Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * TI OMAP Real Time Clock interface for Linux
4 *
5 * Copyright (C) 2003 MontaVista Software, Inc.
6 * Author: George G. Davis <gdavis@mvista.com> or <source@mvista.com>
7 *
8 * Copyright (C) 2006 David Brownell (new RTC framework)
9 * Copyright (C) 2014 Johan Hovold <johan@kernel.org>
10 */
11
12#include <linux/bcd.h>
13#include <linux/clk.h>
14#include <linux/delay.h>
15#include <linux/init.h>
16#include <linux/io.h>
17#include <linux/ioport.h>
18#include <linux/kernel.h>
19#include <linux/module.h>
20#include <linux/of.h>
21#include <linux/of_device.h>
22#include <linux/pinctrl/pinctrl.h>
23#include <linux/pinctrl/pinconf.h>
24#include <linux/pinctrl/pinconf-generic.h>
25#include <linux/platform_device.h>
26#include <linux/pm_runtime.h>
27#include <linux/rtc.h>
28
29/*
30 * The OMAP RTC is a year/month/day/hours/minutes/seconds BCD clock
31 * with century-range alarm matching, driven by the 32kHz clock.
32 *
33 * The main user-visible ways it differs from PC RTCs are by omitting
34 * "don't care" alarm fields and sub-second periodic IRQs, and having
35 * an autoadjust mechanism to calibrate to the true oscillator rate.
36 *
37 * Board-specific wiring options include using split power mode with
38 * RTC_OFF_NOFF used as the reset signal (so the RTC won't be reset),
39 * and wiring RTC_WAKE_INT (so the RTC alarm can wake the system from
40 * low power modes) for OMAP1 boards (OMAP-L138 has this built into
41 * the SoC). See the BOARD-SPECIFIC CUSTOMIZATION comment.
42 */
43
44/* RTC registers */
45#define OMAP_RTC_SECONDS_REG 0x00
46#define OMAP_RTC_MINUTES_REG 0x04
47#define OMAP_RTC_HOURS_REG 0x08
48#define OMAP_RTC_DAYS_REG 0x0C
49#define OMAP_RTC_MONTHS_REG 0x10
50#define OMAP_RTC_YEARS_REG 0x14
51#define OMAP_RTC_WEEKS_REG 0x18
52
53#define OMAP_RTC_ALARM_SECONDS_REG 0x20
54#define OMAP_RTC_ALARM_MINUTES_REG 0x24
55#define OMAP_RTC_ALARM_HOURS_REG 0x28
56#define OMAP_RTC_ALARM_DAYS_REG 0x2c
57#define OMAP_RTC_ALARM_MONTHS_REG 0x30
58#define OMAP_RTC_ALARM_YEARS_REG 0x34
59
60#define OMAP_RTC_CTRL_REG 0x40
61#define OMAP_RTC_STATUS_REG 0x44
62#define OMAP_RTC_INTERRUPTS_REG 0x48
63
64#define OMAP_RTC_COMP_LSB_REG 0x4c
65#define OMAP_RTC_COMP_MSB_REG 0x50
66#define OMAP_RTC_OSC_REG 0x54
67
68#define OMAP_RTC_SCRATCH0_REG 0x60
69#define OMAP_RTC_SCRATCH1_REG 0x64
70#define OMAP_RTC_SCRATCH2_REG 0x68
71
72#define OMAP_RTC_KICK0_REG 0x6c
73#define OMAP_RTC_KICK1_REG 0x70
74
75#define OMAP_RTC_IRQWAKEEN 0x7c
76
77#define OMAP_RTC_ALARM2_SECONDS_REG 0x80
78#define OMAP_RTC_ALARM2_MINUTES_REG 0x84
79#define OMAP_RTC_ALARM2_HOURS_REG 0x88
80#define OMAP_RTC_ALARM2_DAYS_REG 0x8c
81#define OMAP_RTC_ALARM2_MONTHS_REG 0x90
82#define OMAP_RTC_ALARM2_YEARS_REG 0x94
83
84#define OMAP_RTC_PMIC_REG 0x98
85
86/* OMAP_RTC_CTRL_REG bit fields: */
87#define OMAP_RTC_CTRL_SPLIT BIT(7)
88#define OMAP_RTC_CTRL_DISABLE BIT(6)
89#define OMAP_RTC_CTRL_SET_32_COUNTER BIT(5)
90#define OMAP_RTC_CTRL_TEST BIT(4)
91#define OMAP_RTC_CTRL_MODE_12_24 BIT(3)
92#define OMAP_RTC_CTRL_AUTO_COMP BIT(2)
93#define OMAP_RTC_CTRL_ROUND_30S BIT(1)
94#define OMAP_RTC_CTRL_STOP BIT(0)
95
96/* OMAP_RTC_STATUS_REG bit fields: */
97#define OMAP_RTC_STATUS_POWER_UP BIT(7)
98#define OMAP_RTC_STATUS_ALARM2 BIT(7)
99#define OMAP_RTC_STATUS_ALARM BIT(6)
100#define OMAP_RTC_STATUS_1D_EVENT BIT(5)
101#define OMAP_RTC_STATUS_1H_EVENT BIT(4)
102#define OMAP_RTC_STATUS_1M_EVENT BIT(3)
103#define OMAP_RTC_STATUS_1S_EVENT BIT(2)
104#define OMAP_RTC_STATUS_RUN BIT(1)
105#define OMAP_RTC_STATUS_BUSY BIT(0)
106
107/* OMAP_RTC_INTERRUPTS_REG bit fields: */
108#define OMAP_RTC_INTERRUPTS_IT_ALARM2 BIT(4)
109#define OMAP_RTC_INTERRUPTS_IT_ALARM BIT(3)
110#define OMAP_RTC_INTERRUPTS_IT_TIMER BIT(2)
111
112/* OMAP_RTC_OSC_REG bit fields: */
113#define OMAP_RTC_OSC_32KCLK_EN BIT(6)
114#define OMAP_RTC_OSC_SEL_32KCLK_SRC BIT(3)
115#define OMAP_RTC_OSC_OSC32K_GZ_DISABLE BIT(4)
116
117/* OMAP_RTC_IRQWAKEEN bit fields: */
118#define OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN BIT(1)
119
120/* OMAP_RTC_PMIC bit fields: */
121#define OMAP_RTC_PMIC_POWER_EN_EN BIT(16)
122#define OMAP_RTC_PMIC_EXT_WKUP_EN(x) BIT(x)
123#define OMAP_RTC_PMIC_EXT_WKUP_POL(x) BIT(4 + x)
124
125/* OMAP_RTC_KICKER values */
126#define KICK0_VALUE 0x83e70b13
127#define KICK1_VALUE 0x95a4f1e0
128
129struct omap_rtc;
130
131struct omap_rtc_device_type {
132 bool has_32kclk_en;
133 bool has_irqwakeen;
134 bool has_pmic_mode;
135 bool has_power_up_reset;
136 void (*lock)(struct omap_rtc *rtc);
137 void (*unlock)(struct omap_rtc *rtc);
138};
139
140struct omap_rtc {
141 struct rtc_device *rtc;
142 void __iomem *base;
143 struct clk *clk;
144 int irq_alarm;
145 int irq_timer;
146 u8 interrupts_reg;
147 bool is_pmic_controller;
148 bool has_ext_clk;
149 bool is_suspending;
150 const struct omap_rtc_device_type *type;
151 struct pinctrl_dev *pctldev;
152};
153
154static inline u8 rtc_read(struct omap_rtc *rtc, unsigned int reg)
155{
156 return readb(rtc->base + reg);
157}
158
159static inline u32 rtc_readl(struct omap_rtc *rtc, unsigned int reg)
160{
161 return readl(rtc->base + reg);
162}
163
164static inline void rtc_write(struct omap_rtc *rtc, unsigned int reg, u8 val)
165{
166 writeb(val, rtc->base + reg);
167}
168
169static inline void rtc_writel(struct omap_rtc *rtc, unsigned int reg, u32 val)
170{
171 writel(val, rtc->base + reg);
172}
173
174static void am3352_rtc_unlock(struct omap_rtc *rtc)
175{
176 rtc_writel(rtc, OMAP_RTC_KICK0_REG, KICK0_VALUE);
177 rtc_writel(rtc, OMAP_RTC_KICK1_REG, KICK1_VALUE);
178}
179
180static void am3352_rtc_lock(struct omap_rtc *rtc)
181{
182 rtc_writel(rtc, OMAP_RTC_KICK0_REG, 0);
183 rtc_writel(rtc, OMAP_RTC_KICK1_REG, 0);
184}
185
186static void default_rtc_unlock(struct omap_rtc *rtc)
187{
188}
189
190static void default_rtc_lock(struct omap_rtc *rtc)
191{
192}
193
194/*
195 * We rely on the rtc framework to handle locking (rtc->ops_lock),
196 * so the only other requirement is that register accesses which
197 * require BUSY to be clear are made with IRQs locally disabled
198 */
199static void rtc_wait_not_busy(struct omap_rtc *rtc)
200{
201 int count;
202 u8 status;
203
204 /* BUSY may stay active for 1/32768 second (~30 usec) */
205 for (count = 0; count < 50; count++) {
206 status = rtc_read(rtc, OMAP_RTC_STATUS_REG);
207 if (!(status & OMAP_RTC_STATUS_BUSY))
208 break;
209 udelay(1);
210 }
211 /* now we have ~15 usec to read/write various registers */
212}
213
214static irqreturn_t rtc_irq(int irq, void *dev_id)
215{
216 struct omap_rtc *rtc = dev_id;
217 unsigned long events = 0;
218 u8 irq_data;
219
220 irq_data = rtc_read(rtc, OMAP_RTC_STATUS_REG);
221
222 /* alarm irq? */
223 if (irq_data & OMAP_RTC_STATUS_ALARM) {
224 rtc->type->unlock(rtc);
225 rtc_write(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM);
226 rtc->type->lock(rtc);
227 events |= RTC_IRQF | RTC_AF;
228 }
229
230 /* 1/sec periodic/update irq? */
231 if (irq_data & OMAP_RTC_STATUS_1S_EVENT)
232 events |= RTC_IRQF | RTC_UF;
233
234 rtc_update_irq(rtc->rtc, 1, events);
235
236 return IRQ_HANDLED;
237}
238
239static int omap_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
240{
241 struct omap_rtc *rtc = dev_get_drvdata(dev);
242 u8 reg, irqwake_reg = 0;
243
244 local_irq_disable();
245 rtc_wait_not_busy(rtc);
246 reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
247 if (rtc->type->has_irqwakeen)
248 irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
249
250 if (enabled) {
251 reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
252 irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
253 } else {
254 reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
255 irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
256 }
257 rtc_wait_not_busy(rtc);
258 rtc->type->unlock(rtc);
259 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
260 if (rtc->type->has_irqwakeen)
261 rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
262 rtc->type->lock(rtc);
263 local_irq_enable();
264
265 return 0;
266}
267
268/* this hardware doesn't support "don't care" alarm fields */
269static void tm2bcd(struct rtc_time *tm)
270{
271 tm->tm_sec = bin2bcd(tm->tm_sec);
272 tm->tm_min = bin2bcd(tm->tm_min);
273 tm->tm_hour = bin2bcd(tm->tm_hour);
274 tm->tm_mday = bin2bcd(tm->tm_mday);
275
276 tm->tm_mon = bin2bcd(tm->tm_mon + 1);
277 tm->tm_year = bin2bcd(tm->tm_year - 100);
278}
279
280static void bcd2tm(struct rtc_time *tm)
281{
282 tm->tm_sec = bcd2bin(tm->tm_sec);
283 tm->tm_min = bcd2bin(tm->tm_min);
284 tm->tm_hour = bcd2bin(tm->tm_hour);
285 tm->tm_mday = bcd2bin(tm->tm_mday);
286 tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
287 /* epoch == 1900 */
288 tm->tm_year = bcd2bin(tm->tm_year) + 100;
289}
290
291static void omap_rtc_read_time_raw(struct omap_rtc *rtc, struct rtc_time *tm)
292{
293 tm->tm_sec = rtc_read(rtc, OMAP_RTC_SECONDS_REG);
294 tm->tm_min = rtc_read(rtc, OMAP_RTC_MINUTES_REG);
295 tm->tm_hour = rtc_read(rtc, OMAP_RTC_HOURS_REG);
296 tm->tm_mday = rtc_read(rtc, OMAP_RTC_DAYS_REG);
297 tm->tm_mon = rtc_read(rtc, OMAP_RTC_MONTHS_REG);
298 tm->tm_year = rtc_read(rtc, OMAP_RTC_YEARS_REG);
299}
300
301static int omap_rtc_read_time(struct device *dev, struct rtc_time *tm)
302{
303 struct omap_rtc *rtc = dev_get_drvdata(dev);
304
305 /* we don't report wday/yday/isdst ... */
306 local_irq_disable();
307 rtc_wait_not_busy(rtc);
308 omap_rtc_read_time_raw(rtc, tm);
309 local_irq_enable();
310
311 bcd2tm(tm);
312
313 return 0;
314}
315
316static int omap_rtc_set_time(struct device *dev, struct rtc_time *tm)
317{
318 struct omap_rtc *rtc = dev_get_drvdata(dev);
319
320 tm2bcd(tm);
321
322 local_irq_disable();
323 rtc_wait_not_busy(rtc);
324
325 rtc->type->unlock(rtc);
326 rtc_write(rtc, OMAP_RTC_YEARS_REG, tm->tm_year);
327 rtc_write(rtc, OMAP_RTC_MONTHS_REG, tm->tm_mon);
328 rtc_write(rtc, OMAP_RTC_DAYS_REG, tm->tm_mday);
329 rtc_write(rtc, OMAP_RTC_HOURS_REG, tm->tm_hour);
330 rtc_write(rtc, OMAP_RTC_MINUTES_REG, tm->tm_min);
331 rtc_write(rtc, OMAP_RTC_SECONDS_REG, tm->tm_sec);
332 rtc->type->lock(rtc);
333
334 local_irq_enable();
335
336 return 0;
337}
338
339static int omap_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
340{
341 struct omap_rtc *rtc = dev_get_drvdata(dev);
342 u8 interrupts;
343
344 local_irq_disable();
345 rtc_wait_not_busy(rtc);
346
347 alm->time.tm_sec = rtc_read(rtc, OMAP_RTC_ALARM_SECONDS_REG);
348 alm->time.tm_min = rtc_read(rtc, OMAP_RTC_ALARM_MINUTES_REG);
349 alm->time.tm_hour = rtc_read(rtc, OMAP_RTC_ALARM_HOURS_REG);
350 alm->time.tm_mday = rtc_read(rtc, OMAP_RTC_ALARM_DAYS_REG);
351 alm->time.tm_mon = rtc_read(rtc, OMAP_RTC_ALARM_MONTHS_REG);
352 alm->time.tm_year = rtc_read(rtc, OMAP_RTC_ALARM_YEARS_REG);
353
354 local_irq_enable();
355
356 bcd2tm(&alm->time);
357
358 interrupts = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
359 alm->enabled = !!(interrupts & OMAP_RTC_INTERRUPTS_IT_ALARM);
360
361 return 0;
362}
363
364static int omap_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
365{
366 struct omap_rtc *rtc = dev_get_drvdata(dev);
367 u8 reg, irqwake_reg = 0;
368
369 tm2bcd(&alm->time);
370
371 local_irq_disable();
372 rtc_wait_not_busy(rtc);
373
374 rtc->type->unlock(rtc);
375 rtc_write(rtc, OMAP_RTC_ALARM_YEARS_REG, alm->time.tm_year);
376 rtc_write(rtc, OMAP_RTC_ALARM_MONTHS_REG, alm->time.tm_mon);
377 rtc_write(rtc, OMAP_RTC_ALARM_DAYS_REG, alm->time.tm_mday);
378 rtc_write(rtc, OMAP_RTC_ALARM_HOURS_REG, alm->time.tm_hour);
379 rtc_write(rtc, OMAP_RTC_ALARM_MINUTES_REG, alm->time.tm_min);
380 rtc_write(rtc, OMAP_RTC_ALARM_SECONDS_REG, alm->time.tm_sec);
381
382 reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
383 if (rtc->type->has_irqwakeen)
384 irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
385
386 if (alm->enabled) {
387 reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
388 irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
389 } else {
390 reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
391 irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
392 }
393 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
394 if (rtc->type->has_irqwakeen)
395 rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
396 rtc->type->lock(rtc);
397
398 local_irq_enable();
399
400 return 0;
401}
402
403static struct omap_rtc *omap_rtc_power_off_rtc;
404
405/**
406 * omap_rtc_power_off_program: Set the pmic power off sequence. The RTC
407 * generates pmic_pwr_enable control, which can be used to control an external
408 * PMIC.
409 */
410int omap_rtc_power_off_program(struct device *dev)
411{
412 struct omap_rtc *rtc = omap_rtc_power_off_rtc;
413 struct rtc_time tm;
414 unsigned long now;
415 int seconds;
416 u32 val;
417
418 rtc->type->unlock(rtc);
419 /* enable pmic_power_en control */
420 val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
421 rtc_writel(rtc, OMAP_RTC_PMIC_REG, val | OMAP_RTC_PMIC_POWER_EN_EN);
422
423again:
424 /* Clear any existing ALARM2 event */
425 rtc_writel(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM2);
426
427 /* set alarm one second from now */
428 omap_rtc_read_time_raw(rtc, &tm);
429 seconds = tm.tm_sec;
430 bcd2tm(&tm);
431 now = rtc_tm_to_time64(&tm);
432 rtc_time64_to_tm(now + 1, &tm);
433
434 tm2bcd(&tm);
435
436 rtc_wait_not_busy(rtc);
437
438 rtc_write(rtc, OMAP_RTC_ALARM2_SECONDS_REG, tm.tm_sec);
439 rtc_write(rtc, OMAP_RTC_ALARM2_MINUTES_REG, tm.tm_min);
440 rtc_write(rtc, OMAP_RTC_ALARM2_HOURS_REG, tm.tm_hour);
441 rtc_write(rtc, OMAP_RTC_ALARM2_DAYS_REG, tm.tm_mday);
442 rtc_write(rtc, OMAP_RTC_ALARM2_MONTHS_REG, tm.tm_mon);
443 rtc_write(rtc, OMAP_RTC_ALARM2_YEARS_REG, tm.tm_year);
444
445 /*
446 * enable ALARM2 interrupt
447 *
448 * NOTE: this fails on AM3352 if rtc_write (writeb) is used
449 */
450 val = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
451 rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG,
452 val | OMAP_RTC_INTERRUPTS_IT_ALARM2);
453
454 /* Retry in case roll over happened before alarm was armed. */
455 if (rtc_read(rtc, OMAP_RTC_SECONDS_REG) != seconds) {
456 val = rtc_read(rtc, OMAP_RTC_STATUS_REG);
457 if (!(val & OMAP_RTC_STATUS_ALARM2))
458 goto again;
459 }
460
461 rtc->type->lock(rtc);
462
463 return 0;
464}
465EXPORT_SYMBOL(omap_rtc_power_off_program);
466
467/*
468 * omap_rtc_poweroff: RTC-controlled power off
469 *
470 * The RTC can be used to control an external PMIC via the pmic_power_en pin,
471 * which can be configured to transition to OFF on ALARM2 events.
472 *
473 * Notes:
474 * The one-second alarm offset is the shortest offset possible as the alarm
475 * registers must be set before the next timer update and the offset
476 * calculation is too heavy for everything to be done within a single access
477 * period (~15 us).
478 *
479 * Called with local interrupts disabled.
480 */
481static void omap_rtc_power_off(void)
482{
483 struct rtc_device *rtc = omap_rtc_power_off_rtc->rtc;
484 u32 val;
485
486 omap_rtc_power_off_program(rtc->dev.parent);
487
488 /* Set PMIC power enable and EXT_WAKEUP in case PB power on is used */
489 omap_rtc_power_off_rtc->type->unlock(omap_rtc_power_off_rtc);
490 val = rtc_readl(omap_rtc_power_off_rtc, OMAP_RTC_PMIC_REG);
491 val |= OMAP_RTC_PMIC_POWER_EN_EN | OMAP_RTC_PMIC_EXT_WKUP_POL(0) |
492 OMAP_RTC_PMIC_EXT_WKUP_EN(0);
493 rtc_writel(omap_rtc_power_off_rtc, OMAP_RTC_PMIC_REG, val);
494 omap_rtc_power_off_rtc->type->lock(omap_rtc_power_off_rtc);
495
496 /*
497 * Wait for alarm to trigger (within one second) and external PMIC to
498 * power off the system. Add a 500 ms margin for external latencies
499 * (e.g. debounce circuits).
500 */
501 mdelay(1500);
502}
503
504static const struct rtc_class_ops omap_rtc_ops = {
505 .read_time = omap_rtc_read_time,
506 .set_time = omap_rtc_set_time,
507 .read_alarm = omap_rtc_read_alarm,
508 .set_alarm = omap_rtc_set_alarm,
509 .alarm_irq_enable = omap_rtc_alarm_irq_enable,
510};
511
512static const struct omap_rtc_device_type omap_rtc_default_type = {
513 .has_power_up_reset = true,
514 .lock = default_rtc_lock,
515 .unlock = default_rtc_unlock,
516};
517
518static const struct omap_rtc_device_type omap_rtc_am3352_type = {
519 .has_32kclk_en = true,
520 .has_irqwakeen = true,
521 .has_pmic_mode = true,
522 .lock = am3352_rtc_lock,
523 .unlock = am3352_rtc_unlock,
524};
525
526static const struct omap_rtc_device_type omap_rtc_da830_type = {
527 .lock = am3352_rtc_lock,
528 .unlock = am3352_rtc_unlock,
529};
530
531static const struct platform_device_id omap_rtc_id_table[] = {
532 {
533 .name = "omap_rtc",
534 .driver_data = (kernel_ulong_t)&omap_rtc_default_type,
535 }, {
536 .name = "am3352-rtc",
537 .driver_data = (kernel_ulong_t)&omap_rtc_am3352_type,
538 }, {
539 .name = "da830-rtc",
540 .driver_data = (kernel_ulong_t)&omap_rtc_da830_type,
541 }, {
542 /* sentinel */
543 }
544};
545MODULE_DEVICE_TABLE(platform, omap_rtc_id_table);
546
547static const struct of_device_id omap_rtc_of_match[] = {
548 {
549 .compatible = "ti,am3352-rtc",
550 .data = &omap_rtc_am3352_type,
551 }, {
552 .compatible = "ti,da830-rtc",
553 .data = &omap_rtc_da830_type,
554 }, {
555 /* sentinel */
556 }
557};
558MODULE_DEVICE_TABLE(of, omap_rtc_of_match);
559
560static const struct pinctrl_pin_desc rtc_pins_desc[] = {
561 PINCTRL_PIN(0, "ext_wakeup0"),
562 PINCTRL_PIN(1, "ext_wakeup1"),
563 PINCTRL_PIN(2, "ext_wakeup2"),
564 PINCTRL_PIN(3, "ext_wakeup3"),
565};
566
567static int rtc_pinctrl_get_groups_count(struct pinctrl_dev *pctldev)
568{
569 return 0;
570}
571
572static const char *rtc_pinctrl_get_group_name(struct pinctrl_dev *pctldev,
573 unsigned int group)
574{
575 return NULL;
576}
577
578static const struct pinctrl_ops rtc_pinctrl_ops = {
579 .get_groups_count = rtc_pinctrl_get_groups_count,
580 .get_group_name = rtc_pinctrl_get_group_name,
581 .dt_node_to_map = pinconf_generic_dt_node_to_map_pin,
582 .dt_free_map = pinconf_generic_dt_free_map,
583};
584
585#define PIN_CONFIG_ACTIVE_HIGH (PIN_CONFIG_END + 1)
586
587static const struct pinconf_generic_params rtc_params[] = {
588 {"ti,active-high", PIN_CONFIG_ACTIVE_HIGH, 0},
589};
590
591#ifdef CONFIG_DEBUG_FS
592static const struct pin_config_item rtc_conf_items[ARRAY_SIZE(rtc_params)] = {
593 PCONFDUMP(PIN_CONFIG_ACTIVE_HIGH, "input active high", NULL, false),
594};
595#endif
596
597static int rtc_pinconf_get(struct pinctrl_dev *pctldev,
598 unsigned int pin, unsigned long *config)
599{
600 struct omap_rtc *rtc = pinctrl_dev_get_drvdata(pctldev);
601 unsigned int param = pinconf_to_config_param(*config);
602 u32 val;
603 u16 arg = 0;
604
605 val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
606
607 switch (param) {
608 case PIN_CONFIG_INPUT_ENABLE:
609 if (!(val & OMAP_RTC_PMIC_EXT_WKUP_EN(pin)))
610 return -EINVAL;
611 break;
612 case PIN_CONFIG_ACTIVE_HIGH:
613 if (val & OMAP_RTC_PMIC_EXT_WKUP_POL(pin))
614 return -EINVAL;
615 break;
616 default:
617 return -ENOTSUPP;
618 }
619
620 *config = pinconf_to_config_packed(param, arg);
621
622 return 0;
623}
624
625static int rtc_pinconf_set(struct pinctrl_dev *pctldev,
626 unsigned int pin, unsigned long *configs,
627 unsigned int num_configs)
628{
629 struct omap_rtc *rtc = pinctrl_dev_get_drvdata(pctldev);
630 u32 val;
631 unsigned int param;
632 u32 param_val;
633 int i;
634
635 val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
636
637 /* active low by default */
638 val |= OMAP_RTC_PMIC_EXT_WKUP_POL(pin);
639
640 for (i = 0; i < num_configs; i++) {
641 param = pinconf_to_config_param(configs[i]);
642 param_val = pinconf_to_config_argument(configs[i]);
643
644 switch (param) {
645 case PIN_CONFIG_INPUT_ENABLE:
646 if (param_val)
647 val |= OMAP_RTC_PMIC_EXT_WKUP_EN(pin);
648 else
649 val &= ~OMAP_RTC_PMIC_EXT_WKUP_EN(pin);
650 break;
651 case PIN_CONFIG_ACTIVE_HIGH:
652 val &= ~OMAP_RTC_PMIC_EXT_WKUP_POL(pin);
653 break;
654 default:
655 dev_err(&rtc->rtc->dev, "Property %u not supported\n",
656 param);
657 return -ENOTSUPP;
658 }
659 }
660
661 rtc->type->unlock(rtc);
662 rtc_writel(rtc, OMAP_RTC_PMIC_REG, val);
663 rtc->type->lock(rtc);
664
665 return 0;
666}
667
668static const struct pinconf_ops rtc_pinconf_ops = {
669 .is_generic = true,
670 .pin_config_get = rtc_pinconf_get,
671 .pin_config_set = rtc_pinconf_set,
672};
673
674static struct pinctrl_desc rtc_pinctrl_desc = {
675 .pins = rtc_pins_desc,
676 .npins = ARRAY_SIZE(rtc_pins_desc),
677 .pctlops = &rtc_pinctrl_ops,
678 .confops = &rtc_pinconf_ops,
679 .custom_params = rtc_params,
680 .num_custom_params = ARRAY_SIZE(rtc_params),
681#ifdef CONFIG_DEBUG_FS
682 .custom_conf_items = rtc_conf_items,
683#endif
684 .owner = THIS_MODULE,
685};
686
687static int omap_rtc_scratch_read(void *priv, unsigned int offset, void *_val,
688 size_t bytes)
689{
690 struct omap_rtc *rtc = priv;
691 u32 *val = _val;
692 int i;
693
694 for (i = 0; i < bytes / 4; i++)
695 val[i] = rtc_readl(rtc,
696 OMAP_RTC_SCRATCH0_REG + offset + (i * 4));
697
698 return 0;
699}
700
701static int omap_rtc_scratch_write(void *priv, unsigned int offset, void *_val,
702 size_t bytes)
703{
704 struct omap_rtc *rtc = priv;
705 u32 *val = _val;
706 int i;
707
708 rtc->type->unlock(rtc);
709 for (i = 0; i < bytes / 4; i++)
710 rtc_writel(rtc,
711 OMAP_RTC_SCRATCH0_REG + offset + (i * 4), val[i]);
712 rtc->type->lock(rtc);
713
714 return 0;
715}
716
717static struct nvmem_config omap_rtc_nvmem_config = {
718 .name = "omap_rtc_scratch",
719 .word_size = 4,
720 .stride = 4,
721 .size = OMAP_RTC_KICK0_REG - OMAP_RTC_SCRATCH0_REG,
722 .reg_read = omap_rtc_scratch_read,
723 .reg_write = omap_rtc_scratch_write,
724};
725
726static int omap_rtc_probe(struct platform_device *pdev)
727{
728 struct omap_rtc *rtc;
729 u8 reg, mask, new_ctrl;
730 const struct platform_device_id *id_entry;
731 const struct of_device_id *of_id;
732 int ret;
733
734 rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
735 if (!rtc)
736 return -ENOMEM;
737
738 of_id = of_match_device(omap_rtc_of_match, &pdev->dev);
739 if (of_id) {
740 rtc->type = of_id->data;
741 rtc->is_pmic_controller = rtc->type->has_pmic_mode &&
742 of_device_is_system_power_controller(pdev->dev.of_node);
743 } else {
744 id_entry = platform_get_device_id(pdev);
745 rtc->type = (void *)id_entry->driver_data;
746 }
747
748 rtc->irq_timer = platform_get_irq(pdev, 0);
749 if (rtc->irq_timer <= 0)
750 return -ENOENT;
751
752 rtc->irq_alarm = platform_get_irq(pdev, 1);
753 if (rtc->irq_alarm <= 0)
754 return -ENOENT;
755
756 rtc->clk = devm_clk_get(&pdev->dev, "ext-clk");
757 if (!IS_ERR(rtc->clk))
758 rtc->has_ext_clk = true;
759 else
760 rtc->clk = devm_clk_get(&pdev->dev, "int-clk");
761
762 if (!IS_ERR(rtc->clk))
763 clk_prepare_enable(rtc->clk);
764
765 rtc->base = devm_platform_ioremap_resource(pdev, 0);
766 if (IS_ERR(rtc->base)) {
767 clk_disable_unprepare(rtc->clk);
768 return PTR_ERR(rtc->base);
769 }
770
771 platform_set_drvdata(pdev, rtc);
772
773 /* Enable the clock/module so that we can access the registers */
774 pm_runtime_enable(&pdev->dev);
775 pm_runtime_get_sync(&pdev->dev);
776
777 rtc->type->unlock(rtc);
778
779 /*
780 * disable interrupts
781 *
782 * NOTE: ALARM2 is not cleared on AM3352 if rtc_write (writeb) is used
783 */
784 rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
785
786 /* enable RTC functional clock */
787 if (rtc->type->has_32kclk_en) {
788 reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
789 rtc_write(rtc, OMAP_RTC_OSC_REG, reg | OMAP_RTC_OSC_32KCLK_EN);
790 }
791
792 /* clear old status */
793 reg = rtc_read(rtc, OMAP_RTC_STATUS_REG);
794
795 mask = OMAP_RTC_STATUS_ALARM;
796
797 if (rtc->type->has_pmic_mode)
798 mask |= OMAP_RTC_STATUS_ALARM2;
799
800 if (rtc->type->has_power_up_reset) {
801 mask |= OMAP_RTC_STATUS_POWER_UP;
802 if (reg & OMAP_RTC_STATUS_POWER_UP)
803 dev_info(&pdev->dev, "RTC power up reset detected\n");
804 }
805
806 if (reg & mask)
807 rtc_write(rtc, OMAP_RTC_STATUS_REG, reg & mask);
808
809 /* On boards with split power, RTC_ON_NOFF won't reset the RTC */
810 reg = rtc_read(rtc, OMAP_RTC_CTRL_REG);
811 if (reg & OMAP_RTC_CTRL_STOP)
812 dev_info(&pdev->dev, "already running\n");
813
814 /* force to 24 hour mode */
815 new_ctrl = reg & (OMAP_RTC_CTRL_SPLIT | OMAP_RTC_CTRL_AUTO_COMP);
816 new_ctrl |= OMAP_RTC_CTRL_STOP;
817
818 /*
819 * BOARD-SPECIFIC CUSTOMIZATION CAN GO HERE:
820 *
821 * - Device wake-up capability setting should come through chip
822 * init logic. OMAP1 boards should initialize the "wakeup capable"
823 * flag in the platform device if the board is wired right for
824 * being woken up by RTC alarm. For OMAP-L138, this capability
825 * is built into the SoC by the "Deep Sleep" capability.
826 *
827 * - Boards wired so RTC_ON_nOFF is used as the reset signal,
828 * rather than nPWRON_RESET, should forcibly enable split
829 * power mode. (Some chip errata report that RTC_CTRL_SPLIT
830 * is write-only, and always reads as zero...)
831 */
832
833 if (new_ctrl & OMAP_RTC_CTRL_SPLIT)
834 dev_info(&pdev->dev, "split power mode\n");
835
836 if (reg != new_ctrl)
837 rtc_write(rtc, OMAP_RTC_CTRL_REG, new_ctrl);
838
839 /*
840 * If we have the external clock then switch to it so we can keep
841 * ticking across suspend.
842 */
843 if (rtc->has_ext_clk) {
844 reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
845 reg &= ~OMAP_RTC_OSC_OSC32K_GZ_DISABLE;
846 reg |= OMAP_RTC_OSC_32KCLK_EN | OMAP_RTC_OSC_SEL_32KCLK_SRC;
847 rtc_write(rtc, OMAP_RTC_OSC_REG, reg);
848 }
849
850 rtc->type->lock(rtc);
851
852 device_init_wakeup(&pdev->dev, true);
853
854 rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
855 if (IS_ERR(rtc->rtc)) {
856 ret = PTR_ERR(rtc->rtc);
857 goto err;
858 }
859
860 rtc->rtc->ops = &omap_rtc_ops;
861 rtc->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
862 rtc->rtc->range_max = RTC_TIMESTAMP_END_2099;
863 omap_rtc_nvmem_config.priv = rtc;
864
865 /* handle periodic and alarm irqs */
866 ret = devm_request_irq(&pdev->dev, rtc->irq_timer, rtc_irq, 0,
867 dev_name(&rtc->rtc->dev), rtc);
868 if (ret)
869 goto err;
870
871 if (rtc->irq_timer != rtc->irq_alarm) {
872 ret = devm_request_irq(&pdev->dev, rtc->irq_alarm, rtc_irq, 0,
873 dev_name(&rtc->rtc->dev), rtc);
874 if (ret)
875 goto err;
876 }
877
878 /* Support ext_wakeup pinconf */
879 rtc_pinctrl_desc.name = dev_name(&pdev->dev);
880
881 rtc->pctldev = devm_pinctrl_register(&pdev->dev, &rtc_pinctrl_desc, rtc);
882 if (IS_ERR(rtc->pctldev)) {
883 dev_err(&pdev->dev, "Couldn't register pinctrl driver\n");
884 ret = PTR_ERR(rtc->pctldev);
885 goto err;
886 }
887
888 ret = devm_rtc_register_device(rtc->rtc);
889 if (ret)
890 goto err;
891
892 devm_rtc_nvmem_register(rtc->rtc, &omap_rtc_nvmem_config);
893
894 if (rtc->is_pmic_controller) {
895 if (!pm_power_off) {
896 omap_rtc_power_off_rtc = rtc;
897 pm_power_off = omap_rtc_power_off;
898 }
899 }
900
901 return 0;
902
903err:
904 clk_disable_unprepare(rtc->clk);
905 device_init_wakeup(&pdev->dev, false);
906 rtc->type->lock(rtc);
907 pm_runtime_put_sync(&pdev->dev);
908 pm_runtime_disable(&pdev->dev);
909
910 return ret;
911}
912
913static int omap_rtc_remove(struct platform_device *pdev)
914{
915 struct omap_rtc *rtc = platform_get_drvdata(pdev);
916 u8 reg;
917
918 if (pm_power_off == omap_rtc_power_off &&
919 omap_rtc_power_off_rtc == rtc) {
920 pm_power_off = NULL;
921 omap_rtc_power_off_rtc = NULL;
922 }
923
924 device_init_wakeup(&pdev->dev, 0);
925
926 if (!IS_ERR(rtc->clk))
927 clk_disable_unprepare(rtc->clk);
928
929 rtc->type->unlock(rtc);
930 /* leave rtc running, but disable irqs */
931 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
932
933 if (rtc->has_ext_clk) {
934 reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
935 reg &= ~OMAP_RTC_OSC_SEL_32KCLK_SRC;
936 rtc_write(rtc, OMAP_RTC_OSC_REG, reg);
937 }
938
939 rtc->type->lock(rtc);
940
941 /* Disable the clock/module */
942 pm_runtime_put_sync(&pdev->dev);
943 pm_runtime_disable(&pdev->dev);
944
945 return 0;
946}
947
948static int __maybe_unused omap_rtc_suspend(struct device *dev)
949{
950 struct omap_rtc *rtc = dev_get_drvdata(dev);
951
952 rtc->interrupts_reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
953
954 rtc->type->unlock(rtc);
955 /*
956 * FIXME: the RTC alarm is not currently acting as a wakeup event
957 * source on some platforms, and in fact this enable() call is just
958 * saving a flag that's never used...
959 */
960 if (device_may_wakeup(dev))
961 enable_irq_wake(rtc->irq_alarm);
962 else
963 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
964 rtc->type->lock(rtc);
965
966 rtc->is_suspending = true;
967
968 return 0;
969}
970
971static int __maybe_unused omap_rtc_resume(struct device *dev)
972{
973 struct omap_rtc *rtc = dev_get_drvdata(dev);
974
975 rtc->type->unlock(rtc);
976 if (device_may_wakeup(dev))
977 disable_irq_wake(rtc->irq_alarm);
978 else
979 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, rtc->interrupts_reg);
980 rtc->type->lock(rtc);
981
982 rtc->is_suspending = false;
983
984 return 0;
985}
986
987static int __maybe_unused omap_rtc_runtime_suspend(struct device *dev)
988{
989 struct omap_rtc *rtc = dev_get_drvdata(dev);
990
991 if (rtc->is_suspending && !rtc->has_ext_clk)
992 return -EBUSY;
993
994 return 0;
995}
996
997static const struct dev_pm_ops omap_rtc_pm_ops = {
998 SET_SYSTEM_SLEEP_PM_OPS(omap_rtc_suspend, omap_rtc_resume)
999 SET_RUNTIME_PM_OPS(omap_rtc_runtime_suspend, NULL, NULL)
1000};
1001
1002static void omap_rtc_shutdown(struct platform_device *pdev)
1003{
1004 struct omap_rtc *rtc = platform_get_drvdata(pdev);
1005 u8 mask;
1006
1007 /*
1008 * Keep the ALARM interrupt enabled to allow the system to power up on
1009 * alarm events.
1010 */
1011 rtc->type->unlock(rtc);
1012 mask = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
1013 mask &= OMAP_RTC_INTERRUPTS_IT_ALARM;
1014 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, mask);
1015 rtc->type->lock(rtc);
1016}
1017
1018static struct platform_driver omap_rtc_driver = {
1019 .probe = omap_rtc_probe,
1020 .remove = omap_rtc_remove,
1021 .shutdown = omap_rtc_shutdown,
1022 .driver = {
1023 .name = "omap_rtc",
1024 .pm = &omap_rtc_pm_ops,
1025 .of_match_table = omap_rtc_of_match,
1026 },
1027 .id_table = omap_rtc_id_table,
1028};
1029
1030module_platform_driver(omap_rtc_driver);
1031
1032MODULE_AUTHOR("George G. Davis (and others)");
1033MODULE_LICENSE("GPL");
1/*
2 * TI OMAP Real Time Clock interface for Linux
3 *
4 * Copyright (C) 2003 MontaVista Software, Inc.
5 * Author: George G. Davis <gdavis@mvista.com> or <source@mvista.com>
6 *
7 * Copyright (C) 2006 David Brownell (new RTC framework)
8 * Copyright (C) 2014 Johan Hovold <johan@kernel.org>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 */
15
16#include <dt-bindings/gpio/gpio.h>
17#include <linux/bcd.h>
18#include <linux/clk.h>
19#include <linux/delay.h>
20#include <linux/init.h>
21#include <linux/io.h>
22#include <linux/ioport.h>
23#include <linux/kernel.h>
24#include <linux/module.h>
25#include <linux/of.h>
26#include <linux/of_device.h>
27#include <linux/pinctrl/pinctrl.h>
28#include <linux/pinctrl/pinconf.h>
29#include <linux/pinctrl/pinconf-generic.h>
30#include <linux/platform_device.h>
31#include <linux/pm_runtime.h>
32#include <linux/rtc.h>
33
34/*
35 * The OMAP RTC is a year/month/day/hours/minutes/seconds BCD clock
36 * with century-range alarm matching, driven by the 32kHz clock.
37 *
38 * The main user-visible ways it differs from PC RTCs are by omitting
39 * "don't care" alarm fields and sub-second periodic IRQs, and having
40 * an autoadjust mechanism to calibrate to the true oscillator rate.
41 *
42 * Board-specific wiring options include using split power mode with
43 * RTC_OFF_NOFF used as the reset signal (so the RTC won't be reset),
44 * and wiring RTC_WAKE_INT (so the RTC alarm can wake the system from
45 * low power modes) for OMAP1 boards (OMAP-L138 has this built into
46 * the SoC). See the BOARD-SPECIFIC CUSTOMIZATION comment.
47 */
48
49/* RTC registers */
50#define OMAP_RTC_SECONDS_REG 0x00
51#define OMAP_RTC_MINUTES_REG 0x04
52#define OMAP_RTC_HOURS_REG 0x08
53#define OMAP_RTC_DAYS_REG 0x0C
54#define OMAP_RTC_MONTHS_REG 0x10
55#define OMAP_RTC_YEARS_REG 0x14
56#define OMAP_RTC_WEEKS_REG 0x18
57
58#define OMAP_RTC_ALARM_SECONDS_REG 0x20
59#define OMAP_RTC_ALARM_MINUTES_REG 0x24
60#define OMAP_RTC_ALARM_HOURS_REG 0x28
61#define OMAP_RTC_ALARM_DAYS_REG 0x2c
62#define OMAP_RTC_ALARM_MONTHS_REG 0x30
63#define OMAP_RTC_ALARM_YEARS_REG 0x34
64
65#define OMAP_RTC_CTRL_REG 0x40
66#define OMAP_RTC_STATUS_REG 0x44
67#define OMAP_RTC_INTERRUPTS_REG 0x48
68
69#define OMAP_RTC_COMP_LSB_REG 0x4c
70#define OMAP_RTC_COMP_MSB_REG 0x50
71#define OMAP_RTC_OSC_REG 0x54
72
73#define OMAP_RTC_SCRATCH0_REG 0x60
74#define OMAP_RTC_SCRATCH1_REG 0x64
75#define OMAP_RTC_SCRATCH2_REG 0x68
76
77#define OMAP_RTC_KICK0_REG 0x6c
78#define OMAP_RTC_KICK1_REG 0x70
79
80#define OMAP_RTC_IRQWAKEEN 0x7c
81
82#define OMAP_RTC_ALARM2_SECONDS_REG 0x80
83#define OMAP_RTC_ALARM2_MINUTES_REG 0x84
84#define OMAP_RTC_ALARM2_HOURS_REG 0x88
85#define OMAP_RTC_ALARM2_DAYS_REG 0x8c
86#define OMAP_RTC_ALARM2_MONTHS_REG 0x90
87#define OMAP_RTC_ALARM2_YEARS_REG 0x94
88
89#define OMAP_RTC_PMIC_REG 0x98
90
91/* OMAP_RTC_CTRL_REG bit fields: */
92#define OMAP_RTC_CTRL_SPLIT BIT(7)
93#define OMAP_RTC_CTRL_DISABLE BIT(6)
94#define OMAP_RTC_CTRL_SET_32_COUNTER BIT(5)
95#define OMAP_RTC_CTRL_TEST BIT(4)
96#define OMAP_RTC_CTRL_MODE_12_24 BIT(3)
97#define OMAP_RTC_CTRL_AUTO_COMP BIT(2)
98#define OMAP_RTC_CTRL_ROUND_30S BIT(1)
99#define OMAP_RTC_CTRL_STOP BIT(0)
100
101/* OMAP_RTC_STATUS_REG bit fields: */
102#define OMAP_RTC_STATUS_POWER_UP BIT(7)
103#define OMAP_RTC_STATUS_ALARM2 BIT(7)
104#define OMAP_RTC_STATUS_ALARM BIT(6)
105#define OMAP_RTC_STATUS_1D_EVENT BIT(5)
106#define OMAP_RTC_STATUS_1H_EVENT BIT(4)
107#define OMAP_RTC_STATUS_1M_EVENT BIT(3)
108#define OMAP_RTC_STATUS_1S_EVENT BIT(2)
109#define OMAP_RTC_STATUS_RUN BIT(1)
110#define OMAP_RTC_STATUS_BUSY BIT(0)
111
112/* OMAP_RTC_INTERRUPTS_REG bit fields: */
113#define OMAP_RTC_INTERRUPTS_IT_ALARM2 BIT(4)
114#define OMAP_RTC_INTERRUPTS_IT_ALARM BIT(3)
115#define OMAP_RTC_INTERRUPTS_IT_TIMER BIT(2)
116
117/* OMAP_RTC_OSC_REG bit fields: */
118#define OMAP_RTC_OSC_32KCLK_EN BIT(6)
119#define OMAP_RTC_OSC_SEL_32KCLK_SRC BIT(3)
120#define OMAP_RTC_OSC_OSC32K_GZ_DISABLE BIT(4)
121
122/* OMAP_RTC_IRQWAKEEN bit fields: */
123#define OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN BIT(1)
124
125/* OMAP_RTC_PMIC bit fields: */
126#define OMAP_RTC_PMIC_POWER_EN_EN BIT(16)
127#define OMAP_RTC_PMIC_EXT_WKUP_EN(x) BIT(x)
128#define OMAP_RTC_PMIC_EXT_WKUP_POL(x) BIT(4 + x)
129
130/* OMAP_RTC_KICKER values */
131#define KICK0_VALUE 0x83e70b13
132#define KICK1_VALUE 0x95a4f1e0
133
134struct omap_rtc;
135
136struct omap_rtc_device_type {
137 bool has_32kclk_en;
138 bool has_irqwakeen;
139 bool has_pmic_mode;
140 bool has_power_up_reset;
141 void (*lock)(struct omap_rtc *rtc);
142 void (*unlock)(struct omap_rtc *rtc);
143};
144
145struct omap_rtc {
146 struct rtc_device *rtc;
147 void __iomem *base;
148 struct clk *clk;
149 int irq_alarm;
150 int irq_timer;
151 u8 interrupts_reg;
152 bool is_pmic_controller;
153 bool has_ext_clk;
154 bool is_suspending;
155 const struct omap_rtc_device_type *type;
156 struct pinctrl_dev *pctldev;
157};
158
159static inline u8 rtc_read(struct omap_rtc *rtc, unsigned int reg)
160{
161 return readb(rtc->base + reg);
162}
163
164static inline u32 rtc_readl(struct omap_rtc *rtc, unsigned int reg)
165{
166 return readl(rtc->base + reg);
167}
168
169static inline void rtc_write(struct omap_rtc *rtc, unsigned int reg, u8 val)
170{
171 writeb(val, rtc->base + reg);
172}
173
174static inline void rtc_writel(struct omap_rtc *rtc, unsigned int reg, u32 val)
175{
176 writel(val, rtc->base + reg);
177}
178
179static void am3352_rtc_unlock(struct omap_rtc *rtc)
180{
181 rtc_writel(rtc, OMAP_RTC_KICK0_REG, KICK0_VALUE);
182 rtc_writel(rtc, OMAP_RTC_KICK1_REG, KICK1_VALUE);
183}
184
185static void am3352_rtc_lock(struct omap_rtc *rtc)
186{
187 rtc_writel(rtc, OMAP_RTC_KICK0_REG, 0);
188 rtc_writel(rtc, OMAP_RTC_KICK1_REG, 0);
189}
190
191static void default_rtc_unlock(struct omap_rtc *rtc)
192{
193}
194
195static void default_rtc_lock(struct omap_rtc *rtc)
196{
197}
198
199/*
200 * We rely on the rtc framework to handle locking (rtc->ops_lock),
201 * so the only other requirement is that register accesses which
202 * require BUSY to be clear are made with IRQs locally disabled
203 */
204static void rtc_wait_not_busy(struct omap_rtc *rtc)
205{
206 int count;
207 u8 status;
208
209 /* BUSY may stay active for 1/32768 second (~30 usec) */
210 for (count = 0; count < 50; count++) {
211 status = rtc_read(rtc, OMAP_RTC_STATUS_REG);
212 if (!(status & OMAP_RTC_STATUS_BUSY))
213 break;
214 udelay(1);
215 }
216 /* now we have ~15 usec to read/write various registers */
217}
218
219static irqreturn_t rtc_irq(int irq, void *dev_id)
220{
221 struct omap_rtc *rtc = dev_id;
222 unsigned long events = 0;
223 u8 irq_data;
224
225 irq_data = rtc_read(rtc, OMAP_RTC_STATUS_REG);
226
227 /* alarm irq? */
228 if (irq_data & OMAP_RTC_STATUS_ALARM) {
229 rtc->type->unlock(rtc);
230 rtc_write(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM);
231 rtc->type->lock(rtc);
232 events |= RTC_IRQF | RTC_AF;
233 }
234
235 /* 1/sec periodic/update irq? */
236 if (irq_data & OMAP_RTC_STATUS_1S_EVENT)
237 events |= RTC_IRQF | RTC_UF;
238
239 rtc_update_irq(rtc->rtc, 1, events);
240
241 return IRQ_HANDLED;
242}
243
244static int omap_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
245{
246 struct omap_rtc *rtc = dev_get_drvdata(dev);
247 u8 reg, irqwake_reg = 0;
248
249 local_irq_disable();
250 rtc_wait_not_busy(rtc);
251 reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
252 if (rtc->type->has_irqwakeen)
253 irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
254
255 if (enabled) {
256 reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
257 irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
258 } else {
259 reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
260 irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
261 }
262 rtc_wait_not_busy(rtc);
263 rtc->type->unlock(rtc);
264 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
265 if (rtc->type->has_irqwakeen)
266 rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
267 rtc->type->lock(rtc);
268 local_irq_enable();
269
270 return 0;
271}
272
273/* this hardware doesn't support "don't care" alarm fields */
274static int tm2bcd(struct rtc_time *tm)
275{
276 tm->tm_sec = bin2bcd(tm->tm_sec);
277 tm->tm_min = bin2bcd(tm->tm_min);
278 tm->tm_hour = bin2bcd(tm->tm_hour);
279 tm->tm_mday = bin2bcd(tm->tm_mday);
280
281 tm->tm_mon = bin2bcd(tm->tm_mon + 1);
282
283 /* epoch == 1900 */
284 if (tm->tm_year < 100 || tm->tm_year > 199)
285 return -EINVAL;
286 tm->tm_year = bin2bcd(tm->tm_year - 100);
287
288 return 0;
289}
290
291static void bcd2tm(struct rtc_time *tm)
292{
293 tm->tm_sec = bcd2bin(tm->tm_sec);
294 tm->tm_min = bcd2bin(tm->tm_min);
295 tm->tm_hour = bcd2bin(tm->tm_hour);
296 tm->tm_mday = bcd2bin(tm->tm_mday);
297 tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
298 /* epoch == 1900 */
299 tm->tm_year = bcd2bin(tm->tm_year) + 100;
300}
301
302static void omap_rtc_read_time_raw(struct omap_rtc *rtc, struct rtc_time *tm)
303{
304 tm->tm_sec = rtc_read(rtc, OMAP_RTC_SECONDS_REG);
305 tm->tm_min = rtc_read(rtc, OMAP_RTC_MINUTES_REG);
306 tm->tm_hour = rtc_read(rtc, OMAP_RTC_HOURS_REG);
307 tm->tm_mday = rtc_read(rtc, OMAP_RTC_DAYS_REG);
308 tm->tm_mon = rtc_read(rtc, OMAP_RTC_MONTHS_REG);
309 tm->tm_year = rtc_read(rtc, OMAP_RTC_YEARS_REG);
310}
311
312static int omap_rtc_read_time(struct device *dev, struct rtc_time *tm)
313{
314 struct omap_rtc *rtc = dev_get_drvdata(dev);
315
316 /* we don't report wday/yday/isdst ... */
317 local_irq_disable();
318 rtc_wait_not_busy(rtc);
319 omap_rtc_read_time_raw(rtc, tm);
320 local_irq_enable();
321
322 bcd2tm(tm);
323
324 return 0;
325}
326
327static int omap_rtc_set_time(struct device *dev, struct rtc_time *tm)
328{
329 struct omap_rtc *rtc = dev_get_drvdata(dev);
330
331 if (tm2bcd(tm) < 0)
332 return -EINVAL;
333
334 local_irq_disable();
335 rtc_wait_not_busy(rtc);
336
337 rtc->type->unlock(rtc);
338 rtc_write(rtc, OMAP_RTC_YEARS_REG, tm->tm_year);
339 rtc_write(rtc, OMAP_RTC_MONTHS_REG, tm->tm_mon);
340 rtc_write(rtc, OMAP_RTC_DAYS_REG, tm->tm_mday);
341 rtc_write(rtc, OMAP_RTC_HOURS_REG, tm->tm_hour);
342 rtc_write(rtc, OMAP_RTC_MINUTES_REG, tm->tm_min);
343 rtc_write(rtc, OMAP_RTC_SECONDS_REG, tm->tm_sec);
344 rtc->type->lock(rtc);
345
346 local_irq_enable();
347
348 return 0;
349}
350
351static int omap_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
352{
353 struct omap_rtc *rtc = dev_get_drvdata(dev);
354 u8 interrupts;
355
356 local_irq_disable();
357 rtc_wait_not_busy(rtc);
358
359 alm->time.tm_sec = rtc_read(rtc, OMAP_RTC_ALARM_SECONDS_REG);
360 alm->time.tm_min = rtc_read(rtc, OMAP_RTC_ALARM_MINUTES_REG);
361 alm->time.tm_hour = rtc_read(rtc, OMAP_RTC_ALARM_HOURS_REG);
362 alm->time.tm_mday = rtc_read(rtc, OMAP_RTC_ALARM_DAYS_REG);
363 alm->time.tm_mon = rtc_read(rtc, OMAP_RTC_ALARM_MONTHS_REG);
364 alm->time.tm_year = rtc_read(rtc, OMAP_RTC_ALARM_YEARS_REG);
365
366 local_irq_enable();
367
368 bcd2tm(&alm->time);
369
370 interrupts = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
371 alm->enabled = !!(interrupts & OMAP_RTC_INTERRUPTS_IT_ALARM);
372
373 return 0;
374}
375
376static int omap_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
377{
378 struct omap_rtc *rtc = dev_get_drvdata(dev);
379 u8 reg, irqwake_reg = 0;
380
381 if (tm2bcd(&alm->time) < 0)
382 return -EINVAL;
383
384 local_irq_disable();
385 rtc_wait_not_busy(rtc);
386
387 rtc->type->unlock(rtc);
388 rtc_write(rtc, OMAP_RTC_ALARM_YEARS_REG, alm->time.tm_year);
389 rtc_write(rtc, OMAP_RTC_ALARM_MONTHS_REG, alm->time.tm_mon);
390 rtc_write(rtc, OMAP_RTC_ALARM_DAYS_REG, alm->time.tm_mday);
391 rtc_write(rtc, OMAP_RTC_ALARM_HOURS_REG, alm->time.tm_hour);
392 rtc_write(rtc, OMAP_RTC_ALARM_MINUTES_REG, alm->time.tm_min);
393 rtc_write(rtc, OMAP_RTC_ALARM_SECONDS_REG, alm->time.tm_sec);
394
395 reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
396 if (rtc->type->has_irqwakeen)
397 irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
398
399 if (alm->enabled) {
400 reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
401 irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
402 } else {
403 reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
404 irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
405 }
406 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
407 if (rtc->type->has_irqwakeen)
408 rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
409 rtc->type->lock(rtc);
410
411 local_irq_enable();
412
413 return 0;
414}
415
416static struct omap_rtc *omap_rtc_power_off_rtc;
417
418/*
419 * omap_rtc_poweroff: RTC-controlled power off
420 *
421 * The RTC can be used to control an external PMIC via the pmic_power_en pin,
422 * which can be configured to transition to OFF on ALARM2 events.
423 *
424 * Notes:
425 * The two-second alarm offset is the shortest offset possible as the alarm
426 * registers must be set before the next timer update and the offset
427 * calculation is too heavy for everything to be done within a single access
428 * period (~15 us).
429 *
430 * Called with local interrupts disabled.
431 */
432static void omap_rtc_power_off(void)
433{
434 struct omap_rtc *rtc = omap_rtc_power_off_rtc;
435 struct rtc_time tm;
436 unsigned long now;
437 u32 val;
438
439 rtc->type->unlock(rtc);
440 /* enable pmic_power_en control */
441 val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
442 rtc_writel(rtc, OMAP_RTC_PMIC_REG, val | OMAP_RTC_PMIC_POWER_EN_EN);
443
444 /* set alarm two seconds from now */
445 omap_rtc_read_time_raw(rtc, &tm);
446 bcd2tm(&tm);
447 rtc_tm_to_time(&tm, &now);
448 rtc_time_to_tm(now + 2, &tm);
449
450 if (tm2bcd(&tm) < 0) {
451 dev_err(&rtc->rtc->dev, "power off failed\n");
452 return;
453 }
454
455 rtc_wait_not_busy(rtc);
456
457 rtc_write(rtc, OMAP_RTC_ALARM2_SECONDS_REG, tm.tm_sec);
458 rtc_write(rtc, OMAP_RTC_ALARM2_MINUTES_REG, tm.tm_min);
459 rtc_write(rtc, OMAP_RTC_ALARM2_HOURS_REG, tm.tm_hour);
460 rtc_write(rtc, OMAP_RTC_ALARM2_DAYS_REG, tm.tm_mday);
461 rtc_write(rtc, OMAP_RTC_ALARM2_MONTHS_REG, tm.tm_mon);
462 rtc_write(rtc, OMAP_RTC_ALARM2_YEARS_REG, tm.tm_year);
463
464 /*
465 * enable ALARM2 interrupt
466 *
467 * NOTE: this fails on AM3352 if rtc_write (writeb) is used
468 */
469 val = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
470 rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG,
471 val | OMAP_RTC_INTERRUPTS_IT_ALARM2);
472 rtc->type->lock(rtc);
473
474 /*
475 * Wait for alarm to trigger (within two seconds) and external PMIC to
476 * power off the system. Add a 500 ms margin for external latencies
477 * (e.g. debounce circuits).
478 */
479 mdelay(2500);
480}
481
482static const struct rtc_class_ops omap_rtc_ops = {
483 .read_time = omap_rtc_read_time,
484 .set_time = omap_rtc_set_time,
485 .read_alarm = omap_rtc_read_alarm,
486 .set_alarm = omap_rtc_set_alarm,
487 .alarm_irq_enable = omap_rtc_alarm_irq_enable,
488};
489
490static const struct omap_rtc_device_type omap_rtc_default_type = {
491 .has_power_up_reset = true,
492 .lock = default_rtc_lock,
493 .unlock = default_rtc_unlock,
494};
495
496static const struct omap_rtc_device_type omap_rtc_am3352_type = {
497 .has_32kclk_en = true,
498 .has_irqwakeen = true,
499 .has_pmic_mode = true,
500 .lock = am3352_rtc_lock,
501 .unlock = am3352_rtc_unlock,
502};
503
504static const struct omap_rtc_device_type omap_rtc_da830_type = {
505 .lock = am3352_rtc_lock,
506 .unlock = am3352_rtc_unlock,
507};
508
509static const struct platform_device_id omap_rtc_id_table[] = {
510 {
511 .name = "omap_rtc",
512 .driver_data = (kernel_ulong_t)&omap_rtc_default_type,
513 }, {
514 .name = "am3352-rtc",
515 .driver_data = (kernel_ulong_t)&omap_rtc_am3352_type,
516 }, {
517 .name = "da830-rtc",
518 .driver_data = (kernel_ulong_t)&omap_rtc_da830_type,
519 }, {
520 /* sentinel */
521 }
522};
523MODULE_DEVICE_TABLE(platform, omap_rtc_id_table);
524
525static const struct of_device_id omap_rtc_of_match[] = {
526 {
527 .compatible = "ti,am3352-rtc",
528 .data = &omap_rtc_am3352_type,
529 }, {
530 .compatible = "ti,da830-rtc",
531 .data = &omap_rtc_da830_type,
532 }, {
533 /* sentinel */
534 }
535};
536MODULE_DEVICE_TABLE(of, omap_rtc_of_match);
537
538static const struct pinctrl_pin_desc rtc_pins_desc[] = {
539 PINCTRL_PIN(0, "ext_wakeup0"),
540 PINCTRL_PIN(1, "ext_wakeup1"),
541 PINCTRL_PIN(2, "ext_wakeup2"),
542 PINCTRL_PIN(3, "ext_wakeup3"),
543};
544
545static int rtc_pinctrl_get_groups_count(struct pinctrl_dev *pctldev)
546{
547 return 0;
548}
549
550static const char *rtc_pinctrl_get_group_name(struct pinctrl_dev *pctldev,
551 unsigned int group)
552{
553 return NULL;
554}
555
556static const struct pinctrl_ops rtc_pinctrl_ops = {
557 .get_groups_count = rtc_pinctrl_get_groups_count,
558 .get_group_name = rtc_pinctrl_get_group_name,
559 .dt_node_to_map = pinconf_generic_dt_node_to_map_pin,
560 .dt_free_map = pinconf_generic_dt_free_map,
561};
562
563enum rtc_pin_config_param {
564 PIN_CONFIG_ACTIVE_HIGH = PIN_CONFIG_END + 1,
565};
566
567static const struct pinconf_generic_params rtc_params[] = {
568 {"ti,active-high", PIN_CONFIG_ACTIVE_HIGH, 0},
569};
570
571#ifdef CONFIG_DEBUG_FS
572static const struct pin_config_item rtc_conf_items[ARRAY_SIZE(rtc_params)] = {
573 PCONFDUMP(PIN_CONFIG_ACTIVE_HIGH, "input active high", NULL, false),
574};
575#endif
576
577static int rtc_pinconf_get(struct pinctrl_dev *pctldev,
578 unsigned int pin, unsigned long *config)
579{
580 struct omap_rtc *rtc = pinctrl_dev_get_drvdata(pctldev);
581 unsigned int param = pinconf_to_config_param(*config);
582 u32 val;
583 u16 arg = 0;
584
585 rtc->type->unlock(rtc);
586 val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
587 rtc->type->lock(rtc);
588
589 switch (param) {
590 case PIN_CONFIG_INPUT_ENABLE:
591 if (!(val & OMAP_RTC_PMIC_EXT_WKUP_EN(pin)))
592 return -EINVAL;
593 break;
594 case PIN_CONFIG_ACTIVE_HIGH:
595 if (val & OMAP_RTC_PMIC_EXT_WKUP_POL(pin))
596 return -EINVAL;
597 break;
598 default:
599 return -ENOTSUPP;
600 };
601
602 *config = pinconf_to_config_packed(param, arg);
603
604 return 0;
605}
606
607static int rtc_pinconf_set(struct pinctrl_dev *pctldev,
608 unsigned int pin, unsigned long *configs,
609 unsigned int num_configs)
610{
611 struct omap_rtc *rtc = pinctrl_dev_get_drvdata(pctldev);
612 u32 val;
613 unsigned int param;
614 u32 param_val;
615 int i;
616
617 rtc->type->unlock(rtc);
618 val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
619 rtc->type->lock(rtc);
620
621 /* active low by default */
622 val |= OMAP_RTC_PMIC_EXT_WKUP_POL(pin);
623
624 for (i = 0; i < num_configs; i++) {
625 param = pinconf_to_config_param(configs[i]);
626 param_val = pinconf_to_config_argument(configs[i]);
627
628 switch (param) {
629 case PIN_CONFIG_INPUT_ENABLE:
630 if (param_val)
631 val |= OMAP_RTC_PMIC_EXT_WKUP_EN(pin);
632 else
633 val &= ~OMAP_RTC_PMIC_EXT_WKUP_EN(pin);
634 break;
635 case PIN_CONFIG_ACTIVE_HIGH:
636 val &= ~OMAP_RTC_PMIC_EXT_WKUP_POL(pin);
637 break;
638 default:
639 dev_err(&rtc->rtc->dev, "Property %u not supported\n",
640 param);
641 return -ENOTSUPP;
642 }
643 }
644
645 rtc->type->unlock(rtc);
646 rtc_writel(rtc, OMAP_RTC_PMIC_REG, val);
647 rtc->type->lock(rtc);
648
649 return 0;
650}
651
652static const struct pinconf_ops rtc_pinconf_ops = {
653 .is_generic = true,
654 .pin_config_get = rtc_pinconf_get,
655 .pin_config_set = rtc_pinconf_set,
656};
657
658static struct pinctrl_desc rtc_pinctrl_desc = {
659 .pins = rtc_pins_desc,
660 .npins = ARRAY_SIZE(rtc_pins_desc),
661 .pctlops = &rtc_pinctrl_ops,
662 .confops = &rtc_pinconf_ops,
663 .custom_params = rtc_params,
664 .num_custom_params = ARRAY_SIZE(rtc_params),
665#ifdef CONFIG_DEBUG_FS
666 .custom_conf_items = rtc_conf_items,
667#endif
668 .owner = THIS_MODULE,
669};
670
671static int omap_rtc_scratch_read(void *priv, unsigned int offset, void *_val,
672 size_t bytes)
673{
674 struct omap_rtc *rtc = priv;
675 u32 *val = _val;
676 int i;
677
678 for (i = 0; i < bytes / 4; i++)
679 val[i] = rtc_readl(rtc,
680 OMAP_RTC_SCRATCH0_REG + offset + (i * 4));
681
682 return 0;
683}
684
685static int omap_rtc_scratch_write(void *priv, unsigned int offset, void *_val,
686 size_t bytes)
687{
688 struct omap_rtc *rtc = priv;
689 u32 *val = _val;
690 int i;
691
692 rtc->type->unlock(rtc);
693 for (i = 0; i < bytes / 4; i++)
694 rtc_writel(rtc,
695 OMAP_RTC_SCRATCH0_REG + offset + (i * 4), val[i]);
696 rtc->type->lock(rtc);
697
698 return 0;
699}
700
701static struct nvmem_config omap_rtc_nvmem_config = {
702 .name = "omap_rtc_scratch",
703 .word_size = 4,
704 .stride = 4,
705 .size = OMAP_RTC_KICK0_REG - OMAP_RTC_SCRATCH0_REG,
706 .reg_read = omap_rtc_scratch_read,
707 .reg_write = omap_rtc_scratch_write,
708};
709
710static int omap_rtc_probe(struct platform_device *pdev)
711{
712 struct omap_rtc *rtc;
713 struct resource *res;
714 u8 reg, mask, new_ctrl;
715 const struct platform_device_id *id_entry;
716 const struct of_device_id *of_id;
717 int ret;
718
719 rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
720 if (!rtc)
721 return -ENOMEM;
722
723 of_id = of_match_device(omap_rtc_of_match, &pdev->dev);
724 if (of_id) {
725 rtc->type = of_id->data;
726 rtc->is_pmic_controller = rtc->type->has_pmic_mode &&
727 of_property_read_bool(pdev->dev.of_node,
728 "system-power-controller");
729 } else {
730 id_entry = platform_get_device_id(pdev);
731 rtc->type = (void *)id_entry->driver_data;
732 }
733
734 rtc->irq_timer = platform_get_irq(pdev, 0);
735 if (rtc->irq_timer <= 0)
736 return -ENOENT;
737
738 rtc->irq_alarm = platform_get_irq(pdev, 1);
739 if (rtc->irq_alarm <= 0)
740 return -ENOENT;
741
742 rtc->clk = devm_clk_get(&pdev->dev, "ext-clk");
743 if (!IS_ERR(rtc->clk))
744 rtc->has_ext_clk = true;
745 else
746 rtc->clk = devm_clk_get(&pdev->dev, "int-clk");
747
748 if (!IS_ERR(rtc->clk))
749 clk_prepare_enable(rtc->clk);
750
751 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
752 rtc->base = devm_ioremap_resource(&pdev->dev, res);
753 if (IS_ERR(rtc->base)) {
754 clk_disable_unprepare(rtc->clk);
755 return PTR_ERR(rtc->base);
756 }
757
758 platform_set_drvdata(pdev, rtc);
759
760 /* Enable the clock/module so that we can access the registers */
761 pm_runtime_enable(&pdev->dev);
762 pm_runtime_get_sync(&pdev->dev);
763
764 rtc->type->unlock(rtc);
765
766 /*
767 * disable interrupts
768 *
769 * NOTE: ALARM2 is not cleared on AM3352 if rtc_write (writeb) is used
770 */
771 rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
772
773 /* enable RTC functional clock */
774 if (rtc->type->has_32kclk_en) {
775 reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
776 rtc_writel(rtc, OMAP_RTC_OSC_REG,
777 reg | OMAP_RTC_OSC_32KCLK_EN);
778 }
779
780 /* clear old status */
781 reg = rtc_read(rtc, OMAP_RTC_STATUS_REG);
782
783 mask = OMAP_RTC_STATUS_ALARM;
784
785 if (rtc->type->has_pmic_mode)
786 mask |= OMAP_RTC_STATUS_ALARM2;
787
788 if (rtc->type->has_power_up_reset) {
789 mask |= OMAP_RTC_STATUS_POWER_UP;
790 if (reg & OMAP_RTC_STATUS_POWER_UP)
791 dev_info(&pdev->dev, "RTC power up reset detected\n");
792 }
793
794 if (reg & mask)
795 rtc_write(rtc, OMAP_RTC_STATUS_REG, reg & mask);
796
797 /* On boards with split power, RTC_ON_NOFF won't reset the RTC */
798 reg = rtc_read(rtc, OMAP_RTC_CTRL_REG);
799 if (reg & OMAP_RTC_CTRL_STOP)
800 dev_info(&pdev->dev, "already running\n");
801
802 /* force to 24 hour mode */
803 new_ctrl = reg & (OMAP_RTC_CTRL_SPLIT | OMAP_RTC_CTRL_AUTO_COMP);
804 new_ctrl |= OMAP_RTC_CTRL_STOP;
805
806 /*
807 * BOARD-SPECIFIC CUSTOMIZATION CAN GO HERE:
808 *
809 * - Device wake-up capability setting should come through chip
810 * init logic. OMAP1 boards should initialize the "wakeup capable"
811 * flag in the platform device if the board is wired right for
812 * being woken up by RTC alarm. For OMAP-L138, this capability
813 * is built into the SoC by the "Deep Sleep" capability.
814 *
815 * - Boards wired so RTC_ON_nOFF is used as the reset signal,
816 * rather than nPWRON_RESET, should forcibly enable split
817 * power mode. (Some chip errata report that RTC_CTRL_SPLIT
818 * is write-only, and always reads as zero...)
819 */
820
821 if (new_ctrl & OMAP_RTC_CTRL_SPLIT)
822 dev_info(&pdev->dev, "split power mode\n");
823
824 if (reg != new_ctrl)
825 rtc_write(rtc, OMAP_RTC_CTRL_REG, new_ctrl);
826
827 /*
828 * If we have the external clock then switch to it so we can keep
829 * ticking across suspend.
830 */
831 if (rtc->has_ext_clk) {
832 reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
833 reg &= ~OMAP_RTC_OSC_OSC32K_GZ_DISABLE;
834 reg |= OMAP_RTC_OSC_32KCLK_EN | OMAP_RTC_OSC_SEL_32KCLK_SRC;
835 rtc_writel(rtc, OMAP_RTC_OSC_REG, reg);
836 }
837
838 rtc->type->lock(rtc);
839
840 device_init_wakeup(&pdev->dev, true);
841
842 rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
843 if (IS_ERR(rtc->rtc)) {
844 ret = PTR_ERR(rtc->rtc);
845 goto err;
846 }
847
848 rtc->rtc->ops = &omap_rtc_ops;
849 omap_rtc_nvmem_config.priv = rtc;
850
851 /* handle periodic and alarm irqs */
852 ret = devm_request_irq(&pdev->dev, rtc->irq_timer, rtc_irq, 0,
853 dev_name(&rtc->rtc->dev), rtc);
854 if (ret)
855 goto err;
856
857 if (rtc->irq_timer != rtc->irq_alarm) {
858 ret = devm_request_irq(&pdev->dev, rtc->irq_alarm, rtc_irq, 0,
859 dev_name(&rtc->rtc->dev), rtc);
860 if (ret)
861 goto err;
862 }
863
864 if (rtc->is_pmic_controller) {
865 if (!pm_power_off) {
866 omap_rtc_power_off_rtc = rtc;
867 pm_power_off = omap_rtc_power_off;
868 }
869 }
870
871 /* Support ext_wakeup pinconf */
872 rtc_pinctrl_desc.name = dev_name(&pdev->dev);
873
874 rtc->pctldev = pinctrl_register(&rtc_pinctrl_desc, &pdev->dev, rtc);
875 if (IS_ERR(rtc->pctldev)) {
876 dev_err(&pdev->dev, "Couldn't register pinctrl driver\n");
877 ret = PTR_ERR(rtc->pctldev);
878 goto err;
879 }
880
881 ret = rtc_register_device(rtc->rtc);
882 if (ret)
883 goto err;
884
885 rtc_nvmem_register(rtc->rtc, &omap_rtc_nvmem_config);
886
887 return 0;
888
889err:
890 clk_disable_unprepare(rtc->clk);
891 device_init_wakeup(&pdev->dev, false);
892 rtc->type->lock(rtc);
893 pm_runtime_put_sync(&pdev->dev);
894 pm_runtime_disable(&pdev->dev);
895
896 return ret;
897}
898
899static int omap_rtc_remove(struct platform_device *pdev)
900{
901 struct omap_rtc *rtc = platform_get_drvdata(pdev);
902 u8 reg;
903
904 if (pm_power_off == omap_rtc_power_off &&
905 omap_rtc_power_off_rtc == rtc) {
906 pm_power_off = NULL;
907 omap_rtc_power_off_rtc = NULL;
908 }
909
910 device_init_wakeup(&pdev->dev, 0);
911
912 if (!IS_ERR(rtc->clk))
913 clk_disable_unprepare(rtc->clk);
914
915 rtc->type->unlock(rtc);
916 /* leave rtc running, but disable irqs */
917 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
918
919 if (rtc->has_ext_clk) {
920 reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
921 reg &= ~OMAP_RTC_OSC_SEL_32KCLK_SRC;
922 rtc_write(rtc, OMAP_RTC_OSC_REG, reg);
923 }
924
925 rtc->type->lock(rtc);
926
927 /* Disable the clock/module */
928 pm_runtime_put_sync(&pdev->dev);
929 pm_runtime_disable(&pdev->dev);
930
931 /* Remove ext_wakeup pinconf */
932 pinctrl_unregister(rtc->pctldev);
933
934 return 0;
935}
936
937static int __maybe_unused omap_rtc_suspend(struct device *dev)
938{
939 struct omap_rtc *rtc = dev_get_drvdata(dev);
940
941 rtc->interrupts_reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
942
943 rtc->type->unlock(rtc);
944 /*
945 * FIXME: the RTC alarm is not currently acting as a wakeup event
946 * source on some platforms, and in fact this enable() call is just
947 * saving a flag that's never used...
948 */
949 if (device_may_wakeup(dev))
950 enable_irq_wake(rtc->irq_alarm);
951 else
952 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
953 rtc->type->lock(rtc);
954
955 rtc->is_suspending = true;
956
957 return 0;
958}
959
960static int __maybe_unused omap_rtc_resume(struct device *dev)
961{
962 struct omap_rtc *rtc = dev_get_drvdata(dev);
963
964 rtc->type->unlock(rtc);
965 if (device_may_wakeup(dev))
966 disable_irq_wake(rtc->irq_alarm);
967 else
968 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, rtc->interrupts_reg);
969 rtc->type->lock(rtc);
970
971 rtc->is_suspending = false;
972
973 return 0;
974}
975
976static int __maybe_unused omap_rtc_runtime_suspend(struct device *dev)
977{
978 struct omap_rtc *rtc = dev_get_drvdata(dev);
979
980 if (rtc->is_suspending && !rtc->has_ext_clk)
981 return -EBUSY;
982
983 return 0;
984}
985
986static const struct dev_pm_ops omap_rtc_pm_ops = {
987 SET_SYSTEM_SLEEP_PM_OPS(omap_rtc_suspend, omap_rtc_resume)
988 SET_RUNTIME_PM_OPS(omap_rtc_runtime_suspend, NULL, NULL)
989};
990
991static void omap_rtc_shutdown(struct platform_device *pdev)
992{
993 struct omap_rtc *rtc = platform_get_drvdata(pdev);
994 u8 mask;
995
996 /*
997 * Keep the ALARM interrupt enabled to allow the system to power up on
998 * alarm events.
999 */
1000 rtc->type->unlock(rtc);
1001 mask = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
1002 mask &= OMAP_RTC_INTERRUPTS_IT_ALARM;
1003 rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, mask);
1004 rtc->type->lock(rtc);
1005}
1006
1007static struct platform_driver omap_rtc_driver = {
1008 .probe = omap_rtc_probe,
1009 .remove = omap_rtc_remove,
1010 .shutdown = omap_rtc_shutdown,
1011 .driver = {
1012 .name = "omap_rtc",
1013 .pm = &omap_rtc_pm_ops,
1014 .of_match_table = omap_rtc_of_match,
1015 },
1016 .id_table = omap_rtc_id_table,
1017};
1018
1019module_platform_driver(omap_rtc_driver);
1020
1021MODULE_ALIAS("platform:omap_rtc");
1022MODULE_AUTHOR("George G. Davis (and others)");
1023MODULE_LICENSE("GPL");