
3595		 * None ready, temporarily unblock those we're interested
3596		 * while we are sleeping in so that we'll be awakened when
3597		 * they arrive. Unblocking is always fine, we can avoid
3598		 * set_current_blocked().
3599		 */
3600		tsk->real_blocked = tsk->blocked;
3601		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3602		recalc_sigpending();
3603		spin_unlock_irq(&tsk->sighand->siglock);
3604
3605		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3606		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3607					       HRTIMER_MODE_REL);
3608		spin_lock_irq(&tsk->sighand->siglock);
3609		__set_task_blocked(tsk, &tsk->real_blocked);
3610		sigemptyset(&tsk->real_blocked);
3611		sig = dequeue_signal(tsk, &mask, info, &type);
3612	}
3613	spin_unlock_irq(&tsk->sighand->siglock);
3614
3615	if (sig)
3616		return sig;
3617	return ret ? -EINTR : -EAGAIN;
3618}
3619
3620/**
3621 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3622 *			in @uthese
3623 *  @uthese: queued signals to wait for
3624 *  @uinfo: if non-null, the signal's siginfo is returned here
3625 *  @uts: upper bound on process time suspension
3626 *  @sigsetsize: size of sigset_t type
3627 */
3628SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3629		siginfo_t __user *, uinfo,
3630		const struct __kernel_timespec __user *, uts,
3631		size_t, sigsetsize)
3632{
3633	sigset_t these;
3634	struct timespec64 ts;
3635	kernel_siginfo_t info;
3636	int ret;
3637
3638	/* XXX: Don't preclude handling different sized sigset_t's.  */
3639	if (sigsetsize != sizeof(sigset_t))
3640		return -EINVAL;
3641
3642	if (copy_from_user(&these, uthese, sizeof(these)))
3643		return -EFAULT;
3644
3645	if (uts) {
3646		if (get_timespec64(&ts, uts))
3647			return -EFAULT;
3648	}
3649
3650	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3651
3652	if (ret > 0 && uinfo) {
3653		if (copy_siginfo_to_user(uinfo, &info))
3654			ret = -EFAULT;
3655	}
3656
3657	return ret;
3658}
3659
3660#ifdef CONFIG_COMPAT_32BIT_TIME
3661SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3662		siginfo_t __user *, uinfo,
3663		const struct old_timespec32 __user *, uts,
3664		size_t, sigsetsize)
3665{
3666	sigset_t these;
3667	struct timespec64 ts;
3668	kernel_siginfo_t info;
3669	int ret;
3670
3671	if (sigsetsize != sizeof(sigset_t))
3672		return -EINVAL;
3673
3674	if (copy_from_user(&these, uthese, sizeof(these)))
3675		return -EFAULT;
3676
3677	if (uts) {
3678		if (get_old_timespec32(&ts, uts))
3679			return -EFAULT;
3680	}
3681
3682	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3683
3684	if (ret > 0 && uinfo) {
3685		if (copy_siginfo_to_user(uinfo, &info))
3686			ret = -EFAULT;
3687	}
3688
3689	return ret;
3690}
3691#endif
3692
3693#ifdef CONFIG_COMPAT
3694COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3695		struct compat_siginfo __user *, uinfo,
3696		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3697{
3698	sigset_t s;
3699	struct timespec64 t;
3700	kernel_siginfo_t info;
3701	long ret;
3702
3703	if (sigsetsize != sizeof(sigset_t))
3704		return -EINVAL;
3705
3706	if (get_compat_sigset(&s, uthese))
3707		return -EFAULT;
3708
3709	if (uts) {
3710		if (get_timespec64(&t, uts))
3711			return -EFAULT;
3712	}
3713
3714	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3715
3716	if (ret > 0 && uinfo) {
3717		if (copy_siginfo_to_user32(uinfo, &info))
3718			ret = -EFAULT;
3719	}
3720
3721	return ret;
3722}
3723
3724#ifdef CONFIG_COMPAT_32BIT_TIME
3725COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3726		struct compat_siginfo __user *, uinfo,
3727		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3728{
3729	sigset_t s;
3730	struct timespec64 t;
3731	kernel_siginfo_t info;
3732	long ret;
3733
3734	if (sigsetsize != sizeof(sigset_t))
3735		return -EINVAL;
3736
3737	if (get_compat_sigset(&s, uthese))
3738		return -EFAULT;
3739
3740	if (uts) {
3741		if (get_old_timespec32(&t, uts))
3742			return -EFAULT;
3743	}
3744
3745	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3746
3747	if (ret > 0 && uinfo) {
3748		if (copy_siginfo_to_user32(uinfo, &info))
3749			ret = -EFAULT;
3750	}
3751
3752	return ret;
3753}
3754#endif
3755#endif
3756
3757static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3758{
3759	clear_siginfo(info);
3760	info->si_signo = sig;
3761	info->si_errno = 0;
3762	info->si_code = SI_USER;
3763	info->si_pid = task_tgid_vnr(current);
3764	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3765}
3766
3767/**
3768 *  sys_kill - send a signal to a process
3769 *  @pid: the PID of the process
3770 *  @sig: signal to be sent
3771 */
3772SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3773{
3774	struct kernel_siginfo info;
3775
3776	prepare_kill_siginfo(sig, &info);
 
 
 
 
 
3777
3778	return kill_something_info(sig, &info, pid);
3779}
3780
3781/*
3782 * Verify that the signaler and signalee either are in the same pid namespace
3783 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3784 * namespace.
3785 */
3786static bool access_pidfd_pidns(struct pid *pid)
3787{
3788	struct pid_namespace *active = task_active_pid_ns(current);
3789	struct pid_namespace *p = ns_of_pid(pid);
3790
3791	for (;;) {
3792		if (!p)
3793			return false;
3794		if (p == active)
3795			break;
3796		p = p->parent;
3797	}
3798
3799	return true;
3800}
3801
3802static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3803		siginfo_t __user *info)
3804{
3805#ifdef CONFIG_COMPAT
3806	/*
3807	 * Avoid hooking up compat syscalls and instead handle necessary
3808	 * conversions here. Note, this is a stop-gap measure and should not be
3809	 * considered a generic solution.
3810	 */
3811	if (in_compat_syscall())
3812		return copy_siginfo_from_user32(
3813			kinfo, (struct compat_siginfo __user *)info);
3814#endif
3815	return copy_siginfo_from_user(kinfo, info);
3816}
3817
3818static struct pid *pidfd_to_pid(const struct file *file)
3819{
3820	struct pid *pid;
3821
3822	pid = pidfd_pid(file);
3823	if (!IS_ERR(pid))
3824		return pid;
3825
3826	return tgid_pidfd_to_pid(file);
3827}
3828
3829/**
3830 * sys_pidfd_send_signal - Signal a process through a pidfd
3831 * @pidfd:  file descriptor of the process
3832 * @sig:    signal to send
3833 * @info:   signal info
3834 * @flags:  future flags
3835 *
3836 * The syscall currently only signals via PIDTYPE_PID which covers
3837 * kill(<positive-pid>, <signal>. It does not signal threads or process
3838 * groups.
3839 * In order to extend the syscall to threads and process groups the @flags
3840 * argument should be used. In essence, the @flags argument will determine
3841 * what is signaled and not the file descriptor itself. Put in other words,
3842 * grouping is a property of the flags argument not a property of the file
3843 * descriptor.
3844 *
3845 * Return: 0 on success, negative errno on failure
3846 */
3847SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3848		siginfo_t __user *, info, unsigned int, flags)
3849{
3850	int ret;
3851	struct fd f;
3852	struct pid *pid;
3853	kernel_siginfo_t kinfo;
3854
3855	/* Enforce flags be set to 0 until we add an extension. */
3856	if (flags)
3857		return -EINVAL;
3858
3859	f = fdget(pidfd);
3860	if (!f.file)
3861		return -EBADF;
3862
3863	/* Is this a pidfd? */
3864	pid = pidfd_to_pid(f.file);
3865	if (IS_ERR(pid)) {
3866		ret = PTR_ERR(pid);
3867		goto err;
3868	}
3869
3870	ret = -EINVAL;
3871	if (!access_pidfd_pidns(pid))
3872		goto err;
3873
3874	if (info) {
3875		ret = copy_siginfo_from_user_any(&kinfo, info);
3876		if (unlikely(ret))
3877			goto err;
3878
3879		ret = -EINVAL;
3880		if (unlikely(sig != kinfo.si_signo))
3881			goto err;
3882
3883		/* Only allow sending arbitrary signals to yourself. */
3884		ret = -EPERM;
3885		if ((task_pid(current) != pid) &&
3886		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3887			goto err;
3888	} else {
3889		prepare_kill_siginfo(sig, &kinfo);
3890	}
3891
3892	ret = kill_pid_info(sig, &kinfo, pid);
3893
3894err:
3895	fdput(f);
3896	return ret;
3897}
3898
3899static int
3900do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3901{
3902	struct task_struct *p;
3903	int error = -ESRCH;
3904
3905	rcu_read_lock();
3906	p = find_task_by_vpid(pid);
3907	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3908		error = check_kill_permission(sig, info, p);
3909		/*
3910		 * The null signal is a permissions and process existence
3911		 * probe.  No signal is actually delivered.
3912		 */
3913		if (!error && sig) {
3914			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3915			/*
3916			 * If lock_task_sighand() failed we pretend the task
3917			 * dies after receiving the signal. The window is tiny,
3918			 * and the signal is private anyway.
3919			 */
3920			if (unlikely(error == -ESRCH))
3921				error = 0;
3922		}
3923	}
3924	rcu_read_unlock();
3925
3926	return error;
3927}
3928
3929static int do_tkill(pid_t tgid, pid_t pid, int sig)
3930{
3931	struct kernel_siginfo info;
3932
3933	clear_siginfo(&info);
3934	info.si_signo = sig;
3935	info.si_errno = 0;
3936	info.si_code = SI_TKILL;
3937	info.si_pid = task_tgid_vnr(current);
3938	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3939
3940	return do_send_specific(tgid, pid, sig, &info);
3941}
3942
3943/**
3944 *  sys_tgkill - send signal to one specific thread
3945 *  @tgid: the thread group ID of the thread
3946 *  @pid: the PID of the thread
3947 *  @sig: signal to be sent
3948 *
3949 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3950 *  exists but it's not belonging to the target process anymore. This
3951 *  method solves the problem of threads exiting and PIDs getting reused.
3952 */
3953SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3954{
3955	/* This is only valid for single tasks */
3956	if (pid <= 0 || tgid <= 0)
3957		return -EINVAL;
3958
3959	return do_tkill(tgid, pid, sig);
3960}
3961
3962/**
3963 *  sys_tkill - send signal to one specific task
3964 *  @pid: the PID of the task
3965 *  @sig: signal to be sent
3966 *
3967 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3968 */
3969SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3970{
3971	/* This is only valid for single tasks */
3972	if (pid <= 0)
3973		return -EINVAL;
3974
3975	return do_tkill(0, pid, sig);
3976}
3977
3978static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3979{
3980	/* Not even root can pretend to send signals from the kernel.
3981	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3982	 */
3983	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3984	    (task_pid_vnr(current) != pid))
3985		return -EPERM;
3986
 
 
3987	/* POSIX.1b doesn't mention process groups.  */
3988	return kill_proc_info(sig, info, pid);
3989}
3990
3991/**
3992 *  sys_rt_sigqueueinfo - send signal information to a signal
3993 *  @pid: the PID of the thread
3994 *  @sig: signal to be sent
3995 *  @uinfo: signal info to be sent
3996 */
3997SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3998		siginfo_t __user *, uinfo)
3999{
4000	kernel_siginfo_t info;
4001	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4002	if (unlikely(ret))
4003		return ret;
4004	return do_rt_sigqueueinfo(pid, sig, &info);
4005}
4006
4007#ifdef CONFIG_COMPAT
4008COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4009			compat_pid_t, pid,
4010			int, sig,
4011			struct compat_siginfo __user *, uinfo)
4012{
4013	kernel_siginfo_t info;
4014	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4015	if (unlikely(ret))
4016		return ret;
4017	return do_rt_sigqueueinfo(pid, sig, &info);
4018}
4019#endif
4020
4021static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4022{
4023	/* This is only valid for single tasks */
4024	if (pid <= 0 || tgid <= 0)
4025		return -EINVAL;
4026
4027	/* Not even root can pretend to send signals from the kernel.
4028	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4029	 */
4030	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4031	    (task_pid_vnr(current) != pid))
4032		return -EPERM;
4033
 
 
4034	return do_send_specific(tgid, pid, sig, info);
4035}
4036
4037SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4038		siginfo_t __user *, uinfo)
4039{
4040	kernel_siginfo_t info;
4041	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4042	if (unlikely(ret))
4043		return ret;
 
4044	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4045}
4046
4047#ifdef CONFIG_COMPAT
4048COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4049			compat_pid_t, tgid,
4050			compat_pid_t, pid,
4051			int, sig,
4052			struct compat_siginfo __user *, uinfo)
4053{
4054	kernel_siginfo_t info;
4055	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4056	if (unlikely(ret))
4057		return ret;
4058	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4059}
4060#endif
4061
4062/*
4063 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4064 */
4065void kernel_sigaction(int sig, __sighandler_t action)
4066{
4067	spin_lock_irq(&current->sighand->siglock);
4068	current->sighand->action[sig - 1].sa.sa_handler = action;
4069	if (action == SIG_IGN) {
4070		sigset_t mask;
4071
4072		sigemptyset(&mask);
4073		sigaddset(&mask, sig);
4074
4075		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4076		flush_sigqueue_mask(&mask, &current->pending);
4077		recalc_sigpending();
4078	}
4079	spin_unlock_irq(&current->sighand->siglock);
4080}
4081EXPORT_SYMBOL(kernel_sigaction);
4082
4083void __weak sigaction_compat_abi(struct k_sigaction *act,
4084		struct k_sigaction *oact)
4085{
4086}
4087
4088int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4089{
4090	struct task_struct *p = current, *t;
4091	struct k_sigaction *k;
4092	sigset_t mask;
4093
4094	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4095		return -EINVAL;
4096
4097	k = &p->sighand->action[sig-1];
4098
4099	spin_lock_irq(&p->sighand->siglock);
4100	if (k->sa.sa_flags & SA_IMMUTABLE) {
4101		spin_unlock_irq(&p->sighand->siglock);
4102		return -EINVAL;
4103	}
4104	if (oact)
4105		*oact = *k;
4106
4107	/*
4108	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4109	 * e.g. by having an architecture use the bit in their uapi.
4110	 */
4111	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4112
4113	/*
4114	 * Clear unknown flag bits in order to allow userspace to detect missing
4115	 * support for flag bits and to allow the kernel to use non-uapi bits
4116	 * internally.
4117	 */
4118	if (act)
4119		act->sa.sa_flags &= UAPI_SA_FLAGS;
4120	if (oact)
4121		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4122
4123	sigaction_compat_abi(act, oact);
4124
4125	if (act) {
4126		sigdelsetmask(&act->sa.sa_mask,
4127			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4128		*k = *act;
4129		/*
4130		 * POSIX 3.3.1.3:
4131		 *  "Setting a signal action to SIG_IGN for a signal that is
4132		 *   pending shall cause the pending signal to be discarded,
4133		 *   whether or not it is blocked."
4134		 *
4135		 *  "Setting a signal action to SIG_DFL for a signal that is
4136		 *   pending and whose default action is to ignore the signal
4137		 *   (for example, SIGCHLD), shall cause the pending signal to
4138		 *   be discarded, whether or not it is blocked"
4139		 */
4140		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4141			sigemptyset(&mask);
4142			sigaddset(&mask, sig);
4143			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4144			for_each_thread(p, t)
4145				flush_sigqueue_mask(&mask, &t->pending);
4146		}
4147	}
4148
4149	spin_unlock_irq(&p->sighand->siglock);
4150	return 0;
4151}
4152
4153#ifdef CONFIG_DYNAMIC_SIGFRAME
4154static inline void sigaltstack_lock(void)
4155	__acquires(&current->sighand->siglock)
4156{
4157	spin_lock_irq(&current->sighand->siglock);
4158}
4159
4160static inline void sigaltstack_unlock(void)
4161	__releases(&current->sighand->siglock)
4162{
4163	spin_unlock_irq(&current->sighand->siglock);
4164}
4165#else
4166static inline void sigaltstack_lock(void) { }
4167static inline void sigaltstack_unlock(void) { }
4168#endif
4169
4170static int
4171do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4172		size_t min_ss_size)
4173{
4174	struct task_struct *t = current;
4175	int ret = 0;
4176
4177	if (oss) {
4178		memset(oss, 0, sizeof(stack_t));
4179		oss->ss_sp = (void __user *) t->sas_ss_sp;
4180		oss->ss_size = t->sas_ss_size;
4181		oss->ss_flags = sas_ss_flags(sp) |
4182			(current->sas_ss_flags & SS_FLAG_BITS);
4183	}
4184
4185	if (ss) {
4186		void __user *ss_sp = ss->ss_sp;
4187		size_t ss_size = ss->ss_size;
4188		unsigned ss_flags = ss->ss_flags;
4189		int ss_mode;
4190
4191		if (unlikely(on_sig_stack(sp)))
4192			return -EPERM;
4193
4194		ss_mode = ss_flags & ~SS_FLAG_BITS;
4195		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4196				ss_mode != 0))
4197			return -EINVAL;
4198
4199		/*
4200		 * Return before taking any locks if no actual
4201		 * sigaltstack changes were requested.
4202		 */
4203		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4204		    t->sas_ss_size == ss_size &&
4205		    t->sas_ss_flags == ss_flags)
4206			return 0;
4207
4208		sigaltstack_lock();
4209		if (ss_mode == SS_DISABLE) {
4210			ss_size = 0;
4211			ss_sp = NULL;
4212		} else {
4213			if (unlikely(ss_size < min_ss_size))
4214				ret = -ENOMEM;
4215			if (!sigaltstack_size_valid(ss_size))
4216				ret = -ENOMEM;
4217		}
4218		if (!ret) {
4219			t->sas_ss_sp = (unsigned long) ss_sp;
4220			t->sas_ss_size = ss_size;
4221			t->sas_ss_flags = ss_flags;
4222		}
4223		sigaltstack_unlock();
 
 
 
4224	}
4225	return ret;
4226}
4227
4228SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4229{
4230	stack_t new, old;
4231	int err;
4232	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4233		return -EFAULT;
4234	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4235			      current_user_stack_pointer(),
4236			      MINSIGSTKSZ);
4237	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4238		err = -EFAULT;
4239	return err;
4240}
4241
4242int restore_altstack(const stack_t __user *uss)
4243{
4244	stack_t new;
4245	if (copy_from_user(&new, uss, sizeof(stack_t)))
4246		return -EFAULT;
4247	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4248			     MINSIGSTKSZ);
4249	/* squash all but EFAULT for now */
4250	return 0;
4251}
4252
4253int __save_altstack(stack_t __user *uss, unsigned long sp)
4254{
4255	struct task_struct *t = current;
4256	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4257		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4258		__put_user(t->sas_ss_size, &uss->ss_size);
4259	return err;
 
 
 
 
4260}
4261
4262#ifdef CONFIG_COMPAT
4263static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4264				 compat_stack_t __user *uoss_ptr)
4265{
4266	stack_t uss, uoss;
4267	int ret;
4268
4269	if (uss_ptr) {
4270		compat_stack_t uss32;
4271		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4272			return -EFAULT;
4273		uss.ss_sp = compat_ptr(uss32.ss_sp);
4274		uss.ss_flags = uss32.ss_flags;
4275		uss.ss_size = uss32.ss_size;
4276	}
4277	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4278			     compat_user_stack_pointer(),
4279			     COMPAT_MINSIGSTKSZ);
4280	if (ret >= 0 && uoss_ptr)  {
4281		compat_stack_t old;
4282		memset(&old, 0, sizeof(old));
4283		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4284		old.ss_flags = uoss.ss_flags;
4285		old.ss_size = uoss.ss_size;
4286		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4287			ret = -EFAULT;
4288	}
4289	return ret;
4290}
4291
4292COMPAT_SYSCALL_DEFINE2(sigaltstack,
4293			const compat_stack_t __user *, uss_ptr,
4294			compat_stack_t __user *, uoss_ptr)
4295{
4296	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4297}
4298
4299int compat_restore_altstack(const compat_stack_t __user *uss)
4300{
4301	int err = do_compat_sigaltstack(uss, NULL);
4302	/* squash all but -EFAULT for now */
4303	return err == -EFAULT ? err : 0;
4304}
4305
4306int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4307{
4308	int err;
4309	struct task_struct *t = current;
4310	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4311			 &uss->ss_sp) |
4312		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4313		__put_user(t->sas_ss_size, &uss->ss_size);
4314	return err;
 
 
 
 
4315}
4316#endif
4317
4318#ifdef __ARCH_WANT_SYS_SIGPENDING
4319
4320/**
4321 *  sys_sigpending - examine pending signals
4322 *  @uset: where mask of pending signal is returned
4323 */
4324SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4325{
4326	sigset_t set;
 
4327
4328	if (sizeof(old_sigset_t) > sizeof(*uset))
4329		return -EINVAL;
4330
4331	do_sigpending(&set);
4332
4333	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4334		return -EFAULT;
4335
4336	return 0;
4337}
4338
4339#ifdef CONFIG_COMPAT
4340COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4341{
4342	sigset_t set;
4343
4344	do_sigpending(&set);
4345
4346	return put_user(set.sig[0], set32);
4347}
4348#endif
4349
4350#endif
4351
4352#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4353/**
4354 *  sys_sigprocmask - examine and change blocked signals
4355 *  @how: whether to add, remove, or set signals
4356 *  @nset: signals to add or remove (if non-null)
4357 *  @oset: previous value of signal mask if non-null
4358 *
4359 * Some platforms have their own version with special arguments;
4360 * others support only sys_rt_sigprocmask.
4361 */
4362
4363SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4364		old_sigset_t __user *, oset)
4365{
4366	old_sigset_t old_set, new_set;
4367	sigset_t new_blocked;
4368
4369	old_set = current->blocked.sig[0];
4370
4371	if (nset) {
4372		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4373			return -EFAULT;
4374
4375		new_blocked = current->blocked;
4376
4377		switch (how) {
4378		case SIG_BLOCK:
4379			sigaddsetmask(&new_blocked, new_set);
4380			break;
4381		case SIG_UNBLOCK:
4382			sigdelsetmask(&new_blocked, new_set);
4383			break;
4384		case SIG_SETMASK:
4385			new_blocked.sig[0] = new_set;
4386			break;
4387		default:
4388			return -EINVAL;
4389		}
4390
4391		set_current_blocked(&new_blocked);
4392	}
4393
4394	if (oset) {
4395		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4396			return -EFAULT;
4397	}
4398
4399	return 0;
4400}
4401#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4402
4403#ifndef CONFIG_ODD_RT_SIGACTION
4404/**
4405 *  sys_rt_sigaction - alter an action taken by a process
4406 *  @sig: signal to be sent
4407 *  @act: new sigaction
4408 *  @oact: used to save the previous sigaction
4409 *  @sigsetsize: size of sigset_t type
4410 */
4411SYSCALL_DEFINE4(rt_sigaction, int, sig,
4412		const struct sigaction __user *, act,
4413		struct sigaction __user *, oact,
4414		size_t, sigsetsize)
4415{
4416	struct k_sigaction new_sa, old_sa;
4417	int ret;
4418
4419	/* XXX: Don't preclude handling different sized sigset_t's.  */
4420	if (sigsetsize != sizeof(sigset_t))
4421		return -EINVAL;
4422
4423	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4424		return -EFAULT;
 
 
4425
4426	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4427	if (ret)
4428		return ret;
4429
4430	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4431		return -EFAULT;
4432
4433	return 0;
 
 
 
 
 
4434}
4435#ifdef CONFIG_COMPAT
4436COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4437		const struct compat_sigaction __user *, act,
4438		struct compat_sigaction __user *, oact,
4439		compat_size_t, sigsetsize)
4440{
4441	struct k_sigaction new_ka, old_ka;
4442#ifdef __ARCH_HAS_SA_RESTORER
4443	compat_uptr_t restorer;
4444#endif
4445	int ret;
4446
4447	/* XXX: Don't preclude handling different sized sigset_t's.  */
4448	if (sigsetsize != sizeof(compat_sigset_t))
4449		return -EINVAL;
4450
4451	if (act) {
4452		compat_uptr_t handler;
4453		ret = get_user(handler, &act->sa_handler);
4454		new_ka.sa.sa_handler = compat_ptr(handler);
4455#ifdef __ARCH_HAS_SA_RESTORER
4456		ret |= get_user(restorer, &act->sa_restorer);
4457		new_ka.sa.sa_restorer = compat_ptr(restorer);
4458#endif
4459		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4460		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4461		if (ret)
4462			return -EFAULT;
4463	}
4464
4465	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4466	if (!ret && oact) {
4467		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4468			       &oact->sa_handler);
4469		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4470					 sizeof(oact->sa_mask));
4471		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4472#ifdef __ARCH_HAS_SA_RESTORER
4473		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4474				&oact->sa_restorer);
4475#endif
4476	}
4477	return ret;
4478}
4479#endif
4480#endif /* !CONFIG_ODD_RT_SIGACTION */
4481
4482#ifdef CONFIG_OLD_SIGACTION
4483SYSCALL_DEFINE3(sigaction, int, sig,
4484		const struct old_sigaction __user *, act,
4485	        struct old_sigaction __user *, oact)
4486{
4487	struct k_sigaction new_ka, old_ka;
4488	int ret;
4489
4490	if (act) {
4491		old_sigset_t mask;
4492		if (!access_ok(act, sizeof(*act)) ||
4493		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4494		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4495		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4496		    __get_user(mask, &act->sa_mask))
4497			return -EFAULT;
4498#ifdef __ARCH_HAS_KA_RESTORER
4499		new_ka.ka_restorer = NULL;
4500#endif
4501		siginitset(&new_ka.sa.sa_mask, mask);
4502	}
4503
4504	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4505
4506	if (!ret && oact) {
4507		if (!access_ok(oact, sizeof(*oact)) ||
4508		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4509		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4510		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4511		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4512			return -EFAULT;
4513	}
4514
4515	return ret;
4516}
4517#endif
4518#ifdef CONFIG_COMPAT_OLD_SIGACTION
4519COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4520		const struct compat_old_sigaction __user *, act,
4521	        struct compat_old_sigaction __user *, oact)
4522{
4523	struct k_sigaction new_ka, old_ka;
4524	int ret;
4525	compat_old_sigset_t mask;
4526	compat_uptr_t handler, restorer;
4527
4528	if (act) {
4529		if (!access_ok(act, sizeof(*act)) ||
4530		    __get_user(handler, &act->sa_handler) ||
4531		    __get_user(restorer, &act->sa_restorer) ||
4532		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4533		    __get_user(mask, &act->sa_mask))
4534			return -EFAULT;
4535
4536#ifdef __ARCH_HAS_KA_RESTORER
4537		new_ka.ka_restorer = NULL;
4538#endif
4539		new_ka.sa.sa_handler = compat_ptr(handler);
4540		new_ka.sa.sa_restorer = compat_ptr(restorer);
4541		siginitset(&new_ka.sa.sa_mask, mask);
4542	}
4543
4544	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4545
4546	if (!ret && oact) {
4547		if (!access_ok(oact, sizeof(*oact)) ||
4548		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4549			       &oact->sa_handler) ||
4550		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4551			       &oact->sa_restorer) ||
4552		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4553		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4554			return -EFAULT;
4555	}
4556	return ret;
4557}
4558#endif
4559
4560#ifdef CONFIG_SGETMASK_SYSCALL
4561
4562/*
4563 * For backwards compatibility.  Functionality superseded by sigprocmask.
4564 */
4565SYSCALL_DEFINE0(sgetmask)
4566{
4567	/* SMP safe */
4568	return current->blocked.sig[0];
4569}
4570
4571SYSCALL_DEFINE1(ssetmask, int, newmask)
4572{
4573	int old = current->blocked.sig[0];
4574	sigset_t newset;
4575
4576	siginitset(&newset, newmask);
4577	set_current_blocked(&newset);
4578
4579	return old;
4580}
4581#endif /* CONFIG_SGETMASK_SYSCALL */
4582
4583#ifdef __ARCH_WANT_SYS_SIGNAL
4584/*
4585 * For backwards compatibility.  Functionality superseded by sigaction.
4586 */
4587SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4588{
4589	struct k_sigaction new_sa, old_sa;
4590	int ret;
4591
4592	new_sa.sa.sa_handler = handler;
4593	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4594	sigemptyset(&new_sa.sa.sa_mask);
4595
4596	ret = do_sigaction(sig, &new_sa, &old_sa);
4597
4598	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4599}
4600#endif /* __ARCH_WANT_SYS_SIGNAL */
4601
4602#ifdef __ARCH_WANT_SYS_PAUSE
4603
4604SYSCALL_DEFINE0(pause)
4605{
4606	while (!signal_pending(current)) {
4607		__set_current_state(TASK_INTERRUPTIBLE);
4608		schedule();
4609	}
4610	return -ERESTARTNOHAND;
4611}
4612
4613#endif
4614
4615static int sigsuspend(sigset_t *set)
4616{
4617	current->saved_sigmask = current->blocked;
4618	set_current_blocked(set);
4619
4620	while (!signal_pending(current)) {
4621		__set_current_state(TASK_INTERRUPTIBLE);
4622		schedule();
4623	}
4624	set_restore_sigmask();
4625	return -ERESTARTNOHAND;
4626}
4627
4628/**
4629 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4630 *	@unewset value until a signal is received
4631 *  @unewset: new signal mask value
4632 *  @sigsetsize: size of sigset_t type
4633 */
4634SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4635{
4636	sigset_t newset;
4637
4638	/* XXX: Don't preclude handling different sized sigset_t's.  */
4639	if (sigsetsize != sizeof(sigset_t))
4640		return -EINVAL;
4641
4642	if (copy_from_user(&newset, unewset, sizeof(newset)))
4643		return -EFAULT;
4644	return sigsuspend(&newset);
4645}
4646 
4647#ifdef CONFIG_COMPAT
4648COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4649{
4650	sigset_t newset;
4651
4652	/* XXX: Don't preclude handling different sized sigset_t's.  */
4653	if (sigsetsize != sizeof(sigset_t))
4654		return -EINVAL;
4655
4656	if (get_compat_sigset(&newset, unewset))
4657		return -EFAULT;
4658	return sigsuspend(&newset);
4659}
4660#endif
4661
4662#ifdef CONFIG_OLD_SIGSUSPEND
4663SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4664{
4665	sigset_t blocked;
4666	siginitset(&blocked, mask);
4667	return sigsuspend(&blocked);
4668}
4669#endif
4670#ifdef CONFIG_OLD_SIGSUSPEND3
4671SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4672{
4673	sigset_t blocked;
4674	siginitset(&blocked, mask);
4675	return sigsuspend(&blocked);
4676}
4677#endif
4678
4679__weak const char *arch_vma_name(struct vm_area_struct *vma)
4680{
4681	return NULL;
4682}
4683
4684static inline void siginfo_buildtime_checks(void)
4685{
4686	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4687
4688	/* Verify the offsets in the two siginfos match */
4689#define CHECK_OFFSET(field) \
4690	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4691
4692	/* kill */
4693	CHECK_OFFSET(si_pid);
4694	CHECK_OFFSET(si_uid);
4695
4696	/* timer */
4697	CHECK_OFFSET(si_tid);
4698	CHECK_OFFSET(si_overrun);
4699	CHECK_OFFSET(si_value);
4700
4701	/* rt */
4702	CHECK_OFFSET(si_pid);
4703	CHECK_OFFSET(si_uid);
4704	CHECK_OFFSET(si_value);
4705
4706	/* sigchld */
4707	CHECK_OFFSET(si_pid);
4708	CHECK_OFFSET(si_uid);
4709	CHECK_OFFSET(si_status);
4710	CHECK_OFFSET(si_utime);
4711	CHECK_OFFSET(si_stime);
4712
4713	/* sigfault */
4714	CHECK_OFFSET(si_addr);
4715	CHECK_OFFSET(si_trapno);
4716	CHECK_OFFSET(si_addr_lsb);
4717	CHECK_OFFSET(si_lower);
4718	CHECK_OFFSET(si_upper);
4719	CHECK_OFFSET(si_pkey);
4720	CHECK_OFFSET(si_perf_data);
4721	CHECK_OFFSET(si_perf_type);
4722	CHECK_OFFSET(si_perf_flags);
4723
4724	/* sigpoll */
4725	CHECK_OFFSET(si_band);
4726	CHECK_OFFSET(si_fd);
4727
4728	/* sigsys */
4729	CHECK_OFFSET(si_call_addr);
4730	CHECK_OFFSET(si_syscall);
4731	CHECK_OFFSET(si_arch);
4732#undef CHECK_OFFSET
4733
4734	/* usb asyncio */
4735	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4736		     offsetof(struct siginfo, si_addr));
4737	if (sizeof(int) == sizeof(void __user *)) {
4738		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4739			     sizeof(void __user *));
4740	} else {
4741		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4742			      sizeof_field(struct siginfo, si_uid)) !=
4743			     sizeof(void __user *));
4744		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4745			     offsetof(struct siginfo, si_uid));
4746	}
4747#ifdef CONFIG_COMPAT
4748	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4749		     offsetof(struct compat_siginfo, si_addr));
4750	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4751		     sizeof(compat_uptr_t));
4752	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4753		     sizeof_field(struct siginfo, si_pid));
4754#endif
4755}
4756
4757void __init signals_init(void)
4758{
4759	siginfo_buildtime_checks();
 
 
 
4760
4761	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4762}
4763
4764#ifdef CONFIG_KGDB_KDB
4765#include <linux/kdb.h>
4766/*
4767 * kdb_send_sig - Allows kdb to send signals without exposing
4768 * signal internals.  This function checks if the required locks are
4769 * available before calling the main signal code, to avoid kdb
4770 * deadlocks.
4771 */
4772void kdb_send_sig(struct task_struct *t, int sig)
4773{
4774	static struct task_struct *kdb_prev_t;
4775	int new_t, ret;
4776	if (!spin_trylock(&t->sighand->siglock)) {
4777		kdb_printf("Can't do kill command now.\n"
4778			   "The sigmask lock is held somewhere else in "
4779			   "kernel, try again later\n");
4780		return;
4781	}
4782	new_t = kdb_prev_t != t;
4783	kdb_prev_t = t;
4784	if (!task_is_running(t) && new_t) {
4785		spin_unlock(&t->sighand->siglock);
4786		kdb_printf("Process is not RUNNING, sending a signal from "
4787			   "kdb risks deadlock\n"
4788			   "on the run queue locks. "
4789			   "The signal has _not_ been sent.\n"
4790			   "Reissue the kill command if you want to risk "
4791			   "the deadlock.\n");
4792		return;
4793	}
4794	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4795	spin_unlock(&t->sighand->siglock);
4796	if (ret)
4797		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4798			   sig, t->pid);
4799	else
4800		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4801}
4802#endif	/* CONFIG_KGDB_KDB */
v4.17
 
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *		Changes to use preallocated sigqueue structures
  10 *		to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/sched/mm.h>
  17#include <linux/sched/user.h>
  18#include <linux/sched/debug.h>
  19#include <linux/sched/task.h>
  20#include <linux/sched/task_stack.h>
  21#include <linux/sched/cputime.h>
 
  22#include <linux/fs.h>
 
  23#include <linux/tty.h>
  24#include <linux/binfmts.h>
  25#include <linux/coredump.h>
  26#include <linux/security.h>
  27#include <linux/syscalls.h>
  28#include <linux/ptrace.h>
  29#include <linux/signal.h>
  30#include <linux/signalfd.h>
  31#include <linux/ratelimit.h>
  32#include <linux/tracehook.h>
  33#include <linux/capability.h>
  34#include <linux/freezer.h>
  35#include <linux/pid_namespace.h>
  36#include <linux/nsproxy.h>
  37#include <linux/user_namespace.h>
  38#include <linux/uprobes.h>
  39#include <linux/compat.h>
  40#include <linux/cn_proc.h>
  41#include <linux/compiler.h>
  42#include <linux/posix-timers.h>
  43#include <linux/livepatch.h>
 
  44
  45#define CREATE_TRACE_POINTS
  46#include <trace/events/signal.h>
  47
  48#include <asm/param.h>
  49#include <linux/uaccess.h>
  50#include <asm/unistd.h>
  51#include <asm/siginfo.h>
  52#include <asm/cacheflush.h>
  53#include "audit.h"	/* audit_signal_info() */
  54
  55/*
  56 * SLAB caches for signal bits.
  57 */
  58
  59static struct kmem_cache *sigqueue_cachep;
  60
  61int print_fatal_signals __read_mostly;
  62
  63static void __user *sig_handler(struct task_struct *t, int sig)
  64{
  65	return t->sighand->action[sig - 1].sa.sa_handler;
  66}
  67
  68static int sig_handler_ignored(void __user *handler, int sig)
  69{
  70	/* Is it explicitly or implicitly ignored? */
  71	return handler == SIG_IGN ||
  72		(handler == SIG_DFL && sig_kernel_ignore(sig));
  73}
  74
  75static int sig_task_ignored(struct task_struct *t, int sig, bool force)
  76{
  77	void __user *handler;
  78
  79	handler = sig_handler(t, sig);
  80
 
 
 
 
  81	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  82	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  83		return 1;
 
 
 
 
 
  84
  85	return sig_handler_ignored(handler, sig);
  86}
  87
  88static int sig_ignored(struct task_struct *t, int sig, bool force)
  89{
  90	/*
  91	 * Blocked signals are never ignored, since the
  92	 * signal handler may change by the time it is
  93	 * unblocked.
  94	 */
  95	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  96		return 0;
  97
  98	/*
  99	 * Tracers may want to know about even ignored signal unless it
 100	 * is SIGKILL which can't be reported anyway but can be ignored
 101	 * by SIGNAL_UNKILLABLE task.
 102	 */
 103	if (t->ptrace && sig != SIGKILL)
 104		return 0;
 105
 106	return sig_task_ignored(t, sig, force);
 107}
 108
 109/*
 110 * Re-calculate pending state from the set of locally pending
 111 * signals, globally pending signals, and blocked signals.
 112 */
 113static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
 114{
 115	unsigned long ready;
 116	long i;
 117
 118	switch (_NSIG_WORDS) {
 119	default:
 120		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 121			ready |= signal->sig[i] &~ blocked->sig[i];
 122		break;
 123
 124	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 125		ready |= signal->sig[2] &~ blocked->sig[2];
 126		ready |= signal->sig[1] &~ blocked->sig[1];
 127		ready |= signal->sig[0] &~ blocked->sig[0];
 128		break;
 129
 130	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 131		ready |= signal->sig[0] &~ blocked->sig[0];
 132		break;
 133
 134	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 135	}
 136	return ready !=	0;
 137}
 138
 139#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 140
 141static int recalc_sigpending_tsk(struct task_struct *t)
 142{
 143	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 144	    PENDING(&t->pending, &t->blocked) ||
 145	    PENDING(&t->signal->shared_pending, &t->blocked)) {
 
 146		set_tsk_thread_flag(t, TIF_SIGPENDING);
 147		return 1;
 148	}
 
 149	/*
 150	 * We must never clear the flag in another thread, or in current
 151	 * when it's possible the current syscall is returning -ERESTART*.
 152	 * So we don't clear it here, and only callers who know they should do.
 153	 */
 154	return 0;
 155}
 156
 157/*
 158 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 159 * This is superfluous when called on current, the wakeup is a harmless no-op.
 160 */
 161void recalc_sigpending_and_wake(struct task_struct *t)
 162{
 163	if (recalc_sigpending_tsk(t))
 164		signal_wake_up(t, 0);
 165}
 166
 167void recalc_sigpending(void)
 168{
 169	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
 170	    !klp_patch_pending(current))
 171		clear_thread_flag(TIF_SIGPENDING);
 172
 173}
 
 
 
 
 
 
 
 
 
 
 
 
 174
 175/* Given the mask, find the first available signal that should be serviced. */
 176
 177#define SYNCHRONOUS_MASK \
 178	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 179	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 180
 181int next_signal(struct sigpending *pending, sigset_t *mask)
 182{
 183	unsigned long i, *s, *m, x;
 184	int sig = 0;
 185
 186	s = pending->signal.sig;
 187	m = mask->sig;
 188
 189	/*
 190	 * Handle the first word specially: it contains the
 191	 * synchronous signals that need to be dequeued first.
 192	 */
 193	x = *s &~ *m;
 194	if (x) {
 195		if (x & SYNCHRONOUS_MASK)
 196			x &= SYNCHRONOUS_MASK;
 197		sig = ffz(~x) + 1;
 198		return sig;
 199	}
 200
 201	switch (_NSIG_WORDS) {
 202	default:
 203		for (i = 1; i < _NSIG_WORDS; ++i) {
 204			x = *++s &~ *++m;
 205			if (!x)
 206				continue;
 207			sig = ffz(~x) + i*_NSIG_BPW + 1;
 208			break;
 209		}
 210		break;
 211
 212	case 2:
 213		x = s[1] &~ m[1];
 214		if (!x)
 215			break;
 216		sig = ffz(~x) + _NSIG_BPW + 1;
 217		break;
 218
 219	case 1:
 220		/* Nothing to do */
 221		break;
 222	}
 223
 224	return sig;
 225}
 226
 227static inline void print_dropped_signal(int sig)
 228{
 229	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 230
 231	if (!print_fatal_signals)
 232		return;
 233
 234	if (!__ratelimit(&ratelimit_state))
 235		return;
 236
 237	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 238				current->comm, current->pid, sig);
 239}
 240
 241/**
 242 * task_set_jobctl_pending - set jobctl pending bits
 243 * @task: target task
 244 * @mask: pending bits to set
 245 *
 246 * Clear @mask from @task->jobctl.  @mask must be subset of
 247 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 248 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 249 * cleared.  If @task is already being killed or exiting, this function
 250 * becomes noop.
 251 *
 252 * CONTEXT:
 253 * Must be called with @task->sighand->siglock held.
 254 *
 255 * RETURNS:
 256 * %true if @mask is set, %false if made noop because @task was dying.
 257 */
 258bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 259{
 260	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 261			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 262	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 263
 264	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 265		return false;
 266
 267	if (mask & JOBCTL_STOP_SIGMASK)
 268		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 269
 270	task->jobctl |= mask;
 271	return true;
 272}
 273
 274/**
 275 * task_clear_jobctl_trapping - clear jobctl trapping bit
 276 * @task: target task
 277 *
 278 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 279 * Clear it and wake up the ptracer.  Note that we don't need any further
 280 * locking.  @task->siglock guarantees that @task->parent points to the
 281 * ptracer.
 282 *
 283 * CONTEXT:
 284 * Must be called with @task->sighand->siglock held.
 285 */
 286void task_clear_jobctl_trapping(struct task_struct *task)
 287{
 288	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 289		task->jobctl &= ~JOBCTL_TRAPPING;
 290		smp_mb();	/* advised by wake_up_bit() */
 291		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 292	}
 293}
 294
 295/**
 296 * task_clear_jobctl_pending - clear jobctl pending bits
 297 * @task: target task
 298 * @mask: pending bits to clear
 299 *
 300 * Clear @mask from @task->jobctl.  @mask must be subset of
 301 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 302 * STOP bits are cleared together.
 303 *
 304 * If clearing of @mask leaves no stop or trap pending, this function calls
 305 * task_clear_jobctl_trapping().
 306 *
 307 * CONTEXT:
 308 * Must be called with @task->sighand->siglock held.
 309 */
 310void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 311{
 312	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 313
 314	if (mask & JOBCTL_STOP_PENDING)
 315		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 316
 317	task->jobctl &= ~mask;
 318
 319	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 320		task_clear_jobctl_trapping(task);
 321}
 322
 323/**
 324 * task_participate_group_stop - participate in a group stop
 325 * @task: task participating in a group stop
 326 *
 327 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 328 * Group stop states are cleared and the group stop count is consumed if
 329 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 330 * stop, the appropriate %SIGNAL_* flags are set.
 331 *
 332 * CONTEXT:
 333 * Must be called with @task->sighand->siglock held.
 334 *
 335 * RETURNS:
 336 * %true if group stop completion should be notified to the parent, %false
 337 * otherwise.
 338 */
 339static bool task_participate_group_stop(struct task_struct *task)
 340{
 341	struct signal_struct *sig = task->signal;
 342	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 343
 344	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 345
 346	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 347
 348	if (!consume)
 349		return false;
 350
 351	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 352		sig->group_stop_count--;
 353
 354	/*
 355	 * Tell the caller to notify completion iff we are entering into a
 356	 * fresh group stop.  Read comment in do_signal_stop() for details.
 357	 */
 358	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 359		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 360		return true;
 361	}
 362	return false;
 363}
 364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 365/*
 366 * allocate a new signal queue record
 367 * - this may be called without locks if and only if t == current, otherwise an
 368 *   appropriate lock must be held to stop the target task from exiting
 369 */
 370static struct sigqueue *
 371__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 
 372{
 373	struct sigqueue *q = NULL;
 374	struct user_struct *user;
 
 375
 376	/*
 377	 * Protect access to @t credentials. This can go away when all
 378	 * callers hold rcu read lock.
 
 
 
 
 379	 */
 380	rcu_read_lock();
 381	user = get_uid(__task_cred(t)->user);
 382	atomic_inc(&user->sigpending);
 383	rcu_read_unlock();
 
 
 384
 385	if (override_rlimit ||
 386	    atomic_read(&user->sigpending) <=
 387			task_rlimit(t, RLIMIT_SIGPENDING)) {
 388		q = kmem_cache_alloc(sigqueue_cachep, flags);
 389	} else {
 390		print_dropped_signal(sig);
 391	}
 392
 393	if (unlikely(q == NULL)) {
 394		atomic_dec(&user->sigpending);
 395		free_uid(user);
 396	} else {
 397		INIT_LIST_HEAD(&q->list);
 398		q->flags = 0;
 399		q->user = user;
 400	}
 401
 402	return q;
 403}
 404
 405static void __sigqueue_free(struct sigqueue *q)
 406{
 407	if (q->flags & SIGQUEUE_PREALLOC)
 408		return;
 409	atomic_dec(&q->user->sigpending);
 410	free_uid(q->user);
 
 
 411	kmem_cache_free(sigqueue_cachep, q);
 412}
 413
 414void flush_sigqueue(struct sigpending *queue)
 415{
 416	struct sigqueue *q;
 417
 418	sigemptyset(&queue->signal);
 419	while (!list_empty(&queue->list)) {
 420		q = list_entry(queue->list.next, struct sigqueue , list);
 421		list_del_init(&q->list);
 422		__sigqueue_free(q);
 423	}
 424}
 425
 426/*
 427 * Flush all pending signals for this kthread.
 428 */
 429void flush_signals(struct task_struct *t)
 430{
 431	unsigned long flags;
 432
 433	spin_lock_irqsave(&t->sighand->siglock, flags);
 434	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 435	flush_sigqueue(&t->pending);
 436	flush_sigqueue(&t->signal->shared_pending);
 437	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 438}
 
 439
 440#ifdef CONFIG_POSIX_TIMERS
 441static void __flush_itimer_signals(struct sigpending *pending)
 442{
 443	sigset_t signal, retain;
 444	struct sigqueue *q, *n;
 445
 446	signal = pending->signal;
 447	sigemptyset(&retain);
 448
 449	list_for_each_entry_safe(q, n, &pending->list, list) {
 450		int sig = q->info.si_signo;
 451
 452		if (likely(q->info.si_code != SI_TIMER)) {
 453			sigaddset(&retain, sig);
 454		} else {
 455			sigdelset(&signal, sig);
 456			list_del_init(&q->list);
 457			__sigqueue_free(q);
 458		}
 459	}
 460
 461	sigorsets(&pending->signal, &signal, &retain);
 462}
 463
 464void flush_itimer_signals(void)
 465{
 466	struct task_struct *tsk = current;
 467	unsigned long flags;
 468
 469	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 470	__flush_itimer_signals(&tsk->pending);
 471	__flush_itimer_signals(&tsk->signal->shared_pending);
 472	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 473}
 474#endif
 475
 476void ignore_signals(struct task_struct *t)
 477{
 478	int i;
 479
 480	for (i = 0; i < _NSIG; ++i)
 481		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 482
 483	flush_signals(t);
 484}
 485
 486/*
 487 * Flush all handlers for a task.
 488 */
 489
 490void
 491flush_signal_handlers(struct task_struct *t, int force_default)
 492{
 493	int i;
 494	struct k_sigaction *ka = &t->sighand->action[0];
 495	for (i = _NSIG ; i != 0 ; i--) {
 496		if (force_default || ka->sa.sa_handler != SIG_IGN)
 497			ka->sa.sa_handler = SIG_DFL;
 498		ka->sa.sa_flags = 0;
 499#ifdef __ARCH_HAS_SA_RESTORER
 500		ka->sa.sa_restorer = NULL;
 501#endif
 502		sigemptyset(&ka->sa.sa_mask);
 503		ka++;
 504	}
 505}
 506
 507int unhandled_signal(struct task_struct *tsk, int sig)
 508{
 509	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 510	if (is_global_init(tsk))
 511		return 1;
 
 512	if (handler != SIG_IGN && handler != SIG_DFL)
 513		return 0;
 
 514	/* if ptraced, let the tracer determine */
 515	return !tsk->ptrace;
 516}
 517
 518static void collect_signal(int sig, struct sigpending *list, siginfo_t *info,
 519			   bool *resched_timer)
 520{
 521	struct sigqueue *q, *first = NULL;
 522
 523	/*
 524	 * Collect the siginfo appropriate to this signal.  Check if
 525	 * there is another siginfo for the same signal.
 526	*/
 527	list_for_each_entry(q, &list->list, list) {
 528		if (q->info.si_signo == sig) {
 529			if (first)
 530				goto still_pending;
 531			first = q;
 532		}
 533	}
 534
 535	sigdelset(&list->signal, sig);
 536
 537	if (first) {
 538still_pending:
 539		list_del_init(&first->list);
 540		copy_siginfo(info, &first->info);
 541
 542		*resched_timer =
 543			(first->flags & SIGQUEUE_PREALLOC) &&
 544			(info->si_code == SI_TIMER) &&
 545			(info->si_sys_private);
 546
 547		__sigqueue_free(first);
 548	} else {
 549		/*
 550		 * Ok, it wasn't in the queue.  This must be
 551		 * a fast-pathed signal or we must have been
 552		 * out of queue space.  So zero out the info.
 553		 */
 554		clear_siginfo(info);
 555		info->si_signo = sig;
 556		info->si_errno = 0;
 557		info->si_code = SI_USER;
 558		info->si_pid = 0;
 559		info->si_uid = 0;
 560	}
 561}
 562
 563static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 564			siginfo_t *info, bool *resched_timer)
 565{
 566	int sig = next_signal(pending, mask);
 567
 568	if (sig)
 569		collect_signal(sig, pending, info, resched_timer);
 570	return sig;
 571}
 572
 573/*
 574 * Dequeue a signal and return the element to the caller, which is
 575 * expected to free it.
 576 *
 577 * All callers have to hold the siglock.
 578 */
 579int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 
 580{
 581	bool resched_timer = false;
 582	int signr;
 583
 584	/* We only dequeue private signals from ourselves, we don't let
 585	 * signalfd steal them
 586	 */
 
 587	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 588	if (!signr) {
 
 589		signr = __dequeue_signal(&tsk->signal->shared_pending,
 590					 mask, info, &resched_timer);
 591#ifdef CONFIG_POSIX_TIMERS
 592		/*
 593		 * itimer signal ?
 594		 *
 595		 * itimers are process shared and we restart periodic
 596		 * itimers in the signal delivery path to prevent DoS
 597		 * attacks in the high resolution timer case. This is
 598		 * compliant with the old way of self-restarting
 599		 * itimers, as the SIGALRM is a legacy signal and only
 600		 * queued once. Changing the restart behaviour to
 601		 * restart the timer in the signal dequeue path is
 602		 * reducing the timer noise on heavy loaded !highres
 603		 * systems too.
 604		 */
 605		if (unlikely(signr == SIGALRM)) {
 606			struct hrtimer *tmr = &tsk->signal->real_timer;
 607
 608			if (!hrtimer_is_queued(tmr) &&
 609			    tsk->signal->it_real_incr != 0) {
 610				hrtimer_forward(tmr, tmr->base->get_time(),
 611						tsk->signal->it_real_incr);
 612				hrtimer_restart(tmr);
 613			}
 614		}
 615#endif
 616	}
 617
 618	recalc_sigpending();
 619	if (!signr)
 620		return 0;
 621
 622	if (unlikely(sig_kernel_stop(signr))) {
 623		/*
 624		 * Set a marker that we have dequeued a stop signal.  Our
 625		 * caller might release the siglock and then the pending
 626		 * stop signal it is about to process is no longer in the
 627		 * pending bitmasks, but must still be cleared by a SIGCONT
 628		 * (and overruled by a SIGKILL).  So those cases clear this
 629		 * shared flag after we've set it.  Note that this flag may
 630		 * remain set after the signal we return is ignored or
 631		 * handled.  That doesn't matter because its only purpose
 632		 * is to alert stop-signal processing code when another
 633		 * processor has come along and cleared the flag.
 634		 */
 635		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 636	}
 637#ifdef CONFIG_POSIX_TIMERS
 638	if (resched_timer) {
 639		/*
 640		 * Release the siglock to ensure proper locking order
 641		 * of timer locks outside of siglocks.  Note, we leave
 642		 * irqs disabled here, since the posix-timers code is
 643		 * about to disable them again anyway.
 644		 */
 645		spin_unlock(&tsk->sighand->siglock);
 646		posixtimer_rearm(info);
 647		spin_lock(&tsk->sighand->siglock);
 648
 649		/* Don't expose the si_sys_private value to userspace */
 650		info->si_sys_private = 0;
 651	}
 652#endif
 653	return signr;
 654}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 655
 656/*
 657 * Tell a process that it has a new active signal..
 658 *
 659 * NOTE! we rely on the previous spin_lock to
 660 * lock interrupts for us! We can only be called with
 661 * "siglock" held, and the local interrupt must
 662 * have been disabled when that got acquired!
 663 *
 664 * No need to set need_resched since signal event passing
 665 * goes through ->blocked
 666 */
 667void signal_wake_up_state(struct task_struct *t, unsigned int state)
 668{
 
 
 669	set_tsk_thread_flag(t, TIF_SIGPENDING);
 
 670	/*
 671	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 672	 * case. We don't check t->state here because there is a race with it
 673	 * executing another processor and just now entering stopped state.
 674	 * By using wake_up_state, we ensure the process will wake up and
 675	 * handle its death signal.
 676	 */
 677	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 678		kick_process(t);
 679}
 680
 681/*
 682 * Remove signals in mask from the pending set and queue.
 683 * Returns 1 if any signals were found.
 684 *
 685 * All callers must be holding the siglock.
 686 */
 687static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 688{
 689	struct sigqueue *q, *n;
 690	sigset_t m;
 691
 692	sigandsets(&m, mask, &s->signal);
 693	if (sigisemptyset(&m))
 694		return 0;
 695
 696	sigandnsets(&s->signal, &s->signal, mask);
 697	list_for_each_entry_safe(q, n, &s->list, list) {
 698		if (sigismember(mask, q->info.si_signo)) {
 699			list_del_init(&q->list);
 700			__sigqueue_free(q);
 701		}
 702	}
 703	return 1;
 704}
 705
 706static inline int is_si_special(const struct siginfo *info)
 707{
 708	return info <= SEND_SIG_FORCED;
 709}
 710
 711static inline bool si_fromuser(const struct siginfo *info)
 712{
 713	return info == SEND_SIG_NOINFO ||
 714		(!is_si_special(info) && SI_FROMUSER(info));
 715}
 716
 717/*
 718 * called with RCU read lock from check_kill_permission()
 719 */
 720static int kill_ok_by_cred(struct task_struct *t)
 721{
 722	const struct cred *cred = current_cred();
 723	const struct cred *tcred = __task_cred(t);
 724
 725	if (uid_eq(cred->euid, tcred->suid) ||
 726	    uid_eq(cred->euid, tcred->uid)  ||
 727	    uid_eq(cred->uid,  tcred->suid) ||
 728	    uid_eq(cred->uid,  tcred->uid))
 729		return 1;
 730
 731	if (ns_capable(tcred->user_ns, CAP_KILL))
 732		return 1;
 733
 734	return 0;
 735}
 736
 737/*
 738 * Bad permissions for sending the signal
 739 * - the caller must hold the RCU read lock
 740 */
 741static int check_kill_permission(int sig, struct siginfo *info,
 742				 struct task_struct *t)
 743{
 744	struct pid *sid;
 745	int error;
 746
 747	if (!valid_signal(sig))
 748		return -EINVAL;
 749
 750	if (!si_fromuser(info))
 751		return 0;
 752
 753	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 754	if (error)
 755		return error;
 756
 757	if (!same_thread_group(current, t) &&
 758	    !kill_ok_by_cred(t)) {
 759		switch (sig) {
 760		case SIGCONT:
 761			sid = task_session(t);
 762			/*
 763			 * We don't return the error if sid == NULL. The
 764			 * task was unhashed, the caller must notice this.
 765			 */
 766			if (!sid || sid == task_session(current))
 767				break;
 
 768		default:
 769			return -EPERM;
 770		}
 771	}
 772
 773	return security_task_kill(t, info, sig, NULL);
 774}
 775
 776/**
 777 * ptrace_trap_notify - schedule trap to notify ptracer
 778 * @t: tracee wanting to notify tracer
 779 *
 780 * This function schedules sticky ptrace trap which is cleared on the next
 781 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 782 * ptracer.
 783 *
 784 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 785 * ptracer is listening for events, tracee is woken up so that it can
 786 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 787 * eventually taken without returning to userland after the existing traps
 788 * are finished by PTRACE_CONT.
 789 *
 790 * CONTEXT:
 791 * Must be called with @task->sighand->siglock held.
 792 */
 793static void ptrace_trap_notify(struct task_struct *t)
 794{
 795	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 796	assert_spin_locked(&t->sighand->siglock);
 797
 798	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 799	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 800}
 801
 802/*
 803 * Handle magic process-wide effects of stop/continue signals. Unlike
 804 * the signal actions, these happen immediately at signal-generation
 805 * time regardless of blocking, ignoring, or handling.  This does the
 806 * actual continuing for SIGCONT, but not the actual stopping for stop
 807 * signals. The process stop is done as a signal action for SIG_DFL.
 808 *
 809 * Returns true if the signal should be actually delivered, otherwise
 810 * it should be dropped.
 811 */
 812static bool prepare_signal(int sig, struct task_struct *p, bool force)
 813{
 814	struct signal_struct *signal = p->signal;
 815	struct task_struct *t;
 816	sigset_t flush;
 817
 818	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 819		if (!(signal->flags & SIGNAL_GROUP_EXIT))
 820			return sig == SIGKILL;
 821		/*
 822		 * The process is in the middle of dying, nothing to do.
 823		 */
 
 824	} else if (sig_kernel_stop(sig)) {
 825		/*
 826		 * This is a stop signal.  Remove SIGCONT from all queues.
 827		 */
 828		siginitset(&flush, sigmask(SIGCONT));
 829		flush_sigqueue_mask(&flush, &signal->shared_pending);
 830		for_each_thread(p, t)
 831			flush_sigqueue_mask(&flush, &t->pending);
 832	} else if (sig == SIGCONT) {
 833		unsigned int why;
 834		/*
 835		 * Remove all stop signals from all queues, wake all threads.
 836		 */
 837		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 838		flush_sigqueue_mask(&flush, &signal->shared_pending);
 839		for_each_thread(p, t) {
 840			flush_sigqueue_mask(&flush, &t->pending);
 841			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 842			if (likely(!(t->ptrace & PT_SEIZED)))
 
 843				wake_up_state(t, __TASK_STOPPED);
 844			else
 845				ptrace_trap_notify(t);
 846		}
 847
 848		/*
 849		 * Notify the parent with CLD_CONTINUED if we were stopped.
 850		 *
 851		 * If we were in the middle of a group stop, we pretend it
 852		 * was already finished, and then continued. Since SIGCHLD
 853		 * doesn't queue we report only CLD_STOPPED, as if the next
 854		 * CLD_CONTINUED was dropped.
 855		 */
 856		why = 0;
 857		if (signal->flags & SIGNAL_STOP_STOPPED)
 858			why |= SIGNAL_CLD_CONTINUED;
 859		else if (signal->group_stop_count)
 860			why |= SIGNAL_CLD_STOPPED;
 861
 862		if (why) {
 863			/*
 864			 * The first thread which returns from do_signal_stop()
 865			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 866			 * notify its parent. See get_signal_to_deliver().
 867			 */
 868			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 869			signal->group_stop_count = 0;
 870			signal->group_exit_code = 0;
 871		}
 872	}
 873
 874	return !sig_ignored(p, sig, force);
 875}
 876
 877/*
 878 * Test if P wants to take SIG.  After we've checked all threads with this,
 879 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 880 * blocking SIG were ruled out because they are not running and already
 881 * have pending signals.  Such threads will dequeue from the shared queue
 882 * as soon as they're available, so putting the signal on the shared queue
 883 * will be equivalent to sending it to one such thread.
 884 */
 885static inline int wants_signal(int sig, struct task_struct *p)
 886{
 887	if (sigismember(&p->blocked, sig))
 888		return 0;
 
 889	if (p->flags & PF_EXITING)
 890		return 0;
 
 891	if (sig == SIGKILL)
 892		return 1;
 
 893	if (task_is_stopped_or_traced(p))
 894		return 0;
 895	return task_curr(p) || !signal_pending(p);
 
 896}
 897
 898static void complete_signal(int sig, struct task_struct *p, int group)
 899{
 900	struct signal_struct *signal = p->signal;
 901	struct task_struct *t;
 902
 903	/*
 904	 * Now find a thread we can wake up to take the signal off the queue.
 905	 *
 906	 * If the main thread wants the signal, it gets first crack.
 907	 * Probably the least surprising to the average bear.
 908	 */
 909	if (wants_signal(sig, p))
 910		t = p;
 911	else if (!group || thread_group_empty(p))
 912		/*
 913		 * There is just one thread and it does not need to be woken.
 914		 * It will dequeue unblocked signals before it runs again.
 915		 */
 916		return;
 917	else {
 918		/*
 919		 * Otherwise try to find a suitable thread.
 920		 */
 921		t = signal->curr_target;
 922		while (!wants_signal(sig, t)) {
 923			t = next_thread(t);
 924			if (t == signal->curr_target)
 925				/*
 926				 * No thread needs to be woken.
 927				 * Any eligible threads will see
 928				 * the signal in the queue soon.
 929				 */
 930				return;
 931		}
 932		signal->curr_target = t;
 933	}
 934
 935	/*
 936	 * Found a killable thread.  If the signal will be fatal,
 937	 * then start taking the whole group down immediately.
 938	 */
 939	if (sig_fatal(p, sig) &&
 940	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
 941	    !sigismember(&t->real_blocked, sig) &&
 942	    (sig == SIGKILL || !p->ptrace)) {
 943		/*
 944		 * This signal will be fatal to the whole group.
 945		 */
 946		if (!sig_kernel_coredump(sig)) {
 947			/*
 948			 * Start a group exit and wake everybody up.
 949			 * This way we don't have other threads
 950			 * running and doing things after a slower
 951			 * thread has the fatal signal pending.
 952			 */
 953			signal->flags = SIGNAL_GROUP_EXIT;
 954			signal->group_exit_code = sig;
 955			signal->group_stop_count = 0;
 956			t = p;
 957			do {
 958				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
 959				sigaddset(&t->pending.signal, SIGKILL);
 960				signal_wake_up(t, 1);
 961			} while_each_thread(p, t);
 962			return;
 963		}
 964	}
 965
 966	/*
 967	 * The signal is already in the shared-pending queue.
 968	 * Tell the chosen thread to wake up and dequeue it.
 969	 */
 970	signal_wake_up(t, sig == SIGKILL);
 971	return;
 972}
 973
 974static inline int legacy_queue(struct sigpending *signals, int sig)
 975{
 976	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
 977}
 978
 979#ifdef CONFIG_USER_NS
 980static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 981{
 982	if (current_user_ns() == task_cred_xxx(t, user_ns))
 983		return;
 984
 985	if (SI_FROMKERNEL(info))
 986		return;
 987
 988	rcu_read_lock();
 989	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
 990					make_kuid(current_user_ns(), info->si_uid));
 991	rcu_read_unlock();
 992}
 993#else
 994static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 995{
 996	return;
 997}
 998#endif
 999
1000static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1001			int group, int from_ancestor_ns)
1002{
1003	struct sigpending *pending;
1004	struct sigqueue *q;
1005	int override_rlimit;
1006	int ret = 0, result;
1007
1008	assert_spin_locked(&t->sighand->siglock);
1009
1010	result = TRACE_SIGNAL_IGNORED;
1011	if (!prepare_signal(sig, t,
1012			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1013		goto ret;
1014
1015	pending = group ? &t->signal->shared_pending : &t->pending;
1016	/*
1017	 * Short-circuit ignored signals and support queuing
1018	 * exactly one non-rt signal, so that we can get more
1019	 * detailed information about the cause of the signal.
1020	 */
1021	result = TRACE_SIGNAL_ALREADY_PENDING;
1022	if (legacy_queue(pending, sig))
1023		goto ret;
1024
1025	result = TRACE_SIGNAL_DELIVERED;
1026	/*
1027	 * fast-pathed signals for kernel-internal things like SIGSTOP
1028	 * or SIGKILL.
1029	 */
1030	if (info == SEND_SIG_FORCED)
1031		goto out_set;
1032
1033	/*
1034	 * Real-time signals must be queued if sent by sigqueue, or
1035	 * some other real-time mechanism.  It is implementation
1036	 * defined whether kill() does so.  We attempt to do so, on
1037	 * the principle of least surprise, but since kill is not
1038	 * allowed to fail with EAGAIN when low on memory we just
1039	 * make sure at least one signal gets delivered and don't
1040	 * pass on the info struct.
1041	 */
1042	if (sig < SIGRTMIN)
1043		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1044	else
1045		override_rlimit = 0;
1046
1047	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
 
1048	if (q) {
1049		list_add_tail(&q->list, &pending->list);
1050		switch ((unsigned long) info) {
1051		case (unsigned long) SEND_SIG_NOINFO:
1052			clear_siginfo(&q->info);
1053			q->info.si_signo = sig;
1054			q->info.si_errno = 0;
1055			q->info.si_code = SI_USER;
1056			q->info.si_pid = task_tgid_nr_ns(current,
1057							task_active_pid_ns(t));
1058			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
 
 
 
 
1059			break;
1060		case (unsigned long) SEND_SIG_PRIV:
1061			clear_siginfo(&q->info);
1062			q->info.si_signo = sig;
1063			q->info.si_errno = 0;
1064			q->info.si_code = SI_KERNEL;
1065			q->info.si_pid = 0;
1066			q->info.si_uid = 0;
1067			break;
1068		default:
1069			copy_siginfo(&q->info, info);
1070			if (from_ancestor_ns)
1071				q->info.si_pid = 0;
1072			break;
1073		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1074
1075		userns_fixup_signal_uid(&q->info, t);
 
 
1076
1077	} else if (!is_si_special(info)) {
1078		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1079			/*
1080			 * Queue overflow, abort.  We may abort if the
1081			 * signal was rt and sent by user using something
1082			 * other than kill().
1083			 */
1084			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1085			ret = -EAGAIN;
1086			goto ret;
1087		} else {
1088			/*
1089			 * This is a silent loss of information.  We still
1090			 * send the signal, but the *info bits are lost.
1091			 */
1092			result = TRACE_SIGNAL_LOSE_INFO;
1093		}
1094	}
1095
1096out_set:
1097	signalfd_notify(t, sig);
1098	sigaddset(&pending->signal, sig);
1099	complete_signal(sig, t, group);
1100ret:
1101	trace_signal_generate(sig, info, t, group, result);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1102	return ret;
1103}
1104
1105static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1106			int group)
1107{
1108	int from_ancestor_ns = 0;
 
 
 
 
 
 
 
 
 
 
 
1109
1110#ifdef CONFIG_PID_NS
1111	from_ancestor_ns = si_fromuser(info) &&
1112			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1113#endif
 
 
 
 
 
 
1114
1115	return __send_signal(sig, info, t, group, from_ancestor_ns);
 
 
 
 
 
 
1116}
1117
1118static void print_fatal_signal(int signr)
1119{
1120	struct pt_regs *regs = signal_pt_regs();
1121	pr_info("potentially unexpected fatal signal %d.\n", signr);
1122
1123#if defined(__i386__) && !defined(__arch_um__)
1124	pr_info("code at %08lx: ", regs->ip);
1125	{
1126		int i;
1127		for (i = 0; i < 16; i++) {
1128			unsigned char insn;
1129
1130			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1131				break;
1132			pr_cont("%02x ", insn);
1133		}
1134	}
1135	pr_cont("\n");
1136#endif
1137	preempt_disable();
1138	show_regs(regs);
1139	preempt_enable();
1140}
1141
1142static int __init setup_print_fatal_signals(char *str)
1143{
1144	get_option (&str, &print_fatal_signals);
1145
1146	return 1;
1147}
1148
1149__setup("print-fatal-signals=", setup_print_fatal_signals);
1150
1151int
1152__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1153{
1154	return send_signal(sig, info, p, 1);
1155}
1156
1157static int
1158specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1159{
1160	return send_signal(sig, info, t, 0);
1161}
1162
1163int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1164			bool group)
1165{
1166	unsigned long flags;
1167	int ret = -ESRCH;
1168
1169	if (lock_task_sighand(p, &flags)) {
1170		ret = send_signal(sig, info, p, group);
1171		unlock_task_sighand(p, &flags);
1172	}
1173
1174	return ret;
1175}
1176
 
 
 
 
 
 
1177/*
1178 * Force a signal that the process can't ignore: if necessary
1179 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1180 *
1181 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1182 * since we do not want to have a signal handler that was blocked
1183 * be invoked when user space had explicitly blocked it.
1184 *
1185 * We don't want to have recursive SIGSEGV's etc, for example,
1186 * that is why we also clear SIGNAL_UNKILLABLE.
1187 */
1188int
1189force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
 
1190{
1191	unsigned long int flags;
1192	int ret, blocked, ignored;
1193	struct k_sigaction *action;
 
1194
1195	spin_lock_irqsave(&t->sighand->siglock, flags);
1196	action = &t->sighand->action[sig-1];
1197	ignored = action->sa.sa_handler == SIG_IGN;
1198	blocked = sigismember(&t->blocked, sig);
1199	if (blocked || ignored) {
1200		action->sa.sa_handler = SIG_DFL;
 
 
1201		if (blocked) {
1202			sigdelset(&t->blocked, sig);
1203			recalc_sigpending_and_wake(t);
1204		}
1205	}
1206	/*
1207	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1208	 * debugging to leave init killable.
1209	 */
1210	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
 
1211		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1212	ret = specific_send_sig_info(sig, info, t);
1213	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1214
1215	return ret;
1216}
1217
 
 
 
 
 
1218/*
1219 * Nuke all other threads in the group.
1220 */
1221int zap_other_threads(struct task_struct *p)
1222{
1223	struct task_struct *t = p;
1224	int count = 0;
1225
1226	p->signal->group_stop_count = 0;
1227
1228	while_each_thread(p, t) {
1229		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1230		count++;
1231
1232		/* Don't bother with already dead threads */
1233		if (t->exit_state)
1234			continue;
1235		sigaddset(&t->pending.signal, SIGKILL);
1236		signal_wake_up(t, 1);
1237	}
1238
1239	return count;
1240}
1241
1242struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1243					   unsigned long *flags)
1244{
1245	struct sighand_struct *sighand;
1246
 
1247	for (;;) {
1248		/*
1249		 * Disable interrupts early to avoid deadlocks.
1250		 * See rcu_read_unlock() comment header for details.
1251		 */
1252		local_irq_save(*flags);
1253		rcu_read_lock();
1254		sighand = rcu_dereference(tsk->sighand);
1255		if (unlikely(sighand == NULL)) {
1256			rcu_read_unlock();
1257			local_irq_restore(*flags);
1258			break;
1259		}
1260		/*
1261		 * This sighand can be already freed and even reused, but
1262		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1263		 * initializes ->siglock: this slab can't go away, it has
1264		 * the same object type, ->siglock can't be reinitialized.
1265		 *
1266		 * We need to ensure that tsk->sighand is still the same
1267		 * after we take the lock, we can race with de_thread() or
1268		 * __exit_signal(). In the latter case the next iteration
1269		 * must see ->sighand == NULL.
1270		 */
1271		spin_lock(&sighand->siglock);
1272		if (likely(sighand == tsk->sighand)) {
1273			rcu_read_unlock();
1274			break;
1275		}
1276		spin_unlock(&sighand->siglock);
1277		rcu_read_unlock();
1278		local_irq_restore(*flags);
1279	}
 
1280
1281	return sighand;
1282}
1283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1284/*
1285 * send signal info to all the members of a group
1286 */
1287int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
 
1288{
1289	int ret;
1290
1291	rcu_read_lock();
1292	ret = check_kill_permission(sig, info, p);
1293	rcu_read_unlock();
1294
1295	if (!ret && sig)
1296		ret = do_send_sig_info(sig, info, p, true);
1297
1298	return ret;
1299}
1300
1301/*
1302 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1303 * control characters do (^C, ^Z etc)
1304 * - the caller must hold at least a readlock on tasklist_lock
1305 */
1306int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1307{
1308	struct task_struct *p = NULL;
1309	int retval, success;
1310
1311	success = 0;
1312	retval = -ESRCH;
1313	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1314		int err = group_send_sig_info(sig, info, p);
1315		success |= !err;
1316		retval = err;
1317	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1318	return success ? 0 : retval;
1319}
1320
1321int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1322{
1323	int error = -ESRCH;
1324	struct task_struct *p;
1325
1326	for (;;) {
1327		rcu_read_lock();
1328		p = pid_task(pid, PIDTYPE_PID);
1329		if (p)
1330			error = group_send_sig_info(sig, info, p);
1331		rcu_read_unlock();
1332		if (likely(!p || error != -ESRCH))
1333			return error;
1334
1335		/*
1336		 * The task was unhashed in between, try again.  If it
1337		 * is dead, pid_task() will return NULL, if we race with
1338		 * de_thread() it will find the new leader.
1339		 */
1340	}
1341}
1342
1343static int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1344{
1345	int error;
1346	rcu_read_lock();
1347	error = kill_pid_info(sig, info, find_vpid(pid));
1348	rcu_read_unlock();
1349	return error;
1350}
1351
1352static int kill_as_cred_perm(const struct cred *cred,
1353			     struct task_struct *target)
1354{
1355	const struct cred *pcred = __task_cred(target);
1356	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1357	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1358		return 0;
1359	return 1;
 
1360}
1361
1362/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1363int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1364			 const struct cred *cred)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1365{
1366	int ret = -EINVAL;
1367	struct task_struct *p;
1368	unsigned long flags;
 
1369
1370	if (!valid_signal(sig))
1371		return ret;
1372
 
 
 
 
 
 
1373	rcu_read_lock();
1374	p = pid_task(pid, PIDTYPE_PID);
1375	if (!p) {
1376		ret = -ESRCH;
1377		goto out_unlock;
1378	}
1379	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1380		ret = -EPERM;
1381		goto out_unlock;
1382	}
1383	ret = security_task_kill(p, info, sig, cred);
1384	if (ret)
1385		goto out_unlock;
1386
1387	if (sig) {
1388		if (lock_task_sighand(p, &flags)) {
1389			ret = __send_signal(sig, info, p, 1, 0);
1390			unlock_task_sighand(p, &flags);
1391		} else
1392			ret = -ESRCH;
1393	}
1394out_unlock:
1395	rcu_read_unlock();
1396	return ret;
1397}
1398EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1399
1400/*
1401 * kill_something_info() interprets pid in interesting ways just like kill(2).
1402 *
1403 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1404 * is probably wrong.  Should make it like BSD or SYSV.
1405 */
1406
1407static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1408{
1409	int ret;
1410
1411	if (pid > 0) {
1412		rcu_read_lock();
1413		ret = kill_pid_info(sig, info, find_vpid(pid));
1414		rcu_read_unlock();
1415		return ret;
1416	}
1417
1418	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1419	if (pid == INT_MIN)
1420		return -ESRCH;
1421
1422	read_lock(&tasklist_lock);
1423	if (pid != -1) {
1424		ret = __kill_pgrp_info(sig, info,
1425				pid ? find_vpid(-pid) : task_pgrp(current));
1426	} else {
1427		int retval = 0, count = 0;
1428		struct task_struct * p;
1429
1430		for_each_process(p) {
1431			if (task_pid_vnr(p) > 1 &&
1432					!same_thread_group(p, current)) {
1433				int err = group_send_sig_info(sig, info, p);
 
1434				++count;
1435				if (err != -EPERM)
1436					retval = err;
1437			}
1438		}
1439		ret = count ? retval : -ESRCH;
1440	}
1441	read_unlock(&tasklist_lock);
1442
1443	return ret;
1444}
1445
1446/*
1447 * These are for backward compatibility with the rest of the kernel source.
1448 */
1449
1450int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1451{
1452	/*
1453	 * Make sure legacy kernel users don't send in bad values
1454	 * (normal paths check this in check_kill_permission).
1455	 */
1456	if (!valid_signal(sig))
1457		return -EINVAL;
1458
1459	return do_send_sig_info(sig, info, p, false);
1460}
 
1461
1462#define __si_special(priv) \
1463	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1464
1465int
1466send_sig(int sig, struct task_struct *p, int priv)
1467{
1468	return send_sig_info(sig, __si_special(priv), p);
1469}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1470
1471void
1472force_sig(int sig, struct task_struct *p)
 
 
 
 
 
 
 
 
1473{
1474	force_sig_info(sig, SEND_SIG_PRIV, p);
 
 
 
 
 
 
 
 
1475}
1476
1477/*
1478 * When things go south during signal handling, we
1479 * will force a SIGSEGV. And if the signal that caused
1480 * the problem was already a SIGSEGV, we'll want to
1481 * make sure we don't even try to deliver the signal..
1482 */
1483int
1484force_sigsegv(int sig, struct task_struct *p)
1485{
1486	if (sig == SIGSEGV) {
1487		unsigned long flags;
1488		spin_lock_irqsave(&p->sighand->siglock, flags);
1489		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1490		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1491	}
1492	force_sig(SIGSEGV, p);
1493	return 0;
1494}
1495
1496int force_sig_fault(int sig, int code, void __user *addr
1497	___ARCH_SI_TRAPNO(int trapno)
1498	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1499	, struct task_struct *t)
1500{
1501	struct siginfo info;
1502
1503	clear_siginfo(&info);
1504	info.si_signo = sig;
1505	info.si_errno = 0;
1506	info.si_code  = code;
1507	info.si_addr  = addr;
1508#ifdef __ARCH_SI_TRAPNO
1509	info.si_trapno = trapno;
1510#endif
1511#ifdef __ia64__
1512	info.si_imm = imm;
1513	info.si_flags = flags;
1514	info.si_isr = isr;
1515#endif
1516	return force_sig_info(info.si_signo, &info, t);
 
 
 
 
 
 
 
1517}
1518
1519int send_sig_fault(int sig, int code, void __user *addr
1520	___ARCH_SI_TRAPNO(int trapno)
1521	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1522	, struct task_struct *t)
1523{
1524	struct siginfo info;
1525
1526	clear_siginfo(&info);
1527	info.si_signo = sig;
1528	info.si_errno = 0;
1529	info.si_code  = code;
1530	info.si_addr  = addr;
1531#ifdef __ARCH_SI_TRAPNO
1532	info.si_trapno = trapno;
1533#endif
1534#ifdef __ia64__
1535	info.si_imm = imm;
1536	info.si_flags = flags;
1537	info.si_isr = isr;
1538#endif
1539	return send_sig_info(info.si_signo, &info, t);
1540}
1541
1542#if defined(BUS_MCEERR_AO) && defined(BUS_MCEERR_AR)
1543int force_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1544{
1545	struct siginfo info;
1546
1547	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1548	clear_siginfo(&info);
1549	info.si_signo = SIGBUS;
1550	info.si_errno = 0;
1551	info.si_code = code;
1552	info.si_addr = addr;
1553	info.si_addr_lsb = lsb;
1554	return force_sig_info(info.si_signo, &info, t);
1555}
1556
1557int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1558{
1559	struct siginfo info;
1560
1561	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1562	clear_siginfo(&info);
1563	info.si_signo = SIGBUS;
1564	info.si_errno = 0;
1565	info.si_code = code;
1566	info.si_addr = addr;
1567	info.si_addr_lsb = lsb;
1568	return send_sig_info(info.si_signo, &info, t);
1569}
1570EXPORT_SYMBOL(send_sig_mceerr);
1571#endif
1572
1573#ifdef SEGV_BNDERR
1574int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1575{
1576	struct siginfo info;
1577
1578	clear_siginfo(&info);
1579	info.si_signo = SIGSEGV;
1580	info.si_errno = 0;
1581	info.si_code  = SEGV_BNDERR;
1582	info.si_addr  = addr;
1583	info.si_lower = lower;
1584	info.si_upper = upper;
1585	return force_sig_info(info.si_signo, &info, current);
1586}
1587#endif
1588
1589#ifdef SEGV_PKUERR
1590int force_sig_pkuerr(void __user *addr, u32 pkey)
1591{
1592	struct siginfo info;
1593
1594	clear_siginfo(&info);
1595	info.si_signo = SIGSEGV;
1596	info.si_errno = 0;
1597	info.si_code  = SEGV_PKUERR;
1598	info.si_addr  = addr;
1599	info.si_pkey  = pkey;
1600	return force_sig_info(info.si_signo, &info, current);
1601}
1602#endif
1603
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1604/* For the crazy architectures that include trap information in
1605 * the errno field, instead of an actual errno value.
1606 */
1607int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1608{
1609	struct siginfo info;
1610
1611	clear_siginfo(&info);
1612	info.si_signo = SIGTRAP;
1613	info.si_errno = errno;
1614	info.si_code  = TRAP_HWBKPT;
1615	info.si_addr  = addr;
1616	return force_sig_info(info.si_signo, &info, current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1617}
1618
1619int kill_pgrp(struct pid *pid, int sig, int priv)
1620{
1621	int ret;
1622
1623	read_lock(&tasklist_lock);
1624	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1625	read_unlock(&tasklist_lock);
1626
1627	return ret;
1628}
1629EXPORT_SYMBOL(kill_pgrp);
1630
1631int kill_pid(struct pid *pid, int sig, int priv)
1632{
1633	return kill_pid_info(sig, __si_special(priv), pid);
1634}
1635EXPORT_SYMBOL(kill_pid);
1636
1637/*
1638 * These functions support sending signals using preallocated sigqueue
1639 * structures.  This is needed "because realtime applications cannot
1640 * afford to lose notifications of asynchronous events, like timer
1641 * expirations or I/O completions".  In the case of POSIX Timers
1642 * we allocate the sigqueue structure from the timer_create.  If this
1643 * allocation fails we are able to report the failure to the application
1644 * with an EAGAIN error.
1645 */
1646struct sigqueue *sigqueue_alloc(void)
1647{
1648	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1649
1650	if (q)
1651		q->flags |= SIGQUEUE_PREALLOC;
1652
1653	return q;
1654}
1655
1656void sigqueue_free(struct sigqueue *q)
1657{
1658	unsigned long flags;
1659	spinlock_t *lock = &current->sighand->siglock;
1660
1661	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1662	/*
1663	 * We must hold ->siglock while testing q->list
1664	 * to serialize with collect_signal() or with
1665	 * __exit_signal()->flush_sigqueue().
1666	 */
1667	spin_lock_irqsave(lock, flags);
1668	q->flags &= ~SIGQUEUE_PREALLOC;
1669	/*
1670	 * If it is queued it will be freed when dequeued,
1671	 * like the "regular" sigqueue.
1672	 */
1673	if (!list_empty(&q->list))
1674		q = NULL;
1675	spin_unlock_irqrestore(lock, flags);
1676
1677	if (q)
1678		__sigqueue_free(q);
1679}
1680
1681int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1682{
1683	int sig = q->info.si_signo;
1684	struct sigpending *pending;
 
1685	unsigned long flags;
1686	int ret, result;
1687
1688	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1689
1690	ret = -1;
1691	if (!likely(lock_task_sighand(t, &flags)))
 
 
1692		goto ret;
1693
1694	ret = 1; /* the signal is ignored */
1695	result = TRACE_SIGNAL_IGNORED;
1696	if (!prepare_signal(sig, t, false))
1697		goto out;
1698
1699	ret = 0;
1700	if (unlikely(!list_empty(&q->list))) {
1701		/*
1702		 * If an SI_TIMER entry is already queue just increment
1703		 * the overrun count.
1704		 */
1705		BUG_ON(q->info.si_code != SI_TIMER);
1706		q->info.si_overrun++;
1707		result = TRACE_SIGNAL_ALREADY_PENDING;
1708		goto out;
1709	}
1710	q->info.si_overrun = 0;
1711
1712	signalfd_notify(t, sig);
1713	pending = group ? &t->signal->shared_pending : &t->pending;
1714	list_add_tail(&q->list, &pending->list);
1715	sigaddset(&pending->signal, sig);
1716	complete_signal(sig, t, group);
1717	result = TRACE_SIGNAL_DELIVERED;
1718out:
1719	trace_signal_generate(sig, &q->info, t, group, result);
1720	unlock_task_sighand(t, &flags);
1721ret:
 
1722	return ret;
1723}
1724
 
 
 
 
 
 
 
 
 
1725/*
1726 * Let a parent know about the death of a child.
1727 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1728 *
1729 * Returns true if our parent ignored us and so we've switched to
1730 * self-reaping.
1731 */
1732bool do_notify_parent(struct task_struct *tsk, int sig)
1733{
1734	struct siginfo info;
1735	unsigned long flags;
1736	struct sighand_struct *psig;
1737	bool autoreap = false;
1738	u64 utime, stime;
1739
1740	BUG_ON(sig == -1);
1741
1742 	/* do_notify_parent_cldstop should have been called instead.  */
1743 	BUG_ON(task_is_stopped_or_traced(tsk));
1744
1745	BUG_ON(!tsk->ptrace &&
1746	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1747
 
 
 
1748	if (sig != SIGCHLD) {
1749		/*
1750		 * This is only possible if parent == real_parent.
1751		 * Check if it has changed security domain.
1752		 */
1753		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1754			sig = SIGCHLD;
1755	}
1756
1757	clear_siginfo(&info);
1758	info.si_signo = sig;
1759	info.si_errno = 0;
1760	/*
1761	 * We are under tasklist_lock here so our parent is tied to
1762	 * us and cannot change.
1763	 *
1764	 * task_active_pid_ns will always return the same pid namespace
1765	 * until a task passes through release_task.
1766	 *
1767	 * write_lock() currently calls preempt_disable() which is the
1768	 * same as rcu_read_lock(), but according to Oleg, this is not
1769	 * correct to rely on this
1770	 */
1771	rcu_read_lock();
1772	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1773	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1774				       task_uid(tsk));
1775	rcu_read_unlock();
1776
1777	task_cputime(tsk, &utime, &stime);
1778	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1779	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1780
1781	info.si_status = tsk->exit_code & 0x7f;
1782	if (tsk->exit_code & 0x80)
1783		info.si_code = CLD_DUMPED;
1784	else if (tsk->exit_code & 0x7f)
1785		info.si_code = CLD_KILLED;
1786	else {
1787		info.si_code = CLD_EXITED;
1788		info.si_status = tsk->exit_code >> 8;
1789	}
1790
1791	psig = tsk->parent->sighand;
1792	spin_lock_irqsave(&psig->siglock, flags);
1793	if (!tsk->ptrace && sig == SIGCHLD &&
1794	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1795	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1796		/*
1797		 * We are exiting and our parent doesn't care.  POSIX.1
1798		 * defines special semantics for setting SIGCHLD to SIG_IGN
1799		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1800		 * automatically and not left for our parent's wait4 call.
1801		 * Rather than having the parent do it as a magic kind of
1802		 * signal handler, we just set this to tell do_exit that we
1803		 * can be cleaned up without becoming a zombie.  Note that
1804		 * we still call __wake_up_parent in this case, because a
1805		 * blocked sys_wait4 might now return -ECHILD.
1806		 *
1807		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1808		 * is implementation-defined: we do (if you don't want
1809		 * it, just use SIG_IGN instead).
1810		 */
1811		autoreap = true;
1812		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1813			sig = 0;
1814	}
 
 
 
 
1815	if (valid_signal(sig) && sig)
1816		__group_send_sig_info(sig, &info, tsk->parent);
1817	__wake_up_parent(tsk, tsk->parent);
1818	spin_unlock_irqrestore(&psig->siglock, flags);
1819
1820	return autoreap;
1821}
1822
1823/**
1824 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1825 * @tsk: task reporting the state change
1826 * @for_ptracer: the notification is for ptracer
1827 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1828 *
1829 * Notify @tsk's parent that the stopped/continued state has changed.  If
1830 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1831 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1832 *
1833 * CONTEXT:
1834 * Must be called with tasklist_lock at least read locked.
1835 */
1836static void do_notify_parent_cldstop(struct task_struct *tsk,
1837				     bool for_ptracer, int why)
1838{
1839	struct siginfo info;
1840	unsigned long flags;
1841	struct task_struct *parent;
1842	struct sighand_struct *sighand;
1843	u64 utime, stime;
1844
1845	if (for_ptracer) {
1846		parent = tsk->parent;
1847	} else {
1848		tsk = tsk->group_leader;
1849		parent = tsk->real_parent;
1850	}
1851
1852	clear_siginfo(&info);
1853	info.si_signo = SIGCHLD;
1854	info.si_errno = 0;
1855	/*
1856	 * see comment in do_notify_parent() about the following 4 lines
1857	 */
1858	rcu_read_lock();
1859	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1860	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1861	rcu_read_unlock();
1862
1863	task_cputime(tsk, &utime, &stime);
1864	info.si_utime = nsec_to_clock_t(utime);
1865	info.si_stime = nsec_to_clock_t(stime);
1866
1867 	info.si_code = why;
1868 	switch (why) {
1869 	case CLD_CONTINUED:
1870 		info.si_status = SIGCONT;
1871 		break;
1872 	case CLD_STOPPED:
1873 		info.si_status = tsk->signal->group_exit_code & 0x7f;
1874 		break;
1875 	case CLD_TRAPPED:
1876 		info.si_status = tsk->exit_code & 0x7f;
1877 		break;
1878 	default:
1879 		BUG();
1880 	}
1881
1882	sighand = parent->sighand;
1883	spin_lock_irqsave(&sighand->siglock, flags);
1884	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1885	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1886		__group_send_sig_info(SIGCHLD, &info, parent);
1887	/*
1888	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1889	 */
1890	__wake_up_parent(tsk, parent);
1891	spin_unlock_irqrestore(&sighand->siglock, flags);
1892}
1893
1894static inline int may_ptrace_stop(void)
1895{
1896	if (!likely(current->ptrace))
1897		return 0;
1898	/*
1899	 * Are we in the middle of do_coredump?
1900	 * If so and our tracer is also part of the coredump stopping
1901	 * is a deadlock situation, and pointless because our tracer
1902	 * is dead so don't allow us to stop.
1903	 * If SIGKILL was already sent before the caller unlocked
1904	 * ->siglock we must see ->core_state != NULL. Otherwise it
1905	 * is safe to enter schedule().
1906	 *
1907	 * This is almost outdated, a task with the pending SIGKILL can't
1908	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1909	 * after SIGKILL was already dequeued.
1910	 */
1911	if (unlikely(current->mm->core_state) &&
1912	    unlikely(current->mm == current->parent->mm))
1913		return 0;
1914
1915	return 1;
1916}
1917
1918/*
1919 * Return non-zero if there is a SIGKILL that should be waking us up.
1920 * Called with the siglock held.
1921 */
1922static int sigkill_pending(struct task_struct *tsk)
1923{
1924	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1925		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1926}
1927
1928/*
1929 * This must be called with current->sighand->siglock held.
1930 *
1931 * This should be the path for all ptrace stops.
1932 * We always set current->last_siginfo while stopped here.
1933 * That makes it a way to test a stopped process for
1934 * being ptrace-stopped vs being job-control-stopped.
1935 *
1936 * If we actually decide not to stop at all because the tracer
1937 * is gone, we keep current->exit_code unless clear_code.
 
1938 */
1939static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
 
1940	__releases(&current->sighand->siglock)
1941	__acquires(&current->sighand->siglock)
1942{
1943	bool gstop_done = false;
1944
1945	if (arch_ptrace_stop_needed(exit_code, info)) {
1946		/*
1947		 * The arch code has something special to do before a
1948		 * ptrace stop.  This is allowed to block, e.g. for faults
1949		 * on user stack pages.  We can't keep the siglock while
1950		 * calling arch_ptrace_stop, so we must release it now.
1951		 * To preserve proper semantics, we must do this before
1952		 * any signal bookkeeping like checking group_stop_count.
1953		 * Meanwhile, a SIGKILL could come in before we retake the
1954		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1955		 * So after regaining the lock, we must check for SIGKILL.
1956		 */
1957		spin_unlock_irq(&current->sighand->siglock);
1958		arch_ptrace_stop(exit_code, info);
1959		spin_lock_irq(&current->sighand->siglock);
1960		if (sigkill_pending(current))
1961			return;
1962	}
1963
 
 
 
 
 
 
 
 
 
1964	set_special_state(TASK_TRACED);
 
1965
1966	/*
1967	 * We're committing to trapping.  TRACED should be visible before
1968	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1969	 * Also, transition to TRACED and updates to ->jobctl should be
1970	 * atomic with respect to siglock and should be done after the arch
1971	 * hook as siglock is released and regrabbed across it.
1972	 *
1973	 *     TRACER				    TRACEE
1974	 *
1975	 *     ptrace_attach()
1976	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
1977	 *     do_wait()
1978	 *       set_current_state()                smp_wmb();
1979	 *       ptrace_do_wait()
1980	 *         wait_task_stopped()
1981	 *           task_stopped_code()
1982	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
1983	 */
1984	smp_wmb();
1985
 
1986	current->last_siginfo = info;
1987	current->exit_code = exit_code;
1988
1989	/*
1990	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1991	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1992	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1993	 * could be clear now.  We act as if SIGCONT is received after
1994	 * TASK_TRACED is entered - ignore it.
1995	 */
1996	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1997		gstop_done = task_participate_group_stop(current);
1998
1999	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2000	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2001	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2002		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2003
2004	/* entering a trap, clear TRAPPING */
2005	task_clear_jobctl_trapping(current);
2006
2007	spin_unlock_irq(&current->sighand->siglock);
2008	read_lock(&tasklist_lock);
2009	if (may_ptrace_stop()) {
2010		/*
2011		 * Notify parents of the stop.
2012		 *
2013		 * While ptraced, there are two parents - the ptracer and
2014		 * the real_parent of the group_leader.  The ptracer should
2015		 * know about every stop while the real parent is only
2016		 * interested in the completion of group stop.  The states
2017		 * for the two don't interact with each other.  Notify
2018		 * separately unless they're gonna be duplicates.
2019		 */
2020		do_notify_parent_cldstop(current, true, why);
2021		if (gstop_done && ptrace_reparented(current))
2022			do_notify_parent_cldstop(current, false, why);
2023
2024		/*
2025		 * Don't want to allow preemption here, because
2026		 * sys_ptrace() needs this task to be inactive.
2027		 *
2028		 * XXX: implement read_unlock_no_resched().
2029		 */
2030		preempt_disable();
2031		read_unlock(&tasklist_lock);
2032		preempt_enable_no_resched();
2033		freezable_schedule();
2034	} else {
2035		/*
2036		 * By the time we got the lock, our tracer went away.
2037		 * Don't drop the lock yet, another tracer may come.
2038		 *
2039		 * If @gstop_done, the ptracer went away between group stop
2040		 * completion and here.  During detach, it would have set
2041		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2042		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2043		 * the real parent of the group stop completion is enough.
2044		 */
2045		if (gstop_done)
2046			do_notify_parent_cldstop(current, false, why);
2047
2048		/* tasklist protects us from ptrace_freeze_traced() */
2049		__set_current_state(TASK_RUNNING);
2050		if (clear_code)
2051			current->exit_code = 0;
2052		read_unlock(&tasklist_lock);
2053	}
2054
2055	/*
2056	 * We are back.  Now reacquire the siglock before touching
2057	 * last_siginfo, so that we are sure to have synchronized with
2058	 * any signal-sending on another CPU that wants to examine it.
2059	 */
2060	spin_lock_irq(&current->sighand->siglock);
 
2061	current->last_siginfo = NULL;
 
 
2062
2063	/* LISTENING can be set only during STOP traps, clear it */
2064	current->jobctl &= ~JOBCTL_LISTENING;
2065
2066	/*
2067	 * Queued signals ignored us while we were stopped for tracing.
2068	 * So check for any that we should take before resuming user mode.
2069	 * This sets TIF_SIGPENDING, but never clears it.
2070	 */
2071	recalc_sigpending_tsk(current);
 
2072}
2073
2074static void ptrace_do_notify(int signr, int exit_code, int why)
2075{
2076	siginfo_t info;
2077
2078	clear_siginfo(&info);
2079	info.si_signo = signr;
2080	info.si_code = exit_code;
2081	info.si_pid = task_pid_vnr(current);
2082	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2083
2084	/* Let the debugger run.  */
2085	ptrace_stop(exit_code, why, 1, &info);
2086}
2087
2088void ptrace_notify(int exit_code)
2089{
 
 
2090	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2091	if (unlikely(current->task_works))
2092		task_work_run();
2093
2094	spin_lock_irq(&current->sighand->siglock);
2095	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2096	spin_unlock_irq(&current->sighand->siglock);
 
2097}
2098
2099/**
2100 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2101 * @signr: signr causing group stop if initiating
2102 *
2103 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2104 * and participate in it.  If already set, participate in the existing
2105 * group stop.  If participated in a group stop (and thus slept), %true is
2106 * returned with siglock released.
2107 *
2108 * If ptraced, this function doesn't handle stop itself.  Instead,
2109 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2110 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2111 * places afterwards.
2112 *
2113 * CONTEXT:
2114 * Must be called with @current->sighand->siglock held, which is released
2115 * on %true return.
2116 *
2117 * RETURNS:
2118 * %false if group stop is already cancelled or ptrace trap is scheduled.
2119 * %true if participated in group stop.
2120 */
2121static bool do_signal_stop(int signr)
2122	__releases(&current->sighand->siglock)
2123{
2124	struct signal_struct *sig = current->signal;
2125
2126	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2127		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2128		struct task_struct *t;
2129
2130		/* signr will be recorded in task->jobctl for retries */
2131		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2132
2133		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2134		    unlikely(signal_group_exit(sig)))
 
2135			return false;
2136		/*
2137		 * There is no group stop already in progress.  We must
2138		 * initiate one now.
2139		 *
2140		 * While ptraced, a task may be resumed while group stop is
2141		 * still in effect and then receive a stop signal and
2142		 * initiate another group stop.  This deviates from the
2143		 * usual behavior as two consecutive stop signals can't
2144		 * cause two group stops when !ptraced.  That is why we
2145		 * also check !task_is_stopped(t) below.
2146		 *
2147		 * The condition can be distinguished by testing whether
2148		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2149		 * group_exit_code in such case.
2150		 *
2151		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2152		 * an intervening stop signal is required to cause two
2153		 * continued events regardless of ptrace.
2154		 */
2155		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2156			sig->group_exit_code = signr;
2157
2158		sig->group_stop_count = 0;
2159
2160		if (task_set_jobctl_pending(current, signr | gstop))
2161			sig->group_stop_count++;
2162
2163		t = current;
2164		while_each_thread(current, t) {
2165			/*
2166			 * Setting state to TASK_STOPPED for a group
2167			 * stop is always done with the siglock held,
2168			 * so this check has no races.
2169			 */
2170			if (!task_is_stopped(t) &&
2171			    task_set_jobctl_pending(t, signr | gstop)) {
2172				sig->group_stop_count++;
2173				if (likely(!(t->ptrace & PT_SEIZED)))
2174					signal_wake_up(t, 0);
2175				else
2176					ptrace_trap_notify(t);
2177			}
2178		}
2179	}
2180
2181	if (likely(!current->ptrace)) {
2182		int notify = 0;
2183
2184		/*
2185		 * If there are no other threads in the group, or if there
2186		 * is a group stop in progress and we are the last to stop,
2187		 * report to the parent.
2188		 */
2189		if (task_participate_group_stop(current))
2190			notify = CLD_STOPPED;
2191
 
2192		set_special_state(TASK_STOPPED);
2193		spin_unlock_irq(&current->sighand->siglock);
2194
2195		/*
2196		 * Notify the parent of the group stop completion.  Because
2197		 * we're not holding either the siglock or tasklist_lock
2198		 * here, ptracer may attach inbetween; however, this is for
2199		 * group stop and should always be delivered to the real
2200		 * parent of the group leader.  The new ptracer will get
2201		 * its notification when this task transitions into
2202		 * TASK_TRACED.
2203		 */
2204		if (notify) {
2205			read_lock(&tasklist_lock);
2206			do_notify_parent_cldstop(current, false, notify);
2207			read_unlock(&tasklist_lock);
2208		}
2209
2210		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2211		freezable_schedule();
 
2212		return true;
2213	} else {
2214		/*
2215		 * While ptraced, group stop is handled by STOP trap.
2216		 * Schedule it and let the caller deal with it.
2217		 */
2218		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2219		return false;
2220	}
2221}
2222
2223/**
2224 * do_jobctl_trap - take care of ptrace jobctl traps
2225 *
2226 * When PT_SEIZED, it's used for both group stop and explicit
2227 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2228 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2229 * the stop signal; otherwise, %SIGTRAP.
2230 *
2231 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2232 * number as exit_code and no siginfo.
2233 *
2234 * CONTEXT:
2235 * Must be called with @current->sighand->siglock held, which may be
2236 * released and re-acquired before returning with intervening sleep.
2237 */
2238static void do_jobctl_trap(void)
2239{
2240	struct signal_struct *signal = current->signal;
2241	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2242
2243	if (current->ptrace & PT_SEIZED) {
2244		if (!signal->group_stop_count &&
2245		    !(signal->flags & SIGNAL_STOP_STOPPED))
2246			signr = SIGTRAP;
2247		WARN_ON_ONCE(!signr);
2248		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2249				 CLD_STOPPED);
2250	} else {
2251		WARN_ON_ONCE(!signr);
2252		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2253		current->exit_code = 0;
2254	}
2255}
2256
2257static int ptrace_signal(int signr, siginfo_t *info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2258{
2259	/*
2260	 * We do not check sig_kernel_stop(signr) but set this marker
2261	 * unconditionally because we do not know whether debugger will
2262	 * change signr. This flag has no meaning unless we are going
2263	 * to stop after return from ptrace_stop(). In this case it will
2264	 * be checked in do_signal_stop(), we should only stop if it was
2265	 * not cleared by SIGCONT while we were sleeping. See also the
2266	 * comment in dequeue_signal().
2267	 */
2268	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2269	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2270
2271	/* We're back.  Did the debugger cancel the sig?  */
2272	signr = current->exit_code;
2273	if (signr == 0)
2274		return signr;
2275
2276	current->exit_code = 0;
2277
2278	/*
2279	 * Update the siginfo structure if the signal has
2280	 * changed.  If the debugger wanted something
2281	 * specific in the siginfo structure then it should
2282	 * have updated *info via PTRACE_SETSIGINFO.
2283	 */
2284	if (signr != info->si_signo) {
2285		clear_siginfo(info);
2286		info->si_signo = signr;
2287		info->si_errno = 0;
2288		info->si_code = SI_USER;
2289		rcu_read_lock();
2290		info->si_pid = task_pid_vnr(current->parent);
2291		info->si_uid = from_kuid_munged(current_user_ns(),
2292						task_uid(current->parent));
2293		rcu_read_unlock();
2294	}
2295
2296	/* If the (new) signal is now blocked, requeue it.  */
2297	if (sigismember(&current->blocked, signr)) {
2298		specific_send_sig_info(signr, info, current);
 
2299		signr = 0;
2300	}
2301
2302	return signr;
2303}
2304
2305int get_signal(struct ksignal *ksig)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2306{
2307	struct sighand_struct *sighand = current->sighand;
2308	struct signal_struct *signal = current->signal;
2309	int signr;
2310
2311	if (unlikely(current->task_works))
 
2312		task_work_run();
2313
 
 
 
2314	if (unlikely(uprobe_deny_signal()))
2315		return 0;
2316
2317	/*
2318	 * Do this once, we can't return to user-mode if freezing() == T.
2319	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2320	 * thus do not need another check after return.
2321	 */
2322	try_to_freeze();
2323
2324relock:
2325	spin_lock_irq(&sighand->siglock);
 
2326	/*
2327	 * Every stopped thread goes here after wakeup. Check to see if
2328	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2329	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2330	 */
2331	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2332		int why;
2333
2334		if (signal->flags & SIGNAL_CLD_CONTINUED)
2335			why = CLD_CONTINUED;
2336		else
2337			why = CLD_STOPPED;
2338
2339		signal->flags &= ~SIGNAL_CLD_MASK;
2340
2341		spin_unlock_irq(&sighand->siglock);
2342
2343		/*
2344		 * Notify the parent that we're continuing.  This event is
2345		 * always per-process and doesn't make whole lot of sense
2346		 * for ptracers, who shouldn't consume the state via
2347		 * wait(2) either, but, for backward compatibility, notify
2348		 * the ptracer of the group leader too unless it's gonna be
2349		 * a duplicate.
2350		 */
2351		read_lock(&tasklist_lock);
2352		do_notify_parent_cldstop(current, false, why);
2353
2354		if (ptrace_reparented(current->group_leader))
2355			do_notify_parent_cldstop(current->group_leader,
2356						true, why);
2357		read_unlock(&tasklist_lock);
2358
2359		goto relock;
2360	}
2361
2362	for (;;) {
2363		struct k_sigaction *ka;
 
 
 
 
 
 
 
 
 
 
 
 
 
2364
2365		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2366		    do_signal_stop(0))
2367			goto relock;
2368
2369		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2370			do_jobctl_trap();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2371			spin_unlock_irq(&sighand->siglock);
 
2372			goto relock;
2373		}
2374
2375		signr = dequeue_signal(current, &current->blocked, &ksig->info);
 
 
 
 
 
 
 
 
 
 
2376
2377		if (!signr)
2378			break; /* will return 0 */
2379
2380		if (unlikely(current->ptrace) && signr != SIGKILL) {
2381			signr = ptrace_signal(signr, &ksig->info);
 
2382			if (!signr)
2383				continue;
2384		}
2385
2386		ka = &sighand->action[signr-1];
2387
2388		/* Trace actually delivered signals. */
2389		trace_signal_deliver(signr, &ksig->info, ka);
2390
2391		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2392			continue;
2393		if (ka->sa.sa_handler != SIG_DFL) {
2394			/* Run the handler.  */
2395			ksig->ka = *ka;
2396
2397			if (ka->sa.sa_flags & SA_ONESHOT)
2398				ka->sa.sa_handler = SIG_DFL;
2399
2400			break; /* will return non-zero "signr" value */
2401		}
2402
2403		/*
2404		 * Now we are doing the default action for this signal.
2405		 */
2406		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2407			continue;
2408
2409		/*
2410		 * Global init gets no signals it doesn't want.
2411		 * Container-init gets no signals it doesn't want from same
2412		 * container.
2413		 *
2414		 * Note that if global/container-init sees a sig_kernel_only()
2415		 * signal here, the signal must have been generated internally
2416		 * or must have come from an ancestor namespace. In either
2417		 * case, the signal cannot be dropped.
2418		 */
2419		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2420				!sig_kernel_only(signr))
2421			continue;
2422
2423		if (sig_kernel_stop(signr)) {
2424			/*
2425			 * The default action is to stop all threads in
2426			 * the thread group.  The job control signals
2427			 * do nothing in an orphaned pgrp, but SIGSTOP
2428			 * always works.  Note that siglock needs to be
2429			 * dropped during the call to is_orphaned_pgrp()
2430			 * because of lock ordering with tasklist_lock.
2431			 * This allows an intervening SIGCONT to be posted.
2432			 * We need to check for that and bail out if necessary.
2433			 */
2434			if (signr != SIGSTOP) {
2435				spin_unlock_irq(&sighand->siglock);
2436
2437				/* signals can be posted during this window */
2438
2439				if (is_current_pgrp_orphaned())
2440					goto relock;
2441
2442				spin_lock_irq(&sighand->siglock);
2443			}
2444
2445			if (likely(do_signal_stop(ksig->info.si_signo))) {
2446				/* It released the siglock.  */
2447				goto relock;
2448			}
2449
2450			/*
2451			 * We didn't actually stop, due to a race
2452			 * with SIGCONT or something like that.
2453			 */
2454			continue;
2455		}
2456
 
2457		spin_unlock_irq(&sighand->siglock);
 
 
2458
2459		/*
2460		 * Anything else is fatal, maybe with a core dump.
2461		 */
2462		current->flags |= PF_SIGNALED;
2463
2464		if (sig_kernel_coredump(signr)) {
2465			if (print_fatal_signals)
2466				print_fatal_signal(ksig->info.si_signo);
2467			proc_coredump_connector(current);
2468			/*
2469			 * If it was able to dump core, this kills all
2470			 * other threads in the group and synchronizes with
2471			 * their demise.  If we lost the race with another
2472			 * thread getting here, it set group_exit_code
2473			 * first and our do_group_exit call below will use
2474			 * that value and ignore the one we pass it.
2475			 */
2476			do_coredump(&ksig->info);
2477		}
2478
2479		/*
 
 
 
 
 
 
 
 
2480		 * Death signals, no core dump.
2481		 */
2482		do_group_exit(ksig->info.si_signo);
2483		/* NOTREACHED */
2484	}
2485	spin_unlock_irq(&sighand->siglock);
 
 
 
 
 
2486
2487	ksig->sig = signr;
2488	return ksig->sig > 0;
2489}
2490
2491/**
2492 * signal_delivered - 
2493 * @ksig:		kernel signal struct
2494 * @stepping:		nonzero if debugger single-step or block-step in use
2495 *
2496 * This function should be called when a signal has successfully been
2497 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2498 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2499 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2500 */
2501static void signal_delivered(struct ksignal *ksig, int stepping)
2502{
2503	sigset_t blocked;
2504
2505	/* A signal was successfully delivered, and the
2506	   saved sigmask was stored on the signal frame,
2507	   and will be restored by sigreturn.  So we can
2508	   simply clear the restore sigmask flag.  */
2509	clear_restore_sigmask();
2510
2511	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2512	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2513		sigaddset(&blocked, ksig->sig);
2514	set_current_blocked(&blocked);
2515	tracehook_signal_handler(stepping);
 
 
 
2516}
2517
2518void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2519{
2520	if (failed)
2521		force_sigsegv(ksig->sig, current);
2522	else
2523		signal_delivered(ksig, stepping);
2524}
2525
2526/*
2527 * It could be that complete_signal() picked us to notify about the
2528 * group-wide signal. Other threads should be notified now to take
2529 * the shared signals in @which since we will not.
2530 */
2531static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2532{
2533	sigset_t retarget;
2534	struct task_struct *t;
2535
2536	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2537	if (sigisemptyset(&retarget))
2538		return;
2539
2540	t = tsk;
2541	while_each_thread(tsk, t) {
2542		if (t->flags & PF_EXITING)
2543			continue;
2544
2545		if (!has_pending_signals(&retarget, &t->blocked))
2546			continue;
2547		/* Remove the signals this thread can handle. */
2548		sigandsets(&retarget, &retarget, &t->blocked);
2549
2550		if (!signal_pending(t))
2551			signal_wake_up(t, 0);
2552
2553		if (sigisemptyset(&retarget))
2554			break;
2555	}
2556}
2557
2558void exit_signals(struct task_struct *tsk)
2559{
2560	int group_stop = 0;
2561	sigset_t unblocked;
2562
2563	/*
2564	 * @tsk is about to have PF_EXITING set - lock out users which
2565	 * expect stable threadgroup.
2566	 */
2567	cgroup_threadgroup_change_begin(tsk);
2568
2569	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2570		tsk->flags |= PF_EXITING;
2571		cgroup_threadgroup_change_end(tsk);
2572		return;
2573	}
2574
2575	spin_lock_irq(&tsk->sighand->siglock);
2576	/*
2577	 * From now this task is not visible for group-wide signals,
2578	 * see wants_signal(), do_signal_stop().
2579	 */
2580	tsk->flags |= PF_EXITING;
2581
2582	cgroup_threadgroup_change_end(tsk);
2583
2584	if (!signal_pending(tsk))
2585		goto out;
2586
2587	unblocked = tsk->blocked;
2588	signotset(&unblocked);
2589	retarget_shared_pending(tsk, &unblocked);
2590
2591	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2592	    task_participate_group_stop(tsk))
2593		group_stop = CLD_STOPPED;
2594out:
2595	spin_unlock_irq(&tsk->sighand->siglock);
2596
2597	/*
2598	 * If group stop has completed, deliver the notification.  This
2599	 * should always go to the real parent of the group leader.
2600	 */
2601	if (unlikely(group_stop)) {
2602		read_lock(&tasklist_lock);
2603		do_notify_parent_cldstop(tsk, false, group_stop);
2604		read_unlock(&tasklist_lock);
2605	}
2606}
2607
2608EXPORT_SYMBOL(recalc_sigpending);
2609EXPORT_SYMBOL_GPL(dequeue_signal);
2610EXPORT_SYMBOL(flush_signals);
2611EXPORT_SYMBOL(force_sig);
2612EXPORT_SYMBOL(send_sig);
2613EXPORT_SYMBOL(send_sig_info);
2614EXPORT_SYMBOL(sigprocmask);
2615
2616/*
2617 * System call entry points.
2618 */
2619
2620/**
2621 *  sys_restart_syscall - restart a system call
2622 */
2623SYSCALL_DEFINE0(restart_syscall)
2624{
2625	struct restart_block *restart = &current->restart_block;
2626	return restart->fn(restart);
2627}
2628
2629long do_no_restart_syscall(struct restart_block *param)
2630{
2631	return -EINTR;
2632}
2633
2634static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2635{
2636	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2637		sigset_t newblocked;
2638		/* A set of now blocked but previously unblocked signals. */
2639		sigandnsets(&newblocked, newset, &current->blocked);
2640		retarget_shared_pending(tsk, &newblocked);
2641	}
2642	tsk->blocked = *newset;
2643	recalc_sigpending();
2644}
2645
2646/**
2647 * set_current_blocked - change current->blocked mask
2648 * @newset: new mask
2649 *
2650 * It is wrong to change ->blocked directly, this helper should be used
2651 * to ensure the process can't miss a shared signal we are going to block.
2652 */
2653void set_current_blocked(sigset_t *newset)
2654{
2655	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2656	__set_current_blocked(newset);
2657}
2658
2659void __set_current_blocked(const sigset_t *newset)
2660{
2661	struct task_struct *tsk = current;
2662
2663	/*
2664	 * In case the signal mask hasn't changed, there is nothing we need
2665	 * to do. The current->blocked shouldn't be modified by other task.
2666	 */
2667	if (sigequalsets(&tsk->blocked, newset))
2668		return;
2669
2670	spin_lock_irq(&tsk->sighand->siglock);
2671	__set_task_blocked(tsk, newset);
2672	spin_unlock_irq(&tsk->sighand->siglock);
2673}
2674
2675/*
2676 * This is also useful for kernel threads that want to temporarily
2677 * (or permanently) block certain signals.
2678 *
2679 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2680 * interface happily blocks "unblockable" signals like SIGKILL
2681 * and friends.
2682 */
2683int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2684{
2685	struct task_struct *tsk = current;
2686	sigset_t newset;
2687
2688	/* Lockless, only current can change ->blocked, never from irq */
2689	if (oldset)
2690		*oldset = tsk->blocked;
2691
2692	switch (how) {
2693	case SIG_BLOCK:
2694		sigorsets(&newset, &tsk->blocked, set);
2695		break;
2696	case SIG_UNBLOCK:
2697		sigandnsets(&newset, &tsk->blocked, set);
2698		break;
2699	case SIG_SETMASK:
2700		newset = *set;
2701		break;
2702	default:
2703		return -EINVAL;
2704	}
2705
2706	__set_current_blocked(&newset);
2707	return 0;
2708}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2709
2710/**
2711 *  sys_rt_sigprocmask - change the list of currently blocked signals
2712 *  @how: whether to add, remove, or set signals
2713 *  @nset: stores pending signals
2714 *  @oset: previous value of signal mask if non-null
2715 *  @sigsetsize: size of sigset_t type
2716 */
2717SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2718		sigset_t __user *, oset, size_t, sigsetsize)
2719{
2720	sigset_t old_set, new_set;
2721	int error;
2722
2723	/* XXX: Don't preclude handling different sized sigset_t's.  */
2724	if (sigsetsize != sizeof(sigset_t))
2725		return -EINVAL;
2726
2727	old_set = current->blocked;
2728
2729	if (nset) {
2730		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2731			return -EFAULT;
2732		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2733
2734		error = sigprocmask(how, &new_set, NULL);
2735		if (error)
2736			return error;
2737	}
2738
2739	if (oset) {
2740		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2741			return -EFAULT;
2742	}
2743
2744	return 0;
2745}
2746
2747#ifdef CONFIG_COMPAT
2748COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2749		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2750{
2751	sigset_t old_set = current->blocked;
2752
2753	/* XXX: Don't preclude handling different sized sigset_t's.  */
2754	if (sigsetsize != sizeof(sigset_t))
2755		return -EINVAL;
2756
2757	if (nset) {
2758		sigset_t new_set;
2759		int error;
2760		if (get_compat_sigset(&new_set, nset))
2761			return -EFAULT;
2762		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2763
2764		error = sigprocmask(how, &new_set, NULL);
2765		if (error)
2766			return error;
2767	}
2768	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
2769}
2770#endif
2771
2772static int do_sigpending(sigset_t *set)
2773{
2774	spin_lock_irq(&current->sighand->siglock);
2775	sigorsets(set, &current->pending.signal,
2776		  &current->signal->shared_pending.signal);
2777	spin_unlock_irq(&current->sighand->siglock);
2778
2779	/* Outside the lock because only this thread touches it.  */
2780	sigandsets(set, &current->blocked, set);
2781	return 0;
2782}
2783
2784/**
2785 *  sys_rt_sigpending - examine a pending signal that has been raised
2786 *			while blocked
2787 *  @uset: stores pending signals
2788 *  @sigsetsize: size of sigset_t type or larger
2789 */
2790SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2791{
2792	sigset_t set;
2793	int err;
2794
2795	if (sigsetsize > sizeof(*uset))
2796		return -EINVAL;
2797
2798	err = do_sigpending(&set);
2799	if (!err && copy_to_user(uset, &set, sigsetsize))
2800		err = -EFAULT;
2801	return err;
 
 
2802}
2803
2804#ifdef CONFIG_COMPAT
2805COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2806		compat_size_t, sigsetsize)
2807{
2808	sigset_t set;
2809	int err;
2810
2811	if (sigsetsize > sizeof(*uset))
2812		return -EINVAL;
2813
2814	err = do_sigpending(&set);
2815	if (!err)
2816		err = put_compat_sigset(uset, &set, sigsetsize);
2817	return err;
2818}
2819#endif
2820
2821enum siginfo_layout siginfo_layout(int sig, int si_code)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2822{
2823	enum siginfo_layout layout = SIL_KILL;
2824	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
2825		static const struct {
2826			unsigned char limit, layout;
2827		} filter[] = {
2828			[SIGILL]  = { NSIGILL,  SIL_FAULT },
2829			[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
2830			[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
2831			[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
2832			[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
2833#if defined(SIGEMT) && defined(NSIGEMT)
2834			[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
2835#endif
2836			[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
2837			[SIGPOLL] = { NSIGPOLL, SIL_POLL },
2838			[SIGSYS]  = { NSIGSYS,  SIL_SYS },
2839		};
2840		if ((sig < ARRAY_SIZE(filter)) && (si_code <= filter[sig].limit))
2841			layout = filter[sig].layout;
 
 
 
 
 
 
2842		else if (si_code <= NSIGPOLL)
2843			layout = SIL_POLL;
2844	} else {
2845		if (si_code == SI_TIMER)
2846			layout = SIL_TIMER;
2847		else if (si_code == SI_SIGIO)
2848			layout = SIL_POLL;
2849		else if (si_code < 0)
2850			layout = SIL_RT;
2851		/* Tests to support buggy kernel ABIs */
2852#ifdef TRAP_FIXME
2853		if ((sig == SIGTRAP) && (si_code == TRAP_FIXME))
2854			layout = SIL_FAULT;
2855#endif
2856#ifdef FPE_FIXME
2857		if ((sig == SIGFPE) && (si_code == FPE_FIXME))
2858			layout = SIL_FAULT;
2859#endif
2860	}
2861	return layout;
2862}
2863
2864int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2865{
2866	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2867
2868	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
 
 
2869		return -EFAULT;
2870	if (from->si_code < 0)
2871		return __copy_to_user(to, from, sizeof(siginfo_t))
2872			? -EFAULT : 0;
2873	/*
2874	 * If you change siginfo_t structure, please be sure
2875	 * this code is fixed accordingly.
2876	 * Please remember to update the signalfd_copyinfo() function
2877	 * inside fs/signalfd.c too, in case siginfo_t changes.
2878	 * It should never copy any pad contained in the structure
2879	 * to avoid security leaks, but must copy the generic
2880	 * 3 ints plus the relevant union member.
2881	 */
2882	err = __put_user(from->si_signo, &to->si_signo);
2883	err |= __put_user(from->si_errno, &to->si_errno);
2884	err |= __put_user(from->si_code, &to->si_code);
2885	switch (siginfo_layout(from->si_signo, from->si_code)) {
 
 
 
 
 
 
 
2886	case SIL_KILL:
2887		err |= __put_user(from->si_pid, &to->si_pid);
2888		err |= __put_user(from->si_uid, &to->si_uid);
2889		break;
2890	case SIL_TIMER:
2891		/* Unreached SI_TIMER is negative */
 
 
2892		break;
2893	case SIL_POLL:
2894		err |= __put_user(from->si_band, &to->si_band);
2895		err |= __put_user(from->si_fd, &to->si_fd);
2896		break;
2897	case SIL_FAULT:
2898		err |= __put_user(from->si_addr, &to->si_addr);
2899#ifdef __ARCH_SI_TRAPNO
2900		err |= __put_user(from->si_trapno, &to->si_trapno);
2901#endif
2902#ifdef __ia64__
2903		err |= __put_user(from->si_imm, &to->si_imm);
2904		err |= __put_user(from->si_flags, &to->si_flags);
2905		err |= __put_user(from->si_isr, &to->si_isr);
2906#endif
2907		/*
2908		 * Other callers might not initialize the si_lsb field,
2909		 * so check explicitly for the right codes here.
2910		 */
2911#ifdef BUS_MCEERR_AR
2912		if (from->si_signo == SIGBUS && from->si_code == BUS_MCEERR_AR)
2913			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2914#endif
2915#ifdef BUS_MCEERR_AO
2916		if (from->si_signo == SIGBUS && from->si_code == BUS_MCEERR_AO)
2917			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2918#endif
2919#ifdef SEGV_BNDERR
2920		if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2921			err |= __put_user(from->si_lower, &to->si_lower);
2922			err |= __put_user(from->si_upper, &to->si_upper);
2923		}
2924#endif
2925#ifdef SEGV_PKUERR
2926		if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2927			err |= __put_user(from->si_pkey, &to->si_pkey);
2928#endif
2929		break;
2930	case SIL_CHLD:
2931		err |= __put_user(from->si_pid, &to->si_pid);
2932		err |= __put_user(from->si_uid, &to->si_uid);
2933		err |= __put_user(from->si_status, &to->si_status);
2934		err |= __put_user(from->si_utime, &to->si_utime);
2935		err |= __put_user(from->si_stime, &to->si_stime);
2936		break;
2937	case SIL_RT:
2938		err |= __put_user(from->si_pid, &to->si_pid);
2939		err |= __put_user(from->si_uid, &to->si_uid);
2940		err |= __put_user(from->si_ptr, &to->si_ptr);
2941		break;
2942	case SIL_SYS:
2943		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2944		err |= __put_user(from->si_syscall, &to->si_syscall);
2945		err |= __put_user(from->si_arch, &to->si_arch);
2946		break;
2947	}
2948	return err;
2949}
2950
2951#ifdef CONFIG_COMPAT
2952int copy_siginfo_to_user32(struct compat_siginfo __user *to,
2953			   const struct siginfo *from)
2954#if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
2955{
2956	return __copy_siginfo_to_user32(to, from, in_x32_syscall());
2957}
2958int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
2959			     const struct siginfo *from, bool x32_ABI)
2960#endif
2961{
2962	struct compat_siginfo new;
2963	memset(&new, 0, sizeof(new));
2964
2965	new.si_signo = from->si_signo;
2966	new.si_errno = from->si_errno;
2967	new.si_code  = from->si_code;
 
 
 
 
 
 
 
 
 
 
2968	switch(siginfo_layout(from->si_signo, from->si_code)) {
2969	case SIL_KILL:
2970		new.si_pid = from->si_pid;
2971		new.si_uid = from->si_uid;
2972		break;
2973	case SIL_TIMER:
2974		new.si_tid     = from->si_tid;
2975		new.si_overrun = from->si_overrun;
2976		new.si_int     = from->si_int;
2977		break;
2978	case SIL_POLL:
2979		new.si_band = from->si_band;
2980		new.si_fd   = from->si_fd;
2981		break;
2982	case SIL_FAULT:
2983		new.si_addr = ptr_to_compat(from->si_addr);
2984#ifdef __ARCH_SI_TRAPNO
2985		new.si_trapno = from->si_trapno;
2986#endif
2987#ifdef BUS_MCEERR_AR
2988		if ((from->si_signo == SIGBUS) && (from->si_code == BUS_MCEERR_AR))
2989			new.si_addr_lsb = from->si_addr_lsb;
2990#endif
2991#ifdef BUS_MCEERR_AO
2992		if ((from->si_signo == SIGBUS) && (from->si_code == BUS_MCEERR_AO))
2993			new.si_addr_lsb = from->si_addr_lsb;
2994#endif
2995#ifdef SEGV_BNDERR
2996		if ((from->si_signo == SIGSEGV) &&
2997		    (from->si_code == SEGV_BNDERR)) {
2998			new.si_lower = ptr_to_compat(from->si_lower);
2999			new.si_upper = ptr_to_compat(from->si_upper);
3000		}
3001#endif
3002#ifdef SEGV_PKUERR
3003		if ((from->si_signo == SIGSEGV) &&
3004		    (from->si_code == SEGV_PKUERR))
3005			new.si_pkey = from->si_pkey;
3006#endif
3007
3008		break;
3009	case SIL_CHLD:
3010		new.si_pid    = from->si_pid;
3011		new.si_uid    = from->si_uid;
3012		new.si_status = from->si_status;
3013#ifdef CONFIG_X86_X32_ABI
3014		if (x32_ABI) {
3015			new._sifields._sigchld_x32._utime = from->si_utime;
3016			new._sifields._sigchld_x32._stime = from->si_stime;
3017		} else
3018#endif
3019		{
3020			new.si_utime = from->si_utime;
3021			new.si_stime = from->si_stime;
3022		}
3023		break;
3024	case SIL_RT:
3025		new.si_pid = from->si_pid;
3026		new.si_uid = from->si_uid;
3027		new.si_int = from->si_int;
3028		break;
3029	case SIL_SYS:
3030		new.si_call_addr = ptr_to_compat(from->si_call_addr);
3031		new.si_syscall   = from->si_syscall;
3032		new.si_arch      = from->si_arch;
3033		break;
3034	}
 
 
 
 
 
 
 
3035
3036	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3037		return -EFAULT;
3038
3039	return 0;
 
3040}
3041
3042int copy_siginfo_from_user32(struct siginfo *to,
3043			     const struct compat_siginfo __user *ufrom)
3044{
3045	struct compat_siginfo from;
3046
3047	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3048		return -EFAULT;
3049
3050	clear_siginfo(to);
3051	to->si_signo = from.si_signo;
3052	to->si_errno = from.si_errno;
3053	to->si_code  = from.si_code;
3054	switch(siginfo_layout(from.si_signo, from.si_code)) {
3055	case SIL_KILL:
3056		to->si_pid = from.si_pid;
3057		to->si_uid = from.si_uid;
3058		break;
3059	case SIL_TIMER:
3060		to->si_tid     = from.si_tid;
3061		to->si_overrun = from.si_overrun;
3062		to->si_int     = from.si_int;
3063		break;
3064	case SIL_POLL:
3065		to->si_band = from.si_band;
3066		to->si_fd   = from.si_fd;
3067		break;
3068	case SIL_FAULT:
3069		to->si_addr = compat_ptr(from.si_addr);
3070#ifdef __ARCH_SI_TRAPNO
3071		to->si_trapno = from.si_trapno;
3072#endif
3073#ifdef BUS_MCEERR_AR
3074		if ((from.si_signo == SIGBUS) && (from.si_code == BUS_MCEERR_AR))
3075			to->si_addr_lsb = from.si_addr_lsb;
3076#endif
3077#ifdef BUS_MCEER_AO
3078		if ((from.si_signo == SIGBUS) && (from.si_code == BUS_MCEERR_AO))
3079			to->si_addr_lsb = from.si_addr_lsb;
3080#endif
3081#ifdef SEGV_BNDERR
3082		if ((from.si_signo == SIGSEGV) && (from.si_code == SEGV_BNDERR)) {
3083			to->si_lower = compat_ptr(from.si_lower);
3084			to->si_upper = compat_ptr(from.si_upper);
3085		}
3086#endif
3087#ifdef SEGV_PKUERR
3088		if ((from.si_signo == SIGSEGV) && (from.si_code == SEGV_PKUERR))
3089			to->si_pkey = from.si_pkey;
3090#endif
3091		break;
3092	case SIL_CHLD:
3093		to->si_pid    = from.si_pid;
3094		to->si_uid    = from.si_uid;
3095		to->si_status = from.si_status;
3096#ifdef CONFIG_X86_X32_ABI
3097		if (in_x32_syscall()) {
3098			to->si_utime = from._sifields._sigchld_x32._utime;
3099			to->si_stime = from._sifields._sigchld_x32._stime;
3100		} else
3101#endif
3102		{
3103			to->si_utime = from.si_utime;
3104			to->si_stime = from.si_stime;
3105		}
3106		break;
3107	case SIL_RT:
3108		to->si_pid = from.si_pid;
3109		to->si_uid = from.si_uid;
3110		to->si_int = from.si_int;
3111		break;
3112	case SIL_SYS:
3113		to->si_call_addr = compat_ptr(from.si_call_addr);
3114		to->si_syscall   = from.si_syscall;
3115		to->si_arch      = from.si_arch;
3116		break;
3117	}
3118	return 0;
3119}
3120#endif /* CONFIG_COMPAT */
3121
3122/**
3123 *  do_sigtimedwait - wait for queued signals specified in @which
3124 *  @which: queued signals to wait for
3125 *  @info: if non-null, the signal's siginfo is returned here
3126 *  @ts: upper bound on process time suspension
3127 */
3128static int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
3129		    const struct timespec *ts)
3130{
3131	ktime_t *to = NULL, timeout = KTIME_MAX;
3132	struct task_struct *tsk = current;
3133	sigset_t mask = *which;
 
3134	int sig, ret = 0;
3135
3136	if (ts) {
3137		if (!timespec_valid(ts))
3138			return -EINVAL;
3139		timeout = timespec_to_ktime(*ts);
3140		to = &timeout;
3141	}
3142
3143	/*
3144	 * Invert the set of allowed signals to get those we want to block.
3145	 */
3146	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3147	signotset(&mask);
3148
3149	spin_lock_irq(&tsk->sighand->siglock);
3150	sig = dequeue_signal(tsk, &mask, info);
3151	if (!sig && timeout) {
3152		/*
3153		 * None ready, temporarily unblock those we're interested
3154		 * while we are sleeping in so that we'll be awakened when
3155		 * they arrive. Unblocking is always fine, we can avoid
3156		 * set_current_blocked().
3157		 */
3158		tsk->real_blocked = tsk->blocked;
3159		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3160		recalc_sigpending();
3161		spin_unlock_irq(&tsk->sighand->siglock);
3162
3163		__set_current_state(TASK_INTERRUPTIBLE);
3164		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3165							 HRTIMER_MODE_REL);
3166		spin_lock_irq(&tsk->sighand->siglock);
3167		__set_task_blocked(tsk, &tsk->real_blocked);
3168		sigemptyset(&tsk->real_blocked);
3169		sig = dequeue_signal(tsk, &mask, info);
3170	}
3171	spin_unlock_irq(&tsk->sighand->siglock);
3172
3173	if (sig)
3174		return sig;
3175	return ret ? -EINTR : -EAGAIN;
3176}
3177
3178/**
3179 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3180 *			in @uthese
3181 *  @uthese: queued signals to wait for
3182 *  @uinfo: if non-null, the signal's siginfo is returned here
3183 *  @uts: upper bound on process time suspension
3184 *  @sigsetsize: size of sigset_t type
3185 */
3186SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3187		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
 
3188		size_t, sigsetsize)
3189{
3190	sigset_t these;
3191	struct timespec ts;
3192	siginfo_t info;
3193	int ret;
3194
3195	/* XXX: Don't preclude handling different sized sigset_t's.  */
3196	if (sigsetsize != sizeof(sigset_t))
3197		return -EINVAL;
3198
3199	if (copy_from_user(&these, uthese, sizeof(these)))
3200		return -EFAULT;
3201
3202	if (uts) {
3203		if (copy_from_user(&ts, uts, sizeof(ts)))
3204			return -EFAULT;
3205	}
3206
3207	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3208
3209	if (ret > 0 && uinfo) {
3210		if (copy_siginfo_to_user(uinfo, &info))
3211			ret = -EFAULT;
3212	}
3213
3214	return ret;
3215}
3216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3217#ifdef CONFIG_COMPAT
3218COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3219		struct compat_siginfo __user *, uinfo,
3220		struct compat_timespec __user *, uts, compat_size_t, sigsetsize)
3221{
3222	sigset_t s;
3223	struct timespec t;
3224	siginfo_t info;
3225	long ret;
3226
3227	if (sigsetsize != sizeof(sigset_t))
3228		return -EINVAL;
3229
3230	if (get_compat_sigset(&s, uthese))
3231		return -EFAULT;
3232
3233	if (uts) {
3234		if (compat_get_timespec(&t, uts))
3235			return -EFAULT;
3236	}
3237
3238	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3239
3240	if (ret > 0 && uinfo) {
3241		if (copy_siginfo_to_user32(uinfo, &info))
3242			ret = -EFAULT;
3243	}
3244
3245	return ret;
3246}
3247#endif
 
 
 
 
 
 
 
 
 
 
 
3248
3249/**
3250 *  sys_kill - send a signal to a process
3251 *  @pid: the PID of the process
3252 *  @sig: signal to be sent
3253 */
3254SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3255{
3256	struct siginfo info;
3257
3258	clear_siginfo(&info);
3259	info.si_signo = sig;
3260	info.si_errno = 0;
3261	info.si_code = SI_USER;
3262	info.si_pid = task_tgid_vnr(current);
3263	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3264
3265	return kill_something_info(sig, &info, pid);
3266}
3267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3268static int
3269do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
3270{
3271	struct task_struct *p;
3272	int error = -ESRCH;
3273
3274	rcu_read_lock();
3275	p = find_task_by_vpid(pid);
3276	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3277		error = check_kill_permission(sig, info, p);
3278		/*
3279		 * The null signal is a permissions and process existence
3280		 * probe.  No signal is actually delivered.
3281		 */
3282		if (!error && sig) {
3283			error = do_send_sig_info(sig, info, p, false);
3284			/*
3285			 * If lock_task_sighand() failed we pretend the task
3286			 * dies after receiving the signal. The window is tiny,
3287			 * and the signal is private anyway.
3288			 */
3289			if (unlikely(error == -ESRCH))
3290				error = 0;
3291		}
3292	}
3293	rcu_read_unlock();
3294
3295	return error;
3296}
3297
3298static int do_tkill(pid_t tgid, pid_t pid, int sig)
3299{
3300	struct siginfo info;
3301
3302	clear_siginfo(&info);
3303	info.si_signo = sig;
3304	info.si_errno = 0;
3305	info.si_code = SI_TKILL;
3306	info.si_pid = task_tgid_vnr(current);
3307	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3308
3309	return do_send_specific(tgid, pid, sig, &info);
3310}
3311
3312/**
3313 *  sys_tgkill - send signal to one specific thread
3314 *  @tgid: the thread group ID of the thread
3315 *  @pid: the PID of the thread
3316 *  @sig: signal to be sent
3317 *
3318 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3319 *  exists but it's not belonging to the target process anymore. This
3320 *  method solves the problem of threads exiting and PIDs getting reused.
3321 */
3322SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3323{
3324	/* This is only valid for single tasks */
3325	if (pid <= 0 || tgid <= 0)
3326		return -EINVAL;
3327
3328	return do_tkill(tgid, pid, sig);
3329}
3330
3331/**
3332 *  sys_tkill - send signal to one specific task
3333 *  @pid: the PID of the task
3334 *  @sig: signal to be sent
3335 *
3336 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3337 */
3338SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3339{
3340	/* This is only valid for single tasks */
3341	if (pid <= 0)
3342		return -EINVAL;
3343
3344	return do_tkill(0, pid, sig);
3345}
3346
3347static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3348{
3349	/* Not even root can pretend to send signals from the kernel.
3350	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3351	 */
3352	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3353	    (task_pid_vnr(current) != pid))
3354		return -EPERM;
3355
3356	info->si_signo = sig;
3357
3358	/* POSIX.1b doesn't mention process groups.  */
3359	return kill_proc_info(sig, info, pid);
3360}
3361
3362/**
3363 *  sys_rt_sigqueueinfo - send signal information to a signal
3364 *  @pid: the PID of the thread
3365 *  @sig: signal to be sent
3366 *  @uinfo: signal info to be sent
3367 */
3368SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3369		siginfo_t __user *, uinfo)
3370{
3371	siginfo_t info;
3372	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3373		return -EFAULT;
 
3374	return do_rt_sigqueueinfo(pid, sig, &info);
3375}
3376
3377#ifdef CONFIG_COMPAT
3378COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3379			compat_pid_t, pid,
3380			int, sig,
3381			struct compat_siginfo __user *, uinfo)
3382{
3383	siginfo_t info;
3384	int ret = copy_siginfo_from_user32(&info, uinfo);
3385	if (unlikely(ret))
3386		return ret;
3387	return do_rt_sigqueueinfo(pid, sig, &info);
3388}
3389#endif
3390
3391static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3392{
3393	/* This is only valid for single tasks */
3394	if (pid <= 0 || tgid <= 0)
3395		return -EINVAL;
3396
3397	/* Not even root can pretend to send signals from the kernel.
3398	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3399	 */
3400	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3401	    (task_pid_vnr(current) != pid))
3402		return -EPERM;
3403
3404	info->si_signo = sig;
3405
3406	return do_send_specific(tgid, pid, sig, info);
3407}
3408
3409SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3410		siginfo_t __user *, uinfo)
3411{
3412	siginfo_t info;
3413
3414	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3415		return -EFAULT;
3416
3417	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3418}
3419
3420#ifdef CONFIG_COMPAT
3421COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3422			compat_pid_t, tgid,
3423			compat_pid_t, pid,
3424			int, sig,
3425			struct compat_siginfo __user *, uinfo)
3426{
3427	siginfo_t info;
3428
3429	if (copy_siginfo_from_user32(&info, uinfo))
3430		return -EFAULT;
3431	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3432}
3433#endif
3434
3435/*
3436 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3437 */
3438void kernel_sigaction(int sig, __sighandler_t action)
3439{
3440	spin_lock_irq(&current->sighand->siglock);
3441	current->sighand->action[sig - 1].sa.sa_handler = action;
3442	if (action == SIG_IGN) {
3443		sigset_t mask;
3444
3445		sigemptyset(&mask);
3446		sigaddset(&mask, sig);
3447
3448		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3449		flush_sigqueue_mask(&mask, &current->pending);
3450		recalc_sigpending();
3451	}
3452	spin_unlock_irq(&current->sighand->siglock);
3453}
3454EXPORT_SYMBOL(kernel_sigaction);
3455
3456void __weak sigaction_compat_abi(struct k_sigaction *act,
3457		struct k_sigaction *oact)
3458{
3459}
3460
3461int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3462{
3463	struct task_struct *p = current, *t;
3464	struct k_sigaction *k;
3465	sigset_t mask;
3466
3467	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3468		return -EINVAL;
3469
3470	k = &p->sighand->action[sig-1];
3471
3472	spin_lock_irq(&p->sighand->siglock);
 
 
 
 
3473	if (oact)
3474		*oact = *k;
3475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3476	sigaction_compat_abi(act, oact);
3477
3478	if (act) {
3479		sigdelsetmask(&act->sa.sa_mask,
3480			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3481		*k = *act;
3482		/*
3483		 * POSIX 3.3.1.3:
3484		 *  "Setting a signal action to SIG_IGN for a signal that is
3485		 *   pending shall cause the pending signal to be discarded,
3486		 *   whether or not it is blocked."
3487		 *
3488		 *  "Setting a signal action to SIG_DFL for a signal that is
3489		 *   pending and whose default action is to ignore the signal
3490		 *   (for example, SIGCHLD), shall cause the pending signal to
3491		 *   be discarded, whether or not it is blocked"
3492		 */
3493		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3494			sigemptyset(&mask);
3495			sigaddset(&mask, sig);
3496			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3497			for_each_thread(p, t)
3498				flush_sigqueue_mask(&mask, &t->pending);
3499		}
3500	}
3501
3502	spin_unlock_irq(&p->sighand->siglock);
3503	return 0;
3504}
3505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3506static int
3507do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp)
 
3508{
3509	struct task_struct *t = current;
 
3510
3511	if (oss) {
3512		memset(oss, 0, sizeof(stack_t));
3513		oss->ss_sp = (void __user *) t->sas_ss_sp;
3514		oss->ss_size = t->sas_ss_size;
3515		oss->ss_flags = sas_ss_flags(sp) |
3516			(current->sas_ss_flags & SS_FLAG_BITS);
3517	}
3518
3519	if (ss) {
3520		void __user *ss_sp = ss->ss_sp;
3521		size_t ss_size = ss->ss_size;
3522		unsigned ss_flags = ss->ss_flags;
3523		int ss_mode;
3524
3525		if (unlikely(on_sig_stack(sp)))
3526			return -EPERM;
3527
3528		ss_mode = ss_flags & ~SS_FLAG_BITS;
3529		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3530				ss_mode != 0))
3531			return -EINVAL;
3532
 
 
 
 
 
 
 
 
 
 
3533		if (ss_mode == SS_DISABLE) {
3534			ss_size = 0;
3535			ss_sp = NULL;
3536		} else {
3537			if (unlikely(ss_size < MINSIGSTKSZ))
3538				return -ENOMEM;
 
 
 
 
 
 
 
3539		}
3540
3541		t->sas_ss_sp = (unsigned long) ss_sp;
3542		t->sas_ss_size = ss_size;
3543		t->sas_ss_flags = ss_flags;
3544	}
3545	return 0;
3546}
3547
3548SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3549{
3550	stack_t new, old;
3551	int err;
3552	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
3553		return -EFAULT;
3554	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
3555			      current_user_stack_pointer());
 
3556	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
3557		err = -EFAULT;
3558	return err;
3559}
3560
3561int restore_altstack(const stack_t __user *uss)
3562{
3563	stack_t new;
3564	if (copy_from_user(&new, uss, sizeof(stack_t)))
3565		return -EFAULT;
3566	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer());
 
3567	/* squash all but EFAULT for now */
3568	return 0;
3569}
3570
3571int __save_altstack(stack_t __user *uss, unsigned long sp)
3572{
3573	struct task_struct *t = current;
3574	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3575		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3576		__put_user(t->sas_ss_size, &uss->ss_size);
3577	if (err)
3578		return err;
3579	if (t->sas_ss_flags & SS_AUTODISARM)
3580		sas_ss_reset(t);
3581	return 0;
3582}
3583
3584#ifdef CONFIG_COMPAT
3585static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
3586				 compat_stack_t __user *uoss_ptr)
3587{
3588	stack_t uss, uoss;
3589	int ret;
3590
3591	if (uss_ptr) {
3592		compat_stack_t uss32;
3593		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3594			return -EFAULT;
3595		uss.ss_sp = compat_ptr(uss32.ss_sp);
3596		uss.ss_flags = uss32.ss_flags;
3597		uss.ss_size = uss32.ss_size;
3598	}
3599	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
3600			     compat_user_stack_pointer());
 
3601	if (ret >= 0 && uoss_ptr)  {
3602		compat_stack_t old;
3603		memset(&old, 0, sizeof(old));
3604		old.ss_sp = ptr_to_compat(uoss.ss_sp);
3605		old.ss_flags = uoss.ss_flags;
3606		old.ss_size = uoss.ss_size;
3607		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
3608			ret = -EFAULT;
3609	}
3610	return ret;
3611}
3612
3613COMPAT_SYSCALL_DEFINE2(sigaltstack,
3614			const compat_stack_t __user *, uss_ptr,
3615			compat_stack_t __user *, uoss_ptr)
3616{
3617	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
3618}
3619
3620int compat_restore_altstack(const compat_stack_t __user *uss)
3621{
3622	int err = do_compat_sigaltstack(uss, NULL);
3623	/* squash all but -EFAULT for now */
3624	return err == -EFAULT ? err : 0;
3625}
3626
3627int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3628{
3629	int err;
3630	struct task_struct *t = current;
3631	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3632			 &uss->ss_sp) |
3633		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3634		__put_user(t->sas_ss_size, &uss->ss_size);
3635	if (err)
3636		return err;
3637	if (t->sas_ss_flags & SS_AUTODISARM)
3638		sas_ss_reset(t);
3639	return 0;
3640}
3641#endif
3642
3643#ifdef __ARCH_WANT_SYS_SIGPENDING
3644
3645/**
3646 *  sys_sigpending - examine pending signals
3647 *  @uset: where mask of pending signal is returned
3648 */
3649SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
3650{
3651	sigset_t set;
3652	int err;
3653
3654	if (sizeof(old_sigset_t) > sizeof(*uset))
3655		return -EINVAL;
3656
3657	err = do_sigpending(&set);
3658	if (!err && copy_to_user(uset, &set, sizeof(old_sigset_t)))
3659		err = -EFAULT;
3660	return err;
 
 
3661}
3662
3663#ifdef CONFIG_COMPAT
3664COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
3665{
3666	sigset_t set;
3667	int err = do_sigpending(&set);
3668	if (!err)
3669		err = put_user(set.sig[0], set32);
3670	return err;
3671}
3672#endif
3673
3674#endif
3675
3676#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3677/**
3678 *  sys_sigprocmask - examine and change blocked signals
3679 *  @how: whether to add, remove, or set signals
3680 *  @nset: signals to add or remove (if non-null)
3681 *  @oset: previous value of signal mask if non-null
3682 *
3683 * Some platforms have their own version with special arguments;
3684 * others support only sys_rt_sigprocmask.
3685 */
3686
3687SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3688		old_sigset_t __user *, oset)
3689{
3690	old_sigset_t old_set, new_set;
3691	sigset_t new_blocked;
3692
3693	old_set = current->blocked.sig[0];
3694
3695	if (nset) {
3696		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3697			return -EFAULT;
3698
3699		new_blocked = current->blocked;
3700
3701		switch (how) {
3702		case SIG_BLOCK:
3703			sigaddsetmask(&new_blocked, new_set);
3704			break;
3705		case SIG_UNBLOCK:
3706			sigdelsetmask(&new_blocked, new_set);
3707			break;
3708		case SIG_SETMASK:
3709			new_blocked.sig[0] = new_set;
3710			break;
3711		default:
3712			return -EINVAL;
3713		}
3714
3715		set_current_blocked(&new_blocked);
3716	}
3717
3718	if (oset) {
3719		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3720			return -EFAULT;
3721	}
3722
3723	return 0;
3724}
3725#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3726
3727#ifndef CONFIG_ODD_RT_SIGACTION
3728/**
3729 *  sys_rt_sigaction - alter an action taken by a process
3730 *  @sig: signal to be sent
3731 *  @act: new sigaction
3732 *  @oact: used to save the previous sigaction
3733 *  @sigsetsize: size of sigset_t type
3734 */
3735SYSCALL_DEFINE4(rt_sigaction, int, sig,
3736		const struct sigaction __user *, act,
3737		struct sigaction __user *, oact,
3738		size_t, sigsetsize)
3739{
3740	struct k_sigaction new_sa, old_sa;
3741	int ret = -EINVAL;
3742
3743	/* XXX: Don't preclude handling different sized sigset_t's.  */
3744	if (sigsetsize != sizeof(sigset_t))
3745		goto out;
3746
3747	if (act) {
3748		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3749			return -EFAULT;
3750	}
3751
3752	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
 
 
 
 
 
3753
3754	if (!ret && oact) {
3755		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3756			return -EFAULT;
3757	}
3758out:
3759	return ret;
3760}
3761#ifdef CONFIG_COMPAT
3762COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3763		const struct compat_sigaction __user *, act,
3764		struct compat_sigaction __user *, oact,
3765		compat_size_t, sigsetsize)
3766{
3767	struct k_sigaction new_ka, old_ka;
3768#ifdef __ARCH_HAS_SA_RESTORER
3769	compat_uptr_t restorer;
3770#endif
3771	int ret;
3772
3773	/* XXX: Don't preclude handling different sized sigset_t's.  */
3774	if (sigsetsize != sizeof(compat_sigset_t))
3775		return -EINVAL;
3776
3777	if (act) {
3778		compat_uptr_t handler;
3779		ret = get_user(handler, &act->sa_handler);
3780		new_ka.sa.sa_handler = compat_ptr(handler);
3781#ifdef __ARCH_HAS_SA_RESTORER
3782		ret |= get_user(restorer, &act->sa_restorer);
3783		new_ka.sa.sa_restorer = compat_ptr(restorer);
3784#endif
3785		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
3786		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3787		if (ret)
3788			return -EFAULT;
3789	}
3790
3791	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3792	if (!ret && oact) {
3793		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
3794			       &oact->sa_handler);
3795		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
3796					 sizeof(oact->sa_mask));
3797		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3798#ifdef __ARCH_HAS_SA_RESTORER
3799		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3800				&oact->sa_restorer);
3801#endif
3802	}
3803	return ret;
3804}
3805#endif
3806#endif /* !CONFIG_ODD_RT_SIGACTION */
3807
3808#ifdef CONFIG_OLD_SIGACTION
3809SYSCALL_DEFINE3(sigaction, int, sig,
3810		const struct old_sigaction __user *, act,
3811	        struct old_sigaction __user *, oact)
3812{
3813	struct k_sigaction new_ka, old_ka;
3814	int ret;
3815
3816	if (act) {
3817		old_sigset_t mask;
3818		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3819		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3820		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3821		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3822		    __get_user(mask, &act->sa_mask))
3823			return -EFAULT;
3824#ifdef __ARCH_HAS_KA_RESTORER
3825		new_ka.ka_restorer = NULL;
3826#endif
3827		siginitset(&new_ka.sa.sa_mask, mask);
3828	}
3829
3830	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3831
3832	if (!ret && oact) {
3833		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3834		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3835		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3836		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3837		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3838			return -EFAULT;
3839	}
3840
3841	return ret;
3842}
3843#endif
3844#ifdef CONFIG_COMPAT_OLD_SIGACTION
3845COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3846		const struct compat_old_sigaction __user *, act,
3847	        struct compat_old_sigaction __user *, oact)
3848{
3849	struct k_sigaction new_ka, old_ka;
3850	int ret;
3851	compat_old_sigset_t mask;
3852	compat_uptr_t handler, restorer;
3853
3854	if (act) {
3855		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3856		    __get_user(handler, &act->sa_handler) ||
3857		    __get_user(restorer, &act->sa_restorer) ||
3858		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3859		    __get_user(mask, &act->sa_mask))
3860			return -EFAULT;
3861
3862#ifdef __ARCH_HAS_KA_RESTORER
3863		new_ka.ka_restorer = NULL;
3864#endif
3865		new_ka.sa.sa_handler = compat_ptr(handler);
3866		new_ka.sa.sa_restorer = compat_ptr(restorer);
3867		siginitset(&new_ka.sa.sa_mask, mask);
3868	}
3869
3870	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3871
3872	if (!ret && oact) {
3873		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3874		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3875			       &oact->sa_handler) ||
3876		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3877			       &oact->sa_restorer) ||
3878		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3879		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3880			return -EFAULT;
3881	}
3882	return ret;
3883}
3884#endif
3885
3886#ifdef CONFIG_SGETMASK_SYSCALL
3887
3888/*
3889 * For backwards compatibility.  Functionality superseded by sigprocmask.
3890 */
3891SYSCALL_DEFINE0(sgetmask)
3892{
3893	/* SMP safe */
3894	return current->blocked.sig[0];
3895}
3896
3897SYSCALL_DEFINE1(ssetmask, int, newmask)
3898{
3899	int old = current->blocked.sig[0];
3900	sigset_t newset;
3901
3902	siginitset(&newset, newmask);
3903	set_current_blocked(&newset);
3904
3905	return old;
3906}
3907#endif /* CONFIG_SGETMASK_SYSCALL */
3908
3909#ifdef __ARCH_WANT_SYS_SIGNAL
3910/*
3911 * For backwards compatibility.  Functionality superseded by sigaction.
3912 */
3913SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3914{
3915	struct k_sigaction new_sa, old_sa;
3916	int ret;
3917
3918	new_sa.sa.sa_handler = handler;
3919	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3920	sigemptyset(&new_sa.sa.sa_mask);
3921
3922	ret = do_sigaction(sig, &new_sa, &old_sa);
3923
3924	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3925}
3926#endif /* __ARCH_WANT_SYS_SIGNAL */
3927
3928#ifdef __ARCH_WANT_SYS_PAUSE
3929
3930SYSCALL_DEFINE0(pause)
3931{
3932	while (!signal_pending(current)) {
3933		__set_current_state(TASK_INTERRUPTIBLE);
3934		schedule();
3935	}
3936	return -ERESTARTNOHAND;
3937}
3938
3939#endif
3940
3941static int sigsuspend(sigset_t *set)
3942{
3943	current->saved_sigmask = current->blocked;
3944	set_current_blocked(set);
3945
3946	while (!signal_pending(current)) {
3947		__set_current_state(TASK_INTERRUPTIBLE);
3948		schedule();
3949	}
3950	set_restore_sigmask();
3951	return -ERESTARTNOHAND;
3952}
3953
3954/**
3955 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3956 *	@unewset value until a signal is received
3957 *  @unewset: new signal mask value
3958 *  @sigsetsize: size of sigset_t type
3959 */
3960SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3961{
3962	sigset_t newset;
3963
3964	/* XXX: Don't preclude handling different sized sigset_t's.  */
3965	if (sigsetsize != sizeof(sigset_t))
3966		return -EINVAL;
3967
3968	if (copy_from_user(&newset, unewset, sizeof(newset)))
3969		return -EFAULT;
3970	return sigsuspend(&newset);
3971}
3972 
3973#ifdef CONFIG_COMPAT
3974COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3975{
3976	sigset_t newset;
3977
3978	/* XXX: Don't preclude handling different sized sigset_t's.  */
3979	if (sigsetsize != sizeof(sigset_t))
3980		return -EINVAL;
3981
3982	if (get_compat_sigset(&newset, unewset))
3983		return -EFAULT;
3984	return sigsuspend(&newset);
3985}
3986#endif
3987
3988#ifdef CONFIG_OLD_SIGSUSPEND
3989SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3990{
3991	sigset_t blocked;
3992	siginitset(&blocked, mask);
3993	return sigsuspend(&blocked);
3994}
3995#endif
3996#ifdef CONFIG_OLD_SIGSUSPEND3
3997SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3998{
3999	sigset_t blocked;
4000	siginitset(&blocked, mask);
4001	return sigsuspend(&blocked);
4002}
4003#endif
4004
4005__weak const char *arch_vma_name(struct vm_area_struct *vma)
4006{
4007	return NULL;
4008}
4009
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4010void __init signals_init(void)
4011{
4012	/* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
4013	BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
4014		!= offsetof(struct siginfo, _sifields._pad));
4015	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4016
4017	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4018}
4019
4020#ifdef CONFIG_KGDB_KDB
4021#include <linux/kdb.h>
4022/*
4023 * kdb_send_sig - Allows kdb to send signals without exposing
4024 * signal internals.  This function checks if the required locks are
4025 * available before calling the main signal code, to avoid kdb
4026 * deadlocks.
4027 */
4028void kdb_send_sig(struct task_struct *t, int sig)
4029{
4030	static struct task_struct *kdb_prev_t;
4031	int new_t, ret;
4032	if (!spin_trylock(&t->sighand->siglock)) {
4033		kdb_printf("Can't do kill command now.\n"
4034			   "The sigmask lock is held somewhere else in "
4035			   "kernel, try again later\n");
4036		return;
4037	}
4038	new_t = kdb_prev_t != t;
4039	kdb_prev_t = t;
4040	if (t->state != TASK_RUNNING && new_t) {
4041		spin_unlock(&t->sighand->siglock);
4042		kdb_printf("Process is not RUNNING, sending a signal from "
4043			   "kdb risks deadlock\n"
4044			   "on the run queue locks. "
4045			   "The signal has _not_ been sent.\n"
4046			   "Reissue the kill command if you want to risk "
4047			   "the deadlock.\n");
4048		return;
4049	}
4050	ret = send_signal(sig, SEND_SIG_PRIV, t, false);
4051	spin_unlock(&t->sighand->siglock);
4052	if (ret)
4053		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4054			   sig, t->pid);
4055	else
4056		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4057}
4058#endif	/* CONFIG_KGDB_KDB */