Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * TI OMAP Real Time Clock interface for Linux
   4 *
   5 * Copyright (C) 2003 MontaVista Software, Inc.
   6 * Author: George G. Davis <gdavis@mvista.com> or <source@mvista.com>
   7 *
   8 * Copyright (C) 2006 David Brownell (new RTC framework)
   9 * Copyright (C) 2014 Johan Hovold <johan@kernel.org>
 
 
 
 
 
  10 */
  11
  12#include <linux/bcd.h>
  13#include <linux/clk.h>
  14#include <linux/delay.h>
  15#include <linux/init.h>
  16#include <linux/io.h>
  17#include <linux/ioport.h>
  18#include <linux/kernel.h>
 
  19#include <linux/module.h>
 
 
 
 
 
  20#include <linux/of.h>
  21#include <linux/of_device.h>
  22#include <linux/pinctrl/pinctrl.h>
  23#include <linux/pinctrl/pinconf.h>
  24#include <linux/pinctrl/pinconf-generic.h>
  25#include <linux/platform_device.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/rtc.h>
 
  28
  29/*
  30 * The OMAP RTC is a year/month/day/hours/minutes/seconds BCD clock
  31 * with century-range alarm matching, driven by the 32kHz clock.
  32 *
  33 * The main user-visible ways it differs from PC RTCs are by omitting
  34 * "don't care" alarm fields and sub-second periodic IRQs, and having
  35 * an autoadjust mechanism to calibrate to the true oscillator rate.
  36 *
  37 * Board-specific wiring options include using split power mode with
  38 * RTC_OFF_NOFF used as the reset signal (so the RTC won't be reset),
  39 * and wiring RTC_WAKE_INT (so the RTC alarm can wake the system from
  40 * low power modes) for OMAP1 boards (OMAP-L138 has this built into
  41 * the SoC). See the BOARD-SPECIFIC CUSTOMIZATION comment.
  42 */
  43
  44/* RTC registers */
  45#define OMAP_RTC_SECONDS_REG		0x00
  46#define OMAP_RTC_MINUTES_REG		0x04
  47#define OMAP_RTC_HOURS_REG		0x08
  48#define OMAP_RTC_DAYS_REG		0x0C
  49#define OMAP_RTC_MONTHS_REG		0x10
  50#define OMAP_RTC_YEARS_REG		0x14
  51#define OMAP_RTC_WEEKS_REG		0x18
  52
  53#define OMAP_RTC_ALARM_SECONDS_REG	0x20
  54#define OMAP_RTC_ALARM_MINUTES_REG	0x24
  55#define OMAP_RTC_ALARM_HOURS_REG	0x28
  56#define OMAP_RTC_ALARM_DAYS_REG		0x2c
  57#define OMAP_RTC_ALARM_MONTHS_REG	0x30
  58#define OMAP_RTC_ALARM_YEARS_REG	0x34
  59
  60#define OMAP_RTC_CTRL_REG		0x40
  61#define OMAP_RTC_STATUS_REG		0x44
  62#define OMAP_RTC_INTERRUPTS_REG		0x48
  63
  64#define OMAP_RTC_COMP_LSB_REG		0x4c
  65#define OMAP_RTC_COMP_MSB_REG		0x50
  66#define OMAP_RTC_OSC_REG		0x54
  67
  68#define OMAP_RTC_SCRATCH0_REG		0x60
  69#define OMAP_RTC_SCRATCH1_REG		0x64
  70#define OMAP_RTC_SCRATCH2_REG		0x68
  71
  72#define OMAP_RTC_KICK0_REG		0x6c
  73#define OMAP_RTC_KICK1_REG		0x70
  74
  75#define OMAP_RTC_IRQWAKEEN		0x7c
  76
  77#define OMAP_RTC_ALARM2_SECONDS_REG	0x80
  78#define OMAP_RTC_ALARM2_MINUTES_REG	0x84
  79#define OMAP_RTC_ALARM2_HOURS_REG	0x88
  80#define OMAP_RTC_ALARM2_DAYS_REG	0x8c
  81#define OMAP_RTC_ALARM2_MONTHS_REG	0x90
  82#define OMAP_RTC_ALARM2_YEARS_REG	0x94
  83
  84#define OMAP_RTC_PMIC_REG		0x98
  85
  86/* OMAP_RTC_CTRL_REG bit fields: */
  87#define OMAP_RTC_CTRL_SPLIT		BIT(7)
  88#define OMAP_RTC_CTRL_DISABLE		BIT(6)
  89#define OMAP_RTC_CTRL_SET_32_COUNTER	BIT(5)
  90#define OMAP_RTC_CTRL_TEST		BIT(4)
  91#define OMAP_RTC_CTRL_MODE_12_24	BIT(3)
  92#define OMAP_RTC_CTRL_AUTO_COMP		BIT(2)
  93#define OMAP_RTC_CTRL_ROUND_30S		BIT(1)
  94#define OMAP_RTC_CTRL_STOP		BIT(0)
  95
  96/* OMAP_RTC_STATUS_REG bit fields: */
  97#define OMAP_RTC_STATUS_POWER_UP	BIT(7)
  98#define OMAP_RTC_STATUS_ALARM2		BIT(7)
  99#define OMAP_RTC_STATUS_ALARM		BIT(6)
 100#define OMAP_RTC_STATUS_1D_EVENT	BIT(5)
 101#define OMAP_RTC_STATUS_1H_EVENT	BIT(4)
 102#define OMAP_RTC_STATUS_1M_EVENT	BIT(3)
 103#define OMAP_RTC_STATUS_1S_EVENT	BIT(2)
 104#define OMAP_RTC_STATUS_RUN		BIT(1)
 105#define OMAP_RTC_STATUS_BUSY		BIT(0)
 106
 107/* OMAP_RTC_INTERRUPTS_REG bit fields: */
 108#define OMAP_RTC_INTERRUPTS_IT_ALARM2	BIT(4)
 109#define OMAP_RTC_INTERRUPTS_IT_ALARM	BIT(3)
 110#define OMAP_RTC_INTERRUPTS_IT_TIMER	BIT(2)
 111
 112/* OMAP_RTC_OSC_REG bit fields: */
 113#define OMAP_RTC_OSC_32KCLK_EN		BIT(6)
 114#define OMAP_RTC_OSC_SEL_32KCLK_SRC	BIT(3)
 115#define OMAP_RTC_OSC_OSC32K_GZ_DISABLE	BIT(4)
 116
 117/* OMAP_RTC_IRQWAKEEN bit fields: */
 118#define OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN	BIT(1)
 119
 120/* OMAP_RTC_PMIC bit fields: */
 121#define OMAP_RTC_PMIC_POWER_EN_EN	BIT(16)
 122#define OMAP_RTC_PMIC_EXT_WKUP_EN(x)	BIT(x)
 123#define OMAP_RTC_PMIC_EXT_WKUP_POL(x)	BIT(4 + x)
 124
 125/* OMAP_RTC_KICKER values */
 126#define	KICK0_VALUE			0x83e70b13
 127#define	KICK1_VALUE			0x95a4f1e0
 128
 129struct omap_rtc;
 130
 131struct omap_rtc_device_type {
 132	bool has_32kclk_en;
 133	bool has_irqwakeen;
 134	bool has_pmic_mode;
 135	bool has_power_up_reset;
 136	void (*lock)(struct omap_rtc *rtc);
 137	void (*unlock)(struct omap_rtc *rtc);
 138};
 139
 140struct omap_rtc {
 141	struct rtc_device *rtc;
 142	void __iomem *base;
 143	struct clk *clk;
 144	int irq_alarm;
 145	int irq_timer;
 146	u8 interrupts_reg;
 147	bool is_pmic_controller;
 148	bool has_ext_clk;
 149	bool is_suspending;
 150	const struct omap_rtc_device_type *type;
 151	struct pinctrl_dev *pctldev;
 152};
 153
 154static inline u8 rtc_read(struct omap_rtc *rtc, unsigned int reg)
 155{
 156	return readb(rtc->base + reg);
 157}
 158
 159static inline u32 rtc_readl(struct omap_rtc *rtc, unsigned int reg)
 160{
 161	return readl(rtc->base + reg);
 162}
 163
 164static inline void rtc_write(struct omap_rtc *rtc, unsigned int reg, u8 val)
 165{
 166	writeb(val, rtc->base + reg);
 167}
 168
 169static inline void rtc_writel(struct omap_rtc *rtc, unsigned int reg, u32 val)
 170{
 171	writel(val, rtc->base + reg);
 172}
 173
 174static void am3352_rtc_unlock(struct omap_rtc *rtc)
 175{
 176	rtc_writel(rtc, OMAP_RTC_KICK0_REG, KICK0_VALUE);
 177	rtc_writel(rtc, OMAP_RTC_KICK1_REG, KICK1_VALUE);
 178}
 179
 180static void am3352_rtc_lock(struct omap_rtc *rtc)
 181{
 182	rtc_writel(rtc, OMAP_RTC_KICK0_REG, 0);
 183	rtc_writel(rtc, OMAP_RTC_KICK1_REG, 0);
 184}
 185
 186static void default_rtc_unlock(struct omap_rtc *rtc)
 187{
 188}
 189
 190static void default_rtc_lock(struct omap_rtc *rtc)
 191{
 192}
 193
 194/*
 195 * We rely on the rtc framework to handle locking (rtc->ops_lock),
 196 * so the only other requirement is that register accesses which
 197 * require BUSY to be clear are made with IRQs locally disabled
 198 */
 199static void rtc_wait_not_busy(struct omap_rtc *rtc)
 200{
 201	int count;
 202	u8 status;
 203
 204	/* BUSY may stay active for 1/32768 second (~30 usec) */
 205	for (count = 0; count < 50; count++) {
 206		status = rtc_read(rtc, OMAP_RTC_STATUS_REG);
 207		if (!(status & OMAP_RTC_STATUS_BUSY))
 208			break;
 209		udelay(1);
 210	}
 211	/* now we have ~15 usec to read/write various registers */
 212}
 213
 214static irqreturn_t rtc_irq(int irq, void *dev_id)
 215{
 216	struct omap_rtc	*rtc = dev_id;
 217	unsigned long events = 0;
 218	u8 irq_data;
 219
 220	irq_data = rtc_read(rtc, OMAP_RTC_STATUS_REG);
 221
 222	/* alarm irq? */
 223	if (irq_data & OMAP_RTC_STATUS_ALARM) {
 224		rtc->type->unlock(rtc);
 225		rtc_write(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM);
 226		rtc->type->lock(rtc);
 227		events |= RTC_IRQF | RTC_AF;
 228	}
 229
 230	/* 1/sec periodic/update irq? */
 231	if (irq_data & OMAP_RTC_STATUS_1S_EVENT)
 232		events |= RTC_IRQF | RTC_UF;
 233
 234	rtc_update_irq(rtc->rtc, 1, events);
 235
 236	return IRQ_HANDLED;
 237}
 238
 239static int omap_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
 240{
 241	struct omap_rtc *rtc = dev_get_drvdata(dev);
 242	u8 reg, irqwake_reg = 0;
 243
 244	local_irq_disable();
 245	rtc_wait_not_busy(rtc);
 246	reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
 247	if (rtc->type->has_irqwakeen)
 248		irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
 249
 250	if (enabled) {
 251		reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
 252		irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
 253	} else {
 254		reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
 255		irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
 256	}
 257	rtc_wait_not_busy(rtc);
 258	rtc->type->unlock(rtc);
 259	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
 260	if (rtc->type->has_irqwakeen)
 261		rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
 262	rtc->type->lock(rtc);
 263	local_irq_enable();
 264
 265	return 0;
 266}
 267
 268/* this hardware doesn't support "don't care" alarm fields */
 269static void tm2bcd(struct rtc_time *tm)
 270{
 
 
 
 271	tm->tm_sec = bin2bcd(tm->tm_sec);
 272	tm->tm_min = bin2bcd(tm->tm_min);
 273	tm->tm_hour = bin2bcd(tm->tm_hour);
 274	tm->tm_mday = bin2bcd(tm->tm_mday);
 275
 276	tm->tm_mon = bin2bcd(tm->tm_mon + 1);
 
 
 
 
 277	tm->tm_year = bin2bcd(tm->tm_year - 100);
 
 
 278}
 279
 280static void bcd2tm(struct rtc_time *tm)
 281{
 282	tm->tm_sec = bcd2bin(tm->tm_sec);
 283	tm->tm_min = bcd2bin(tm->tm_min);
 284	tm->tm_hour = bcd2bin(tm->tm_hour);
 285	tm->tm_mday = bcd2bin(tm->tm_mday);
 286	tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
 287	/* epoch == 1900 */
 288	tm->tm_year = bcd2bin(tm->tm_year) + 100;
 289}
 290
 291static void omap_rtc_read_time_raw(struct omap_rtc *rtc, struct rtc_time *tm)
 292{
 293	tm->tm_sec = rtc_read(rtc, OMAP_RTC_SECONDS_REG);
 294	tm->tm_min = rtc_read(rtc, OMAP_RTC_MINUTES_REG);
 295	tm->tm_hour = rtc_read(rtc, OMAP_RTC_HOURS_REG);
 296	tm->tm_mday = rtc_read(rtc, OMAP_RTC_DAYS_REG);
 297	tm->tm_mon = rtc_read(rtc, OMAP_RTC_MONTHS_REG);
 298	tm->tm_year = rtc_read(rtc, OMAP_RTC_YEARS_REG);
 299}
 300
 301static int omap_rtc_read_time(struct device *dev, struct rtc_time *tm)
 302{
 303	struct omap_rtc *rtc = dev_get_drvdata(dev);
 304
 305	/* we don't report wday/yday/isdst ... */
 306	local_irq_disable();
 307	rtc_wait_not_busy(rtc);
 308	omap_rtc_read_time_raw(rtc, tm);
 309	local_irq_enable();
 310
 311	bcd2tm(tm);
 312
 313	return 0;
 314}
 315
 316static int omap_rtc_set_time(struct device *dev, struct rtc_time *tm)
 317{
 318	struct omap_rtc *rtc = dev_get_drvdata(dev);
 319
 320	tm2bcd(tm);
 
 321
 322	local_irq_disable();
 323	rtc_wait_not_busy(rtc);
 324
 325	rtc->type->unlock(rtc);
 326	rtc_write(rtc, OMAP_RTC_YEARS_REG, tm->tm_year);
 327	rtc_write(rtc, OMAP_RTC_MONTHS_REG, tm->tm_mon);
 328	rtc_write(rtc, OMAP_RTC_DAYS_REG, tm->tm_mday);
 329	rtc_write(rtc, OMAP_RTC_HOURS_REG, tm->tm_hour);
 330	rtc_write(rtc, OMAP_RTC_MINUTES_REG, tm->tm_min);
 331	rtc_write(rtc, OMAP_RTC_SECONDS_REG, tm->tm_sec);
 332	rtc->type->lock(rtc);
 333
 334	local_irq_enable();
 335
 336	return 0;
 337}
 338
 339static int omap_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
 340{
 341	struct omap_rtc *rtc = dev_get_drvdata(dev);
 342	u8 interrupts;
 343
 344	local_irq_disable();
 345	rtc_wait_not_busy(rtc);
 346
 347	alm->time.tm_sec = rtc_read(rtc, OMAP_RTC_ALARM_SECONDS_REG);
 348	alm->time.tm_min = rtc_read(rtc, OMAP_RTC_ALARM_MINUTES_REG);
 349	alm->time.tm_hour = rtc_read(rtc, OMAP_RTC_ALARM_HOURS_REG);
 350	alm->time.tm_mday = rtc_read(rtc, OMAP_RTC_ALARM_DAYS_REG);
 351	alm->time.tm_mon = rtc_read(rtc, OMAP_RTC_ALARM_MONTHS_REG);
 352	alm->time.tm_year = rtc_read(rtc, OMAP_RTC_ALARM_YEARS_REG);
 353
 354	local_irq_enable();
 355
 356	bcd2tm(&alm->time);
 357
 358	interrupts = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
 359	alm->enabled = !!(interrupts & OMAP_RTC_INTERRUPTS_IT_ALARM);
 360
 361	return 0;
 362}
 363
 364static int omap_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
 365{
 366	struct omap_rtc *rtc = dev_get_drvdata(dev);
 367	u8 reg, irqwake_reg = 0;
 368
 369	tm2bcd(&alm->time);
 
 370
 371	local_irq_disable();
 372	rtc_wait_not_busy(rtc);
 373
 374	rtc->type->unlock(rtc);
 375	rtc_write(rtc, OMAP_RTC_ALARM_YEARS_REG, alm->time.tm_year);
 376	rtc_write(rtc, OMAP_RTC_ALARM_MONTHS_REG, alm->time.tm_mon);
 377	rtc_write(rtc, OMAP_RTC_ALARM_DAYS_REG, alm->time.tm_mday);
 378	rtc_write(rtc, OMAP_RTC_ALARM_HOURS_REG, alm->time.tm_hour);
 379	rtc_write(rtc, OMAP_RTC_ALARM_MINUTES_REG, alm->time.tm_min);
 380	rtc_write(rtc, OMAP_RTC_ALARM_SECONDS_REG, alm->time.tm_sec);
 381
 382	reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
 383	if (rtc->type->has_irqwakeen)
 384		irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
 385
 386	if (alm->enabled) {
 387		reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
 388		irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
 389	} else {
 390		reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
 391		irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
 392	}
 393	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
 394	if (rtc->type->has_irqwakeen)
 395		rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
 396	rtc->type->lock(rtc);
 397
 398	local_irq_enable();
 399
 400	return 0;
 401}
 402
 403static struct omap_rtc *omap_rtc_power_off_rtc;
 404
 405/**
 406 * omap_rtc_power_off_program: Set the pmic power off sequence. The RTC
 407 * generates pmic_pwr_enable control, which can be used to control an external
 408 * PMIC.
 
 
 
 
 
 
 
 
 
 409 */
 410int omap_rtc_power_off_program(struct device *dev)
 411{
 412	struct omap_rtc *rtc = omap_rtc_power_off_rtc;
 413	struct rtc_time tm;
 414	unsigned long now;
 415	int seconds;
 416	u32 val;
 417
 418	rtc->type->unlock(rtc);
 419	/* enable pmic_power_en control */
 420	val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
 421	rtc_writel(rtc, OMAP_RTC_PMIC_REG, val | OMAP_RTC_PMIC_POWER_EN_EN);
 422
 423again:
 424	/* Clear any existing ALARM2 event */
 425	rtc_writel(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM2);
 426
 427	/* set alarm one second from now */
 428	omap_rtc_read_time_raw(rtc, &tm);
 429	seconds = tm.tm_sec;
 430	bcd2tm(&tm);
 431	now = rtc_tm_to_time64(&tm);
 432	rtc_time64_to_tm(now + 1, &tm);
 433
 434	tm2bcd(&tm);
 
 
 
 435
 436	rtc_wait_not_busy(rtc);
 437
 438	rtc_write(rtc, OMAP_RTC_ALARM2_SECONDS_REG, tm.tm_sec);
 439	rtc_write(rtc, OMAP_RTC_ALARM2_MINUTES_REG, tm.tm_min);
 440	rtc_write(rtc, OMAP_RTC_ALARM2_HOURS_REG, tm.tm_hour);
 441	rtc_write(rtc, OMAP_RTC_ALARM2_DAYS_REG, tm.tm_mday);
 442	rtc_write(rtc, OMAP_RTC_ALARM2_MONTHS_REG, tm.tm_mon);
 443	rtc_write(rtc, OMAP_RTC_ALARM2_YEARS_REG, tm.tm_year);
 444
 445	/*
 446	 * enable ALARM2 interrupt
 447	 *
 448	 * NOTE: this fails on AM3352 if rtc_write (writeb) is used
 449	 */
 450	val = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
 451	rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG,
 452			val | OMAP_RTC_INTERRUPTS_IT_ALARM2);
 453
 454	/* Retry in case roll over happened before alarm was armed. */
 455	if (rtc_read(rtc, OMAP_RTC_SECONDS_REG) != seconds) {
 456		val = rtc_read(rtc, OMAP_RTC_STATUS_REG);
 457		if (!(val & OMAP_RTC_STATUS_ALARM2))
 458			goto again;
 459	}
 460
 461	rtc->type->lock(rtc);
 462
 463	return 0;
 464}
 465EXPORT_SYMBOL(omap_rtc_power_off_program);
 466
 467/*
 468 * omap_rtc_poweroff: RTC-controlled power off
 469 *
 470 * The RTC can be used to control an external PMIC via the pmic_power_en pin,
 471 * which can be configured to transition to OFF on ALARM2 events.
 472 *
 473 * Notes:
 474 * The one-second alarm offset is the shortest offset possible as the alarm
 475 * registers must be set before the next timer update and the offset
 476 * calculation is too heavy for everything to be done within a single access
 477 * period (~15 us).
 478 *
 479 * Called with local interrupts disabled.
 480 */
 481static void omap_rtc_power_off(void)
 482{
 483	struct rtc_device *rtc = omap_rtc_power_off_rtc->rtc;
 484	u32 val;
 485
 486	omap_rtc_power_off_program(rtc->dev.parent);
 487
 488	/* Set PMIC power enable and EXT_WAKEUP in case PB power on is used */
 489	omap_rtc_power_off_rtc->type->unlock(omap_rtc_power_off_rtc);
 490	val = rtc_readl(omap_rtc_power_off_rtc, OMAP_RTC_PMIC_REG);
 491	val |= OMAP_RTC_PMIC_POWER_EN_EN | OMAP_RTC_PMIC_EXT_WKUP_POL(0) |
 492			OMAP_RTC_PMIC_EXT_WKUP_EN(0);
 493	rtc_writel(omap_rtc_power_off_rtc, OMAP_RTC_PMIC_REG, val);
 494	omap_rtc_power_off_rtc->type->lock(omap_rtc_power_off_rtc);
 495
 496	/*
 497	 * Wait for alarm to trigger (within one second) and external PMIC to
 498	 * power off the system. Add a 500 ms margin for external latencies
 499	 * (e.g. debounce circuits).
 500	 */
 501	mdelay(1500);
 502}
 503
 504static const struct rtc_class_ops omap_rtc_ops = {
 505	.read_time	= omap_rtc_read_time,
 506	.set_time	= omap_rtc_set_time,
 507	.read_alarm	= omap_rtc_read_alarm,
 508	.set_alarm	= omap_rtc_set_alarm,
 509	.alarm_irq_enable = omap_rtc_alarm_irq_enable,
 510};
 511
 512static const struct omap_rtc_device_type omap_rtc_default_type = {
 513	.has_power_up_reset = true,
 514	.lock		= default_rtc_lock,
 515	.unlock		= default_rtc_unlock,
 516};
 517
 518static const struct omap_rtc_device_type omap_rtc_am3352_type = {
 519	.has_32kclk_en	= true,
 520	.has_irqwakeen	= true,
 521	.has_pmic_mode	= true,
 522	.lock		= am3352_rtc_lock,
 523	.unlock		= am3352_rtc_unlock,
 524};
 525
 526static const struct omap_rtc_device_type omap_rtc_da830_type = {
 527	.lock		= am3352_rtc_lock,
 528	.unlock		= am3352_rtc_unlock,
 529};
 530
 531static const struct platform_device_id omap_rtc_id_table[] = {
 532	{
 533		.name	= "omap_rtc",
 534		.driver_data = (kernel_ulong_t)&omap_rtc_default_type,
 535	}, {
 536		.name	= "am3352-rtc",
 537		.driver_data = (kernel_ulong_t)&omap_rtc_am3352_type,
 538	}, {
 539		.name	= "da830-rtc",
 540		.driver_data = (kernel_ulong_t)&omap_rtc_da830_type,
 541	}, {
 542		/* sentinel */
 543	}
 544};
 545MODULE_DEVICE_TABLE(platform, omap_rtc_id_table);
 546
 547static const struct of_device_id omap_rtc_of_match[] = {
 548	{
 549		.compatible	= "ti,am3352-rtc",
 550		.data		= &omap_rtc_am3352_type,
 551	}, {
 552		.compatible	= "ti,da830-rtc",
 553		.data		= &omap_rtc_da830_type,
 554	}, {
 555		/* sentinel */
 556	}
 557};
 558MODULE_DEVICE_TABLE(of, omap_rtc_of_match);
 559
 560static const struct pinctrl_pin_desc rtc_pins_desc[] = {
 561	PINCTRL_PIN(0, "ext_wakeup0"),
 562	PINCTRL_PIN(1, "ext_wakeup1"),
 563	PINCTRL_PIN(2, "ext_wakeup2"),
 564	PINCTRL_PIN(3, "ext_wakeup3"),
 565};
 566
 567static int rtc_pinctrl_get_groups_count(struct pinctrl_dev *pctldev)
 568{
 569	return 0;
 570}
 571
 572static const char *rtc_pinctrl_get_group_name(struct pinctrl_dev *pctldev,
 573					unsigned int group)
 574{
 575	return NULL;
 576}
 577
 578static const struct pinctrl_ops rtc_pinctrl_ops = {
 579	.get_groups_count = rtc_pinctrl_get_groups_count,
 580	.get_group_name = rtc_pinctrl_get_group_name,
 581	.dt_node_to_map = pinconf_generic_dt_node_to_map_pin,
 582	.dt_free_map = pinconf_generic_dt_free_map,
 583};
 584
 585#define PIN_CONFIG_ACTIVE_HIGH		(PIN_CONFIG_END + 1)
 586
 587static const struct pinconf_generic_params rtc_params[] = {
 588	{"ti,active-high", PIN_CONFIG_ACTIVE_HIGH, 0},
 589};
 590
 591#ifdef CONFIG_DEBUG_FS
 592static const struct pin_config_item rtc_conf_items[ARRAY_SIZE(rtc_params)] = {
 593	PCONFDUMP(PIN_CONFIG_ACTIVE_HIGH, "input active high", NULL, false),
 594};
 595#endif
 596
 597static int rtc_pinconf_get(struct pinctrl_dev *pctldev,
 598			unsigned int pin, unsigned long *config)
 599{
 600	struct omap_rtc *rtc = pinctrl_dev_get_drvdata(pctldev);
 601	unsigned int param = pinconf_to_config_param(*config);
 602	u32 val;
 603	u16 arg = 0;
 604
 605	val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
 606
 607	switch (param) {
 608	case PIN_CONFIG_INPUT_ENABLE:
 609		if (!(val & OMAP_RTC_PMIC_EXT_WKUP_EN(pin)))
 610			return -EINVAL;
 611		break;
 612	case PIN_CONFIG_ACTIVE_HIGH:
 613		if (val & OMAP_RTC_PMIC_EXT_WKUP_POL(pin))
 614			return -EINVAL;
 615		break;
 616	default:
 617		return -ENOTSUPP;
 618	}
 619
 620	*config = pinconf_to_config_packed(param, arg);
 621
 622	return 0;
 623}
 624
 625static int rtc_pinconf_set(struct pinctrl_dev *pctldev,
 626			unsigned int pin, unsigned long *configs,
 627			unsigned int num_configs)
 628{
 629	struct omap_rtc *rtc = pinctrl_dev_get_drvdata(pctldev);
 630	u32 val;
 631	unsigned int param;
 632	u32 param_val;
 633	int i;
 634
 635	val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
 636
 637	/* active low by default */
 638	val |= OMAP_RTC_PMIC_EXT_WKUP_POL(pin);
 639
 640	for (i = 0; i < num_configs; i++) {
 641		param = pinconf_to_config_param(configs[i]);
 642		param_val = pinconf_to_config_argument(configs[i]);
 643
 644		switch (param) {
 645		case PIN_CONFIG_INPUT_ENABLE:
 646			if (param_val)
 647				val |= OMAP_RTC_PMIC_EXT_WKUP_EN(pin);
 648			else
 649				val &= ~OMAP_RTC_PMIC_EXT_WKUP_EN(pin);
 650			break;
 651		case PIN_CONFIG_ACTIVE_HIGH:
 652			val &= ~OMAP_RTC_PMIC_EXT_WKUP_POL(pin);
 653			break;
 654		default:
 655			dev_err(&rtc->rtc->dev, "Property %u not supported\n",
 656				param);
 657			return -ENOTSUPP;
 658		}
 659	}
 660
 661	rtc->type->unlock(rtc);
 662	rtc_writel(rtc, OMAP_RTC_PMIC_REG, val);
 663	rtc->type->lock(rtc);
 664
 665	return 0;
 666}
 667
 668static const struct pinconf_ops rtc_pinconf_ops = {
 669	.is_generic = true,
 670	.pin_config_get = rtc_pinconf_get,
 671	.pin_config_set = rtc_pinconf_set,
 672};
 673
 674static struct pinctrl_desc rtc_pinctrl_desc = {
 675	.pins = rtc_pins_desc,
 676	.npins = ARRAY_SIZE(rtc_pins_desc),
 677	.pctlops = &rtc_pinctrl_ops,
 678	.confops = &rtc_pinconf_ops,
 679	.custom_params = rtc_params,
 680	.num_custom_params = ARRAY_SIZE(rtc_params),
 681#ifdef CONFIG_DEBUG_FS
 682	.custom_conf_items = rtc_conf_items,
 683#endif
 684	.owner = THIS_MODULE,
 685};
 686
 687static int omap_rtc_scratch_read(void *priv, unsigned int offset, void *_val,
 688				 size_t bytes)
 689{
 690	struct omap_rtc	*rtc = priv;
 691	u32 *val = _val;
 692	int i;
 693
 694	for (i = 0; i < bytes / 4; i++)
 695		val[i] = rtc_readl(rtc,
 696				   OMAP_RTC_SCRATCH0_REG + offset + (i * 4));
 697
 698	return 0;
 699}
 700
 701static int omap_rtc_scratch_write(void *priv, unsigned int offset, void *_val,
 702				  size_t bytes)
 703{
 704	struct omap_rtc	*rtc = priv;
 705	u32 *val = _val;
 706	int i;
 707
 708	rtc->type->unlock(rtc);
 709	for (i = 0; i < bytes / 4; i++)
 710		rtc_writel(rtc,
 711			   OMAP_RTC_SCRATCH0_REG + offset + (i * 4), val[i]);
 712	rtc->type->lock(rtc);
 713
 714	return 0;
 715}
 716
 717static struct nvmem_config omap_rtc_nvmem_config = {
 718	.name = "omap_rtc_scratch",
 719	.word_size = 4,
 720	.stride = 4,
 721	.size = OMAP_RTC_KICK0_REG - OMAP_RTC_SCRATCH0_REG,
 722	.reg_read = omap_rtc_scratch_read,
 723	.reg_write = omap_rtc_scratch_write,
 724};
 725
 726static int omap_rtc_probe(struct platform_device *pdev)
 727{
 728	struct omap_rtc	*rtc;
 
 729	u8 reg, mask, new_ctrl;
 730	const struct platform_device_id *id_entry;
 731	const struct of_device_id *of_id;
 732	int ret;
 733
 734	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
 735	if (!rtc)
 736		return -ENOMEM;
 737
 738	of_id = of_match_device(omap_rtc_of_match, &pdev->dev);
 739	if (of_id) {
 740		rtc->type = of_id->data;
 741		rtc->is_pmic_controller = rtc->type->has_pmic_mode &&
 742			of_device_is_system_power_controller(pdev->dev.of_node);
 
 743	} else {
 744		id_entry = platform_get_device_id(pdev);
 745		rtc->type = (void *)id_entry->driver_data;
 746	}
 747
 748	rtc->irq_timer = platform_get_irq(pdev, 0);
 749	if (rtc->irq_timer <= 0)
 750		return -ENOENT;
 751
 752	rtc->irq_alarm = platform_get_irq(pdev, 1);
 753	if (rtc->irq_alarm <= 0)
 754		return -ENOENT;
 755
 756	rtc->clk = devm_clk_get(&pdev->dev, "ext-clk");
 757	if (!IS_ERR(rtc->clk))
 758		rtc->has_ext_clk = true;
 759	else
 760		rtc->clk = devm_clk_get(&pdev->dev, "int-clk");
 761
 762	if (!IS_ERR(rtc->clk))
 763		clk_prepare_enable(rtc->clk);
 764
 765	rtc->base = devm_platform_ioremap_resource(pdev, 0);
 766	if (IS_ERR(rtc->base)) {
 767		clk_disable_unprepare(rtc->clk);
 768		return PTR_ERR(rtc->base);
 769	}
 770
 771	platform_set_drvdata(pdev, rtc);
 772
 773	/* Enable the clock/module so that we can access the registers */
 774	pm_runtime_enable(&pdev->dev);
 775	pm_runtime_get_sync(&pdev->dev);
 776
 777	rtc->type->unlock(rtc);
 778
 779	/*
 780	 * disable interrupts
 781	 *
 782	 * NOTE: ALARM2 is not cleared on AM3352 if rtc_write (writeb) is used
 783	 */
 784	rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
 785
 786	/* enable RTC functional clock */
 787	if (rtc->type->has_32kclk_en) {
 788		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
 789		rtc_write(rtc, OMAP_RTC_OSC_REG, reg | OMAP_RTC_OSC_32KCLK_EN);
 
 790	}
 791
 792	/* clear old status */
 793	reg = rtc_read(rtc, OMAP_RTC_STATUS_REG);
 794
 795	mask = OMAP_RTC_STATUS_ALARM;
 796
 797	if (rtc->type->has_pmic_mode)
 798		mask |= OMAP_RTC_STATUS_ALARM2;
 799
 800	if (rtc->type->has_power_up_reset) {
 801		mask |= OMAP_RTC_STATUS_POWER_UP;
 802		if (reg & OMAP_RTC_STATUS_POWER_UP)
 803			dev_info(&pdev->dev, "RTC power up reset detected\n");
 804	}
 805
 806	if (reg & mask)
 807		rtc_write(rtc, OMAP_RTC_STATUS_REG, reg & mask);
 808
 809	/* On boards with split power, RTC_ON_NOFF won't reset the RTC */
 810	reg = rtc_read(rtc, OMAP_RTC_CTRL_REG);
 811	if (reg & OMAP_RTC_CTRL_STOP)
 812		dev_info(&pdev->dev, "already running\n");
 813
 814	/* force to 24 hour mode */
 815	new_ctrl = reg & (OMAP_RTC_CTRL_SPLIT | OMAP_RTC_CTRL_AUTO_COMP);
 816	new_ctrl |= OMAP_RTC_CTRL_STOP;
 817
 818	/*
 819	 * BOARD-SPECIFIC CUSTOMIZATION CAN GO HERE:
 820	 *
 821	 *  - Device wake-up capability setting should come through chip
 822	 *    init logic. OMAP1 boards should initialize the "wakeup capable"
 823	 *    flag in the platform device if the board is wired right for
 824	 *    being woken up by RTC alarm. For OMAP-L138, this capability
 825	 *    is built into the SoC by the "Deep Sleep" capability.
 826	 *
 827	 *  - Boards wired so RTC_ON_nOFF is used as the reset signal,
 828	 *    rather than nPWRON_RESET, should forcibly enable split
 829	 *    power mode.  (Some chip errata report that RTC_CTRL_SPLIT
 830	 *    is write-only, and always reads as zero...)
 831	 */
 832
 833	if (new_ctrl & OMAP_RTC_CTRL_SPLIT)
 834		dev_info(&pdev->dev, "split power mode\n");
 835
 836	if (reg != new_ctrl)
 837		rtc_write(rtc, OMAP_RTC_CTRL_REG, new_ctrl);
 838
 839	/*
 840	 * If we have the external clock then switch to it so we can keep
 841	 * ticking across suspend.
 842	 */
 843	if (rtc->has_ext_clk) {
 844		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
 845		reg &= ~OMAP_RTC_OSC_OSC32K_GZ_DISABLE;
 846		reg |= OMAP_RTC_OSC_32KCLK_EN | OMAP_RTC_OSC_SEL_32KCLK_SRC;
 847		rtc_write(rtc, OMAP_RTC_OSC_REG, reg);
 848	}
 849
 850	rtc->type->lock(rtc);
 851
 852	device_init_wakeup(&pdev->dev, true);
 853
 854	rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
 
 855	if (IS_ERR(rtc->rtc)) {
 856		ret = PTR_ERR(rtc->rtc);
 857		goto err;
 858	}
 859
 860	rtc->rtc->ops = &omap_rtc_ops;
 861	rtc->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
 862	rtc->rtc->range_max = RTC_TIMESTAMP_END_2099;
 863	omap_rtc_nvmem_config.priv = rtc;
 864
 865	/* handle periodic and alarm irqs */
 866	ret = devm_request_irq(&pdev->dev, rtc->irq_timer, rtc_irq, 0,
 867			dev_name(&rtc->rtc->dev), rtc);
 868	if (ret)
 869		goto err;
 870
 871	if (rtc->irq_timer != rtc->irq_alarm) {
 872		ret = devm_request_irq(&pdev->dev, rtc->irq_alarm, rtc_irq, 0,
 873				dev_name(&rtc->rtc->dev), rtc);
 874		if (ret)
 875			goto err;
 876	}
 877
 878	/* Support ext_wakeup pinconf */
 879	rtc_pinctrl_desc.name = dev_name(&pdev->dev);
 880
 881	rtc->pctldev = devm_pinctrl_register(&pdev->dev, &rtc_pinctrl_desc, rtc);
 882	if (IS_ERR(rtc->pctldev)) {
 883		dev_err(&pdev->dev, "Couldn't register pinctrl driver\n");
 884		ret = PTR_ERR(rtc->pctldev);
 885		goto err;
 886	}
 887
 888	ret = devm_rtc_register_device(rtc->rtc);
 889	if (ret)
 890		goto err;
 891
 892	devm_rtc_nvmem_register(rtc->rtc, &omap_rtc_nvmem_config);
 893
 894	if (rtc->is_pmic_controller) {
 895		if (!pm_power_off) {
 896			omap_rtc_power_off_rtc = rtc;
 897			pm_power_off = omap_rtc_power_off;
 898		}
 899	}
 900
 901	return 0;
 902
 903err:
 904	clk_disable_unprepare(rtc->clk);
 905	device_init_wakeup(&pdev->dev, false);
 906	rtc->type->lock(rtc);
 907	pm_runtime_put_sync(&pdev->dev);
 908	pm_runtime_disable(&pdev->dev);
 909
 910	return ret;
 911}
 912
 913static int omap_rtc_remove(struct platform_device *pdev)
 914{
 915	struct omap_rtc *rtc = platform_get_drvdata(pdev);
 916	u8 reg;
 917
 918	if (pm_power_off == omap_rtc_power_off &&
 919			omap_rtc_power_off_rtc == rtc) {
 920		pm_power_off = NULL;
 921		omap_rtc_power_off_rtc = NULL;
 922	}
 923
 924	device_init_wakeup(&pdev->dev, 0);
 925
 926	if (!IS_ERR(rtc->clk))
 927		clk_disable_unprepare(rtc->clk);
 928
 929	rtc->type->unlock(rtc);
 930	/* leave rtc running, but disable irqs */
 931	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
 932
 933	if (rtc->has_ext_clk) {
 934		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
 935		reg &= ~OMAP_RTC_OSC_SEL_32KCLK_SRC;
 936		rtc_write(rtc, OMAP_RTC_OSC_REG, reg);
 937	}
 938
 939	rtc->type->lock(rtc);
 940
 941	/* Disable the clock/module */
 942	pm_runtime_put_sync(&pdev->dev);
 943	pm_runtime_disable(&pdev->dev);
 944
 945	return 0;
 946}
 947
 948static int __maybe_unused omap_rtc_suspend(struct device *dev)
 
 949{
 950	struct omap_rtc *rtc = dev_get_drvdata(dev);
 951
 952	rtc->interrupts_reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
 953
 954	rtc->type->unlock(rtc);
 955	/*
 956	 * FIXME: the RTC alarm is not currently acting as a wakeup event
 957	 * source on some platforms, and in fact this enable() call is just
 958	 * saving a flag that's never used...
 959	 */
 960	if (device_may_wakeup(dev))
 961		enable_irq_wake(rtc->irq_alarm);
 962	else
 963		rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
 964	rtc->type->lock(rtc);
 965
 966	rtc->is_suspending = true;
 
 967
 968	return 0;
 969}
 970
 971static int __maybe_unused omap_rtc_resume(struct device *dev)
 972{
 973	struct omap_rtc *rtc = dev_get_drvdata(dev);
 974
 
 
 
 975	rtc->type->unlock(rtc);
 976	if (device_may_wakeup(dev))
 977		disable_irq_wake(rtc->irq_alarm);
 978	else
 979		rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, rtc->interrupts_reg);
 980	rtc->type->lock(rtc);
 981
 982	rtc->is_suspending = false;
 983
 984	return 0;
 985}
 986
 987static int __maybe_unused omap_rtc_runtime_suspend(struct device *dev)
 988{
 989	struct omap_rtc *rtc = dev_get_drvdata(dev);
 990
 991	if (rtc->is_suspending && !rtc->has_ext_clk)
 992		return -EBUSY;
 993
 994	return 0;
 995}
 
 996
 997static const struct dev_pm_ops omap_rtc_pm_ops = {
 998	SET_SYSTEM_SLEEP_PM_OPS(omap_rtc_suspend, omap_rtc_resume)
 999	SET_RUNTIME_PM_OPS(omap_rtc_runtime_suspend, NULL, NULL)
1000};
1001
1002static void omap_rtc_shutdown(struct platform_device *pdev)
1003{
1004	struct omap_rtc *rtc = platform_get_drvdata(pdev);
1005	u8 mask;
1006
1007	/*
1008	 * Keep the ALARM interrupt enabled to allow the system to power up on
1009	 * alarm events.
1010	 */
1011	rtc->type->unlock(rtc);
1012	mask = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
1013	mask &= OMAP_RTC_INTERRUPTS_IT_ALARM;
1014	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, mask);
1015	rtc->type->lock(rtc);
1016}
1017
1018static struct platform_driver omap_rtc_driver = {
1019	.probe		= omap_rtc_probe,
1020	.remove		= omap_rtc_remove,
1021	.shutdown	= omap_rtc_shutdown,
1022	.driver		= {
1023		.name	= "omap_rtc",
1024		.pm	= &omap_rtc_pm_ops,
1025		.of_match_table = omap_rtc_of_match,
1026	},
1027	.id_table	= omap_rtc_id_table,
1028};
1029
1030module_platform_driver(omap_rtc_driver);
1031
 
1032MODULE_AUTHOR("George G. Davis (and others)");
1033MODULE_LICENSE("GPL");
v4.6
 
  1/*
  2 * TI OMAP Real Time Clock interface for Linux
  3 *
  4 * Copyright (C) 2003 MontaVista Software, Inc.
  5 * Author: George G. Davis <gdavis@mvista.com> or <source@mvista.com>
  6 *
  7 * Copyright (C) 2006 David Brownell (new RTC framework)
  8 * Copyright (C) 2014 Johan Hovold <johan@kernel.org>
  9 *
 10 * This program is free software; you can redistribute it and/or
 11 * modify it under the terms of the GNU General Public License
 12 * as published by the Free Software Foundation; either version
 13 * 2 of the License, or (at your option) any later version.
 14 */
 15
 
 
 
 
 
 
 16#include <linux/kernel.h>
 17#include <linux/init.h>
 18#include <linux/module.h>
 19#include <linux/ioport.h>
 20#include <linux/delay.h>
 21#include <linux/rtc.h>
 22#include <linux/bcd.h>
 23#include <linux/platform_device.h>
 24#include <linux/of.h>
 25#include <linux/of_device.h>
 
 
 
 
 26#include <linux/pm_runtime.h>
 27#include <linux/io.h>
 28#include <linux/clk.h>
 29
 30/*
 31 * The OMAP RTC is a year/month/day/hours/minutes/seconds BCD clock
 32 * with century-range alarm matching, driven by the 32kHz clock.
 33 *
 34 * The main user-visible ways it differs from PC RTCs are by omitting
 35 * "don't care" alarm fields and sub-second periodic IRQs, and having
 36 * an autoadjust mechanism to calibrate to the true oscillator rate.
 37 *
 38 * Board-specific wiring options include using split power mode with
 39 * RTC_OFF_NOFF used as the reset signal (so the RTC won't be reset),
 40 * and wiring RTC_WAKE_INT (so the RTC alarm can wake the system from
 41 * low power modes) for OMAP1 boards (OMAP-L138 has this built into
 42 * the SoC). See the BOARD-SPECIFIC CUSTOMIZATION comment.
 43 */
 44
 45/* RTC registers */
 46#define OMAP_RTC_SECONDS_REG		0x00
 47#define OMAP_RTC_MINUTES_REG		0x04
 48#define OMAP_RTC_HOURS_REG		0x08
 49#define OMAP_RTC_DAYS_REG		0x0C
 50#define OMAP_RTC_MONTHS_REG		0x10
 51#define OMAP_RTC_YEARS_REG		0x14
 52#define OMAP_RTC_WEEKS_REG		0x18
 53
 54#define OMAP_RTC_ALARM_SECONDS_REG	0x20
 55#define OMAP_RTC_ALARM_MINUTES_REG	0x24
 56#define OMAP_RTC_ALARM_HOURS_REG	0x28
 57#define OMAP_RTC_ALARM_DAYS_REG		0x2c
 58#define OMAP_RTC_ALARM_MONTHS_REG	0x30
 59#define OMAP_RTC_ALARM_YEARS_REG	0x34
 60
 61#define OMAP_RTC_CTRL_REG		0x40
 62#define OMAP_RTC_STATUS_REG		0x44
 63#define OMAP_RTC_INTERRUPTS_REG		0x48
 64
 65#define OMAP_RTC_COMP_LSB_REG		0x4c
 66#define OMAP_RTC_COMP_MSB_REG		0x50
 67#define OMAP_RTC_OSC_REG		0x54
 68
 
 
 
 
 69#define OMAP_RTC_KICK0_REG		0x6c
 70#define OMAP_RTC_KICK1_REG		0x70
 71
 72#define OMAP_RTC_IRQWAKEEN		0x7c
 73
 74#define OMAP_RTC_ALARM2_SECONDS_REG	0x80
 75#define OMAP_RTC_ALARM2_MINUTES_REG	0x84
 76#define OMAP_RTC_ALARM2_HOURS_REG	0x88
 77#define OMAP_RTC_ALARM2_DAYS_REG	0x8c
 78#define OMAP_RTC_ALARM2_MONTHS_REG	0x90
 79#define OMAP_RTC_ALARM2_YEARS_REG	0x94
 80
 81#define OMAP_RTC_PMIC_REG		0x98
 82
 83/* OMAP_RTC_CTRL_REG bit fields: */
 84#define OMAP_RTC_CTRL_SPLIT		BIT(7)
 85#define OMAP_RTC_CTRL_DISABLE		BIT(6)
 86#define OMAP_RTC_CTRL_SET_32_COUNTER	BIT(5)
 87#define OMAP_RTC_CTRL_TEST		BIT(4)
 88#define OMAP_RTC_CTRL_MODE_12_24	BIT(3)
 89#define OMAP_RTC_CTRL_AUTO_COMP		BIT(2)
 90#define OMAP_RTC_CTRL_ROUND_30S		BIT(1)
 91#define OMAP_RTC_CTRL_STOP		BIT(0)
 92
 93/* OMAP_RTC_STATUS_REG bit fields: */
 94#define OMAP_RTC_STATUS_POWER_UP	BIT(7)
 95#define OMAP_RTC_STATUS_ALARM2		BIT(7)
 96#define OMAP_RTC_STATUS_ALARM		BIT(6)
 97#define OMAP_RTC_STATUS_1D_EVENT	BIT(5)
 98#define OMAP_RTC_STATUS_1H_EVENT	BIT(4)
 99#define OMAP_RTC_STATUS_1M_EVENT	BIT(3)
100#define OMAP_RTC_STATUS_1S_EVENT	BIT(2)
101#define OMAP_RTC_STATUS_RUN		BIT(1)
102#define OMAP_RTC_STATUS_BUSY		BIT(0)
103
104/* OMAP_RTC_INTERRUPTS_REG bit fields: */
105#define OMAP_RTC_INTERRUPTS_IT_ALARM2	BIT(4)
106#define OMAP_RTC_INTERRUPTS_IT_ALARM	BIT(3)
107#define OMAP_RTC_INTERRUPTS_IT_TIMER	BIT(2)
108
109/* OMAP_RTC_OSC_REG bit fields: */
110#define OMAP_RTC_OSC_32KCLK_EN		BIT(6)
111#define OMAP_RTC_OSC_SEL_32KCLK_SRC	BIT(3)
 
112
113/* OMAP_RTC_IRQWAKEEN bit fields: */
114#define OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN	BIT(1)
115
116/* OMAP_RTC_PMIC bit fields: */
117#define OMAP_RTC_PMIC_POWER_EN_EN	BIT(16)
 
 
118
119/* OMAP_RTC_KICKER values */
120#define	KICK0_VALUE			0x83e70b13
121#define	KICK1_VALUE			0x95a4f1e0
122
123struct omap_rtc;
124
125struct omap_rtc_device_type {
126	bool has_32kclk_en;
127	bool has_irqwakeen;
128	bool has_pmic_mode;
129	bool has_power_up_reset;
130	void (*lock)(struct omap_rtc *rtc);
131	void (*unlock)(struct omap_rtc *rtc);
132};
133
134struct omap_rtc {
135	struct rtc_device *rtc;
136	void __iomem *base;
137	struct clk *clk;
138	int irq_alarm;
139	int irq_timer;
140	u8 interrupts_reg;
141	bool is_pmic_controller;
142	bool has_ext_clk;
 
143	const struct omap_rtc_device_type *type;
 
144};
145
146static inline u8 rtc_read(struct omap_rtc *rtc, unsigned int reg)
147{
148	return readb(rtc->base + reg);
149}
150
151static inline u32 rtc_readl(struct omap_rtc *rtc, unsigned int reg)
152{
153	return readl(rtc->base + reg);
154}
155
156static inline void rtc_write(struct omap_rtc *rtc, unsigned int reg, u8 val)
157{
158	writeb(val, rtc->base + reg);
159}
160
161static inline void rtc_writel(struct omap_rtc *rtc, unsigned int reg, u32 val)
162{
163	writel(val, rtc->base + reg);
164}
165
166static void am3352_rtc_unlock(struct omap_rtc *rtc)
167{
168	rtc_writel(rtc, OMAP_RTC_KICK0_REG, KICK0_VALUE);
169	rtc_writel(rtc, OMAP_RTC_KICK1_REG, KICK1_VALUE);
170}
171
172static void am3352_rtc_lock(struct omap_rtc *rtc)
173{
174	rtc_writel(rtc, OMAP_RTC_KICK0_REG, 0);
175	rtc_writel(rtc, OMAP_RTC_KICK1_REG, 0);
176}
177
178static void default_rtc_unlock(struct omap_rtc *rtc)
179{
180}
181
182static void default_rtc_lock(struct omap_rtc *rtc)
183{
184}
185
186/*
187 * We rely on the rtc framework to handle locking (rtc->ops_lock),
188 * so the only other requirement is that register accesses which
189 * require BUSY to be clear are made with IRQs locally disabled
190 */
191static void rtc_wait_not_busy(struct omap_rtc *rtc)
192{
193	int count;
194	u8 status;
195
196	/* BUSY may stay active for 1/32768 second (~30 usec) */
197	for (count = 0; count < 50; count++) {
198		status = rtc_read(rtc, OMAP_RTC_STATUS_REG);
199		if (!(status & OMAP_RTC_STATUS_BUSY))
200			break;
201		udelay(1);
202	}
203	/* now we have ~15 usec to read/write various registers */
204}
205
206static irqreturn_t rtc_irq(int irq, void *dev_id)
207{
208	struct omap_rtc	*rtc = dev_id;
209	unsigned long events = 0;
210	u8 irq_data;
211
212	irq_data = rtc_read(rtc, OMAP_RTC_STATUS_REG);
213
214	/* alarm irq? */
215	if (irq_data & OMAP_RTC_STATUS_ALARM) {
216		rtc->type->unlock(rtc);
217		rtc_write(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM);
218		rtc->type->lock(rtc);
219		events |= RTC_IRQF | RTC_AF;
220	}
221
222	/* 1/sec periodic/update irq? */
223	if (irq_data & OMAP_RTC_STATUS_1S_EVENT)
224		events |= RTC_IRQF | RTC_UF;
225
226	rtc_update_irq(rtc->rtc, 1, events);
227
228	return IRQ_HANDLED;
229}
230
231static int omap_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
232{
233	struct omap_rtc *rtc = dev_get_drvdata(dev);
234	u8 reg, irqwake_reg = 0;
235
236	local_irq_disable();
237	rtc_wait_not_busy(rtc);
238	reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
239	if (rtc->type->has_irqwakeen)
240		irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
241
242	if (enabled) {
243		reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
244		irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
245	} else {
246		reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
247		irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
248	}
249	rtc_wait_not_busy(rtc);
250	rtc->type->unlock(rtc);
251	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
252	if (rtc->type->has_irqwakeen)
253		rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
254	rtc->type->lock(rtc);
255	local_irq_enable();
256
257	return 0;
258}
259
260/* this hardware doesn't support "don't care" alarm fields */
261static int tm2bcd(struct rtc_time *tm)
262{
263	if (rtc_valid_tm(tm) != 0)
264		return -EINVAL;
265
266	tm->tm_sec = bin2bcd(tm->tm_sec);
267	tm->tm_min = bin2bcd(tm->tm_min);
268	tm->tm_hour = bin2bcd(tm->tm_hour);
269	tm->tm_mday = bin2bcd(tm->tm_mday);
270
271	tm->tm_mon = bin2bcd(tm->tm_mon + 1);
272
273	/* epoch == 1900 */
274	if (tm->tm_year < 100 || tm->tm_year > 199)
275		return -EINVAL;
276	tm->tm_year = bin2bcd(tm->tm_year - 100);
277
278	return 0;
279}
280
281static void bcd2tm(struct rtc_time *tm)
282{
283	tm->tm_sec = bcd2bin(tm->tm_sec);
284	tm->tm_min = bcd2bin(tm->tm_min);
285	tm->tm_hour = bcd2bin(tm->tm_hour);
286	tm->tm_mday = bcd2bin(tm->tm_mday);
287	tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
288	/* epoch == 1900 */
289	tm->tm_year = bcd2bin(tm->tm_year) + 100;
290}
291
292static void omap_rtc_read_time_raw(struct omap_rtc *rtc, struct rtc_time *tm)
293{
294	tm->tm_sec = rtc_read(rtc, OMAP_RTC_SECONDS_REG);
295	tm->tm_min = rtc_read(rtc, OMAP_RTC_MINUTES_REG);
296	tm->tm_hour = rtc_read(rtc, OMAP_RTC_HOURS_REG);
297	tm->tm_mday = rtc_read(rtc, OMAP_RTC_DAYS_REG);
298	tm->tm_mon = rtc_read(rtc, OMAP_RTC_MONTHS_REG);
299	tm->tm_year = rtc_read(rtc, OMAP_RTC_YEARS_REG);
300}
301
302static int omap_rtc_read_time(struct device *dev, struct rtc_time *tm)
303{
304	struct omap_rtc *rtc = dev_get_drvdata(dev);
305
306	/* we don't report wday/yday/isdst ... */
307	local_irq_disable();
308	rtc_wait_not_busy(rtc);
309	omap_rtc_read_time_raw(rtc, tm);
310	local_irq_enable();
311
312	bcd2tm(tm);
313
314	return 0;
315}
316
317static int omap_rtc_set_time(struct device *dev, struct rtc_time *tm)
318{
319	struct omap_rtc *rtc = dev_get_drvdata(dev);
320
321	if (tm2bcd(tm) < 0)
322		return -EINVAL;
323
324	local_irq_disable();
325	rtc_wait_not_busy(rtc);
326
327	rtc->type->unlock(rtc);
328	rtc_write(rtc, OMAP_RTC_YEARS_REG, tm->tm_year);
329	rtc_write(rtc, OMAP_RTC_MONTHS_REG, tm->tm_mon);
330	rtc_write(rtc, OMAP_RTC_DAYS_REG, tm->tm_mday);
331	rtc_write(rtc, OMAP_RTC_HOURS_REG, tm->tm_hour);
332	rtc_write(rtc, OMAP_RTC_MINUTES_REG, tm->tm_min);
333	rtc_write(rtc, OMAP_RTC_SECONDS_REG, tm->tm_sec);
334	rtc->type->lock(rtc);
335
336	local_irq_enable();
337
338	return 0;
339}
340
341static int omap_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
342{
343	struct omap_rtc *rtc = dev_get_drvdata(dev);
344	u8 interrupts;
345
346	local_irq_disable();
347	rtc_wait_not_busy(rtc);
348
349	alm->time.tm_sec = rtc_read(rtc, OMAP_RTC_ALARM_SECONDS_REG);
350	alm->time.tm_min = rtc_read(rtc, OMAP_RTC_ALARM_MINUTES_REG);
351	alm->time.tm_hour = rtc_read(rtc, OMAP_RTC_ALARM_HOURS_REG);
352	alm->time.tm_mday = rtc_read(rtc, OMAP_RTC_ALARM_DAYS_REG);
353	alm->time.tm_mon = rtc_read(rtc, OMAP_RTC_ALARM_MONTHS_REG);
354	alm->time.tm_year = rtc_read(rtc, OMAP_RTC_ALARM_YEARS_REG);
355
356	local_irq_enable();
357
358	bcd2tm(&alm->time);
359
360	interrupts = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
361	alm->enabled = !!(interrupts & OMAP_RTC_INTERRUPTS_IT_ALARM);
362
363	return 0;
364}
365
366static int omap_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
367{
368	struct omap_rtc *rtc = dev_get_drvdata(dev);
369	u8 reg, irqwake_reg = 0;
370
371	if (tm2bcd(&alm->time) < 0)
372		return -EINVAL;
373
374	local_irq_disable();
375	rtc_wait_not_busy(rtc);
376
377	rtc->type->unlock(rtc);
378	rtc_write(rtc, OMAP_RTC_ALARM_YEARS_REG, alm->time.tm_year);
379	rtc_write(rtc, OMAP_RTC_ALARM_MONTHS_REG, alm->time.tm_mon);
380	rtc_write(rtc, OMAP_RTC_ALARM_DAYS_REG, alm->time.tm_mday);
381	rtc_write(rtc, OMAP_RTC_ALARM_HOURS_REG, alm->time.tm_hour);
382	rtc_write(rtc, OMAP_RTC_ALARM_MINUTES_REG, alm->time.tm_min);
383	rtc_write(rtc, OMAP_RTC_ALARM_SECONDS_REG, alm->time.tm_sec);
384
385	reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
386	if (rtc->type->has_irqwakeen)
387		irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
388
389	if (alm->enabled) {
390		reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
391		irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
392	} else {
393		reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
394		irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
395	}
396	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
397	if (rtc->type->has_irqwakeen)
398		rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
399	rtc->type->lock(rtc);
400
401	local_irq_enable();
402
403	return 0;
404}
405
406static struct omap_rtc *omap_rtc_power_off_rtc;
407
408/*
409 * omap_rtc_poweroff: RTC-controlled power off
410 *
411 * The RTC can be used to control an external PMIC via the pmic_power_en pin,
412 * which can be configured to transition to OFF on ALARM2 events.
413 *
414 * Notes:
415 * The two-second alarm offset is the shortest offset possible as the alarm
416 * registers must be set before the next timer update and the offset
417 * calculation is too heavy for everything to be done within a single access
418 * period (~15 us).
419 *
420 * Called with local interrupts disabled.
421 */
422static void omap_rtc_power_off(void)
423{
424	struct omap_rtc *rtc = omap_rtc_power_off_rtc;
425	struct rtc_time tm;
426	unsigned long now;
 
427	u32 val;
428
429	rtc->type->unlock(rtc);
430	/* enable pmic_power_en control */
431	val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
432	rtc_writel(rtc, OMAP_RTC_PMIC_REG, val | OMAP_RTC_PMIC_POWER_EN_EN);
433
434	/* set alarm two seconds from now */
 
 
 
 
435	omap_rtc_read_time_raw(rtc, &tm);
 
436	bcd2tm(&tm);
437	rtc_tm_to_time(&tm, &now);
438	rtc_time_to_tm(now + 2, &tm);
439
440	if (tm2bcd(&tm) < 0) {
441		dev_err(&rtc->rtc->dev, "power off failed\n");
442		return;
443	}
444
445	rtc_wait_not_busy(rtc);
446
447	rtc_write(rtc, OMAP_RTC_ALARM2_SECONDS_REG, tm.tm_sec);
448	rtc_write(rtc, OMAP_RTC_ALARM2_MINUTES_REG, tm.tm_min);
449	rtc_write(rtc, OMAP_RTC_ALARM2_HOURS_REG, tm.tm_hour);
450	rtc_write(rtc, OMAP_RTC_ALARM2_DAYS_REG, tm.tm_mday);
451	rtc_write(rtc, OMAP_RTC_ALARM2_MONTHS_REG, tm.tm_mon);
452	rtc_write(rtc, OMAP_RTC_ALARM2_YEARS_REG, tm.tm_year);
453
454	/*
455	 * enable ALARM2 interrupt
456	 *
457	 * NOTE: this fails on AM3352 if rtc_write (writeb) is used
458	 */
459	val = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
460	rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG,
461			val | OMAP_RTC_INTERRUPTS_IT_ALARM2);
 
 
 
 
 
 
 
 
462	rtc->type->lock(rtc);
463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
464	/*
465	 * Wait for alarm to trigger (within two seconds) and external PMIC to
466	 * power off the system. Add a 500 ms margin for external latencies
467	 * (e.g. debounce circuits).
468	 */
469	mdelay(2500);
470}
471
472static struct rtc_class_ops omap_rtc_ops = {
473	.read_time	= omap_rtc_read_time,
474	.set_time	= omap_rtc_set_time,
475	.read_alarm	= omap_rtc_read_alarm,
476	.set_alarm	= omap_rtc_set_alarm,
477	.alarm_irq_enable = omap_rtc_alarm_irq_enable,
478};
479
480static const struct omap_rtc_device_type omap_rtc_default_type = {
481	.has_power_up_reset = true,
482	.lock		= default_rtc_lock,
483	.unlock		= default_rtc_unlock,
484};
485
486static const struct omap_rtc_device_type omap_rtc_am3352_type = {
487	.has_32kclk_en	= true,
488	.has_irqwakeen	= true,
489	.has_pmic_mode	= true,
490	.lock		= am3352_rtc_lock,
491	.unlock		= am3352_rtc_unlock,
492};
493
494static const struct omap_rtc_device_type omap_rtc_da830_type = {
495	.lock		= am3352_rtc_lock,
496	.unlock		= am3352_rtc_unlock,
497};
498
499static const struct platform_device_id omap_rtc_id_table[] = {
500	{
501		.name	= "omap_rtc",
502		.driver_data = (kernel_ulong_t)&omap_rtc_default_type,
503	}, {
504		.name	= "am3352-rtc",
505		.driver_data = (kernel_ulong_t)&omap_rtc_am3352_type,
506	}, {
507		.name	= "da830-rtc",
508		.driver_data = (kernel_ulong_t)&omap_rtc_da830_type,
509	}, {
510		/* sentinel */
511	}
512};
513MODULE_DEVICE_TABLE(platform, omap_rtc_id_table);
514
515static const struct of_device_id omap_rtc_of_match[] = {
516	{
517		.compatible	= "ti,am3352-rtc",
518		.data		= &omap_rtc_am3352_type,
519	}, {
520		.compatible	= "ti,da830-rtc",
521		.data		= &omap_rtc_da830_type,
522	}, {
523		/* sentinel */
524	}
525};
526MODULE_DEVICE_TABLE(of, omap_rtc_of_match);
527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
528static int omap_rtc_probe(struct platform_device *pdev)
529{
530	struct omap_rtc	*rtc;
531	struct resource	*res;
532	u8 reg, mask, new_ctrl;
533	const struct platform_device_id *id_entry;
534	const struct of_device_id *of_id;
535	int ret;
536
537	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
538	if (!rtc)
539		return -ENOMEM;
540
541	of_id = of_match_device(omap_rtc_of_match, &pdev->dev);
542	if (of_id) {
543		rtc->type = of_id->data;
544		rtc->is_pmic_controller = rtc->type->has_pmic_mode &&
545				of_property_read_bool(pdev->dev.of_node,
546						"system-power-controller");
547	} else {
548		id_entry = platform_get_device_id(pdev);
549		rtc->type = (void *)id_entry->driver_data;
550	}
551
552	rtc->irq_timer = platform_get_irq(pdev, 0);
553	if (rtc->irq_timer <= 0)
554		return -ENOENT;
555
556	rtc->irq_alarm = platform_get_irq(pdev, 1);
557	if (rtc->irq_alarm <= 0)
558		return -ENOENT;
559
560	rtc->clk = devm_clk_get(&pdev->dev, "ext-clk");
561	if (!IS_ERR(rtc->clk))
562		rtc->has_ext_clk = true;
563	else
564		rtc->clk = devm_clk_get(&pdev->dev, "int-clk");
565
566	if (!IS_ERR(rtc->clk))
567		clk_prepare_enable(rtc->clk);
568
569	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
570	rtc->base = devm_ioremap_resource(&pdev->dev, res);
571	if (IS_ERR(rtc->base))
572		return PTR_ERR(rtc->base);
 
573
574	platform_set_drvdata(pdev, rtc);
575
576	/* Enable the clock/module so that we can access the registers */
577	pm_runtime_enable(&pdev->dev);
578	pm_runtime_get_sync(&pdev->dev);
579
580	rtc->type->unlock(rtc);
581
582	/*
583	 * disable interrupts
584	 *
585	 * NOTE: ALARM2 is not cleared on AM3352 if rtc_write (writeb) is used
586	 */
587	rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
588
589	/* enable RTC functional clock */
590	if (rtc->type->has_32kclk_en) {
591		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
592		rtc_writel(rtc, OMAP_RTC_OSC_REG,
593				reg | OMAP_RTC_OSC_32KCLK_EN);
594	}
595
596	/* clear old status */
597	reg = rtc_read(rtc, OMAP_RTC_STATUS_REG);
598
599	mask = OMAP_RTC_STATUS_ALARM;
600
601	if (rtc->type->has_pmic_mode)
602		mask |= OMAP_RTC_STATUS_ALARM2;
603
604	if (rtc->type->has_power_up_reset) {
605		mask |= OMAP_RTC_STATUS_POWER_UP;
606		if (reg & OMAP_RTC_STATUS_POWER_UP)
607			dev_info(&pdev->dev, "RTC power up reset detected\n");
608	}
609
610	if (reg & mask)
611		rtc_write(rtc, OMAP_RTC_STATUS_REG, reg & mask);
612
613	/* On boards with split power, RTC_ON_NOFF won't reset the RTC */
614	reg = rtc_read(rtc, OMAP_RTC_CTRL_REG);
615	if (reg & OMAP_RTC_CTRL_STOP)
616		dev_info(&pdev->dev, "already running\n");
617
618	/* force to 24 hour mode */
619	new_ctrl = reg & (OMAP_RTC_CTRL_SPLIT | OMAP_RTC_CTRL_AUTO_COMP);
620	new_ctrl |= OMAP_RTC_CTRL_STOP;
621
622	/*
623	 * BOARD-SPECIFIC CUSTOMIZATION CAN GO HERE:
624	 *
625	 *  - Device wake-up capability setting should come through chip
626	 *    init logic. OMAP1 boards should initialize the "wakeup capable"
627	 *    flag in the platform device if the board is wired right for
628	 *    being woken up by RTC alarm. For OMAP-L138, this capability
629	 *    is built into the SoC by the "Deep Sleep" capability.
630	 *
631	 *  - Boards wired so RTC_ON_nOFF is used as the reset signal,
632	 *    rather than nPWRON_RESET, should forcibly enable split
633	 *    power mode.  (Some chip errata report that RTC_CTRL_SPLIT
634	 *    is write-only, and always reads as zero...)
635	 */
636
637	if (new_ctrl & OMAP_RTC_CTRL_SPLIT)
638		dev_info(&pdev->dev, "split power mode\n");
639
640	if (reg != new_ctrl)
641		rtc_write(rtc, OMAP_RTC_CTRL_REG, new_ctrl);
642
643	/*
644	 * If we have the external clock then switch to it so we can keep
645	 * ticking across suspend.
646	 */
647	if (rtc->has_ext_clk) {
648		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
649		rtc_write(rtc, OMAP_RTC_OSC_REG,
650			  reg | OMAP_RTC_OSC_SEL_32KCLK_SRC);
 
651	}
652
653	rtc->type->lock(rtc);
654
655	device_init_wakeup(&pdev->dev, true);
656
657	rtc->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
658			&omap_rtc_ops, THIS_MODULE);
659	if (IS_ERR(rtc->rtc)) {
660		ret = PTR_ERR(rtc->rtc);
661		goto err;
662	}
663
 
 
 
 
 
664	/* handle periodic and alarm irqs */
665	ret = devm_request_irq(&pdev->dev, rtc->irq_timer, rtc_irq, 0,
666			dev_name(&rtc->rtc->dev), rtc);
667	if (ret)
668		goto err;
669
670	if (rtc->irq_timer != rtc->irq_alarm) {
671		ret = devm_request_irq(&pdev->dev, rtc->irq_alarm, rtc_irq, 0,
672				dev_name(&rtc->rtc->dev), rtc);
673		if (ret)
674			goto err;
675	}
676
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
677	if (rtc->is_pmic_controller) {
678		if (!pm_power_off) {
679			omap_rtc_power_off_rtc = rtc;
680			pm_power_off = omap_rtc_power_off;
681		}
682	}
683
684	return 0;
685
686err:
 
687	device_init_wakeup(&pdev->dev, false);
688	rtc->type->lock(rtc);
689	pm_runtime_put_sync(&pdev->dev);
690	pm_runtime_disable(&pdev->dev);
691
692	return ret;
693}
694
695static int __exit omap_rtc_remove(struct platform_device *pdev)
696{
697	struct omap_rtc *rtc = platform_get_drvdata(pdev);
698	u8 reg;
699
700	if (pm_power_off == omap_rtc_power_off &&
701			omap_rtc_power_off_rtc == rtc) {
702		pm_power_off = NULL;
703		omap_rtc_power_off_rtc = NULL;
704	}
705
706	device_init_wakeup(&pdev->dev, 0);
707
708	if (!IS_ERR(rtc->clk))
709		clk_disable_unprepare(rtc->clk);
710
711	rtc->type->unlock(rtc);
712	/* leave rtc running, but disable irqs */
713	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
714
715	if (rtc->has_ext_clk) {
716		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
717		reg &= ~OMAP_RTC_OSC_SEL_32KCLK_SRC;
718		rtc_write(rtc, OMAP_RTC_OSC_REG, reg);
719	}
720
721	rtc->type->lock(rtc);
722
723	/* Disable the clock/module */
724	pm_runtime_put_sync(&pdev->dev);
725	pm_runtime_disable(&pdev->dev);
726
727	return 0;
728}
729
730#ifdef CONFIG_PM_SLEEP
731static int omap_rtc_suspend(struct device *dev)
732{
733	struct omap_rtc *rtc = dev_get_drvdata(dev);
734
735	rtc->interrupts_reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
736
737	rtc->type->unlock(rtc);
738	/*
739	 * FIXME: the RTC alarm is not currently acting as a wakeup event
740	 * source on some platforms, and in fact this enable() call is just
741	 * saving a flag that's never used...
742	 */
743	if (device_may_wakeup(dev))
744		enable_irq_wake(rtc->irq_alarm);
745	else
746		rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
747	rtc->type->lock(rtc);
748
749	/* Disable the clock/module */
750	pm_runtime_put_sync(dev);
751
752	return 0;
753}
754
755static int omap_rtc_resume(struct device *dev)
756{
757	struct omap_rtc *rtc = dev_get_drvdata(dev);
758
759	/* Enable the clock/module so that we can access the registers */
760	pm_runtime_get_sync(dev);
761
762	rtc->type->unlock(rtc);
763	if (device_may_wakeup(dev))
764		disable_irq_wake(rtc->irq_alarm);
765	else
766		rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, rtc->interrupts_reg);
767	rtc->type->lock(rtc);
768
 
 
 
 
 
 
 
 
 
 
 
 
769	return 0;
770}
771#endif
772
773static SIMPLE_DEV_PM_OPS(omap_rtc_pm_ops, omap_rtc_suspend, omap_rtc_resume);
 
 
 
774
775static void omap_rtc_shutdown(struct platform_device *pdev)
776{
777	struct omap_rtc *rtc = platform_get_drvdata(pdev);
778	u8 mask;
779
780	/*
781	 * Keep the ALARM interrupt enabled to allow the system to power up on
782	 * alarm events.
783	 */
784	rtc->type->unlock(rtc);
785	mask = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
786	mask &= OMAP_RTC_INTERRUPTS_IT_ALARM;
787	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, mask);
788	rtc->type->lock(rtc);
789}
790
791static struct platform_driver omap_rtc_driver = {
792	.probe		= omap_rtc_probe,
793	.remove		= __exit_p(omap_rtc_remove),
794	.shutdown	= omap_rtc_shutdown,
795	.driver		= {
796		.name	= "omap_rtc",
797		.pm	= &omap_rtc_pm_ops,
798		.of_match_table = omap_rtc_of_match,
799	},
800	.id_table	= omap_rtc_id_table,
801};
802
803module_platform_driver(omap_rtc_driver);
804
805MODULE_ALIAS("platform:omap_rtc");
806MODULE_AUTHOR("George G. Davis (and others)");
807MODULE_LICENSE("GPL");