Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
   4 *		http://www.samsung.com
   5 *
   6 * Copyright 2008 Openmoko, Inc.
   7 * Copyright 2008 Simtec Electronics
   8 *      Ben Dooks <ben@simtec.co.uk>
   9 *      http://armlinux.simtec.co.uk/
  10 *
  11 * S3C USB2.0 High-speed / OtG driver
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/spinlock.h>
  17#include <linux/interrupt.h>
  18#include <linux/platform_device.h>
  19#include <linux/dma-mapping.h>
  20#include <linux/mutex.h>
  21#include <linux/seq_file.h>
  22#include <linux/delay.h>
  23#include <linux/io.h>
  24#include <linux/slab.h>
  25#include <linux/of_platform.h>
  26
  27#include <linux/usb/ch9.h>
  28#include <linux/usb/gadget.h>
  29#include <linux/usb/phy.h>
  30#include <linux/usb/composite.h>
  31
  32
  33#include "core.h"
  34#include "hw.h"
  35
  36/* conversion functions */
  37static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
  38{
  39	return container_of(req, struct dwc2_hsotg_req, req);
  40}
  41
  42static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
  43{
  44	return container_of(ep, struct dwc2_hsotg_ep, ep);
  45}
  46
  47static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
  48{
  49	return container_of(gadget, struct dwc2_hsotg, gadget);
  50}
  51
  52static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
  53{
  54	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
  55}
  56
  57static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
  58{
  59	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
  60}
  61
  62static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
  63						u32 ep_index, u32 dir_in)
  64{
  65	if (dir_in)
  66		return hsotg->eps_in[ep_index];
  67	else
  68		return hsotg->eps_out[ep_index];
  69}
  70
  71/* forward declaration of functions */
  72static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
  73
  74/**
  75 * using_dma - return the DMA status of the driver.
  76 * @hsotg: The driver state.
  77 *
  78 * Return true if we're using DMA.
  79 *
  80 * Currently, we have the DMA support code worked into everywhere
  81 * that needs it, but the AMBA DMA implementation in the hardware can
  82 * only DMA from 32bit aligned addresses. This means that gadgets such
  83 * as the CDC Ethernet cannot work as they often pass packets which are
  84 * not 32bit aligned.
  85 *
  86 * Unfortunately the choice to use DMA or not is global to the controller
  87 * and seems to be only settable when the controller is being put through
  88 * a core reset. This means we either need to fix the gadgets to take
  89 * account of DMA alignment, or add bounce buffers (yuerk).
  90 *
  91 * g_using_dma is set depending on dts flag.
  92 */
  93static inline bool using_dma(struct dwc2_hsotg *hsotg)
  94{
  95	return hsotg->params.g_dma;
  96}
  97
  98/*
  99 * using_desc_dma - return the descriptor DMA status of the driver.
 100 * @hsotg: The driver state.
 101 *
 102 * Return true if we're using descriptor DMA.
 103 */
 104static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
 105{
 106	return hsotg->params.g_dma_desc;
 107}
 108
 109/**
 110 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 111 * @hs_ep: The endpoint
 
 112 *
 113 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 114 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 115 */
 116static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
 117{
 118	struct dwc2_hsotg *hsotg = hs_ep->parent;
 119	u16 limit = DSTS_SOFFN_LIMIT;
 120
 121	if (hsotg->gadget.speed != USB_SPEED_HIGH)
 122		limit >>= 3;
 123
 124	hs_ep->target_frame += hs_ep->interval;
 125	if (hs_ep->target_frame > limit) {
 126		hs_ep->frame_overrun = true;
 127		hs_ep->target_frame &= limit;
 128	} else {
 129		hs_ep->frame_overrun = false;
 130	}
 131}
 132
 133/**
 134 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
 135 *                                    by one.
 136 * @hs_ep: The endpoint.
 137 *
 138 * This function used in service interval based scheduling flow to calculate
 139 * descriptor frame number filed value. For service interval mode frame
 140 * number in descriptor should point to last (u)frame in the interval.
 141 *
 142 */
 143static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
 144{
 145	struct dwc2_hsotg *hsotg = hs_ep->parent;
 146	u16 limit = DSTS_SOFFN_LIMIT;
 147
 148	if (hsotg->gadget.speed != USB_SPEED_HIGH)
 149		limit >>= 3;
 150
 151	if (hs_ep->target_frame)
 152		hs_ep->target_frame -= 1;
 153	else
 154		hs_ep->target_frame = limit;
 155}
 156
 157/**
 158 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
 159 * @hsotg: The device state
 160 * @ints: A bitmask of the interrupts to enable
 161 */
 162static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 163{
 164	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
 165	u32 new_gsintmsk;
 166
 167	new_gsintmsk = gsintmsk | ints;
 168
 169	if (new_gsintmsk != gsintmsk) {
 170		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
 171		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
 172	}
 173}
 174
 175/**
 176 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
 177 * @hsotg: The device state
 178 * @ints: A bitmask of the interrupts to enable
 179 */
 180static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 181{
 182	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
 183	u32 new_gsintmsk;
 184
 185	new_gsintmsk = gsintmsk & ~ints;
 186
 187	if (new_gsintmsk != gsintmsk)
 188		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
 189}
 190
 191/**
 192 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
 193 * @hsotg: The device state
 194 * @ep: The endpoint index
 195 * @dir_in: True if direction is in.
 196 * @en: The enable value, true to enable
 197 *
 198 * Set or clear the mask for an individual endpoint's interrupt
 199 * request.
 200 */
 201static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
 202				  unsigned int ep, unsigned int dir_in,
 203				 unsigned int en)
 204{
 205	unsigned long flags;
 206	u32 bit = 1 << ep;
 207	u32 daint;
 208
 209	if (!dir_in)
 210		bit <<= 16;
 211
 212	local_irq_save(flags);
 213	daint = dwc2_readl(hsotg, DAINTMSK);
 214	if (en)
 215		daint |= bit;
 216	else
 217		daint &= ~bit;
 218	dwc2_writel(hsotg, daint, DAINTMSK);
 219	local_irq_restore(flags);
 220}
 221
 222/**
 223 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
 224 *
 225 * @hsotg: Programming view of the DWC_otg controller
 226 */
 227int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
 228{
 229	if (hsotg->hw_params.en_multiple_tx_fifo)
 230		/* In dedicated FIFO mode we need count of IN EPs */
 231		return hsotg->hw_params.num_dev_in_eps;
 232	else
 233		/* In shared FIFO mode we need count of Periodic IN EPs */
 234		return hsotg->hw_params.num_dev_perio_in_ep;
 235}
 236
 237/**
 238 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
 239 * device mode TX FIFOs
 240 *
 241 * @hsotg: Programming view of the DWC_otg controller
 242 */
 243int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
 244{
 245	int addr;
 246	int tx_addr_max;
 247	u32 np_tx_fifo_size;
 248
 249	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
 250				hsotg->params.g_np_tx_fifo_size);
 251
 252	/* Get Endpoint Info Control block size in DWORDs. */
 253	tx_addr_max = hsotg->hw_params.total_fifo_size;
 254
 255	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
 256	if (tx_addr_max <= addr)
 257		return 0;
 258
 259	return tx_addr_max - addr;
 260}
 261
 262/**
 263 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
 264 *
 265 * @hsotg: Programming view of the DWC_otg controller
 266 *
 267 */
 268static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
 269{
 270	u32 gintsts2;
 271	u32 gintmsk2;
 272
 273	gintsts2 = dwc2_readl(hsotg, GINTSTS2);
 274	gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
 275	gintsts2 &= gintmsk2;
 276
 277	if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
 278		dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
 279		dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
 280		dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
 281	}
 282}
 283
 284/**
 285 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
 286 * TX FIFOs
 287 *
 288 * @hsotg: Programming view of the DWC_otg controller
 289 */
 290int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
 291{
 292	int tx_fifo_count;
 293	int tx_fifo_depth;
 294
 295	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
 296
 297	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
 298
 299	if (!tx_fifo_count)
 300		return tx_fifo_depth;
 301	else
 302		return tx_fifo_depth / tx_fifo_count;
 303}
 304
 305/**
 306 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
 307 * @hsotg: The device instance.
 308 */
 309static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
 310{
 311	unsigned int ep;
 312	unsigned int addr;
 313	int timeout;
 314
 315	u32 val;
 316	u32 *txfsz = hsotg->params.g_tx_fifo_size;
 317
 318	/* Reset fifo map if not correctly cleared during previous session */
 319	WARN_ON(hsotg->fifo_map);
 320	hsotg->fifo_map = 0;
 321
 322	/* set RX/NPTX FIFO sizes */
 323	dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
 324	dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
 325		    FIFOSIZE_STARTADDR_SHIFT) |
 326		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
 327		    GNPTXFSIZ);
 328
 329	/*
 330	 * arange all the rest of the TX FIFOs, as some versions of this
 331	 * block have overlapping default addresses. This also ensures
 332	 * that if the settings have been changed, then they are set to
 333	 * known values.
 334	 */
 335
 336	/* start at the end of the GNPTXFSIZ, rounded up */
 337	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
 338
 339	/*
 340	 * Configure fifos sizes from provided configuration and assign
 341	 * them to endpoints dynamically according to maxpacket size value of
 342	 * given endpoint.
 343	 */
 344	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
 345		if (!txfsz[ep])
 346			continue;
 347		val = addr;
 348		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
 349		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
 350			  "insufficient fifo memory");
 351		addr += txfsz[ep];
 352
 353		dwc2_writel(hsotg, val, DPTXFSIZN(ep));
 354		val = dwc2_readl(hsotg, DPTXFSIZN(ep));
 355	}
 356
 357	dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
 358		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
 359		    GDFIFOCFG);
 360	/*
 361	 * according to p428 of the design guide, we need to ensure that
 362	 * all fifos are flushed before continuing
 363	 */
 364
 365	dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
 366	       GRSTCTL_RXFFLSH, GRSTCTL);
 367
 368	/* wait until the fifos are both flushed */
 369	timeout = 100;
 370	while (1) {
 371		val = dwc2_readl(hsotg, GRSTCTL);
 372
 373		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
 374			break;
 375
 376		if (--timeout == 0) {
 377			dev_err(hsotg->dev,
 378				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
 379				__func__, val);
 380			break;
 381		}
 382
 383		udelay(1);
 384	}
 385
 386	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
 387}
 388
 389/**
 390 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
 391 * @ep: USB endpoint to allocate request for.
 392 * @flags: Allocation flags
 393 *
 394 * Allocate a new USB request structure appropriate for the specified endpoint
 395 */
 396static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
 397						       gfp_t flags)
 398{
 399	struct dwc2_hsotg_req *req;
 400
 401	req = kzalloc(sizeof(*req), flags);
 402	if (!req)
 403		return NULL;
 404
 405	INIT_LIST_HEAD(&req->queue);
 406
 407	return &req->req;
 408}
 409
 410/**
 411 * is_ep_periodic - return true if the endpoint is in periodic mode.
 412 * @hs_ep: The endpoint to query.
 413 *
 414 * Returns true if the endpoint is in periodic mode, meaning it is being
 415 * used for an Interrupt or ISO transfer.
 416 */
 417static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
 418{
 419	return hs_ep->periodic;
 420}
 421
 422/**
 423 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
 424 * @hsotg: The device state.
 425 * @hs_ep: The endpoint for the request
 426 * @hs_req: The request being processed.
 427 *
 428 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
 429 * of a request to ensure the buffer is ready for access by the caller.
 430 */
 431static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
 432				 struct dwc2_hsotg_ep *hs_ep,
 433				struct dwc2_hsotg_req *hs_req)
 434{
 435	struct usb_request *req = &hs_req->req;
 436
 437	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->map_dir);
 438}
 439
 440/*
 441 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
 442 * for Control endpoint
 443 * @hsotg: The device state.
 444 *
 445 * This function will allocate 4 descriptor chains for EP 0: 2 for
 446 * Setup stage, per one for IN and OUT data/status transactions.
 447 */
 448static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
 449{
 450	hsotg->setup_desc[0] =
 451		dmam_alloc_coherent(hsotg->dev,
 452				    sizeof(struct dwc2_dma_desc),
 453				    &hsotg->setup_desc_dma[0],
 454				    GFP_KERNEL);
 455	if (!hsotg->setup_desc[0])
 456		goto fail;
 457
 458	hsotg->setup_desc[1] =
 459		dmam_alloc_coherent(hsotg->dev,
 460				    sizeof(struct dwc2_dma_desc),
 461				    &hsotg->setup_desc_dma[1],
 462				    GFP_KERNEL);
 463	if (!hsotg->setup_desc[1])
 464		goto fail;
 465
 466	hsotg->ctrl_in_desc =
 467		dmam_alloc_coherent(hsotg->dev,
 468				    sizeof(struct dwc2_dma_desc),
 469				    &hsotg->ctrl_in_desc_dma,
 470				    GFP_KERNEL);
 471	if (!hsotg->ctrl_in_desc)
 472		goto fail;
 473
 474	hsotg->ctrl_out_desc =
 475		dmam_alloc_coherent(hsotg->dev,
 476				    sizeof(struct dwc2_dma_desc),
 477				    &hsotg->ctrl_out_desc_dma,
 478				    GFP_KERNEL);
 479	if (!hsotg->ctrl_out_desc)
 480		goto fail;
 481
 482	return 0;
 483
 484fail:
 485	return -ENOMEM;
 486}
 487
 488/**
 489 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
 490 * @hsotg: The controller state.
 491 * @hs_ep: The endpoint we're going to write for.
 492 * @hs_req: The request to write data for.
 493 *
 494 * This is called when the TxFIFO has some space in it to hold a new
 495 * transmission and we have something to give it. The actual setup of
 496 * the data size is done elsewhere, so all we have to do is to actually
 497 * write the data.
 498 *
 499 * The return value is zero if there is more space (or nothing was done)
 500 * otherwise -ENOSPC is returned if the FIFO space was used up.
 501 *
 502 * This routine is only needed for PIO
 503 */
 504static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
 505				 struct dwc2_hsotg_ep *hs_ep,
 506				struct dwc2_hsotg_req *hs_req)
 507{
 508	bool periodic = is_ep_periodic(hs_ep);
 509	u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
 510	int buf_pos = hs_req->req.actual;
 511	int to_write = hs_ep->size_loaded;
 512	void *data;
 513	int can_write;
 514	int pkt_round;
 515	int max_transfer;
 516
 517	to_write -= (buf_pos - hs_ep->last_load);
 518
 519	/* if there's nothing to write, get out early */
 520	if (to_write == 0)
 521		return 0;
 522
 523	if (periodic && !hsotg->dedicated_fifos) {
 524		u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
 525		int size_left;
 526		int size_done;
 527
 528		/*
 529		 * work out how much data was loaded so we can calculate
 530		 * how much data is left in the fifo.
 531		 */
 532
 533		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
 534
 535		/*
 536		 * if shared fifo, we cannot write anything until the
 537		 * previous data has been completely sent.
 538		 */
 539		if (hs_ep->fifo_load != 0) {
 540			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 541			return -ENOSPC;
 542		}
 543
 544		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
 545			__func__, size_left,
 546			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
 547
 548		/* how much of the data has moved */
 549		size_done = hs_ep->size_loaded - size_left;
 550
 551		/* how much data is left in the fifo */
 552		can_write = hs_ep->fifo_load - size_done;
 553		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
 554			__func__, can_write);
 555
 556		can_write = hs_ep->fifo_size - can_write;
 557		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
 558			__func__, can_write);
 559
 560		if (can_write <= 0) {
 561			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 562			return -ENOSPC;
 563		}
 564	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
 565		can_write = dwc2_readl(hsotg,
 566				       DTXFSTS(hs_ep->fifo_index));
 567
 568		can_write &= 0xffff;
 569		can_write *= 4;
 570	} else {
 571		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
 572			dev_dbg(hsotg->dev,
 573				"%s: no queue slots available (0x%08x)\n",
 574				__func__, gnptxsts);
 575
 576			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
 577			return -ENOSPC;
 578		}
 579
 580		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
 581		can_write *= 4;	/* fifo size is in 32bit quantities. */
 582	}
 583
 584	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
 585
 586	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
 587		__func__, gnptxsts, can_write, to_write, max_transfer);
 588
 589	/*
 590	 * limit to 512 bytes of data, it seems at least on the non-periodic
 591	 * FIFO, requests of >512 cause the endpoint to get stuck with a
 592	 * fragment of the end of the transfer in it.
 593	 */
 594	if (can_write > 512 && !periodic)
 595		can_write = 512;
 596
 597	/*
 598	 * limit the write to one max-packet size worth of data, but allow
 599	 * the transfer to return that it did not run out of fifo space
 600	 * doing it.
 601	 */
 602	if (to_write > max_transfer) {
 603		to_write = max_transfer;
 604
 605		/* it's needed only when we do not use dedicated fifos */
 606		if (!hsotg->dedicated_fifos)
 607			dwc2_hsotg_en_gsint(hsotg,
 608					    periodic ? GINTSTS_PTXFEMP :
 609					   GINTSTS_NPTXFEMP);
 610	}
 611
 612	/* see if we can write data */
 613
 614	if (to_write > can_write) {
 615		to_write = can_write;
 616		pkt_round = to_write % max_transfer;
 617
 618		/*
 619		 * Round the write down to an
 620		 * exact number of packets.
 621		 *
 622		 * Note, we do not currently check to see if we can ever
 623		 * write a full packet or not to the FIFO.
 624		 */
 625
 626		if (pkt_round)
 627			to_write -= pkt_round;
 628
 629		/*
 630		 * enable correct FIFO interrupt to alert us when there
 631		 * is more room left.
 632		 */
 633
 634		/* it's needed only when we do not use dedicated fifos */
 635		if (!hsotg->dedicated_fifos)
 636			dwc2_hsotg_en_gsint(hsotg,
 637					    periodic ? GINTSTS_PTXFEMP :
 638					   GINTSTS_NPTXFEMP);
 639	}
 640
 641	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
 642		to_write, hs_req->req.length, can_write, buf_pos);
 643
 644	if (to_write <= 0)
 645		return -ENOSPC;
 646
 647	hs_req->req.actual = buf_pos + to_write;
 648	hs_ep->total_data += to_write;
 649
 650	if (periodic)
 651		hs_ep->fifo_load += to_write;
 652
 653	to_write = DIV_ROUND_UP(to_write, 4);
 654	data = hs_req->req.buf + buf_pos;
 655
 656	dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
 657
 658	return (to_write >= can_write) ? -ENOSPC : 0;
 659}
 660
 661/**
 662 * get_ep_limit - get the maximum data legnth for this endpoint
 663 * @hs_ep: The endpoint
 664 *
 665 * Return the maximum data that can be queued in one go on a given endpoint
 666 * so that transfers that are too long can be split.
 667 */
 668static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
 669{
 670	int index = hs_ep->index;
 671	unsigned int maxsize;
 672	unsigned int maxpkt;
 673
 674	if (index != 0) {
 675		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
 676		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
 677	} else {
 678		maxsize = 64 + 64;
 679		if (hs_ep->dir_in)
 680			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
 681		else
 682			maxpkt = 2;
 683	}
 684
 685	/* we made the constant loading easier above by using +1 */
 686	maxpkt--;
 687	maxsize--;
 688
 689	/*
 690	 * constrain by packet count if maxpkts*pktsize is greater
 691	 * than the length register size.
 692	 */
 693
 694	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
 695		maxsize = maxpkt * hs_ep->ep.maxpacket;
 696
 697	return maxsize;
 698}
 699
 700/**
 701 * dwc2_hsotg_read_frameno - read current frame number
 702 * @hsotg: The device instance
 703 *
 704 * Return the current frame number
 705 */
 706static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
 707{
 708	u32 dsts;
 709
 710	dsts = dwc2_readl(hsotg, DSTS);
 711	dsts &= DSTS_SOFFN_MASK;
 712	dsts >>= DSTS_SOFFN_SHIFT;
 713
 714	return dsts;
 715}
 716
 717/**
 718 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
 719 * DMA descriptor chain prepared for specific endpoint
 720 * @hs_ep: The endpoint
 721 *
 722 * Return the maximum data that can be queued in one go on a given endpoint
 723 * depending on its descriptor chain capacity so that transfers that
 724 * are too long can be split.
 725 */
 726static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
 727{
 728	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
 729	int is_isoc = hs_ep->isochronous;
 730	unsigned int maxsize;
 731	u32 mps = hs_ep->ep.maxpacket;
 732	int dir_in = hs_ep->dir_in;
 733
 734	if (is_isoc)
 735		maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
 736					   DEV_DMA_ISOC_RX_NBYTES_LIMIT) *
 737					   MAX_DMA_DESC_NUM_HS_ISOC;
 738	else
 739		maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC;
 740
 741	/* Interrupt OUT EP with mps not multiple of 4 */
 742	if (hs_ep->index)
 743		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
 744			maxsize = mps * MAX_DMA_DESC_NUM_GENERIC;
 745
 746	return maxsize;
 747}
 748
 749/*
 750 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
 751 * @hs_ep: The endpoint
 752 * @mask: RX/TX bytes mask to be defined
 753 *
 754 * Returns maximum data payload for one descriptor after analyzing endpoint
 755 * characteristics.
 756 * DMA descriptor transfer bytes limit depends on EP type:
 757 * Control out - MPS,
 758 * Isochronous - descriptor rx/tx bytes bitfield limit,
 759 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
 760 * have concatenations from various descriptors within one packet.
 761 * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds
 762 * to a single descriptor.
 763 *
 764 * Selects corresponding mask for RX/TX bytes as well.
 765 */
 766static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
 767{
 768	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
 769	u32 mps = hs_ep->ep.maxpacket;
 770	int dir_in = hs_ep->dir_in;
 771	u32 desc_size = 0;
 772
 773	if (!hs_ep->index && !dir_in) {
 774		desc_size = mps;
 775		*mask = DEV_DMA_NBYTES_MASK;
 776	} else if (hs_ep->isochronous) {
 777		if (dir_in) {
 778			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
 779			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
 780		} else {
 781			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
 782			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
 783		}
 784	} else {
 785		desc_size = DEV_DMA_NBYTES_LIMIT;
 786		*mask = DEV_DMA_NBYTES_MASK;
 787
 788		/* Round down desc_size to be mps multiple */
 789		desc_size -= desc_size % mps;
 790	}
 791
 792	/* Interrupt OUT EP with mps not multiple of 4 */
 793	if (hs_ep->index)
 794		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) {
 795			desc_size = mps;
 796			*mask = DEV_DMA_NBYTES_MASK;
 797		}
 798
 799	return desc_size;
 800}
 801
 802static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
 803						 struct dwc2_dma_desc **desc,
 
 
 
 
 
 
 
 
 804						 dma_addr_t dma_buff,
 805						 unsigned int len,
 806						 bool true_last)
 807{
 
 808	int dir_in = hs_ep->dir_in;
 
 809	u32 mps = hs_ep->ep.maxpacket;
 810	u32 maxsize = 0;
 811	u32 offset = 0;
 812	u32 mask = 0;
 813	int i;
 814
 815	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
 816
 817	hs_ep->desc_count = (len / maxsize) +
 818				((len % maxsize) ? 1 : 0);
 819	if (len == 0)
 820		hs_ep->desc_count = 1;
 821
 822	for (i = 0; i < hs_ep->desc_count; ++i) {
 823		(*desc)->status = 0;
 824		(*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
 825				 << DEV_DMA_BUFF_STS_SHIFT);
 826
 827		if (len > maxsize) {
 828			if (!hs_ep->index && !dir_in)
 829				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
 830
 831			(*desc)->status |=
 832				maxsize << DEV_DMA_NBYTES_SHIFT & mask;
 833			(*desc)->buf = dma_buff + offset;
 834
 835			len -= maxsize;
 836			offset += maxsize;
 837		} else {
 838			if (true_last)
 839				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
 840
 841			if (dir_in)
 842				(*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
 843					((hs_ep->send_zlp && true_last) ?
 844					DEV_DMA_SHORT : 0);
 
 845
 846			(*desc)->status |=
 847				len << DEV_DMA_NBYTES_SHIFT & mask;
 848			(*desc)->buf = dma_buff + offset;
 849		}
 850
 851		(*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
 852		(*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
 853				 << DEV_DMA_BUFF_STS_SHIFT);
 854		(*desc)++;
 855	}
 856}
 857
 858/*
 859 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
 860 * @hs_ep: The endpoint
 861 * @ureq: Request to transfer
 862 * @offset: offset in bytes
 863 * @len: Length of the transfer
 864 *
 865 * This function will iterate over descriptor chain and fill its entries
 866 * with corresponding information based on transfer data.
 867 */
 868static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
 869						 dma_addr_t dma_buff,
 870						 unsigned int len)
 871{
 872	struct usb_request *ureq = NULL;
 873	struct dwc2_dma_desc *desc = hs_ep->desc_list;
 874	struct scatterlist *sg;
 875	int i;
 876	u8 desc_count = 0;
 877
 878	if (hs_ep->req)
 879		ureq = &hs_ep->req->req;
 880
 881	/* non-DMA sg buffer */
 882	if (!ureq || !ureq->num_sgs) {
 883		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
 884			dma_buff, len, true);
 885		return;
 886	}
 887
 888	/* DMA sg buffer */
 889	for_each_sg(ureq->sg, sg, ureq->num_sgs, i) {
 890		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
 891			sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
 892			sg_is_last(sg));
 893		desc_count += hs_ep->desc_count;
 894	}
 895
 896	hs_ep->desc_count = desc_count;
 897}
 898
 899/*
 900 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
 901 * @hs_ep: The isochronous endpoint.
 902 * @dma_buff: usb requests dma buffer.
 903 * @len: usb request transfer length.
 904 *
 905 * Fills next free descriptor with the data of the arrived usb request,
 
 
 906 * frame info, sets Last and IOC bits increments next_desc. If filled
 907 * descriptor is not the first one, removes L bit from the previous descriptor
 908 * status.
 909 */
 910static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
 911				      dma_addr_t dma_buff, unsigned int len)
 912{
 913	struct dwc2_dma_desc *desc;
 914	struct dwc2_hsotg *hsotg = hs_ep->parent;
 915	u32 index;
 
 916	u32 mask = 0;
 917	u8 pid = 0;
 918
 919	dwc2_gadget_get_desc_params(hs_ep, &mask);
 
 
 
 
 
 
 
 
 
 
 
 920
 921	index = hs_ep->next_desc;
 922	desc = &hs_ep->desc_list[index];
 
 923
 924	/* Check if descriptor chain full */
 925	if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
 926	    DEV_DMA_BUFF_STS_HREADY) {
 927		dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
 928		return 1;
 
 
 
 929	}
 930
 
 
 931	/* Clear L bit of previous desc if more than one entries in the chain */
 932	if (hs_ep->next_desc)
 933		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
 934
 935	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
 936		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
 937
 938	desc->status = 0;
 939	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
 940
 941	desc->buf = dma_buff;
 942	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
 943			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
 944
 945	if (hs_ep->dir_in) {
 946		if (len)
 947			pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
 948		else
 949			pid = 1;
 950		desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
 951				 DEV_DMA_ISOC_PID_MASK) |
 952				((len % hs_ep->ep.maxpacket) ?
 953				 DEV_DMA_SHORT : 0) |
 954				((hs_ep->target_frame <<
 955				  DEV_DMA_ISOC_FRNUM_SHIFT) &
 956				 DEV_DMA_ISOC_FRNUM_MASK);
 957	}
 958
 959	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
 960	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
 961
 962	/* Increment frame number by interval for IN */
 963	if (hs_ep->dir_in)
 964		dwc2_gadget_incr_frame_num(hs_ep);
 965
 966	/* Update index of last configured entry in the chain */
 967	hs_ep->next_desc++;
 968	if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC)
 969		hs_ep->next_desc = 0;
 970
 971	return 0;
 972}
 973
 974/*
 975 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
 976 * @hs_ep: The isochronous endpoint.
 977 *
 978 * Prepare descriptor chain for isochronous endpoints. Afterwards
 979 * write DMA address to HW and enable the endpoint.
 
 
 
 980 */
 981static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
 982{
 983	struct dwc2_hsotg *hsotg = hs_ep->parent;
 984	struct dwc2_hsotg_req *hs_req, *treq;
 985	int index = hs_ep->index;
 986	int ret;
 987	int i;
 988	u32 dma_reg;
 989	u32 depctl;
 990	u32 ctrl;
 991	struct dwc2_dma_desc *desc;
 992
 993	if (list_empty(&hs_ep->queue)) {
 994		hs_ep->target_frame = TARGET_FRAME_INITIAL;
 995		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
 996		return;
 997	}
 998
 999	/* Initialize descriptor chain by Host Busy status */
1000	for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) {
1001		desc = &hs_ep->desc_list[i];
1002		desc->status = 0;
1003		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
1004				    << DEV_DMA_BUFF_STS_SHIFT);
1005	}
1006
1007	hs_ep->next_desc = 0;
1008	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
1009		dma_addr_t dma_addr = hs_req->req.dma;
1010
1011		if (hs_req->req.num_sgs) {
1012			WARN_ON(hs_req->req.num_sgs > 1);
1013			dma_addr = sg_dma_address(hs_req->req.sg);
1014		}
1015		ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1016						 hs_req->req.length);
1017		if (ret)
 
1018			break;
 
1019	}
1020
1021	hs_ep->compl_desc = 0;
1022	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1023	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
1024
1025	/* write descriptor chain address to control register */
1026	dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1027
1028	ctrl = dwc2_readl(hsotg, depctl);
1029	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
1030	dwc2_writel(hsotg, ctrl, depctl);
1031}
1032
1033static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep);
1034static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1035					struct dwc2_hsotg_ep *hs_ep,
1036				       struct dwc2_hsotg_req *hs_req,
1037				       int result);
1038
1039/**
1040 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1041 * @hsotg: The controller state.
1042 * @hs_ep: The endpoint to process a request for
1043 * @hs_req: The request to start.
1044 * @continuing: True if we are doing more for the current request.
1045 *
1046 * Start the given request running by setting the endpoint registers
1047 * appropriately, and writing any data to the FIFOs.
1048 */
1049static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1050				 struct dwc2_hsotg_ep *hs_ep,
1051				struct dwc2_hsotg_req *hs_req,
1052				bool continuing)
1053{
1054	struct usb_request *ureq = &hs_req->req;
1055	int index = hs_ep->index;
1056	int dir_in = hs_ep->dir_in;
1057	u32 epctrl_reg;
1058	u32 epsize_reg;
1059	u32 epsize;
1060	u32 ctrl;
1061	unsigned int length;
1062	unsigned int packets;
1063	unsigned int maxreq;
1064	unsigned int dma_reg;
1065
1066	if (index != 0) {
1067		if (hs_ep->req && !continuing) {
1068			dev_err(hsotg->dev, "%s: active request\n", __func__);
1069			WARN_ON(1);
1070			return;
1071		} else if (hs_ep->req != hs_req && continuing) {
1072			dev_err(hsotg->dev,
1073				"%s: continue different req\n", __func__);
1074			WARN_ON(1);
1075			return;
1076		}
1077	}
1078
1079	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1080	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1081	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1082
1083	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1084		__func__, dwc2_readl(hsotg, epctrl_reg), index,
1085		hs_ep->dir_in ? "in" : "out");
1086
1087	/* If endpoint is stalled, we will restart request later */
1088	ctrl = dwc2_readl(hsotg, epctrl_reg);
1089
1090	if (index && ctrl & DXEPCTL_STALL) {
1091		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1092		return;
1093	}
1094
1095	length = ureq->length - ureq->actual;
1096	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1097		ureq->length, ureq->actual);
1098
1099	if (!using_desc_dma(hsotg))
1100		maxreq = get_ep_limit(hs_ep);
1101	else
1102		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1103
1104	if (length > maxreq) {
1105		int round = maxreq % hs_ep->ep.maxpacket;
1106
1107		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1108			__func__, length, maxreq, round);
1109
1110		/* round down to multiple of packets */
1111		if (round)
1112			maxreq -= round;
1113
1114		length = maxreq;
1115	}
1116
1117	if (length)
1118		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1119	else
1120		packets = 1;	/* send one packet if length is zero. */
1121
 
 
 
 
 
1122	if (dir_in && index != 0)
1123		if (hs_ep->isochronous)
1124			epsize = DXEPTSIZ_MC(packets);
1125		else
1126			epsize = DXEPTSIZ_MC(1);
1127	else
1128		epsize = 0;
1129
1130	/*
1131	 * zero length packet should be programmed on its own and should not
1132	 * be counted in DIEPTSIZ.PktCnt with other packets.
1133	 */
1134	if (dir_in && ureq->zero && !continuing) {
1135		/* Test if zlp is actually required. */
1136		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1137		    !(ureq->length % hs_ep->ep.maxpacket))
1138			hs_ep->send_zlp = 1;
1139	}
1140
1141	epsize |= DXEPTSIZ_PKTCNT(packets);
1142	epsize |= DXEPTSIZ_XFERSIZE(length);
1143
1144	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1145		__func__, packets, length, ureq->length, epsize, epsize_reg);
1146
1147	/* store the request as the current one we're doing */
1148	hs_ep->req = hs_req;
1149
1150	if (using_desc_dma(hsotg)) {
1151		u32 offset = 0;
1152		u32 mps = hs_ep->ep.maxpacket;
1153
1154		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1155		if (!dir_in) {
1156			if (!index)
1157				length = mps;
1158			else if (length % mps)
1159				length += (mps - (length % mps));
1160		}
1161
1162		if (continuing)
 
 
 
 
 
 
1163			offset = ureq->actual;
1164
1165		/* Fill DDMA chain entries */
1166		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1167						     length);
1168
1169		/* write descriptor chain address to control register */
1170		dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1171
1172		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1173			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1174	} else {
1175		/* write size / packets */
1176		dwc2_writel(hsotg, epsize, epsize_reg);
1177
1178		if (using_dma(hsotg) && !continuing && (length != 0)) {
1179			/*
1180			 * write DMA address to control register, buffer
1181			 * already synced by dwc2_hsotg_ep_queue().
1182			 */
1183
1184			dwc2_writel(hsotg, ureq->dma, dma_reg);
1185
1186			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1187				__func__, &ureq->dma, dma_reg);
1188		}
1189	}
1190
1191	if (hs_ep->isochronous) {
1192		if (!dwc2_gadget_target_frame_elapsed(hs_ep)) {
1193			if (hs_ep->interval == 1) {
1194				if (hs_ep->target_frame & 0x1)
1195					ctrl |= DXEPCTL_SETODDFR;
1196				else
1197					ctrl |= DXEPCTL_SETEVENFR;
1198			}
1199			ctrl |= DXEPCTL_CNAK;
1200		} else {
1201			hs_req->req.frame_number = hs_ep->target_frame;
1202			hs_req->req.actual = 0;
1203			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
1204			return;
1205		}
1206	}
1207
1208	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1209
1210	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1211
1212	/* For Setup request do not clear NAK */
1213	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1214		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1215
1216	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1217	dwc2_writel(hsotg, ctrl, epctrl_reg);
1218
1219	/*
1220	 * set these, it seems that DMA support increments past the end
1221	 * of the packet buffer so we need to calculate the length from
1222	 * this information.
1223	 */
1224	hs_ep->size_loaded = length;
1225	hs_ep->last_load = ureq->actual;
1226
1227	if (dir_in && !using_dma(hsotg)) {
1228		/* set these anyway, we may need them for non-periodic in */
1229		hs_ep->fifo_load = 0;
1230
1231		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1232	}
1233
1234	/*
1235	 * Note, trying to clear the NAK here causes problems with transmit
1236	 * on the S3C6400 ending up with the TXFIFO becoming full.
1237	 */
1238
1239	/* check ep is enabled */
1240	if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1241		dev_dbg(hsotg->dev,
1242			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1243			 index, dwc2_readl(hsotg, epctrl_reg));
1244
1245	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1246		__func__, dwc2_readl(hsotg, epctrl_reg));
1247
1248	/* enable ep interrupts */
1249	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1250}
1251
1252/**
1253 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1254 * @hsotg: The device state.
1255 * @hs_ep: The endpoint the request is on.
1256 * @req: The request being processed.
1257 *
1258 * We've been asked to queue a request, so ensure that the memory buffer
1259 * is correctly setup for DMA. If we've been passed an extant DMA address
1260 * then ensure the buffer has been synced to memory. If our buffer has no
1261 * DMA memory, then we map the memory and mark our request to allow us to
1262 * cleanup on completion.
1263 */
1264static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1265			      struct dwc2_hsotg_ep *hs_ep,
1266			     struct usb_request *req)
1267{
1268	int ret;
1269
1270	hs_ep->map_dir = hs_ep->dir_in;
1271	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1272	if (ret)
1273		goto dma_error;
1274
1275	return 0;
1276
1277dma_error:
1278	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1279		__func__, req->buf, req->length);
1280
1281	return -EIO;
1282}
1283
1284static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1285						 struct dwc2_hsotg_ep *hs_ep,
1286						 struct dwc2_hsotg_req *hs_req)
1287{
1288	void *req_buf = hs_req->req.buf;
1289
1290	/* If dma is not being used or buffer is aligned */
1291	if (!using_dma(hsotg) || !((long)req_buf & 3))
1292		return 0;
1293
1294	WARN_ON(hs_req->saved_req_buf);
1295
1296	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1297		hs_ep->ep.name, req_buf, hs_req->req.length);
1298
1299	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1300	if (!hs_req->req.buf) {
1301		hs_req->req.buf = req_buf;
1302		dev_err(hsotg->dev,
1303			"%s: unable to allocate memory for bounce buffer\n",
1304			__func__);
1305		return -ENOMEM;
1306	}
1307
1308	/* Save actual buffer */
1309	hs_req->saved_req_buf = req_buf;
1310
1311	if (hs_ep->dir_in)
1312		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1313	return 0;
1314}
1315
1316static void
1317dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1318					 struct dwc2_hsotg_ep *hs_ep,
1319					 struct dwc2_hsotg_req *hs_req)
1320{
1321	/* If dma is not being used or buffer was aligned */
1322	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1323		return;
1324
1325	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1326		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1327
1328	/* Copy data from bounce buffer on successful out transfer */
1329	if (!hs_ep->dir_in && !hs_req->req.status)
1330		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1331		       hs_req->req.actual);
1332
1333	/* Free bounce buffer */
1334	kfree(hs_req->req.buf);
1335
1336	hs_req->req.buf = hs_req->saved_req_buf;
1337	hs_req->saved_req_buf = NULL;
1338}
1339
1340/**
1341 * dwc2_gadget_target_frame_elapsed - Checks target frame
1342 * @hs_ep: The driver endpoint to check
1343 *
1344 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1345 * corresponding transfer.
1346 */
1347static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1348{
1349	struct dwc2_hsotg *hsotg = hs_ep->parent;
1350	u32 target_frame = hs_ep->target_frame;
1351	u32 current_frame = hsotg->frame_number;
1352	bool frame_overrun = hs_ep->frame_overrun;
1353	u16 limit = DSTS_SOFFN_LIMIT;
1354
1355	if (hsotg->gadget.speed != USB_SPEED_HIGH)
1356		limit >>= 3;
1357
1358	if (!frame_overrun && current_frame >= target_frame)
1359		return true;
1360
1361	if (frame_overrun && current_frame >= target_frame &&
1362	    ((current_frame - target_frame) < limit / 2))
1363		return true;
1364
1365	return false;
1366}
1367
1368/*
1369 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1370 * @hsotg: The driver state
1371 * @hs_ep: the ep descriptor chain is for
1372 *
1373 * Called to update EP0 structure's pointers depend on stage of
1374 * control transfer.
1375 */
1376static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1377					  struct dwc2_hsotg_ep *hs_ep)
1378{
1379	switch (hsotg->ep0_state) {
1380	case DWC2_EP0_SETUP:
1381	case DWC2_EP0_STATUS_OUT:
1382		hs_ep->desc_list = hsotg->setup_desc[0];
1383		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1384		break;
1385	case DWC2_EP0_DATA_IN:
1386	case DWC2_EP0_STATUS_IN:
1387		hs_ep->desc_list = hsotg->ctrl_in_desc;
1388		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1389		break;
1390	case DWC2_EP0_DATA_OUT:
1391		hs_ep->desc_list = hsotg->ctrl_out_desc;
1392		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1393		break;
1394	default:
1395		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1396			hsotg->ep0_state);
1397		return -EINVAL;
1398	}
1399
1400	return 0;
1401}
1402
1403static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1404			       gfp_t gfp_flags)
1405{
1406	struct dwc2_hsotg_req *hs_req = our_req(req);
1407	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1408	struct dwc2_hsotg *hs = hs_ep->parent;
1409	bool first;
1410	int ret;
1411	u32 maxsize = 0;
1412	u32 mask = 0;
1413
1414
1415	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1416		ep->name, req, req->length, req->buf, req->no_interrupt,
1417		req->zero, req->short_not_ok);
1418
1419	/* Prevent new request submission when controller is suspended */
1420	if (hs->lx_state != DWC2_L0) {
1421		dev_dbg(hs->dev, "%s: submit request only in active state\n",
1422			__func__);
1423		return -EAGAIN;
1424	}
1425
1426	/* initialise status of the request */
1427	INIT_LIST_HEAD(&hs_req->queue);
1428	req->actual = 0;
1429	req->status = -EINPROGRESS;
1430
1431	/* Don't queue ISOC request if length greater than mps*mc */
1432	if (hs_ep->isochronous &&
1433	    req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1434		dev_err(hs->dev, "req length > maxpacket*mc\n");
1435		return -EINVAL;
1436	}
1437
1438	/* In DDMA mode for ISOC's don't queue request if length greater
1439	 * than descriptor limits.
1440	 */
1441	if (using_desc_dma(hs) && hs_ep->isochronous) {
1442		maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1443		if (hs_ep->dir_in && req->length > maxsize) {
1444			dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1445				req->length, maxsize);
1446			return -EINVAL;
1447		}
1448
1449		if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1450			dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1451				req->length, hs_ep->ep.maxpacket);
1452			return -EINVAL;
1453		}
1454	}
1455
1456	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1457	if (ret)
1458		return ret;
1459
1460	/* if we're using DMA, sync the buffers as necessary */
1461	if (using_dma(hs)) {
1462		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1463		if (ret)
1464			return ret;
1465	}
1466	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1467	if (using_desc_dma(hs) && !hs_ep->index) {
1468		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1469		if (ret)
1470			return ret;
1471	}
1472
1473	first = list_empty(&hs_ep->queue);
1474	list_add_tail(&hs_req->queue, &hs_ep->queue);
1475
1476	/*
1477	 * Handle DDMA isochronous transfers separately - just add new entry
1478	 * to the descriptor chain.
1479	 * Transfer will be started once SW gets either one of NAK or
1480	 * OutTknEpDis interrupts.
1481	 */
1482	if (using_desc_dma(hs) && hs_ep->isochronous) {
1483		if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1484			dma_addr_t dma_addr = hs_req->req.dma;
1485
1486			if (hs_req->req.num_sgs) {
1487				WARN_ON(hs_req->req.num_sgs > 1);
1488				dma_addr = sg_dma_address(hs_req->req.sg);
1489			}
1490			dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1491						   hs_req->req.length);
1492		}
1493		return 0;
1494	}
1495
1496	/* Change EP direction if status phase request is after data out */
1497	if (!hs_ep->index && !req->length && !hs_ep->dir_in &&
1498	    hs->ep0_state == DWC2_EP0_DATA_OUT)
1499		hs_ep->dir_in = 1;
1500
1501	if (first) {
1502		if (!hs_ep->isochronous) {
1503			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1504			return 0;
1505		}
1506
1507		/* Update current frame number value. */
1508		hs->frame_number = dwc2_hsotg_read_frameno(hs);
1509		while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1510			dwc2_gadget_incr_frame_num(hs_ep);
1511			/* Update current frame number value once more as it
1512			 * changes here.
1513			 */
1514			hs->frame_number = dwc2_hsotg_read_frameno(hs);
1515		}
1516
1517		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1518			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1519	}
1520	return 0;
1521}
1522
1523static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1524				    gfp_t gfp_flags)
1525{
1526	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1527	struct dwc2_hsotg *hs = hs_ep->parent;
1528	unsigned long flags;
1529	int ret;
1530
1531	spin_lock_irqsave(&hs->lock, flags);
1532	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1533	spin_unlock_irqrestore(&hs->lock, flags);
1534
1535	return ret;
1536}
1537
1538static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1539				       struct usb_request *req)
1540{
1541	struct dwc2_hsotg_req *hs_req = our_req(req);
1542
1543	kfree(hs_req);
1544}
1545
1546/**
1547 * dwc2_hsotg_complete_oursetup - setup completion callback
1548 * @ep: The endpoint the request was on.
1549 * @req: The request completed.
1550 *
1551 * Called on completion of any requests the driver itself
1552 * submitted that need cleaning up.
1553 */
1554static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1555					 struct usb_request *req)
1556{
1557	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1558	struct dwc2_hsotg *hsotg = hs_ep->parent;
1559
1560	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1561
1562	dwc2_hsotg_ep_free_request(ep, req);
1563}
1564
1565/**
1566 * ep_from_windex - convert control wIndex value to endpoint
1567 * @hsotg: The driver state.
1568 * @windex: The control request wIndex field (in host order).
1569 *
1570 * Convert the given wIndex into a pointer to an driver endpoint
1571 * structure, or return NULL if it is not a valid endpoint.
1572 */
1573static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1574					    u32 windex)
1575{
 
1576	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1577	int idx = windex & 0x7F;
1578
1579	if (windex >= 0x100)
1580		return NULL;
1581
1582	if (idx > hsotg->num_of_eps)
1583		return NULL;
1584
1585	return index_to_ep(hsotg, idx, dir);
 
 
 
 
 
1586}
1587
1588/**
1589 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1590 * @hsotg: The driver state.
1591 * @testmode: requested usb test mode
1592 * Enable usb Test Mode requested by the Host.
1593 */
1594int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1595{
1596	int dctl = dwc2_readl(hsotg, DCTL);
1597
1598	dctl &= ~DCTL_TSTCTL_MASK;
1599	switch (testmode) {
1600	case USB_TEST_J:
1601	case USB_TEST_K:
1602	case USB_TEST_SE0_NAK:
1603	case USB_TEST_PACKET:
1604	case USB_TEST_FORCE_ENABLE:
1605		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1606		break;
1607	default:
1608		return -EINVAL;
1609	}
1610	dwc2_writel(hsotg, dctl, DCTL);
1611	return 0;
1612}
1613
1614/**
1615 * dwc2_hsotg_send_reply - send reply to control request
1616 * @hsotg: The device state
1617 * @ep: Endpoint 0
1618 * @buff: Buffer for request
1619 * @length: Length of reply.
1620 *
1621 * Create a request and queue it on the given endpoint. This is useful as
1622 * an internal method of sending replies to certain control requests, etc.
1623 */
1624static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1625				 struct dwc2_hsotg_ep *ep,
1626				void *buff,
1627				int length)
1628{
1629	struct usb_request *req;
1630	int ret;
1631
1632	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1633
1634	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1635	hsotg->ep0_reply = req;
1636	if (!req) {
1637		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1638		return -ENOMEM;
1639	}
1640
1641	req->buf = hsotg->ep0_buff;
1642	req->length = length;
1643	/*
1644	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1645	 * STATUS stage.
1646	 */
1647	req->zero = 0;
1648	req->complete = dwc2_hsotg_complete_oursetup;
1649
1650	if (length)
1651		memcpy(req->buf, buff, length);
1652
1653	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1654	if (ret) {
1655		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1656		return ret;
1657	}
1658
1659	return 0;
1660}
1661
1662/**
1663 * dwc2_hsotg_process_req_status - process request GET_STATUS
1664 * @hsotg: The device state
1665 * @ctrl: USB control request
1666 */
1667static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1668					 struct usb_ctrlrequest *ctrl)
1669{
1670	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1671	struct dwc2_hsotg_ep *ep;
1672	__le16 reply;
1673	u16 status;
1674	int ret;
1675
1676	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1677
1678	if (!ep0->dir_in) {
1679		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1680		return -EINVAL;
1681	}
1682
1683	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1684	case USB_RECIP_DEVICE:
1685		status = hsotg->gadget.is_selfpowered <<
1686			 USB_DEVICE_SELF_POWERED;
1687		status |= hsotg->remote_wakeup_allowed <<
1688			  USB_DEVICE_REMOTE_WAKEUP;
1689		reply = cpu_to_le16(status);
1690		break;
1691
1692	case USB_RECIP_INTERFACE:
1693		/* currently, the data result should be zero */
1694		reply = cpu_to_le16(0);
1695		break;
1696
1697	case USB_RECIP_ENDPOINT:
1698		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1699		if (!ep)
1700			return -ENOENT;
1701
1702		reply = cpu_to_le16(ep->halted ? 1 : 0);
1703		break;
1704
1705	default:
1706		return 0;
1707	}
1708
1709	if (le16_to_cpu(ctrl->wLength) != 2)
1710		return -EINVAL;
1711
1712	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1713	if (ret) {
1714		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1715		return ret;
1716	}
1717
1718	return 1;
1719}
1720
1721static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1722
1723/**
1724 * get_ep_head - return the first request on the endpoint
1725 * @hs_ep: The controller endpoint to get
1726 *
1727 * Get the first request on the endpoint.
1728 */
1729static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1730{
1731	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1732					queue);
1733}
1734
1735/**
1736 * dwc2_gadget_start_next_request - Starts next request from ep queue
1737 * @hs_ep: Endpoint structure
1738 *
1739 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1740 * in its handler. Hence we need to unmask it here to be able to do
1741 * resynchronization.
1742 */
1743static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1744{
 
1745	struct dwc2_hsotg *hsotg = hs_ep->parent;
1746	int dir_in = hs_ep->dir_in;
1747	struct dwc2_hsotg_req *hs_req;
 
1748
1749	if (!list_empty(&hs_ep->queue)) {
1750		hs_req = get_ep_head(hs_ep);
1751		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1752		return;
1753	}
1754	if (!hs_ep->isochronous)
1755		return;
1756
1757	if (dir_in) {
1758		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1759			__func__);
1760	} else {
1761		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1762			__func__);
 
 
 
1763	}
1764}
1765
1766/**
1767 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1768 * @hsotg: The device state
1769 * @ctrl: USB control request
1770 */
1771static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1772					  struct usb_ctrlrequest *ctrl)
1773{
1774	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1775	struct dwc2_hsotg_req *hs_req;
1776	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1777	struct dwc2_hsotg_ep *ep;
1778	int ret;
1779	bool halted;
1780	u32 recip;
1781	u32 wValue;
1782	u32 wIndex;
1783
1784	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1785		__func__, set ? "SET" : "CLEAR");
1786
1787	wValue = le16_to_cpu(ctrl->wValue);
1788	wIndex = le16_to_cpu(ctrl->wIndex);
1789	recip = ctrl->bRequestType & USB_RECIP_MASK;
1790
1791	switch (recip) {
1792	case USB_RECIP_DEVICE:
1793		switch (wValue) {
1794		case USB_DEVICE_REMOTE_WAKEUP:
1795			if (set)
1796				hsotg->remote_wakeup_allowed = 1;
1797			else
1798				hsotg->remote_wakeup_allowed = 0;
1799			break;
1800
1801		case USB_DEVICE_TEST_MODE:
1802			if ((wIndex & 0xff) != 0)
1803				return -EINVAL;
1804			if (!set)
1805				return -EINVAL;
1806
1807			hsotg->test_mode = wIndex >> 8;
 
 
 
 
 
 
1808			break;
1809		default:
1810			return -ENOENT;
1811		}
1812
1813		ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1814		if (ret) {
1815			dev_err(hsotg->dev,
1816				"%s: failed to send reply\n", __func__);
1817			return ret;
1818		}
1819		break;
1820
1821	case USB_RECIP_ENDPOINT:
1822		ep = ep_from_windex(hsotg, wIndex);
1823		if (!ep) {
1824			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1825				__func__, wIndex);
1826			return -ENOENT;
1827		}
1828
1829		switch (wValue) {
1830		case USB_ENDPOINT_HALT:
1831			halted = ep->halted;
1832
1833			if (!ep->wedged)
1834				dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1835
1836			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1837			if (ret) {
1838				dev_err(hsotg->dev,
1839					"%s: failed to send reply\n", __func__);
1840				return ret;
1841			}
1842
1843			/*
1844			 * we have to complete all requests for ep if it was
1845			 * halted, and the halt was cleared by CLEAR_FEATURE
1846			 */
1847
1848			if (!set && halted) {
1849				/*
1850				 * If we have request in progress,
1851				 * then complete it
1852				 */
1853				if (ep->req) {
1854					hs_req = ep->req;
1855					ep->req = NULL;
1856					list_del_init(&hs_req->queue);
1857					if (hs_req->req.complete) {
1858						spin_unlock(&hsotg->lock);
1859						usb_gadget_giveback_request(
1860							&ep->ep, &hs_req->req);
1861						spin_lock(&hsotg->lock);
1862					}
1863				}
1864
1865				/* If we have pending request, then start it */
1866				if (!ep->req)
1867					dwc2_gadget_start_next_request(ep);
1868			}
1869
1870			break;
1871
1872		default:
1873			return -ENOENT;
1874		}
1875		break;
1876	default:
1877		return -ENOENT;
1878	}
1879	return 1;
1880}
1881
1882static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1883
1884/**
1885 * dwc2_hsotg_stall_ep0 - stall ep0
1886 * @hsotg: The device state
1887 *
1888 * Set stall for ep0 as response for setup request.
1889 */
1890static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1891{
1892	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1893	u32 reg;
1894	u32 ctrl;
1895
1896	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1897	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1898
1899	/*
1900	 * DxEPCTL_Stall will be cleared by EP once it has
1901	 * taken effect, so no need to clear later.
1902	 */
1903
1904	ctrl = dwc2_readl(hsotg, reg);
1905	ctrl |= DXEPCTL_STALL;
1906	ctrl |= DXEPCTL_CNAK;
1907	dwc2_writel(hsotg, ctrl, reg);
1908
1909	dev_dbg(hsotg->dev,
1910		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1911		ctrl, reg, dwc2_readl(hsotg, reg));
1912
1913	 /*
1914	  * complete won't be called, so we enqueue
1915	  * setup request here
1916	  */
1917	 dwc2_hsotg_enqueue_setup(hsotg);
1918}
1919
1920/**
1921 * dwc2_hsotg_process_control - process a control request
1922 * @hsotg: The device state
1923 * @ctrl: The control request received
1924 *
1925 * The controller has received the SETUP phase of a control request, and
1926 * needs to work out what to do next (and whether to pass it on to the
1927 * gadget driver).
1928 */
1929static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1930				       struct usb_ctrlrequest *ctrl)
1931{
1932	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1933	int ret = 0;
1934	u32 dcfg;
1935
1936	dev_dbg(hsotg->dev,
1937		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1938		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1939		ctrl->wIndex, ctrl->wLength);
1940
1941	if (ctrl->wLength == 0) {
1942		ep0->dir_in = 1;
1943		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1944	} else if (ctrl->bRequestType & USB_DIR_IN) {
1945		ep0->dir_in = 1;
1946		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1947	} else {
1948		ep0->dir_in = 0;
1949		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1950	}
1951
1952	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1953		switch (ctrl->bRequest) {
1954		case USB_REQ_SET_ADDRESS:
1955			hsotg->connected = 1;
1956			dcfg = dwc2_readl(hsotg, DCFG);
1957			dcfg &= ~DCFG_DEVADDR_MASK;
1958			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1959				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1960			dwc2_writel(hsotg, dcfg, DCFG);
1961
1962			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1963
1964			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1965			return;
1966
1967		case USB_REQ_GET_STATUS:
1968			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1969			break;
1970
1971		case USB_REQ_CLEAR_FEATURE:
1972		case USB_REQ_SET_FEATURE:
1973			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1974			break;
1975		}
1976	}
1977
1978	/* as a fallback, try delivering it to the driver to deal with */
1979
1980	if (ret == 0 && hsotg->driver) {
1981		spin_unlock(&hsotg->lock);
1982		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1983		spin_lock(&hsotg->lock);
1984		if (ret < 0)
1985			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1986	}
1987
1988	hsotg->delayed_status = false;
1989	if (ret == USB_GADGET_DELAYED_STATUS)
1990		hsotg->delayed_status = true;
1991
1992	/*
1993	 * the request is either unhandlable, or is not formatted correctly
1994	 * so respond with a STALL for the status stage to indicate failure.
1995	 */
1996
1997	if (ret < 0)
1998		dwc2_hsotg_stall_ep0(hsotg);
1999}
2000
2001/**
2002 * dwc2_hsotg_complete_setup - completion of a setup transfer
2003 * @ep: The endpoint the request was on.
2004 * @req: The request completed.
2005 *
2006 * Called on completion of any requests the driver itself submitted for
2007 * EP0 setup packets
2008 */
2009static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
2010				      struct usb_request *req)
2011{
2012	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2013	struct dwc2_hsotg *hsotg = hs_ep->parent;
2014
2015	if (req->status < 0) {
2016		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
2017		return;
2018	}
2019
2020	spin_lock(&hsotg->lock);
2021	if (req->actual == 0)
2022		dwc2_hsotg_enqueue_setup(hsotg);
2023	else
2024		dwc2_hsotg_process_control(hsotg, req->buf);
2025	spin_unlock(&hsotg->lock);
2026}
2027
2028/**
2029 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
2030 * @hsotg: The device state.
2031 *
2032 * Enqueue a request on EP0 if necessary to received any SETUP packets
2033 * received from the host.
2034 */
2035static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
2036{
2037	struct usb_request *req = hsotg->ctrl_req;
2038	struct dwc2_hsotg_req *hs_req = our_req(req);
2039	int ret;
2040
2041	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
2042
2043	req->zero = 0;
2044	req->length = 8;
2045	req->buf = hsotg->ctrl_buff;
2046	req->complete = dwc2_hsotg_complete_setup;
2047
2048	if (!list_empty(&hs_req->queue)) {
2049		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
2050		return;
2051	}
2052
2053	hsotg->eps_out[0]->dir_in = 0;
2054	hsotg->eps_out[0]->send_zlp = 0;
2055	hsotg->ep0_state = DWC2_EP0_SETUP;
2056
2057	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2058	if (ret < 0) {
2059		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2060		/*
2061		 * Don't think there's much we can do other than watch the
2062		 * driver fail.
2063		 */
2064	}
2065}
2066
2067static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2068				   struct dwc2_hsotg_ep *hs_ep)
2069{
2070	u32 ctrl;
2071	u8 index = hs_ep->index;
2072	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2073	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2074
2075	if (hs_ep->dir_in)
2076		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2077			index);
2078	else
2079		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2080			index);
2081	if (using_desc_dma(hsotg)) {
2082		/* Not specific buffer needed for ep0 ZLP */
2083		dma_addr_t dma = hs_ep->desc_list_dma;
2084
2085		if (!index)
2086			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
2087
2088		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
2089	} else {
2090		dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2091			    DXEPTSIZ_XFERSIZE(0),
2092			    epsiz_reg);
2093	}
2094
2095	ctrl = dwc2_readl(hsotg, epctl_reg);
2096	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
2097	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2098	ctrl |= DXEPCTL_USBACTEP;
2099	dwc2_writel(hsotg, ctrl, epctl_reg);
2100}
2101
2102/**
2103 * dwc2_hsotg_complete_request - complete a request given to us
2104 * @hsotg: The device state.
2105 * @hs_ep: The endpoint the request was on.
2106 * @hs_req: The request to complete.
2107 * @result: The result code (0 => Ok, otherwise errno)
2108 *
2109 * The given request has finished, so call the necessary completion
2110 * if it has one and then look to see if we can start a new request
2111 * on the endpoint.
2112 *
2113 * Note, expects the ep to already be locked as appropriate.
2114 */
2115static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2116					struct dwc2_hsotg_ep *hs_ep,
2117				       struct dwc2_hsotg_req *hs_req,
2118				       int result)
2119{
2120	if (!hs_req) {
2121		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2122		return;
2123	}
2124
2125	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2126		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2127
2128	/*
2129	 * only replace the status if we've not already set an error
2130	 * from a previous transaction
2131	 */
2132
2133	if (hs_req->req.status == -EINPROGRESS)
2134		hs_req->req.status = result;
2135
2136	if (using_dma(hsotg))
2137		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2138
2139	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2140
2141	hs_ep->req = NULL;
2142	list_del_init(&hs_req->queue);
2143
2144	/*
2145	 * call the complete request with the locks off, just in case the
2146	 * request tries to queue more work for this endpoint.
2147	 */
2148
2149	if (hs_req->req.complete) {
2150		spin_unlock(&hsotg->lock);
2151		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2152		spin_lock(&hsotg->lock);
2153	}
2154
2155	/* In DDMA don't need to proceed to starting of next ISOC request */
2156	if (using_desc_dma(hsotg) && hs_ep->isochronous)
2157		return;
2158
2159	/*
2160	 * Look to see if there is anything else to do. Note, the completion
2161	 * of the previous request may have caused a new request to be started
2162	 * so be careful when doing this.
2163	 */
2164
2165	if (!hs_ep->req && result >= 0)
2166		dwc2_gadget_start_next_request(hs_ep);
2167}
2168
2169/*
2170 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2171 * @hs_ep: The endpoint the request was on.
2172 *
2173 * Get first request from the ep queue, determine descriptor on which complete
2174 * happened. SW discovers which descriptor currently in use by HW, adjusts
2175 * dma_address and calculates index of completed descriptor based on the value
2176 * of DEPDMA register. Update actual length of request, giveback to gadget.
 
2177 */
2178static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2179{
2180	struct dwc2_hsotg *hsotg = hs_ep->parent;
2181	struct dwc2_hsotg_req *hs_req;
2182	struct usb_request *ureq;
 
 
 
 
2183	u32 desc_sts;
2184	u32 mask;
2185
2186	desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2187
2188	/* Process only descriptors with buffer status set to DMA done */
2189	while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2190		DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2191
2192		hs_req = get_ep_head(hs_ep);
2193		if (!hs_req) {
2194			dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2195			return;
2196		}
2197		ureq = &hs_req->req;
2198
2199		/* Check completion status */
2200		if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2201			DEV_DMA_STS_SUCC) {
2202			mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2203				DEV_DMA_ISOC_RX_NBYTES_MASK;
2204			ureq->actual = ureq->length - ((desc_sts & mask) >>
2205				DEV_DMA_ISOC_NBYTES_SHIFT);
2206
2207			/* Adjust actual len for ISOC Out if len is
2208			 * not align of 4
2209			 */
2210			if (!hs_ep->dir_in && ureq->length & 0x3)
2211				ureq->actual += 4 - (ureq->length & 0x3);
2212
2213			/* Set actual frame number for completed transfers */
2214			ureq->frame_number =
2215				(desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >>
2216				DEV_DMA_ISOC_FRNUM_SHIFT;
2217		}
2218
2219		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2220
2221		hs_ep->compl_desc++;
2222		if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1))
2223			hs_ep->compl_desc = 0;
2224		desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2225	}
2226}
2227
2228/*
2229 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2230 * @hs_ep: The isochronous endpoint.
2231 *
2232 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2233 * interrupt. Reset target frame and next_desc to allow to start
2234 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2235 * interrupt for OUT direction.
2236 */
2237static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2238{
2239	struct dwc2_hsotg *hsotg = hs_ep->parent;
 
 
 
 
 
2240
2241	if (!hs_ep->dir_in)
2242		dwc2_flush_rx_fifo(hsotg);
2243	dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2244
2245	hs_ep->target_frame = TARGET_FRAME_INITIAL;
2246	hs_ep->next_desc = 0;
2247	hs_ep->compl_desc = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2248}
2249
2250/**
2251 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2252 * @hsotg: The device state.
2253 * @ep_idx: The endpoint index for the data
2254 * @size: The size of data in the fifo, in bytes
2255 *
2256 * The FIFO status shows there is data to read from the FIFO for a given
2257 * endpoint, so sort out whether we need to read the data into a request
2258 * that has been made for that endpoint.
2259 */
2260static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2261{
2262	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2263	struct dwc2_hsotg_req *hs_req = hs_ep->req;
 
2264	int to_read;
2265	int max_req;
2266	int read_ptr;
2267
2268	if (!hs_req) {
2269		u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2270		int ptr;
2271
2272		dev_dbg(hsotg->dev,
2273			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2274			 __func__, size, ep_idx, epctl);
2275
2276		/* dump the data from the FIFO, we've nothing we can do */
2277		for (ptr = 0; ptr < size; ptr += 4)
2278			(void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2279
2280		return;
2281	}
2282
2283	to_read = size;
2284	read_ptr = hs_req->req.actual;
2285	max_req = hs_req->req.length - read_ptr;
2286
2287	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2288		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2289
2290	if (to_read > max_req) {
2291		/*
2292		 * more data appeared than we where willing
2293		 * to deal with in this request.
2294		 */
2295
2296		/* currently we don't deal this */
2297		WARN_ON_ONCE(1);
2298	}
2299
2300	hs_ep->total_data += to_read;
2301	hs_req->req.actual += to_read;
2302	to_read = DIV_ROUND_UP(to_read, 4);
2303
2304	/*
2305	 * note, we might over-write the buffer end by 3 bytes depending on
2306	 * alignment of the data.
2307	 */
2308	dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2309		       hs_req->req.buf + read_ptr, to_read);
2310}
2311
2312/**
2313 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2314 * @hsotg: The device instance
2315 * @dir_in: If IN zlp
2316 *
2317 * Generate a zero-length IN packet request for terminating a SETUP
2318 * transaction.
2319 *
2320 * Note, since we don't write any data to the TxFIFO, then it is
2321 * currently believed that we do not need to wait for any space in
2322 * the TxFIFO.
2323 */
2324static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2325{
2326	/* eps_out[0] is used in both directions */
2327	hsotg->eps_out[0]->dir_in = dir_in;
2328	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2329
2330	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2331}
2332
 
 
 
 
 
 
 
 
 
 
 
 
 
2333/*
2334 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2335 * @hs_ep - The endpoint on which transfer went
2336 *
2337 * Iterate over endpoints descriptor chain and get info on bytes remained
2338 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2339 */
2340static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2341{
2342	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
2343	struct dwc2_hsotg *hsotg = hs_ep->parent;
2344	unsigned int bytes_rem = 0;
2345	unsigned int bytes_rem_correction = 0;
2346	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2347	int i;
2348	u32 status;
2349	u32 mps = hs_ep->ep.maxpacket;
2350	int dir_in = hs_ep->dir_in;
2351
2352	if (!desc)
2353		return -EINVAL;
2354
2355	/* Interrupt OUT EP with mps not multiple of 4 */
2356	if (hs_ep->index)
2357		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
2358			bytes_rem_correction = 4 - (mps % 4);
2359
2360	for (i = 0; i < hs_ep->desc_count; ++i) {
2361		status = desc->status;
2362		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2363		bytes_rem -= bytes_rem_correction;
2364
2365		if (status & DEV_DMA_STS_MASK)
2366			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2367				i, status & DEV_DMA_STS_MASK);
2368
2369		if (status & DEV_DMA_L)
2370			break;
2371
2372		desc++;
2373	}
2374
2375	return bytes_rem;
2376}
2377
2378/**
2379 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2380 * @hsotg: The device instance
2381 * @epnum: The endpoint received from
2382 *
2383 * The RXFIFO has delivered an OutDone event, which means that the data
2384 * transfer for an OUT endpoint has been completed, either by a short
2385 * packet or by the finish of a transfer.
2386 */
2387static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2388{
2389	u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2390	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2391	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2392	struct usb_request *req = &hs_req->req;
2393	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2394	int result = 0;
2395
2396	if (!hs_req) {
2397		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2398		return;
2399	}
2400
2401	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2402		dev_dbg(hsotg->dev, "zlp packet received\n");
2403		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2404		dwc2_hsotg_enqueue_setup(hsotg);
2405		return;
2406	}
2407
2408	if (using_desc_dma(hsotg))
2409		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2410
2411	if (using_dma(hsotg)) {
2412		unsigned int size_done;
2413
2414		/*
2415		 * Calculate the size of the transfer by checking how much
2416		 * is left in the endpoint size register and then working it
2417		 * out from the amount we loaded for the transfer.
2418		 *
2419		 * We need to do this as DMA pointers are always 32bit aligned
2420		 * so may overshoot/undershoot the transfer.
2421		 */
2422
2423		size_done = hs_ep->size_loaded - size_left;
2424		size_done += hs_ep->last_load;
2425
2426		req->actual = size_done;
2427	}
2428
2429	/* if there is more request to do, schedule new transfer */
2430	if (req->actual < req->length && size_left == 0) {
2431		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2432		return;
2433	}
2434
2435	if (req->actual < req->length && req->short_not_ok) {
2436		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2437			__func__, req->actual, req->length);
2438
2439		/*
2440		 * todo - what should we return here? there's no one else
2441		 * even bothering to check the status.
2442		 */
2443	}
2444
2445	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2446	if (!using_desc_dma(hsotg) && epnum == 0 &&
2447	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2448		/* Move to STATUS IN */
2449		if (!hsotg->delayed_status)
2450			dwc2_hsotg_ep0_zlp(hsotg, true);
2451	}
2452
2453	/* Set actual frame number for completed transfers */
2454	if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2455		req->frame_number = hs_ep->target_frame;
2456		dwc2_gadget_incr_frame_num(hs_ep);
 
 
 
 
 
2457	}
2458
2459	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2460}
2461
2462/**
2463 * dwc2_hsotg_handle_rx - RX FIFO has data
2464 * @hsotg: The device instance
2465 *
2466 * The IRQ handler has detected that the RX FIFO has some data in it
2467 * that requires processing, so find out what is in there and do the
2468 * appropriate read.
2469 *
2470 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2471 * chunks, so if you have x packets received on an endpoint you'll get x
2472 * FIFO events delivered, each with a packet's worth of data in it.
2473 *
2474 * When using DMA, we should not be processing events from the RXFIFO
2475 * as the actual data should be sent to the memory directly and we turn
2476 * on the completion interrupts to get notifications of transfer completion.
2477 */
2478static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2479{
2480	u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2481	u32 epnum, status, size;
2482
2483	WARN_ON(using_dma(hsotg));
2484
2485	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2486	status = grxstsr & GRXSTS_PKTSTS_MASK;
2487
2488	size = grxstsr & GRXSTS_BYTECNT_MASK;
2489	size >>= GRXSTS_BYTECNT_SHIFT;
2490
2491	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2492		__func__, grxstsr, size, epnum);
2493
2494	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2495	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2496		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2497		break;
2498
2499	case GRXSTS_PKTSTS_OUTDONE:
2500		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2501			dwc2_hsotg_read_frameno(hsotg));
2502
2503		if (!using_dma(hsotg))
2504			dwc2_hsotg_handle_outdone(hsotg, epnum);
2505		break;
2506
2507	case GRXSTS_PKTSTS_SETUPDONE:
2508		dev_dbg(hsotg->dev,
2509			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2510			dwc2_hsotg_read_frameno(hsotg),
2511			dwc2_readl(hsotg, DOEPCTL(0)));
2512		/*
2513		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2514		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2515		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2516		 */
2517		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2518			dwc2_hsotg_handle_outdone(hsotg, epnum);
2519		break;
2520
2521	case GRXSTS_PKTSTS_OUTRX:
2522		dwc2_hsotg_rx_data(hsotg, epnum, size);
2523		break;
2524
2525	case GRXSTS_PKTSTS_SETUPRX:
2526		dev_dbg(hsotg->dev,
2527			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2528			dwc2_hsotg_read_frameno(hsotg),
2529			dwc2_readl(hsotg, DOEPCTL(0)));
2530
2531		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2532
2533		dwc2_hsotg_rx_data(hsotg, epnum, size);
2534		break;
2535
2536	default:
2537		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2538			 __func__, grxstsr);
2539
2540		dwc2_hsotg_dump(hsotg);
2541		break;
2542	}
2543}
2544
2545/**
2546 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2547 * @mps: The maximum packet size in bytes.
2548 */
2549static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2550{
2551	switch (mps) {
2552	case 64:
2553		return D0EPCTL_MPS_64;
2554	case 32:
2555		return D0EPCTL_MPS_32;
2556	case 16:
2557		return D0EPCTL_MPS_16;
2558	case 8:
2559		return D0EPCTL_MPS_8;
2560	}
2561
2562	/* bad max packet size, warn and return invalid result */
2563	WARN_ON(1);
2564	return (u32)-1;
2565}
2566
2567/**
2568 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2569 * @hsotg: The driver state.
2570 * @ep: The index number of the endpoint
2571 * @mps: The maximum packet size in bytes
2572 * @mc: The multicount value
2573 * @dir_in: True if direction is in.
2574 *
2575 * Configure the maximum packet size for the given endpoint, updating
2576 * the hardware control registers to reflect this.
2577 */
2578static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2579					unsigned int ep, unsigned int mps,
2580					unsigned int mc, unsigned int dir_in)
2581{
2582	struct dwc2_hsotg_ep *hs_ep;
 
2583	u32 reg;
2584
2585	hs_ep = index_to_ep(hsotg, ep, dir_in);
2586	if (!hs_ep)
2587		return;
2588
2589	if (ep == 0) {
2590		u32 mps_bytes = mps;
2591
2592		/* EP0 is a special case */
2593		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2594		if (mps > 3)
2595			goto bad_mps;
2596		hs_ep->ep.maxpacket = mps_bytes;
2597		hs_ep->mc = 1;
2598	} else {
2599		if (mps > 1024)
2600			goto bad_mps;
2601		hs_ep->mc = mc;
2602		if (mc > 3)
2603			goto bad_mps;
2604		hs_ep->ep.maxpacket = mps;
2605	}
2606
2607	if (dir_in) {
2608		reg = dwc2_readl(hsotg, DIEPCTL(ep));
2609		reg &= ~DXEPCTL_MPS_MASK;
2610		reg |= mps;
2611		dwc2_writel(hsotg, reg, DIEPCTL(ep));
2612	} else {
2613		reg = dwc2_readl(hsotg, DOEPCTL(ep));
2614		reg &= ~DXEPCTL_MPS_MASK;
2615		reg |= mps;
2616		dwc2_writel(hsotg, reg, DOEPCTL(ep));
2617	}
2618
2619	return;
2620
2621bad_mps:
2622	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2623}
2624
2625/**
2626 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2627 * @hsotg: The driver state
2628 * @idx: The index for the endpoint (0..15)
2629 */
2630static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2631{
2632	dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2633		    GRSTCTL);
2634
2635	/* wait until the fifo is flushed */
2636	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2637		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2638			 __func__);
2639}
2640
2641/**
2642 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2643 * @hsotg: The driver state
2644 * @hs_ep: The driver endpoint to check.
2645 *
2646 * Check to see if there is a request that has data to send, and if so
2647 * make an attempt to write data into the FIFO.
2648 */
2649static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2650			    struct dwc2_hsotg_ep *hs_ep)
2651{
2652	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2653
2654	if (!hs_ep->dir_in || !hs_req) {
2655		/**
2656		 * if request is not enqueued, we disable interrupts
2657		 * for endpoints, excepting ep0
2658		 */
2659		if (hs_ep->index != 0)
2660			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2661					      hs_ep->dir_in, 0);
2662		return 0;
2663	}
2664
2665	if (hs_req->req.actual < hs_req->req.length) {
2666		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2667			hs_ep->index);
2668		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2669	}
2670
2671	return 0;
2672}
2673
2674/**
2675 * dwc2_hsotg_complete_in - complete IN transfer
2676 * @hsotg: The device state.
2677 * @hs_ep: The endpoint that has just completed.
2678 *
2679 * An IN transfer has been completed, update the transfer's state and then
2680 * call the relevant completion routines.
2681 */
2682static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2683				   struct dwc2_hsotg_ep *hs_ep)
2684{
2685	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2686	u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2687	int size_left, size_done;
2688
2689	if (!hs_req) {
2690		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2691		return;
2692	}
2693
2694	/* Finish ZLP handling for IN EP0 transactions */
2695	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2696		dev_dbg(hsotg->dev, "zlp packet sent\n");
2697
2698		/*
2699		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2700		 * changed to IN. Change back to complete OUT transfer request
2701		 */
2702		hs_ep->dir_in = 0;
2703
2704		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2705		if (hsotg->test_mode) {
2706			int ret;
2707
2708			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2709			if (ret < 0) {
2710				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2711					hsotg->test_mode);
2712				dwc2_hsotg_stall_ep0(hsotg);
2713				return;
2714			}
2715		}
2716		dwc2_hsotg_enqueue_setup(hsotg);
2717		return;
2718	}
2719
2720	/*
2721	 * Calculate the size of the transfer by checking how much is left
2722	 * in the endpoint size register and then working it out from
2723	 * the amount we loaded for the transfer.
2724	 *
2725	 * We do this even for DMA, as the transfer may have incremented
2726	 * past the end of the buffer (DMA transfers are always 32bit
2727	 * aligned).
2728	 */
2729	if (using_desc_dma(hsotg)) {
2730		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2731		if (size_left < 0)
2732			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2733				size_left);
2734	} else {
2735		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2736	}
2737
2738	size_done = hs_ep->size_loaded - size_left;
2739	size_done += hs_ep->last_load;
2740
2741	if (hs_req->req.actual != size_done)
2742		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2743			__func__, hs_req->req.actual, size_done);
2744
2745	hs_req->req.actual = size_done;
2746	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2747		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2748
2749	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2750		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2751		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2752		return;
2753	}
2754
2755	/* Zlp for all endpoints in non DDMA, for ep0 only in DATA IN stage */
2756	if (hs_ep->send_zlp) {
 
2757		hs_ep->send_zlp = 0;
2758		if (!using_desc_dma(hsotg)) {
2759			dwc2_hsotg_program_zlp(hsotg, hs_ep);
2760			/* transfer will be completed on next complete interrupt */
2761			return;
2762		}
2763	}
2764
2765	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2766		/* Move to STATUS OUT */
2767		dwc2_hsotg_ep0_zlp(hsotg, false);
2768		return;
2769	}
2770
2771	/* Set actual frame number for completed transfers */
2772	if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2773		hs_req->req.frame_number = hs_ep->target_frame;
2774		dwc2_gadget_incr_frame_num(hs_ep);
2775	}
2776
2777	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2778}
2779
2780/**
2781 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2782 * @hsotg: The device state.
2783 * @idx: Index of ep.
2784 * @dir_in: Endpoint direction 1-in 0-out.
2785 *
2786 * Reads for endpoint with given index and direction, by masking
2787 * epint_reg with coresponding mask.
2788 */
2789static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2790					  unsigned int idx, int dir_in)
2791{
2792	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2793	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2794	u32 ints;
2795	u32 mask;
2796	u32 diepempmsk;
2797
2798	mask = dwc2_readl(hsotg, epmsk_reg);
2799	diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2800	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2801	mask |= DXEPINT_SETUP_RCVD;
2802
2803	ints = dwc2_readl(hsotg, epint_reg);
2804	ints &= mask;
2805	return ints;
2806}
2807
2808/**
2809 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2810 * @hs_ep: The endpoint on which interrupt is asserted.
2811 *
2812 * This interrupt indicates that the endpoint has been disabled per the
2813 * application's request.
2814 *
2815 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2816 * in case of ISOC completes current request.
2817 *
2818 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2819 * request starts it.
2820 */
2821static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2822{
2823	struct dwc2_hsotg *hsotg = hs_ep->parent;
2824	struct dwc2_hsotg_req *hs_req;
2825	unsigned char idx = hs_ep->index;
2826	int dir_in = hs_ep->dir_in;
2827	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2828	int dctl = dwc2_readl(hsotg, DCTL);
2829
2830	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2831
2832	if (dir_in) {
2833		int epctl = dwc2_readl(hsotg, epctl_reg);
2834
2835		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2836
 
 
 
 
 
2837		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2838			int dctl = dwc2_readl(hsotg, DCTL);
2839
2840			dctl |= DCTL_CGNPINNAK;
2841			dwc2_writel(hsotg, dctl, DCTL);
2842		}
2843	} else {
 
2844
2845		if (dctl & DCTL_GOUTNAKSTS) {
2846			dctl |= DCTL_CGOUTNAK;
2847			dwc2_writel(hsotg, dctl, DCTL);
2848		}
2849	}
2850
2851	if (!hs_ep->isochronous)
2852		return;
2853
2854	if (list_empty(&hs_ep->queue)) {
2855		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2856			__func__, hs_ep);
2857		return;
2858	}
2859
2860	do {
2861		hs_req = get_ep_head(hs_ep);
2862		if (hs_req) {
2863			hs_req->req.frame_number = hs_ep->target_frame;
2864			hs_req->req.actual = 0;
2865			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2866						    -ENODATA);
2867		}
2868		dwc2_gadget_incr_frame_num(hs_ep);
2869		/* Update current frame number value. */
2870		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2871	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
 
 
2872}
2873
2874/**
2875 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2876 * @ep: The endpoint on which interrupt is asserted.
2877 *
2878 * This is starting point for ISOC-OUT transfer, synchronization done with
2879 * first out token received from host while corresponding EP is disabled.
2880 *
2881 * Device does not know initial frame in which out token will come. For this
2882 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2883 * getting this interrupt SW starts calculation for next transfer frame.
2884 */
2885static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2886{
2887	struct dwc2_hsotg *hsotg = ep->parent;
2888	struct dwc2_hsotg_req *hs_req;
2889	int dir_in = ep->dir_in;
 
 
2890
2891	if (dir_in || !ep->isochronous)
2892		return;
2893
 
 
 
 
 
 
 
 
2894	if (using_desc_dma(hsotg)) {
2895		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2896			/* Start first ISO Out */
2897			ep->target_frame = hsotg->frame_number;
2898			dwc2_gadget_start_isoc_ddma(ep);
2899		}
2900		return;
2901	}
2902
2903	if (ep->target_frame == TARGET_FRAME_INITIAL) {
 
 
2904		u32 ctrl;
2905
2906		ep->target_frame = hsotg->frame_number;
2907		if (ep->interval > 1) {
2908			ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2909			if (ep->target_frame & 0x1)
2910				ctrl |= DXEPCTL_SETODDFR;
2911			else
2912				ctrl |= DXEPCTL_SETEVENFR;
2913
2914			dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2915		}
2916	}
2917
2918	while (dwc2_gadget_target_frame_elapsed(ep)) {
2919		hs_req = get_ep_head(ep);
2920		if (hs_req) {
2921			hs_req->req.frame_number = ep->target_frame;
2922			hs_req->req.actual = 0;
2923			dwc2_hsotg_complete_request(hsotg, ep, hs_req, -ENODATA);
2924		}
2925
2926		dwc2_gadget_incr_frame_num(ep);
2927		/* Update current frame number value. */
2928		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2929	}
2930
2931	if (!ep->req)
2932		dwc2_gadget_start_next_request(ep);
2933
 
2934}
2935
2936static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
2937				   struct dwc2_hsotg_ep *hs_ep);
2938
2939/**
2940 * dwc2_gadget_handle_nak - handle NAK interrupt
2941 * @hs_ep: The endpoint on which interrupt is asserted.
2942 *
2943 * This is starting point for ISOC-IN transfer, synchronization done with
2944 * first IN token received from host while corresponding EP is disabled.
2945 *
2946 * Device does not know when first one token will arrive from host. On first
2947 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2948 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2949 * sent in response to that as there was no data in FIFO. SW is basing on this
2950 * interrupt to obtain frame in which token has come and then based on the
2951 * interval calculates next frame for transfer.
2952 */
2953static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2954{
2955	struct dwc2_hsotg *hsotg = hs_ep->parent;
2956	struct dwc2_hsotg_req *hs_req;
2957	int dir_in = hs_ep->dir_in;
2958	u32 ctrl;
2959
2960	if (!dir_in || !hs_ep->isochronous)
2961		return;
2962
2963	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
 
2964
2965		if (using_desc_dma(hsotg)) {
2966			hs_ep->target_frame = hsotg->frame_number;
2967			dwc2_gadget_incr_frame_num(hs_ep);
2968
2969			/* In service interval mode target_frame must
2970			 * be set to last (u)frame of the service interval.
2971			 */
2972			if (hsotg->params.service_interval) {
2973				/* Set target_frame to the first (u)frame of
2974				 * the service interval
2975				 */
2976				hs_ep->target_frame &= ~hs_ep->interval + 1;
2977
2978				/* Set target_frame to the last (u)frame of
2979				 * the service interval
2980				 */
2981				dwc2_gadget_incr_frame_num(hs_ep);
2982				dwc2_gadget_dec_frame_num_by_one(hs_ep);
2983			}
2984
2985			dwc2_gadget_start_isoc_ddma(hs_ep);
2986			return;
2987		}
2988
2989		hs_ep->target_frame = hsotg->frame_number;
2990		if (hs_ep->interval > 1) {
2991			u32 ctrl = dwc2_readl(hsotg,
2992					      DIEPCTL(hs_ep->index));
2993			if (hs_ep->target_frame & 0x1)
2994				ctrl |= DXEPCTL_SETODDFR;
2995			else
2996				ctrl |= DXEPCTL_SETEVENFR;
2997
2998			dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
2999		}
3000	}
3001
3002	if (using_desc_dma(hsotg))
3003		return;
3004
3005	ctrl = dwc2_readl(hsotg, DIEPCTL(hs_ep->index));
3006	if (ctrl & DXEPCTL_EPENA)
3007		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
3008	else
3009		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
3010
3011	while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
3012		hs_req = get_ep_head(hs_ep);
3013		if (hs_req) {
3014			hs_req->req.frame_number = hs_ep->target_frame;
3015			hs_req->req.actual = 0;
3016			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
3017		}
3018
3019		dwc2_gadget_incr_frame_num(hs_ep);
3020		/* Update current frame number value. */
3021		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
3022	}
3023
3024	if (!hs_ep->req)
3025		dwc2_gadget_start_next_request(hs_ep);
3026}
3027
3028/**
3029 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
3030 * @hsotg: The driver state
3031 * @idx: The index for the endpoint (0..15)
3032 * @dir_in: Set if this is an IN endpoint
3033 *
3034 * Process and clear any interrupt pending for an individual endpoint
3035 */
3036static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
3037			     int dir_in)
3038{
3039	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
3040	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
3041	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
3042	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
3043	u32 ints;
 
3044
3045	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
 
3046
3047	/* Clear endpoint interrupts */
3048	dwc2_writel(hsotg, ints, epint_reg);
3049
3050	if (!hs_ep) {
3051		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
3052			__func__, idx, dir_in ? "in" : "out");
3053		return;
3054	}
3055
3056	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
3057		__func__, idx, dir_in ? "in" : "out", ints);
3058
3059	/* Don't process XferCompl interrupt if it is a setup packet */
3060	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
3061		ints &= ~DXEPINT_XFERCOMPL;
3062
3063	/*
3064	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
3065	 * stage and xfercomplete was generated without SETUP phase done
3066	 * interrupt. SW should parse received setup packet only after host's
3067	 * exit from setup phase of control transfer.
3068	 */
3069	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
3070	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
3071		ints &= ~DXEPINT_XFERCOMPL;
3072
3073	if (ints & DXEPINT_XFERCOMPL) {
3074		dev_dbg(hsotg->dev,
3075			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3076			__func__, dwc2_readl(hsotg, epctl_reg),
3077			dwc2_readl(hsotg, epsiz_reg));
3078
3079		/* In DDMA handle isochronous requests separately */
3080		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
3081			dwc2_gadget_complete_isoc_request_ddma(hs_ep);
 
 
3082		} else if (dir_in) {
3083			/*
3084			 * We get OutDone from the FIFO, so we only
3085			 * need to look at completing IN requests here
3086			 * if operating slave mode
3087			 */
3088			if (!hs_ep->isochronous || !(ints & DXEPINT_NAKINTRPT))
3089				dwc2_hsotg_complete_in(hsotg, hs_ep);
 
 
 
 
3090
3091			if (idx == 0 && !hs_ep->req)
3092				dwc2_hsotg_enqueue_setup(hsotg);
3093		} else if (using_dma(hsotg)) {
3094			/*
3095			 * We're using DMA, we need to fire an OutDone here
3096			 * as we ignore the RXFIFO.
3097			 */
3098			if (!hs_ep->isochronous || !(ints & DXEPINT_OUTTKNEPDIS))
3099				dwc2_hsotg_handle_outdone(hsotg, idx);
 
 
3100		}
3101	}
3102
3103	if (ints & DXEPINT_EPDISBLD)
3104		dwc2_gadget_handle_ep_disabled(hs_ep);
3105
3106	if (ints & DXEPINT_OUTTKNEPDIS)
3107		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
3108
3109	if (ints & DXEPINT_NAKINTRPT)
3110		dwc2_gadget_handle_nak(hs_ep);
3111
3112	if (ints & DXEPINT_AHBERR)
3113		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3114
3115	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
3116		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
3117
3118		if (using_dma(hsotg) && idx == 0) {
3119			/*
3120			 * this is the notification we've received a
3121			 * setup packet. In non-DMA mode we'd get this
3122			 * from the RXFIFO, instead we need to process
3123			 * the setup here.
3124			 */
3125
3126			if (dir_in)
3127				WARN_ON_ONCE(1);
3128			else
3129				dwc2_hsotg_handle_outdone(hsotg, 0);
3130		}
3131	}
3132
3133	if (ints & DXEPINT_STSPHSERCVD) {
3134		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3135
3136		/* Safety check EP0 state when STSPHSERCVD asserted */
3137		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3138			/* Move to STATUS IN for DDMA */
3139			if (using_desc_dma(hsotg)) {
3140				if (!hsotg->delayed_status)
3141					dwc2_hsotg_ep0_zlp(hsotg, true);
3142				else
3143				/* In case of 3 stage Control Write with delayed
3144				 * status, when Status IN transfer started
3145				 * before STSPHSERCVD asserted, NAKSTS bit not
3146				 * cleared by CNAK in dwc2_hsotg_start_req()
3147				 * function. Clear now NAKSTS to allow complete
3148				 * transfer.
3149				 */
3150					dwc2_set_bit(hsotg, DIEPCTL(0),
3151						     DXEPCTL_CNAK);
3152			}
3153		}
3154
3155	}
3156
3157	if (ints & DXEPINT_BACK2BACKSETUP)
3158		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3159
3160	if (ints & DXEPINT_BNAINTR) {
3161		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
 
 
 
 
 
 
 
3162		if (hs_ep->isochronous)
3163			dwc2_gadget_handle_isoc_bna(hs_ep);
3164	}
3165
3166	if (dir_in && !hs_ep->isochronous) {
3167		/* not sure if this is important, but we'll clear it anyway */
3168		if (ints & DXEPINT_INTKNTXFEMP) {
3169			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3170				__func__, idx);
3171		}
3172
3173		/* this probably means something bad is happening */
3174		if (ints & DXEPINT_INTKNEPMIS) {
3175			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3176				 __func__, idx);
3177		}
3178
3179		/* FIFO has space or is empty (see GAHBCFG) */
3180		if (hsotg->dedicated_fifos &&
3181		    ints & DXEPINT_TXFEMP) {
3182			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3183				__func__, idx);
3184			if (!using_dma(hsotg))
3185				dwc2_hsotg_trytx(hsotg, hs_ep);
3186		}
3187	}
3188}
3189
3190/**
3191 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3192 * @hsotg: The device state.
3193 *
3194 * Handle updating the device settings after the enumeration phase has
3195 * been completed.
3196 */
3197static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3198{
3199	u32 dsts = dwc2_readl(hsotg, DSTS);
3200	int ep0_mps = 0, ep_mps = 8;
3201
3202	/*
3203	 * This should signal the finish of the enumeration phase
3204	 * of the USB handshaking, so we should now know what rate
3205	 * we connected at.
3206	 */
3207
3208	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3209
3210	/*
3211	 * note, since we're limited by the size of transfer on EP0, and
3212	 * it seems IN transfers must be a even number of packets we do
3213	 * not advertise a 64byte MPS on EP0.
3214	 */
3215
3216	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3217	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3218	case DSTS_ENUMSPD_FS:
3219	case DSTS_ENUMSPD_FS48:
3220		hsotg->gadget.speed = USB_SPEED_FULL;
3221		ep0_mps = EP0_MPS_LIMIT;
3222		ep_mps = 1023;
3223		break;
3224
3225	case DSTS_ENUMSPD_HS:
3226		hsotg->gadget.speed = USB_SPEED_HIGH;
3227		ep0_mps = EP0_MPS_LIMIT;
3228		ep_mps = 1024;
3229		break;
3230
3231	case DSTS_ENUMSPD_LS:
3232		hsotg->gadget.speed = USB_SPEED_LOW;
3233		ep0_mps = 8;
3234		ep_mps = 8;
3235		/*
3236		 * note, we don't actually support LS in this driver at the
3237		 * moment, and the documentation seems to imply that it isn't
3238		 * supported by the PHYs on some of the devices.
3239		 */
3240		break;
3241	}
3242	dev_info(hsotg->dev, "new device is %s\n",
3243		 usb_speed_string(hsotg->gadget.speed));
3244
3245	/*
3246	 * we should now know the maximum packet size for an
3247	 * endpoint, so set the endpoints to a default value.
3248	 */
3249
3250	if (ep0_mps) {
3251		int i;
3252		/* Initialize ep0 for both in and out directions */
3253		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3254		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3255		for (i = 1; i < hsotg->num_of_eps; i++) {
3256			if (hsotg->eps_in[i])
3257				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3258							    0, 1);
3259			if (hsotg->eps_out[i])
3260				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3261							    0, 0);
3262		}
3263	}
3264
3265	/* ensure after enumeration our EP0 is active */
3266
3267	dwc2_hsotg_enqueue_setup(hsotg);
3268
3269	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3270		dwc2_readl(hsotg, DIEPCTL0),
3271		dwc2_readl(hsotg, DOEPCTL0));
3272}
3273
3274/**
3275 * kill_all_requests - remove all requests from the endpoint's queue
3276 * @hsotg: The device state.
3277 * @ep: The endpoint the requests may be on.
3278 * @result: The result code to use.
3279 *
3280 * Go through the requests on the given endpoint and mark them
3281 * completed with the given result code.
3282 */
3283static void kill_all_requests(struct dwc2_hsotg *hsotg,
3284			      struct dwc2_hsotg_ep *ep,
3285			      int result)
3286{
 
3287	unsigned int size;
3288
3289	ep->req = NULL;
3290
3291	while (!list_empty(&ep->queue)) {
3292		struct dwc2_hsotg_req *req = get_ep_head(ep);
3293
3294		dwc2_hsotg_complete_request(hsotg, ep, req, result);
3295	}
3296
3297	if (!hsotg->dedicated_fifos)
3298		return;
3299	size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3300	if (size < ep->fifo_size)
3301		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3302}
3303
3304/**
3305 * dwc2_hsotg_disconnect - disconnect service
3306 * @hsotg: The device state.
3307 *
3308 * The device has been disconnected. Remove all current
3309 * transactions and signal the gadget driver that this
3310 * has happened.
3311 */
3312void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3313{
3314	unsigned int ep;
3315
3316	if (!hsotg->connected)
3317		return;
3318
3319	hsotg->connected = 0;
3320	hsotg->test_mode = 0;
3321
3322	/* all endpoints should be shutdown */
3323	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3324		if (hsotg->eps_in[ep])
3325			kill_all_requests(hsotg, hsotg->eps_in[ep],
3326					  -ESHUTDOWN);
3327		if (hsotg->eps_out[ep])
3328			kill_all_requests(hsotg, hsotg->eps_out[ep],
3329					  -ESHUTDOWN);
3330	}
3331
3332	call_gadget(hsotg, disconnect);
3333	hsotg->lx_state = DWC2_L3;
3334
3335	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3336}
3337
3338/**
3339 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3340 * @hsotg: The device state:
3341 * @periodic: True if this is a periodic FIFO interrupt
3342 */
3343static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3344{
3345	struct dwc2_hsotg_ep *ep;
3346	int epno, ret;
3347
3348	/* look through for any more data to transmit */
3349	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3350		ep = index_to_ep(hsotg, epno, 1);
3351
3352		if (!ep)
3353			continue;
3354
3355		if (!ep->dir_in)
3356			continue;
3357
3358		if ((periodic && !ep->periodic) ||
3359		    (!periodic && ep->periodic))
3360			continue;
3361
3362		ret = dwc2_hsotg_trytx(hsotg, ep);
3363		if (ret < 0)
3364			break;
3365	}
3366}
3367
3368/* IRQ flags which will trigger a retry around the IRQ loop */
3369#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3370			GINTSTS_PTXFEMP |  \
3371			GINTSTS_RXFLVL)
3372
3373static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3374/**
3375 * dwc2_hsotg_core_init_disconnected - issue softreset to the core
3376 * @hsotg: The device state
3377 * @is_usb_reset: Usb resetting flag
3378 *
3379 * Issue a soft reset to the core, and await the core finishing it.
3380 */
3381void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3382				       bool is_usb_reset)
3383{
3384	u32 intmsk;
3385	u32 val;
3386	u32 usbcfg;
3387	u32 dcfg = 0;
3388	int ep;
3389
3390	/* Kill any ep0 requests as controller will be reinitialized */
3391	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3392
3393	if (!is_usb_reset) {
3394		if (dwc2_core_reset(hsotg, true))
3395			return;
3396	} else {
3397		/* all endpoints should be shutdown */
3398		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3399			if (hsotg->eps_in[ep])
3400				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3401			if (hsotg->eps_out[ep])
3402				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3403		}
3404	}
3405
3406	/*
3407	 * we must now enable ep0 ready for host detection and then
3408	 * set configuration.
3409	 */
3410
3411	/* keep other bits untouched (so e.g. forced modes are not lost) */
3412	usbcfg = dwc2_readl(hsotg, GUSBCFG);
3413	usbcfg &= ~GUSBCFG_TOUTCAL_MASK;
3414	usbcfg |= GUSBCFG_TOUTCAL(7);
3415
3416	/* remove the HNP/SRP and set the PHY */
3417	usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP);
3418        dwc2_writel(hsotg, usbcfg, GUSBCFG);
3419
3420	dwc2_phy_init(hsotg, true);
 
 
 
 
 
 
 
3421
3422	dwc2_hsotg_init_fifo(hsotg);
3423
3424	if (!is_usb_reset)
3425		dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3426
3427	dcfg |= DCFG_EPMISCNT(1);
3428
3429	switch (hsotg->params.speed) {
3430	case DWC2_SPEED_PARAM_LOW:
3431		dcfg |= DCFG_DEVSPD_LS;
3432		break;
3433	case DWC2_SPEED_PARAM_FULL:
3434		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3435			dcfg |= DCFG_DEVSPD_FS48;
3436		else
3437			dcfg |= DCFG_DEVSPD_FS;
3438		break;
3439	default:
3440		dcfg |= DCFG_DEVSPD_HS;
3441	}
3442
3443	if (hsotg->params.ipg_isoc_en)
3444		dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3445
3446	dwc2_writel(hsotg, dcfg,  DCFG);
3447
3448	/* Clear any pending OTG interrupts */
3449	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3450
3451	/* Clear any pending interrupts */
3452	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3453	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3454		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3455		GINTSTS_USBRST | GINTSTS_RESETDET |
3456		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3457		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3458		GINTSTS_LPMTRANRCVD;
3459
3460	if (!using_desc_dma(hsotg))
3461		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3462
3463	if (!hsotg->params.external_id_pin_ctl)
3464		intmsk |= GINTSTS_CONIDSTSCHNG;
3465
3466	dwc2_writel(hsotg, intmsk, GINTMSK);
3467
3468	if (using_dma(hsotg)) {
3469		dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3470			    hsotg->params.ahbcfg,
3471			    GAHBCFG);
3472
3473		/* Set DDMA mode support in the core if needed */
3474		if (using_desc_dma(hsotg))
3475			dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3476
3477	} else {
3478		dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3479						(GAHBCFG_NP_TXF_EMP_LVL |
3480						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3481			    GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3482	}
3483
3484	/*
3485	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3486	 * when we have no data to transfer. Otherwise we get being flooded by
3487	 * interrupts.
3488	 */
3489
3490	dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3491		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3492		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3493		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3494		DIEPMSK);
3495
3496	/*
3497	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3498	 * DMA mode we may need this and StsPhseRcvd.
3499	 */
3500	dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3501		DOEPMSK_STSPHSERCVDMSK) : 0) |
3502		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3503		DOEPMSK_SETUPMSK,
3504		DOEPMSK);
3505
3506	/* Enable BNA interrupt for DDMA */
3507	if (using_desc_dma(hsotg)) {
3508		dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3509		dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3510	}
3511
3512	/* Enable Service Interval mode if supported */
3513	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3514		dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3515
3516	dwc2_writel(hsotg, 0, DAINTMSK);
3517
3518	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3519		dwc2_readl(hsotg, DIEPCTL0),
3520		dwc2_readl(hsotg, DOEPCTL0));
3521
3522	/* enable in and out endpoint interrupts */
3523	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3524
3525	/*
3526	 * Enable the RXFIFO when in slave mode, as this is how we collect
3527	 * the data. In DMA mode, we get events from the FIFO but also
3528	 * things we cannot process, so do not use it.
3529	 */
3530	if (!using_dma(hsotg))
3531		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3532
3533	/* Enable interrupts for EP0 in and out */
3534	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3535	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3536
3537	if (!is_usb_reset) {
3538		dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3539		udelay(10);  /* see openiboot */
3540		dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3541	}
3542
3543	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3544
3545	/*
3546	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3547	 * writing to the EPCTL register..
3548	 */
3549
3550	/* set to read 1 8byte packet */
3551	dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3552	       DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3553
3554	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3555	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3556	       DXEPCTL_USBACTEP,
3557	       DOEPCTL0);
3558
3559	/* enable, but don't activate EP0in */
3560	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3561	       DXEPCTL_USBACTEP, DIEPCTL0);
3562
3563	/* clear global NAKs */
3564	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3565	if (!is_usb_reset)
3566		val |= DCTL_SFTDISCON;
3567	dwc2_set_bit(hsotg, DCTL, val);
3568
3569	/* configure the core to support LPM */
3570	dwc2_gadget_init_lpm(hsotg);
3571
3572	/* program GREFCLK register if needed */
3573	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3574		dwc2_gadget_program_ref_clk(hsotg);
3575
3576	/* must be at-least 3ms to allow bus to see disconnect */
3577	mdelay(3);
3578
3579	hsotg->lx_state = DWC2_L0;
3580
3581	dwc2_hsotg_enqueue_setup(hsotg);
3582
3583	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3584		dwc2_readl(hsotg, DIEPCTL0),
3585		dwc2_readl(hsotg, DOEPCTL0));
3586}
3587
3588void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3589{
3590	/* set the soft-disconnect bit */
3591	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3592}
3593
3594void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3595{
3596	/* remove the soft-disconnect and let's go */
3597	if (!hsotg->role_sw || (dwc2_readl(hsotg, GOTGCTL) & GOTGCTL_BSESVLD))
3598		dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3599}
3600
3601/**
3602 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3603 * @hsotg: The device state:
3604 *
3605 * This interrupt indicates one of the following conditions occurred while
3606 * transmitting an ISOC transaction.
3607 * - Corrupted IN Token for ISOC EP.
3608 * - Packet not complete in FIFO.
3609 *
3610 * The following actions will be taken:
3611 * - Determine the EP
3612 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3613 */
3614static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3615{
3616	struct dwc2_hsotg_ep *hs_ep;
3617	u32 epctrl;
3618	u32 daintmsk;
3619	u32 idx;
3620
3621	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3622
3623	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3624
3625	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3626		hs_ep = hsotg->eps_in[idx];
3627		/* Proceed only unmasked ISOC EPs */
3628		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3629			continue;
3630
3631		epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3632		if ((epctrl & DXEPCTL_EPENA) &&
3633		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3634			epctrl |= DXEPCTL_SNAK;
3635			epctrl |= DXEPCTL_EPDIS;
3636			dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3637		}
3638	}
3639
3640	/* Clear interrupt */
3641	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3642}
3643
3644/**
3645 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3646 * @hsotg: The device state:
3647 *
3648 * This interrupt indicates one of the following conditions occurred while
3649 * transmitting an ISOC transaction.
3650 * - Corrupted OUT Token for ISOC EP.
3651 * - Packet not complete in FIFO.
3652 *
3653 * The following actions will be taken:
3654 * - Determine the EP
3655 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3656 */
3657static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3658{
3659	u32 gintsts;
3660	u32 gintmsk;
3661	u32 daintmsk;
3662	u32 epctrl;
3663	struct dwc2_hsotg_ep *hs_ep;
3664	int idx;
3665
3666	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3667
3668	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3669	daintmsk >>= DAINT_OUTEP_SHIFT;
3670
3671	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3672		hs_ep = hsotg->eps_out[idx];
3673		/* Proceed only unmasked ISOC EPs */
3674		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3675			continue;
3676
3677		epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3678		if ((epctrl & DXEPCTL_EPENA) &&
3679		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3680			/* Unmask GOUTNAKEFF interrupt */
3681			gintmsk = dwc2_readl(hsotg, GINTMSK);
3682			gintmsk |= GINTSTS_GOUTNAKEFF;
3683			dwc2_writel(hsotg, gintmsk, GINTMSK);
3684
3685			gintsts = dwc2_readl(hsotg, GINTSTS);
3686			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3687				dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3688				break;
3689			}
3690		}
3691	}
3692
3693	/* Clear interrupt */
3694	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3695}
3696
3697/**
3698 * dwc2_hsotg_irq - handle device interrupt
3699 * @irq: The IRQ number triggered
3700 * @pw: The pw value when registered the handler.
3701 */
3702static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3703{
3704	struct dwc2_hsotg *hsotg = pw;
3705	int retry_count = 8;
3706	u32 gintsts;
3707	u32 gintmsk;
3708
3709	if (!dwc2_is_device_mode(hsotg))
3710		return IRQ_NONE;
3711
3712	spin_lock(&hsotg->lock);
3713irq_retry:
3714	gintsts = dwc2_readl(hsotg, GINTSTS);
3715	gintmsk = dwc2_readl(hsotg, GINTMSK);
3716
3717	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3718		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3719
3720	gintsts &= gintmsk;
3721
3722	if (gintsts & GINTSTS_RESETDET) {
3723		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3724
3725		dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3726
3727		/* This event must be used only if controller is suspended */
3728		if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
3729			dwc2_exit_partial_power_down(hsotg, 0, true);
3730
3731		hsotg->lx_state = DWC2_L0;
3732	}
3733
3734	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3735		u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
3736		u32 connected = hsotg->connected;
3737
3738		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3739		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3740			dwc2_readl(hsotg, GNPTXSTS));
3741
3742		dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3743
3744		/* Report disconnection if it is not already done. */
3745		dwc2_hsotg_disconnect(hsotg);
3746
3747		/* Reset device address to zero */
3748		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3749
3750		if (usb_status & GOTGCTL_BSESVLD && connected)
3751			dwc2_hsotg_core_init_disconnected(hsotg, true);
3752	}
3753
3754	if (gintsts & GINTSTS_ENUMDONE) {
3755		dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3756
3757		dwc2_hsotg_irq_enumdone(hsotg);
3758	}
3759
3760	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3761		u32 daint = dwc2_readl(hsotg, DAINT);
3762		u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3763		u32 daint_out, daint_in;
3764		int ep;
3765
3766		daint &= daintmsk;
3767		daint_out = daint >> DAINT_OUTEP_SHIFT;
3768		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3769
3770		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3771
3772		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3773						ep++, daint_out >>= 1) {
3774			if (daint_out & 1)
3775				dwc2_hsotg_epint(hsotg, ep, 0);
3776		}
3777
3778		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3779						ep++, daint_in >>= 1) {
3780			if (daint_in & 1)
3781				dwc2_hsotg_epint(hsotg, ep, 1);
3782		}
3783	}
3784
3785	/* check both FIFOs */
3786
3787	if (gintsts & GINTSTS_NPTXFEMP) {
3788		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3789
3790		/*
3791		 * Disable the interrupt to stop it happening again
3792		 * unless one of these endpoint routines decides that
3793		 * it needs re-enabling
3794		 */
3795
3796		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3797		dwc2_hsotg_irq_fifoempty(hsotg, false);
3798	}
3799
3800	if (gintsts & GINTSTS_PTXFEMP) {
3801		dev_dbg(hsotg->dev, "PTxFEmp\n");
3802
3803		/* See note in GINTSTS_NPTxFEmp */
3804
3805		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3806		dwc2_hsotg_irq_fifoempty(hsotg, true);
3807	}
3808
3809	if (gintsts & GINTSTS_RXFLVL) {
3810		/*
3811		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3812		 * we need to retry dwc2_hsotg_handle_rx if this is still
3813		 * set.
3814		 */
3815
3816		dwc2_hsotg_handle_rx(hsotg);
3817	}
3818
3819	if (gintsts & GINTSTS_ERLYSUSP) {
3820		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3821		dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3822	}
3823
3824	/*
3825	 * these next two seem to crop-up occasionally causing the core
3826	 * to shutdown the USB transfer, so try clearing them and logging
3827	 * the occurrence.
3828	 */
3829
3830	if (gintsts & GINTSTS_GOUTNAKEFF) {
3831		u8 idx;
3832		u32 epctrl;
3833		u32 gintmsk;
3834		u32 daintmsk;
3835		struct dwc2_hsotg_ep *hs_ep;
3836
3837		daintmsk = dwc2_readl(hsotg, DAINTMSK);
3838		daintmsk >>= DAINT_OUTEP_SHIFT;
3839		/* Mask this interrupt */
3840		gintmsk = dwc2_readl(hsotg, GINTMSK);
3841		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3842		dwc2_writel(hsotg, gintmsk, GINTMSK);
3843
3844		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3845		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3846			hs_ep = hsotg->eps_out[idx];
3847			/* Proceed only unmasked ISOC EPs */
3848			if (BIT(idx) & ~daintmsk)
3849				continue;
3850
3851			epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3852
3853			//ISOC Ep's only
3854			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3855				epctrl |= DXEPCTL_SNAK;
3856				epctrl |= DXEPCTL_EPDIS;
3857				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3858				continue;
3859			}
3860
3861			//Non-ISOC EP's
3862			if (hs_ep->halted) {
3863				if (!(epctrl & DXEPCTL_EPENA))
3864					epctrl |= DXEPCTL_EPENA;
3865				epctrl |= DXEPCTL_EPDIS;
3866				epctrl |= DXEPCTL_STALL;
3867				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3868			}
3869		}
3870
3871		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3872	}
3873
3874	if (gintsts & GINTSTS_GINNAKEFF) {
3875		dev_info(hsotg->dev, "GINNakEff triggered\n");
3876
3877		dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3878
3879		dwc2_hsotg_dump(hsotg);
3880	}
3881
3882	if (gintsts & GINTSTS_INCOMPL_SOIN)
3883		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3884
3885	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3886		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3887
3888	/*
3889	 * if we've had fifo events, we should try and go around the
3890	 * loop again to see if there's any point in returning yet.
3891	 */
3892
3893	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3894		goto irq_retry;
3895
3896	/* Check WKUP_ALERT interrupt*/
3897	if (hsotg->params.service_interval)
3898		dwc2_gadget_wkup_alert_handler(hsotg);
3899
3900	spin_unlock(&hsotg->lock);
3901
3902	return IRQ_HANDLED;
3903}
3904
3905static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3906				   struct dwc2_hsotg_ep *hs_ep)
3907{
3908	u32 epctrl_reg;
3909	u32 epint_reg;
3910
3911	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3912		DOEPCTL(hs_ep->index);
3913	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3914		DOEPINT(hs_ep->index);
3915
3916	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3917		hs_ep->name);
3918
3919	if (hs_ep->dir_in) {
3920		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3921			dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3922			/* Wait for Nak effect */
3923			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3924						    DXEPINT_INEPNAKEFF, 100))
3925				dev_warn(hsotg->dev,
3926					 "%s: timeout DIEPINT.NAKEFF\n",
3927					 __func__);
3928		} else {
3929			dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3930			/* Wait for Nak effect */
3931			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3932						    GINTSTS_GINNAKEFF, 100))
3933				dev_warn(hsotg->dev,
3934					 "%s: timeout GINTSTS.GINNAKEFF\n",
3935					 __func__);
3936		}
3937	} else {
3938		/* Mask GINTSTS_GOUTNAKEFF interrupt */
3939		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_GOUTNAKEFF);
3940
3941		if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3942			dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3943
3944		if (!using_dma(hsotg)) {
3945			/* Wait for GINTSTS_RXFLVL interrupt */
3946			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3947						    GINTSTS_RXFLVL, 100)) {
3948				dev_warn(hsotg->dev, "%s: timeout GINTSTS.RXFLVL\n",
3949					 __func__);
3950			} else {
3951				/*
3952				 * Pop GLOBAL OUT NAK status packet from RxFIFO
3953				 * to assert GOUTNAKEFF interrupt
3954				 */
3955				dwc2_readl(hsotg, GRXSTSP);
3956			}
3957		}
3958
3959		/* Wait for global nak to take effect */
3960		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3961					    GINTSTS_GOUTNAKEFF, 100))
3962			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3963				 __func__);
3964	}
3965
3966	/* Disable ep */
3967	dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3968
3969	/* Wait for ep to be disabled */
3970	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3971		dev_warn(hsotg->dev,
3972			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3973
3974	/* Clear EPDISBLD interrupt */
3975	dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3976
3977	if (hs_ep->dir_in) {
3978		unsigned short fifo_index;
3979
3980		if (hsotg->dedicated_fifos || hs_ep->periodic)
3981			fifo_index = hs_ep->fifo_index;
3982		else
3983			fifo_index = 0;
3984
3985		/* Flush TX FIFO */
3986		dwc2_flush_tx_fifo(hsotg, fifo_index);
3987
3988		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3989		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3990			dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3991
3992	} else {
3993		/* Remove global NAKs */
3994		dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
3995	}
3996}
3997
3998/**
3999 * dwc2_hsotg_ep_enable - enable the given endpoint
4000 * @ep: The USB endpint to configure
4001 * @desc: The USB endpoint descriptor to configure with.
4002 *
4003 * This is called from the USB gadget code's usb_ep_enable().
4004 */
4005static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
4006				const struct usb_endpoint_descriptor *desc)
4007{
4008	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4009	struct dwc2_hsotg *hsotg = hs_ep->parent;
4010	unsigned long flags;
4011	unsigned int index = hs_ep->index;
4012	u32 epctrl_reg;
4013	u32 epctrl;
4014	u32 mps;
4015	u32 mc;
4016	u32 mask;
4017	unsigned int dir_in;
4018	unsigned int i, val, size;
4019	int ret = 0;
4020	unsigned char ep_type;
4021	int desc_num;
4022
4023	dev_dbg(hsotg->dev,
4024		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
4025		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
4026		desc->wMaxPacketSize, desc->bInterval);
4027
4028	/* not to be called for EP0 */
4029	if (index == 0) {
4030		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
4031		return -EINVAL;
4032	}
4033
4034	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
4035	if (dir_in != hs_ep->dir_in) {
4036		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
4037		return -EINVAL;
4038	}
4039
4040	ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
4041	mps = usb_endpoint_maxp(desc);
4042	mc = usb_endpoint_maxp_mult(desc);
4043
4044	/* ISOC IN in DDMA supported bInterval up to 10 */
4045	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4046	    dir_in && desc->bInterval > 10) {
4047		dev_err(hsotg->dev,
4048			"%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
4049		return -EINVAL;
4050	}
4051
4052	/* High bandwidth ISOC OUT in DDMA not supported */
4053	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4054	    !dir_in && mc > 1) {
4055		dev_err(hsotg->dev,
4056			"%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
4057		return -EINVAL;
4058	}
4059
4060	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
4061
4062	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4063	epctrl = dwc2_readl(hsotg, epctrl_reg);
4064
4065	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
4066		__func__, epctrl, epctrl_reg);
4067
4068	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC)
4069		desc_num = MAX_DMA_DESC_NUM_HS_ISOC;
4070	else
4071		desc_num = MAX_DMA_DESC_NUM_GENERIC;
4072
4073	/* Allocate DMA descriptor chain for non-ctrl endpoints */
4074	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
4075		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
4076			desc_num * sizeof(struct dwc2_dma_desc),
 
4077			&hs_ep->desc_list_dma, GFP_ATOMIC);
4078		if (!hs_ep->desc_list) {
4079			ret = -ENOMEM;
4080			goto error2;
4081		}
4082	}
4083
4084	spin_lock_irqsave(&hsotg->lock, flags);
4085
4086	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
4087	epctrl |= DXEPCTL_MPS(mps);
4088
4089	/*
4090	 * mark the endpoint as active, otherwise the core may ignore
4091	 * transactions entirely for this endpoint
4092	 */
4093	epctrl |= DXEPCTL_USBACTEP;
4094
4095	/* update the endpoint state */
4096	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
4097
4098	/* default, set to non-periodic */
4099	hs_ep->isochronous = 0;
4100	hs_ep->periodic = 0;
4101	hs_ep->halted = 0;
4102	hs_ep->wedged = 0;
4103	hs_ep->interval = desc->bInterval;
4104
4105	switch (ep_type) {
4106	case USB_ENDPOINT_XFER_ISOC:
4107		epctrl |= DXEPCTL_EPTYPE_ISO;
4108		epctrl |= DXEPCTL_SETEVENFR;
4109		hs_ep->isochronous = 1;
4110		hs_ep->interval = 1 << (desc->bInterval - 1);
4111		hs_ep->target_frame = TARGET_FRAME_INITIAL;
 
4112		hs_ep->next_desc = 0;
4113		hs_ep->compl_desc = 0;
4114		if (dir_in) {
4115			hs_ep->periodic = 1;
4116			mask = dwc2_readl(hsotg, DIEPMSK);
4117			mask |= DIEPMSK_NAKMSK;
4118			dwc2_writel(hsotg, mask, DIEPMSK);
4119		} else {
4120			epctrl |= DXEPCTL_SNAK;
4121			mask = dwc2_readl(hsotg, DOEPMSK);
4122			mask |= DOEPMSK_OUTTKNEPDISMSK;
4123			dwc2_writel(hsotg, mask, DOEPMSK);
4124		}
4125		break;
4126
4127	case USB_ENDPOINT_XFER_BULK:
4128		epctrl |= DXEPCTL_EPTYPE_BULK;
4129		break;
4130
4131	case USB_ENDPOINT_XFER_INT:
4132		if (dir_in)
4133			hs_ep->periodic = 1;
4134
4135		if (hsotg->gadget.speed == USB_SPEED_HIGH)
4136			hs_ep->interval = 1 << (desc->bInterval - 1);
4137
4138		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4139		break;
4140
4141	case USB_ENDPOINT_XFER_CONTROL:
4142		epctrl |= DXEPCTL_EPTYPE_CONTROL;
4143		break;
4144	}
4145
4146	/*
4147	 * if the hardware has dedicated fifos, we must give each IN EP
4148	 * a unique tx-fifo even if it is non-periodic.
4149	 */
4150	if (dir_in && hsotg->dedicated_fifos) {
4151		unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
4152		u32 fifo_index = 0;
4153		u32 fifo_size = UINT_MAX;
4154
4155		size = hs_ep->ep.maxpacket * hs_ep->mc;
4156		for (i = 1; i <= fifo_count; ++i) {
4157			if (hsotg->fifo_map & (1 << i))
4158				continue;
4159			val = dwc2_readl(hsotg, DPTXFSIZN(i));
4160			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4161			if (val < size)
4162				continue;
4163			/* Search for smallest acceptable fifo */
4164			if (val < fifo_size) {
4165				fifo_size = val;
4166				fifo_index = i;
4167			}
4168		}
4169		if (!fifo_index) {
4170			dev_err(hsotg->dev,
4171				"%s: No suitable fifo found\n", __func__);
4172			ret = -ENOMEM;
4173			goto error1;
4174		}
4175		epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4176		hsotg->fifo_map |= 1 << fifo_index;
4177		epctrl |= DXEPCTL_TXFNUM(fifo_index);
4178		hs_ep->fifo_index = fifo_index;
4179		hs_ep->fifo_size = fifo_size;
4180	}
4181
4182	/* for non control endpoints, set PID to D0 */
4183	if (index && !hs_ep->isochronous)
4184		epctrl |= DXEPCTL_SETD0PID;
4185
4186	/* WA for Full speed ISOC IN in DDMA mode.
4187	 * By Clear NAK status of EP, core will send ZLP
4188	 * to IN token and assert NAK interrupt relying
4189	 * on TxFIFO status only
4190	 */
4191
4192	if (hsotg->gadget.speed == USB_SPEED_FULL &&
4193	    hs_ep->isochronous && dir_in) {
4194		/* The WA applies only to core versions from 2.72a
4195		 * to 4.00a (including both). Also for FS_IOT_1.00a
4196		 * and HS_IOT_1.00a.
4197		 */
4198		u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4199
4200		if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4201		     gsnpsid <= DWC2_CORE_REV_4_00a) ||
4202		     gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4203		     gsnpsid == DWC2_HS_IOT_REV_1_00a)
4204			epctrl |= DXEPCTL_CNAK;
4205	}
4206
4207	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4208		__func__, epctrl);
4209
4210	dwc2_writel(hsotg, epctrl, epctrl_reg);
4211	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4212		__func__, dwc2_readl(hsotg, epctrl_reg));
4213
4214	/* enable the endpoint interrupt */
4215	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4216
4217error1:
4218	spin_unlock_irqrestore(&hsotg->lock, flags);
4219
4220error2:
4221	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4222		dmam_free_coherent(hsotg->dev, desc_num *
4223			sizeof(struct dwc2_dma_desc),
4224			hs_ep->desc_list, hs_ep->desc_list_dma);
4225		hs_ep->desc_list = NULL;
4226	}
4227
4228	return ret;
4229}
4230
4231/**
4232 * dwc2_hsotg_ep_disable - disable given endpoint
4233 * @ep: The endpoint to disable.
4234 */
4235static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4236{
4237	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4238	struct dwc2_hsotg *hsotg = hs_ep->parent;
4239	int dir_in = hs_ep->dir_in;
4240	int index = hs_ep->index;
 
4241	u32 epctrl_reg;
4242	u32 ctrl;
4243
4244	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4245
4246	if (ep == &hsotg->eps_out[0]->ep) {
4247		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4248		return -EINVAL;
4249	}
4250
4251	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4252		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4253		return -EINVAL;
4254	}
4255
4256	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4257
4258	ctrl = dwc2_readl(hsotg, epctrl_reg);
 
 
4259
4260	if (ctrl & DXEPCTL_EPENA)
4261		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4262
4263	ctrl &= ~DXEPCTL_EPENA;
4264	ctrl &= ~DXEPCTL_USBACTEP;
4265	ctrl |= DXEPCTL_SNAK;
4266
4267	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4268	dwc2_writel(hsotg, ctrl, epctrl_reg);
4269
4270	/* disable endpoint interrupts */
4271	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4272
4273	/* terminate all requests with shutdown */
4274	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4275
4276	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4277	hs_ep->fifo_index = 0;
4278	hs_ep->fifo_size = 0;
4279
4280	return 0;
4281}
4282
4283static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4284{
4285	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4286	struct dwc2_hsotg *hsotg = hs_ep->parent;
4287	unsigned long flags;
4288	int ret;
4289
4290	spin_lock_irqsave(&hsotg->lock, flags);
4291	ret = dwc2_hsotg_ep_disable(ep);
4292	spin_unlock_irqrestore(&hsotg->lock, flags);
4293	return ret;
4294}
4295
4296/**
4297 * on_list - check request is on the given endpoint
4298 * @ep: The endpoint to check.
4299 * @test: The request to test if it is on the endpoint.
4300 */
4301static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4302{
4303	struct dwc2_hsotg_req *req, *treq;
4304
4305	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4306		if (req == test)
4307			return true;
4308	}
4309
4310	return false;
4311}
4312
4313/**
4314 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4315 * @ep: The endpoint to dequeue.
4316 * @req: The request to be removed from a queue.
4317 */
4318static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4319{
4320	struct dwc2_hsotg_req *hs_req = our_req(req);
4321	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4322	struct dwc2_hsotg *hs = hs_ep->parent;
4323	unsigned long flags;
4324
4325	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4326
4327	spin_lock_irqsave(&hs->lock, flags);
4328
4329	if (!on_list(hs_ep, hs_req)) {
4330		spin_unlock_irqrestore(&hs->lock, flags);
4331		return -EINVAL;
4332	}
4333
4334	/* Dequeue already started request */
4335	if (req == &hs_ep->req->req)
4336		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4337
4338	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4339	spin_unlock_irqrestore(&hs->lock, flags);
4340
4341	return 0;
4342}
4343
4344/**
4345 * dwc2_gadget_ep_set_wedge - set wedge on a given endpoint
4346 * @ep: The endpoint to be wedged.
4347 *
4348 */
4349static int dwc2_gadget_ep_set_wedge(struct usb_ep *ep)
4350{
4351	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4352	struct dwc2_hsotg *hs = hs_ep->parent;
4353
4354	unsigned long	flags;
4355	int		ret;
4356
4357	spin_lock_irqsave(&hs->lock, flags);
4358	hs_ep->wedged = 1;
4359	ret = dwc2_hsotg_ep_sethalt(ep, 1, false);
4360	spin_unlock_irqrestore(&hs->lock, flags);
4361
4362	return ret;
4363}
4364
4365/**
4366 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4367 * @ep: The endpoint to set halt.
4368 * @value: Set or unset the halt.
4369 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4370 *       the endpoint is busy processing requests.
4371 *
4372 * We need to stall the endpoint immediately if request comes from set_feature
4373 * protocol command handler.
4374 */
4375static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4376{
4377	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4378	struct dwc2_hsotg *hs = hs_ep->parent;
4379	int index = hs_ep->index;
4380	u32 epreg;
4381	u32 epctl;
4382	u32 xfertype;
4383
4384	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4385
4386	if (index == 0) {
4387		if (value)
4388			dwc2_hsotg_stall_ep0(hs);
4389		else
4390			dev_warn(hs->dev,
4391				 "%s: can't clear halt on ep0\n", __func__);
4392		return 0;
4393	}
4394
4395	if (hs_ep->isochronous) {
4396		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4397		return -EINVAL;
4398	}
4399
4400	if (!now && value && !list_empty(&hs_ep->queue)) {
4401		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4402			ep->name);
4403		return -EAGAIN;
4404	}
4405
4406	if (hs_ep->dir_in) {
4407		epreg = DIEPCTL(index);
4408		epctl = dwc2_readl(hs, epreg);
4409
4410		if (value) {
4411			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4412			if (epctl & DXEPCTL_EPENA)
4413				epctl |= DXEPCTL_EPDIS;
4414		} else {
4415			epctl &= ~DXEPCTL_STALL;
4416			hs_ep->wedged = 0;
4417			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4418			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4419			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4420				epctl |= DXEPCTL_SETD0PID;
4421		}
4422		dwc2_writel(hs, epctl, epreg);
4423	} else {
4424		epreg = DOEPCTL(index);
4425		epctl = dwc2_readl(hs, epreg);
4426
4427		if (value) {
4428			/* Unmask GOUTNAKEFF interrupt */
4429			dwc2_hsotg_en_gsint(hs, GINTSTS_GOUTNAKEFF);
4430
4431			if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF))
4432				dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK);
4433			// STALL bit will be set in GOUTNAKEFF interrupt handler
4434		} else {
4435			epctl &= ~DXEPCTL_STALL;
4436			hs_ep->wedged = 0;
4437			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4438			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4439			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4440				epctl |= DXEPCTL_SETD0PID;
4441			dwc2_writel(hs, epctl, epreg);
4442		}
 
4443	}
4444
4445	hs_ep->halted = value;
 
4446	return 0;
4447}
4448
4449/**
4450 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4451 * @ep: The endpoint to set halt.
4452 * @value: Set or unset the halt.
4453 */
4454static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4455{
4456	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4457	struct dwc2_hsotg *hs = hs_ep->parent;
4458	unsigned long flags;
4459	int ret;
4460
4461	spin_lock_irqsave(&hs->lock, flags);
4462	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4463	spin_unlock_irqrestore(&hs->lock, flags);
4464
4465	return ret;
4466}
4467
4468static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4469	.enable		= dwc2_hsotg_ep_enable,
4470	.disable	= dwc2_hsotg_ep_disable_lock,
4471	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4472	.free_request	= dwc2_hsotg_ep_free_request,
4473	.queue		= dwc2_hsotg_ep_queue_lock,
4474	.dequeue	= dwc2_hsotg_ep_dequeue,
4475	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4476	.set_wedge	= dwc2_gadget_ep_set_wedge,
4477	/* note, don't believe we have any call for the fifo routines */
4478};
4479
4480/**
4481 * dwc2_hsotg_init - initialize the usb core
4482 * @hsotg: The driver state
4483 */
4484static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4485{
 
 
4486	/* unmask subset of endpoint interrupts */
4487
4488	dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4489		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4490		    DIEPMSK);
4491
4492	dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4493		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4494		    DOEPMSK);
4495
4496	dwc2_writel(hsotg, 0, DAINTMSK);
4497
4498	/* Be in disconnected state until gadget is registered */
4499	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4500
4501	/* setup fifos */
4502
4503	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4504		dwc2_readl(hsotg, GRXFSIZ),
4505		dwc2_readl(hsotg, GNPTXFSIZ));
4506
4507	dwc2_hsotg_init_fifo(hsotg);
4508
 
 
 
 
 
 
 
 
 
 
 
4509	if (using_dma(hsotg))
4510		dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4511}
4512
4513/**
4514 * dwc2_hsotg_udc_start - prepare the udc for work
4515 * @gadget: The usb gadget state
4516 * @driver: The usb gadget driver
4517 *
4518 * Perform initialization to prepare udc device and driver
4519 * to work.
4520 */
4521static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4522				struct usb_gadget_driver *driver)
4523{
4524	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4525	unsigned long flags;
4526	int ret;
4527
4528	if (!hsotg) {
4529		pr_err("%s: called with no device\n", __func__);
4530		return -ENODEV;
4531	}
4532
4533	if (!driver) {
4534		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4535		return -EINVAL;
4536	}
4537
4538	if (driver->max_speed < USB_SPEED_FULL)
4539		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4540
4541	if (!driver->setup) {
4542		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4543		return -EINVAL;
4544	}
4545
4546	WARN_ON(hsotg->driver);
4547
 
4548	hsotg->driver = driver;
4549	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4550	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4551
4552	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL ||
4553	    (hsotg->dr_mode == USB_DR_MODE_OTG && dwc2_is_device_mode(hsotg))) {
4554		ret = dwc2_lowlevel_hw_enable(hsotg);
4555		if (ret)
4556			goto err;
4557	}
4558
4559	if (!IS_ERR_OR_NULL(hsotg->uphy))
4560		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4561
4562	spin_lock_irqsave(&hsotg->lock, flags);
4563	if (dwc2_hw_is_device(hsotg)) {
4564		dwc2_hsotg_init(hsotg);
4565		dwc2_hsotg_core_init_disconnected(hsotg, false);
4566	}
4567
4568	hsotg->enabled = 0;
4569	spin_unlock_irqrestore(&hsotg->lock, flags);
4570
4571	gadget->sg_supported = using_desc_dma(hsotg);
4572	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4573
4574	return 0;
4575
4576err:
4577	hsotg->driver = NULL;
4578	return ret;
4579}
4580
4581/**
4582 * dwc2_hsotg_udc_stop - stop the udc
4583 * @gadget: The usb gadget state
 
4584 *
4585 * Stop udc hw block and stay tunned for future transmissions
4586 */
4587static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4588{
4589	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4590	unsigned long flags;
4591	int ep;
4592
4593	if (!hsotg)
4594		return -ENODEV;
4595
4596	/* all endpoints should be shutdown */
4597	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4598		if (hsotg->eps_in[ep])
4599			dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4600		if (hsotg->eps_out[ep])
4601			dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4602	}
4603
4604	spin_lock_irqsave(&hsotg->lock, flags);
4605
4606	hsotg->driver = NULL;
4607	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4608	hsotg->enabled = 0;
4609
4610	spin_unlock_irqrestore(&hsotg->lock, flags);
4611
4612	if (!IS_ERR_OR_NULL(hsotg->uphy))
4613		otg_set_peripheral(hsotg->uphy->otg, NULL);
4614
4615	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL ||
4616	    (hsotg->dr_mode == USB_DR_MODE_OTG && dwc2_is_device_mode(hsotg)))
4617		dwc2_lowlevel_hw_disable(hsotg);
4618
4619	return 0;
4620}
4621
4622/**
4623 * dwc2_hsotg_gadget_getframe - read the frame number
4624 * @gadget: The usb gadget state
4625 *
4626 * Read the {micro} frame number
4627 */
4628static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4629{
4630	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4631}
4632
4633/**
4634 * dwc2_hsotg_set_selfpowered - set if device is self/bus powered
4635 * @gadget: The usb gadget state
4636 * @is_selfpowered: Whether the device is self-powered
4637 *
4638 * Set if the device is self or bus powered.
4639 */
4640static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget,
4641				      int is_selfpowered)
4642{
4643	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4644	unsigned long flags;
4645
4646	spin_lock_irqsave(&hsotg->lock, flags);
4647	gadget->is_selfpowered = !!is_selfpowered;
4648	spin_unlock_irqrestore(&hsotg->lock, flags);
4649
4650	return 0;
4651}
4652
4653/**
4654 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4655 * @gadget: The usb gadget state
4656 * @is_on: Current state of the USB PHY
4657 *
4658 * Connect/Disconnect the USB PHY pullup
4659 */
4660static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4661{
4662	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4663	unsigned long flags;
4664
4665	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4666		hsotg->op_state);
4667
4668	/* Don't modify pullup state while in host mode */
4669	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4670		hsotg->enabled = is_on;
4671		return 0;
4672	}
4673
4674	spin_lock_irqsave(&hsotg->lock, flags);
4675	if (is_on) {
4676		hsotg->enabled = 1;
4677		dwc2_hsotg_core_init_disconnected(hsotg, false);
4678		/* Enable ACG feature in device mode,if supported */
4679		dwc2_enable_acg(hsotg);
4680		dwc2_hsotg_core_connect(hsotg);
4681	} else {
4682		dwc2_hsotg_core_disconnect(hsotg);
4683		dwc2_hsotg_disconnect(hsotg);
4684		hsotg->enabled = 0;
4685	}
4686
4687	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4688	spin_unlock_irqrestore(&hsotg->lock, flags);
4689
4690	return 0;
4691}
4692
4693static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4694{
4695	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4696	unsigned long flags;
4697
4698	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4699	spin_lock_irqsave(&hsotg->lock, flags);
4700
4701	/*
4702	 * If controller is in partial power down state, it must exit from
4703	 * that state before being initialized / de-initialized
4704	 */
4705	if (hsotg->lx_state == DWC2_L2 && hsotg->in_ppd)
4706		/*
4707		 * No need to check the return value as
4708		 * registers are not being restored.
4709		 */
4710		dwc2_exit_partial_power_down(hsotg, 0, false);
4711
4712	if (is_active) {
4713		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4714
4715		dwc2_hsotg_core_init_disconnected(hsotg, false);
4716		if (hsotg->enabled) {
4717			/* Enable ACG feature in device mode,if supported */
4718			dwc2_enable_acg(hsotg);
4719			dwc2_hsotg_core_connect(hsotg);
4720		}
4721	} else {
4722		dwc2_hsotg_core_disconnect(hsotg);
4723		dwc2_hsotg_disconnect(hsotg);
4724	}
4725
4726	spin_unlock_irqrestore(&hsotg->lock, flags);
4727	return 0;
4728}
4729
4730/**
4731 * dwc2_hsotg_vbus_draw - report bMaxPower field
4732 * @gadget: The usb gadget state
4733 * @mA: Amount of current
4734 *
4735 * Report how much power the device may consume to the phy.
4736 */
4737static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4738{
4739	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4740
4741	if (IS_ERR_OR_NULL(hsotg->uphy))
4742		return -ENOTSUPP;
4743	return usb_phy_set_power(hsotg->uphy, mA);
4744}
4745
4746static void dwc2_gadget_set_speed(struct usb_gadget *g, enum usb_device_speed speed)
4747{
4748	struct dwc2_hsotg *hsotg = to_hsotg(g);
4749	unsigned long		flags;
4750
4751	spin_lock_irqsave(&hsotg->lock, flags);
4752	switch (speed) {
4753	case USB_SPEED_HIGH:
4754		hsotg->params.speed = DWC2_SPEED_PARAM_HIGH;
4755		break;
4756	case USB_SPEED_FULL:
4757		hsotg->params.speed = DWC2_SPEED_PARAM_FULL;
4758		break;
4759	case USB_SPEED_LOW:
4760		hsotg->params.speed = DWC2_SPEED_PARAM_LOW;
4761		break;
4762	default:
4763		dev_err(hsotg->dev, "invalid speed (%d)\n", speed);
4764	}
4765	spin_unlock_irqrestore(&hsotg->lock, flags);
4766}
4767
4768static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4769	.get_frame	= dwc2_hsotg_gadget_getframe,
4770	.set_selfpowered	= dwc2_hsotg_set_selfpowered,
4771	.udc_start		= dwc2_hsotg_udc_start,
4772	.udc_stop		= dwc2_hsotg_udc_stop,
4773	.pullup                 = dwc2_hsotg_pullup,
4774	.udc_set_speed		= dwc2_gadget_set_speed,
4775	.vbus_session		= dwc2_hsotg_vbus_session,
4776	.vbus_draw		= dwc2_hsotg_vbus_draw,
4777};
4778
4779/**
4780 * dwc2_hsotg_initep - initialise a single endpoint
4781 * @hsotg: The device state.
4782 * @hs_ep: The endpoint to be initialised.
4783 * @epnum: The endpoint number
4784 * @dir_in: True if direction is in.
4785 *
4786 * Initialise the given endpoint (as part of the probe and device state
4787 * creation) to give to the gadget driver. Setup the endpoint name, any
4788 * direction information and other state that may be required.
4789 */
4790static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4791			      struct dwc2_hsotg_ep *hs_ep,
4792				       int epnum,
4793				       bool dir_in)
4794{
4795	char *dir;
4796
4797	if (epnum == 0)
4798		dir = "";
4799	else if (dir_in)
4800		dir = "in";
4801	else
4802		dir = "out";
4803
4804	hs_ep->dir_in = dir_in;
4805	hs_ep->index = epnum;
4806
4807	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4808
4809	INIT_LIST_HEAD(&hs_ep->queue);
4810	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4811
4812	/* add to the list of endpoints known by the gadget driver */
4813	if (epnum)
4814		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4815
4816	hs_ep->parent = hsotg;
4817	hs_ep->ep.name = hs_ep->name;
4818
4819	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4820		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4821	else
4822		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4823					   epnum ? 1024 : EP0_MPS_LIMIT);
4824	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4825
4826	if (epnum == 0) {
4827		hs_ep->ep.caps.type_control = true;
4828	} else {
4829		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4830			hs_ep->ep.caps.type_iso = true;
4831			hs_ep->ep.caps.type_bulk = true;
4832		}
4833		hs_ep->ep.caps.type_int = true;
4834	}
4835
4836	if (dir_in)
4837		hs_ep->ep.caps.dir_in = true;
4838	else
4839		hs_ep->ep.caps.dir_out = true;
4840
4841	/*
4842	 * if we're using dma, we need to set the next-endpoint pointer
4843	 * to be something valid.
4844	 */
4845
4846	if (using_dma(hsotg)) {
4847		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4848
4849		if (dir_in)
4850			dwc2_writel(hsotg, next, DIEPCTL(epnum));
4851		else
4852			dwc2_writel(hsotg, next, DOEPCTL(epnum));
4853	}
4854}
4855
4856/**
4857 * dwc2_hsotg_hw_cfg - read HW configuration registers
4858 * @hsotg: Programming view of the DWC_otg controller
4859 *
4860 * Read the USB core HW configuration registers
4861 */
4862static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4863{
4864	u32 cfg;
4865	u32 ep_type;
4866	u32 i;
4867
4868	/* check hardware configuration */
4869
4870	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4871
4872	/* Add ep0 */
4873	hsotg->num_of_eps++;
4874
4875	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4876					sizeof(struct dwc2_hsotg_ep),
4877					GFP_KERNEL);
4878	if (!hsotg->eps_in[0])
4879		return -ENOMEM;
4880	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4881	hsotg->eps_out[0] = hsotg->eps_in[0];
4882
4883	cfg = hsotg->hw_params.dev_ep_dirs;
4884	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4885		ep_type = cfg & 3;
4886		/* Direction in or both */
4887		if (!(ep_type & 2)) {
4888			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4889				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4890			if (!hsotg->eps_in[i])
4891				return -ENOMEM;
4892		}
4893		/* Direction out or both */
4894		if (!(ep_type & 1)) {
4895			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4896				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4897			if (!hsotg->eps_out[i])
4898				return -ENOMEM;
4899		}
4900	}
4901
4902	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4903	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4904
4905	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4906		 hsotg->num_of_eps,
4907		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4908		 hsotg->fifo_mem);
4909	return 0;
4910}
4911
4912/**
4913 * dwc2_hsotg_dump - dump state of the udc
4914 * @hsotg: Programming view of the DWC_otg controller
4915 *
4916 */
4917static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4918{
4919#ifdef DEBUG
4920	struct device *dev = hsotg->dev;
 
4921	u32 val;
4922	int idx;
4923
4924	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4925		 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4926		 dwc2_readl(hsotg, DIEPMSK));
4927
4928	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4929		 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4930
4931	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4932		 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4933
4934	/* show periodic fifo settings */
4935
4936	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4937		val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4938		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4939			 val >> FIFOSIZE_DEPTH_SHIFT,
4940			 val & FIFOSIZE_STARTADDR_MASK);
4941	}
4942
4943	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4944		dev_info(dev,
4945			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4946			 dwc2_readl(hsotg, DIEPCTL(idx)),
4947			 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4948			 dwc2_readl(hsotg, DIEPDMA(idx)));
4949
4950		val = dwc2_readl(hsotg, DOEPCTL(idx));
4951		dev_info(dev,
4952			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4953			 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4954			 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4955			 dwc2_readl(hsotg, DOEPDMA(idx)));
4956	}
4957
4958	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4959		 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4960#endif
4961}
4962
4963/**
4964 * dwc2_gadget_init - init function for gadget
4965 * @hsotg: Programming view of the DWC_otg controller
4966 *
4967 */
4968int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4969{
4970	struct device *dev = hsotg->dev;
4971	int epnum;
4972	int ret;
4973
4974	/* Dump fifo information */
4975	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4976		hsotg->params.g_np_tx_fifo_size);
4977	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4978
4979	switch (hsotg->params.speed) {
4980	case DWC2_SPEED_PARAM_LOW:
4981		hsotg->gadget.max_speed = USB_SPEED_LOW;
4982		break;
4983	case DWC2_SPEED_PARAM_FULL:
4984		hsotg->gadget.max_speed = USB_SPEED_FULL;
4985		break;
4986	default:
4987		hsotg->gadget.max_speed = USB_SPEED_HIGH;
4988		break;
4989	}
4990
4991	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4992	hsotg->gadget.name = dev_name(dev);
4993	hsotg->gadget.otg_caps = &hsotg->params.otg_caps;
4994	hsotg->remote_wakeup_allowed = 0;
4995
4996	if (hsotg->params.lpm)
4997		hsotg->gadget.lpm_capable = true;
4998
4999	if (hsotg->dr_mode == USB_DR_MODE_OTG)
5000		hsotg->gadget.is_otg = 1;
5001	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
5002		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
5003
5004	ret = dwc2_hsotg_hw_cfg(hsotg);
5005	if (ret) {
5006		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
5007		return ret;
5008	}
5009
5010	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
5011			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
5012	if (!hsotg->ctrl_buff)
5013		return -ENOMEM;
5014
5015	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
5016			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
5017	if (!hsotg->ep0_buff)
5018		return -ENOMEM;
5019
5020	if (using_desc_dma(hsotg)) {
5021		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
5022		if (ret < 0)
5023			return ret;
5024	}
5025
5026	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
5027			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
5028	if (ret < 0) {
5029		dev_err(dev, "cannot claim IRQ for gadget\n");
5030		return ret;
5031	}
5032
5033	/* hsotg->num_of_eps holds number of EPs other than ep0 */
5034
5035	if (hsotg->num_of_eps == 0) {
5036		dev_err(dev, "wrong number of EPs (zero)\n");
5037		return -EINVAL;
5038	}
5039
5040	/* setup endpoint information */
5041
5042	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
5043	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
5044
5045	/* allocate EP0 request */
5046
5047	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
5048						     GFP_KERNEL);
5049	if (!hsotg->ctrl_req) {
5050		dev_err(dev, "failed to allocate ctrl req\n");
5051		return -ENOMEM;
5052	}
5053
5054	/* initialise the endpoints now the core has been initialised */
5055	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
5056		if (hsotg->eps_in[epnum])
5057			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
5058					  epnum, 1);
5059		if (hsotg->eps_out[epnum])
5060			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
5061					  epnum, 0);
5062	}
5063
 
 
 
 
5064	dwc2_hsotg_dump(hsotg);
5065
5066	return 0;
5067}
5068
5069/**
5070 * dwc2_hsotg_remove - remove function for hsotg driver
5071 * @hsotg: Programming view of the DWC_otg controller
5072 *
5073 */
5074int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
5075{
5076	usb_del_gadget_udc(&hsotg->gadget);
5077	dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
5078
5079	return 0;
5080}
5081
5082int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
5083{
5084	unsigned long flags;
5085
5086	if (hsotg->lx_state != DWC2_L0)
5087		return 0;
5088
5089	if (hsotg->driver) {
5090		int ep;
5091
5092		dev_info(hsotg->dev, "suspending usb gadget %s\n",
5093			 hsotg->driver->driver.name);
5094
5095		spin_lock_irqsave(&hsotg->lock, flags);
5096		if (hsotg->enabled)
5097			dwc2_hsotg_core_disconnect(hsotg);
5098		dwc2_hsotg_disconnect(hsotg);
5099		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
5100		spin_unlock_irqrestore(&hsotg->lock, flags);
5101
5102		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
5103			if (hsotg->eps_in[ep])
5104				dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
5105			if (hsotg->eps_out[ep])
5106				dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
5107		}
5108	}
5109
5110	return 0;
5111}
5112
5113int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
5114{
5115	unsigned long flags;
5116
5117	if (hsotg->lx_state == DWC2_L2)
5118		return 0;
5119
5120	if (hsotg->driver) {
5121		dev_info(hsotg->dev, "resuming usb gadget %s\n",
5122			 hsotg->driver->driver.name);
5123
5124		spin_lock_irqsave(&hsotg->lock, flags);
5125		dwc2_hsotg_core_init_disconnected(hsotg, false);
5126		if (hsotg->enabled) {
5127			/* Enable ACG feature in device mode,if supported */
5128			dwc2_enable_acg(hsotg);
5129			dwc2_hsotg_core_connect(hsotg);
5130		}
5131		spin_unlock_irqrestore(&hsotg->lock, flags);
5132	}
5133
5134	return 0;
5135}
5136
5137/**
5138 * dwc2_backup_device_registers() - Backup controller device registers.
5139 * When suspending usb bus, registers needs to be backuped
5140 * if controller power is disabled once suspended.
5141 *
5142 * @hsotg: Programming view of the DWC_otg controller
5143 */
5144int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
5145{
5146	struct dwc2_dregs_backup *dr;
5147	int i;
5148
5149	dev_dbg(hsotg->dev, "%s\n", __func__);
5150
5151	/* Backup dev regs */
5152	dr = &hsotg->dr_backup;
5153
5154	dr->dcfg = dwc2_readl(hsotg, DCFG);
5155	dr->dctl = dwc2_readl(hsotg, DCTL);
5156	dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
5157	dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
5158	dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
5159
5160	for (i = 0; i < hsotg->num_of_eps; i++) {
5161		/* Backup IN EPs */
5162		dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
5163
5164		/* Ensure DATA PID is correctly configured */
5165		if (dr->diepctl[i] & DXEPCTL_DPID)
5166			dr->diepctl[i] |= DXEPCTL_SETD1PID;
5167		else
5168			dr->diepctl[i] |= DXEPCTL_SETD0PID;
5169
5170		dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
5171		dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
5172
5173		/* Backup OUT EPs */
5174		dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
5175
5176		/* Ensure DATA PID is correctly configured */
5177		if (dr->doepctl[i] & DXEPCTL_DPID)
5178			dr->doepctl[i] |= DXEPCTL_SETD1PID;
5179		else
5180			dr->doepctl[i] |= DXEPCTL_SETD0PID;
5181
5182		dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
5183		dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
5184		dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
5185	}
5186	dr->valid = true;
5187	return 0;
5188}
5189
5190/**
5191 * dwc2_restore_device_registers() - Restore controller device registers.
5192 * When resuming usb bus, device registers needs to be restored
5193 * if controller power were disabled.
5194 *
5195 * @hsotg: Programming view of the DWC_otg controller
5196 * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5197 *
5198 * Return: 0 if successful, negative error code otherwise
5199 */
5200int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5201{
5202	struct dwc2_dregs_backup *dr;
5203	int i;
5204
5205	dev_dbg(hsotg->dev, "%s\n", __func__);
5206
5207	/* Restore dev regs */
5208	dr = &hsotg->dr_backup;
5209	if (!dr->valid) {
5210		dev_err(hsotg->dev, "%s: no device registers to restore\n",
5211			__func__);
5212		return -EINVAL;
5213	}
5214	dr->valid = false;
5215
5216	if (!remote_wakeup)
5217		dwc2_writel(hsotg, dr->dctl, DCTL);
5218
5219	dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5220	dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5221	dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5222
5223	for (i = 0; i < hsotg->num_of_eps; i++) {
5224		/* Restore IN EPs */
5225		dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5226		dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5227		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5228		/** WA for enabled EPx's IN in DDMA mode. On entering to
5229		 * hibernation wrong value read and saved from DIEPDMAx,
5230		 * as result BNA interrupt asserted on hibernation exit
5231		 * by restoring from saved area.
5232		 */
5233		if (using_desc_dma(hsotg) &&
5234		    (dr->diepctl[i] & DXEPCTL_EPENA))
5235			dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5236		dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5237		dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5238		/* Restore OUT EPs */
5239		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5240		/* WA for enabled EPx's OUT in DDMA mode. On entering to
5241		 * hibernation wrong value read and saved from DOEPDMAx,
5242		 * as result BNA interrupt asserted on hibernation exit
5243		 * by restoring from saved area.
5244		 */
5245		if (using_desc_dma(hsotg) &&
5246		    (dr->doepctl[i] & DXEPCTL_EPENA))
5247			dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5248		dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5249		dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5250	}
5251
5252	return 0;
5253}
5254
5255/**
5256 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5257 *
5258 * @hsotg: Programming view of DWC_otg controller
5259 *
5260 */
5261void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5262{
5263	u32 val;
5264
5265	if (!hsotg->params.lpm)
5266		return;
5267
5268	val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5269	val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5270	val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5271	val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5272	val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5273	val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL;
5274	val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5275	dwc2_writel(hsotg, val, GLPMCFG);
5276	dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5277
5278	/* Unmask WKUP_ALERT Interrupt */
5279	if (hsotg->params.service_interval)
5280		dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5281}
5282
5283/**
5284 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5285 *
5286 * @hsotg: Programming view of DWC_otg controller
5287 *
5288 */
5289void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5290{
5291	u32 val = 0;
5292
5293	val |= GREFCLK_REF_CLK_MODE;
5294	val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5295	val |= hsotg->params.sof_cnt_wkup_alert <<
5296	       GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5297
5298	dwc2_writel(hsotg, val, GREFCLK);
5299	dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5300}
5301
5302/**
5303 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5304 *
5305 * @hsotg: Programming view of the DWC_otg controller
5306 *
5307 * Return non-zero if failed to enter to hibernation.
5308 */
5309int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5310{
5311	u32 gpwrdn;
5312	int ret = 0;
5313
5314	/* Change to L2(suspend) state */
5315	hsotg->lx_state = DWC2_L2;
5316	dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5317	ret = dwc2_backup_global_registers(hsotg);
5318	if (ret) {
5319		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5320			__func__);
5321		return ret;
5322	}
5323	ret = dwc2_backup_device_registers(hsotg);
5324	if (ret) {
5325		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5326			__func__);
5327		return ret;
5328	}
5329
5330	gpwrdn = GPWRDN_PWRDNRSTN;
5331	gpwrdn |= GPWRDN_PMUACTV;
5332	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5333	udelay(10);
5334
5335	/* Set flag to indicate that we are in hibernation */
5336	hsotg->hibernated = 1;
5337
5338	/* Enable interrupts from wake up logic */
5339	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5340	gpwrdn |= GPWRDN_PMUINTSEL;
5341	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5342	udelay(10);
5343
5344	/* Unmask device mode interrupts in GPWRDN */
5345	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5346	gpwrdn |= GPWRDN_RST_DET_MSK;
5347	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5348	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5349	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5350	udelay(10);
5351
5352	/* Enable Power Down Clamp */
5353	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5354	gpwrdn |= GPWRDN_PWRDNCLMP;
5355	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5356	udelay(10);
5357
5358	/* Switch off VDD */
5359	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5360	gpwrdn |= GPWRDN_PWRDNSWTCH;
5361	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5362	udelay(10);
5363
5364	/* Save gpwrdn register for further usage if stschng interrupt */
5365	hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5366	dev_dbg(hsotg->dev, "Hibernation completed\n");
5367
5368	return ret;
5369}
5370
5371/**
5372 * dwc2_gadget_exit_hibernation()
5373 * This function is for exiting from Device mode hibernation by host initiated
5374 * resume/reset and device initiated remote-wakeup.
5375 *
5376 * @hsotg: Programming view of the DWC_otg controller
5377 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5378 * @reset: indicates whether resume is initiated by Reset.
5379 *
5380 * Return non-zero if failed to exit from hibernation.
5381 */
5382int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5383				 int rem_wakeup, int reset)
5384{
5385	u32 pcgcctl;
5386	u32 gpwrdn;
5387	u32 dctl;
5388	int ret = 0;
5389	struct dwc2_gregs_backup *gr;
5390	struct dwc2_dregs_backup *dr;
5391
5392	gr = &hsotg->gr_backup;
5393	dr = &hsotg->dr_backup;
5394
5395	if (!hsotg->hibernated) {
5396		dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5397		return 1;
5398	}
5399	dev_dbg(hsotg->dev,
5400		"%s: called with rem_wakeup = %d reset = %d\n",
5401		__func__, rem_wakeup, reset);
5402
5403	dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5404
5405	if (!reset) {
5406		/* Clear all pending interupts */
5407		dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5408	}
5409
5410	/* De-assert Restore */
5411	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5412	gpwrdn &= ~GPWRDN_RESTORE;
5413	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5414	udelay(10);
5415
5416	if (!rem_wakeup) {
5417		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5418		pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5419		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5420	}
5421
5422	/* Restore GUSBCFG, DCFG and DCTL */
5423	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5424	dwc2_writel(hsotg, dr->dcfg, DCFG);
5425	dwc2_writel(hsotg, dr->dctl, DCTL);
5426
5427	/* On USB Reset, reset device address to zero */
5428	if (reset)
5429		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
5430
5431	/* De-assert Wakeup Logic */
5432	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5433	gpwrdn &= ~GPWRDN_PMUACTV;
5434	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5435
5436	if (rem_wakeup) {
5437		udelay(10);
5438		/* Start Remote Wakeup Signaling */
5439		dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5440	} else {
5441		udelay(50);
5442		/* Set Device programming done bit */
5443		dctl = dwc2_readl(hsotg, DCTL);
5444		dctl |= DCTL_PWRONPRGDONE;
5445		dwc2_writel(hsotg, dctl, DCTL);
5446	}
5447	/* Wait for interrupts which must be cleared */
5448	mdelay(2);
5449	/* Clear all pending interupts */
5450	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5451
5452	/* Restore global registers */
5453	ret = dwc2_restore_global_registers(hsotg);
5454	if (ret) {
5455		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5456			__func__);
5457		return ret;
5458	}
5459
5460	/* Restore device registers */
5461	ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5462	if (ret) {
5463		dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5464			__func__);
5465		return ret;
5466	}
5467
5468	if (rem_wakeup) {
5469		mdelay(10);
5470		dctl = dwc2_readl(hsotg, DCTL);
5471		dctl &= ~DCTL_RMTWKUPSIG;
5472		dwc2_writel(hsotg, dctl, DCTL);
5473	}
5474
5475	hsotg->hibernated = 0;
5476	hsotg->lx_state = DWC2_L0;
5477	dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5478
5479	return ret;
5480}
5481
5482/**
5483 * dwc2_gadget_enter_partial_power_down() - Put controller in partial
5484 * power down.
5485 *
5486 * @hsotg: Programming view of the DWC_otg controller
5487 *
5488 * Return: non-zero if failed to enter device partial power down.
5489 *
5490 * This function is for entering device mode partial power down.
5491 */
5492int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg)
5493{
5494	u32 pcgcctl;
5495	int ret = 0;
5496
5497	dev_dbg(hsotg->dev, "Entering device partial power down started.\n");
5498
5499	/* Backup all registers */
5500	ret = dwc2_backup_global_registers(hsotg);
5501	if (ret) {
5502		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5503			__func__);
5504		return ret;
5505	}
5506
5507	ret = dwc2_backup_device_registers(hsotg);
5508	if (ret) {
5509		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5510			__func__);
5511		return ret;
5512	}
5513
5514	/*
5515	 * Clear any pending interrupts since dwc2 will not be able to
5516	 * clear them after entering partial_power_down.
5517	 */
5518	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5519
5520	/* Put the controller in low power state */
5521	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5522
5523	pcgcctl |= PCGCTL_PWRCLMP;
5524	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5525	udelay(5);
5526
5527	pcgcctl |= PCGCTL_RSTPDWNMODULE;
5528	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5529	udelay(5);
5530
5531	pcgcctl |= PCGCTL_STOPPCLK;
5532	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5533
5534	/* Set in_ppd flag to 1 as here core enters suspend. */
5535	hsotg->in_ppd = 1;
5536	hsotg->lx_state = DWC2_L2;
5537
5538	dev_dbg(hsotg->dev, "Entering device partial power down completed.\n");
5539
5540	return ret;
5541}
5542
5543/*
5544 * dwc2_gadget_exit_partial_power_down() - Exit controller from device partial
5545 * power down.
5546 *
5547 * @hsotg: Programming view of the DWC_otg controller
5548 * @restore: indicates whether need to restore the registers or not.
5549 *
5550 * Return: non-zero if failed to exit device partial power down.
5551 *
5552 * This function is for exiting from device mode partial power down.
5553 */
5554int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
5555					bool restore)
5556{
5557	u32 pcgcctl;
5558	u32 dctl;
5559	struct dwc2_dregs_backup *dr;
5560	int ret = 0;
5561
5562	dr = &hsotg->dr_backup;
5563
5564	dev_dbg(hsotg->dev, "Exiting device partial Power Down started.\n");
5565
5566	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5567	pcgcctl &= ~PCGCTL_STOPPCLK;
5568	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5569
5570	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5571	pcgcctl &= ~PCGCTL_PWRCLMP;
5572	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5573
5574	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5575	pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5576	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5577
5578	udelay(100);
5579	if (restore) {
5580		ret = dwc2_restore_global_registers(hsotg);
5581		if (ret) {
5582			dev_err(hsotg->dev, "%s: failed to restore registers\n",
5583				__func__);
5584			return ret;
5585		}
5586		/* Restore DCFG */
5587		dwc2_writel(hsotg, dr->dcfg, DCFG);
5588
5589		ret = dwc2_restore_device_registers(hsotg, 0);
5590		if (ret) {
5591			dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5592				__func__);
5593			return ret;
5594		}
5595	}
5596
5597	/* Set the Power-On Programming done bit */
5598	dctl = dwc2_readl(hsotg, DCTL);
5599	dctl |= DCTL_PWRONPRGDONE;
5600	dwc2_writel(hsotg, dctl, DCTL);
5601
5602	/* Set in_ppd flag to 0 as here core exits from suspend. */
5603	hsotg->in_ppd = 0;
5604	hsotg->lx_state = DWC2_L0;
5605
5606	dev_dbg(hsotg->dev, "Exiting device partial Power Down completed.\n");
5607	return ret;
5608}
5609
5610/**
5611 * dwc2_gadget_enter_clock_gating() - Put controller in clock gating.
5612 *
5613 * @hsotg: Programming view of the DWC_otg controller
5614 *
5615 * Return: non-zero if failed to enter device partial power down.
5616 *
5617 * This function is for entering device mode clock gating.
5618 */
5619void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg)
5620{
5621	u32 pcgctl;
5622
5623	dev_dbg(hsotg->dev, "Entering device clock gating.\n");
5624
5625	/* Set the Phy Clock bit as suspend is received. */
5626	pcgctl = dwc2_readl(hsotg, PCGCTL);
5627	pcgctl |= PCGCTL_STOPPCLK;
5628	dwc2_writel(hsotg, pcgctl, PCGCTL);
5629	udelay(5);
5630
5631	/* Set the Gate hclk as suspend is received. */
5632	pcgctl = dwc2_readl(hsotg, PCGCTL);
5633	pcgctl |= PCGCTL_GATEHCLK;
5634	dwc2_writel(hsotg, pcgctl, PCGCTL);
5635	udelay(5);
5636
5637	hsotg->lx_state = DWC2_L2;
5638	hsotg->bus_suspended = true;
5639}
5640
5641/*
5642 * dwc2_gadget_exit_clock_gating() - Exit controller from device clock gating.
5643 *
5644 * @hsotg: Programming view of the DWC_otg controller
5645 * @rem_wakeup: indicates whether remote wake up is enabled.
5646 *
5647 * This function is for exiting from device mode clock gating.
5648 */
5649void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
5650{
5651	u32 pcgctl;
5652	u32 dctl;
5653
5654	dev_dbg(hsotg->dev, "Exiting device clock gating.\n");
5655
5656	/* Clear the Gate hclk. */
5657	pcgctl = dwc2_readl(hsotg, PCGCTL);
5658	pcgctl &= ~PCGCTL_GATEHCLK;
5659	dwc2_writel(hsotg, pcgctl, PCGCTL);
5660	udelay(5);
5661
5662	/* Phy Clock bit. */
5663	pcgctl = dwc2_readl(hsotg, PCGCTL);
5664	pcgctl &= ~PCGCTL_STOPPCLK;
5665	dwc2_writel(hsotg, pcgctl, PCGCTL);
5666	udelay(5);
5667
5668	if (rem_wakeup) {
5669		/* Set Remote Wakeup Signaling */
5670		dctl = dwc2_readl(hsotg, DCTL);
5671		dctl |= DCTL_RMTWKUPSIG;
5672		dwc2_writel(hsotg, dctl, DCTL);
5673	}
5674
5675	/* Change to L0 state */
5676	call_gadget(hsotg, resume);
5677	hsotg->lx_state = DWC2_L0;
5678	hsotg->bus_suspended = false;
5679}
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/**
   3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
   4 *		http://www.samsung.com
   5 *
   6 * Copyright 2008 Openmoko, Inc.
   7 * Copyright 2008 Simtec Electronics
   8 *      Ben Dooks <ben@simtec.co.uk>
   9 *      http://armlinux.simtec.co.uk/
  10 *
  11 * S3C USB2.0 High-speed / OtG driver
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/spinlock.h>
  17#include <linux/interrupt.h>
  18#include <linux/platform_device.h>
  19#include <linux/dma-mapping.h>
  20#include <linux/mutex.h>
  21#include <linux/seq_file.h>
  22#include <linux/delay.h>
  23#include <linux/io.h>
  24#include <linux/slab.h>
  25#include <linux/of_platform.h>
  26
  27#include <linux/usb/ch9.h>
  28#include <linux/usb/gadget.h>
  29#include <linux/usb/phy.h>
 
 
  30
  31#include "core.h"
  32#include "hw.h"
  33
  34/* conversion functions */
  35static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
  36{
  37	return container_of(req, struct dwc2_hsotg_req, req);
  38}
  39
  40static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
  41{
  42	return container_of(ep, struct dwc2_hsotg_ep, ep);
  43}
  44
  45static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
  46{
  47	return container_of(gadget, struct dwc2_hsotg, gadget);
  48}
  49
  50static inline void dwc2_set_bit(void __iomem *ptr, u32 val)
  51{
  52	dwc2_writel(dwc2_readl(ptr) | val, ptr);
  53}
  54
  55static inline void dwc2_clear_bit(void __iomem *ptr, u32 val)
  56{
  57	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
  58}
  59
  60static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
  61						u32 ep_index, u32 dir_in)
  62{
  63	if (dir_in)
  64		return hsotg->eps_in[ep_index];
  65	else
  66		return hsotg->eps_out[ep_index];
  67}
  68
  69/* forward declaration of functions */
  70static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
  71
  72/**
  73 * using_dma - return the DMA status of the driver.
  74 * @hsotg: The driver state.
  75 *
  76 * Return true if we're using DMA.
  77 *
  78 * Currently, we have the DMA support code worked into everywhere
  79 * that needs it, but the AMBA DMA implementation in the hardware can
  80 * only DMA from 32bit aligned addresses. This means that gadgets such
  81 * as the CDC Ethernet cannot work as they often pass packets which are
  82 * not 32bit aligned.
  83 *
  84 * Unfortunately the choice to use DMA or not is global to the controller
  85 * and seems to be only settable when the controller is being put through
  86 * a core reset. This means we either need to fix the gadgets to take
  87 * account of DMA alignment, or add bounce buffers (yuerk).
  88 *
  89 * g_using_dma is set depending on dts flag.
  90 */
  91static inline bool using_dma(struct dwc2_hsotg *hsotg)
  92{
  93	return hsotg->params.g_dma;
  94}
  95
  96/*
  97 * using_desc_dma - return the descriptor DMA status of the driver.
  98 * @hsotg: The driver state.
  99 *
 100 * Return true if we're using descriptor DMA.
 101 */
 102static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
 103{
 104	return hsotg->params.g_dma_desc;
 105}
 106
 107/**
 108 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 109 * @hs_ep: The endpoint
 110 * @increment: The value to increment by
 111 *
 112 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 113 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 114 */
 115static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
 116{
 
 
 
 
 
 
 117	hs_ep->target_frame += hs_ep->interval;
 118	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
 119		hs_ep->frame_overrun = true;
 120		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
 121	} else {
 122		hs_ep->frame_overrun = false;
 123	}
 124}
 125
 126/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 127 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
 128 * @hsotg: The device state
 129 * @ints: A bitmask of the interrupts to enable
 130 */
 131static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 132{
 133	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
 134	u32 new_gsintmsk;
 135
 136	new_gsintmsk = gsintmsk | ints;
 137
 138	if (new_gsintmsk != gsintmsk) {
 139		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
 140		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
 141	}
 142}
 143
 144/**
 145 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
 146 * @hsotg: The device state
 147 * @ints: A bitmask of the interrupts to enable
 148 */
 149static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 150{
 151	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
 152	u32 new_gsintmsk;
 153
 154	new_gsintmsk = gsintmsk & ~ints;
 155
 156	if (new_gsintmsk != gsintmsk)
 157		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
 158}
 159
 160/**
 161 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
 162 * @hsotg: The device state
 163 * @ep: The endpoint index
 164 * @dir_in: True if direction is in.
 165 * @en: The enable value, true to enable
 166 *
 167 * Set or clear the mask for an individual endpoint's interrupt
 168 * request.
 169 */
 170static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
 171				  unsigned int ep, unsigned int dir_in,
 172				 unsigned int en)
 173{
 174	unsigned long flags;
 175	u32 bit = 1 << ep;
 176	u32 daint;
 177
 178	if (!dir_in)
 179		bit <<= 16;
 180
 181	local_irq_save(flags);
 182	daint = dwc2_readl(hsotg->regs + DAINTMSK);
 183	if (en)
 184		daint |= bit;
 185	else
 186		daint &= ~bit;
 187	dwc2_writel(daint, hsotg->regs + DAINTMSK);
 188	local_irq_restore(flags);
 189}
 190
 191/**
 192 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
 
 
 193 */
 194int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
 195{
 196	if (hsotg->hw_params.en_multiple_tx_fifo)
 197		/* In dedicated FIFO mode we need count of IN EPs */
 198		return hsotg->hw_params.num_dev_in_eps;
 199	else
 200		/* In shared FIFO mode we need count of Periodic IN EPs */
 201		return hsotg->hw_params.num_dev_perio_in_ep;
 202}
 203
 204/**
 205 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
 206 * device mode TX FIFOs
 
 
 207 */
 208int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
 209{
 210	int addr;
 211	int tx_addr_max;
 212	u32 np_tx_fifo_size;
 213
 214	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
 215				hsotg->params.g_np_tx_fifo_size);
 216
 217	/* Get Endpoint Info Control block size in DWORDs. */
 218	tx_addr_max = hsotg->hw_params.total_fifo_size;
 219
 220	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
 221	if (tx_addr_max <= addr)
 222		return 0;
 223
 224	return tx_addr_max - addr;
 225}
 226
 227/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 228 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
 229 * TX FIFOs
 
 
 230 */
 231int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
 232{
 233	int tx_fifo_count;
 234	int tx_fifo_depth;
 235
 236	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
 237
 238	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
 239
 240	if (!tx_fifo_count)
 241		return tx_fifo_depth;
 242	else
 243		return tx_fifo_depth / tx_fifo_count;
 244}
 245
 246/**
 247 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
 248 * @hsotg: The device instance.
 249 */
 250static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
 251{
 252	unsigned int ep;
 253	unsigned int addr;
 254	int timeout;
 255
 256	u32 val;
 257	u32 *txfsz = hsotg->params.g_tx_fifo_size;
 258
 259	/* Reset fifo map if not correctly cleared during previous session */
 260	WARN_ON(hsotg->fifo_map);
 261	hsotg->fifo_map = 0;
 262
 263	/* set RX/NPTX FIFO sizes */
 264	dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
 265	dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
 
 266		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
 267		    hsotg->regs + GNPTXFSIZ);
 268
 269	/*
 270	 * arange all the rest of the TX FIFOs, as some versions of this
 271	 * block have overlapping default addresses. This also ensures
 272	 * that if the settings have been changed, then they are set to
 273	 * known values.
 274	 */
 275
 276	/* start at the end of the GNPTXFSIZ, rounded up */
 277	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
 278
 279	/*
 280	 * Configure fifos sizes from provided configuration and assign
 281	 * them to endpoints dynamically according to maxpacket size value of
 282	 * given endpoint.
 283	 */
 284	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
 285		if (!txfsz[ep])
 286			continue;
 287		val = addr;
 288		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
 289		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
 290			  "insufficient fifo memory");
 291		addr += txfsz[ep];
 292
 293		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
 294		val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
 295	}
 296
 297	dwc2_writel(hsotg->hw_params.total_fifo_size |
 298		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
 299		    hsotg->regs + GDFIFOCFG);
 300	/*
 301	 * according to p428 of the design guide, we need to ensure that
 302	 * all fifos are flushed before continuing
 303	 */
 304
 305	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
 306	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
 307
 308	/* wait until the fifos are both flushed */
 309	timeout = 100;
 310	while (1) {
 311		val = dwc2_readl(hsotg->regs + GRSTCTL);
 312
 313		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
 314			break;
 315
 316		if (--timeout == 0) {
 317			dev_err(hsotg->dev,
 318				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
 319				__func__, val);
 320			break;
 321		}
 322
 323		udelay(1);
 324	}
 325
 326	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
 327}
 328
 329/**
 
 330 * @ep: USB endpoint to allocate request for.
 331 * @flags: Allocation flags
 332 *
 333 * Allocate a new USB request structure appropriate for the specified endpoint
 334 */
 335static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
 336						       gfp_t flags)
 337{
 338	struct dwc2_hsotg_req *req;
 339
 340	req = kzalloc(sizeof(*req), flags);
 341	if (!req)
 342		return NULL;
 343
 344	INIT_LIST_HEAD(&req->queue);
 345
 346	return &req->req;
 347}
 348
 349/**
 350 * is_ep_periodic - return true if the endpoint is in periodic mode.
 351 * @hs_ep: The endpoint to query.
 352 *
 353 * Returns true if the endpoint is in periodic mode, meaning it is being
 354 * used for an Interrupt or ISO transfer.
 355 */
 356static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
 357{
 358	return hs_ep->periodic;
 359}
 360
 361/**
 362 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
 363 * @hsotg: The device state.
 364 * @hs_ep: The endpoint for the request
 365 * @hs_req: The request being processed.
 366 *
 367 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
 368 * of a request to ensure the buffer is ready for access by the caller.
 369 */
 370static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
 371				 struct dwc2_hsotg_ep *hs_ep,
 372				struct dwc2_hsotg_req *hs_req)
 373{
 374	struct usb_request *req = &hs_req->req;
 375
 376	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
 377}
 378
 379/*
 380 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
 381 * for Control endpoint
 382 * @hsotg: The device state.
 383 *
 384 * This function will allocate 4 descriptor chains for EP 0: 2 for
 385 * Setup stage, per one for IN and OUT data/status transactions.
 386 */
 387static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
 388{
 389	hsotg->setup_desc[0] =
 390		dmam_alloc_coherent(hsotg->dev,
 391				    sizeof(struct dwc2_dma_desc),
 392				    &hsotg->setup_desc_dma[0],
 393				    GFP_KERNEL);
 394	if (!hsotg->setup_desc[0])
 395		goto fail;
 396
 397	hsotg->setup_desc[1] =
 398		dmam_alloc_coherent(hsotg->dev,
 399				    sizeof(struct dwc2_dma_desc),
 400				    &hsotg->setup_desc_dma[1],
 401				    GFP_KERNEL);
 402	if (!hsotg->setup_desc[1])
 403		goto fail;
 404
 405	hsotg->ctrl_in_desc =
 406		dmam_alloc_coherent(hsotg->dev,
 407				    sizeof(struct dwc2_dma_desc),
 408				    &hsotg->ctrl_in_desc_dma,
 409				    GFP_KERNEL);
 410	if (!hsotg->ctrl_in_desc)
 411		goto fail;
 412
 413	hsotg->ctrl_out_desc =
 414		dmam_alloc_coherent(hsotg->dev,
 415				    sizeof(struct dwc2_dma_desc),
 416				    &hsotg->ctrl_out_desc_dma,
 417				    GFP_KERNEL);
 418	if (!hsotg->ctrl_out_desc)
 419		goto fail;
 420
 421	return 0;
 422
 423fail:
 424	return -ENOMEM;
 425}
 426
 427/**
 428 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
 429 * @hsotg: The controller state.
 430 * @hs_ep: The endpoint we're going to write for.
 431 * @hs_req: The request to write data for.
 432 *
 433 * This is called when the TxFIFO has some space in it to hold a new
 434 * transmission and we have something to give it. The actual setup of
 435 * the data size is done elsewhere, so all we have to do is to actually
 436 * write the data.
 437 *
 438 * The return value is zero if there is more space (or nothing was done)
 439 * otherwise -ENOSPC is returned if the FIFO space was used up.
 440 *
 441 * This routine is only needed for PIO
 442 */
 443static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
 444				 struct dwc2_hsotg_ep *hs_ep,
 445				struct dwc2_hsotg_req *hs_req)
 446{
 447	bool periodic = is_ep_periodic(hs_ep);
 448	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
 449	int buf_pos = hs_req->req.actual;
 450	int to_write = hs_ep->size_loaded;
 451	void *data;
 452	int can_write;
 453	int pkt_round;
 454	int max_transfer;
 455
 456	to_write -= (buf_pos - hs_ep->last_load);
 457
 458	/* if there's nothing to write, get out early */
 459	if (to_write == 0)
 460		return 0;
 461
 462	if (periodic && !hsotg->dedicated_fifos) {
 463		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
 464		int size_left;
 465		int size_done;
 466
 467		/*
 468		 * work out how much data was loaded so we can calculate
 469		 * how much data is left in the fifo.
 470		 */
 471
 472		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
 473
 474		/*
 475		 * if shared fifo, we cannot write anything until the
 476		 * previous data has been completely sent.
 477		 */
 478		if (hs_ep->fifo_load != 0) {
 479			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 480			return -ENOSPC;
 481		}
 482
 483		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
 484			__func__, size_left,
 485			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
 486
 487		/* how much of the data has moved */
 488		size_done = hs_ep->size_loaded - size_left;
 489
 490		/* how much data is left in the fifo */
 491		can_write = hs_ep->fifo_load - size_done;
 492		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
 493			__func__, can_write);
 494
 495		can_write = hs_ep->fifo_size - can_write;
 496		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
 497			__func__, can_write);
 498
 499		if (can_write <= 0) {
 500			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 501			return -ENOSPC;
 502		}
 503	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
 504		can_write = dwc2_readl(hsotg->regs +
 505				DTXFSTS(hs_ep->fifo_index));
 506
 507		can_write &= 0xffff;
 508		can_write *= 4;
 509	} else {
 510		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
 511			dev_dbg(hsotg->dev,
 512				"%s: no queue slots available (0x%08x)\n",
 513				__func__, gnptxsts);
 514
 515			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
 516			return -ENOSPC;
 517		}
 518
 519		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
 520		can_write *= 4;	/* fifo size is in 32bit quantities. */
 521	}
 522
 523	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
 524
 525	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
 526		__func__, gnptxsts, can_write, to_write, max_transfer);
 527
 528	/*
 529	 * limit to 512 bytes of data, it seems at least on the non-periodic
 530	 * FIFO, requests of >512 cause the endpoint to get stuck with a
 531	 * fragment of the end of the transfer in it.
 532	 */
 533	if (can_write > 512 && !periodic)
 534		can_write = 512;
 535
 536	/*
 537	 * limit the write to one max-packet size worth of data, but allow
 538	 * the transfer to return that it did not run out of fifo space
 539	 * doing it.
 540	 */
 541	if (to_write > max_transfer) {
 542		to_write = max_transfer;
 543
 544		/* it's needed only when we do not use dedicated fifos */
 545		if (!hsotg->dedicated_fifos)
 546			dwc2_hsotg_en_gsint(hsotg,
 547					    periodic ? GINTSTS_PTXFEMP :
 548					   GINTSTS_NPTXFEMP);
 549	}
 550
 551	/* see if we can write data */
 552
 553	if (to_write > can_write) {
 554		to_write = can_write;
 555		pkt_round = to_write % max_transfer;
 556
 557		/*
 558		 * Round the write down to an
 559		 * exact number of packets.
 560		 *
 561		 * Note, we do not currently check to see if we can ever
 562		 * write a full packet or not to the FIFO.
 563		 */
 564
 565		if (pkt_round)
 566			to_write -= pkt_round;
 567
 568		/*
 569		 * enable correct FIFO interrupt to alert us when there
 570		 * is more room left.
 571		 */
 572
 573		/* it's needed only when we do not use dedicated fifos */
 574		if (!hsotg->dedicated_fifos)
 575			dwc2_hsotg_en_gsint(hsotg,
 576					    periodic ? GINTSTS_PTXFEMP :
 577					   GINTSTS_NPTXFEMP);
 578	}
 579
 580	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
 581		to_write, hs_req->req.length, can_write, buf_pos);
 582
 583	if (to_write <= 0)
 584		return -ENOSPC;
 585
 586	hs_req->req.actual = buf_pos + to_write;
 587	hs_ep->total_data += to_write;
 588
 589	if (periodic)
 590		hs_ep->fifo_load += to_write;
 591
 592	to_write = DIV_ROUND_UP(to_write, 4);
 593	data = hs_req->req.buf + buf_pos;
 594
 595	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
 596
 597	return (to_write >= can_write) ? -ENOSPC : 0;
 598}
 599
 600/**
 601 * get_ep_limit - get the maximum data legnth for this endpoint
 602 * @hs_ep: The endpoint
 603 *
 604 * Return the maximum data that can be queued in one go on a given endpoint
 605 * so that transfers that are too long can be split.
 606 */
 607static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
 608{
 609	int index = hs_ep->index;
 610	unsigned int maxsize;
 611	unsigned int maxpkt;
 612
 613	if (index != 0) {
 614		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
 615		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
 616	} else {
 617		maxsize = 64 + 64;
 618		if (hs_ep->dir_in)
 619			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
 620		else
 621			maxpkt = 2;
 622	}
 623
 624	/* we made the constant loading easier above by using +1 */
 625	maxpkt--;
 626	maxsize--;
 627
 628	/*
 629	 * constrain by packet count if maxpkts*pktsize is greater
 630	 * than the length register size.
 631	 */
 632
 633	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
 634		maxsize = maxpkt * hs_ep->ep.maxpacket;
 635
 636	return maxsize;
 637}
 638
 639/**
 640 * dwc2_hsotg_read_frameno - read current frame number
 641 * @hsotg: The device instance
 642 *
 643 * Return the current frame number
 644 */
 645static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
 646{
 647	u32 dsts;
 648
 649	dsts = dwc2_readl(hsotg->regs + DSTS);
 650	dsts &= DSTS_SOFFN_MASK;
 651	dsts >>= DSTS_SOFFN_SHIFT;
 652
 653	return dsts;
 654}
 655
 656/**
 657 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
 658 * DMA descriptor chain prepared for specific endpoint
 659 * @hs_ep: The endpoint
 660 *
 661 * Return the maximum data that can be queued in one go on a given endpoint
 662 * depending on its descriptor chain capacity so that transfers that
 663 * are too long can be split.
 664 */
 665static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
 666{
 
 667	int is_isoc = hs_ep->isochronous;
 668	unsigned int maxsize;
 
 
 669
 670	if (is_isoc)
 671		maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
 672					   DEV_DMA_ISOC_RX_NBYTES_LIMIT;
 
 673	else
 674		maxsize = DEV_DMA_NBYTES_LIMIT;
 675
 676	/* Above size of one descriptor was chosen, multiple it */
 677	maxsize *= MAX_DMA_DESC_NUM_GENERIC;
 
 
 678
 679	return maxsize;
 680}
 681
 682/*
 683 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
 684 * @hs_ep: The endpoint
 685 * @mask: RX/TX bytes mask to be defined
 686 *
 687 * Returns maximum data payload for one descriptor after analyzing endpoint
 688 * characteristics.
 689 * DMA descriptor transfer bytes limit depends on EP type:
 690 * Control out - MPS,
 691 * Isochronous - descriptor rx/tx bytes bitfield limit,
 692 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
 693 * have concatenations from various descriptors within one packet.
 
 
 694 *
 695 * Selects corresponding mask for RX/TX bytes as well.
 696 */
 697static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
 698{
 
 699	u32 mps = hs_ep->ep.maxpacket;
 700	int dir_in = hs_ep->dir_in;
 701	u32 desc_size = 0;
 702
 703	if (!hs_ep->index && !dir_in) {
 704		desc_size = mps;
 705		*mask = DEV_DMA_NBYTES_MASK;
 706	} else if (hs_ep->isochronous) {
 707		if (dir_in) {
 708			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
 709			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
 710		} else {
 711			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
 712			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
 713		}
 714	} else {
 715		desc_size = DEV_DMA_NBYTES_LIMIT;
 716		*mask = DEV_DMA_NBYTES_MASK;
 717
 718		/* Round down desc_size to be mps multiple */
 719		desc_size -= desc_size % mps;
 720	}
 721
 
 
 
 
 
 
 
 722	return desc_size;
 723}
 724
 725/*
 726 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
 727 * @hs_ep: The endpoint
 728 * @dma_buff: DMA address to use
 729 * @len: Length of the transfer
 730 *
 731 * This function will iterate over descriptor chain and fill its entries
 732 * with corresponding information based on transfer data.
 733 */
 734static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
 735						 dma_addr_t dma_buff,
 736						 unsigned int len)
 
 737{
 738	struct dwc2_hsotg *hsotg = hs_ep->parent;
 739	int dir_in = hs_ep->dir_in;
 740	struct dwc2_dma_desc *desc = hs_ep->desc_list;
 741	u32 mps = hs_ep->ep.maxpacket;
 742	u32 maxsize = 0;
 743	u32 offset = 0;
 744	u32 mask = 0;
 745	int i;
 746
 747	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
 748
 749	hs_ep->desc_count = (len / maxsize) +
 750				((len % maxsize) ? 1 : 0);
 751	if (len == 0)
 752		hs_ep->desc_count = 1;
 753
 754	for (i = 0; i < hs_ep->desc_count; ++i) {
 755		desc->status = 0;
 756		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
 757				 << DEV_DMA_BUFF_STS_SHIFT);
 758
 759		if (len > maxsize) {
 760			if (!hs_ep->index && !dir_in)
 761				desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
 762
 763			desc->status |= (maxsize <<
 764						DEV_DMA_NBYTES_SHIFT & mask);
 765			desc->buf = dma_buff + offset;
 766
 767			len -= maxsize;
 768			offset += maxsize;
 769		} else {
 770			desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
 
 771
 772			if (dir_in)
 773				desc->status |= (len % mps) ? DEV_DMA_SHORT :
 774					((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
 775			if (len > maxsize)
 776				dev_err(hsotg->dev, "wrong len %d\n", len);
 777
 778			desc->status |=
 779				len << DEV_DMA_NBYTES_SHIFT & mask;
 780			desc->buf = dma_buff + offset;
 781		}
 782
 783		desc->status &= ~DEV_DMA_BUFF_STS_MASK;
 784		desc->status |= (DEV_DMA_BUFF_STS_HREADY
 785				 << DEV_DMA_BUFF_STS_SHIFT);
 786		desc++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 787	}
 
 
 788}
 789
 790/*
 791 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
 792 * @hs_ep: The isochronous endpoint.
 793 * @dma_buff: usb requests dma buffer.
 794 * @len: usb request transfer length.
 795 *
 796 * Finds out index of first free entry either in the bottom or up half of
 797 * descriptor chain depend on which is under SW control and not processed
 798 * by HW. Then fills that descriptor with the data of the arrived usb request,
 799 * frame info, sets Last and IOC bits increments next_desc. If filled
 800 * descriptor is not the first one, removes L bit from the previous descriptor
 801 * status.
 802 */
 803static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
 804				      dma_addr_t dma_buff, unsigned int len)
 805{
 806	struct dwc2_dma_desc *desc;
 807	struct dwc2_hsotg *hsotg = hs_ep->parent;
 808	u32 index;
 809	u32 maxsize = 0;
 810	u32 mask = 0;
 
 811
 812	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
 813	if (len > maxsize) {
 814		dev_err(hsotg->dev, "wrong len %d\n", len);
 815		return -EINVAL;
 816	}
 817
 818	/*
 819	 * If SW has already filled half of chain, then return and wait for
 820	 * the other chain to be processed by HW.
 821	 */
 822	if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2)
 823		return -EBUSY;
 824
 825	/* Increment frame number by interval for IN */
 826	if (hs_ep->dir_in)
 827		dwc2_gadget_incr_frame_num(hs_ep);
 828
 829	index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num +
 830		 hs_ep->next_desc;
 831
 832	/* Sanity check of calculated index */
 833	if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) ||
 834	    (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) {
 835		dev_err(hsotg->dev, "wrong index %d for iso chain\n", index);
 836		return -EINVAL;
 837	}
 838
 839	desc = &hs_ep->desc_list[index];
 840
 841	/* Clear L bit of previous desc if more than one entries in the chain */
 842	if (hs_ep->next_desc)
 843		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
 844
 845	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
 846		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
 847
 848	desc->status = 0;
 849	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
 850
 851	desc->buf = dma_buff;
 852	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
 853			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
 854
 855	if (hs_ep->dir_in) {
 856		desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) &
 
 
 
 
 857				 DEV_DMA_ISOC_PID_MASK) |
 858				((len % hs_ep->ep.maxpacket) ?
 859				 DEV_DMA_SHORT : 0) |
 860				((hs_ep->target_frame <<
 861				  DEV_DMA_ISOC_FRNUM_SHIFT) &
 862				 DEV_DMA_ISOC_FRNUM_MASK);
 863	}
 864
 865	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
 866	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
 867
 
 
 
 
 868	/* Update index of last configured entry in the chain */
 869	hs_ep->next_desc++;
 
 
 870
 871	return 0;
 872}
 873
 874/*
 875 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
 876 * @hs_ep: The isochronous endpoint.
 877 *
 878 * Prepare first descriptor chain for isochronous endpoints. Afterwards
 879 * write DMA address to HW and enable the endpoint.
 880 *
 881 * Switch between descriptor chains via isoc_chain_num to give SW opportunity
 882 * to prepare second descriptor chain while first one is being processed by HW.
 883 */
 884static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
 885{
 886	struct dwc2_hsotg *hsotg = hs_ep->parent;
 887	struct dwc2_hsotg_req *hs_req, *treq;
 888	int index = hs_ep->index;
 889	int ret;
 
 890	u32 dma_reg;
 891	u32 depctl;
 892	u32 ctrl;
 
 893
 894	if (list_empty(&hs_ep->queue)) {
 
 895		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
 896		return;
 897	}
 898
 
 
 
 
 
 
 
 
 
 899	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
 900		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
 
 
 
 
 
 
 901						 hs_req->req.length);
 902		if (ret) {
 903			dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
 904			break;
 905		}
 906	}
 907
 
 908	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
 909	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
 910
 911	/* write descriptor chain address to control register */
 912	dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
 913
 914	ctrl = dwc2_readl(hsotg->regs + depctl);
 915	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
 916	dwc2_writel(ctrl, hsotg->regs + depctl);
 
 917
 918	/* Switch ISOC descriptor chain number being processed by SW*/
 919	hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
 920	hs_ep->next_desc = 0;
 921}
 
 922
 923/**
 924 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
 925 * @hsotg: The controller state.
 926 * @hs_ep: The endpoint to process a request for
 927 * @hs_req: The request to start.
 928 * @continuing: True if we are doing more for the current request.
 929 *
 930 * Start the given request running by setting the endpoint registers
 931 * appropriately, and writing any data to the FIFOs.
 932 */
 933static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
 934				 struct dwc2_hsotg_ep *hs_ep,
 935				struct dwc2_hsotg_req *hs_req,
 936				bool continuing)
 937{
 938	struct usb_request *ureq = &hs_req->req;
 939	int index = hs_ep->index;
 940	int dir_in = hs_ep->dir_in;
 941	u32 epctrl_reg;
 942	u32 epsize_reg;
 943	u32 epsize;
 944	u32 ctrl;
 945	unsigned int length;
 946	unsigned int packets;
 947	unsigned int maxreq;
 948	unsigned int dma_reg;
 949
 950	if (index != 0) {
 951		if (hs_ep->req && !continuing) {
 952			dev_err(hsotg->dev, "%s: active request\n", __func__);
 953			WARN_ON(1);
 954			return;
 955		} else if (hs_ep->req != hs_req && continuing) {
 956			dev_err(hsotg->dev,
 957				"%s: continue different req\n", __func__);
 958			WARN_ON(1);
 959			return;
 960		}
 961	}
 962
 963	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
 964	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
 965	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
 966
 967	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
 968		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
 969		hs_ep->dir_in ? "in" : "out");
 970
 971	/* If endpoint is stalled, we will restart request later */
 972	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
 973
 974	if (index && ctrl & DXEPCTL_STALL) {
 975		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
 976		return;
 977	}
 978
 979	length = ureq->length - ureq->actual;
 980	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
 981		ureq->length, ureq->actual);
 982
 983	if (!using_desc_dma(hsotg))
 984		maxreq = get_ep_limit(hs_ep);
 985	else
 986		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
 987
 988	if (length > maxreq) {
 989		int round = maxreq % hs_ep->ep.maxpacket;
 990
 991		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
 992			__func__, length, maxreq, round);
 993
 994		/* round down to multiple of packets */
 995		if (round)
 996			maxreq -= round;
 997
 998		length = maxreq;
 999	}
1000
1001	if (length)
1002		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1003	else
1004		packets = 1;	/* send one packet if length is zero. */
1005
1006	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1007		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
1008		return;
1009	}
1010
1011	if (dir_in && index != 0)
1012		if (hs_ep->isochronous)
1013			epsize = DXEPTSIZ_MC(packets);
1014		else
1015			epsize = DXEPTSIZ_MC(1);
1016	else
1017		epsize = 0;
1018
1019	/*
1020	 * zero length packet should be programmed on its own and should not
1021	 * be counted in DIEPTSIZ.PktCnt with other packets.
1022	 */
1023	if (dir_in && ureq->zero && !continuing) {
1024		/* Test if zlp is actually required. */
1025		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1026		    !(ureq->length % hs_ep->ep.maxpacket))
1027			hs_ep->send_zlp = 1;
1028	}
1029
1030	epsize |= DXEPTSIZ_PKTCNT(packets);
1031	epsize |= DXEPTSIZ_XFERSIZE(length);
1032
1033	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1034		__func__, packets, length, ureq->length, epsize, epsize_reg);
1035
1036	/* store the request as the current one we're doing */
1037	hs_ep->req = hs_req;
1038
1039	if (using_desc_dma(hsotg)) {
1040		u32 offset = 0;
1041		u32 mps = hs_ep->ep.maxpacket;
1042
1043		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1044		if (!dir_in) {
1045			if (!index)
1046				length = mps;
1047			else if (length % mps)
1048				length += (mps - (length % mps));
1049		}
1050
1051		/*
1052		 * If more data to send, adjust DMA for EP0 out data stage.
1053		 * ureq->dma stays unchanged, hence increment it by already
1054		 * passed passed data count before starting new transaction.
1055		 */
1056		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
1057		    continuing)
1058			offset = ureq->actual;
1059
1060		/* Fill DDMA chain entries */
1061		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1062						     length);
1063
1064		/* write descriptor chain address to control register */
1065		dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
1066
1067		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1068			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1069	} else {
1070		/* write size / packets */
1071		dwc2_writel(epsize, hsotg->regs + epsize_reg);
1072
1073		if (using_dma(hsotg) && !continuing && (length != 0)) {
1074			/*
1075			 * write DMA address to control register, buffer
1076			 * already synced by dwc2_hsotg_ep_queue().
1077			 */
1078
1079			dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
1080
1081			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1082				__func__, &ureq->dma, dma_reg);
1083		}
1084	}
1085
1086	if (hs_ep->isochronous && hs_ep->interval == 1) {
1087		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1088		dwc2_gadget_incr_frame_num(hs_ep);
1089
1090		if (hs_ep->target_frame & 0x1)
1091			ctrl |= DXEPCTL_SETODDFR;
1092		else
1093			ctrl |= DXEPCTL_SETEVENFR;
 
 
 
 
 
 
 
1094	}
1095
1096	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1097
1098	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1099
1100	/* For Setup request do not clear NAK */
1101	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1102		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1103
1104	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1105	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
1106
1107	/*
1108	 * set these, it seems that DMA support increments past the end
1109	 * of the packet buffer so we need to calculate the length from
1110	 * this information.
1111	 */
1112	hs_ep->size_loaded = length;
1113	hs_ep->last_load = ureq->actual;
1114
1115	if (dir_in && !using_dma(hsotg)) {
1116		/* set these anyway, we may need them for non-periodic in */
1117		hs_ep->fifo_load = 0;
1118
1119		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1120	}
1121
1122	/*
1123	 * Note, trying to clear the NAK here causes problems with transmit
1124	 * on the S3C6400 ending up with the TXFIFO becoming full.
1125	 */
1126
1127	/* check ep is enabled */
1128	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
1129		dev_dbg(hsotg->dev,
1130			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1131			 index, dwc2_readl(hsotg->regs + epctrl_reg));
1132
1133	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1134		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
1135
1136	/* enable ep interrupts */
1137	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1138}
1139
1140/**
1141 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1142 * @hsotg: The device state.
1143 * @hs_ep: The endpoint the request is on.
1144 * @req: The request being processed.
1145 *
1146 * We've been asked to queue a request, so ensure that the memory buffer
1147 * is correctly setup for DMA. If we've been passed an extant DMA address
1148 * then ensure the buffer has been synced to memory. If our buffer has no
1149 * DMA memory, then we map the memory and mark our request to allow us to
1150 * cleanup on completion.
1151 */
1152static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1153			      struct dwc2_hsotg_ep *hs_ep,
1154			     struct usb_request *req)
1155{
1156	int ret;
1157
 
1158	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1159	if (ret)
1160		goto dma_error;
1161
1162	return 0;
1163
1164dma_error:
1165	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1166		__func__, req->buf, req->length);
1167
1168	return -EIO;
1169}
1170
1171static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1172						 struct dwc2_hsotg_ep *hs_ep,
1173						 struct dwc2_hsotg_req *hs_req)
1174{
1175	void *req_buf = hs_req->req.buf;
1176
1177	/* If dma is not being used or buffer is aligned */
1178	if (!using_dma(hsotg) || !((long)req_buf & 3))
1179		return 0;
1180
1181	WARN_ON(hs_req->saved_req_buf);
1182
1183	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1184		hs_ep->ep.name, req_buf, hs_req->req.length);
1185
1186	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1187	if (!hs_req->req.buf) {
1188		hs_req->req.buf = req_buf;
1189		dev_err(hsotg->dev,
1190			"%s: unable to allocate memory for bounce buffer\n",
1191			__func__);
1192		return -ENOMEM;
1193	}
1194
1195	/* Save actual buffer */
1196	hs_req->saved_req_buf = req_buf;
1197
1198	if (hs_ep->dir_in)
1199		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1200	return 0;
1201}
1202
1203static void
1204dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1205					 struct dwc2_hsotg_ep *hs_ep,
1206					 struct dwc2_hsotg_req *hs_req)
1207{
1208	/* If dma is not being used or buffer was aligned */
1209	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1210		return;
1211
1212	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1213		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1214
1215	/* Copy data from bounce buffer on successful out transfer */
1216	if (!hs_ep->dir_in && !hs_req->req.status)
1217		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1218		       hs_req->req.actual);
1219
1220	/* Free bounce buffer */
1221	kfree(hs_req->req.buf);
1222
1223	hs_req->req.buf = hs_req->saved_req_buf;
1224	hs_req->saved_req_buf = NULL;
1225}
1226
1227/**
1228 * dwc2_gadget_target_frame_elapsed - Checks target frame
1229 * @hs_ep: The driver endpoint to check
1230 *
1231 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1232 * corresponding transfer.
1233 */
1234static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1235{
1236	struct dwc2_hsotg *hsotg = hs_ep->parent;
1237	u32 target_frame = hs_ep->target_frame;
1238	u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
1239	bool frame_overrun = hs_ep->frame_overrun;
 
 
 
 
1240
1241	if (!frame_overrun && current_frame >= target_frame)
1242		return true;
1243
1244	if (frame_overrun && current_frame >= target_frame &&
1245	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1246		return true;
1247
1248	return false;
1249}
1250
1251/*
1252 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1253 * @hsotg: The driver state
1254 * @hs_ep: the ep descriptor chain is for
1255 *
1256 * Called to update EP0 structure's pointers depend on stage of
1257 * control transfer.
1258 */
1259static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1260					  struct dwc2_hsotg_ep *hs_ep)
1261{
1262	switch (hsotg->ep0_state) {
1263	case DWC2_EP0_SETUP:
1264	case DWC2_EP0_STATUS_OUT:
1265		hs_ep->desc_list = hsotg->setup_desc[0];
1266		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1267		break;
1268	case DWC2_EP0_DATA_IN:
1269	case DWC2_EP0_STATUS_IN:
1270		hs_ep->desc_list = hsotg->ctrl_in_desc;
1271		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1272		break;
1273	case DWC2_EP0_DATA_OUT:
1274		hs_ep->desc_list = hsotg->ctrl_out_desc;
1275		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1276		break;
1277	default:
1278		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1279			hsotg->ep0_state);
1280		return -EINVAL;
1281	}
1282
1283	return 0;
1284}
1285
1286static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1287			       gfp_t gfp_flags)
1288{
1289	struct dwc2_hsotg_req *hs_req = our_req(req);
1290	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1291	struct dwc2_hsotg *hs = hs_ep->parent;
1292	bool first;
1293	int ret;
 
 
 
1294
1295	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1296		ep->name, req, req->length, req->buf, req->no_interrupt,
1297		req->zero, req->short_not_ok);
1298
1299	/* Prevent new request submission when controller is suspended */
1300	if (hs->lx_state != DWC2_L0) {
1301		dev_dbg(hs->dev, "%s: submit request only in active state\n",
1302			__func__);
1303		return -EAGAIN;
1304	}
1305
1306	/* initialise status of the request */
1307	INIT_LIST_HEAD(&hs_req->queue);
1308	req->actual = 0;
1309	req->status = -EINPROGRESS;
1310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1311	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1312	if (ret)
1313		return ret;
1314
1315	/* if we're using DMA, sync the buffers as necessary */
1316	if (using_dma(hs)) {
1317		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1318		if (ret)
1319			return ret;
1320	}
1321	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1322	if (using_desc_dma(hs) && !hs_ep->index) {
1323		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1324		if (ret)
1325			return ret;
1326	}
1327
1328	first = list_empty(&hs_ep->queue);
1329	list_add_tail(&hs_req->queue, &hs_ep->queue);
1330
1331	/*
1332	 * Handle DDMA isochronous transfers separately - just add new entry
1333	 * to the half of descriptor chain that is not processed by HW.
1334	 * Transfer will be started once SW gets either one of NAK or
1335	 * OutTknEpDis interrupts.
1336	 */
1337	if (using_desc_dma(hs) && hs_ep->isochronous &&
1338	    hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1339		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
1340						 hs_req->req.length);
1341		if (ret)
1342			dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__);
1343
 
 
 
 
1344		return 0;
1345	}
1346
 
 
 
 
 
1347	if (first) {
1348		if (!hs_ep->isochronous) {
1349			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1350			return 0;
1351		}
1352
1353		while (dwc2_gadget_target_frame_elapsed(hs_ep))
 
 
1354			dwc2_gadget_incr_frame_num(hs_ep);
 
 
 
 
 
1355
1356		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1357			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1358	}
1359	return 0;
1360}
1361
1362static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1363				    gfp_t gfp_flags)
1364{
1365	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1366	struct dwc2_hsotg *hs = hs_ep->parent;
1367	unsigned long flags = 0;
1368	int ret = 0;
1369
1370	spin_lock_irqsave(&hs->lock, flags);
1371	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1372	spin_unlock_irqrestore(&hs->lock, flags);
1373
1374	return ret;
1375}
1376
1377static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1378				       struct usb_request *req)
1379{
1380	struct dwc2_hsotg_req *hs_req = our_req(req);
1381
1382	kfree(hs_req);
1383}
1384
1385/**
1386 * dwc2_hsotg_complete_oursetup - setup completion callback
1387 * @ep: The endpoint the request was on.
1388 * @req: The request completed.
1389 *
1390 * Called on completion of any requests the driver itself
1391 * submitted that need cleaning up.
1392 */
1393static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1394					 struct usb_request *req)
1395{
1396	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1397	struct dwc2_hsotg *hsotg = hs_ep->parent;
1398
1399	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1400
1401	dwc2_hsotg_ep_free_request(ep, req);
1402}
1403
1404/**
1405 * ep_from_windex - convert control wIndex value to endpoint
1406 * @hsotg: The driver state.
1407 * @windex: The control request wIndex field (in host order).
1408 *
1409 * Convert the given wIndex into a pointer to an driver endpoint
1410 * structure, or return NULL if it is not a valid endpoint.
1411 */
1412static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1413					    u32 windex)
1414{
1415	struct dwc2_hsotg_ep *ep;
1416	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1417	int idx = windex & 0x7F;
1418
1419	if (windex >= 0x100)
1420		return NULL;
1421
1422	if (idx > hsotg->num_of_eps)
1423		return NULL;
1424
1425	ep = index_to_ep(hsotg, idx, dir);
1426
1427	if (idx && ep->dir_in != dir)
1428		return NULL;
1429
1430	return ep;
1431}
1432
1433/**
1434 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1435 * @hsotg: The driver state.
1436 * @testmode: requested usb test mode
1437 * Enable usb Test Mode requested by the Host.
1438 */
1439int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1440{
1441	int dctl = dwc2_readl(hsotg->regs + DCTL);
1442
1443	dctl &= ~DCTL_TSTCTL_MASK;
1444	switch (testmode) {
1445	case TEST_J:
1446	case TEST_K:
1447	case TEST_SE0_NAK:
1448	case TEST_PACKET:
1449	case TEST_FORCE_EN:
1450		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1451		break;
1452	default:
1453		return -EINVAL;
1454	}
1455	dwc2_writel(dctl, hsotg->regs + DCTL);
1456	return 0;
1457}
1458
1459/**
1460 * dwc2_hsotg_send_reply - send reply to control request
1461 * @hsotg: The device state
1462 * @ep: Endpoint 0
1463 * @buff: Buffer for request
1464 * @length: Length of reply.
1465 *
1466 * Create a request and queue it on the given endpoint. This is useful as
1467 * an internal method of sending replies to certain control requests, etc.
1468 */
1469static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1470				 struct dwc2_hsotg_ep *ep,
1471				void *buff,
1472				int length)
1473{
1474	struct usb_request *req;
1475	int ret;
1476
1477	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1478
1479	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1480	hsotg->ep0_reply = req;
1481	if (!req) {
1482		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1483		return -ENOMEM;
1484	}
1485
1486	req->buf = hsotg->ep0_buff;
1487	req->length = length;
1488	/*
1489	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1490	 * STATUS stage.
1491	 */
1492	req->zero = 0;
1493	req->complete = dwc2_hsotg_complete_oursetup;
1494
1495	if (length)
1496		memcpy(req->buf, buff, length);
1497
1498	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1499	if (ret) {
1500		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1501		return ret;
1502	}
1503
1504	return 0;
1505}
1506
1507/**
1508 * dwc2_hsotg_process_req_status - process request GET_STATUS
1509 * @hsotg: The device state
1510 * @ctrl: USB control request
1511 */
1512static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1513					 struct usb_ctrlrequest *ctrl)
1514{
1515	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1516	struct dwc2_hsotg_ep *ep;
1517	__le16 reply;
 
1518	int ret;
1519
1520	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1521
1522	if (!ep0->dir_in) {
1523		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1524		return -EINVAL;
1525	}
1526
1527	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1528	case USB_RECIP_DEVICE:
1529		/*
1530		 * bit 0 => self powered
1531		 * bit 1 => remote wakeup
1532		 */
1533		reply = cpu_to_le16(0);
1534		break;
1535
1536	case USB_RECIP_INTERFACE:
1537		/* currently, the data result should be zero */
1538		reply = cpu_to_le16(0);
1539		break;
1540
1541	case USB_RECIP_ENDPOINT:
1542		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1543		if (!ep)
1544			return -ENOENT;
1545
1546		reply = cpu_to_le16(ep->halted ? 1 : 0);
1547		break;
1548
1549	default:
1550		return 0;
1551	}
1552
1553	if (le16_to_cpu(ctrl->wLength) != 2)
1554		return -EINVAL;
1555
1556	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1557	if (ret) {
1558		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1559		return ret;
1560	}
1561
1562	return 1;
1563}
1564
1565static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1566
1567/**
1568 * get_ep_head - return the first request on the endpoint
1569 * @hs_ep: The controller endpoint to get
1570 *
1571 * Get the first request on the endpoint.
1572 */
1573static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1574{
1575	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1576					queue);
1577}
1578
1579/**
1580 * dwc2_gadget_start_next_request - Starts next request from ep queue
1581 * @hs_ep: Endpoint structure
1582 *
1583 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1584 * in its handler. Hence we need to unmask it here to be able to do
1585 * resynchronization.
1586 */
1587static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1588{
1589	u32 mask;
1590	struct dwc2_hsotg *hsotg = hs_ep->parent;
1591	int dir_in = hs_ep->dir_in;
1592	struct dwc2_hsotg_req *hs_req;
1593	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1594
1595	if (!list_empty(&hs_ep->queue)) {
1596		hs_req = get_ep_head(hs_ep);
1597		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1598		return;
1599	}
1600	if (!hs_ep->isochronous)
1601		return;
1602
1603	if (dir_in) {
1604		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1605			__func__);
1606	} else {
1607		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1608			__func__);
1609		mask = dwc2_readl(hsotg->regs + epmsk_reg);
1610		mask |= DOEPMSK_OUTTKNEPDISMSK;
1611		dwc2_writel(mask, hsotg->regs + epmsk_reg);
1612	}
1613}
1614
1615/**
1616 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1617 * @hsotg: The device state
1618 * @ctrl: USB control request
1619 */
1620static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1621					  struct usb_ctrlrequest *ctrl)
1622{
1623	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1624	struct dwc2_hsotg_req *hs_req;
1625	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1626	struct dwc2_hsotg_ep *ep;
1627	int ret;
1628	bool halted;
1629	u32 recip;
1630	u32 wValue;
1631	u32 wIndex;
1632
1633	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1634		__func__, set ? "SET" : "CLEAR");
1635
1636	wValue = le16_to_cpu(ctrl->wValue);
1637	wIndex = le16_to_cpu(ctrl->wIndex);
1638	recip = ctrl->bRequestType & USB_RECIP_MASK;
1639
1640	switch (recip) {
1641	case USB_RECIP_DEVICE:
1642		switch (wValue) {
1643		case USB_DEVICE_REMOTE_WAKEUP:
1644			hsotg->remote_wakeup_allowed = 1;
 
 
 
1645			break;
1646
1647		case USB_DEVICE_TEST_MODE:
1648			if ((wIndex & 0xff) != 0)
1649				return -EINVAL;
1650			if (!set)
1651				return -EINVAL;
1652
1653			hsotg->test_mode = wIndex >> 8;
1654			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1655			if (ret) {
1656				dev_err(hsotg->dev,
1657					"%s: failed to send reply\n", __func__);
1658				return ret;
1659			}
1660			break;
1661		default:
1662			return -ENOENT;
1663		}
 
 
 
 
 
 
 
1664		break;
1665
1666	case USB_RECIP_ENDPOINT:
1667		ep = ep_from_windex(hsotg, wIndex);
1668		if (!ep) {
1669			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1670				__func__, wIndex);
1671			return -ENOENT;
1672		}
1673
1674		switch (wValue) {
1675		case USB_ENDPOINT_HALT:
1676			halted = ep->halted;
1677
1678			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
 
1679
1680			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1681			if (ret) {
1682				dev_err(hsotg->dev,
1683					"%s: failed to send reply\n", __func__);
1684				return ret;
1685			}
1686
1687			/*
1688			 * we have to complete all requests for ep if it was
1689			 * halted, and the halt was cleared by CLEAR_FEATURE
1690			 */
1691
1692			if (!set && halted) {
1693				/*
1694				 * If we have request in progress,
1695				 * then complete it
1696				 */
1697				if (ep->req) {
1698					hs_req = ep->req;
1699					ep->req = NULL;
1700					list_del_init(&hs_req->queue);
1701					if (hs_req->req.complete) {
1702						spin_unlock(&hsotg->lock);
1703						usb_gadget_giveback_request(
1704							&ep->ep, &hs_req->req);
1705						spin_lock(&hsotg->lock);
1706					}
1707				}
1708
1709				/* If we have pending request, then start it */
1710				if (!ep->req)
1711					dwc2_gadget_start_next_request(ep);
1712			}
1713
1714			break;
1715
1716		default:
1717			return -ENOENT;
1718		}
1719		break;
1720	default:
1721		return -ENOENT;
1722	}
1723	return 1;
1724}
1725
1726static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1727
1728/**
1729 * dwc2_hsotg_stall_ep0 - stall ep0
1730 * @hsotg: The device state
1731 *
1732 * Set stall for ep0 as response for setup request.
1733 */
1734static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1735{
1736	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1737	u32 reg;
1738	u32 ctrl;
1739
1740	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1741	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1742
1743	/*
1744	 * DxEPCTL_Stall will be cleared by EP once it has
1745	 * taken effect, so no need to clear later.
1746	 */
1747
1748	ctrl = dwc2_readl(hsotg->regs + reg);
1749	ctrl |= DXEPCTL_STALL;
1750	ctrl |= DXEPCTL_CNAK;
1751	dwc2_writel(ctrl, hsotg->regs + reg);
1752
1753	dev_dbg(hsotg->dev,
1754		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1755		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1756
1757	 /*
1758	  * complete won't be called, so we enqueue
1759	  * setup request here
1760	  */
1761	 dwc2_hsotg_enqueue_setup(hsotg);
1762}
1763
1764/**
1765 * dwc2_hsotg_process_control - process a control request
1766 * @hsotg: The device state
1767 * @ctrl: The control request received
1768 *
1769 * The controller has received the SETUP phase of a control request, and
1770 * needs to work out what to do next (and whether to pass it on to the
1771 * gadget driver).
1772 */
1773static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1774				       struct usb_ctrlrequest *ctrl)
1775{
1776	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1777	int ret = 0;
1778	u32 dcfg;
1779
1780	dev_dbg(hsotg->dev,
1781		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1782		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1783		ctrl->wIndex, ctrl->wLength);
1784
1785	if (ctrl->wLength == 0) {
1786		ep0->dir_in = 1;
1787		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1788	} else if (ctrl->bRequestType & USB_DIR_IN) {
1789		ep0->dir_in = 1;
1790		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1791	} else {
1792		ep0->dir_in = 0;
1793		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1794	}
1795
1796	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1797		switch (ctrl->bRequest) {
1798		case USB_REQ_SET_ADDRESS:
1799			hsotg->connected = 1;
1800			dcfg = dwc2_readl(hsotg->regs + DCFG);
1801			dcfg &= ~DCFG_DEVADDR_MASK;
1802			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1803				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1804			dwc2_writel(dcfg, hsotg->regs + DCFG);
1805
1806			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1807
1808			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1809			return;
1810
1811		case USB_REQ_GET_STATUS:
1812			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1813			break;
1814
1815		case USB_REQ_CLEAR_FEATURE:
1816		case USB_REQ_SET_FEATURE:
1817			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1818			break;
1819		}
1820	}
1821
1822	/* as a fallback, try delivering it to the driver to deal with */
1823
1824	if (ret == 0 && hsotg->driver) {
1825		spin_unlock(&hsotg->lock);
1826		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1827		spin_lock(&hsotg->lock);
1828		if (ret < 0)
1829			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1830	}
1831
 
 
 
 
1832	/*
1833	 * the request is either unhandlable, or is not formatted correctly
1834	 * so respond with a STALL for the status stage to indicate failure.
1835	 */
1836
1837	if (ret < 0)
1838		dwc2_hsotg_stall_ep0(hsotg);
1839}
1840
1841/**
1842 * dwc2_hsotg_complete_setup - completion of a setup transfer
1843 * @ep: The endpoint the request was on.
1844 * @req: The request completed.
1845 *
1846 * Called on completion of any requests the driver itself submitted for
1847 * EP0 setup packets
1848 */
1849static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1850				      struct usb_request *req)
1851{
1852	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1853	struct dwc2_hsotg *hsotg = hs_ep->parent;
1854
1855	if (req->status < 0) {
1856		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1857		return;
1858	}
1859
1860	spin_lock(&hsotg->lock);
1861	if (req->actual == 0)
1862		dwc2_hsotg_enqueue_setup(hsotg);
1863	else
1864		dwc2_hsotg_process_control(hsotg, req->buf);
1865	spin_unlock(&hsotg->lock);
1866}
1867
1868/**
1869 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1870 * @hsotg: The device state.
1871 *
1872 * Enqueue a request on EP0 if necessary to received any SETUP packets
1873 * received from the host.
1874 */
1875static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1876{
1877	struct usb_request *req = hsotg->ctrl_req;
1878	struct dwc2_hsotg_req *hs_req = our_req(req);
1879	int ret;
1880
1881	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1882
1883	req->zero = 0;
1884	req->length = 8;
1885	req->buf = hsotg->ctrl_buff;
1886	req->complete = dwc2_hsotg_complete_setup;
1887
1888	if (!list_empty(&hs_req->queue)) {
1889		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1890		return;
1891	}
1892
1893	hsotg->eps_out[0]->dir_in = 0;
1894	hsotg->eps_out[0]->send_zlp = 0;
1895	hsotg->ep0_state = DWC2_EP0_SETUP;
1896
1897	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1898	if (ret < 0) {
1899		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1900		/*
1901		 * Don't think there's much we can do other than watch the
1902		 * driver fail.
1903		 */
1904	}
1905}
1906
1907static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1908				   struct dwc2_hsotg_ep *hs_ep)
1909{
1910	u32 ctrl;
1911	u8 index = hs_ep->index;
1912	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1913	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1914
1915	if (hs_ep->dir_in)
1916		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1917			index);
1918	else
1919		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1920			index);
1921	if (using_desc_dma(hsotg)) {
1922		/* Not specific buffer needed for ep0 ZLP */
1923		dma_addr_t dma = hs_ep->desc_list_dma;
1924
1925		if (!index)
1926			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
1927
1928		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
1929	} else {
1930		dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1931			    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1932			    epsiz_reg);
1933	}
1934
1935	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1936	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
1937	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1938	ctrl |= DXEPCTL_USBACTEP;
1939	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1940}
1941
1942/**
1943 * dwc2_hsotg_complete_request - complete a request given to us
1944 * @hsotg: The device state.
1945 * @hs_ep: The endpoint the request was on.
1946 * @hs_req: The request to complete.
1947 * @result: The result code (0 => Ok, otherwise errno)
1948 *
1949 * The given request has finished, so call the necessary completion
1950 * if it has one and then look to see if we can start a new request
1951 * on the endpoint.
1952 *
1953 * Note, expects the ep to already be locked as appropriate.
1954 */
1955static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1956					struct dwc2_hsotg_ep *hs_ep,
1957				       struct dwc2_hsotg_req *hs_req,
1958				       int result)
1959{
1960	if (!hs_req) {
1961		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1962		return;
1963	}
1964
1965	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1966		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1967
1968	/*
1969	 * only replace the status if we've not already set an error
1970	 * from a previous transaction
1971	 */
1972
1973	if (hs_req->req.status == -EINPROGRESS)
1974		hs_req->req.status = result;
1975
1976	if (using_dma(hsotg))
1977		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1978
1979	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1980
1981	hs_ep->req = NULL;
1982	list_del_init(&hs_req->queue);
1983
1984	/*
1985	 * call the complete request with the locks off, just in case the
1986	 * request tries to queue more work for this endpoint.
1987	 */
1988
1989	if (hs_req->req.complete) {
1990		spin_unlock(&hsotg->lock);
1991		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1992		spin_lock(&hsotg->lock);
1993	}
1994
1995	/* In DDMA don't need to proceed to starting of next ISOC request */
1996	if (using_desc_dma(hsotg) && hs_ep->isochronous)
1997		return;
1998
1999	/*
2000	 * Look to see if there is anything else to do. Note, the completion
2001	 * of the previous request may have caused a new request to be started
2002	 * so be careful when doing this.
2003	 */
2004
2005	if (!hs_ep->req && result >= 0)
2006		dwc2_gadget_start_next_request(hs_ep);
2007}
2008
2009/*
2010 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2011 * @hs_ep: The endpoint the request was on.
2012 *
2013 * Get first request from the ep queue, determine descriptor on which complete
2014 * happened. SW based on isoc_chain_num discovers which half of the descriptor
2015 * chain is currently in use by HW, adjusts dma_address and calculates index
2016 * of completed descriptor based on the value of DEPDMA register. Update actual
2017 * length of request, giveback to gadget.
2018 */
2019static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2020{
2021	struct dwc2_hsotg *hsotg = hs_ep->parent;
2022	struct dwc2_hsotg_req *hs_req;
2023	struct usb_request *ureq;
2024	int index;
2025	dma_addr_t dma_addr;
2026	u32 dma_reg;
2027	u32 depdma;
2028	u32 desc_sts;
2029	u32 mask;
2030
2031	hs_req = get_ep_head(hs_ep);
2032	if (!hs_req) {
2033		dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2034		return;
2035	}
2036	ureq = &hs_req->req;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2037
2038	dma_addr = hs_ep->desc_list_dma;
 
 
 
 
2039
2040	/*
2041	 * If lower half of  descriptor chain is currently use by SW,
2042	 * that means higher half is being processed by HW, so shift
2043	 * DMA address to higher half of descriptor chain.
2044	 */
2045	if (!hs_ep->isoc_chain_num)
2046		dma_addr += sizeof(struct dwc2_dma_desc) *
2047			    (MAX_DMA_DESC_NUM_GENERIC / 2);
2048
2049	dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index);
2050	depdma = dwc2_readl(hsotg->regs + dma_reg);
2051
2052	index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1;
2053	desc_sts = hs_ep->desc_list[index].status;
2054
2055	mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2056	       DEV_DMA_ISOC_RX_NBYTES_MASK;
2057	ureq->actual = ureq->length -
2058		       ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT);
2059
2060	/* Adjust actual length for ISOC Out if length is not align of 4 */
2061	if (!hs_ep->dir_in && ureq->length & 0x3)
2062		ureq->actual += 4 - (ureq->length & 0x3);
2063
2064	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
 
 
 
 
2065}
2066
2067/*
2068 * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any.
2069 * @hs_ep: The isochronous endpoint to be re-enabled.
2070 *
2071 * If ep has been disabled due to last descriptor servicing (IN endpoint) or
2072 * BNA (OUT endpoint) check the status of other half of descriptor chain that
2073 * was under SW control till HW was busy and restart the endpoint if needed.
 
2074 */
2075static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
2076{
2077	struct dwc2_hsotg *hsotg = hs_ep->parent;
2078	u32 depctl;
2079	u32 dma_reg;
2080	u32 ctrl;
2081	u32 dma_addr = hs_ep->desc_list_dma;
2082	unsigned char index = hs_ep->index;
2083
2084	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
2085	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
 
2086
2087	ctrl = dwc2_readl(hsotg->regs + depctl);
2088
2089	/*
2090	 * EP was disabled if HW has processed last descriptor or BNA was set.
2091	 * So restart ep if SW has prepared new descriptor chain in ep_queue
2092	 * routine while HW was busy.
2093	 */
2094	if (!(ctrl & DXEPCTL_EPENA)) {
2095		if (!hs_ep->next_desc) {
2096			dev_dbg(hsotg->dev, "%s: No more ISOC requests\n",
2097				__func__);
2098			return;
2099		}
2100
2101		dma_addr += sizeof(struct dwc2_dma_desc) *
2102			    (MAX_DMA_DESC_NUM_GENERIC / 2) *
2103			    hs_ep->isoc_chain_num;
2104		dwc2_writel(dma_addr, hsotg->regs + dma_reg);
2105
2106		ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
2107		dwc2_writel(ctrl, hsotg->regs + depctl);
2108
2109		/* Switch ISOC descriptor chain number being processed by SW*/
2110		hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
2111		hs_ep->next_desc = 0;
2112
2113		dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n",
2114			__func__);
2115	}
2116}
2117
2118/**
2119 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2120 * @hsotg: The device state.
2121 * @ep_idx: The endpoint index for the data
2122 * @size: The size of data in the fifo, in bytes
2123 *
2124 * The FIFO status shows there is data to read from the FIFO for a given
2125 * endpoint, so sort out whether we need to read the data into a request
2126 * that has been made for that endpoint.
2127 */
2128static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2129{
2130	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2131	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2132	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
2133	int to_read;
2134	int max_req;
2135	int read_ptr;
2136
2137	if (!hs_req) {
2138		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
2139		int ptr;
2140
2141		dev_dbg(hsotg->dev,
2142			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2143			 __func__, size, ep_idx, epctl);
2144
2145		/* dump the data from the FIFO, we've nothing we can do */
2146		for (ptr = 0; ptr < size; ptr += 4)
2147			(void)dwc2_readl(fifo);
2148
2149		return;
2150	}
2151
2152	to_read = size;
2153	read_ptr = hs_req->req.actual;
2154	max_req = hs_req->req.length - read_ptr;
2155
2156	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2157		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2158
2159	if (to_read > max_req) {
2160		/*
2161		 * more data appeared than we where willing
2162		 * to deal with in this request.
2163		 */
2164
2165		/* currently we don't deal this */
2166		WARN_ON_ONCE(1);
2167	}
2168
2169	hs_ep->total_data += to_read;
2170	hs_req->req.actual += to_read;
2171	to_read = DIV_ROUND_UP(to_read, 4);
2172
2173	/*
2174	 * note, we might over-write the buffer end by 3 bytes depending on
2175	 * alignment of the data.
2176	 */
2177	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
 
2178}
2179
2180/**
2181 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2182 * @hsotg: The device instance
2183 * @dir_in: If IN zlp
2184 *
2185 * Generate a zero-length IN packet request for terminating a SETUP
2186 * transaction.
2187 *
2188 * Note, since we don't write any data to the TxFIFO, then it is
2189 * currently believed that we do not need to wait for any space in
2190 * the TxFIFO.
2191 */
2192static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2193{
2194	/* eps_out[0] is used in both directions */
2195	hsotg->eps_out[0]->dir_in = dir_in;
2196	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2197
2198	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2199}
2200
2201static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2202					    u32 epctl_reg)
2203{
2204	u32 ctrl;
2205
2206	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2207	if (ctrl & DXEPCTL_EOFRNUM)
2208		ctrl |= DXEPCTL_SETEVENFR;
2209	else
2210		ctrl |= DXEPCTL_SETODDFR;
2211	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
2212}
2213
2214/*
2215 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2216 * @hs_ep - The endpoint on which transfer went
2217 *
2218 * Iterate over endpoints descriptor chain and get info on bytes remained
2219 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2220 */
2221static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2222{
 
2223	struct dwc2_hsotg *hsotg = hs_ep->parent;
2224	unsigned int bytes_rem = 0;
 
2225	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2226	int i;
2227	u32 status;
 
 
2228
2229	if (!desc)
2230		return -EINVAL;
2231
 
 
 
 
 
2232	for (i = 0; i < hs_ep->desc_count; ++i) {
2233		status = desc->status;
2234		bytes_rem += status & DEV_DMA_NBYTES_MASK;
 
2235
2236		if (status & DEV_DMA_STS_MASK)
2237			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2238				i, status & DEV_DMA_STS_MASK);
 
 
 
 
 
2239	}
2240
2241	return bytes_rem;
2242}
2243
2244/**
2245 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2246 * @hsotg: The device instance
2247 * @epnum: The endpoint received from
2248 *
2249 * The RXFIFO has delivered an OutDone event, which means that the data
2250 * transfer for an OUT endpoint has been completed, either by a short
2251 * packet or by the finish of a transfer.
2252 */
2253static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2254{
2255	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
2256	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2257	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2258	struct usb_request *req = &hs_req->req;
2259	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2260	int result = 0;
2261
2262	if (!hs_req) {
2263		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2264		return;
2265	}
2266
2267	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2268		dev_dbg(hsotg->dev, "zlp packet received\n");
2269		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2270		dwc2_hsotg_enqueue_setup(hsotg);
2271		return;
2272	}
2273
2274	if (using_desc_dma(hsotg))
2275		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2276
2277	if (using_dma(hsotg)) {
2278		unsigned int size_done;
2279
2280		/*
2281		 * Calculate the size of the transfer by checking how much
2282		 * is left in the endpoint size register and then working it
2283		 * out from the amount we loaded for the transfer.
2284		 *
2285		 * We need to do this as DMA pointers are always 32bit aligned
2286		 * so may overshoot/undershoot the transfer.
2287		 */
2288
2289		size_done = hs_ep->size_loaded - size_left;
2290		size_done += hs_ep->last_load;
2291
2292		req->actual = size_done;
2293	}
2294
2295	/* if there is more request to do, schedule new transfer */
2296	if (req->actual < req->length && size_left == 0) {
2297		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2298		return;
2299	}
2300
2301	if (req->actual < req->length && req->short_not_ok) {
2302		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2303			__func__, req->actual, req->length);
2304
2305		/*
2306		 * todo - what should we return here? there's no one else
2307		 * even bothering to check the status.
2308		 */
2309	}
2310
2311	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2312	if (!using_desc_dma(hsotg) && epnum == 0 &&
2313	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2314		/* Move to STATUS IN */
2315		dwc2_hsotg_ep0_zlp(hsotg, true);
2316		return;
2317	}
2318
2319	/*
2320	 * Slave mode OUT transfers do not go through XferComplete so
2321	 * adjust the ISOC parity here.
2322	 */
2323	if (!using_dma(hsotg)) {
2324		if (hs_ep->isochronous && hs_ep->interval == 1)
2325			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2326		else if (hs_ep->isochronous && hs_ep->interval > 1)
2327			dwc2_gadget_incr_frame_num(hs_ep);
2328	}
2329
2330	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2331}
2332
2333/**
2334 * dwc2_hsotg_handle_rx - RX FIFO has data
2335 * @hsotg: The device instance
2336 *
2337 * The IRQ handler has detected that the RX FIFO has some data in it
2338 * that requires processing, so find out what is in there and do the
2339 * appropriate read.
2340 *
2341 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2342 * chunks, so if you have x packets received on an endpoint you'll get x
2343 * FIFO events delivered, each with a packet's worth of data in it.
2344 *
2345 * When using DMA, we should not be processing events from the RXFIFO
2346 * as the actual data should be sent to the memory directly and we turn
2347 * on the completion interrupts to get notifications of transfer completion.
2348 */
2349static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2350{
2351	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2352	u32 epnum, status, size;
2353
2354	WARN_ON(using_dma(hsotg));
2355
2356	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2357	status = grxstsr & GRXSTS_PKTSTS_MASK;
2358
2359	size = grxstsr & GRXSTS_BYTECNT_MASK;
2360	size >>= GRXSTS_BYTECNT_SHIFT;
2361
2362	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2363		__func__, grxstsr, size, epnum);
2364
2365	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2366	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2367		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2368		break;
2369
2370	case GRXSTS_PKTSTS_OUTDONE:
2371		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2372			dwc2_hsotg_read_frameno(hsotg));
2373
2374		if (!using_dma(hsotg))
2375			dwc2_hsotg_handle_outdone(hsotg, epnum);
2376		break;
2377
2378	case GRXSTS_PKTSTS_SETUPDONE:
2379		dev_dbg(hsotg->dev,
2380			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2381			dwc2_hsotg_read_frameno(hsotg),
2382			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2383		/*
2384		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2385		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2386		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2387		 */
2388		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2389			dwc2_hsotg_handle_outdone(hsotg, epnum);
2390		break;
2391
2392	case GRXSTS_PKTSTS_OUTRX:
2393		dwc2_hsotg_rx_data(hsotg, epnum, size);
2394		break;
2395
2396	case GRXSTS_PKTSTS_SETUPRX:
2397		dev_dbg(hsotg->dev,
2398			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2399			dwc2_hsotg_read_frameno(hsotg),
2400			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2401
2402		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2403
2404		dwc2_hsotg_rx_data(hsotg, epnum, size);
2405		break;
2406
2407	default:
2408		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2409			 __func__, grxstsr);
2410
2411		dwc2_hsotg_dump(hsotg);
2412		break;
2413	}
2414}
2415
2416/**
2417 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2418 * @mps: The maximum packet size in bytes.
2419 */
2420static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2421{
2422	switch (mps) {
2423	case 64:
2424		return D0EPCTL_MPS_64;
2425	case 32:
2426		return D0EPCTL_MPS_32;
2427	case 16:
2428		return D0EPCTL_MPS_16;
2429	case 8:
2430		return D0EPCTL_MPS_8;
2431	}
2432
2433	/* bad max packet size, warn and return invalid result */
2434	WARN_ON(1);
2435	return (u32)-1;
2436}
2437
2438/**
2439 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2440 * @hsotg: The driver state.
2441 * @ep: The index number of the endpoint
2442 * @mps: The maximum packet size in bytes
2443 * @mc: The multicount value
 
2444 *
2445 * Configure the maximum packet size for the given endpoint, updating
2446 * the hardware control registers to reflect this.
2447 */
2448static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2449					unsigned int ep, unsigned int mps,
2450					unsigned int mc, unsigned int dir_in)
2451{
2452	struct dwc2_hsotg_ep *hs_ep;
2453	void __iomem *regs = hsotg->regs;
2454	u32 reg;
2455
2456	hs_ep = index_to_ep(hsotg, ep, dir_in);
2457	if (!hs_ep)
2458		return;
2459
2460	if (ep == 0) {
2461		u32 mps_bytes = mps;
2462
2463		/* EP0 is a special case */
2464		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2465		if (mps > 3)
2466			goto bad_mps;
2467		hs_ep->ep.maxpacket = mps_bytes;
2468		hs_ep->mc = 1;
2469	} else {
2470		if (mps > 1024)
2471			goto bad_mps;
2472		hs_ep->mc = mc;
2473		if (mc > 3)
2474			goto bad_mps;
2475		hs_ep->ep.maxpacket = mps;
2476	}
2477
2478	if (dir_in) {
2479		reg = dwc2_readl(regs + DIEPCTL(ep));
2480		reg &= ~DXEPCTL_MPS_MASK;
2481		reg |= mps;
2482		dwc2_writel(reg, regs + DIEPCTL(ep));
2483	} else {
2484		reg = dwc2_readl(regs + DOEPCTL(ep));
2485		reg &= ~DXEPCTL_MPS_MASK;
2486		reg |= mps;
2487		dwc2_writel(reg, regs + DOEPCTL(ep));
2488	}
2489
2490	return;
2491
2492bad_mps:
2493	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2494}
2495
2496/**
2497 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2498 * @hsotg: The driver state
2499 * @idx: The index for the endpoint (0..15)
2500 */
2501static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2502{
2503	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2504		    hsotg->regs + GRSTCTL);
2505
2506	/* wait until the fifo is flushed */
2507	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2508		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2509			 __func__);
2510}
2511
2512/**
2513 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2514 * @hsotg: The driver state
2515 * @hs_ep: The driver endpoint to check.
2516 *
2517 * Check to see if there is a request that has data to send, and if so
2518 * make an attempt to write data into the FIFO.
2519 */
2520static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2521			    struct dwc2_hsotg_ep *hs_ep)
2522{
2523	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2524
2525	if (!hs_ep->dir_in || !hs_req) {
2526		/**
2527		 * if request is not enqueued, we disable interrupts
2528		 * for endpoints, excepting ep0
2529		 */
2530		if (hs_ep->index != 0)
2531			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2532					      hs_ep->dir_in, 0);
2533		return 0;
2534	}
2535
2536	if (hs_req->req.actual < hs_req->req.length) {
2537		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2538			hs_ep->index);
2539		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2540	}
2541
2542	return 0;
2543}
2544
2545/**
2546 * dwc2_hsotg_complete_in - complete IN transfer
2547 * @hsotg: The device state.
2548 * @hs_ep: The endpoint that has just completed.
2549 *
2550 * An IN transfer has been completed, update the transfer's state and then
2551 * call the relevant completion routines.
2552 */
2553static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2554				   struct dwc2_hsotg_ep *hs_ep)
2555{
2556	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2557	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2558	int size_left, size_done;
2559
2560	if (!hs_req) {
2561		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2562		return;
2563	}
2564
2565	/* Finish ZLP handling for IN EP0 transactions */
2566	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2567		dev_dbg(hsotg->dev, "zlp packet sent\n");
2568
2569		/*
2570		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2571		 * changed to IN. Change back to complete OUT transfer request
2572		 */
2573		hs_ep->dir_in = 0;
2574
2575		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2576		if (hsotg->test_mode) {
2577			int ret;
2578
2579			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2580			if (ret < 0) {
2581				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2582					hsotg->test_mode);
2583				dwc2_hsotg_stall_ep0(hsotg);
2584				return;
2585			}
2586		}
2587		dwc2_hsotg_enqueue_setup(hsotg);
2588		return;
2589	}
2590
2591	/*
2592	 * Calculate the size of the transfer by checking how much is left
2593	 * in the endpoint size register and then working it out from
2594	 * the amount we loaded for the transfer.
2595	 *
2596	 * We do this even for DMA, as the transfer may have incremented
2597	 * past the end of the buffer (DMA transfers are always 32bit
2598	 * aligned).
2599	 */
2600	if (using_desc_dma(hsotg)) {
2601		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2602		if (size_left < 0)
2603			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2604				size_left);
2605	} else {
2606		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2607	}
2608
2609	size_done = hs_ep->size_loaded - size_left;
2610	size_done += hs_ep->last_load;
2611
2612	if (hs_req->req.actual != size_done)
2613		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2614			__func__, hs_req->req.actual, size_done);
2615
2616	hs_req->req.actual = size_done;
2617	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2618		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2619
2620	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2621		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2622		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2623		return;
2624	}
2625
2626	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2627	if (hs_ep->send_zlp) {
2628		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2629		hs_ep->send_zlp = 0;
2630		/* transfer will be completed on next complete interrupt */
2631		return;
 
 
 
2632	}
2633
2634	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2635		/* Move to STATUS OUT */
2636		dwc2_hsotg_ep0_zlp(hsotg, false);
2637		return;
2638	}
2639
 
 
 
 
 
 
2640	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2641}
2642
2643/**
2644 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2645 * @hsotg: The device state.
2646 * @idx: Index of ep.
2647 * @dir_in: Endpoint direction 1-in 0-out.
2648 *
2649 * Reads for endpoint with given index and direction, by masking
2650 * epint_reg with coresponding mask.
2651 */
2652static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2653					  unsigned int idx, int dir_in)
2654{
2655	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2656	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2657	u32 ints;
2658	u32 mask;
2659	u32 diepempmsk;
2660
2661	mask = dwc2_readl(hsotg->regs + epmsk_reg);
2662	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
2663	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2664	mask |= DXEPINT_SETUP_RCVD;
2665
2666	ints = dwc2_readl(hsotg->regs + epint_reg);
2667	ints &= mask;
2668	return ints;
2669}
2670
2671/**
2672 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2673 * @hs_ep: The endpoint on which interrupt is asserted.
2674 *
2675 * This interrupt indicates that the endpoint has been disabled per the
2676 * application's request.
2677 *
2678 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2679 * in case of ISOC completes current request.
2680 *
2681 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2682 * request starts it.
2683 */
2684static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2685{
2686	struct dwc2_hsotg *hsotg = hs_ep->parent;
2687	struct dwc2_hsotg_req *hs_req;
2688	unsigned char idx = hs_ep->index;
2689	int dir_in = hs_ep->dir_in;
2690	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2691	int dctl = dwc2_readl(hsotg->regs + DCTL);
2692
2693	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2694
2695	if (dir_in) {
2696		int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2697
2698		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2699
2700		if (hs_ep->isochronous) {
2701			dwc2_hsotg_complete_in(hsotg, hs_ep);
2702			return;
2703		}
2704
2705		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2706			int dctl = dwc2_readl(hsotg->regs + DCTL);
2707
2708			dctl |= DCTL_CGNPINNAK;
2709			dwc2_writel(dctl, hsotg->regs + DCTL);
2710		}
2711		return;
2712	}
2713
2714	if (dctl & DCTL_GOUTNAKSTS) {
2715		dctl |= DCTL_CGOUTNAK;
2716		dwc2_writel(dctl, hsotg->regs + DCTL);
 
2717	}
2718
2719	if (!hs_ep->isochronous)
2720		return;
2721
2722	if (list_empty(&hs_ep->queue)) {
2723		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2724			__func__, hs_ep);
2725		return;
2726	}
2727
2728	do {
2729		hs_req = get_ep_head(hs_ep);
2730		if (hs_req)
 
 
2731			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2732						    -ENODATA);
 
2733		dwc2_gadget_incr_frame_num(hs_ep);
 
 
2734	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2735
2736	dwc2_gadget_start_next_request(hs_ep);
2737}
2738
2739/**
2740 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2741 * @hs_ep: The endpoint on which interrupt is asserted.
2742 *
2743 * This is starting point for ISOC-OUT transfer, synchronization done with
2744 * first out token received from host while corresponding EP is disabled.
2745 *
2746 * Device does not know initial frame in which out token will come. For this
2747 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2748 * getting this interrupt SW starts calculation for next transfer frame.
2749 */
2750static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2751{
2752	struct dwc2_hsotg *hsotg = ep->parent;
 
2753	int dir_in = ep->dir_in;
2754	u32 doepmsk;
2755	u32 tmp;
2756
2757	if (dir_in || !ep->isochronous)
2758		return;
2759
2760	/*
2761	 * Store frame in which irq was asserted here, as
2762	 * it can change while completing request below.
2763	 */
2764	tmp = dwc2_hsotg_read_frameno(hsotg);
2765
2766	dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);
2767
2768	if (using_desc_dma(hsotg)) {
2769		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2770			/* Start first ISO Out */
2771			ep->target_frame = tmp;
2772			dwc2_gadget_start_isoc_ddma(ep);
2773		}
2774		return;
2775	}
2776
2777	if (ep->interval > 1 &&
2778	    ep->target_frame == TARGET_FRAME_INITIAL) {
2779		u32 dsts;
2780		u32 ctrl;
2781
2782		dsts = dwc2_readl(hsotg->regs + DSTS);
2783		ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2784		dwc2_gadget_incr_frame_num(ep);
 
 
 
 
 
 
 
 
2785
2786		ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
2787		if (ep->target_frame & 0x1)
2788			ctrl |= DXEPCTL_SETODDFR;
2789		else
2790			ctrl |= DXEPCTL_SETEVENFR;
 
 
2791
2792		dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
 
 
2793	}
2794
2795	dwc2_gadget_start_next_request(ep);
2796	doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
2797	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2798	dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
2799}
2800
 
 
 
2801/**
2802 * dwc2_gadget_handle_nak - handle NAK interrupt
2803 * @hs_ep: The endpoint on which interrupt is asserted.
2804 *
2805 * This is starting point for ISOC-IN transfer, synchronization done with
2806 * first IN token received from host while corresponding EP is disabled.
2807 *
2808 * Device does not know when first one token will arrive from host. On first
2809 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2810 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2811 * sent in response to that as there was no data in FIFO. SW is basing on this
2812 * interrupt to obtain frame in which token has come and then based on the
2813 * interval calculates next frame for transfer.
2814 */
2815static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2816{
2817	struct dwc2_hsotg *hsotg = hs_ep->parent;
 
2818	int dir_in = hs_ep->dir_in;
 
2819
2820	if (!dir_in || !hs_ep->isochronous)
2821		return;
2822
2823	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2824		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2825
2826		if (using_desc_dma(hsotg)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2827			dwc2_gadget_start_isoc_ddma(hs_ep);
2828			return;
2829		}
2830
 
2831		if (hs_ep->interval > 1) {
2832			u32 ctrl = dwc2_readl(hsotg->regs +
2833					      DIEPCTL(hs_ep->index));
2834			if (hs_ep->target_frame & 0x1)
2835				ctrl |= DXEPCTL_SETODDFR;
2836			else
2837				ctrl |= DXEPCTL_SETEVENFR;
2838
2839			dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
2840		}
 
 
 
 
 
 
 
 
 
 
2841
2842		dwc2_hsotg_complete_request(hsotg, hs_ep,
2843					    get_ep_head(hs_ep), 0);
 
 
 
 
 
 
 
 
 
2844	}
2845
2846	dwc2_gadget_incr_frame_num(hs_ep);
 
2847}
2848
2849/**
2850 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2851 * @hsotg: The driver state
2852 * @idx: The index for the endpoint (0..15)
2853 * @dir_in: Set if this is an IN endpoint
2854 *
2855 * Process and clear any interrupt pending for an individual endpoint
2856 */
2857static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2858			     int dir_in)
2859{
2860	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2861	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2862	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2863	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2864	u32 ints;
2865	u32 ctrl;
2866
2867	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2868	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2869
2870	/* Clear endpoint interrupts */
2871	dwc2_writel(ints, hsotg->regs + epint_reg);
2872
2873	if (!hs_ep) {
2874		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2875			__func__, idx, dir_in ? "in" : "out");
2876		return;
2877	}
2878
2879	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2880		__func__, idx, dir_in ? "in" : "out", ints);
2881
2882	/* Don't process XferCompl interrupt if it is a setup packet */
2883	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
2884		ints &= ~DXEPINT_XFERCOMPL;
2885
2886	/*
2887	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
2888	 * stage and xfercomplete was generated without SETUP phase done
2889	 * interrupt. SW should parse received setup packet only after host's
2890	 * exit from setup phase of control transfer.
2891	 */
2892	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
2893	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
2894		ints &= ~DXEPINT_XFERCOMPL;
2895
2896	if (ints & DXEPINT_XFERCOMPL) {
2897		dev_dbg(hsotg->dev,
2898			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2899			__func__, dwc2_readl(hsotg->regs + epctl_reg),
2900			dwc2_readl(hsotg->regs + epsiz_reg));
2901
2902		/* In DDMA handle isochronous requests separately */
2903		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
2904			dwc2_gadget_complete_isoc_request_ddma(hs_ep);
2905			/* Try to start next isoc request */
2906			dwc2_gadget_start_next_isoc_ddma(hs_ep);
2907		} else if (dir_in) {
2908			/*
2909			 * We get OutDone from the FIFO, so we only
2910			 * need to look at completing IN requests here
2911			 * if operating slave mode
2912			 */
2913			if (hs_ep->isochronous && hs_ep->interval > 1)
2914				dwc2_gadget_incr_frame_num(hs_ep);
2915
2916			dwc2_hsotg_complete_in(hsotg, hs_ep);
2917			if (ints & DXEPINT_NAKINTRPT)
2918				ints &= ~DXEPINT_NAKINTRPT;
2919
2920			if (idx == 0 && !hs_ep->req)
2921				dwc2_hsotg_enqueue_setup(hsotg);
2922		} else if (using_dma(hsotg)) {
2923			/*
2924			 * We're using DMA, we need to fire an OutDone here
2925			 * as we ignore the RXFIFO.
2926			 */
2927			if (hs_ep->isochronous && hs_ep->interval > 1)
2928				dwc2_gadget_incr_frame_num(hs_ep);
2929
2930			dwc2_hsotg_handle_outdone(hsotg, idx);
2931		}
2932	}
2933
2934	if (ints & DXEPINT_EPDISBLD)
2935		dwc2_gadget_handle_ep_disabled(hs_ep);
2936
2937	if (ints & DXEPINT_OUTTKNEPDIS)
2938		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
2939
2940	if (ints & DXEPINT_NAKINTRPT)
2941		dwc2_gadget_handle_nak(hs_ep);
2942
2943	if (ints & DXEPINT_AHBERR)
2944		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2945
2946	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2947		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
2948
2949		if (using_dma(hsotg) && idx == 0) {
2950			/*
2951			 * this is the notification we've received a
2952			 * setup packet. In non-DMA mode we'd get this
2953			 * from the RXFIFO, instead we need to process
2954			 * the setup here.
2955			 */
2956
2957			if (dir_in)
2958				WARN_ON_ONCE(1);
2959			else
2960				dwc2_hsotg_handle_outdone(hsotg, 0);
2961		}
2962	}
2963
2964	if (ints & DXEPINT_STSPHSERCVD) {
2965		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
2966
2967		/* Safety check EP0 state when STSPHSERCVD asserted */
2968		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2969			/* Move to STATUS IN for DDMA */
2970			if (using_desc_dma(hsotg))
2971				dwc2_hsotg_ep0_zlp(hsotg, true);
 
 
 
 
 
 
 
 
 
 
 
 
2972		}
2973
2974	}
2975
2976	if (ints & DXEPINT_BACK2BACKSETUP)
2977		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2978
2979	if (ints & DXEPINT_BNAINTR) {
2980		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
2981
2982		/*
2983		 * Try to start next isoc request, if any.
2984		 * Sometimes the endpoint remains enabled after BNA interrupt
2985		 * assertion, which is not expected, hence we can enter here
2986		 * couple of times.
2987		 */
2988		if (hs_ep->isochronous)
2989			dwc2_gadget_start_next_isoc_ddma(hs_ep);
2990	}
2991
2992	if (dir_in && !hs_ep->isochronous) {
2993		/* not sure if this is important, but we'll clear it anyway */
2994		if (ints & DXEPINT_INTKNTXFEMP) {
2995			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2996				__func__, idx);
2997		}
2998
2999		/* this probably means something bad is happening */
3000		if (ints & DXEPINT_INTKNEPMIS) {
3001			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3002				 __func__, idx);
3003		}
3004
3005		/* FIFO has space or is empty (see GAHBCFG) */
3006		if (hsotg->dedicated_fifos &&
3007		    ints & DXEPINT_TXFEMP) {
3008			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3009				__func__, idx);
3010			if (!using_dma(hsotg))
3011				dwc2_hsotg_trytx(hsotg, hs_ep);
3012		}
3013	}
3014}
3015
3016/**
3017 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3018 * @hsotg: The device state.
3019 *
3020 * Handle updating the device settings after the enumeration phase has
3021 * been completed.
3022 */
3023static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3024{
3025	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
3026	int ep0_mps = 0, ep_mps = 8;
3027
3028	/*
3029	 * This should signal the finish of the enumeration phase
3030	 * of the USB handshaking, so we should now know what rate
3031	 * we connected at.
3032	 */
3033
3034	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3035
3036	/*
3037	 * note, since we're limited by the size of transfer on EP0, and
3038	 * it seems IN transfers must be a even number of packets we do
3039	 * not advertise a 64byte MPS on EP0.
3040	 */
3041
3042	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3043	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3044	case DSTS_ENUMSPD_FS:
3045	case DSTS_ENUMSPD_FS48:
3046		hsotg->gadget.speed = USB_SPEED_FULL;
3047		ep0_mps = EP0_MPS_LIMIT;
3048		ep_mps = 1023;
3049		break;
3050
3051	case DSTS_ENUMSPD_HS:
3052		hsotg->gadget.speed = USB_SPEED_HIGH;
3053		ep0_mps = EP0_MPS_LIMIT;
3054		ep_mps = 1024;
3055		break;
3056
3057	case DSTS_ENUMSPD_LS:
3058		hsotg->gadget.speed = USB_SPEED_LOW;
3059		ep0_mps = 8;
3060		ep_mps = 8;
3061		/*
3062		 * note, we don't actually support LS in this driver at the
3063		 * moment, and the documentation seems to imply that it isn't
3064		 * supported by the PHYs on some of the devices.
3065		 */
3066		break;
3067	}
3068	dev_info(hsotg->dev, "new device is %s\n",
3069		 usb_speed_string(hsotg->gadget.speed));
3070
3071	/*
3072	 * we should now know the maximum packet size for an
3073	 * endpoint, so set the endpoints to a default value.
3074	 */
3075
3076	if (ep0_mps) {
3077		int i;
3078		/* Initialize ep0 for both in and out directions */
3079		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3080		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3081		for (i = 1; i < hsotg->num_of_eps; i++) {
3082			if (hsotg->eps_in[i])
3083				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3084							    0, 1);
3085			if (hsotg->eps_out[i])
3086				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3087							    0, 0);
3088		}
3089	}
3090
3091	/* ensure after enumeration our EP0 is active */
3092
3093	dwc2_hsotg_enqueue_setup(hsotg);
3094
3095	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3096		dwc2_readl(hsotg->regs + DIEPCTL0),
3097		dwc2_readl(hsotg->regs + DOEPCTL0));
3098}
3099
3100/**
3101 * kill_all_requests - remove all requests from the endpoint's queue
3102 * @hsotg: The device state.
3103 * @ep: The endpoint the requests may be on.
3104 * @result: The result code to use.
3105 *
3106 * Go through the requests on the given endpoint and mark them
3107 * completed with the given result code.
3108 */
3109static void kill_all_requests(struct dwc2_hsotg *hsotg,
3110			      struct dwc2_hsotg_ep *ep,
3111			      int result)
3112{
3113	struct dwc2_hsotg_req *req, *treq;
3114	unsigned int size;
3115
3116	ep->req = NULL;
3117
3118	list_for_each_entry_safe(req, treq, &ep->queue, queue)
3119		dwc2_hsotg_complete_request(hsotg, ep, req,
3120					    result);
 
 
3121
3122	if (!hsotg->dedicated_fifos)
3123		return;
3124	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3125	if (size < ep->fifo_size)
3126		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3127}
3128
3129/**
3130 * dwc2_hsotg_disconnect - disconnect service
3131 * @hsotg: The device state.
3132 *
3133 * The device has been disconnected. Remove all current
3134 * transactions and signal the gadget driver that this
3135 * has happened.
3136 */
3137void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3138{
3139	unsigned int ep;
3140
3141	if (!hsotg->connected)
3142		return;
3143
3144	hsotg->connected = 0;
3145	hsotg->test_mode = 0;
3146
 
3147	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3148		if (hsotg->eps_in[ep])
3149			kill_all_requests(hsotg, hsotg->eps_in[ep],
3150					  -ESHUTDOWN);
3151		if (hsotg->eps_out[ep])
3152			kill_all_requests(hsotg, hsotg->eps_out[ep],
3153					  -ESHUTDOWN);
3154	}
3155
3156	call_gadget(hsotg, disconnect);
3157	hsotg->lx_state = DWC2_L3;
3158
3159	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3160}
3161
3162/**
3163 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3164 * @hsotg: The device state:
3165 * @periodic: True if this is a periodic FIFO interrupt
3166 */
3167static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3168{
3169	struct dwc2_hsotg_ep *ep;
3170	int epno, ret;
3171
3172	/* look through for any more data to transmit */
3173	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3174		ep = index_to_ep(hsotg, epno, 1);
3175
3176		if (!ep)
3177			continue;
3178
3179		if (!ep->dir_in)
3180			continue;
3181
3182		if ((periodic && !ep->periodic) ||
3183		    (!periodic && ep->periodic))
3184			continue;
3185
3186		ret = dwc2_hsotg_trytx(hsotg, ep);
3187		if (ret < 0)
3188			break;
3189	}
3190}
3191
3192/* IRQ flags which will trigger a retry around the IRQ loop */
3193#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3194			GINTSTS_PTXFEMP |  \
3195			GINTSTS_RXFLVL)
3196
 
3197/**
3198 * dwc2_hsotg_core_init - issue softreset to the core
3199 * @hsotg: The device state
 
3200 *
3201 * Issue a soft reset to the core, and await the core finishing it.
3202 */
3203void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3204				       bool is_usb_reset)
3205{
3206	u32 intmsk;
3207	u32 val;
3208	u32 usbcfg;
3209	u32 dcfg = 0;
 
3210
3211	/* Kill any ep0 requests as controller will be reinitialized */
3212	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3213
3214	if (!is_usb_reset)
3215		if (dwc2_core_reset(hsotg, true))
3216			return;
 
 
 
 
 
 
 
 
 
3217
3218	/*
3219	 * we must now enable ep0 ready for host detection and then
3220	 * set configuration.
3221	 */
3222
3223	/* keep other bits untouched (so e.g. forced modes are not lost) */
3224	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
3225	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3226		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
3227
3228	if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3229	    (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
3230	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3231		/* FS/LS Dedicated Transceiver Interface */
3232		usbcfg |= GUSBCFG_PHYSEL;
3233	} else {
3234		/* set the PLL on, remove the HNP/SRP and set the PHY */
3235		val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3236		usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3237			(val << GUSBCFG_USBTRDTIM_SHIFT);
3238	}
3239	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3240
3241	dwc2_hsotg_init_fifo(hsotg);
3242
3243	if (!is_usb_reset)
3244		dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
3245
3246	dcfg |= DCFG_EPMISCNT(1);
3247
3248	switch (hsotg->params.speed) {
3249	case DWC2_SPEED_PARAM_LOW:
3250		dcfg |= DCFG_DEVSPD_LS;
3251		break;
3252	case DWC2_SPEED_PARAM_FULL:
3253		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3254			dcfg |= DCFG_DEVSPD_FS48;
3255		else
3256			dcfg |= DCFG_DEVSPD_FS;
3257		break;
3258	default:
3259		dcfg |= DCFG_DEVSPD_HS;
3260	}
3261
3262	dwc2_writel(dcfg,  hsotg->regs + DCFG);
 
 
 
3263
3264	/* Clear any pending OTG interrupts */
3265	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
3266
3267	/* Clear any pending interrupts */
3268	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
3269	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3270		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3271		GINTSTS_USBRST | GINTSTS_RESETDET |
3272		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3273		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3274		GINTSTS_LPMTRANRCVD;
3275
3276	if (!using_desc_dma(hsotg))
3277		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3278
3279	if (!hsotg->params.external_id_pin_ctl)
3280		intmsk |= GINTSTS_CONIDSTSCHNG;
3281
3282	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
3283
3284	if (using_dma(hsotg)) {
3285		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3286			    hsotg->params.ahbcfg,
3287			    hsotg->regs + GAHBCFG);
3288
3289		/* Set DDMA mode support in the core if needed */
3290		if (using_desc_dma(hsotg))
3291			dwc2_set_bit(hsotg->regs + DCFG, DCFG_DESCDMA_EN);
3292
3293	} else {
3294		dwc2_writel(((hsotg->dedicated_fifos) ?
3295						(GAHBCFG_NP_TXF_EMP_LVL |
3296						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3297			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
3298	}
3299
3300	/*
3301	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3302	 * when we have no data to transfer. Otherwise we get being flooded by
3303	 * interrupts.
3304	 */
3305
3306	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3307		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3308		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3309		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3310		hsotg->regs + DIEPMSK);
3311
3312	/*
3313	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3314	 * DMA mode we may need this and StsPhseRcvd.
3315	 */
3316	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3317		DOEPMSK_STSPHSERCVDMSK) : 0) |
3318		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3319		DOEPMSK_SETUPMSK,
3320		hsotg->regs + DOEPMSK);
3321
3322	/* Enable BNA interrupt for DDMA */
3323	if (using_desc_dma(hsotg))
3324		dwc2_set_bit(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK);
 
 
 
 
 
 
3325
3326	dwc2_writel(0, hsotg->regs + DAINTMSK);
3327
3328	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3329		dwc2_readl(hsotg->regs + DIEPCTL0),
3330		dwc2_readl(hsotg->regs + DOEPCTL0));
3331
3332	/* enable in and out endpoint interrupts */
3333	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3334
3335	/*
3336	 * Enable the RXFIFO when in slave mode, as this is how we collect
3337	 * the data. In DMA mode, we get events from the FIFO but also
3338	 * things we cannot process, so do not use it.
3339	 */
3340	if (!using_dma(hsotg))
3341		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3342
3343	/* Enable interrupts for EP0 in and out */
3344	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3345	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3346
3347	if (!is_usb_reset) {
3348		dwc2_set_bit(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3349		udelay(10);  /* see openiboot */
3350		dwc2_clear_bit(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3351	}
3352
3353	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
3354
3355	/*
3356	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3357	 * writing to the EPCTL register..
3358	 */
3359
3360	/* set to read 1 8byte packet */
3361	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3362	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
3363
3364	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3365	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3366	       DXEPCTL_USBACTEP,
3367	       hsotg->regs + DOEPCTL0);
3368
3369	/* enable, but don't activate EP0in */
3370	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3371	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
3372
3373	/* clear global NAKs */
3374	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3375	if (!is_usb_reset)
3376		val |= DCTL_SFTDISCON;
3377	dwc2_set_bit(hsotg->regs + DCTL, val);
3378
3379	/* configure the core to support LPM */
3380	dwc2_gadget_init_lpm(hsotg);
3381
 
 
 
 
3382	/* must be at-least 3ms to allow bus to see disconnect */
3383	mdelay(3);
3384
3385	hsotg->lx_state = DWC2_L0;
3386
3387	dwc2_hsotg_enqueue_setup(hsotg);
3388
3389	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3390		dwc2_readl(hsotg->regs + DIEPCTL0),
3391		dwc2_readl(hsotg->regs + DOEPCTL0));
3392}
3393
3394static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3395{
3396	/* set the soft-disconnect bit */
3397	dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
3398}
3399
3400void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3401{
3402	/* remove the soft-disconnect and let's go */
3403	dwc2_clear_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
 
3404}
3405
3406/**
3407 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3408 * @hsotg: The device state:
3409 *
3410 * This interrupt indicates one of the following conditions occurred while
3411 * transmitting an ISOC transaction.
3412 * - Corrupted IN Token for ISOC EP.
3413 * - Packet not complete in FIFO.
3414 *
3415 * The following actions will be taken:
3416 * - Determine the EP
3417 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3418 */
3419static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3420{
3421	struct dwc2_hsotg_ep *hs_ep;
3422	u32 epctrl;
3423	u32 daintmsk;
3424	u32 idx;
3425
3426	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3427
3428	daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3429
3430	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3431		hs_ep = hsotg->eps_in[idx];
3432		/* Proceed only unmasked ISOC EPs */
3433		if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk))
3434			continue;
3435
3436		epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
3437		if ((epctrl & DXEPCTL_EPENA) &&
3438		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3439			epctrl |= DXEPCTL_SNAK;
3440			epctrl |= DXEPCTL_EPDIS;
3441			dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
3442		}
3443	}
3444
3445	/* Clear interrupt */
3446	dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
3447}
3448
3449/**
3450 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3451 * @hsotg: The device state:
3452 *
3453 * This interrupt indicates one of the following conditions occurred while
3454 * transmitting an ISOC transaction.
3455 * - Corrupted OUT Token for ISOC EP.
3456 * - Packet not complete in FIFO.
3457 *
3458 * The following actions will be taken:
3459 * - Determine the EP
3460 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3461 */
3462static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3463{
3464	u32 gintsts;
3465	u32 gintmsk;
3466	u32 daintmsk;
3467	u32 epctrl;
3468	struct dwc2_hsotg_ep *hs_ep;
3469	int idx;
3470
3471	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3472
3473	daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3474	daintmsk >>= DAINT_OUTEP_SHIFT;
3475
3476	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3477		hs_ep = hsotg->eps_out[idx];
3478		/* Proceed only unmasked ISOC EPs */
3479		if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk))
3480			continue;
3481
3482		epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3483		if ((epctrl & DXEPCTL_EPENA) &&
3484		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3485			/* Unmask GOUTNAKEFF interrupt */
3486			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3487			gintmsk |= GINTSTS_GOUTNAKEFF;
3488			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3489
3490			gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3491			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3492				dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3493				break;
3494			}
3495		}
3496	}
3497
3498	/* Clear interrupt */
3499	dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
3500}
3501
3502/**
3503 * dwc2_hsotg_irq - handle device interrupt
3504 * @irq: The IRQ number triggered
3505 * @pw: The pw value when registered the handler.
3506 */
3507static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3508{
3509	struct dwc2_hsotg *hsotg = pw;
3510	int retry_count = 8;
3511	u32 gintsts;
3512	u32 gintmsk;
3513
3514	if (!dwc2_is_device_mode(hsotg))
3515		return IRQ_NONE;
3516
3517	spin_lock(&hsotg->lock);
3518irq_retry:
3519	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3520	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3521
3522	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3523		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3524
3525	gintsts &= gintmsk;
3526
3527	if (gintsts & GINTSTS_RESETDET) {
3528		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3529
3530		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
3531
3532		/* This event must be used only if controller is suspended */
3533		if (hsotg->lx_state == DWC2_L2) {
3534			dwc2_exit_partial_power_down(hsotg, true);
3535			hsotg->lx_state = DWC2_L0;
3536		}
3537	}
3538
3539	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3540		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
3541		u32 connected = hsotg->connected;
3542
3543		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3544		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3545			dwc2_readl(hsotg->regs + GNPTXSTS));
3546
3547		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
3548
3549		/* Report disconnection if it is not already done. */
3550		dwc2_hsotg_disconnect(hsotg);
3551
3552		/* Reset device address to zero */
3553		dwc2_clear_bit(hsotg->regs + DCFG, DCFG_DEVADDR_MASK);
3554
3555		if (usb_status & GOTGCTL_BSESVLD && connected)
3556			dwc2_hsotg_core_init_disconnected(hsotg, true);
3557	}
3558
3559	if (gintsts & GINTSTS_ENUMDONE) {
3560		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3561
3562		dwc2_hsotg_irq_enumdone(hsotg);
3563	}
3564
3565	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3566		u32 daint = dwc2_readl(hsotg->regs + DAINT);
3567		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3568		u32 daint_out, daint_in;
3569		int ep;
3570
3571		daint &= daintmsk;
3572		daint_out = daint >> DAINT_OUTEP_SHIFT;
3573		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3574
3575		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3576
3577		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3578						ep++, daint_out >>= 1) {
3579			if (daint_out & 1)
3580				dwc2_hsotg_epint(hsotg, ep, 0);
3581		}
3582
3583		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3584						ep++, daint_in >>= 1) {
3585			if (daint_in & 1)
3586				dwc2_hsotg_epint(hsotg, ep, 1);
3587		}
3588	}
3589
3590	/* check both FIFOs */
3591
3592	if (gintsts & GINTSTS_NPTXFEMP) {
3593		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3594
3595		/*
3596		 * Disable the interrupt to stop it happening again
3597		 * unless one of these endpoint routines decides that
3598		 * it needs re-enabling
3599		 */
3600
3601		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3602		dwc2_hsotg_irq_fifoempty(hsotg, false);
3603	}
3604
3605	if (gintsts & GINTSTS_PTXFEMP) {
3606		dev_dbg(hsotg->dev, "PTxFEmp\n");
3607
3608		/* See note in GINTSTS_NPTxFEmp */
3609
3610		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3611		dwc2_hsotg_irq_fifoempty(hsotg, true);
3612	}
3613
3614	if (gintsts & GINTSTS_RXFLVL) {
3615		/*
3616		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3617		 * we need to retry dwc2_hsotg_handle_rx if this is still
3618		 * set.
3619		 */
3620
3621		dwc2_hsotg_handle_rx(hsotg);
3622	}
3623
3624	if (gintsts & GINTSTS_ERLYSUSP) {
3625		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3626		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3627	}
3628
3629	/*
3630	 * these next two seem to crop-up occasionally causing the core
3631	 * to shutdown the USB transfer, so try clearing them and logging
3632	 * the occurrence.
3633	 */
3634
3635	if (gintsts & GINTSTS_GOUTNAKEFF) {
3636		u8 idx;
3637		u32 epctrl;
3638		u32 gintmsk;
3639		u32 daintmsk;
3640		struct dwc2_hsotg_ep *hs_ep;
3641
3642		daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3643		daintmsk >>= DAINT_OUTEP_SHIFT;
3644		/* Mask this interrupt */
3645		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3646		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3647		dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3648
3649		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3650		for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3651			hs_ep = hsotg->eps_out[idx];
3652			/* Proceed only unmasked ISOC EPs */
3653			if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk))
3654				continue;
3655
3656			epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3657
3658			if (epctrl & DXEPCTL_EPENA) {
 
3659				epctrl |= DXEPCTL_SNAK;
3660				epctrl |= DXEPCTL_EPDIS;
3661				dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
 
 
 
 
 
 
 
 
 
 
3662			}
3663		}
3664
3665		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3666	}
3667
3668	if (gintsts & GINTSTS_GINNAKEFF) {
3669		dev_info(hsotg->dev, "GINNakEff triggered\n");
3670
3671		dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3672
3673		dwc2_hsotg_dump(hsotg);
3674	}
3675
3676	if (gintsts & GINTSTS_INCOMPL_SOIN)
3677		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3678
3679	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3680		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3681
3682	/*
3683	 * if we've had fifo events, we should try and go around the
3684	 * loop again to see if there's any point in returning yet.
3685	 */
3686
3687	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3688		goto irq_retry;
3689
 
 
 
 
3690	spin_unlock(&hsotg->lock);
3691
3692	return IRQ_HANDLED;
3693}
3694
3695static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3696				   struct dwc2_hsotg_ep *hs_ep)
3697{
3698	u32 epctrl_reg;
3699	u32 epint_reg;
3700
3701	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3702		DOEPCTL(hs_ep->index);
3703	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3704		DOEPINT(hs_ep->index);
3705
3706	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3707		hs_ep->name);
3708
3709	if (hs_ep->dir_in) {
3710		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3711			dwc2_set_bit(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
3712			/* Wait for Nak effect */
3713			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3714						    DXEPINT_INEPNAKEFF, 100))
3715				dev_warn(hsotg->dev,
3716					 "%s: timeout DIEPINT.NAKEFF\n",
3717					 __func__);
3718		} else {
3719			dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGNPINNAK);
3720			/* Wait for Nak effect */
3721			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3722						    GINTSTS_GINNAKEFF, 100))
3723				dev_warn(hsotg->dev,
3724					 "%s: timeout GINTSTS.GINNAKEFF\n",
3725					 __func__);
3726		}
3727	} else {
3728		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
3729			dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGOUTNAK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3730
3731		/* Wait for global nak to take effect */
3732		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3733					    GINTSTS_GOUTNAKEFF, 100))
3734			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3735				 __func__);
3736	}
3737
3738	/* Disable ep */
3739	dwc2_set_bit(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3740
3741	/* Wait for ep to be disabled */
3742	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3743		dev_warn(hsotg->dev,
3744			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3745
3746	/* Clear EPDISBLD interrupt */
3747	dwc2_set_bit(hsotg->regs + epint_reg, DXEPINT_EPDISBLD);
3748
3749	if (hs_ep->dir_in) {
3750		unsigned short fifo_index;
3751
3752		if (hsotg->dedicated_fifos || hs_ep->periodic)
3753			fifo_index = hs_ep->fifo_index;
3754		else
3755			fifo_index = 0;
3756
3757		/* Flush TX FIFO */
3758		dwc2_flush_tx_fifo(hsotg, fifo_index);
3759
3760		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3761		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3762			dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3763
3764	} else {
3765		/* Remove global NAKs */
3766		dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGOUTNAK);
3767	}
3768}
3769
3770/**
3771 * dwc2_hsotg_ep_enable - enable the given endpoint
3772 * @ep: The USB endpint to configure
3773 * @desc: The USB endpoint descriptor to configure with.
3774 *
3775 * This is called from the USB gadget code's usb_ep_enable().
3776 */
3777static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3778				const struct usb_endpoint_descriptor *desc)
3779{
3780	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3781	struct dwc2_hsotg *hsotg = hs_ep->parent;
3782	unsigned long flags;
3783	unsigned int index = hs_ep->index;
3784	u32 epctrl_reg;
3785	u32 epctrl;
3786	u32 mps;
3787	u32 mc;
3788	u32 mask;
3789	unsigned int dir_in;
3790	unsigned int i, val, size;
3791	int ret = 0;
 
 
3792
3793	dev_dbg(hsotg->dev,
3794		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3795		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3796		desc->wMaxPacketSize, desc->bInterval);
3797
3798	/* not to be called for EP0 */
3799	if (index == 0) {
3800		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3801		return -EINVAL;
3802	}
3803
3804	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3805	if (dir_in != hs_ep->dir_in) {
3806		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3807		return -EINVAL;
3808	}
3809
 
3810	mps = usb_endpoint_maxp(desc);
3811	mc = usb_endpoint_maxp_mult(desc);
3812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3813	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3814
3815	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3816	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3817
3818	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3819		__func__, epctrl, epctrl_reg);
3820
 
 
 
 
 
3821	/* Allocate DMA descriptor chain for non-ctrl endpoints */
3822	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
3823		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3824			MAX_DMA_DESC_NUM_GENERIC *
3825			sizeof(struct dwc2_dma_desc),
3826			&hs_ep->desc_list_dma, GFP_ATOMIC);
3827		if (!hs_ep->desc_list) {
3828			ret = -ENOMEM;
3829			goto error2;
3830		}
3831	}
3832
3833	spin_lock_irqsave(&hsotg->lock, flags);
3834
3835	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
3836	epctrl |= DXEPCTL_MPS(mps);
3837
3838	/*
3839	 * mark the endpoint as active, otherwise the core may ignore
3840	 * transactions entirely for this endpoint
3841	 */
3842	epctrl |= DXEPCTL_USBACTEP;
3843
3844	/* update the endpoint state */
3845	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3846
3847	/* default, set to non-periodic */
3848	hs_ep->isochronous = 0;
3849	hs_ep->periodic = 0;
3850	hs_ep->halted = 0;
 
3851	hs_ep->interval = desc->bInterval;
3852
3853	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
3854	case USB_ENDPOINT_XFER_ISOC:
3855		epctrl |= DXEPCTL_EPTYPE_ISO;
3856		epctrl |= DXEPCTL_SETEVENFR;
3857		hs_ep->isochronous = 1;
3858		hs_ep->interval = 1 << (desc->bInterval - 1);
3859		hs_ep->target_frame = TARGET_FRAME_INITIAL;
3860		hs_ep->isoc_chain_num = 0;
3861		hs_ep->next_desc = 0;
 
3862		if (dir_in) {
3863			hs_ep->periodic = 1;
3864			mask = dwc2_readl(hsotg->regs + DIEPMSK);
3865			mask |= DIEPMSK_NAKMSK;
3866			dwc2_writel(mask, hsotg->regs + DIEPMSK);
3867		} else {
3868			mask = dwc2_readl(hsotg->regs + DOEPMSK);
 
3869			mask |= DOEPMSK_OUTTKNEPDISMSK;
3870			dwc2_writel(mask, hsotg->regs + DOEPMSK);
3871		}
3872		break;
3873
3874	case USB_ENDPOINT_XFER_BULK:
3875		epctrl |= DXEPCTL_EPTYPE_BULK;
3876		break;
3877
3878	case USB_ENDPOINT_XFER_INT:
3879		if (dir_in)
3880			hs_ep->periodic = 1;
3881
3882		if (hsotg->gadget.speed == USB_SPEED_HIGH)
3883			hs_ep->interval = 1 << (desc->bInterval - 1);
3884
3885		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3886		break;
3887
3888	case USB_ENDPOINT_XFER_CONTROL:
3889		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3890		break;
3891	}
3892
3893	/*
3894	 * if the hardware has dedicated fifos, we must give each IN EP
3895	 * a unique tx-fifo even if it is non-periodic.
3896	 */
3897	if (dir_in && hsotg->dedicated_fifos) {
 
3898		u32 fifo_index = 0;
3899		u32 fifo_size = UINT_MAX;
3900
3901		size = hs_ep->ep.maxpacket * hs_ep->mc;
3902		for (i = 1; i < hsotg->num_of_eps; ++i) {
3903			if (hsotg->fifo_map & (1 << i))
3904				continue;
3905			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3906			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
3907			if (val < size)
3908				continue;
3909			/* Search for smallest acceptable fifo */
3910			if (val < fifo_size) {
3911				fifo_size = val;
3912				fifo_index = i;
3913			}
3914		}
3915		if (!fifo_index) {
3916			dev_err(hsotg->dev,
3917				"%s: No suitable fifo found\n", __func__);
3918			ret = -ENOMEM;
3919			goto error1;
3920		}
 
3921		hsotg->fifo_map |= 1 << fifo_index;
3922		epctrl |= DXEPCTL_TXFNUM(fifo_index);
3923		hs_ep->fifo_index = fifo_index;
3924		hs_ep->fifo_size = fifo_size;
3925	}
3926
3927	/* for non control endpoints, set PID to D0 */
3928	if (index && !hs_ep->isochronous)
3929		epctrl |= DXEPCTL_SETD0PID;
3930
3931	/* WA for Full speed ISOC IN in DDMA mode.
3932	 * By Clear NAK status of EP, core will send ZLP
3933	 * to IN token and assert NAK interrupt relying
3934	 * on TxFIFO status only
3935	 */
3936
3937	if (hsotg->gadget.speed == USB_SPEED_FULL &&
3938	    hs_ep->isochronous && dir_in) {
3939		/* The WA applies only to core versions from 2.72a
3940		 * to 4.00a (including both). Also for FS_IOT_1.00a
3941		 * and HS_IOT_1.00a.
3942		 */
3943		u32 gsnpsid = dwc2_readl(hsotg->regs + GSNPSID);
3944
3945		if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
3946		     gsnpsid <= DWC2_CORE_REV_4_00a) ||
3947		     gsnpsid == DWC2_FS_IOT_REV_1_00a ||
3948		     gsnpsid == DWC2_HS_IOT_REV_1_00a)
3949			epctrl |= DXEPCTL_CNAK;
3950	}
3951
3952	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
3953		__func__, epctrl);
3954
3955	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3956	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3957		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
3958
3959	/* enable the endpoint interrupt */
3960	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3961
3962error1:
3963	spin_unlock_irqrestore(&hsotg->lock, flags);
3964
3965error2:
3966	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
3967		dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
3968			sizeof(struct dwc2_dma_desc),
3969			hs_ep->desc_list, hs_ep->desc_list_dma);
3970		hs_ep->desc_list = NULL;
3971	}
3972
3973	return ret;
3974}
3975
3976/**
3977 * dwc2_hsotg_ep_disable - disable given endpoint
3978 * @ep: The endpoint to disable.
3979 */
3980static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3981{
3982	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3983	struct dwc2_hsotg *hsotg = hs_ep->parent;
3984	int dir_in = hs_ep->dir_in;
3985	int index = hs_ep->index;
3986	unsigned long flags;
3987	u32 epctrl_reg;
3988	u32 ctrl;
3989
3990	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3991
3992	if (ep == &hsotg->eps_out[0]->ep) {
3993		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
3994		return -EINVAL;
3995	}
3996
3997	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
3998		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
3999		return -EINVAL;
4000	}
4001
4002	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4003
4004	spin_lock_irqsave(&hsotg->lock, flags);
4005
4006	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
4007
4008	if (ctrl & DXEPCTL_EPENA)
4009		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4010
4011	ctrl &= ~DXEPCTL_EPENA;
4012	ctrl &= ~DXEPCTL_USBACTEP;
4013	ctrl |= DXEPCTL_SNAK;
4014
4015	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4016	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
4017
4018	/* disable endpoint interrupts */
4019	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4020
4021	/* terminate all requests with shutdown */
4022	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4023
4024	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4025	hs_ep->fifo_index = 0;
4026	hs_ep->fifo_size = 0;
4027
 
 
 
 
 
 
 
 
 
 
 
 
4028	spin_unlock_irqrestore(&hsotg->lock, flags);
4029	return 0;
4030}
4031
4032/**
4033 * on_list - check request is on the given endpoint
4034 * @ep: The endpoint to check.
4035 * @test: The request to test if it is on the endpoint.
4036 */
4037static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4038{
4039	struct dwc2_hsotg_req *req, *treq;
4040
4041	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4042		if (req == test)
4043			return true;
4044	}
4045
4046	return false;
4047}
4048
4049/**
4050 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4051 * @ep: The endpoint to dequeue.
4052 * @req: The request to be removed from a queue.
4053 */
4054static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4055{
4056	struct dwc2_hsotg_req *hs_req = our_req(req);
4057	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4058	struct dwc2_hsotg *hs = hs_ep->parent;
4059	unsigned long flags;
4060
4061	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4062
4063	spin_lock_irqsave(&hs->lock, flags);
4064
4065	if (!on_list(hs_ep, hs_req)) {
4066		spin_unlock_irqrestore(&hs->lock, flags);
4067		return -EINVAL;
4068	}
4069
4070	/* Dequeue already started request */
4071	if (req == &hs_ep->req->req)
4072		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4073
4074	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4075	spin_unlock_irqrestore(&hs->lock, flags);
4076
4077	return 0;
4078}
4079
4080/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4081 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4082 * @ep: The endpoint to set halt.
4083 * @value: Set or unset the halt.
4084 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4085 *       the endpoint is busy processing requests.
4086 *
4087 * We need to stall the endpoint immediately if request comes from set_feature
4088 * protocol command handler.
4089 */
4090static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4091{
4092	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4093	struct dwc2_hsotg *hs = hs_ep->parent;
4094	int index = hs_ep->index;
4095	u32 epreg;
4096	u32 epctl;
4097	u32 xfertype;
4098
4099	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4100
4101	if (index == 0) {
4102		if (value)
4103			dwc2_hsotg_stall_ep0(hs);
4104		else
4105			dev_warn(hs->dev,
4106				 "%s: can't clear halt on ep0\n", __func__);
4107		return 0;
4108	}
4109
4110	if (hs_ep->isochronous) {
4111		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4112		return -EINVAL;
4113	}
4114
4115	if (!now && value && !list_empty(&hs_ep->queue)) {
4116		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4117			ep->name);
4118		return -EAGAIN;
4119	}
4120
4121	if (hs_ep->dir_in) {
4122		epreg = DIEPCTL(index);
4123		epctl = dwc2_readl(hs->regs + epreg);
4124
4125		if (value) {
4126			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4127			if (epctl & DXEPCTL_EPENA)
4128				epctl |= DXEPCTL_EPDIS;
4129		} else {
4130			epctl &= ~DXEPCTL_STALL;
 
4131			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4132			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4133			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4134				epctl |= DXEPCTL_SETD0PID;
4135		}
4136		dwc2_writel(epctl, hs->regs + epreg);
4137	} else {
4138		epreg = DOEPCTL(index);
4139		epctl = dwc2_readl(hs->regs + epreg);
4140
4141		if (value) {
4142			epctl |= DXEPCTL_STALL;
 
 
 
 
 
4143		} else {
4144			epctl &= ~DXEPCTL_STALL;
 
4145			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4146			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4147			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4148				epctl |= DXEPCTL_SETD0PID;
 
4149		}
4150		dwc2_writel(epctl, hs->regs + epreg);
4151	}
4152
4153	hs_ep->halted = value;
4154
4155	return 0;
4156}
4157
4158/**
4159 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4160 * @ep: The endpoint to set halt.
4161 * @value: Set or unset the halt.
4162 */
4163static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4164{
4165	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4166	struct dwc2_hsotg *hs = hs_ep->parent;
4167	unsigned long flags = 0;
4168	int ret = 0;
4169
4170	spin_lock_irqsave(&hs->lock, flags);
4171	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4172	spin_unlock_irqrestore(&hs->lock, flags);
4173
4174	return ret;
4175}
4176
4177static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4178	.enable		= dwc2_hsotg_ep_enable,
4179	.disable	= dwc2_hsotg_ep_disable,
4180	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4181	.free_request	= dwc2_hsotg_ep_free_request,
4182	.queue		= dwc2_hsotg_ep_queue_lock,
4183	.dequeue	= dwc2_hsotg_ep_dequeue,
4184	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
 
4185	/* note, don't believe we have any call for the fifo routines */
4186};
4187
4188/**
4189 * dwc2_hsotg_init - initialize the usb core
4190 * @hsotg: The driver state
4191 */
4192static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4193{
4194	u32 trdtim;
4195	u32 usbcfg;
4196	/* unmask subset of endpoint interrupts */
4197
4198	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4199		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4200		    hsotg->regs + DIEPMSK);
4201
4202	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4203		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4204		    hsotg->regs + DOEPMSK);
4205
4206	dwc2_writel(0, hsotg->regs + DAINTMSK);
4207
4208	/* Be in disconnected state until gadget is registered */
4209	dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
4210
4211	/* setup fifos */
4212
4213	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4214		dwc2_readl(hsotg->regs + GRXFSIZ),
4215		dwc2_readl(hsotg->regs + GNPTXFSIZ));
4216
4217	dwc2_hsotg_init_fifo(hsotg);
4218
4219	/* keep other bits untouched (so e.g. forced modes are not lost) */
4220	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
4221	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
4222		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
4223
4224	/* set the PLL on, remove the HNP/SRP and set the PHY */
4225	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4226	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
4227		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
4228	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
4229
4230	if (using_dma(hsotg))
4231		dwc2_set_bit(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
4232}
4233
4234/**
4235 * dwc2_hsotg_udc_start - prepare the udc for work
4236 * @gadget: The usb gadget state
4237 * @driver: The usb gadget driver
4238 *
4239 * Perform initialization to prepare udc device and driver
4240 * to work.
4241 */
4242static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4243				struct usb_gadget_driver *driver)
4244{
4245	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4246	unsigned long flags;
4247	int ret;
4248
4249	if (!hsotg) {
4250		pr_err("%s: called with no device\n", __func__);
4251		return -ENODEV;
4252	}
4253
4254	if (!driver) {
4255		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4256		return -EINVAL;
4257	}
4258
4259	if (driver->max_speed < USB_SPEED_FULL)
4260		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4261
4262	if (!driver->setup) {
4263		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4264		return -EINVAL;
4265	}
4266
4267	WARN_ON(hsotg->driver);
4268
4269	driver->driver.bus = NULL;
4270	hsotg->driver = driver;
4271	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4272	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4273
4274	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
 
4275		ret = dwc2_lowlevel_hw_enable(hsotg);
4276		if (ret)
4277			goto err;
4278	}
4279
4280	if (!IS_ERR_OR_NULL(hsotg->uphy))
4281		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4282
4283	spin_lock_irqsave(&hsotg->lock, flags);
4284	if (dwc2_hw_is_device(hsotg)) {
4285		dwc2_hsotg_init(hsotg);
4286		dwc2_hsotg_core_init_disconnected(hsotg, false);
4287	}
4288
4289	hsotg->enabled = 0;
4290	spin_unlock_irqrestore(&hsotg->lock, flags);
4291
 
4292	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4293
4294	return 0;
4295
4296err:
4297	hsotg->driver = NULL;
4298	return ret;
4299}
4300
4301/**
4302 * dwc2_hsotg_udc_stop - stop the udc
4303 * @gadget: The usb gadget state
4304 * @driver: The usb gadget driver
4305 *
4306 * Stop udc hw block and stay tunned for future transmissions
4307 */
4308static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4309{
4310	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4311	unsigned long flags = 0;
4312	int ep;
4313
4314	if (!hsotg)
4315		return -ENODEV;
4316
4317	/* all endpoints should be shutdown */
4318	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4319		if (hsotg->eps_in[ep])
4320			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4321		if (hsotg->eps_out[ep])
4322			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4323	}
4324
4325	spin_lock_irqsave(&hsotg->lock, flags);
4326
4327	hsotg->driver = NULL;
4328	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4329	hsotg->enabled = 0;
4330
4331	spin_unlock_irqrestore(&hsotg->lock, flags);
4332
4333	if (!IS_ERR_OR_NULL(hsotg->uphy))
4334		otg_set_peripheral(hsotg->uphy->otg, NULL);
4335
4336	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
 
4337		dwc2_lowlevel_hw_disable(hsotg);
4338
4339	return 0;
4340}
4341
4342/**
4343 * dwc2_hsotg_gadget_getframe - read the frame number
4344 * @gadget: The usb gadget state
4345 *
4346 * Read the {micro} frame number
4347 */
4348static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4349{
4350	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4351}
4352
4353/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4354 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4355 * @gadget: The usb gadget state
4356 * @is_on: Current state of the USB PHY
4357 *
4358 * Connect/Disconnect the USB PHY pullup
4359 */
4360static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4361{
4362	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4363	unsigned long flags = 0;
4364
4365	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4366		hsotg->op_state);
4367
4368	/* Don't modify pullup state while in host mode */
4369	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4370		hsotg->enabled = is_on;
4371		return 0;
4372	}
4373
4374	spin_lock_irqsave(&hsotg->lock, flags);
4375	if (is_on) {
4376		hsotg->enabled = 1;
4377		dwc2_hsotg_core_init_disconnected(hsotg, false);
4378		/* Enable ACG feature in device mode,if supported */
4379		dwc2_enable_acg(hsotg);
4380		dwc2_hsotg_core_connect(hsotg);
4381	} else {
4382		dwc2_hsotg_core_disconnect(hsotg);
4383		dwc2_hsotg_disconnect(hsotg);
4384		hsotg->enabled = 0;
4385	}
4386
4387	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4388	spin_unlock_irqrestore(&hsotg->lock, flags);
4389
4390	return 0;
4391}
4392
4393static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4394{
4395	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4396	unsigned long flags;
4397
4398	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4399	spin_lock_irqsave(&hsotg->lock, flags);
4400
4401	/*
4402	 * If controller is hibernated, it must exit from power_down
4403	 * before being initialized / de-initialized
4404	 */
4405	if (hsotg->lx_state == DWC2_L2)
4406		dwc2_exit_partial_power_down(hsotg, false);
 
 
 
 
4407
4408	if (is_active) {
4409		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4410
4411		dwc2_hsotg_core_init_disconnected(hsotg, false);
4412		if (hsotg->enabled) {
4413			/* Enable ACG feature in device mode,if supported */
4414			dwc2_enable_acg(hsotg);
4415			dwc2_hsotg_core_connect(hsotg);
4416		}
4417	} else {
4418		dwc2_hsotg_core_disconnect(hsotg);
4419		dwc2_hsotg_disconnect(hsotg);
4420	}
4421
4422	spin_unlock_irqrestore(&hsotg->lock, flags);
4423	return 0;
4424}
4425
4426/**
4427 * dwc2_hsotg_vbus_draw - report bMaxPower field
4428 * @gadget: The usb gadget state
4429 * @mA: Amount of current
4430 *
4431 * Report how much power the device may consume to the phy.
4432 */
4433static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4434{
4435	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4436
4437	if (IS_ERR_OR_NULL(hsotg->uphy))
4438		return -ENOTSUPP;
4439	return usb_phy_set_power(hsotg->uphy, mA);
4440}
4441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4442static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4443	.get_frame	= dwc2_hsotg_gadget_getframe,
 
4444	.udc_start		= dwc2_hsotg_udc_start,
4445	.udc_stop		= dwc2_hsotg_udc_stop,
4446	.pullup                 = dwc2_hsotg_pullup,
 
4447	.vbus_session		= dwc2_hsotg_vbus_session,
4448	.vbus_draw		= dwc2_hsotg_vbus_draw,
4449};
4450
4451/**
4452 * dwc2_hsotg_initep - initialise a single endpoint
4453 * @hsotg: The device state.
4454 * @hs_ep: The endpoint to be initialised.
4455 * @epnum: The endpoint number
 
4456 *
4457 * Initialise the given endpoint (as part of the probe and device state
4458 * creation) to give to the gadget driver. Setup the endpoint name, any
4459 * direction information and other state that may be required.
4460 */
4461static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4462			      struct dwc2_hsotg_ep *hs_ep,
4463				       int epnum,
4464				       bool dir_in)
4465{
4466	char *dir;
4467
4468	if (epnum == 0)
4469		dir = "";
4470	else if (dir_in)
4471		dir = "in";
4472	else
4473		dir = "out";
4474
4475	hs_ep->dir_in = dir_in;
4476	hs_ep->index = epnum;
4477
4478	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4479
4480	INIT_LIST_HEAD(&hs_ep->queue);
4481	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4482
4483	/* add to the list of endpoints known by the gadget driver */
4484	if (epnum)
4485		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4486
4487	hs_ep->parent = hsotg;
4488	hs_ep->ep.name = hs_ep->name;
4489
4490	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4491		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4492	else
4493		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4494					   epnum ? 1024 : EP0_MPS_LIMIT);
4495	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4496
4497	if (epnum == 0) {
4498		hs_ep->ep.caps.type_control = true;
4499	} else {
4500		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4501			hs_ep->ep.caps.type_iso = true;
4502			hs_ep->ep.caps.type_bulk = true;
4503		}
4504		hs_ep->ep.caps.type_int = true;
4505	}
4506
4507	if (dir_in)
4508		hs_ep->ep.caps.dir_in = true;
4509	else
4510		hs_ep->ep.caps.dir_out = true;
4511
4512	/*
4513	 * if we're using dma, we need to set the next-endpoint pointer
4514	 * to be something valid.
4515	 */
4516
4517	if (using_dma(hsotg)) {
4518		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4519
4520		if (dir_in)
4521			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4522		else
4523			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4524	}
4525}
4526
4527/**
4528 * dwc2_hsotg_hw_cfg - read HW configuration registers
4529 * @param: The device state
4530 *
4531 * Read the USB core HW configuration registers
4532 */
4533static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4534{
4535	u32 cfg;
4536	u32 ep_type;
4537	u32 i;
4538
4539	/* check hardware configuration */
4540
4541	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4542
4543	/* Add ep0 */
4544	hsotg->num_of_eps++;
4545
4546	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4547					sizeof(struct dwc2_hsotg_ep),
4548					GFP_KERNEL);
4549	if (!hsotg->eps_in[0])
4550		return -ENOMEM;
4551	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4552	hsotg->eps_out[0] = hsotg->eps_in[0];
4553
4554	cfg = hsotg->hw_params.dev_ep_dirs;
4555	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4556		ep_type = cfg & 3;
4557		/* Direction in or both */
4558		if (!(ep_type & 2)) {
4559			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4560				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4561			if (!hsotg->eps_in[i])
4562				return -ENOMEM;
4563		}
4564		/* Direction out or both */
4565		if (!(ep_type & 1)) {
4566			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4567				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4568			if (!hsotg->eps_out[i])
4569				return -ENOMEM;
4570		}
4571	}
4572
4573	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4574	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4575
4576	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4577		 hsotg->num_of_eps,
4578		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4579		 hsotg->fifo_mem);
4580	return 0;
4581}
4582
4583/**
4584 * dwc2_hsotg_dump - dump state of the udc
4585 * @param: The device state
 
4586 */
4587static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4588{
4589#ifdef DEBUG
4590	struct device *dev = hsotg->dev;
4591	void __iomem *regs = hsotg->regs;
4592	u32 val;
4593	int idx;
4594
4595	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4596		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
4597		 dwc2_readl(regs + DIEPMSK));
4598
4599	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4600		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4601
4602	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4603		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4604
4605	/* show periodic fifo settings */
4606
4607	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4608		val = dwc2_readl(regs + DPTXFSIZN(idx));
4609		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4610			 val >> FIFOSIZE_DEPTH_SHIFT,
4611			 val & FIFOSIZE_STARTADDR_MASK);
4612	}
4613
4614	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4615		dev_info(dev,
4616			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4617			 dwc2_readl(regs + DIEPCTL(idx)),
4618			 dwc2_readl(regs + DIEPTSIZ(idx)),
4619			 dwc2_readl(regs + DIEPDMA(idx)));
4620
4621		val = dwc2_readl(regs + DOEPCTL(idx));
4622		dev_info(dev,
4623			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4624			 idx, dwc2_readl(regs + DOEPCTL(idx)),
4625			 dwc2_readl(regs + DOEPTSIZ(idx)),
4626			 dwc2_readl(regs + DOEPDMA(idx)));
4627	}
4628
4629	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4630		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
4631#endif
4632}
4633
4634/**
4635 * dwc2_gadget_init - init function for gadget
4636 * @dwc2: The data structure for the DWC2 driver.
 
4637 */
4638int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4639{
4640	struct device *dev = hsotg->dev;
4641	int epnum;
4642	int ret;
4643
4644	/* Dump fifo information */
4645	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4646		hsotg->params.g_np_tx_fifo_size);
4647	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4648
4649	hsotg->gadget.max_speed = USB_SPEED_HIGH;
 
 
 
 
 
 
 
 
 
 
 
4650	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4651	hsotg->gadget.name = dev_name(dev);
 
4652	hsotg->remote_wakeup_allowed = 0;
4653
4654	if (hsotg->params.lpm)
4655		hsotg->gadget.lpm_capable = true;
4656
4657	if (hsotg->dr_mode == USB_DR_MODE_OTG)
4658		hsotg->gadget.is_otg = 1;
4659	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4660		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4661
4662	ret = dwc2_hsotg_hw_cfg(hsotg);
4663	if (ret) {
4664		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4665		return ret;
4666	}
4667
4668	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4669			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4670	if (!hsotg->ctrl_buff)
4671		return -ENOMEM;
4672
4673	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4674			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4675	if (!hsotg->ep0_buff)
4676		return -ENOMEM;
4677
4678	if (using_desc_dma(hsotg)) {
4679		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4680		if (ret < 0)
4681			return ret;
4682	}
4683
4684	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
4685			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
4686	if (ret < 0) {
4687		dev_err(dev, "cannot claim IRQ for gadget\n");
4688		return ret;
4689	}
4690
4691	/* hsotg->num_of_eps holds number of EPs other than ep0 */
4692
4693	if (hsotg->num_of_eps == 0) {
4694		dev_err(dev, "wrong number of EPs (zero)\n");
4695		return -EINVAL;
4696	}
4697
4698	/* setup endpoint information */
4699
4700	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4701	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4702
4703	/* allocate EP0 request */
4704
4705	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4706						     GFP_KERNEL);
4707	if (!hsotg->ctrl_req) {
4708		dev_err(dev, "failed to allocate ctrl req\n");
4709		return -ENOMEM;
4710	}
4711
4712	/* initialise the endpoints now the core has been initialised */
4713	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4714		if (hsotg->eps_in[epnum])
4715			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4716					  epnum, 1);
4717		if (hsotg->eps_out[epnum])
4718			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4719					  epnum, 0);
4720	}
4721
4722	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4723	if (ret)
4724		return ret;
4725
4726	dwc2_hsotg_dump(hsotg);
4727
4728	return 0;
4729}
4730
4731/**
4732 * dwc2_hsotg_remove - remove function for hsotg driver
4733 * @pdev: The platform information for the driver
 
4734 */
4735int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4736{
4737	usb_del_gadget_udc(&hsotg->gadget);
 
4738
4739	return 0;
4740}
4741
4742int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4743{
4744	unsigned long flags;
4745
4746	if (hsotg->lx_state != DWC2_L0)
4747		return 0;
4748
4749	if (hsotg->driver) {
4750		int ep;
4751
4752		dev_info(hsotg->dev, "suspending usb gadget %s\n",
4753			 hsotg->driver->driver.name);
4754
4755		spin_lock_irqsave(&hsotg->lock, flags);
4756		if (hsotg->enabled)
4757			dwc2_hsotg_core_disconnect(hsotg);
4758		dwc2_hsotg_disconnect(hsotg);
4759		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4760		spin_unlock_irqrestore(&hsotg->lock, flags);
4761
4762		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4763			if (hsotg->eps_in[ep])
4764				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4765			if (hsotg->eps_out[ep])
4766				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4767		}
4768	}
4769
4770	return 0;
4771}
4772
4773int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4774{
4775	unsigned long flags;
4776
4777	if (hsotg->lx_state == DWC2_L2)
4778		return 0;
4779
4780	if (hsotg->driver) {
4781		dev_info(hsotg->dev, "resuming usb gadget %s\n",
4782			 hsotg->driver->driver.name);
4783
4784		spin_lock_irqsave(&hsotg->lock, flags);
4785		dwc2_hsotg_core_init_disconnected(hsotg, false);
4786		if (hsotg->enabled) {
4787			/* Enable ACG feature in device mode,if supported */
4788			dwc2_enable_acg(hsotg);
4789			dwc2_hsotg_core_connect(hsotg);
4790		}
4791		spin_unlock_irqrestore(&hsotg->lock, flags);
4792	}
4793
4794	return 0;
4795}
4796
4797/**
4798 * dwc2_backup_device_registers() - Backup controller device registers.
4799 * When suspending usb bus, registers needs to be backuped
4800 * if controller power is disabled once suspended.
4801 *
4802 * @hsotg: Programming view of the DWC_otg controller
4803 */
4804int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
4805{
4806	struct dwc2_dregs_backup *dr;
4807	int i;
4808
4809	dev_dbg(hsotg->dev, "%s\n", __func__);
4810
4811	/* Backup dev regs */
4812	dr = &hsotg->dr_backup;
4813
4814	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
4815	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
4816	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
4817	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
4818	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
4819
4820	for (i = 0; i < hsotg->num_of_eps; i++) {
4821		/* Backup IN EPs */
4822		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));
4823
4824		/* Ensure DATA PID is correctly configured */
4825		if (dr->diepctl[i] & DXEPCTL_DPID)
4826			dr->diepctl[i] |= DXEPCTL_SETD1PID;
4827		else
4828			dr->diepctl[i] |= DXEPCTL_SETD0PID;
4829
4830		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
4831		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));
4832
4833		/* Backup OUT EPs */
4834		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));
4835
4836		/* Ensure DATA PID is correctly configured */
4837		if (dr->doepctl[i] & DXEPCTL_DPID)
4838			dr->doepctl[i] |= DXEPCTL_SETD1PID;
4839		else
4840			dr->doepctl[i] |= DXEPCTL_SETD0PID;
4841
4842		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
4843		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
4844		dr->dtxfsiz[i] = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
4845	}
4846	dr->valid = true;
4847	return 0;
4848}
4849
4850/**
4851 * dwc2_restore_device_registers() - Restore controller device registers.
4852 * When resuming usb bus, device registers needs to be restored
4853 * if controller power were disabled.
4854 *
4855 * @hsotg: Programming view of the DWC_otg controller
4856 * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
4857 *
4858 * Return: 0 if successful, negative error code otherwise
4859 */
4860int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
4861{
4862	struct dwc2_dregs_backup *dr;
4863	int i;
4864
4865	dev_dbg(hsotg->dev, "%s\n", __func__);
4866
4867	/* Restore dev regs */
4868	dr = &hsotg->dr_backup;
4869	if (!dr->valid) {
4870		dev_err(hsotg->dev, "%s: no device registers to restore\n",
4871			__func__);
4872		return -EINVAL;
4873	}
4874	dr->valid = false;
4875
4876	if (!remote_wakeup)
4877		dwc2_writel(dr->dctl, hsotg->regs + DCTL);
4878
4879	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
4880	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
4881	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);
4882
4883	for (i = 0; i < hsotg->num_of_eps; i++) {
4884		/* Restore IN EPs */
4885		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
4886		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
4887		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
4888		/** WA for enabled EPx's IN in DDMA mode. On entering to
4889		 * hibernation wrong value read and saved from DIEPDMAx,
4890		 * as result BNA interrupt asserted on hibernation exit
4891		 * by restoring from saved area.
4892		 */
4893		if (hsotg->params.g_dma_desc &&
4894		    (dr->diepctl[i] & DXEPCTL_EPENA))
4895			dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
4896		dwc2_writel(dr->dtxfsiz[i], hsotg->regs + DPTXFSIZN(i));
4897		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
4898		/* Restore OUT EPs */
4899		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
4900		/* WA for enabled EPx's OUT in DDMA mode. On entering to
4901		 * hibernation wrong value read and saved from DOEPDMAx,
4902		 * as result BNA interrupt asserted on hibernation exit
4903		 * by restoring from saved area.
4904		 */
4905		if (hsotg->params.g_dma_desc &&
4906		    (dr->doepctl[i] & DXEPCTL_EPENA))
4907			dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
4908		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
4909		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
4910	}
4911
4912	return 0;
4913}
4914
4915/**
4916 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
4917 *
4918 * @hsotg: Programming view of DWC_otg controller
4919 *
4920 */
4921void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
4922{
4923	u32 val;
4924
4925	if (!hsotg->params.lpm)
4926		return;
4927
4928	val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
4929	val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
4930	val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
4931	val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
4932	val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
4933	dwc2_writel(val, hsotg->regs + GLPMCFG);
4934	dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg->regs
4935		+ GLPMCFG));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4936}
4937
4938/**
4939 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
4940 *
4941 * @hsotg: Programming view of the DWC_otg controller
4942 *
4943 * Return non-zero if failed to enter to hibernation.
4944 */
4945int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
4946{
4947	u32 gpwrdn;
4948	int ret = 0;
4949
4950	/* Change to L2(suspend) state */
4951	hsotg->lx_state = DWC2_L2;
4952	dev_dbg(hsotg->dev, "Start of hibernation completed\n");
4953	ret = dwc2_backup_global_registers(hsotg);
4954	if (ret) {
4955		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
4956			__func__);
4957		return ret;
4958	}
4959	ret = dwc2_backup_device_registers(hsotg);
4960	if (ret) {
4961		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
4962			__func__);
4963		return ret;
4964	}
4965
4966	gpwrdn = GPWRDN_PWRDNRSTN;
4967	gpwrdn |= GPWRDN_PMUACTV;
4968	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
4969	udelay(10);
4970
4971	/* Set flag to indicate that we are in hibernation */
4972	hsotg->hibernated = 1;
4973
4974	/* Enable interrupts from wake up logic */
4975	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
4976	gpwrdn |= GPWRDN_PMUINTSEL;
4977	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
4978	udelay(10);
4979
4980	/* Unmask device mode interrupts in GPWRDN */
4981	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
4982	gpwrdn |= GPWRDN_RST_DET_MSK;
4983	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
4984	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
4985	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
4986	udelay(10);
4987
4988	/* Enable Power Down Clamp */
4989	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
4990	gpwrdn |= GPWRDN_PWRDNCLMP;
4991	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
4992	udelay(10);
4993
4994	/* Switch off VDD */
4995	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
4996	gpwrdn |= GPWRDN_PWRDNSWTCH;
4997	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
4998	udelay(10);
4999
5000	/* Save gpwrdn register for further usage if stschng interrupt */
5001	hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5002	dev_dbg(hsotg->dev, "Hibernation completed\n");
5003
5004	return ret;
5005}
5006
5007/**
5008 * dwc2_gadget_exit_hibernation()
5009 * This function is for exiting from Device mode hibernation by host initiated
5010 * resume/reset and device initiated remote-wakeup.
5011 *
5012 * @hsotg: Programming view of the DWC_otg controller
5013 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5014 * @param reset: indicates whether resume is initiated by Reset.
5015 *
5016 * Return non-zero if failed to exit from hibernation.
5017 */
5018int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5019				 int rem_wakeup, int reset)
5020{
5021	u32 pcgcctl;
5022	u32 gpwrdn;
5023	u32 dctl;
5024	int ret = 0;
5025	struct dwc2_gregs_backup *gr;
5026	struct dwc2_dregs_backup *dr;
5027
5028	gr = &hsotg->gr_backup;
5029	dr = &hsotg->dr_backup;
5030
5031	if (!hsotg->hibernated) {
5032		dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5033		return 1;
5034	}
5035	dev_dbg(hsotg->dev,
5036		"%s: called with rem_wakeup = %d reset = %d\n",
5037		__func__, rem_wakeup, reset);
5038
5039	dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5040
5041	if (!reset) {
5042		/* Clear all pending interupts */
5043		dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
5044	}
5045
5046	/* De-assert Restore */
5047	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5048	gpwrdn &= ~GPWRDN_RESTORE;
5049	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5050	udelay(10);
5051
5052	if (!rem_wakeup) {
5053		pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
5054		pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5055		dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
5056	}
5057
5058	/* Restore GUSBCFG, DCFG and DCTL */
5059	dwc2_writel(gr->gusbcfg, hsotg->regs + GUSBCFG);
5060	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
5061	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
 
 
 
 
5062
5063	/* De-assert Wakeup Logic */
5064	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5065	gpwrdn &= ~GPWRDN_PMUACTV;
5066	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5067
5068	if (rem_wakeup) {
5069		udelay(10);
5070		/* Start Remote Wakeup Signaling */
5071		dwc2_writel(dr->dctl | DCTL_RMTWKUPSIG, hsotg->regs + DCTL);
5072	} else {
5073		udelay(50);
5074		/* Set Device programming done bit */
5075		dctl = dwc2_readl(hsotg->regs + DCTL);
5076		dctl |= DCTL_PWRONPRGDONE;
5077		dwc2_writel(dctl, hsotg->regs + DCTL);
5078	}
5079	/* Wait for interrupts which must be cleared */
5080	mdelay(2);
5081	/* Clear all pending interupts */
5082	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
5083
5084	/* Restore global registers */
5085	ret = dwc2_restore_global_registers(hsotg);
5086	if (ret) {
5087		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5088			__func__);
5089		return ret;
5090	}
5091
5092	/* Restore device registers */
5093	ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5094	if (ret) {
5095		dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5096			__func__);
5097		return ret;
5098	}
5099
5100	if (rem_wakeup) {
5101		mdelay(10);
5102		dctl = dwc2_readl(hsotg->regs + DCTL);
5103		dctl &= ~DCTL_RMTWKUPSIG;
5104		dwc2_writel(dctl, hsotg->regs + DCTL);
5105	}
5106
5107	hsotg->hibernated = 0;
5108	hsotg->lx_state = DWC2_L0;
5109	dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5110
5111	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5112}