Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* auditsc.c -- System-call auditing support
3 * Handles all system-call specific auditing features.
4 *
5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
6 * Copyright 2005 Hewlett-Packard Development Company, L.P.
7 * Copyright (C) 2005, 2006 IBM Corporation
8 * All Rights Reserved.
9 *
10 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
11 *
12 * Many of the ideas implemented here are from Stephen C. Tweedie,
13 * especially the idea of avoiding a copy by using getname.
14 *
15 * The method for actual interception of syscall entry and exit (not in
16 * this file -- see entry.S) is based on a GPL'd patch written by
17 * okir@suse.de and Copyright 2003 SuSE Linux AG.
18 *
19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
20 * 2006.
21 *
22 * The support of additional filter rules compares (>, <, >=, <=) was
23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
24 *
25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
26 * filesystem information.
27 *
28 * Subject and object context labeling support added by <danjones@us.ibm.com>
29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
30 */
31
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34#include <linux/init.h>
35#include <asm/types.h>
36#include <linux/atomic.h>
37#include <linux/fs.h>
38#include <linux/namei.h>
39#include <linux/mm.h>
40#include <linux/export.h>
41#include <linux/slab.h>
42#include <linux/mount.h>
43#include <linux/socket.h>
44#include <linux/mqueue.h>
45#include <linux/audit.h>
46#include <linux/personality.h>
47#include <linux/time.h>
48#include <linux/netlink.h>
49#include <linux/compiler.h>
50#include <asm/unistd.h>
51#include <linux/security.h>
52#include <linux/list.h>
53#include <linux/binfmts.h>
54#include <linux/highmem.h>
55#include <linux/syscalls.h>
56#include <asm/syscall.h>
57#include <linux/capability.h>
58#include <linux/fs_struct.h>
59#include <linux/compat.h>
60#include <linux/ctype.h>
61#include <linux/string.h>
62#include <linux/uaccess.h>
63#include <linux/fsnotify_backend.h>
64#include <uapi/linux/limits.h>
65#include <uapi/linux/netfilter/nf_tables.h>
66#include <uapi/linux/openat2.h> // struct open_how
67
68#include "audit.h"
69
70/* flags stating the success for a syscall */
71#define AUDITSC_INVALID 0
72#define AUDITSC_SUCCESS 1
73#define AUDITSC_FAILURE 2
74
75/* no execve audit message should be longer than this (userspace limits),
76 * see the note near the top of audit_log_execve_info() about this value */
77#define MAX_EXECVE_AUDIT_LEN 7500
78
79/* max length to print of cmdline/proctitle value during audit */
80#define MAX_PROCTITLE_AUDIT_LEN 128
81
82/* number of audit rules */
83int audit_n_rules;
84
85/* determines whether we collect data for signals sent */
86int audit_signals;
87
88struct audit_aux_data {
89 struct audit_aux_data *next;
90 int type;
91};
92
93/* Number of target pids per aux struct. */
94#define AUDIT_AUX_PIDS 16
95
96struct audit_aux_data_pids {
97 struct audit_aux_data d;
98 pid_t target_pid[AUDIT_AUX_PIDS];
99 kuid_t target_auid[AUDIT_AUX_PIDS];
100 kuid_t target_uid[AUDIT_AUX_PIDS];
101 unsigned int target_sessionid[AUDIT_AUX_PIDS];
102 u32 target_sid[AUDIT_AUX_PIDS];
103 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
104 int pid_count;
105};
106
107struct audit_aux_data_bprm_fcaps {
108 struct audit_aux_data d;
109 struct audit_cap_data fcap;
110 unsigned int fcap_ver;
111 struct audit_cap_data old_pcap;
112 struct audit_cap_data new_pcap;
113};
114
115struct audit_tree_refs {
116 struct audit_tree_refs *next;
117 struct audit_chunk *c[31];
118};
119
120struct audit_nfcfgop_tab {
121 enum audit_nfcfgop op;
122 const char *s;
123};
124
125static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
126 { AUDIT_XT_OP_REGISTER, "xt_register" },
127 { AUDIT_XT_OP_REPLACE, "xt_replace" },
128 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" },
129 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" },
130 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" },
131 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" },
132 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" },
133 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" },
134 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" },
135 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" },
136 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" },
137 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" },
138 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" },
139 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" },
140 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" },
141 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" },
142 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" },
143 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" },
144 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" },
145 { AUDIT_NFT_OP_INVALID, "nft_invalid" },
146};
147
148static int audit_match_perm(struct audit_context *ctx, int mask)
149{
150 unsigned n;
151
152 if (unlikely(!ctx))
153 return 0;
154 n = ctx->major;
155
156 switch (audit_classify_syscall(ctx->arch, n)) {
157 case AUDITSC_NATIVE:
158 if ((mask & AUDIT_PERM_WRITE) &&
159 audit_match_class(AUDIT_CLASS_WRITE, n))
160 return 1;
161 if ((mask & AUDIT_PERM_READ) &&
162 audit_match_class(AUDIT_CLASS_READ, n))
163 return 1;
164 if ((mask & AUDIT_PERM_ATTR) &&
165 audit_match_class(AUDIT_CLASS_CHATTR, n))
166 return 1;
167 return 0;
168 case AUDITSC_COMPAT: /* 32bit on biarch */
169 if ((mask & AUDIT_PERM_WRITE) &&
170 audit_match_class(AUDIT_CLASS_WRITE_32, n))
171 return 1;
172 if ((mask & AUDIT_PERM_READ) &&
173 audit_match_class(AUDIT_CLASS_READ_32, n))
174 return 1;
175 if ((mask & AUDIT_PERM_ATTR) &&
176 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
177 return 1;
178 return 0;
179 case AUDITSC_OPEN:
180 return mask & ACC_MODE(ctx->argv[1]);
181 case AUDITSC_OPENAT:
182 return mask & ACC_MODE(ctx->argv[2]);
183 case AUDITSC_SOCKETCALL:
184 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
185 case AUDITSC_EXECVE:
186 return mask & AUDIT_PERM_EXEC;
187 case AUDITSC_OPENAT2:
188 return mask & ACC_MODE((u32)ctx->openat2.flags);
189 default:
190 return 0;
191 }
192}
193
194static int audit_match_filetype(struct audit_context *ctx, int val)
195{
196 struct audit_names *n;
197 umode_t mode = (umode_t)val;
198
199 if (unlikely(!ctx))
200 return 0;
201
202 list_for_each_entry(n, &ctx->names_list, list) {
203 if ((n->ino != AUDIT_INO_UNSET) &&
204 ((n->mode & S_IFMT) == mode))
205 return 1;
206 }
207
208 return 0;
209}
210
211/*
212 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
213 * ->first_trees points to its beginning, ->trees - to the current end of data.
214 * ->tree_count is the number of free entries in array pointed to by ->trees.
215 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
216 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
217 * it's going to remain 1-element for almost any setup) until we free context itself.
218 * References in it _are_ dropped - at the same time we free/drop aux stuff.
219 */
220
221static void audit_set_auditable(struct audit_context *ctx)
222{
223 if (!ctx->prio) {
224 ctx->prio = 1;
225 ctx->current_state = AUDIT_STATE_RECORD;
226 }
227}
228
229static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
230{
231 struct audit_tree_refs *p = ctx->trees;
232 int left = ctx->tree_count;
233
234 if (likely(left)) {
235 p->c[--left] = chunk;
236 ctx->tree_count = left;
237 return 1;
238 }
239 if (!p)
240 return 0;
241 p = p->next;
242 if (p) {
243 p->c[30] = chunk;
244 ctx->trees = p;
245 ctx->tree_count = 30;
246 return 1;
247 }
248 return 0;
249}
250
251static int grow_tree_refs(struct audit_context *ctx)
252{
253 struct audit_tree_refs *p = ctx->trees;
254
255 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
256 if (!ctx->trees) {
257 ctx->trees = p;
258 return 0;
259 }
260 if (p)
261 p->next = ctx->trees;
262 else
263 ctx->first_trees = ctx->trees;
264 ctx->tree_count = 31;
265 return 1;
266}
267
268static void unroll_tree_refs(struct audit_context *ctx,
269 struct audit_tree_refs *p, int count)
270{
271 struct audit_tree_refs *q;
272 int n;
273
274 if (!p) {
275 /* we started with empty chain */
276 p = ctx->first_trees;
277 count = 31;
278 /* if the very first allocation has failed, nothing to do */
279 if (!p)
280 return;
281 }
282 n = count;
283 for (q = p; q != ctx->trees; q = q->next, n = 31) {
284 while (n--) {
285 audit_put_chunk(q->c[n]);
286 q->c[n] = NULL;
287 }
288 }
289 while (n-- > ctx->tree_count) {
290 audit_put_chunk(q->c[n]);
291 q->c[n] = NULL;
292 }
293 ctx->trees = p;
294 ctx->tree_count = count;
295}
296
297static void free_tree_refs(struct audit_context *ctx)
298{
299 struct audit_tree_refs *p, *q;
300
301 for (p = ctx->first_trees; p; p = q) {
302 q = p->next;
303 kfree(p);
304 }
305}
306
307static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
308{
309 struct audit_tree_refs *p;
310 int n;
311
312 if (!tree)
313 return 0;
314 /* full ones */
315 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
316 for (n = 0; n < 31; n++)
317 if (audit_tree_match(p->c[n], tree))
318 return 1;
319 }
320 /* partial */
321 if (p) {
322 for (n = ctx->tree_count; n < 31; n++)
323 if (audit_tree_match(p->c[n], tree))
324 return 1;
325 }
326 return 0;
327}
328
329static int audit_compare_uid(kuid_t uid,
330 struct audit_names *name,
331 struct audit_field *f,
332 struct audit_context *ctx)
333{
334 struct audit_names *n;
335 int rc;
336
337 if (name) {
338 rc = audit_uid_comparator(uid, f->op, name->uid);
339 if (rc)
340 return rc;
341 }
342
343 if (ctx) {
344 list_for_each_entry(n, &ctx->names_list, list) {
345 rc = audit_uid_comparator(uid, f->op, n->uid);
346 if (rc)
347 return rc;
348 }
349 }
350 return 0;
351}
352
353static int audit_compare_gid(kgid_t gid,
354 struct audit_names *name,
355 struct audit_field *f,
356 struct audit_context *ctx)
357{
358 struct audit_names *n;
359 int rc;
360
361 if (name) {
362 rc = audit_gid_comparator(gid, f->op, name->gid);
363 if (rc)
364 return rc;
365 }
366
367 if (ctx) {
368 list_for_each_entry(n, &ctx->names_list, list) {
369 rc = audit_gid_comparator(gid, f->op, n->gid);
370 if (rc)
371 return rc;
372 }
373 }
374 return 0;
375}
376
377static int audit_field_compare(struct task_struct *tsk,
378 const struct cred *cred,
379 struct audit_field *f,
380 struct audit_context *ctx,
381 struct audit_names *name)
382{
383 switch (f->val) {
384 /* process to file object comparisons */
385 case AUDIT_COMPARE_UID_TO_OBJ_UID:
386 return audit_compare_uid(cred->uid, name, f, ctx);
387 case AUDIT_COMPARE_GID_TO_OBJ_GID:
388 return audit_compare_gid(cred->gid, name, f, ctx);
389 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
390 return audit_compare_uid(cred->euid, name, f, ctx);
391 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
392 return audit_compare_gid(cred->egid, name, f, ctx);
393 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
394 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
395 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
396 return audit_compare_uid(cred->suid, name, f, ctx);
397 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
398 return audit_compare_gid(cred->sgid, name, f, ctx);
399 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
400 return audit_compare_uid(cred->fsuid, name, f, ctx);
401 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
402 return audit_compare_gid(cred->fsgid, name, f, ctx);
403 /* uid comparisons */
404 case AUDIT_COMPARE_UID_TO_AUID:
405 return audit_uid_comparator(cred->uid, f->op,
406 audit_get_loginuid(tsk));
407 case AUDIT_COMPARE_UID_TO_EUID:
408 return audit_uid_comparator(cred->uid, f->op, cred->euid);
409 case AUDIT_COMPARE_UID_TO_SUID:
410 return audit_uid_comparator(cred->uid, f->op, cred->suid);
411 case AUDIT_COMPARE_UID_TO_FSUID:
412 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
413 /* auid comparisons */
414 case AUDIT_COMPARE_AUID_TO_EUID:
415 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
416 cred->euid);
417 case AUDIT_COMPARE_AUID_TO_SUID:
418 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
419 cred->suid);
420 case AUDIT_COMPARE_AUID_TO_FSUID:
421 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
422 cred->fsuid);
423 /* euid comparisons */
424 case AUDIT_COMPARE_EUID_TO_SUID:
425 return audit_uid_comparator(cred->euid, f->op, cred->suid);
426 case AUDIT_COMPARE_EUID_TO_FSUID:
427 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
428 /* suid comparisons */
429 case AUDIT_COMPARE_SUID_TO_FSUID:
430 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
431 /* gid comparisons */
432 case AUDIT_COMPARE_GID_TO_EGID:
433 return audit_gid_comparator(cred->gid, f->op, cred->egid);
434 case AUDIT_COMPARE_GID_TO_SGID:
435 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
436 case AUDIT_COMPARE_GID_TO_FSGID:
437 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
438 /* egid comparisons */
439 case AUDIT_COMPARE_EGID_TO_SGID:
440 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
441 case AUDIT_COMPARE_EGID_TO_FSGID:
442 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
443 /* sgid comparison */
444 case AUDIT_COMPARE_SGID_TO_FSGID:
445 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
446 default:
447 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
448 return 0;
449 }
450 return 0;
451}
452
453/* Determine if any context name data matches a rule's watch data */
454/* Compare a task_struct with an audit_rule. Return 1 on match, 0
455 * otherwise.
456 *
457 * If task_creation is true, this is an explicit indication that we are
458 * filtering a task rule at task creation time. This and tsk == current are
459 * the only situations where tsk->cred may be accessed without an rcu read lock.
460 */
461static int audit_filter_rules(struct task_struct *tsk,
462 struct audit_krule *rule,
463 struct audit_context *ctx,
464 struct audit_names *name,
465 enum audit_state *state,
466 bool task_creation)
467{
468 const struct cred *cred;
469 int i, need_sid = 1;
470 u32 sid;
471 unsigned int sessionid;
472
473 if (ctx && rule->prio <= ctx->prio)
474 return 0;
475
476 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
477
478 for (i = 0; i < rule->field_count; i++) {
479 struct audit_field *f = &rule->fields[i];
480 struct audit_names *n;
481 int result = 0;
482 pid_t pid;
483
484 switch (f->type) {
485 case AUDIT_PID:
486 pid = task_tgid_nr(tsk);
487 result = audit_comparator(pid, f->op, f->val);
488 break;
489 case AUDIT_PPID:
490 if (ctx) {
491 if (!ctx->ppid)
492 ctx->ppid = task_ppid_nr(tsk);
493 result = audit_comparator(ctx->ppid, f->op, f->val);
494 }
495 break;
496 case AUDIT_EXE:
497 result = audit_exe_compare(tsk, rule->exe);
498 if (f->op == Audit_not_equal)
499 result = !result;
500 break;
501 case AUDIT_UID:
502 result = audit_uid_comparator(cred->uid, f->op, f->uid);
503 break;
504 case AUDIT_EUID:
505 result = audit_uid_comparator(cred->euid, f->op, f->uid);
506 break;
507 case AUDIT_SUID:
508 result = audit_uid_comparator(cred->suid, f->op, f->uid);
509 break;
510 case AUDIT_FSUID:
511 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
512 break;
513 case AUDIT_GID:
514 result = audit_gid_comparator(cred->gid, f->op, f->gid);
515 if (f->op == Audit_equal) {
516 if (!result)
517 result = groups_search(cred->group_info, f->gid);
518 } else if (f->op == Audit_not_equal) {
519 if (result)
520 result = !groups_search(cred->group_info, f->gid);
521 }
522 break;
523 case AUDIT_EGID:
524 result = audit_gid_comparator(cred->egid, f->op, f->gid);
525 if (f->op == Audit_equal) {
526 if (!result)
527 result = groups_search(cred->group_info, f->gid);
528 } else if (f->op == Audit_not_equal) {
529 if (result)
530 result = !groups_search(cred->group_info, f->gid);
531 }
532 break;
533 case AUDIT_SGID:
534 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
535 break;
536 case AUDIT_FSGID:
537 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
538 break;
539 case AUDIT_SESSIONID:
540 sessionid = audit_get_sessionid(tsk);
541 result = audit_comparator(sessionid, f->op, f->val);
542 break;
543 case AUDIT_PERS:
544 result = audit_comparator(tsk->personality, f->op, f->val);
545 break;
546 case AUDIT_ARCH:
547 if (ctx)
548 result = audit_comparator(ctx->arch, f->op, f->val);
549 break;
550
551 case AUDIT_EXIT:
552 if (ctx && ctx->return_valid != AUDITSC_INVALID)
553 result = audit_comparator(ctx->return_code, f->op, f->val);
554 break;
555 case AUDIT_SUCCESS:
556 if (ctx && ctx->return_valid != AUDITSC_INVALID) {
557 if (f->val)
558 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
559 else
560 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
561 }
562 break;
563 case AUDIT_DEVMAJOR:
564 if (name) {
565 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
566 audit_comparator(MAJOR(name->rdev), f->op, f->val))
567 ++result;
568 } else if (ctx) {
569 list_for_each_entry(n, &ctx->names_list, list) {
570 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
571 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
572 ++result;
573 break;
574 }
575 }
576 }
577 break;
578 case AUDIT_DEVMINOR:
579 if (name) {
580 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
581 audit_comparator(MINOR(name->rdev), f->op, f->val))
582 ++result;
583 } else if (ctx) {
584 list_for_each_entry(n, &ctx->names_list, list) {
585 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
586 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
587 ++result;
588 break;
589 }
590 }
591 }
592 break;
593 case AUDIT_INODE:
594 if (name)
595 result = audit_comparator(name->ino, f->op, f->val);
596 else if (ctx) {
597 list_for_each_entry(n, &ctx->names_list, list) {
598 if (audit_comparator(n->ino, f->op, f->val)) {
599 ++result;
600 break;
601 }
602 }
603 }
604 break;
605 case AUDIT_OBJ_UID:
606 if (name) {
607 result = audit_uid_comparator(name->uid, f->op, f->uid);
608 } else if (ctx) {
609 list_for_each_entry(n, &ctx->names_list, list) {
610 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
611 ++result;
612 break;
613 }
614 }
615 }
616 break;
617 case AUDIT_OBJ_GID:
618 if (name) {
619 result = audit_gid_comparator(name->gid, f->op, f->gid);
620 } else if (ctx) {
621 list_for_each_entry(n, &ctx->names_list, list) {
622 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
623 ++result;
624 break;
625 }
626 }
627 }
628 break;
629 case AUDIT_WATCH:
630 if (name) {
631 result = audit_watch_compare(rule->watch,
632 name->ino,
633 name->dev);
634 if (f->op == Audit_not_equal)
635 result = !result;
636 }
637 break;
638 case AUDIT_DIR:
639 if (ctx) {
640 result = match_tree_refs(ctx, rule->tree);
641 if (f->op == Audit_not_equal)
642 result = !result;
643 }
644 break;
645 case AUDIT_LOGINUID:
646 result = audit_uid_comparator(audit_get_loginuid(tsk),
647 f->op, f->uid);
648 break;
649 case AUDIT_LOGINUID_SET:
650 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
651 break;
652 case AUDIT_SADDR_FAM:
653 if (ctx && ctx->sockaddr)
654 result = audit_comparator(ctx->sockaddr->ss_family,
655 f->op, f->val);
656 break;
657 case AUDIT_SUBJ_USER:
658 case AUDIT_SUBJ_ROLE:
659 case AUDIT_SUBJ_TYPE:
660 case AUDIT_SUBJ_SEN:
661 case AUDIT_SUBJ_CLR:
662 /* NOTE: this may return negative values indicating
663 a temporary error. We simply treat this as a
664 match for now to avoid losing information that
665 may be wanted. An error message will also be
666 logged upon error */
667 if (f->lsm_rule) {
668 if (need_sid) {
669 /* @tsk should always be equal to
670 * @current with the exception of
671 * fork()/copy_process() in which case
672 * the new @tsk creds are still a dup
673 * of @current's creds so we can still
674 * use security_current_getsecid_subj()
675 * here even though it always refs
676 * @current's creds
677 */
678 security_current_getsecid_subj(&sid);
679 need_sid = 0;
680 }
681 result = security_audit_rule_match(sid, f->type,
682 f->op,
683 f->lsm_rule);
684 }
685 break;
686 case AUDIT_OBJ_USER:
687 case AUDIT_OBJ_ROLE:
688 case AUDIT_OBJ_TYPE:
689 case AUDIT_OBJ_LEV_LOW:
690 case AUDIT_OBJ_LEV_HIGH:
691 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
692 also applies here */
693 if (f->lsm_rule) {
694 /* Find files that match */
695 if (name) {
696 result = security_audit_rule_match(
697 name->osid,
698 f->type,
699 f->op,
700 f->lsm_rule);
701 } else if (ctx) {
702 list_for_each_entry(n, &ctx->names_list, list) {
703 if (security_audit_rule_match(
704 n->osid,
705 f->type,
706 f->op,
707 f->lsm_rule)) {
708 ++result;
709 break;
710 }
711 }
712 }
713 /* Find ipc objects that match */
714 if (!ctx || ctx->type != AUDIT_IPC)
715 break;
716 if (security_audit_rule_match(ctx->ipc.osid,
717 f->type, f->op,
718 f->lsm_rule))
719 ++result;
720 }
721 break;
722 case AUDIT_ARG0:
723 case AUDIT_ARG1:
724 case AUDIT_ARG2:
725 case AUDIT_ARG3:
726 if (ctx)
727 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
728 break;
729 case AUDIT_FILTERKEY:
730 /* ignore this field for filtering */
731 result = 1;
732 break;
733 case AUDIT_PERM:
734 result = audit_match_perm(ctx, f->val);
735 if (f->op == Audit_not_equal)
736 result = !result;
737 break;
738 case AUDIT_FILETYPE:
739 result = audit_match_filetype(ctx, f->val);
740 if (f->op == Audit_not_equal)
741 result = !result;
742 break;
743 case AUDIT_FIELD_COMPARE:
744 result = audit_field_compare(tsk, cred, f, ctx, name);
745 break;
746 }
747 if (!result)
748 return 0;
749 }
750
751 if (ctx) {
752 if (rule->filterkey) {
753 kfree(ctx->filterkey);
754 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
755 }
756 ctx->prio = rule->prio;
757 }
758 switch (rule->action) {
759 case AUDIT_NEVER:
760 *state = AUDIT_STATE_DISABLED;
761 break;
762 case AUDIT_ALWAYS:
763 *state = AUDIT_STATE_RECORD;
764 break;
765 }
766 return 1;
767}
768
769/* At process creation time, we can determine if system-call auditing is
770 * completely disabled for this task. Since we only have the task
771 * structure at this point, we can only check uid and gid.
772 */
773static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
774{
775 struct audit_entry *e;
776 enum audit_state state;
777
778 rcu_read_lock();
779 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
780 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
781 &state, true)) {
782 if (state == AUDIT_STATE_RECORD)
783 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
784 rcu_read_unlock();
785 return state;
786 }
787 }
788 rcu_read_unlock();
789 return AUDIT_STATE_BUILD;
790}
791
792static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
793{
794 int word, bit;
795
796 if (val > 0xffffffff)
797 return false;
798
799 word = AUDIT_WORD(val);
800 if (word >= AUDIT_BITMASK_SIZE)
801 return false;
802
803 bit = AUDIT_BIT(val);
804
805 return rule->mask[word] & bit;
806}
807
808/**
809 * __audit_filter_op - common filter helper for operations (syscall/uring/etc)
810 * @tsk: associated task
811 * @ctx: audit context
812 * @list: audit filter list
813 * @name: audit_name (can be NULL)
814 * @op: current syscall/uring_op
815 *
816 * Run the udit filters specified in @list against @tsk using @ctx,
817 * @name, and @op, as necessary; the caller is responsible for ensuring
818 * that the call is made while the RCU read lock is held. The @name
819 * parameter can be NULL, but all others must be specified.
820 * Returns 1/true if the filter finds a match, 0/false if none are found.
821 */
822static int __audit_filter_op(struct task_struct *tsk,
823 struct audit_context *ctx,
824 struct list_head *list,
825 struct audit_names *name,
826 unsigned long op)
827{
828 struct audit_entry *e;
829 enum audit_state state;
830
831 list_for_each_entry_rcu(e, list, list) {
832 if (audit_in_mask(&e->rule, op) &&
833 audit_filter_rules(tsk, &e->rule, ctx, name,
834 &state, false)) {
835 ctx->current_state = state;
836 return 1;
837 }
838 }
839 return 0;
840}
841
842/**
843 * audit_filter_uring - apply filters to an io_uring operation
844 * @tsk: associated task
845 * @ctx: audit context
846 */
847static void audit_filter_uring(struct task_struct *tsk,
848 struct audit_context *ctx)
849{
850 if (auditd_test_task(tsk))
851 return;
852
853 rcu_read_lock();
854 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
855 NULL, ctx->uring_op);
856 rcu_read_unlock();
857}
858
859/* At syscall exit time, this filter is called if the audit_state is
860 * not low enough that auditing cannot take place, but is also not
861 * high enough that we already know we have to write an audit record
862 * (i.e., the state is AUDIT_STATE_BUILD).
863 */
864static void audit_filter_syscall(struct task_struct *tsk,
865 struct audit_context *ctx)
866{
867 if (auditd_test_task(tsk))
868 return;
869
870 rcu_read_lock();
871 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT],
872 NULL, ctx->major);
873 rcu_read_unlock();
874}
875
876/*
877 * Given an audit_name check the inode hash table to see if they match.
878 * Called holding the rcu read lock to protect the use of audit_inode_hash
879 */
880static int audit_filter_inode_name(struct task_struct *tsk,
881 struct audit_names *n,
882 struct audit_context *ctx) {
883 int h = audit_hash_ino((u32)n->ino);
884 struct list_head *list = &audit_inode_hash[h];
885
886 return __audit_filter_op(tsk, ctx, list, n, ctx->major);
887}
888
889/* At syscall exit time, this filter is called if any audit_names have been
890 * collected during syscall processing. We only check rules in sublists at hash
891 * buckets applicable to the inode numbers in audit_names.
892 * Regarding audit_state, same rules apply as for audit_filter_syscall().
893 */
894void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
895{
896 struct audit_names *n;
897
898 if (auditd_test_task(tsk))
899 return;
900
901 rcu_read_lock();
902
903 list_for_each_entry(n, &ctx->names_list, list) {
904 if (audit_filter_inode_name(tsk, n, ctx))
905 break;
906 }
907 rcu_read_unlock();
908}
909
910static inline void audit_proctitle_free(struct audit_context *context)
911{
912 kfree(context->proctitle.value);
913 context->proctitle.value = NULL;
914 context->proctitle.len = 0;
915}
916
917static inline void audit_free_module(struct audit_context *context)
918{
919 if (context->type == AUDIT_KERN_MODULE) {
920 kfree(context->module.name);
921 context->module.name = NULL;
922 }
923}
924static inline void audit_free_names(struct audit_context *context)
925{
926 struct audit_names *n, *next;
927
928 list_for_each_entry_safe(n, next, &context->names_list, list) {
929 list_del(&n->list);
930 if (n->name)
931 putname(n->name);
932 if (n->should_free)
933 kfree(n);
934 }
935 context->name_count = 0;
936 path_put(&context->pwd);
937 context->pwd.dentry = NULL;
938 context->pwd.mnt = NULL;
939}
940
941static inline void audit_free_aux(struct audit_context *context)
942{
943 struct audit_aux_data *aux;
944
945 while ((aux = context->aux)) {
946 context->aux = aux->next;
947 kfree(aux);
948 }
949 context->aux = NULL;
950 while ((aux = context->aux_pids)) {
951 context->aux_pids = aux->next;
952 kfree(aux);
953 }
954 context->aux_pids = NULL;
955}
956
957/**
958 * audit_reset_context - reset a audit_context structure
959 * @ctx: the audit_context to reset
960 *
961 * All fields in the audit_context will be reset to an initial state, all
962 * references held by fields will be dropped, and private memory will be
963 * released. When this function returns the audit_context will be suitable
964 * for reuse, so long as the passed context is not NULL or a dummy context.
965 */
966static void audit_reset_context(struct audit_context *ctx)
967{
968 if (!ctx)
969 return;
970
971 /* if ctx is non-null, reset the "ctx->context" regardless */
972 ctx->context = AUDIT_CTX_UNUSED;
973 if (ctx->dummy)
974 return;
975
976 /*
977 * NOTE: It shouldn't matter in what order we release the fields, so
978 * release them in the order in which they appear in the struct;
979 * this gives us some hope of quickly making sure we are
980 * resetting the audit_context properly.
981 *
982 * Other things worth mentioning:
983 * - we don't reset "dummy"
984 * - we don't reset "state", we do reset "current_state"
985 * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
986 * - much of this is likely overkill, but play it safe for now
987 * - we really need to work on improving the audit_context struct
988 */
989
990 ctx->current_state = ctx->state;
991 ctx->serial = 0;
992 ctx->major = 0;
993 ctx->uring_op = 0;
994 ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
995 memset(ctx->argv, 0, sizeof(ctx->argv));
996 ctx->return_code = 0;
997 ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
998 ctx->return_valid = AUDITSC_INVALID;
999 audit_free_names(ctx);
1000 if (ctx->state != AUDIT_STATE_RECORD) {
1001 kfree(ctx->filterkey);
1002 ctx->filterkey = NULL;
1003 }
1004 audit_free_aux(ctx);
1005 kfree(ctx->sockaddr);
1006 ctx->sockaddr = NULL;
1007 ctx->sockaddr_len = 0;
1008 ctx->ppid = 0;
1009 ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
1010 ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
1011 ctx->personality = 0;
1012 ctx->arch = 0;
1013 ctx->target_pid = 0;
1014 ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
1015 ctx->target_sessionid = 0;
1016 ctx->target_sid = 0;
1017 ctx->target_comm[0] = '\0';
1018 unroll_tree_refs(ctx, NULL, 0);
1019 WARN_ON(!list_empty(&ctx->killed_trees));
1020 audit_free_module(ctx);
1021 ctx->fds[0] = -1;
1022 ctx->type = 0; /* reset last for audit_free_*() */
1023}
1024
1025static inline struct audit_context *audit_alloc_context(enum audit_state state)
1026{
1027 struct audit_context *context;
1028
1029 context = kzalloc(sizeof(*context), GFP_KERNEL);
1030 if (!context)
1031 return NULL;
1032 context->context = AUDIT_CTX_UNUSED;
1033 context->state = state;
1034 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1035 INIT_LIST_HEAD(&context->killed_trees);
1036 INIT_LIST_HEAD(&context->names_list);
1037 context->fds[0] = -1;
1038 context->return_valid = AUDITSC_INVALID;
1039 return context;
1040}
1041
1042/**
1043 * audit_alloc - allocate an audit context block for a task
1044 * @tsk: task
1045 *
1046 * Filter on the task information and allocate a per-task audit context
1047 * if necessary. Doing so turns on system call auditing for the
1048 * specified task. This is called from copy_process, so no lock is
1049 * needed.
1050 */
1051int audit_alloc(struct task_struct *tsk)
1052{
1053 struct audit_context *context;
1054 enum audit_state state;
1055 char *key = NULL;
1056
1057 if (likely(!audit_ever_enabled))
1058 return 0;
1059
1060 state = audit_filter_task(tsk, &key);
1061 if (state == AUDIT_STATE_DISABLED) {
1062 clear_task_syscall_work(tsk, SYSCALL_AUDIT);
1063 return 0;
1064 }
1065
1066 if (!(context = audit_alloc_context(state))) {
1067 kfree(key);
1068 audit_log_lost("out of memory in audit_alloc");
1069 return -ENOMEM;
1070 }
1071 context->filterkey = key;
1072
1073 audit_set_context(tsk, context);
1074 set_task_syscall_work(tsk, SYSCALL_AUDIT);
1075 return 0;
1076}
1077
1078static inline void audit_free_context(struct audit_context *context)
1079{
1080 /* resetting is extra work, but it is likely just noise */
1081 audit_reset_context(context);
1082 audit_proctitle_free(context);
1083 free_tree_refs(context);
1084 kfree(context->filterkey);
1085 kfree(context);
1086}
1087
1088static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1089 kuid_t auid, kuid_t uid, unsigned int sessionid,
1090 u32 sid, char *comm)
1091{
1092 struct audit_buffer *ab;
1093 char *ctx = NULL;
1094 u32 len;
1095 int rc = 0;
1096
1097 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1098 if (!ab)
1099 return rc;
1100
1101 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1102 from_kuid(&init_user_ns, auid),
1103 from_kuid(&init_user_ns, uid), sessionid);
1104 if (sid) {
1105 if (security_secid_to_secctx(sid, &ctx, &len)) {
1106 audit_log_format(ab, " obj=(none)");
1107 rc = 1;
1108 } else {
1109 audit_log_format(ab, " obj=%s", ctx);
1110 security_release_secctx(ctx, len);
1111 }
1112 }
1113 audit_log_format(ab, " ocomm=");
1114 audit_log_untrustedstring(ab, comm);
1115 audit_log_end(ab);
1116
1117 return rc;
1118}
1119
1120static void audit_log_execve_info(struct audit_context *context,
1121 struct audit_buffer **ab)
1122{
1123 long len_max;
1124 long len_rem;
1125 long len_full;
1126 long len_buf;
1127 long len_abuf = 0;
1128 long len_tmp;
1129 bool require_data;
1130 bool encode;
1131 unsigned int iter;
1132 unsigned int arg;
1133 char *buf_head;
1134 char *buf;
1135 const char __user *p = (const char __user *)current->mm->arg_start;
1136
1137 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1138 * data we put in the audit record for this argument (see the
1139 * code below) ... at this point in time 96 is plenty */
1140 char abuf[96];
1141
1142 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1143 * current value of 7500 is not as important as the fact that it
1144 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1145 * room if we go over a little bit in the logging below */
1146 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1147 len_max = MAX_EXECVE_AUDIT_LEN;
1148
1149 /* scratch buffer to hold the userspace args */
1150 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1151 if (!buf_head) {
1152 audit_panic("out of memory for argv string");
1153 return;
1154 }
1155 buf = buf_head;
1156
1157 audit_log_format(*ab, "argc=%d", context->execve.argc);
1158
1159 len_rem = len_max;
1160 len_buf = 0;
1161 len_full = 0;
1162 require_data = true;
1163 encode = false;
1164 iter = 0;
1165 arg = 0;
1166 do {
1167 /* NOTE: we don't ever want to trust this value for anything
1168 * serious, but the audit record format insists we
1169 * provide an argument length for really long arguments,
1170 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1171 * to use strncpy_from_user() to obtain this value for
1172 * recording in the log, although we don't use it
1173 * anywhere here to avoid a double-fetch problem */
1174 if (len_full == 0)
1175 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1176
1177 /* read more data from userspace */
1178 if (require_data) {
1179 /* can we make more room in the buffer? */
1180 if (buf != buf_head) {
1181 memmove(buf_head, buf, len_buf);
1182 buf = buf_head;
1183 }
1184
1185 /* fetch as much as we can of the argument */
1186 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1187 len_max - len_buf);
1188 if (len_tmp == -EFAULT) {
1189 /* unable to copy from userspace */
1190 send_sig(SIGKILL, current, 0);
1191 goto out;
1192 } else if (len_tmp == (len_max - len_buf)) {
1193 /* buffer is not large enough */
1194 require_data = true;
1195 /* NOTE: if we are going to span multiple
1196 * buffers force the encoding so we stand
1197 * a chance at a sane len_full value and
1198 * consistent record encoding */
1199 encode = true;
1200 len_full = len_full * 2;
1201 p += len_tmp;
1202 } else {
1203 require_data = false;
1204 if (!encode)
1205 encode = audit_string_contains_control(
1206 buf, len_tmp);
1207 /* try to use a trusted value for len_full */
1208 if (len_full < len_max)
1209 len_full = (encode ?
1210 len_tmp * 2 : len_tmp);
1211 p += len_tmp + 1;
1212 }
1213 len_buf += len_tmp;
1214 buf_head[len_buf] = '\0';
1215
1216 /* length of the buffer in the audit record? */
1217 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1218 }
1219
1220 /* write as much as we can to the audit log */
1221 if (len_buf >= 0) {
1222 /* NOTE: some magic numbers here - basically if we
1223 * can't fit a reasonable amount of data into the
1224 * existing audit buffer, flush it and start with
1225 * a new buffer */
1226 if ((sizeof(abuf) + 8) > len_rem) {
1227 len_rem = len_max;
1228 audit_log_end(*ab);
1229 *ab = audit_log_start(context,
1230 GFP_KERNEL, AUDIT_EXECVE);
1231 if (!*ab)
1232 goto out;
1233 }
1234
1235 /* create the non-arg portion of the arg record */
1236 len_tmp = 0;
1237 if (require_data || (iter > 0) ||
1238 ((len_abuf + sizeof(abuf)) > len_rem)) {
1239 if (iter == 0) {
1240 len_tmp += snprintf(&abuf[len_tmp],
1241 sizeof(abuf) - len_tmp,
1242 " a%d_len=%lu",
1243 arg, len_full);
1244 }
1245 len_tmp += snprintf(&abuf[len_tmp],
1246 sizeof(abuf) - len_tmp,
1247 " a%d[%d]=", arg, iter++);
1248 } else
1249 len_tmp += snprintf(&abuf[len_tmp],
1250 sizeof(abuf) - len_tmp,
1251 " a%d=", arg);
1252 WARN_ON(len_tmp >= sizeof(abuf));
1253 abuf[sizeof(abuf) - 1] = '\0';
1254
1255 /* log the arg in the audit record */
1256 audit_log_format(*ab, "%s", abuf);
1257 len_rem -= len_tmp;
1258 len_tmp = len_buf;
1259 if (encode) {
1260 if (len_abuf > len_rem)
1261 len_tmp = len_rem / 2; /* encoding */
1262 audit_log_n_hex(*ab, buf, len_tmp);
1263 len_rem -= len_tmp * 2;
1264 len_abuf -= len_tmp * 2;
1265 } else {
1266 if (len_abuf > len_rem)
1267 len_tmp = len_rem - 2; /* quotes */
1268 audit_log_n_string(*ab, buf, len_tmp);
1269 len_rem -= len_tmp + 2;
1270 /* don't subtract the "2" because we still need
1271 * to add quotes to the remaining string */
1272 len_abuf -= len_tmp;
1273 }
1274 len_buf -= len_tmp;
1275 buf += len_tmp;
1276 }
1277
1278 /* ready to move to the next argument? */
1279 if ((len_buf == 0) && !require_data) {
1280 arg++;
1281 iter = 0;
1282 len_full = 0;
1283 require_data = true;
1284 encode = false;
1285 }
1286 } while (arg < context->execve.argc);
1287
1288 /* NOTE: the caller handles the final audit_log_end() call */
1289
1290out:
1291 kfree(buf_head);
1292}
1293
1294static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1295 kernel_cap_t *cap)
1296{
1297 int i;
1298
1299 if (cap_isclear(*cap)) {
1300 audit_log_format(ab, " %s=0", prefix);
1301 return;
1302 }
1303 audit_log_format(ab, " %s=", prefix);
1304 CAP_FOR_EACH_U32(i)
1305 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1306}
1307
1308static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1309{
1310 if (name->fcap_ver == -1) {
1311 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1312 return;
1313 }
1314 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1315 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1316 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1317 name->fcap.fE, name->fcap_ver,
1318 from_kuid(&init_user_ns, name->fcap.rootid));
1319}
1320
1321static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1322{
1323 const struct audit_ntp_data *ntp = &context->time.ntp_data;
1324 const struct timespec64 *tk = &context->time.tk_injoffset;
1325 static const char * const ntp_name[] = {
1326 "offset",
1327 "freq",
1328 "status",
1329 "tai",
1330 "tick",
1331 "adjust",
1332 };
1333 int type;
1334
1335 if (context->type == AUDIT_TIME_ADJNTPVAL) {
1336 for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1337 if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1338 if (!*ab) {
1339 *ab = audit_log_start(context,
1340 GFP_KERNEL,
1341 AUDIT_TIME_ADJNTPVAL);
1342 if (!*ab)
1343 return;
1344 }
1345 audit_log_format(*ab, "op=%s old=%lli new=%lli",
1346 ntp_name[type],
1347 ntp->vals[type].oldval,
1348 ntp->vals[type].newval);
1349 audit_log_end(*ab);
1350 *ab = NULL;
1351 }
1352 }
1353 }
1354 if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1355 if (!*ab) {
1356 *ab = audit_log_start(context, GFP_KERNEL,
1357 AUDIT_TIME_INJOFFSET);
1358 if (!*ab)
1359 return;
1360 }
1361 audit_log_format(*ab, "sec=%lli nsec=%li",
1362 (long long)tk->tv_sec, tk->tv_nsec);
1363 audit_log_end(*ab);
1364 *ab = NULL;
1365 }
1366}
1367
1368static void show_special(struct audit_context *context, int *call_panic)
1369{
1370 struct audit_buffer *ab;
1371 int i;
1372
1373 ab = audit_log_start(context, GFP_KERNEL, context->type);
1374 if (!ab)
1375 return;
1376
1377 switch (context->type) {
1378 case AUDIT_SOCKETCALL: {
1379 int nargs = context->socketcall.nargs;
1380
1381 audit_log_format(ab, "nargs=%d", nargs);
1382 for (i = 0; i < nargs; i++)
1383 audit_log_format(ab, " a%d=%lx", i,
1384 context->socketcall.args[i]);
1385 break; }
1386 case AUDIT_IPC: {
1387 u32 osid = context->ipc.osid;
1388
1389 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1390 from_kuid(&init_user_ns, context->ipc.uid),
1391 from_kgid(&init_user_ns, context->ipc.gid),
1392 context->ipc.mode);
1393 if (osid) {
1394 char *ctx = NULL;
1395 u32 len;
1396
1397 if (security_secid_to_secctx(osid, &ctx, &len)) {
1398 audit_log_format(ab, " osid=%u", osid);
1399 *call_panic = 1;
1400 } else {
1401 audit_log_format(ab, " obj=%s", ctx);
1402 security_release_secctx(ctx, len);
1403 }
1404 }
1405 if (context->ipc.has_perm) {
1406 audit_log_end(ab);
1407 ab = audit_log_start(context, GFP_KERNEL,
1408 AUDIT_IPC_SET_PERM);
1409 if (unlikely(!ab))
1410 return;
1411 audit_log_format(ab,
1412 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1413 context->ipc.qbytes,
1414 context->ipc.perm_uid,
1415 context->ipc.perm_gid,
1416 context->ipc.perm_mode);
1417 }
1418 break; }
1419 case AUDIT_MQ_OPEN:
1420 audit_log_format(ab,
1421 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1422 "mq_msgsize=%ld mq_curmsgs=%ld",
1423 context->mq_open.oflag, context->mq_open.mode,
1424 context->mq_open.attr.mq_flags,
1425 context->mq_open.attr.mq_maxmsg,
1426 context->mq_open.attr.mq_msgsize,
1427 context->mq_open.attr.mq_curmsgs);
1428 break;
1429 case AUDIT_MQ_SENDRECV:
1430 audit_log_format(ab,
1431 "mqdes=%d msg_len=%zd msg_prio=%u "
1432 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1433 context->mq_sendrecv.mqdes,
1434 context->mq_sendrecv.msg_len,
1435 context->mq_sendrecv.msg_prio,
1436 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1437 context->mq_sendrecv.abs_timeout.tv_nsec);
1438 break;
1439 case AUDIT_MQ_NOTIFY:
1440 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1441 context->mq_notify.mqdes,
1442 context->mq_notify.sigev_signo);
1443 break;
1444 case AUDIT_MQ_GETSETATTR: {
1445 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1446
1447 audit_log_format(ab,
1448 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1449 "mq_curmsgs=%ld ",
1450 context->mq_getsetattr.mqdes,
1451 attr->mq_flags, attr->mq_maxmsg,
1452 attr->mq_msgsize, attr->mq_curmsgs);
1453 break; }
1454 case AUDIT_CAPSET:
1455 audit_log_format(ab, "pid=%d", context->capset.pid);
1456 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1457 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1458 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1459 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1460 break;
1461 case AUDIT_MMAP:
1462 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1463 context->mmap.flags);
1464 break;
1465 case AUDIT_OPENAT2:
1466 audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
1467 context->openat2.flags,
1468 context->openat2.mode,
1469 context->openat2.resolve);
1470 break;
1471 case AUDIT_EXECVE:
1472 audit_log_execve_info(context, &ab);
1473 break;
1474 case AUDIT_KERN_MODULE:
1475 audit_log_format(ab, "name=");
1476 if (context->module.name) {
1477 audit_log_untrustedstring(ab, context->module.name);
1478 } else
1479 audit_log_format(ab, "(null)");
1480
1481 break;
1482 case AUDIT_TIME_ADJNTPVAL:
1483 case AUDIT_TIME_INJOFFSET:
1484 /* this call deviates from the rest, eating the buffer */
1485 audit_log_time(context, &ab);
1486 break;
1487 }
1488 audit_log_end(ab);
1489}
1490
1491static inline int audit_proctitle_rtrim(char *proctitle, int len)
1492{
1493 char *end = proctitle + len - 1;
1494
1495 while (end > proctitle && !isprint(*end))
1496 end--;
1497
1498 /* catch the case where proctitle is only 1 non-print character */
1499 len = end - proctitle + 1;
1500 len -= isprint(proctitle[len-1]) == 0;
1501 return len;
1502}
1503
1504/*
1505 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1506 * @context: audit_context for the task
1507 * @n: audit_names structure with reportable details
1508 * @path: optional path to report instead of audit_names->name
1509 * @record_num: record number to report when handling a list of names
1510 * @call_panic: optional pointer to int that will be updated if secid fails
1511 */
1512static void audit_log_name(struct audit_context *context, struct audit_names *n,
1513 const struct path *path, int record_num, int *call_panic)
1514{
1515 struct audit_buffer *ab;
1516
1517 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1518 if (!ab)
1519 return;
1520
1521 audit_log_format(ab, "item=%d", record_num);
1522
1523 if (path)
1524 audit_log_d_path(ab, " name=", path);
1525 else if (n->name) {
1526 switch (n->name_len) {
1527 case AUDIT_NAME_FULL:
1528 /* log the full path */
1529 audit_log_format(ab, " name=");
1530 audit_log_untrustedstring(ab, n->name->name);
1531 break;
1532 case 0:
1533 /* name was specified as a relative path and the
1534 * directory component is the cwd
1535 */
1536 if (context->pwd.dentry && context->pwd.mnt)
1537 audit_log_d_path(ab, " name=", &context->pwd);
1538 else
1539 audit_log_format(ab, " name=(null)");
1540 break;
1541 default:
1542 /* log the name's directory component */
1543 audit_log_format(ab, " name=");
1544 audit_log_n_untrustedstring(ab, n->name->name,
1545 n->name_len);
1546 }
1547 } else
1548 audit_log_format(ab, " name=(null)");
1549
1550 if (n->ino != AUDIT_INO_UNSET)
1551 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1552 n->ino,
1553 MAJOR(n->dev),
1554 MINOR(n->dev),
1555 n->mode,
1556 from_kuid(&init_user_ns, n->uid),
1557 from_kgid(&init_user_ns, n->gid),
1558 MAJOR(n->rdev),
1559 MINOR(n->rdev));
1560 if (n->osid != 0) {
1561 char *ctx = NULL;
1562 u32 len;
1563
1564 if (security_secid_to_secctx(
1565 n->osid, &ctx, &len)) {
1566 audit_log_format(ab, " osid=%u", n->osid);
1567 if (call_panic)
1568 *call_panic = 2;
1569 } else {
1570 audit_log_format(ab, " obj=%s", ctx);
1571 security_release_secctx(ctx, len);
1572 }
1573 }
1574
1575 /* log the audit_names record type */
1576 switch (n->type) {
1577 case AUDIT_TYPE_NORMAL:
1578 audit_log_format(ab, " nametype=NORMAL");
1579 break;
1580 case AUDIT_TYPE_PARENT:
1581 audit_log_format(ab, " nametype=PARENT");
1582 break;
1583 case AUDIT_TYPE_CHILD_DELETE:
1584 audit_log_format(ab, " nametype=DELETE");
1585 break;
1586 case AUDIT_TYPE_CHILD_CREATE:
1587 audit_log_format(ab, " nametype=CREATE");
1588 break;
1589 default:
1590 audit_log_format(ab, " nametype=UNKNOWN");
1591 break;
1592 }
1593
1594 audit_log_fcaps(ab, n);
1595 audit_log_end(ab);
1596}
1597
1598static void audit_log_proctitle(void)
1599{
1600 int res;
1601 char *buf;
1602 char *msg = "(null)";
1603 int len = strlen(msg);
1604 struct audit_context *context = audit_context();
1605 struct audit_buffer *ab;
1606
1607 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1608 if (!ab)
1609 return; /* audit_panic or being filtered */
1610
1611 audit_log_format(ab, "proctitle=");
1612
1613 /* Not cached */
1614 if (!context->proctitle.value) {
1615 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1616 if (!buf)
1617 goto out;
1618 /* Historically called this from procfs naming */
1619 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1620 if (res == 0) {
1621 kfree(buf);
1622 goto out;
1623 }
1624 res = audit_proctitle_rtrim(buf, res);
1625 if (res == 0) {
1626 kfree(buf);
1627 goto out;
1628 }
1629 context->proctitle.value = buf;
1630 context->proctitle.len = res;
1631 }
1632 msg = context->proctitle.value;
1633 len = context->proctitle.len;
1634out:
1635 audit_log_n_untrustedstring(ab, msg, len);
1636 audit_log_end(ab);
1637}
1638
1639/**
1640 * audit_log_uring - generate a AUDIT_URINGOP record
1641 * @ctx: the audit context
1642 */
1643static void audit_log_uring(struct audit_context *ctx)
1644{
1645 struct audit_buffer *ab;
1646 const struct cred *cred;
1647
1648 ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
1649 if (!ab)
1650 return;
1651 cred = current_cred();
1652 audit_log_format(ab, "uring_op=%d", ctx->uring_op);
1653 if (ctx->return_valid != AUDITSC_INVALID)
1654 audit_log_format(ab, " success=%s exit=%ld",
1655 (ctx->return_valid == AUDITSC_SUCCESS ?
1656 "yes" : "no"),
1657 ctx->return_code);
1658 audit_log_format(ab,
1659 " items=%d"
1660 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
1661 " fsuid=%u egid=%u sgid=%u fsgid=%u",
1662 ctx->name_count,
1663 task_ppid_nr(current), task_tgid_nr(current),
1664 from_kuid(&init_user_ns, cred->uid),
1665 from_kgid(&init_user_ns, cred->gid),
1666 from_kuid(&init_user_ns, cred->euid),
1667 from_kuid(&init_user_ns, cred->suid),
1668 from_kuid(&init_user_ns, cred->fsuid),
1669 from_kgid(&init_user_ns, cred->egid),
1670 from_kgid(&init_user_ns, cred->sgid),
1671 from_kgid(&init_user_ns, cred->fsgid));
1672 audit_log_task_context(ab);
1673 audit_log_key(ab, ctx->filterkey);
1674 audit_log_end(ab);
1675}
1676
1677static void audit_log_exit(void)
1678{
1679 int i, call_panic = 0;
1680 struct audit_context *context = audit_context();
1681 struct audit_buffer *ab;
1682 struct audit_aux_data *aux;
1683 struct audit_names *n;
1684
1685 context->personality = current->personality;
1686
1687 switch (context->context) {
1688 case AUDIT_CTX_SYSCALL:
1689 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1690 if (!ab)
1691 return;
1692 audit_log_format(ab, "arch=%x syscall=%d",
1693 context->arch, context->major);
1694 if (context->personality != PER_LINUX)
1695 audit_log_format(ab, " per=%lx", context->personality);
1696 if (context->return_valid != AUDITSC_INVALID)
1697 audit_log_format(ab, " success=%s exit=%ld",
1698 (context->return_valid == AUDITSC_SUCCESS ?
1699 "yes" : "no"),
1700 context->return_code);
1701 audit_log_format(ab,
1702 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1703 context->argv[0],
1704 context->argv[1],
1705 context->argv[2],
1706 context->argv[3],
1707 context->name_count);
1708 audit_log_task_info(ab);
1709 audit_log_key(ab, context->filterkey);
1710 audit_log_end(ab);
1711 break;
1712 case AUDIT_CTX_URING:
1713 audit_log_uring(context);
1714 break;
1715 default:
1716 BUG();
1717 break;
1718 }
1719
1720 for (aux = context->aux; aux; aux = aux->next) {
1721
1722 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1723 if (!ab)
1724 continue; /* audit_panic has been called */
1725
1726 switch (aux->type) {
1727
1728 case AUDIT_BPRM_FCAPS: {
1729 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1730
1731 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1732 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1733 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1734 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1735 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1736 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1737 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1738 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1739 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1740 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1741 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1742 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1743 audit_log_format(ab, " frootid=%d",
1744 from_kuid(&init_user_ns,
1745 axs->fcap.rootid));
1746 break; }
1747
1748 }
1749 audit_log_end(ab);
1750 }
1751
1752 if (context->type)
1753 show_special(context, &call_panic);
1754
1755 if (context->fds[0] >= 0) {
1756 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1757 if (ab) {
1758 audit_log_format(ab, "fd0=%d fd1=%d",
1759 context->fds[0], context->fds[1]);
1760 audit_log_end(ab);
1761 }
1762 }
1763
1764 if (context->sockaddr_len) {
1765 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1766 if (ab) {
1767 audit_log_format(ab, "saddr=");
1768 audit_log_n_hex(ab, (void *)context->sockaddr,
1769 context->sockaddr_len);
1770 audit_log_end(ab);
1771 }
1772 }
1773
1774 for (aux = context->aux_pids; aux; aux = aux->next) {
1775 struct audit_aux_data_pids *axs = (void *)aux;
1776
1777 for (i = 0; i < axs->pid_count; i++)
1778 if (audit_log_pid_context(context, axs->target_pid[i],
1779 axs->target_auid[i],
1780 axs->target_uid[i],
1781 axs->target_sessionid[i],
1782 axs->target_sid[i],
1783 axs->target_comm[i]))
1784 call_panic = 1;
1785 }
1786
1787 if (context->target_pid &&
1788 audit_log_pid_context(context, context->target_pid,
1789 context->target_auid, context->target_uid,
1790 context->target_sessionid,
1791 context->target_sid, context->target_comm))
1792 call_panic = 1;
1793
1794 if (context->pwd.dentry && context->pwd.mnt) {
1795 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1796 if (ab) {
1797 audit_log_d_path(ab, "cwd=", &context->pwd);
1798 audit_log_end(ab);
1799 }
1800 }
1801
1802 i = 0;
1803 list_for_each_entry(n, &context->names_list, list) {
1804 if (n->hidden)
1805 continue;
1806 audit_log_name(context, n, NULL, i++, &call_panic);
1807 }
1808
1809 if (context->context == AUDIT_CTX_SYSCALL)
1810 audit_log_proctitle();
1811
1812 /* Send end of event record to help user space know we are finished */
1813 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1814 if (ab)
1815 audit_log_end(ab);
1816 if (call_panic)
1817 audit_panic("error in audit_log_exit()");
1818}
1819
1820/**
1821 * __audit_free - free a per-task audit context
1822 * @tsk: task whose audit context block to free
1823 *
1824 * Called from copy_process, do_exit, and the io_uring code
1825 */
1826void __audit_free(struct task_struct *tsk)
1827{
1828 struct audit_context *context = tsk->audit_context;
1829
1830 if (!context)
1831 return;
1832
1833 /* this may generate CONFIG_CHANGE records */
1834 if (!list_empty(&context->killed_trees))
1835 audit_kill_trees(context);
1836
1837 /* We are called either by do_exit() or the fork() error handling code;
1838 * in the former case tsk == current and in the latter tsk is a
1839 * random task_struct that doesn't have any meaningful data we
1840 * need to log via audit_log_exit().
1841 */
1842 if (tsk == current && !context->dummy) {
1843 context->return_valid = AUDITSC_INVALID;
1844 context->return_code = 0;
1845 if (context->context == AUDIT_CTX_SYSCALL) {
1846 audit_filter_syscall(tsk, context);
1847 audit_filter_inodes(tsk, context);
1848 if (context->current_state == AUDIT_STATE_RECORD)
1849 audit_log_exit();
1850 } else if (context->context == AUDIT_CTX_URING) {
1851 /* TODO: verify this case is real and valid */
1852 audit_filter_uring(tsk, context);
1853 audit_filter_inodes(tsk, context);
1854 if (context->current_state == AUDIT_STATE_RECORD)
1855 audit_log_uring(context);
1856 }
1857 }
1858
1859 audit_set_context(tsk, NULL);
1860 audit_free_context(context);
1861}
1862
1863/**
1864 * audit_return_fixup - fixup the return codes in the audit_context
1865 * @ctx: the audit_context
1866 * @success: true/false value to indicate if the operation succeeded or not
1867 * @code: operation return code
1868 *
1869 * We need to fixup the return code in the audit logs if the actual return
1870 * codes are later going to be fixed by the arch specific signal handlers.
1871 */
1872static void audit_return_fixup(struct audit_context *ctx,
1873 int success, long code)
1874{
1875 /*
1876 * This is actually a test for:
1877 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1878 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1879 *
1880 * but is faster than a bunch of ||
1881 */
1882 if (unlikely(code <= -ERESTARTSYS) &&
1883 (code >= -ERESTART_RESTARTBLOCK) &&
1884 (code != -ENOIOCTLCMD))
1885 ctx->return_code = -EINTR;
1886 else
1887 ctx->return_code = code;
1888 ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
1889}
1890
1891/**
1892 * __audit_uring_entry - prepare the kernel task's audit context for io_uring
1893 * @op: the io_uring opcode
1894 *
1895 * This is similar to audit_syscall_entry() but is intended for use by io_uring
1896 * operations. This function should only ever be called from
1897 * audit_uring_entry() as we rely on the audit context checking present in that
1898 * function.
1899 */
1900void __audit_uring_entry(u8 op)
1901{
1902 struct audit_context *ctx = audit_context();
1903
1904 if (ctx->state == AUDIT_STATE_DISABLED)
1905 return;
1906
1907 /*
1908 * NOTE: It's possible that we can be called from the process' context
1909 * before it returns to userspace, and before audit_syscall_exit()
1910 * is called. In this case there is not much to do, just record
1911 * the io_uring details and return.
1912 */
1913 ctx->uring_op = op;
1914 if (ctx->context == AUDIT_CTX_SYSCALL)
1915 return;
1916
1917 ctx->dummy = !audit_n_rules;
1918 if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
1919 ctx->prio = 0;
1920
1921 ctx->context = AUDIT_CTX_URING;
1922 ctx->current_state = ctx->state;
1923 ktime_get_coarse_real_ts64(&ctx->ctime);
1924}
1925
1926/**
1927 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring
1928 * @success: true/false value to indicate if the operation succeeded or not
1929 * @code: operation return code
1930 *
1931 * This is similar to audit_syscall_exit() but is intended for use by io_uring
1932 * operations. This function should only ever be called from
1933 * audit_uring_exit() as we rely on the audit context checking present in that
1934 * function.
1935 */
1936void __audit_uring_exit(int success, long code)
1937{
1938 struct audit_context *ctx = audit_context();
1939
1940 if (ctx->dummy) {
1941 if (ctx->context != AUDIT_CTX_URING)
1942 return;
1943 goto out;
1944 }
1945
1946 audit_return_fixup(ctx, success, code);
1947 if (ctx->context == AUDIT_CTX_SYSCALL) {
1948 /*
1949 * NOTE: See the note in __audit_uring_entry() about the case
1950 * where we may be called from process context before we
1951 * return to userspace via audit_syscall_exit(). In this
1952 * case we simply emit a URINGOP record and bail, the
1953 * normal syscall exit handling will take care of
1954 * everything else.
1955 * It is also worth mentioning that when we are called,
1956 * the current process creds may differ from the creds
1957 * used during the normal syscall processing; keep that
1958 * in mind if/when we move the record generation code.
1959 */
1960
1961 /*
1962 * We need to filter on the syscall info here to decide if we
1963 * should emit a URINGOP record. I know it seems odd but this
1964 * solves the problem where users have a filter to block *all*
1965 * syscall records in the "exit" filter; we want to preserve
1966 * the behavior here.
1967 */
1968 audit_filter_syscall(current, ctx);
1969 if (ctx->current_state != AUDIT_STATE_RECORD)
1970 audit_filter_uring(current, ctx);
1971 audit_filter_inodes(current, ctx);
1972 if (ctx->current_state != AUDIT_STATE_RECORD)
1973 return;
1974
1975 audit_log_uring(ctx);
1976 return;
1977 }
1978
1979 /* this may generate CONFIG_CHANGE records */
1980 if (!list_empty(&ctx->killed_trees))
1981 audit_kill_trees(ctx);
1982
1983 /* run through both filters to ensure we set the filterkey properly */
1984 audit_filter_uring(current, ctx);
1985 audit_filter_inodes(current, ctx);
1986 if (ctx->current_state != AUDIT_STATE_RECORD)
1987 goto out;
1988 audit_log_exit();
1989
1990out:
1991 audit_reset_context(ctx);
1992}
1993
1994/**
1995 * __audit_syscall_entry - fill in an audit record at syscall entry
1996 * @major: major syscall type (function)
1997 * @a1: additional syscall register 1
1998 * @a2: additional syscall register 2
1999 * @a3: additional syscall register 3
2000 * @a4: additional syscall register 4
2001 *
2002 * Fill in audit context at syscall entry. This only happens if the
2003 * audit context was created when the task was created and the state or
2004 * filters demand the audit context be built. If the state from the
2005 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
2006 * then the record will be written at syscall exit time (otherwise, it
2007 * will only be written if another part of the kernel requests that it
2008 * be written).
2009 */
2010void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
2011 unsigned long a3, unsigned long a4)
2012{
2013 struct audit_context *context = audit_context();
2014 enum audit_state state;
2015
2016 if (!audit_enabled || !context)
2017 return;
2018
2019 WARN_ON(context->context != AUDIT_CTX_UNUSED);
2020 WARN_ON(context->name_count);
2021 if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
2022 audit_panic("unrecoverable error in audit_syscall_entry()");
2023 return;
2024 }
2025
2026 state = context->state;
2027 if (state == AUDIT_STATE_DISABLED)
2028 return;
2029
2030 context->dummy = !audit_n_rules;
2031 if (!context->dummy && state == AUDIT_STATE_BUILD) {
2032 context->prio = 0;
2033 if (auditd_test_task(current))
2034 return;
2035 }
2036
2037 context->arch = syscall_get_arch(current);
2038 context->major = major;
2039 context->argv[0] = a1;
2040 context->argv[1] = a2;
2041 context->argv[2] = a3;
2042 context->argv[3] = a4;
2043 context->context = AUDIT_CTX_SYSCALL;
2044 context->current_state = state;
2045 ktime_get_coarse_real_ts64(&context->ctime);
2046}
2047
2048/**
2049 * __audit_syscall_exit - deallocate audit context after a system call
2050 * @success: success value of the syscall
2051 * @return_code: return value of the syscall
2052 *
2053 * Tear down after system call. If the audit context has been marked as
2054 * auditable (either because of the AUDIT_STATE_RECORD state from
2055 * filtering, or because some other part of the kernel wrote an audit
2056 * message), then write out the syscall information. In call cases,
2057 * free the names stored from getname().
2058 */
2059void __audit_syscall_exit(int success, long return_code)
2060{
2061 struct audit_context *context = audit_context();
2062
2063 if (!context || context->dummy ||
2064 context->context != AUDIT_CTX_SYSCALL)
2065 goto out;
2066
2067 /* this may generate CONFIG_CHANGE records */
2068 if (!list_empty(&context->killed_trees))
2069 audit_kill_trees(context);
2070
2071 audit_return_fixup(context, success, return_code);
2072 /* run through both filters to ensure we set the filterkey properly */
2073 audit_filter_syscall(current, context);
2074 audit_filter_inodes(current, context);
2075 if (context->current_state != AUDIT_STATE_RECORD)
2076 goto out;
2077
2078 audit_log_exit();
2079
2080out:
2081 audit_reset_context(context);
2082}
2083
2084static inline void handle_one(const struct inode *inode)
2085{
2086 struct audit_context *context;
2087 struct audit_tree_refs *p;
2088 struct audit_chunk *chunk;
2089 int count;
2090
2091 if (likely(!inode->i_fsnotify_marks))
2092 return;
2093 context = audit_context();
2094 p = context->trees;
2095 count = context->tree_count;
2096 rcu_read_lock();
2097 chunk = audit_tree_lookup(inode);
2098 rcu_read_unlock();
2099 if (!chunk)
2100 return;
2101 if (likely(put_tree_ref(context, chunk)))
2102 return;
2103 if (unlikely(!grow_tree_refs(context))) {
2104 pr_warn("out of memory, audit has lost a tree reference\n");
2105 audit_set_auditable(context);
2106 audit_put_chunk(chunk);
2107 unroll_tree_refs(context, p, count);
2108 return;
2109 }
2110 put_tree_ref(context, chunk);
2111}
2112
2113static void handle_path(const struct dentry *dentry)
2114{
2115 struct audit_context *context;
2116 struct audit_tree_refs *p;
2117 const struct dentry *d, *parent;
2118 struct audit_chunk *drop;
2119 unsigned long seq;
2120 int count;
2121
2122 context = audit_context();
2123 p = context->trees;
2124 count = context->tree_count;
2125retry:
2126 drop = NULL;
2127 d = dentry;
2128 rcu_read_lock();
2129 seq = read_seqbegin(&rename_lock);
2130 for(;;) {
2131 struct inode *inode = d_backing_inode(d);
2132
2133 if (inode && unlikely(inode->i_fsnotify_marks)) {
2134 struct audit_chunk *chunk;
2135
2136 chunk = audit_tree_lookup(inode);
2137 if (chunk) {
2138 if (unlikely(!put_tree_ref(context, chunk))) {
2139 drop = chunk;
2140 break;
2141 }
2142 }
2143 }
2144 parent = d->d_parent;
2145 if (parent == d)
2146 break;
2147 d = parent;
2148 }
2149 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
2150 rcu_read_unlock();
2151 if (!drop) {
2152 /* just a race with rename */
2153 unroll_tree_refs(context, p, count);
2154 goto retry;
2155 }
2156 audit_put_chunk(drop);
2157 if (grow_tree_refs(context)) {
2158 /* OK, got more space */
2159 unroll_tree_refs(context, p, count);
2160 goto retry;
2161 }
2162 /* too bad */
2163 pr_warn("out of memory, audit has lost a tree reference\n");
2164 unroll_tree_refs(context, p, count);
2165 audit_set_auditable(context);
2166 return;
2167 }
2168 rcu_read_unlock();
2169}
2170
2171static struct audit_names *audit_alloc_name(struct audit_context *context,
2172 unsigned char type)
2173{
2174 struct audit_names *aname;
2175
2176 if (context->name_count < AUDIT_NAMES) {
2177 aname = &context->preallocated_names[context->name_count];
2178 memset(aname, 0, sizeof(*aname));
2179 } else {
2180 aname = kzalloc(sizeof(*aname), GFP_NOFS);
2181 if (!aname)
2182 return NULL;
2183 aname->should_free = true;
2184 }
2185
2186 aname->ino = AUDIT_INO_UNSET;
2187 aname->type = type;
2188 list_add_tail(&aname->list, &context->names_list);
2189
2190 context->name_count++;
2191 if (!context->pwd.dentry)
2192 get_fs_pwd(current->fs, &context->pwd);
2193 return aname;
2194}
2195
2196/**
2197 * __audit_reusename - fill out filename with info from existing entry
2198 * @uptr: userland ptr to pathname
2199 *
2200 * Search the audit_names list for the current audit context. If there is an
2201 * existing entry with a matching "uptr" then return the filename
2202 * associated with that audit_name. If not, return NULL.
2203 */
2204struct filename *
2205__audit_reusename(const __user char *uptr)
2206{
2207 struct audit_context *context = audit_context();
2208 struct audit_names *n;
2209
2210 list_for_each_entry(n, &context->names_list, list) {
2211 if (!n->name)
2212 continue;
2213 if (n->name->uptr == uptr) {
2214 n->name->refcnt++;
2215 return n->name;
2216 }
2217 }
2218 return NULL;
2219}
2220
2221/**
2222 * __audit_getname - add a name to the list
2223 * @name: name to add
2224 *
2225 * Add a name to the list of audit names for this context.
2226 * Called from fs/namei.c:getname().
2227 */
2228void __audit_getname(struct filename *name)
2229{
2230 struct audit_context *context = audit_context();
2231 struct audit_names *n;
2232
2233 if (context->context == AUDIT_CTX_UNUSED)
2234 return;
2235
2236 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2237 if (!n)
2238 return;
2239
2240 n->name = name;
2241 n->name_len = AUDIT_NAME_FULL;
2242 name->aname = n;
2243 name->refcnt++;
2244}
2245
2246static inline int audit_copy_fcaps(struct audit_names *name,
2247 const struct dentry *dentry)
2248{
2249 struct cpu_vfs_cap_data caps;
2250 int rc;
2251
2252 if (!dentry)
2253 return 0;
2254
2255 rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps);
2256 if (rc)
2257 return rc;
2258
2259 name->fcap.permitted = caps.permitted;
2260 name->fcap.inheritable = caps.inheritable;
2261 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2262 name->fcap.rootid = caps.rootid;
2263 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2264 VFS_CAP_REVISION_SHIFT;
2265
2266 return 0;
2267}
2268
2269/* Copy inode data into an audit_names. */
2270static void audit_copy_inode(struct audit_names *name,
2271 const struct dentry *dentry,
2272 struct inode *inode, unsigned int flags)
2273{
2274 name->ino = inode->i_ino;
2275 name->dev = inode->i_sb->s_dev;
2276 name->mode = inode->i_mode;
2277 name->uid = inode->i_uid;
2278 name->gid = inode->i_gid;
2279 name->rdev = inode->i_rdev;
2280 security_inode_getsecid(inode, &name->osid);
2281 if (flags & AUDIT_INODE_NOEVAL) {
2282 name->fcap_ver = -1;
2283 return;
2284 }
2285 audit_copy_fcaps(name, dentry);
2286}
2287
2288/**
2289 * __audit_inode - store the inode and device from a lookup
2290 * @name: name being audited
2291 * @dentry: dentry being audited
2292 * @flags: attributes for this particular entry
2293 */
2294void __audit_inode(struct filename *name, const struct dentry *dentry,
2295 unsigned int flags)
2296{
2297 struct audit_context *context = audit_context();
2298 struct inode *inode = d_backing_inode(dentry);
2299 struct audit_names *n;
2300 bool parent = flags & AUDIT_INODE_PARENT;
2301 struct audit_entry *e;
2302 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2303 int i;
2304
2305 if (context->context == AUDIT_CTX_UNUSED)
2306 return;
2307
2308 rcu_read_lock();
2309 list_for_each_entry_rcu(e, list, list) {
2310 for (i = 0; i < e->rule.field_count; i++) {
2311 struct audit_field *f = &e->rule.fields[i];
2312
2313 if (f->type == AUDIT_FSTYPE
2314 && audit_comparator(inode->i_sb->s_magic,
2315 f->op, f->val)
2316 && e->rule.action == AUDIT_NEVER) {
2317 rcu_read_unlock();
2318 return;
2319 }
2320 }
2321 }
2322 rcu_read_unlock();
2323
2324 if (!name)
2325 goto out_alloc;
2326
2327 /*
2328 * If we have a pointer to an audit_names entry already, then we can
2329 * just use it directly if the type is correct.
2330 */
2331 n = name->aname;
2332 if (n) {
2333 if (parent) {
2334 if (n->type == AUDIT_TYPE_PARENT ||
2335 n->type == AUDIT_TYPE_UNKNOWN)
2336 goto out;
2337 } else {
2338 if (n->type != AUDIT_TYPE_PARENT)
2339 goto out;
2340 }
2341 }
2342
2343 list_for_each_entry_reverse(n, &context->names_list, list) {
2344 if (n->ino) {
2345 /* valid inode number, use that for the comparison */
2346 if (n->ino != inode->i_ino ||
2347 n->dev != inode->i_sb->s_dev)
2348 continue;
2349 } else if (n->name) {
2350 /* inode number has not been set, check the name */
2351 if (strcmp(n->name->name, name->name))
2352 continue;
2353 } else
2354 /* no inode and no name (?!) ... this is odd ... */
2355 continue;
2356
2357 /* match the correct record type */
2358 if (parent) {
2359 if (n->type == AUDIT_TYPE_PARENT ||
2360 n->type == AUDIT_TYPE_UNKNOWN)
2361 goto out;
2362 } else {
2363 if (n->type != AUDIT_TYPE_PARENT)
2364 goto out;
2365 }
2366 }
2367
2368out_alloc:
2369 /* unable to find an entry with both a matching name and type */
2370 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2371 if (!n)
2372 return;
2373 if (name) {
2374 n->name = name;
2375 name->refcnt++;
2376 }
2377
2378out:
2379 if (parent) {
2380 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2381 n->type = AUDIT_TYPE_PARENT;
2382 if (flags & AUDIT_INODE_HIDDEN)
2383 n->hidden = true;
2384 } else {
2385 n->name_len = AUDIT_NAME_FULL;
2386 n->type = AUDIT_TYPE_NORMAL;
2387 }
2388 handle_path(dentry);
2389 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2390}
2391
2392void __audit_file(const struct file *file)
2393{
2394 __audit_inode(NULL, file->f_path.dentry, 0);
2395}
2396
2397/**
2398 * __audit_inode_child - collect inode info for created/removed objects
2399 * @parent: inode of dentry parent
2400 * @dentry: dentry being audited
2401 * @type: AUDIT_TYPE_* value that we're looking for
2402 *
2403 * For syscalls that create or remove filesystem objects, audit_inode
2404 * can only collect information for the filesystem object's parent.
2405 * This call updates the audit context with the child's information.
2406 * Syscalls that create a new filesystem object must be hooked after
2407 * the object is created. Syscalls that remove a filesystem object
2408 * must be hooked prior, in order to capture the target inode during
2409 * unsuccessful attempts.
2410 */
2411void __audit_inode_child(struct inode *parent,
2412 const struct dentry *dentry,
2413 const unsigned char type)
2414{
2415 struct audit_context *context = audit_context();
2416 struct inode *inode = d_backing_inode(dentry);
2417 const struct qstr *dname = &dentry->d_name;
2418 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2419 struct audit_entry *e;
2420 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2421 int i;
2422
2423 if (context->context == AUDIT_CTX_UNUSED)
2424 return;
2425
2426 rcu_read_lock();
2427 list_for_each_entry_rcu(e, list, list) {
2428 for (i = 0; i < e->rule.field_count; i++) {
2429 struct audit_field *f = &e->rule.fields[i];
2430
2431 if (f->type == AUDIT_FSTYPE
2432 && audit_comparator(parent->i_sb->s_magic,
2433 f->op, f->val)
2434 && e->rule.action == AUDIT_NEVER) {
2435 rcu_read_unlock();
2436 return;
2437 }
2438 }
2439 }
2440 rcu_read_unlock();
2441
2442 if (inode)
2443 handle_one(inode);
2444
2445 /* look for a parent entry first */
2446 list_for_each_entry(n, &context->names_list, list) {
2447 if (!n->name ||
2448 (n->type != AUDIT_TYPE_PARENT &&
2449 n->type != AUDIT_TYPE_UNKNOWN))
2450 continue;
2451
2452 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2453 !audit_compare_dname_path(dname,
2454 n->name->name, n->name_len)) {
2455 if (n->type == AUDIT_TYPE_UNKNOWN)
2456 n->type = AUDIT_TYPE_PARENT;
2457 found_parent = n;
2458 break;
2459 }
2460 }
2461
2462 /* is there a matching child entry? */
2463 list_for_each_entry(n, &context->names_list, list) {
2464 /* can only match entries that have a name */
2465 if (!n->name ||
2466 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2467 continue;
2468
2469 if (!strcmp(dname->name, n->name->name) ||
2470 !audit_compare_dname_path(dname, n->name->name,
2471 found_parent ?
2472 found_parent->name_len :
2473 AUDIT_NAME_FULL)) {
2474 if (n->type == AUDIT_TYPE_UNKNOWN)
2475 n->type = type;
2476 found_child = n;
2477 break;
2478 }
2479 }
2480
2481 if (!found_parent) {
2482 /* create a new, "anonymous" parent record */
2483 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2484 if (!n)
2485 return;
2486 audit_copy_inode(n, NULL, parent, 0);
2487 }
2488
2489 if (!found_child) {
2490 found_child = audit_alloc_name(context, type);
2491 if (!found_child)
2492 return;
2493
2494 /* Re-use the name belonging to the slot for a matching parent
2495 * directory. All names for this context are relinquished in
2496 * audit_free_names() */
2497 if (found_parent) {
2498 found_child->name = found_parent->name;
2499 found_child->name_len = AUDIT_NAME_FULL;
2500 found_child->name->refcnt++;
2501 }
2502 }
2503
2504 if (inode)
2505 audit_copy_inode(found_child, dentry, inode, 0);
2506 else
2507 found_child->ino = AUDIT_INO_UNSET;
2508}
2509EXPORT_SYMBOL_GPL(__audit_inode_child);
2510
2511/**
2512 * auditsc_get_stamp - get local copies of audit_context values
2513 * @ctx: audit_context for the task
2514 * @t: timespec64 to store time recorded in the audit_context
2515 * @serial: serial value that is recorded in the audit_context
2516 *
2517 * Also sets the context as auditable.
2518 */
2519int auditsc_get_stamp(struct audit_context *ctx,
2520 struct timespec64 *t, unsigned int *serial)
2521{
2522 if (ctx->context == AUDIT_CTX_UNUSED)
2523 return 0;
2524 if (!ctx->serial)
2525 ctx->serial = audit_serial();
2526 t->tv_sec = ctx->ctime.tv_sec;
2527 t->tv_nsec = ctx->ctime.tv_nsec;
2528 *serial = ctx->serial;
2529 if (!ctx->prio) {
2530 ctx->prio = 1;
2531 ctx->current_state = AUDIT_STATE_RECORD;
2532 }
2533 return 1;
2534}
2535
2536/**
2537 * __audit_mq_open - record audit data for a POSIX MQ open
2538 * @oflag: open flag
2539 * @mode: mode bits
2540 * @attr: queue attributes
2541 *
2542 */
2543void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2544{
2545 struct audit_context *context = audit_context();
2546
2547 if (attr)
2548 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2549 else
2550 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2551
2552 context->mq_open.oflag = oflag;
2553 context->mq_open.mode = mode;
2554
2555 context->type = AUDIT_MQ_OPEN;
2556}
2557
2558/**
2559 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2560 * @mqdes: MQ descriptor
2561 * @msg_len: Message length
2562 * @msg_prio: Message priority
2563 * @abs_timeout: Message timeout in absolute time
2564 *
2565 */
2566void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2567 const struct timespec64 *abs_timeout)
2568{
2569 struct audit_context *context = audit_context();
2570 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2571
2572 if (abs_timeout)
2573 memcpy(p, abs_timeout, sizeof(*p));
2574 else
2575 memset(p, 0, sizeof(*p));
2576
2577 context->mq_sendrecv.mqdes = mqdes;
2578 context->mq_sendrecv.msg_len = msg_len;
2579 context->mq_sendrecv.msg_prio = msg_prio;
2580
2581 context->type = AUDIT_MQ_SENDRECV;
2582}
2583
2584/**
2585 * __audit_mq_notify - record audit data for a POSIX MQ notify
2586 * @mqdes: MQ descriptor
2587 * @notification: Notification event
2588 *
2589 */
2590
2591void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2592{
2593 struct audit_context *context = audit_context();
2594
2595 if (notification)
2596 context->mq_notify.sigev_signo = notification->sigev_signo;
2597 else
2598 context->mq_notify.sigev_signo = 0;
2599
2600 context->mq_notify.mqdes = mqdes;
2601 context->type = AUDIT_MQ_NOTIFY;
2602}
2603
2604/**
2605 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2606 * @mqdes: MQ descriptor
2607 * @mqstat: MQ flags
2608 *
2609 */
2610void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2611{
2612 struct audit_context *context = audit_context();
2613
2614 context->mq_getsetattr.mqdes = mqdes;
2615 context->mq_getsetattr.mqstat = *mqstat;
2616 context->type = AUDIT_MQ_GETSETATTR;
2617}
2618
2619/**
2620 * __audit_ipc_obj - record audit data for ipc object
2621 * @ipcp: ipc permissions
2622 *
2623 */
2624void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2625{
2626 struct audit_context *context = audit_context();
2627
2628 context->ipc.uid = ipcp->uid;
2629 context->ipc.gid = ipcp->gid;
2630 context->ipc.mode = ipcp->mode;
2631 context->ipc.has_perm = 0;
2632 security_ipc_getsecid(ipcp, &context->ipc.osid);
2633 context->type = AUDIT_IPC;
2634}
2635
2636/**
2637 * __audit_ipc_set_perm - record audit data for new ipc permissions
2638 * @qbytes: msgq bytes
2639 * @uid: msgq user id
2640 * @gid: msgq group id
2641 * @mode: msgq mode (permissions)
2642 *
2643 * Called only after audit_ipc_obj().
2644 */
2645void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2646{
2647 struct audit_context *context = audit_context();
2648
2649 context->ipc.qbytes = qbytes;
2650 context->ipc.perm_uid = uid;
2651 context->ipc.perm_gid = gid;
2652 context->ipc.perm_mode = mode;
2653 context->ipc.has_perm = 1;
2654}
2655
2656void __audit_bprm(struct linux_binprm *bprm)
2657{
2658 struct audit_context *context = audit_context();
2659
2660 context->type = AUDIT_EXECVE;
2661 context->execve.argc = bprm->argc;
2662}
2663
2664
2665/**
2666 * __audit_socketcall - record audit data for sys_socketcall
2667 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2668 * @args: args array
2669 *
2670 */
2671int __audit_socketcall(int nargs, unsigned long *args)
2672{
2673 struct audit_context *context = audit_context();
2674
2675 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2676 return -EINVAL;
2677 context->type = AUDIT_SOCKETCALL;
2678 context->socketcall.nargs = nargs;
2679 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2680 return 0;
2681}
2682
2683/**
2684 * __audit_fd_pair - record audit data for pipe and socketpair
2685 * @fd1: the first file descriptor
2686 * @fd2: the second file descriptor
2687 *
2688 */
2689void __audit_fd_pair(int fd1, int fd2)
2690{
2691 struct audit_context *context = audit_context();
2692
2693 context->fds[0] = fd1;
2694 context->fds[1] = fd2;
2695}
2696
2697/**
2698 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2699 * @len: data length in user space
2700 * @a: data address in kernel space
2701 *
2702 * Returns 0 for success or NULL context or < 0 on error.
2703 */
2704int __audit_sockaddr(int len, void *a)
2705{
2706 struct audit_context *context = audit_context();
2707
2708 if (!context->sockaddr) {
2709 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2710
2711 if (!p)
2712 return -ENOMEM;
2713 context->sockaddr = p;
2714 }
2715
2716 context->sockaddr_len = len;
2717 memcpy(context->sockaddr, a, len);
2718 return 0;
2719}
2720
2721void __audit_ptrace(struct task_struct *t)
2722{
2723 struct audit_context *context = audit_context();
2724
2725 context->target_pid = task_tgid_nr(t);
2726 context->target_auid = audit_get_loginuid(t);
2727 context->target_uid = task_uid(t);
2728 context->target_sessionid = audit_get_sessionid(t);
2729 security_task_getsecid_obj(t, &context->target_sid);
2730 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2731}
2732
2733/**
2734 * audit_signal_info_syscall - record signal info for syscalls
2735 * @t: task being signaled
2736 *
2737 * If the audit subsystem is being terminated, record the task (pid)
2738 * and uid that is doing that.
2739 */
2740int audit_signal_info_syscall(struct task_struct *t)
2741{
2742 struct audit_aux_data_pids *axp;
2743 struct audit_context *ctx = audit_context();
2744 kuid_t t_uid = task_uid(t);
2745
2746 if (!audit_signals || audit_dummy_context())
2747 return 0;
2748
2749 /* optimize the common case by putting first signal recipient directly
2750 * in audit_context */
2751 if (!ctx->target_pid) {
2752 ctx->target_pid = task_tgid_nr(t);
2753 ctx->target_auid = audit_get_loginuid(t);
2754 ctx->target_uid = t_uid;
2755 ctx->target_sessionid = audit_get_sessionid(t);
2756 security_task_getsecid_obj(t, &ctx->target_sid);
2757 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2758 return 0;
2759 }
2760
2761 axp = (void *)ctx->aux_pids;
2762 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2763 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2764 if (!axp)
2765 return -ENOMEM;
2766
2767 axp->d.type = AUDIT_OBJ_PID;
2768 axp->d.next = ctx->aux_pids;
2769 ctx->aux_pids = (void *)axp;
2770 }
2771 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2772
2773 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2774 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2775 axp->target_uid[axp->pid_count] = t_uid;
2776 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2777 security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
2778 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2779 axp->pid_count++;
2780
2781 return 0;
2782}
2783
2784/**
2785 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2786 * @bprm: pointer to the bprm being processed
2787 * @new: the proposed new credentials
2788 * @old: the old credentials
2789 *
2790 * Simply check if the proc already has the caps given by the file and if not
2791 * store the priv escalation info for later auditing at the end of the syscall
2792 *
2793 * -Eric
2794 */
2795int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2796 const struct cred *new, const struct cred *old)
2797{
2798 struct audit_aux_data_bprm_fcaps *ax;
2799 struct audit_context *context = audit_context();
2800 struct cpu_vfs_cap_data vcaps;
2801
2802 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2803 if (!ax)
2804 return -ENOMEM;
2805
2806 ax->d.type = AUDIT_BPRM_FCAPS;
2807 ax->d.next = context->aux;
2808 context->aux = (void *)ax;
2809
2810 get_vfs_caps_from_disk(&init_user_ns,
2811 bprm->file->f_path.dentry, &vcaps);
2812
2813 ax->fcap.permitted = vcaps.permitted;
2814 ax->fcap.inheritable = vcaps.inheritable;
2815 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2816 ax->fcap.rootid = vcaps.rootid;
2817 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2818
2819 ax->old_pcap.permitted = old->cap_permitted;
2820 ax->old_pcap.inheritable = old->cap_inheritable;
2821 ax->old_pcap.effective = old->cap_effective;
2822 ax->old_pcap.ambient = old->cap_ambient;
2823
2824 ax->new_pcap.permitted = new->cap_permitted;
2825 ax->new_pcap.inheritable = new->cap_inheritable;
2826 ax->new_pcap.effective = new->cap_effective;
2827 ax->new_pcap.ambient = new->cap_ambient;
2828 return 0;
2829}
2830
2831/**
2832 * __audit_log_capset - store information about the arguments to the capset syscall
2833 * @new: the new credentials
2834 * @old: the old (current) credentials
2835 *
2836 * Record the arguments userspace sent to sys_capset for later printing by the
2837 * audit system if applicable
2838 */
2839void __audit_log_capset(const struct cred *new, const struct cred *old)
2840{
2841 struct audit_context *context = audit_context();
2842
2843 context->capset.pid = task_tgid_nr(current);
2844 context->capset.cap.effective = new->cap_effective;
2845 context->capset.cap.inheritable = new->cap_effective;
2846 context->capset.cap.permitted = new->cap_permitted;
2847 context->capset.cap.ambient = new->cap_ambient;
2848 context->type = AUDIT_CAPSET;
2849}
2850
2851void __audit_mmap_fd(int fd, int flags)
2852{
2853 struct audit_context *context = audit_context();
2854
2855 context->mmap.fd = fd;
2856 context->mmap.flags = flags;
2857 context->type = AUDIT_MMAP;
2858}
2859
2860void __audit_openat2_how(struct open_how *how)
2861{
2862 struct audit_context *context = audit_context();
2863
2864 context->openat2.flags = how->flags;
2865 context->openat2.mode = how->mode;
2866 context->openat2.resolve = how->resolve;
2867 context->type = AUDIT_OPENAT2;
2868}
2869
2870void __audit_log_kern_module(char *name)
2871{
2872 struct audit_context *context = audit_context();
2873
2874 context->module.name = kstrdup(name, GFP_KERNEL);
2875 if (!context->module.name)
2876 audit_log_lost("out of memory in __audit_log_kern_module");
2877 context->type = AUDIT_KERN_MODULE;
2878}
2879
2880void __audit_fanotify(unsigned int response)
2881{
2882 audit_log(audit_context(), GFP_KERNEL,
2883 AUDIT_FANOTIFY, "resp=%u", response);
2884}
2885
2886void __audit_tk_injoffset(struct timespec64 offset)
2887{
2888 struct audit_context *context = audit_context();
2889
2890 /* only set type if not already set by NTP */
2891 if (!context->type)
2892 context->type = AUDIT_TIME_INJOFFSET;
2893 memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
2894}
2895
2896void __audit_ntp_log(const struct audit_ntp_data *ad)
2897{
2898 struct audit_context *context = audit_context();
2899 int type;
2900
2901 for (type = 0; type < AUDIT_NTP_NVALS; type++)
2902 if (ad->vals[type].newval != ad->vals[type].oldval) {
2903 /* unconditionally set type, overwriting TK */
2904 context->type = AUDIT_TIME_ADJNTPVAL;
2905 memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2906 break;
2907 }
2908}
2909
2910void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2911 enum audit_nfcfgop op, gfp_t gfp)
2912{
2913 struct audit_buffer *ab;
2914 char comm[sizeof(current->comm)];
2915
2916 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2917 if (!ab)
2918 return;
2919 audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2920 name, af, nentries, audit_nfcfgs[op].s);
2921
2922 audit_log_format(ab, " pid=%u", task_pid_nr(current));
2923 audit_log_task_context(ab); /* subj= */
2924 audit_log_format(ab, " comm=");
2925 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2926 audit_log_end(ab);
2927}
2928EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2929
2930static void audit_log_task(struct audit_buffer *ab)
2931{
2932 kuid_t auid, uid;
2933 kgid_t gid;
2934 unsigned int sessionid;
2935 char comm[sizeof(current->comm)];
2936
2937 auid = audit_get_loginuid(current);
2938 sessionid = audit_get_sessionid(current);
2939 current_uid_gid(&uid, &gid);
2940
2941 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2942 from_kuid(&init_user_ns, auid),
2943 from_kuid(&init_user_ns, uid),
2944 from_kgid(&init_user_ns, gid),
2945 sessionid);
2946 audit_log_task_context(ab);
2947 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2948 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2949 audit_log_d_path_exe(ab, current->mm);
2950}
2951
2952/**
2953 * audit_core_dumps - record information about processes that end abnormally
2954 * @signr: signal value
2955 *
2956 * If a process ends with a core dump, something fishy is going on and we
2957 * should record the event for investigation.
2958 */
2959void audit_core_dumps(long signr)
2960{
2961 struct audit_buffer *ab;
2962
2963 if (!audit_enabled)
2964 return;
2965
2966 if (signr == SIGQUIT) /* don't care for those */
2967 return;
2968
2969 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2970 if (unlikely(!ab))
2971 return;
2972 audit_log_task(ab);
2973 audit_log_format(ab, " sig=%ld res=1", signr);
2974 audit_log_end(ab);
2975}
2976
2977/**
2978 * audit_seccomp - record information about a seccomp action
2979 * @syscall: syscall number
2980 * @signr: signal value
2981 * @code: the seccomp action
2982 *
2983 * Record the information associated with a seccomp action. Event filtering for
2984 * seccomp actions that are not to be logged is done in seccomp_log().
2985 * Therefore, this function forces auditing independent of the audit_enabled
2986 * and dummy context state because seccomp actions should be logged even when
2987 * audit is not in use.
2988 */
2989void audit_seccomp(unsigned long syscall, long signr, int code)
2990{
2991 struct audit_buffer *ab;
2992
2993 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2994 if (unlikely(!ab))
2995 return;
2996 audit_log_task(ab);
2997 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2998 signr, syscall_get_arch(current), syscall,
2999 in_compat_syscall(), KSTK_EIP(current), code);
3000 audit_log_end(ab);
3001}
3002
3003void audit_seccomp_actions_logged(const char *names, const char *old_names,
3004 int res)
3005{
3006 struct audit_buffer *ab;
3007
3008 if (!audit_enabled)
3009 return;
3010
3011 ab = audit_log_start(audit_context(), GFP_KERNEL,
3012 AUDIT_CONFIG_CHANGE);
3013 if (unlikely(!ab))
3014 return;
3015
3016 audit_log_format(ab,
3017 "op=seccomp-logging actions=%s old-actions=%s res=%d",
3018 names, old_names, res);
3019 audit_log_end(ab);
3020}
3021
3022struct list_head *audit_killed_trees(void)
3023{
3024 struct audit_context *ctx = audit_context();
3025 if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
3026 return NULL;
3027 return &ctx->killed_trees;
3028}
1/* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47#include <linux/init.h>
48#include <asm/types.h>
49#include <linux/atomic.h>
50#include <linux/fs.h>
51#include <linux/namei.h>
52#include <linux/mm.h>
53#include <linux/export.h>
54#include <linux/slab.h>
55#include <linux/mount.h>
56#include <linux/socket.h>
57#include <linux/mqueue.h>
58#include <linux/audit.h>
59#include <linux/personality.h>
60#include <linux/time.h>
61#include <linux/netlink.h>
62#include <linux/compiler.h>
63#include <asm/unistd.h>
64#include <linux/security.h>
65#include <linux/list.h>
66#include <linux/binfmts.h>
67#include <linux/highmem.h>
68#include <linux/syscalls.h>
69#include <asm/syscall.h>
70#include <linux/capability.h>
71#include <linux/fs_struct.h>
72#include <linux/compat.h>
73#include <linux/ctype.h>
74#include <linux/string.h>
75#include <linux/uaccess.h>
76#include <linux/fsnotify_backend.h>
77#include <uapi/linux/limits.h>
78
79#include "audit.h"
80
81/* flags stating the success for a syscall */
82#define AUDITSC_INVALID 0
83#define AUDITSC_SUCCESS 1
84#define AUDITSC_FAILURE 2
85
86/* no execve audit message should be longer than this (userspace limits),
87 * see the note near the top of audit_log_execve_info() about this value */
88#define MAX_EXECVE_AUDIT_LEN 7500
89
90/* max length to print of cmdline/proctitle value during audit */
91#define MAX_PROCTITLE_AUDIT_LEN 128
92
93/* number of audit rules */
94int audit_n_rules;
95
96/* determines whether we collect data for signals sent */
97int audit_signals;
98
99struct audit_aux_data {
100 struct audit_aux_data *next;
101 int type;
102};
103
104#define AUDIT_AUX_IPCPERM 0
105
106/* Number of target pids per aux struct. */
107#define AUDIT_AUX_PIDS 16
108
109struct audit_aux_data_pids {
110 struct audit_aux_data d;
111 pid_t target_pid[AUDIT_AUX_PIDS];
112 kuid_t target_auid[AUDIT_AUX_PIDS];
113 kuid_t target_uid[AUDIT_AUX_PIDS];
114 unsigned int target_sessionid[AUDIT_AUX_PIDS];
115 u32 target_sid[AUDIT_AUX_PIDS];
116 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
117 int pid_count;
118};
119
120struct audit_aux_data_bprm_fcaps {
121 struct audit_aux_data d;
122 struct audit_cap_data fcap;
123 unsigned int fcap_ver;
124 struct audit_cap_data old_pcap;
125 struct audit_cap_data new_pcap;
126};
127
128struct audit_tree_refs {
129 struct audit_tree_refs *next;
130 struct audit_chunk *c[31];
131};
132
133static int audit_match_perm(struct audit_context *ctx, int mask)
134{
135 unsigned n;
136 if (unlikely(!ctx))
137 return 0;
138 n = ctx->major;
139
140 switch (audit_classify_syscall(ctx->arch, n)) {
141 case 0: /* native */
142 if ((mask & AUDIT_PERM_WRITE) &&
143 audit_match_class(AUDIT_CLASS_WRITE, n))
144 return 1;
145 if ((mask & AUDIT_PERM_READ) &&
146 audit_match_class(AUDIT_CLASS_READ, n))
147 return 1;
148 if ((mask & AUDIT_PERM_ATTR) &&
149 audit_match_class(AUDIT_CLASS_CHATTR, n))
150 return 1;
151 return 0;
152 case 1: /* 32bit on biarch */
153 if ((mask & AUDIT_PERM_WRITE) &&
154 audit_match_class(AUDIT_CLASS_WRITE_32, n))
155 return 1;
156 if ((mask & AUDIT_PERM_READ) &&
157 audit_match_class(AUDIT_CLASS_READ_32, n))
158 return 1;
159 if ((mask & AUDIT_PERM_ATTR) &&
160 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
161 return 1;
162 return 0;
163 case 2: /* open */
164 return mask & ACC_MODE(ctx->argv[1]);
165 case 3: /* openat */
166 return mask & ACC_MODE(ctx->argv[2]);
167 case 4: /* socketcall */
168 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
169 case 5: /* execve */
170 return mask & AUDIT_PERM_EXEC;
171 default:
172 return 0;
173 }
174}
175
176static int audit_match_filetype(struct audit_context *ctx, int val)
177{
178 struct audit_names *n;
179 umode_t mode = (umode_t)val;
180
181 if (unlikely(!ctx))
182 return 0;
183
184 list_for_each_entry(n, &ctx->names_list, list) {
185 if ((n->ino != AUDIT_INO_UNSET) &&
186 ((n->mode & S_IFMT) == mode))
187 return 1;
188 }
189
190 return 0;
191}
192
193/*
194 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
195 * ->first_trees points to its beginning, ->trees - to the current end of data.
196 * ->tree_count is the number of free entries in array pointed to by ->trees.
197 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
198 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
199 * it's going to remain 1-element for almost any setup) until we free context itself.
200 * References in it _are_ dropped - at the same time we free/drop aux stuff.
201 */
202
203#ifdef CONFIG_AUDIT_TREE
204static void audit_set_auditable(struct audit_context *ctx)
205{
206 if (!ctx->prio) {
207 ctx->prio = 1;
208 ctx->current_state = AUDIT_RECORD_CONTEXT;
209 }
210}
211
212static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
213{
214 struct audit_tree_refs *p = ctx->trees;
215 int left = ctx->tree_count;
216 if (likely(left)) {
217 p->c[--left] = chunk;
218 ctx->tree_count = left;
219 return 1;
220 }
221 if (!p)
222 return 0;
223 p = p->next;
224 if (p) {
225 p->c[30] = chunk;
226 ctx->trees = p;
227 ctx->tree_count = 30;
228 return 1;
229 }
230 return 0;
231}
232
233static int grow_tree_refs(struct audit_context *ctx)
234{
235 struct audit_tree_refs *p = ctx->trees;
236 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
237 if (!ctx->trees) {
238 ctx->trees = p;
239 return 0;
240 }
241 if (p)
242 p->next = ctx->trees;
243 else
244 ctx->first_trees = ctx->trees;
245 ctx->tree_count = 31;
246 return 1;
247}
248#endif
249
250static void unroll_tree_refs(struct audit_context *ctx,
251 struct audit_tree_refs *p, int count)
252{
253#ifdef CONFIG_AUDIT_TREE
254 struct audit_tree_refs *q;
255 int n;
256 if (!p) {
257 /* we started with empty chain */
258 p = ctx->first_trees;
259 count = 31;
260 /* if the very first allocation has failed, nothing to do */
261 if (!p)
262 return;
263 }
264 n = count;
265 for (q = p; q != ctx->trees; q = q->next, n = 31) {
266 while (n--) {
267 audit_put_chunk(q->c[n]);
268 q->c[n] = NULL;
269 }
270 }
271 while (n-- > ctx->tree_count) {
272 audit_put_chunk(q->c[n]);
273 q->c[n] = NULL;
274 }
275 ctx->trees = p;
276 ctx->tree_count = count;
277#endif
278}
279
280static void free_tree_refs(struct audit_context *ctx)
281{
282 struct audit_tree_refs *p, *q;
283 for (p = ctx->first_trees; p; p = q) {
284 q = p->next;
285 kfree(p);
286 }
287}
288
289static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
290{
291#ifdef CONFIG_AUDIT_TREE
292 struct audit_tree_refs *p;
293 int n;
294 if (!tree)
295 return 0;
296 /* full ones */
297 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
298 for (n = 0; n < 31; n++)
299 if (audit_tree_match(p->c[n], tree))
300 return 1;
301 }
302 /* partial */
303 if (p) {
304 for (n = ctx->tree_count; n < 31; n++)
305 if (audit_tree_match(p->c[n], tree))
306 return 1;
307 }
308#endif
309 return 0;
310}
311
312static int audit_compare_uid(kuid_t uid,
313 struct audit_names *name,
314 struct audit_field *f,
315 struct audit_context *ctx)
316{
317 struct audit_names *n;
318 int rc;
319
320 if (name) {
321 rc = audit_uid_comparator(uid, f->op, name->uid);
322 if (rc)
323 return rc;
324 }
325
326 if (ctx) {
327 list_for_each_entry(n, &ctx->names_list, list) {
328 rc = audit_uid_comparator(uid, f->op, n->uid);
329 if (rc)
330 return rc;
331 }
332 }
333 return 0;
334}
335
336static int audit_compare_gid(kgid_t gid,
337 struct audit_names *name,
338 struct audit_field *f,
339 struct audit_context *ctx)
340{
341 struct audit_names *n;
342 int rc;
343
344 if (name) {
345 rc = audit_gid_comparator(gid, f->op, name->gid);
346 if (rc)
347 return rc;
348 }
349
350 if (ctx) {
351 list_for_each_entry(n, &ctx->names_list, list) {
352 rc = audit_gid_comparator(gid, f->op, n->gid);
353 if (rc)
354 return rc;
355 }
356 }
357 return 0;
358}
359
360static int audit_field_compare(struct task_struct *tsk,
361 const struct cred *cred,
362 struct audit_field *f,
363 struct audit_context *ctx,
364 struct audit_names *name)
365{
366 switch (f->val) {
367 /* process to file object comparisons */
368 case AUDIT_COMPARE_UID_TO_OBJ_UID:
369 return audit_compare_uid(cred->uid, name, f, ctx);
370 case AUDIT_COMPARE_GID_TO_OBJ_GID:
371 return audit_compare_gid(cred->gid, name, f, ctx);
372 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
373 return audit_compare_uid(cred->euid, name, f, ctx);
374 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
375 return audit_compare_gid(cred->egid, name, f, ctx);
376 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
377 return audit_compare_uid(tsk->loginuid, name, f, ctx);
378 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
379 return audit_compare_uid(cred->suid, name, f, ctx);
380 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
381 return audit_compare_gid(cred->sgid, name, f, ctx);
382 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
383 return audit_compare_uid(cred->fsuid, name, f, ctx);
384 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
385 return audit_compare_gid(cred->fsgid, name, f, ctx);
386 /* uid comparisons */
387 case AUDIT_COMPARE_UID_TO_AUID:
388 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
389 case AUDIT_COMPARE_UID_TO_EUID:
390 return audit_uid_comparator(cred->uid, f->op, cred->euid);
391 case AUDIT_COMPARE_UID_TO_SUID:
392 return audit_uid_comparator(cred->uid, f->op, cred->suid);
393 case AUDIT_COMPARE_UID_TO_FSUID:
394 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
395 /* auid comparisons */
396 case AUDIT_COMPARE_AUID_TO_EUID:
397 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
398 case AUDIT_COMPARE_AUID_TO_SUID:
399 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
400 case AUDIT_COMPARE_AUID_TO_FSUID:
401 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
402 /* euid comparisons */
403 case AUDIT_COMPARE_EUID_TO_SUID:
404 return audit_uid_comparator(cred->euid, f->op, cred->suid);
405 case AUDIT_COMPARE_EUID_TO_FSUID:
406 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
407 /* suid comparisons */
408 case AUDIT_COMPARE_SUID_TO_FSUID:
409 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
410 /* gid comparisons */
411 case AUDIT_COMPARE_GID_TO_EGID:
412 return audit_gid_comparator(cred->gid, f->op, cred->egid);
413 case AUDIT_COMPARE_GID_TO_SGID:
414 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
415 case AUDIT_COMPARE_GID_TO_FSGID:
416 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
417 /* egid comparisons */
418 case AUDIT_COMPARE_EGID_TO_SGID:
419 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
420 case AUDIT_COMPARE_EGID_TO_FSGID:
421 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
422 /* sgid comparison */
423 case AUDIT_COMPARE_SGID_TO_FSGID:
424 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
425 default:
426 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
427 return 0;
428 }
429 return 0;
430}
431
432/* Determine if any context name data matches a rule's watch data */
433/* Compare a task_struct with an audit_rule. Return 1 on match, 0
434 * otherwise.
435 *
436 * If task_creation is true, this is an explicit indication that we are
437 * filtering a task rule at task creation time. This and tsk == current are
438 * the only situations where tsk->cred may be accessed without an rcu read lock.
439 */
440static int audit_filter_rules(struct task_struct *tsk,
441 struct audit_krule *rule,
442 struct audit_context *ctx,
443 struct audit_names *name,
444 enum audit_state *state,
445 bool task_creation)
446{
447 const struct cred *cred;
448 int i, need_sid = 1;
449 u32 sid;
450 unsigned int sessionid;
451
452 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
453
454 for (i = 0; i < rule->field_count; i++) {
455 struct audit_field *f = &rule->fields[i];
456 struct audit_names *n;
457 int result = 0;
458 pid_t pid;
459
460 switch (f->type) {
461 case AUDIT_PID:
462 pid = task_tgid_nr(tsk);
463 result = audit_comparator(pid, f->op, f->val);
464 break;
465 case AUDIT_PPID:
466 if (ctx) {
467 if (!ctx->ppid)
468 ctx->ppid = task_ppid_nr(tsk);
469 result = audit_comparator(ctx->ppid, f->op, f->val);
470 }
471 break;
472 case AUDIT_EXE:
473 result = audit_exe_compare(tsk, rule->exe);
474 break;
475 case AUDIT_UID:
476 result = audit_uid_comparator(cred->uid, f->op, f->uid);
477 break;
478 case AUDIT_EUID:
479 result = audit_uid_comparator(cred->euid, f->op, f->uid);
480 break;
481 case AUDIT_SUID:
482 result = audit_uid_comparator(cred->suid, f->op, f->uid);
483 break;
484 case AUDIT_FSUID:
485 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
486 break;
487 case AUDIT_GID:
488 result = audit_gid_comparator(cred->gid, f->op, f->gid);
489 if (f->op == Audit_equal) {
490 if (!result)
491 result = in_group_p(f->gid);
492 } else if (f->op == Audit_not_equal) {
493 if (result)
494 result = !in_group_p(f->gid);
495 }
496 break;
497 case AUDIT_EGID:
498 result = audit_gid_comparator(cred->egid, f->op, f->gid);
499 if (f->op == Audit_equal) {
500 if (!result)
501 result = in_egroup_p(f->gid);
502 } else if (f->op == Audit_not_equal) {
503 if (result)
504 result = !in_egroup_p(f->gid);
505 }
506 break;
507 case AUDIT_SGID:
508 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
509 break;
510 case AUDIT_FSGID:
511 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
512 break;
513 case AUDIT_SESSIONID:
514 sessionid = audit_get_sessionid(current);
515 result = audit_comparator(sessionid, f->op, f->val);
516 break;
517 case AUDIT_PERS:
518 result = audit_comparator(tsk->personality, f->op, f->val);
519 break;
520 case AUDIT_ARCH:
521 if (ctx)
522 result = audit_comparator(ctx->arch, f->op, f->val);
523 break;
524
525 case AUDIT_EXIT:
526 if (ctx && ctx->return_valid)
527 result = audit_comparator(ctx->return_code, f->op, f->val);
528 break;
529 case AUDIT_SUCCESS:
530 if (ctx && ctx->return_valid) {
531 if (f->val)
532 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
533 else
534 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
535 }
536 break;
537 case AUDIT_DEVMAJOR:
538 if (name) {
539 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
540 audit_comparator(MAJOR(name->rdev), f->op, f->val))
541 ++result;
542 } else if (ctx) {
543 list_for_each_entry(n, &ctx->names_list, list) {
544 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
545 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
546 ++result;
547 break;
548 }
549 }
550 }
551 break;
552 case AUDIT_DEVMINOR:
553 if (name) {
554 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
555 audit_comparator(MINOR(name->rdev), f->op, f->val))
556 ++result;
557 } else if (ctx) {
558 list_for_each_entry(n, &ctx->names_list, list) {
559 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
560 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
561 ++result;
562 break;
563 }
564 }
565 }
566 break;
567 case AUDIT_INODE:
568 if (name)
569 result = audit_comparator(name->ino, f->op, f->val);
570 else if (ctx) {
571 list_for_each_entry(n, &ctx->names_list, list) {
572 if (audit_comparator(n->ino, f->op, f->val)) {
573 ++result;
574 break;
575 }
576 }
577 }
578 break;
579 case AUDIT_OBJ_UID:
580 if (name) {
581 result = audit_uid_comparator(name->uid, f->op, f->uid);
582 } else if (ctx) {
583 list_for_each_entry(n, &ctx->names_list, list) {
584 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
585 ++result;
586 break;
587 }
588 }
589 }
590 break;
591 case AUDIT_OBJ_GID:
592 if (name) {
593 result = audit_gid_comparator(name->gid, f->op, f->gid);
594 } else if (ctx) {
595 list_for_each_entry(n, &ctx->names_list, list) {
596 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
597 ++result;
598 break;
599 }
600 }
601 }
602 break;
603 case AUDIT_WATCH:
604 if (name)
605 result = audit_watch_compare(rule->watch, name->ino, name->dev);
606 break;
607 case AUDIT_DIR:
608 if (ctx)
609 result = match_tree_refs(ctx, rule->tree);
610 break;
611 case AUDIT_LOGINUID:
612 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
613 break;
614 case AUDIT_LOGINUID_SET:
615 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
616 break;
617 case AUDIT_SUBJ_USER:
618 case AUDIT_SUBJ_ROLE:
619 case AUDIT_SUBJ_TYPE:
620 case AUDIT_SUBJ_SEN:
621 case AUDIT_SUBJ_CLR:
622 /* NOTE: this may return negative values indicating
623 a temporary error. We simply treat this as a
624 match for now to avoid losing information that
625 may be wanted. An error message will also be
626 logged upon error */
627 if (f->lsm_rule) {
628 if (need_sid) {
629 security_task_getsecid(tsk, &sid);
630 need_sid = 0;
631 }
632 result = security_audit_rule_match(sid, f->type,
633 f->op,
634 f->lsm_rule,
635 ctx);
636 }
637 break;
638 case AUDIT_OBJ_USER:
639 case AUDIT_OBJ_ROLE:
640 case AUDIT_OBJ_TYPE:
641 case AUDIT_OBJ_LEV_LOW:
642 case AUDIT_OBJ_LEV_HIGH:
643 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
644 also applies here */
645 if (f->lsm_rule) {
646 /* Find files that match */
647 if (name) {
648 result = security_audit_rule_match(
649 name->osid, f->type, f->op,
650 f->lsm_rule, ctx);
651 } else if (ctx) {
652 list_for_each_entry(n, &ctx->names_list, list) {
653 if (security_audit_rule_match(n->osid, f->type,
654 f->op, f->lsm_rule,
655 ctx)) {
656 ++result;
657 break;
658 }
659 }
660 }
661 /* Find ipc objects that match */
662 if (!ctx || ctx->type != AUDIT_IPC)
663 break;
664 if (security_audit_rule_match(ctx->ipc.osid,
665 f->type, f->op,
666 f->lsm_rule, ctx))
667 ++result;
668 }
669 break;
670 case AUDIT_ARG0:
671 case AUDIT_ARG1:
672 case AUDIT_ARG2:
673 case AUDIT_ARG3:
674 if (ctx)
675 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
676 break;
677 case AUDIT_FILTERKEY:
678 /* ignore this field for filtering */
679 result = 1;
680 break;
681 case AUDIT_PERM:
682 result = audit_match_perm(ctx, f->val);
683 break;
684 case AUDIT_FILETYPE:
685 result = audit_match_filetype(ctx, f->val);
686 break;
687 case AUDIT_FIELD_COMPARE:
688 result = audit_field_compare(tsk, cred, f, ctx, name);
689 break;
690 }
691 if (!result)
692 return 0;
693 }
694
695 if (ctx) {
696 if (rule->prio <= ctx->prio)
697 return 0;
698 if (rule->filterkey) {
699 kfree(ctx->filterkey);
700 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
701 }
702 ctx->prio = rule->prio;
703 }
704 switch (rule->action) {
705 case AUDIT_NEVER:
706 *state = AUDIT_DISABLED;
707 break;
708 case AUDIT_ALWAYS:
709 *state = AUDIT_RECORD_CONTEXT;
710 break;
711 }
712 return 1;
713}
714
715/* At process creation time, we can determine if system-call auditing is
716 * completely disabled for this task. Since we only have the task
717 * structure at this point, we can only check uid and gid.
718 */
719static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
720{
721 struct audit_entry *e;
722 enum audit_state state;
723
724 rcu_read_lock();
725 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
726 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
727 &state, true)) {
728 if (state == AUDIT_RECORD_CONTEXT)
729 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
730 rcu_read_unlock();
731 return state;
732 }
733 }
734 rcu_read_unlock();
735 return AUDIT_BUILD_CONTEXT;
736}
737
738static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
739{
740 int word, bit;
741
742 if (val > 0xffffffff)
743 return false;
744
745 word = AUDIT_WORD(val);
746 if (word >= AUDIT_BITMASK_SIZE)
747 return false;
748
749 bit = AUDIT_BIT(val);
750
751 return rule->mask[word] & bit;
752}
753
754/* At syscall entry and exit time, this filter is called if the
755 * audit_state is not low enough that auditing cannot take place, but is
756 * also not high enough that we already know we have to write an audit
757 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
758 */
759static enum audit_state audit_filter_syscall(struct task_struct *tsk,
760 struct audit_context *ctx,
761 struct list_head *list)
762{
763 struct audit_entry *e;
764 enum audit_state state;
765
766 if (auditd_test_task(tsk))
767 return AUDIT_DISABLED;
768
769 rcu_read_lock();
770 if (!list_empty(list)) {
771 list_for_each_entry_rcu(e, list, list) {
772 if (audit_in_mask(&e->rule, ctx->major) &&
773 audit_filter_rules(tsk, &e->rule, ctx, NULL,
774 &state, false)) {
775 rcu_read_unlock();
776 ctx->current_state = state;
777 return state;
778 }
779 }
780 }
781 rcu_read_unlock();
782 return AUDIT_BUILD_CONTEXT;
783}
784
785/*
786 * Given an audit_name check the inode hash table to see if they match.
787 * Called holding the rcu read lock to protect the use of audit_inode_hash
788 */
789static int audit_filter_inode_name(struct task_struct *tsk,
790 struct audit_names *n,
791 struct audit_context *ctx) {
792 int h = audit_hash_ino((u32)n->ino);
793 struct list_head *list = &audit_inode_hash[h];
794 struct audit_entry *e;
795 enum audit_state state;
796
797 if (list_empty(list))
798 return 0;
799
800 list_for_each_entry_rcu(e, list, list) {
801 if (audit_in_mask(&e->rule, ctx->major) &&
802 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
803 ctx->current_state = state;
804 return 1;
805 }
806 }
807
808 return 0;
809}
810
811/* At syscall exit time, this filter is called if any audit_names have been
812 * collected during syscall processing. We only check rules in sublists at hash
813 * buckets applicable to the inode numbers in audit_names.
814 * Regarding audit_state, same rules apply as for audit_filter_syscall().
815 */
816void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
817{
818 struct audit_names *n;
819
820 if (auditd_test_task(tsk))
821 return;
822
823 rcu_read_lock();
824
825 list_for_each_entry(n, &ctx->names_list, list) {
826 if (audit_filter_inode_name(tsk, n, ctx))
827 break;
828 }
829 rcu_read_unlock();
830}
831
832/* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
833static inline struct audit_context *audit_take_context(struct task_struct *tsk,
834 int return_valid,
835 long return_code)
836{
837 struct audit_context *context = tsk->audit_context;
838
839 if (!context)
840 return NULL;
841 context->return_valid = return_valid;
842
843 /*
844 * we need to fix up the return code in the audit logs if the actual
845 * return codes are later going to be fixed up by the arch specific
846 * signal handlers
847 *
848 * This is actually a test for:
849 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
850 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
851 *
852 * but is faster than a bunch of ||
853 */
854 if (unlikely(return_code <= -ERESTARTSYS) &&
855 (return_code >= -ERESTART_RESTARTBLOCK) &&
856 (return_code != -ENOIOCTLCMD))
857 context->return_code = -EINTR;
858 else
859 context->return_code = return_code;
860
861 if (context->in_syscall && !context->dummy) {
862 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
863 audit_filter_inodes(tsk, context);
864 }
865
866 tsk->audit_context = NULL;
867 return context;
868}
869
870static inline void audit_proctitle_free(struct audit_context *context)
871{
872 kfree(context->proctitle.value);
873 context->proctitle.value = NULL;
874 context->proctitle.len = 0;
875}
876
877static inline void audit_free_names(struct audit_context *context)
878{
879 struct audit_names *n, *next;
880
881 list_for_each_entry_safe(n, next, &context->names_list, list) {
882 list_del(&n->list);
883 if (n->name)
884 putname(n->name);
885 if (n->should_free)
886 kfree(n);
887 }
888 context->name_count = 0;
889 path_put(&context->pwd);
890 context->pwd.dentry = NULL;
891 context->pwd.mnt = NULL;
892}
893
894static inline void audit_free_aux(struct audit_context *context)
895{
896 struct audit_aux_data *aux;
897
898 while ((aux = context->aux)) {
899 context->aux = aux->next;
900 kfree(aux);
901 }
902 while ((aux = context->aux_pids)) {
903 context->aux_pids = aux->next;
904 kfree(aux);
905 }
906}
907
908static inline struct audit_context *audit_alloc_context(enum audit_state state)
909{
910 struct audit_context *context;
911
912 context = kzalloc(sizeof(*context), GFP_KERNEL);
913 if (!context)
914 return NULL;
915 context->state = state;
916 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
917 INIT_LIST_HEAD(&context->killed_trees);
918 INIT_LIST_HEAD(&context->names_list);
919 return context;
920}
921
922/**
923 * audit_alloc - allocate an audit context block for a task
924 * @tsk: task
925 *
926 * Filter on the task information and allocate a per-task audit context
927 * if necessary. Doing so turns on system call auditing for the
928 * specified task. This is called from copy_process, so no lock is
929 * needed.
930 */
931int audit_alloc(struct task_struct *tsk)
932{
933 struct audit_context *context;
934 enum audit_state state;
935 char *key = NULL;
936
937 if (likely(!audit_ever_enabled))
938 return 0; /* Return if not auditing. */
939
940 state = audit_filter_task(tsk, &key);
941 if (state == AUDIT_DISABLED) {
942 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
943 return 0;
944 }
945
946 if (!(context = audit_alloc_context(state))) {
947 kfree(key);
948 audit_log_lost("out of memory in audit_alloc");
949 return -ENOMEM;
950 }
951 context->filterkey = key;
952
953 tsk->audit_context = context;
954 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
955 return 0;
956}
957
958static inline void audit_free_context(struct audit_context *context)
959{
960 audit_free_names(context);
961 unroll_tree_refs(context, NULL, 0);
962 free_tree_refs(context);
963 audit_free_aux(context);
964 kfree(context->filterkey);
965 kfree(context->sockaddr);
966 audit_proctitle_free(context);
967 kfree(context);
968}
969
970static int audit_log_pid_context(struct audit_context *context, pid_t pid,
971 kuid_t auid, kuid_t uid, unsigned int sessionid,
972 u32 sid, char *comm)
973{
974 struct audit_buffer *ab;
975 char *ctx = NULL;
976 u32 len;
977 int rc = 0;
978
979 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
980 if (!ab)
981 return rc;
982
983 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
984 from_kuid(&init_user_ns, auid),
985 from_kuid(&init_user_ns, uid), sessionid);
986 if (sid) {
987 if (security_secid_to_secctx(sid, &ctx, &len)) {
988 audit_log_format(ab, " obj=(none)");
989 rc = 1;
990 } else {
991 audit_log_format(ab, " obj=%s", ctx);
992 security_release_secctx(ctx, len);
993 }
994 }
995 audit_log_format(ab, " ocomm=");
996 audit_log_untrustedstring(ab, comm);
997 audit_log_end(ab);
998
999 return rc;
1000}
1001
1002static void audit_log_execve_info(struct audit_context *context,
1003 struct audit_buffer **ab)
1004{
1005 long len_max;
1006 long len_rem;
1007 long len_full;
1008 long len_buf;
1009 long len_abuf = 0;
1010 long len_tmp;
1011 bool require_data;
1012 bool encode;
1013 unsigned int iter;
1014 unsigned int arg;
1015 char *buf_head;
1016 char *buf;
1017 const char __user *p = (const char __user *)current->mm->arg_start;
1018
1019 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1020 * data we put in the audit record for this argument (see the
1021 * code below) ... at this point in time 96 is plenty */
1022 char abuf[96];
1023
1024 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1025 * current value of 7500 is not as important as the fact that it
1026 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1027 * room if we go over a little bit in the logging below */
1028 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1029 len_max = MAX_EXECVE_AUDIT_LEN;
1030
1031 /* scratch buffer to hold the userspace args */
1032 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1033 if (!buf_head) {
1034 audit_panic("out of memory for argv string");
1035 return;
1036 }
1037 buf = buf_head;
1038
1039 audit_log_format(*ab, "argc=%d", context->execve.argc);
1040
1041 len_rem = len_max;
1042 len_buf = 0;
1043 len_full = 0;
1044 require_data = true;
1045 encode = false;
1046 iter = 0;
1047 arg = 0;
1048 do {
1049 /* NOTE: we don't ever want to trust this value for anything
1050 * serious, but the audit record format insists we
1051 * provide an argument length for really long arguments,
1052 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1053 * to use strncpy_from_user() to obtain this value for
1054 * recording in the log, although we don't use it
1055 * anywhere here to avoid a double-fetch problem */
1056 if (len_full == 0)
1057 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1058
1059 /* read more data from userspace */
1060 if (require_data) {
1061 /* can we make more room in the buffer? */
1062 if (buf != buf_head) {
1063 memmove(buf_head, buf, len_buf);
1064 buf = buf_head;
1065 }
1066
1067 /* fetch as much as we can of the argument */
1068 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1069 len_max - len_buf);
1070 if (len_tmp == -EFAULT) {
1071 /* unable to copy from userspace */
1072 send_sig(SIGKILL, current, 0);
1073 goto out;
1074 } else if (len_tmp == (len_max - len_buf)) {
1075 /* buffer is not large enough */
1076 require_data = true;
1077 /* NOTE: if we are going to span multiple
1078 * buffers force the encoding so we stand
1079 * a chance at a sane len_full value and
1080 * consistent record encoding */
1081 encode = true;
1082 len_full = len_full * 2;
1083 p += len_tmp;
1084 } else {
1085 require_data = false;
1086 if (!encode)
1087 encode = audit_string_contains_control(
1088 buf, len_tmp);
1089 /* try to use a trusted value for len_full */
1090 if (len_full < len_max)
1091 len_full = (encode ?
1092 len_tmp * 2 : len_tmp);
1093 p += len_tmp + 1;
1094 }
1095 len_buf += len_tmp;
1096 buf_head[len_buf] = '\0';
1097
1098 /* length of the buffer in the audit record? */
1099 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1100 }
1101
1102 /* write as much as we can to the audit log */
1103 if (len_buf > 0) {
1104 /* NOTE: some magic numbers here - basically if we
1105 * can't fit a reasonable amount of data into the
1106 * existing audit buffer, flush it and start with
1107 * a new buffer */
1108 if ((sizeof(abuf) + 8) > len_rem) {
1109 len_rem = len_max;
1110 audit_log_end(*ab);
1111 *ab = audit_log_start(context,
1112 GFP_KERNEL, AUDIT_EXECVE);
1113 if (!*ab)
1114 goto out;
1115 }
1116
1117 /* create the non-arg portion of the arg record */
1118 len_tmp = 0;
1119 if (require_data || (iter > 0) ||
1120 ((len_abuf + sizeof(abuf)) > len_rem)) {
1121 if (iter == 0) {
1122 len_tmp += snprintf(&abuf[len_tmp],
1123 sizeof(abuf) - len_tmp,
1124 " a%d_len=%lu",
1125 arg, len_full);
1126 }
1127 len_tmp += snprintf(&abuf[len_tmp],
1128 sizeof(abuf) - len_tmp,
1129 " a%d[%d]=", arg, iter++);
1130 } else
1131 len_tmp += snprintf(&abuf[len_tmp],
1132 sizeof(abuf) - len_tmp,
1133 " a%d=", arg);
1134 WARN_ON(len_tmp >= sizeof(abuf));
1135 abuf[sizeof(abuf) - 1] = '\0';
1136
1137 /* log the arg in the audit record */
1138 audit_log_format(*ab, "%s", abuf);
1139 len_rem -= len_tmp;
1140 len_tmp = len_buf;
1141 if (encode) {
1142 if (len_abuf > len_rem)
1143 len_tmp = len_rem / 2; /* encoding */
1144 audit_log_n_hex(*ab, buf, len_tmp);
1145 len_rem -= len_tmp * 2;
1146 len_abuf -= len_tmp * 2;
1147 } else {
1148 if (len_abuf > len_rem)
1149 len_tmp = len_rem - 2; /* quotes */
1150 audit_log_n_string(*ab, buf, len_tmp);
1151 len_rem -= len_tmp + 2;
1152 /* don't subtract the "2" because we still need
1153 * to add quotes to the remaining string */
1154 len_abuf -= len_tmp;
1155 }
1156 len_buf -= len_tmp;
1157 buf += len_tmp;
1158 }
1159
1160 /* ready to move to the next argument? */
1161 if ((len_buf == 0) && !require_data) {
1162 arg++;
1163 iter = 0;
1164 len_full = 0;
1165 require_data = true;
1166 encode = false;
1167 }
1168 } while (arg < context->execve.argc);
1169
1170 /* NOTE: the caller handles the final audit_log_end() call */
1171
1172out:
1173 kfree(buf_head);
1174}
1175
1176static void show_special(struct audit_context *context, int *call_panic)
1177{
1178 struct audit_buffer *ab;
1179 int i;
1180
1181 ab = audit_log_start(context, GFP_KERNEL, context->type);
1182 if (!ab)
1183 return;
1184
1185 switch (context->type) {
1186 case AUDIT_SOCKETCALL: {
1187 int nargs = context->socketcall.nargs;
1188 audit_log_format(ab, "nargs=%d", nargs);
1189 for (i = 0; i < nargs; i++)
1190 audit_log_format(ab, " a%d=%lx", i,
1191 context->socketcall.args[i]);
1192 break; }
1193 case AUDIT_IPC: {
1194 u32 osid = context->ipc.osid;
1195
1196 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1197 from_kuid(&init_user_ns, context->ipc.uid),
1198 from_kgid(&init_user_ns, context->ipc.gid),
1199 context->ipc.mode);
1200 if (osid) {
1201 char *ctx = NULL;
1202 u32 len;
1203 if (security_secid_to_secctx(osid, &ctx, &len)) {
1204 audit_log_format(ab, " osid=%u", osid);
1205 *call_panic = 1;
1206 } else {
1207 audit_log_format(ab, " obj=%s", ctx);
1208 security_release_secctx(ctx, len);
1209 }
1210 }
1211 if (context->ipc.has_perm) {
1212 audit_log_end(ab);
1213 ab = audit_log_start(context, GFP_KERNEL,
1214 AUDIT_IPC_SET_PERM);
1215 if (unlikely(!ab))
1216 return;
1217 audit_log_format(ab,
1218 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1219 context->ipc.qbytes,
1220 context->ipc.perm_uid,
1221 context->ipc.perm_gid,
1222 context->ipc.perm_mode);
1223 }
1224 break; }
1225 case AUDIT_MQ_OPEN:
1226 audit_log_format(ab,
1227 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1228 "mq_msgsize=%ld mq_curmsgs=%ld",
1229 context->mq_open.oflag, context->mq_open.mode,
1230 context->mq_open.attr.mq_flags,
1231 context->mq_open.attr.mq_maxmsg,
1232 context->mq_open.attr.mq_msgsize,
1233 context->mq_open.attr.mq_curmsgs);
1234 break;
1235 case AUDIT_MQ_SENDRECV:
1236 audit_log_format(ab,
1237 "mqdes=%d msg_len=%zd msg_prio=%u "
1238 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1239 context->mq_sendrecv.mqdes,
1240 context->mq_sendrecv.msg_len,
1241 context->mq_sendrecv.msg_prio,
1242 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1243 context->mq_sendrecv.abs_timeout.tv_nsec);
1244 break;
1245 case AUDIT_MQ_NOTIFY:
1246 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1247 context->mq_notify.mqdes,
1248 context->mq_notify.sigev_signo);
1249 break;
1250 case AUDIT_MQ_GETSETATTR: {
1251 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1252 audit_log_format(ab,
1253 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1254 "mq_curmsgs=%ld ",
1255 context->mq_getsetattr.mqdes,
1256 attr->mq_flags, attr->mq_maxmsg,
1257 attr->mq_msgsize, attr->mq_curmsgs);
1258 break; }
1259 case AUDIT_CAPSET:
1260 audit_log_format(ab, "pid=%d", context->capset.pid);
1261 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1262 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1263 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1264 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1265 break;
1266 case AUDIT_MMAP:
1267 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1268 context->mmap.flags);
1269 break;
1270 case AUDIT_EXECVE:
1271 audit_log_execve_info(context, &ab);
1272 break;
1273 case AUDIT_KERN_MODULE:
1274 audit_log_format(ab, "name=");
1275 audit_log_untrustedstring(ab, context->module.name);
1276 kfree(context->module.name);
1277 break;
1278 }
1279 audit_log_end(ab);
1280}
1281
1282static inline int audit_proctitle_rtrim(char *proctitle, int len)
1283{
1284 char *end = proctitle + len - 1;
1285 while (end > proctitle && !isprint(*end))
1286 end--;
1287
1288 /* catch the case where proctitle is only 1 non-print character */
1289 len = end - proctitle + 1;
1290 len -= isprint(proctitle[len-1]) == 0;
1291 return len;
1292}
1293
1294static void audit_log_proctitle(struct task_struct *tsk,
1295 struct audit_context *context)
1296{
1297 int res;
1298 char *buf;
1299 char *msg = "(null)";
1300 int len = strlen(msg);
1301 struct audit_buffer *ab;
1302
1303 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1304 if (!ab)
1305 return; /* audit_panic or being filtered */
1306
1307 audit_log_format(ab, "proctitle=");
1308
1309 /* Not cached */
1310 if (!context->proctitle.value) {
1311 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1312 if (!buf)
1313 goto out;
1314 /* Historically called this from procfs naming */
1315 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1316 if (res == 0) {
1317 kfree(buf);
1318 goto out;
1319 }
1320 res = audit_proctitle_rtrim(buf, res);
1321 if (res == 0) {
1322 kfree(buf);
1323 goto out;
1324 }
1325 context->proctitle.value = buf;
1326 context->proctitle.len = res;
1327 }
1328 msg = context->proctitle.value;
1329 len = context->proctitle.len;
1330out:
1331 audit_log_n_untrustedstring(ab, msg, len);
1332 audit_log_end(ab);
1333}
1334
1335static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1336{
1337 int i, call_panic = 0;
1338 struct audit_buffer *ab;
1339 struct audit_aux_data *aux;
1340 struct audit_names *n;
1341
1342 /* tsk == current */
1343 context->personality = tsk->personality;
1344
1345 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1346 if (!ab)
1347 return; /* audit_panic has been called */
1348 audit_log_format(ab, "arch=%x syscall=%d",
1349 context->arch, context->major);
1350 if (context->personality != PER_LINUX)
1351 audit_log_format(ab, " per=%lx", context->personality);
1352 if (context->return_valid)
1353 audit_log_format(ab, " success=%s exit=%ld",
1354 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1355 context->return_code);
1356
1357 audit_log_format(ab,
1358 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1359 context->argv[0],
1360 context->argv[1],
1361 context->argv[2],
1362 context->argv[3],
1363 context->name_count);
1364
1365 audit_log_task_info(ab, tsk);
1366 audit_log_key(ab, context->filterkey);
1367 audit_log_end(ab);
1368
1369 for (aux = context->aux; aux; aux = aux->next) {
1370
1371 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1372 if (!ab)
1373 continue; /* audit_panic has been called */
1374
1375 switch (aux->type) {
1376
1377 case AUDIT_BPRM_FCAPS: {
1378 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1379 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1380 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1381 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1382 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1383 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1384 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1385 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1386 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1387 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1388 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1389 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1390 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1391 break; }
1392
1393 }
1394 audit_log_end(ab);
1395 }
1396
1397 if (context->type)
1398 show_special(context, &call_panic);
1399
1400 if (context->fds[0] >= 0) {
1401 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1402 if (ab) {
1403 audit_log_format(ab, "fd0=%d fd1=%d",
1404 context->fds[0], context->fds[1]);
1405 audit_log_end(ab);
1406 }
1407 }
1408
1409 if (context->sockaddr_len) {
1410 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1411 if (ab) {
1412 audit_log_format(ab, "saddr=");
1413 audit_log_n_hex(ab, (void *)context->sockaddr,
1414 context->sockaddr_len);
1415 audit_log_end(ab);
1416 }
1417 }
1418
1419 for (aux = context->aux_pids; aux; aux = aux->next) {
1420 struct audit_aux_data_pids *axs = (void *)aux;
1421
1422 for (i = 0; i < axs->pid_count; i++)
1423 if (audit_log_pid_context(context, axs->target_pid[i],
1424 axs->target_auid[i],
1425 axs->target_uid[i],
1426 axs->target_sessionid[i],
1427 axs->target_sid[i],
1428 axs->target_comm[i]))
1429 call_panic = 1;
1430 }
1431
1432 if (context->target_pid &&
1433 audit_log_pid_context(context, context->target_pid,
1434 context->target_auid, context->target_uid,
1435 context->target_sessionid,
1436 context->target_sid, context->target_comm))
1437 call_panic = 1;
1438
1439 if (context->pwd.dentry && context->pwd.mnt) {
1440 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1441 if (ab) {
1442 audit_log_d_path(ab, "cwd=", &context->pwd);
1443 audit_log_end(ab);
1444 }
1445 }
1446
1447 i = 0;
1448 list_for_each_entry(n, &context->names_list, list) {
1449 if (n->hidden)
1450 continue;
1451 audit_log_name(context, n, NULL, i++, &call_panic);
1452 }
1453
1454 audit_log_proctitle(tsk, context);
1455
1456 /* Send end of event record to help user space know we are finished */
1457 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1458 if (ab)
1459 audit_log_end(ab);
1460 if (call_panic)
1461 audit_panic("error converting sid to string");
1462}
1463
1464/**
1465 * __audit_free - free a per-task audit context
1466 * @tsk: task whose audit context block to free
1467 *
1468 * Called from copy_process and do_exit
1469 */
1470void __audit_free(struct task_struct *tsk)
1471{
1472 struct audit_context *context;
1473
1474 context = audit_take_context(tsk, 0, 0);
1475 if (!context)
1476 return;
1477
1478 /* Check for system calls that do not go through the exit
1479 * function (e.g., exit_group), then free context block.
1480 * We use GFP_ATOMIC here because we might be doing this
1481 * in the context of the idle thread */
1482 /* that can happen only if we are called from do_exit() */
1483 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1484 audit_log_exit(context, tsk);
1485 if (!list_empty(&context->killed_trees))
1486 audit_kill_trees(&context->killed_trees);
1487
1488 audit_free_context(context);
1489}
1490
1491/**
1492 * __audit_syscall_entry - fill in an audit record at syscall entry
1493 * @major: major syscall type (function)
1494 * @a1: additional syscall register 1
1495 * @a2: additional syscall register 2
1496 * @a3: additional syscall register 3
1497 * @a4: additional syscall register 4
1498 *
1499 * Fill in audit context at syscall entry. This only happens if the
1500 * audit context was created when the task was created and the state or
1501 * filters demand the audit context be built. If the state from the
1502 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1503 * then the record will be written at syscall exit time (otherwise, it
1504 * will only be written if another part of the kernel requests that it
1505 * be written).
1506 */
1507void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1508 unsigned long a3, unsigned long a4)
1509{
1510 struct task_struct *tsk = current;
1511 struct audit_context *context = tsk->audit_context;
1512 enum audit_state state;
1513
1514 if (!audit_enabled || !context)
1515 return;
1516
1517 BUG_ON(context->in_syscall || context->name_count);
1518
1519 state = context->state;
1520 if (state == AUDIT_DISABLED)
1521 return;
1522
1523 context->dummy = !audit_n_rules;
1524 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1525 context->prio = 0;
1526 if (auditd_test_task(tsk))
1527 return;
1528 }
1529
1530 context->arch = syscall_get_arch();
1531 context->major = major;
1532 context->argv[0] = a1;
1533 context->argv[1] = a2;
1534 context->argv[2] = a3;
1535 context->argv[3] = a4;
1536 context->serial = 0;
1537 context->ctime = current_kernel_time64();
1538 context->in_syscall = 1;
1539 context->current_state = state;
1540 context->ppid = 0;
1541}
1542
1543/**
1544 * __audit_syscall_exit - deallocate audit context after a system call
1545 * @success: success value of the syscall
1546 * @return_code: return value of the syscall
1547 *
1548 * Tear down after system call. If the audit context has been marked as
1549 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1550 * filtering, or because some other part of the kernel wrote an audit
1551 * message), then write out the syscall information. In call cases,
1552 * free the names stored from getname().
1553 */
1554void __audit_syscall_exit(int success, long return_code)
1555{
1556 struct task_struct *tsk = current;
1557 struct audit_context *context;
1558
1559 if (success)
1560 success = AUDITSC_SUCCESS;
1561 else
1562 success = AUDITSC_FAILURE;
1563
1564 context = audit_take_context(tsk, success, return_code);
1565 if (!context)
1566 return;
1567
1568 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1569 audit_log_exit(context, tsk);
1570
1571 context->in_syscall = 0;
1572 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1573
1574 if (!list_empty(&context->killed_trees))
1575 audit_kill_trees(&context->killed_trees);
1576
1577 audit_free_names(context);
1578 unroll_tree_refs(context, NULL, 0);
1579 audit_free_aux(context);
1580 context->aux = NULL;
1581 context->aux_pids = NULL;
1582 context->target_pid = 0;
1583 context->target_sid = 0;
1584 context->sockaddr_len = 0;
1585 context->type = 0;
1586 context->fds[0] = -1;
1587 if (context->state != AUDIT_RECORD_CONTEXT) {
1588 kfree(context->filterkey);
1589 context->filterkey = NULL;
1590 }
1591 tsk->audit_context = context;
1592}
1593
1594static inline void handle_one(const struct inode *inode)
1595{
1596#ifdef CONFIG_AUDIT_TREE
1597 struct audit_context *context;
1598 struct audit_tree_refs *p;
1599 struct audit_chunk *chunk;
1600 int count;
1601 if (likely(!inode->i_fsnotify_marks))
1602 return;
1603 context = current->audit_context;
1604 p = context->trees;
1605 count = context->tree_count;
1606 rcu_read_lock();
1607 chunk = audit_tree_lookup(inode);
1608 rcu_read_unlock();
1609 if (!chunk)
1610 return;
1611 if (likely(put_tree_ref(context, chunk)))
1612 return;
1613 if (unlikely(!grow_tree_refs(context))) {
1614 pr_warn("out of memory, audit has lost a tree reference\n");
1615 audit_set_auditable(context);
1616 audit_put_chunk(chunk);
1617 unroll_tree_refs(context, p, count);
1618 return;
1619 }
1620 put_tree_ref(context, chunk);
1621#endif
1622}
1623
1624static void handle_path(const struct dentry *dentry)
1625{
1626#ifdef CONFIG_AUDIT_TREE
1627 struct audit_context *context;
1628 struct audit_tree_refs *p;
1629 const struct dentry *d, *parent;
1630 struct audit_chunk *drop;
1631 unsigned long seq;
1632 int count;
1633
1634 context = current->audit_context;
1635 p = context->trees;
1636 count = context->tree_count;
1637retry:
1638 drop = NULL;
1639 d = dentry;
1640 rcu_read_lock();
1641 seq = read_seqbegin(&rename_lock);
1642 for(;;) {
1643 struct inode *inode = d_backing_inode(d);
1644 if (inode && unlikely(inode->i_fsnotify_marks)) {
1645 struct audit_chunk *chunk;
1646 chunk = audit_tree_lookup(inode);
1647 if (chunk) {
1648 if (unlikely(!put_tree_ref(context, chunk))) {
1649 drop = chunk;
1650 break;
1651 }
1652 }
1653 }
1654 parent = d->d_parent;
1655 if (parent == d)
1656 break;
1657 d = parent;
1658 }
1659 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1660 rcu_read_unlock();
1661 if (!drop) {
1662 /* just a race with rename */
1663 unroll_tree_refs(context, p, count);
1664 goto retry;
1665 }
1666 audit_put_chunk(drop);
1667 if (grow_tree_refs(context)) {
1668 /* OK, got more space */
1669 unroll_tree_refs(context, p, count);
1670 goto retry;
1671 }
1672 /* too bad */
1673 pr_warn("out of memory, audit has lost a tree reference\n");
1674 unroll_tree_refs(context, p, count);
1675 audit_set_auditable(context);
1676 return;
1677 }
1678 rcu_read_unlock();
1679#endif
1680}
1681
1682static struct audit_names *audit_alloc_name(struct audit_context *context,
1683 unsigned char type)
1684{
1685 struct audit_names *aname;
1686
1687 if (context->name_count < AUDIT_NAMES) {
1688 aname = &context->preallocated_names[context->name_count];
1689 memset(aname, 0, sizeof(*aname));
1690 } else {
1691 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1692 if (!aname)
1693 return NULL;
1694 aname->should_free = true;
1695 }
1696
1697 aname->ino = AUDIT_INO_UNSET;
1698 aname->type = type;
1699 list_add_tail(&aname->list, &context->names_list);
1700
1701 context->name_count++;
1702 return aname;
1703}
1704
1705/**
1706 * __audit_reusename - fill out filename with info from existing entry
1707 * @uptr: userland ptr to pathname
1708 *
1709 * Search the audit_names list for the current audit context. If there is an
1710 * existing entry with a matching "uptr" then return the filename
1711 * associated with that audit_name. If not, return NULL.
1712 */
1713struct filename *
1714__audit_reusename(const __user char *uptr)
1715{
1716 struct audit_context *context = current->audit_context;
1717 struct audit_names *n;
1718
1719 list_for_each_entry(n, &context->names_list, list) {
1720 if (!n->name)
1721 continue;
1722 if (n->name->uptr == uptr) {
1723 n->name->refcnt++;
1724 return n->name;
1725 }
1726 }
1727 return NULL;
1728}
1729
1730/**
1731 * __audit_getname - add a name to the list
1732 * @name: name to add
1733 *
1734 * Add a name to the list of audit names for this context.
1735 * Called from fs/namei.c:getname().
1736 */
1737void __audit_getname(struct filename *name)
1738{
1739 struct audit_context *context = current->audit_context;
1740 struct audit_names *n;
1741
1742 if (!context->in_syscall)
1743 return;
1744
1745 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1746 if (!n)
1747 return;
1748
1749 n->name = name;
1750 n->name_len = AUDIT_NAME_FULL;
1751 name->aname = n;
1752 name->refcnt++;
1753
1754 if (!context->pwd.dentry)
1755 get_fs_pwd(current->fs, &context->pwd);
1756}
1757
1758/**
1759 * __audit_inode - store the inode and device from a lookup
1760 * @name: name being audited
1761 * @dentry: dentry being audited
1762 * @flags: attributes for this particular entry
1763 */
1764void __audit_inode(struct filename *name, const struct dentry *dentry,
1765 unsigned int flags)
1766{
1767 struct audit_context *context = current->audit_context;
1768 struct inode *inode = d_backing_inode(dentry);
1769 struct audit_names *n;
1770 bool parent = flags & AUDIT_INODE_PARENT;
1771
1772 if (!context->in_syscall)
1773 return;
1774
1775 if (!name)
1776 goto out_alloc;
1777
1778 /*
1779 * If we have a pointer to an audit_names entry already, then we can
1780 * just use it directly if the type is correct.
1781 */
1782 n = name->aname;
1783 if (n) {
1784 if (parent) {
1785 if (n->type == AUDIT_TYPE_PARENT ||
1786 n->type == AUDIT_TYPE_UNKNOWN)
1787 goto out;
1788 } else {
1789 if (n->type != AUDIT_TYPE_PARENT)
1790 goto out;
1791 }
1792 }
1793
1794 list_for_each_entry_reverse(n, &context->names_list, list) {
1795 if (n->ino) {
1796 /* valid inode number, use that for the comparison */
1797 if (n->ino != inode->i_ino ||
1798 n->dev != inode->i_sb->s_dev)
1799 continue;
1800 } else if (n->name) {
1801 /* inode number has not been set, check the name */
1802 if (strcmp(n->name->name, name->name))
1803 continue;
1804 } else
1805 /* no inode and no name (?!) ... this is odd ... */
1806 continue;
1807
1808 /* match the correct record type */
1809 if (parent) {
1810 if (n->type == AUDIT_TYPE_PARENT ||
1811 n->type == AUDIT_TYPE_UNKNOWN)
1812 goto out;
1813 } else {
1814 if (n->type != AUDIT_TYPE_PARENT)
1815 goto out;
1816 }
1817 }
1818
1819out_alloc:
1820 /* unable to find an entry with both a matching name and type */
1821 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1822 if (!n)
1823 return;
1824 if (name) {
1825 n->name = name;
1826 name->refcnt++;
1827 }
1828
1829out:
1830 if (parent) {
1831 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1832 n->type = AUDIT_TYPE_PARENT;
1833 if (flags & AUDIT_INODE_HIDDEN)
1834 n->hidden = true;
1835 } else {
1836 n->name_len = AUDIT_NAME_FULL;
1837 n->type = AUDIT_TYPE_NORMAL;
1838 }
1839 handle_path(dentry);
1840 audit_copy_inode(n, dentry, inode);
1841}
1842
1843void __audit_file(const struct file *file)
1844{
1845 __audit_inode(NULL, file->f_path.dentry, 0);
1846}
1847
1848/**
1849 * __audit_inode_child - collect inode info for created/removed objects
1850 * @parent: inode of dentry parent
1851 * @dentry: dentry being audited
1852 * @type: AUDIT_TYPE_* value that we're looking for
1853 *
1854 * For syscalls that create or remove filesystem objects, audit_inode
1855 * can only collect information for the filesystem object's parent.
1856 * This call updates the audit context with the child's information.
1857 * Syscalls that create a new filesystem object must be hooked after
1858 * the object is created. Syscalls that remove a filesystem object
1859 * must be hooked prior, in order to capture the target inode during
1860 * unsuccessful attempts.
1861 */
1862void __audit_inode_child(struct inode *parent,
1863 const struct dentry *dentry,
1864 const unsigned char type)
1865{
1866 struct audit_context *context = current->audit_context;
1867 struct inode *inode = d_backing_inode(dentry);
1868 const char *dname = dentry->d_name.name;
1869 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1870 struct audit_entry *e;
1871 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1872 int i;
1873
1874 if (!context->in_syscall)
1875 return;
1876
1877 rcu_read_lock();
1878 if (!list_empty(list)) {
1879 list_for_each_entry_rcu(e, list, list) {
1880 for (i = 0; i < e->rule.field_count; i++) {
1881 struct audit_field *f = &e->rule.fields[i];
1882
1883 if (f->type == AUDIT_FSTYPE) {
1884 if (audit_comparator(parent->i_sb->s_magic,
1885 f->op, f->val)) {
1886 if (e->rule.action == AUDIT_NEVER) {
1887 rcu_read_unlock();
1888 return;
1889 }
1890 }
1891 }
1892 }
1893 }
1894 }
1895 rcu_read_unlock();
1896
1897 if (inode)
1898 handle_one(inode);
1899
1900 /* look for a parent entry first */
1901 list_for_each_entry(n, &context->names_list, list) {
1902 if (!n->name ||
1903 (n->type != AUDIT_TYPE_PARENT &&
1904 n->type != AUDIT_TYPE_UNKNOWN))
1905 continue;
1906
1907 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1908 !audit_compare_dname_path(dname,
1909 n->name->name, n->name_len)) {
1910 if (n->type == AUDIT_TYPE_UNKNOWN)
1911 n->type = AUDIT_TYPE_PARENT;
1912 found_parent = n;
1913 break;
1914 }
1915 }
1916
1917 /* is there a matching child entry? */
1918 list_for_each_entry(n, &context->names_list, list) {
1919 /* can only match entries that have a name */
1920 if (!n->name ||
1921 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
1922 continue;
1923
1924 if (!strcmp(dname, n->name->name) ||
1925 !audit_compare_dname_path(dname, n->name->name,
1926 found_parent ?
1927 found_parent->name_len :
1928 AUDIT_NAME_FULL)) {
1929 if (n->type == AUDIT_TYPE_UNKNOWN)
1930 n->type = type;
1931 found_child = n;
1932 break;
1933 }
1934 }
1935
1936 if (!found_parent) {
1937 /* create a new, "anonymous" parent record */
1938 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1939 if (!n)
1940 return;
1941 audit_copy_inode(n, NULL, parent);
1942 }
1943
1944 if (!found_child) {
1945 found_child = audit_alloc_name(context, type);
1946 if (!found_child)
1947 return;
1948
1949 /* Re-use the name belonging to the slot for a matching parent
1950 * directory. All names for this context are relinquished in
1951 * audit_free_names() */
1952 if (found_parent) {
1953 found_child->name = found_parent->name;
1954 found_child->name_len = AUDIT_NAME_FULL;
1955 found_child->name->refcnt++;
1956 }
1957 }
1958
1959 if (inode)
1960 audit_copy_inode(found_child, dentry, inode);
1961 else
1962 found_child->ino = AUDIT_INO_UNSET;
1963}
1964EXPORT_SYMBOL_GPL(__audit_inode_child);
1965
1966/**
1967 * auditsc_get_stamp - get local copies of audit_context values
1968 * @ctx: audit_context for the task
1969 * @t: timespec64 to store time recorded in the audit_context
1970 * @serial: serial value that is recorded in the audit_context
1971 *
1972 * Also sets the context as auditable.
1973 */
1974int auditsc_get_stamp(struct audit_context *ctx,
1975 struct timespec64 *t, unsigned int *serial)
1976{
1977 if (!ctx->in_syscall)
1978 return 0;
1979 if (!ctx->serial)
1980 ctx->serial = audit_serial();
1981 t->tv_sec = ctx->ctime.tv_sec;
1982 t->tv_nsec = ctx->ctime.tv_nsec;
1983 *serial = ctx->serial;
1984 if (!ctx->prio) {
1985 ctx->prio = 1;
1986 ctx->current_state = AUDIT_RECORD_CONTEXT;
1987 }
1988 return 1;
1989}
1990
1991/* global counter which is incremented every time something logs in */
1992static atomic_t session_id = ATOMIC_INIT(0);
1993
1994static int audit_set_loginuid_perm(kuid_t loginuid)
1995{
1996 /* if we are unset, we don't need privs */
1997 if (!audit_loginuid_set(current))
1998 return 0;
1999 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2000 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2001 return -EPERM;
2002 /* it is set, you need permission */
2003 if (!capable(CAP_AUDIT_CONTROL))
2004 return -EPERM;
2005 /* reject if this is not an unset and we don't allow that */
2006 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
2007 return -EPERM;
2008 return 0;
2009}
2010
2011static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2012 unsigned int oldsessionid, unsigned int sessionid,
2013 int rc)
2014{
2015 struct audit_buffer *ab;
2016 uid_t uid, oldloginuid, loginuid;
2017 struct tty_struct *tty;
2018
2019 if (!audit_enabled)
2020 return;
2021
2022 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2023 if (!ab)
2024 return;
2025
2026 uid = from_kuid(&init_user_ns, task_uid(current));
2027 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2028 loginuid = from_kuid(&init_user_ns, kloginuid),
2029 tty = audit_get_tty(current);
2030
2031 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2032 audit_log_task_context(ab);
2033 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2034 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2035 oldsessionid, sessionid, !rc);
2036 audit_put_tty(tty);
2037 audit_log_end(ab);
2038}
2039
2040/**
2041 * audit_set_loginuid - set current task's audit_context loginuid
2042 * @loginuid: loginuid value
2043 *
2044 * Returns 0.
2045 *
2046 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2047 */
2048int audit_set_loginuid(kuid_t loginuid)
2049{
2050 struct task_struct *task = current;
2051 unsigned int oldsessionid, sessionid = (unsigned int)-1;
2052 kuid_t oldloginuid;
2053 int rc;
2054
2055 oldloginuid = audit_get_loginuid(current);
2056 oldsessionid = audit_get_sessionid(current);
2057
2058 rc = audit_set_loginuid_perm(loginuid);
2059 if (rc)
2060 goto out;
2061
2062 /* are we setting or clearing? */
2063 if (uid_valid(loginuid)) {
2064 sessionid = (unsigned int)atomic_inc_return(&session_id);
2065 if (unlikely(sessionid == (unsigned int)-1))
2066 sessionid = (unsigned int)atomic_inc_return(&session_id);
2067 }
2068
2069 task->sessionid = sessionid;
2070 task->loginuid = loginuid;
2071out:
2072 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2073 return rc;
2074}
2075
2076/**
2077 * __audit_mq_open - record audit data for a POSIX MQ open
2078 * @oflag: open flag
2079 * @mode: mode bits
2080 * @attr: queue attributes
2081 *
2082 */
2083void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2084{
2085 struct audit_context *context = current->audit_context;
2086
2087 if (attr)
2088 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2089 else
2090 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2091
2092 context->mq_open.oflag = oflag;
2093 context->mq_open.mode = mode;
2094
2095 context->type = AUDIT_MQ_OPEN;
2096}
2097
2098/**
2099 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2100 * @mqdes: MQ descriptor
2101 * @msg_len: Message length
2102 * @msg_prio: Message priority
2103 * @abs_timeout: Message timeout in absolute time
2104 *
2105 */
2106void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2107 const struct timespec64 *abs_timeout)
2108{
2109 struct audit_context *context = current->audit_context;
2110 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2111
2112 if (abs_timeout)
2113 memcpy(p, abs_timeout, sizeof(*p));
2114 else
2115 memset(p, 0, sizeof(*p));
2116
2117 context->mq_sendrecv.mqdes = mqdes;
2118 context->mq_sendrecv.msg_len = msg_len;
2119 context->mq_sendrecv.msg_prio = msg_prio;
2120
2121 context->type = AUDIT_MQ_SENDRECV;
2122}
2123
2124/**
2125 * __audit_mq_notify - record audit data for a POSIX MQ notify
2126 * @mqdes: MQ descriptor
2127 * @notification: Notification event
2128 *
2129 */
2130
2131void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2132{
2133 struct audit_context *context = current->audit_context;
2134
2135 if (notification)
2136 context->mq_notify.sigev_signo = notification->sigev_signo;
2137 else
2138 context->mq_notify.sigev_signo = 0;
2139
2140 context->mq_notify.mqdes = mqdes;
2141 context->type = AUDIT_MQ_NOTIFY;
2142}
2143
2144/**
2145 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2146 * @mqdes: MQ descriptor
2147 * @mqstat: MQ flags
2148 *
2149 */
2150void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2151{
2152 struct audit_context *context = current->audit_context;
2153 context->mq_getsetattr.mqdes = mqdes;
2154 context->mq_getsetattr.mqstat = *mqstat;
2155 context->type = AUDIT_MQ_GETSETATTR;
2156}
2157
2158/**
2159 * __audit_ipc_obj - record audit data for ipc object
2160 * @ipcp: ipc permissions
2161 *
2162 */
2163void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2164{
2165 struct audit_context *context = current->audit_context;
2166 context->ipc.uid = ipcp->uid;
2167 context->ipc.gid = ipcp->gid;
2168 context->ipc.mode = ipcp->mode;
2169 context->ipc.has_perm = 0;
2170 security_ipc_getsecid(ipcp, &context->ipc.osid);
2171 context->type = AUDIT_IPC;
2172}
2173
2174/**
2175 * __audit_ipc_set_perm - record audit data for new ipc permissions
2176 * @qbytes: msgq bytes
2177 * @uid: msgq user id
2178 * @gid: msgq group id
2179 * @mode: msgq mode (permissions)
2180 *
2181 * Called only after audit_ipc_obj().
2182 */
2183void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2184{
2185 struct audit_context *context = current->audit_context;
2186
2187 context->ipc.qbytes = qbytes;
2188 context->ipc.perm_uid = uid;
2189 context->ipc.perm_gid = gid;
2190 context->ipc.perm_mode = mode;
2191 context->ipc.has_perm = 1;
2192}
2193
2194void __audit_bprm(struct linux_binprm *bprm)
2195{
2196 struct audit_context *context = current->audit_context;
2197
2198 context->type = AUDIT_EXECVE;
2199 context->execve.argc = bprm->argc;
2200}
2201
2202
2203/**
2204 * __audit_socketcall - record audit data for sys_socketcall
2205 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2206 * @args: args array
2207 *
2208 */
2209int __audit_socketcall(int nargs, unsigned long *args)
2210{
2211 struct audit_context *context = current->audit_context;
2212
2213 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2214 return -EINVAL;
2215 context->type = AUDIT_SOCKETCALL;
2216 context->socketcall.nargs = nargs;
2217 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2218 return 0;
2219}
2220
2221/**
2222 * __audit_fd_pair - record audit data for pipe and socketpair
2223 * @fd1: the first file descriptor
2224 * @fd2: the second file descriptor
2225 *
2226 */
2227void __audit_fd_pair(int fd1, int fd2)
2228{
2229 struct audit_context *context = current->audit_context;
2230 context->fds[0] = fd1;
2231 context->fds[1] = fd2;
2232}
2233
2234/**
2235 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2236 * @len: data length in user space
2237 * @a: data address in kernel space
2238 *
2239 * Returns 0 for success or NULL context or < 0 on error.
2240 */
2241int __audit_sockaddr(int len, void *a)
2242{
2243 struct audit_context *context = current->audit_context;
2244
2245 if (!context->sockaddr) {
2246 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2247 if (!p)
2248 return -ENOMEM;
2249 context->sockaddr = p;
2250 }
2251
2252 context->sockaddr_len = len;
2253 memcpy(context->sockaddr, a, len);
2254 return 0;
2255}
2256
2257void __audit_ptrace(struct task_struct *t)
2258{
2259 struct audit_context *context = current->audit_context;
2260
2261 context->target_pid = task_tgid_nr(t);
2262 context->target_auid = audit_get_loginuid(t);
2263 context->target_uid = task_uid(t);
2264 context->target_sessionid = audit_get_sessionid(t);
2265 security_task_getsecid(t, &context->target_sid);
2266 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2267}
2268
2269/**
2270 * audit_signal_info - record signal info for shutting down audit subsystem
2271 * @sig: signal value
2272 * @t: task being signaled
2273 *
2274 * If the audit subsystem is being terminated, record the task (pid)
2275 * and uid that is doing that.
2276 */
2277int audit_signal_info(int sig, struct task_struct *t)
2278{
2279 struct audit_aux_data_pids *axp;
2280 struct task_struct *tsk = current;
2281 struct audit_context *ctx = tsk->audit_context;
2282 kuid_t uid = current_uid(), t_uid = task_uid(t);
2283
2284 if (auditd_test_task(t) &&
2285 (sig == SIGTERM || sig == SIGHUP ||
2286 sig == SIGUSR1 || sig == SIGUSR2)) {
2287 audit_sig_pid = task_tgid_nr(tsk);
2288 if (uid_valid(tsk->loginuid))
2289 audit_sig_uid = tsk->loginuid;
2290 else
2291 audit_sig_uid = uid;
2292 security_task_getsecid(tsk, &audit_sig_sid);
2293 }
2294
2295 if (!audit_signals || audit_dummy_context())
2296 return 0;
2297
2298 /* optimize the common case by putting first signal recipient directly
2299 * in audit_context */
2300 if (!ctx->target_pid) {
2301 ctx->target_pid = task_tgid_nr(t);
2302 ctx->target_auid = audit_get_loginuid(t);
2303 ctx->target_uid = t_uid;
2304 ctx->target_sessionid = audit_get_sessionid(t);
2305 security_task_getsecid(t, &ctx->target_sid);
2306 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2307 return 0;
2308 }
2309
2310 axp = (void *)ctx->aux_pids;
2311 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2312 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2313 if (!axp)
2314 return -ENOMEM;
2315
2316 axp->d.type = AUDIT_OBJ_PID;
2317 axp->d.next = ctx->aux_pids;
2318 ctx->aux_pids = (void *)axp;
2319 }
2320 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2321
2322 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2323 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2324 axp->target_uid[axp->pid_count] = t_uid;
2325 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2326 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2327 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2328 axp->pid_count++;
2329
2330 return 0;
2331}
2332
2333/**
2334 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2335 * @bprm: pointer to the bprm being processed
2336 * @new: the proposed new credentials
2337 * @old: the old credentials
2338 *
2339 * Simply check if the proc already has the caps given by the file and if not
2340 * store the priv escalation info for later auditing at the end of the syscall
2341 *
2342 * -Eric
2343 */
2344int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2345 const struct cred *new, const struct cred *old)
2346{
2347 struct audit_aux_data_bprm_fcaps *ax;
2348 struct audit_context *context = current->audit_context;
2349 struct cpu_vfs_cap_data vcaps;
2350
2351 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2352 if (!ax)
2353 return -ENOMEM;
2354
2355 ax->d.type = AUDIT_BPRM_FCAPS;
2356 ax->d.next = context->aux;
2357 context->aux = (void *)ax;
2358
2359 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2360
2361 ax->fcap.permitted = vcaps.permitted;
2362 ax->fcap.inheritable = vcaps.inheritable;
2363 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2364 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2365
2366 ax->old_pcap.permitted = old->cap_permitted;
2367 ax->old_pcap.inheritable = old->cap_inheritable;
2368 ax->old_pcap.effective = old->cap_effective;
2369 ax->old_pcap.ambient = old->cap_ambient;
2370
2371 ax->new_pcap.permitted = new->cap_permitted;
2372 ax->new_pcap.inheritable = new->cap_inheritable;
2373 ax->new_pcap.effective = new->cap_effective;
2374 ax->new_pcap.ambient = new->cap_ambient;
2375 return 0;
2376}
2377
2378/**
2379 * __audit_log_capset - store information about the arguments to the capset syscall
2380 * @new: the new credentials
2381 * @old: the old (current) credentials
2382 *
2383 * Record the arguments userspace sent to sys_capset for later printing by the
2384 * audit system if applicable
2385 */
2386void __audit_log_capset(const struct cred *new, const struct cred *old)
2387{
2388 struct audit_context *context = current->audit_context;
2389 context->capset.pid = task_tgid_nr(current);
2390 context->capset.cap.effective = new->cap_effective;
2391 context->capset.cap.inheritable = new->cap_effective;
2392 context->capset.cap.permitted = new->cap_permitted;
2393 context->capset.cap.ambient = new->cap_ambient;
2394 context->type = AUDIT_CAPSET;
2395}
2396
2397void __audit_mmap_fd(int fd, int flags)
2398{
2399 struct audit_context *context = current->audit_context;
2400 context->mmap.fd = fd;
2401 context->mmap.flags = flags;
2402 context->type = AUDIT_MMAP;
2403}
2404
2405void __audit_log_kern_module(char *name)
2406{
2407 struct audit_context *context = current->audit_context;
2408
2409 context->module.name = kmalloc(strlen(name) + 1, GFP_KERNEL);
2410 strcpy(context->module.name, name);
2411 context->type = AUDIT_KERN_MODULE;
2412}
2413
2414void __audit_fanotify(unsigned int response)
2415{
2416 audit_log(current->audit_context, GFP_KERNEL,
2417 AUDIT_FANOTIFY, "resp=%u", response);
2418}
2419
2420static void audit_log_task(struct audit_buffer *ab)
2421{
2422 kuid_t auid, uid;
2423 kgid_t gid;
2424 unsigned int sessionid;
2425 char comm[sizeof(current->comm)];
2426
2427 auid = audit_get_loginuid(current);
2428 sessionid = audit_get_sessionid(current);
2429 current_uid_gid(&uid, &gid);
2430
2431 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2432 from_kuid(&init_user_ns, auid),
2433 from_kuid(&init_user_ns, uid),
2434 from_kgid(&init_user_ns, gid),
2435 sessionid);
2436 audit_log_task_context(ab);
2437 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2438 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2439 audit_log_d_path_exe(ab, current->mm);
2440}
2441
2442/**
2443 * audit_core_dumps - record information about processes that end abnormally
2444 * @signr: signal value
2445 *
2446 * If a process ends with a core dump, something fishy is going on and we
2447 * should record the event for investigation.
2448 */
2449void audit_core_dumps(long signr)
2450{
2451 struct audit_buffer *ab;
2452
2453 if (!audit_enabled)
2454 return;
2455
2456 if (signr == SIGQUIT) /* don't care for those */
2457 return;
2458
2459 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2460 if (unlikely(!ab))
2461 return;
2462 audit_log_task(ab);
2463 audit_log_format(ab, " sig=%ld res=1", signr);
2464 audit_log_end(ab);
2465}
2466
2467void __audit_seccomp(unsigned long syscall, long signr, int code)
2468{
2469 struct audit_buffer *ab;
2470
2471 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2472 if (unlikely(!ab))
2473 return;
2474 audit_log_task(ab);
2475 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2476 signr, syscall_get_arch(), syscall,
2477 in_compat_syscall(), KSTK_EIP(current), code);
2478 audit_log_end(ab);
2479}
2480
2481struct list_head *audit_killed_trees(void)
2482{
2483 struct audit_context *ctx = current->audit_context;
2484 if (likely(!ctx || !ctx->in_syscall))
2485 return NULL;
2486 return &ctx->killed_trees;
2487}