Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * raid10.c : Multiple Devices driver for Linux
   4 *
   5 * Copyright (C) 2000-2004 Neil Brown
   6 *
   7 * RAID-10 support for md.
   8 *
   9 * Base on code in raid1.c.  See raid1.c for further copyright information.
 
 
 
 
 
 
 
 
 
 
  10 */
  11
  12#include <linux/slab.h>
  13#include <linux/delay.h>
  14#include <linux/blkdev.h>
  15#include <linux/module.h>
  16#include <linux/seq_file.h>
  17#include <linux/ratelimit.h>
  18#include <linux/kthread.h>
  19#include <linux/raid/md_p.h>
  20#include <trace/events/block.h>
  21#include "md.h"
  22#include "raid10.h"
  23#include "raid0.h"
  24#include "md-bitmap.h"
  25
  26/*
  27 * RAID10 provides a combination of RAID0 and RAID1 functionality.
  28 * The layout of data is defined by
  29 *    chunk_size
  30 *    raid_disks
  31 *    near_copies (stored in low byte of layout)
  32 *    far_copies (stored in second byte of layout)
  33 *    far_offset (stored in bit 16 of layout )
  34 *    use_far_sets (stored in bit 17 of layout )
  35 *    use_far_sets_bugfixed (stored in bit 18 of layout )
  36 *
  37 * The data to be stored is divided into chunks using chunksize.  Each device
  38 * is divided into far_copies sections.   In each section, chunks are laid out
  39 * in a style similar to raid0, but near_copies copies of each chunk is stored
  40 * (each on a different drive).  The starting device for each section is offset
  41 * near_copies from the starting device of the previous section.  Thus there
  42 * are (near_copies * far_copies) of each chunk, and each is on a different
  43 * drive.  near_copies and far_copies must be at least one, and their product
  44 * is at most raid_disks.
  45 *
  46 * If far_offset is true, then the far_copies are handled a bit differently.
  47 * The copies are still in different stripes, but instead of being very far
  48 * apart on disk, there are adjacent stripes.
  49 *
  50 * The far and offset algorithms are handled slightly differently if
  51 * 'use_far_sets' is true.  In this case, the array's devices are grouped into
  52 * sets that are (near_copies * far_copies) in size.  The far copied stripes
  53 * are still shifted by 'near_copies' devices, but this shifting stays confined
  54 * to the set rather than the entire array.  This is done to improve the number
  55 * of device combinations that can fail without causing the array to fail.
  56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
  57 * on a device):
  58 *    A B C D    A B C D E
  59 *      ...         ...
  60 *    D A B C    E A B C D
  61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
  62 *    [A B] [C D]    [A B] [C D E]
  63 *    |...| |...|    |...| | ... |
  64 *    [B A] [D C]    [B A] [E C D]
  65 */
  66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67static void allow_barrier(struct r10conf *conf);
  68static void lower_barrier(struct r10conf *conf);
  69static int _enough(struct r10conf *conf, int previous, int ignore);
  70static int enough(struct r10conf *conf, int ignore);
  71static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
  72				int *skipped);
  73static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
  74static void end_reshape_write(struct bio *bio);
  75static void end_reshape(struct r10conf *conf);
  76
  77#define raid10_log(md, fmt, args...)				\
  78	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
  79
  80#include "raid1-10.c"
  81
  82#define NULL_CMD
  83#define cmd_before(conf, cmd) \
  84	do { \
  85		write_sequnlock_irq(&(conf)->resync_lock); \
  86		cmd; \
  87	} while (0)
  88#define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
  89
  90#define wait_event_barrier_cmd(conf, cond, cmd) \
  91	wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
  92		       cmd_after(conf))
  93
  94#define wait_event_barrier(conf, cond) \
  95	wait_event_barrier_cmd(conf, cond, NULL_CMD)
  96
  97/*
  98 * for resync bio, r10bio pointer can be retrieved from the per-bio
  99 * 'struct resync_pages'.
 100 */
 101static inline struct r10bio *get_resync_r10bio(struct bio *bio)
 102{
 103	return get_resync_pages(bio)->raid_bio;
 104}
 105
 106static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
 107{
 108	struct r10conf *conf = data;
 109	int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
 110
 111	/* allocate a r10bio with room for raid_disks entries in the
 112	 * bios array */
 113	return kzalloc(size, gfp_flags);
 114}
 115
 
 
 
 
 
 116#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 117/* amount of memory to reserve for resync requests */
 118#define RESYNC_WINDOW (1024*1024)
 119/* maximum number of concurrent requests, memory permitting */
 120#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
 121#define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
 122#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 123
 124/*
 125 * When performing a resync, we need to read and compare, so
 126 * we need as many pages are there are copies.
 127 * When performing a recovery, we need 2 bios, one for read,
 128 * one for write (we recover only one drive per r10buf)
 129 *
 130 */
 131static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
 132{
 133	struct r10conf *conf = data;
 134	struct r10bio *r10_bio;
 135	struct bio *bio;
 136	int j;
 137	int nalloc, nalloc_rp;
 138	struct resync_pages *rps;
 139
 140	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 141	if (!r10_bio)
 142		return NULL;
 143
 144	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
 145	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
 146		nalloc = conf->copies; /* resync */
 147	else
 148		nalloc = 2; /* recovery */
 149
 150	/* allocate once for all bios */
 151	if (!conf->have_replacement)
 152		nalloc_rp = nalloc;
 153	else
 154		nalloc_rp = nalloc * 2;
 155	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
 156	if (!rps)
 157		goto out_free_r10bio;
 158
 159	/*
 160	 * Allocate bios.
 161	 */
 162	for (j = nalloc ; j-- ; ) {
 163		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
 164		if (!bio)
 165			goto out_free_bio;
 166		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
 167		r10_bio->devs[j].bio = bio;
 168		if (!conf->have_replacement)
 169			continue;
 170		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
 171		if (!bio)
 172			goto out_free_bio;
 173		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
 174		r10_bio->devs[j].repl_bio = bio;
 175	}
 176	/*
 177	 * Allocate RESYNC_PAGES data pages and attach them
 178	 * where needed.
 179	 */
 180	for (j = 0; j < nalloc; j++) {
 181		struct bio *rbio = r10_bio->devs[j].repl_bio;
 182		struct resync_pages *rp, *rp_repl;
 183
 184		rp = &rps[j];
 185		if (rbio)
 186			rp_repl = &rps[nalloc + j];
 187
 188		bio = r10_bio->devs[j].bio;
 189
 190		if (!j || test_bit(MD_RECOVERY_SYNC,
 191				   &conf->mddev->recovery)) {
 192			if (resync_alloc_pages(rp, gfp_flags))
 193				goto out_free_pages;
 194		} else {
 195			memcpy(rp, &rps[0], sizeof(*rp));
 196			resync_get_all_pages(rp);
 197		}
 198
 199		rp->raid_bio = r10_bio;
 200		bio->bi_private = rp;
 201		if (rbio) {
 202			memcpy(rp_repl, rp, sizeof(*rp));
 203			rbio->bi_private = rp_repl;
 204		}
 205	}
 206
 207	return r10_bio;
 208
 209out_free_pages:
 210	while (--j >= 0)
 211		resync_free_pages(&rps[j]);
 212
 213	j = 0;
 214out_free_bio:
 215	for ( ; j < nalloc; j++) {
 216		if (r10_bio->devs[j].bio)
 217			bio_uninit(r10_bio->devs[j].bio);
 218		kfree(r10_bio->devs[j].bio);
 219		if (r10_bio->devs[j].repl_bio)
 220			bio_uninit(r10_bio->devs[j].repl_bio);
 221		kfree(r10_bio->devs[j].repl_bio);
 222	}
 223	kfree(rps);
 224out_free_r10bio:
 225	rbio_pool_free(r10_bio, conf);
 226	return NULL;
 227}
 228
 229static void r10buf_pool_free(void *__r10_bio, void *data)
 230{
 231	struct r10conf *conf = data;
 232	struct r10bio *r10bio = __r10_bio;
 233	int j;
 234	struct resync_pages *rp = NULL;
 235
 236	for (j = conf->copies; j--; ) {
 237		struct bio *bio = r10bio->devs[j].bio;
 238
 239		if (bio) {
 240			rp = get_resync_pages(bio);
 241			resync_free_pages(rp);
 242			bio_uninit(bio);
 243			kfree(bio);
 244		}
 245
 246		bio = r10bio->devs[j].repl_bio;
 247		if (bio) {
 248			bio_uninit(bio);
 249			kfree(bio);
 250		}
 251	}
 252
 253	/* resync pages array stored in the 1st bio's .bi_private */
 254	kfree(rp);
 255
 256	rbio_pool_free(r10bio, conf);
 257}
 258
 259static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
 260{
 261	int i;
 262
 263	for (i = 0; i < conf->geo.raid_disks; i++) {
 264		struct bio **bio = & r10_bio->devs[i].bio;
 265		if (!BIO_SPECIAL(*bio))
 266			bio_put(*bio);
 267		*bio = NULL;
 268		bio = &r10_bio->devs[i].repl_bio;
 269		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
 270			bio_put(*bio);
 271		*bio = NULL;
 272	}
 273}
 274
 275static void free_r10bio(struct r10bio *r10_bio)
 276{
 277	struct r10conf *conf = r10_bio->mddev->private;
 278
 279	put_all_bios(conf, r10_bio);
 280	mempool_free(r10_bio, &conf->r10bio_pool);
 281}
 282
 283static void put_buf(struct r10bio *r10_bio)
 284{
 285	struct r10conf *conf = r10_bio->mddev->private;
 286
 287	mempool_free(r10_bio, &conf->r10buf_pool);
 288
 289	lower_barrier(conf);
 290}
 291
 292static void wake_up_barrier(struct r10conf *conf)
 293{
 294	if (wq_has_sleeper(&conf->wait_barrier))
 295		wake_up(&conf->wait_barrier);
 296}
 297
 298static void reschedule_retry(struct r10bio *r10_bio)
 299{
 300	unsigned long flags;
 301	struct mddev *mddev = r10_bio->mddev;
 302	struct r10conf *conf = mddev->private;
 303
 304	spin_lock_irqsave(&conf->device_lock, flags);
 305	list_add(&r10_bio->retry_list, &conf->retry_list);
 306	conf->nr_queued ++;
 307	spin_unlock_irqrestore(&conf->device_lock, flags);
 308
 309	/* wake up frozen array... */
 310	wake_up(&conf->wait_barrier);
 311
 312	md_wakeup_thread(mddev->thread);
 313}
 314
 315/*
 316 * raid_end_bio_io() is called when we have finished servicing a mirrored
 317 * operation and are ready to return a success/failure code to the buffer
 318 * cache layer.
 319 */
 320static void raid_end_bio_io(struct r10bio *r10_bio)
 321{
 322	struct bio *bio = r10_bio->master_bio;
 323	struct r10conf *conf = r10_bio->mddev->private;
 324
 325	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 326		bio->bi_status = BLK_STS_IOERR;
 327
 328	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
 329		bio_end_io_acct(bio, r10_bio->start_time);
 330	bio_endio(bio);
 331	/*
 332	 * Wake up any possible resync thread that waits for the device
 333	 * to go idle.
 334	 */
 335	allow_barrier(conf);
 336
 337	free_r10bio(r10_bio);
 338}
 339
 340/*
 341 * Update disk head position estimator based on IRQ completion info.
 342 */
 343static inline void update_head_pos(int slot, struct r10bio *r10_bio)
 344{
 345	struct r10conf *conf = r10_bio->mddev->private;
 346
 347	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 348		r10_bio->devs[slot].addr + (r10_bio->sectors);
 349}
 350
 351/*
 352 * Find the disk number which triggered given bio
 353 */
 354static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
 355			 struct bio *bio, int *slotp, int *replp)
 356{
 357	int slot;
 358	int repl = 0;
 359
 360	for (slot = 0; slot < conf->geo.raid_disks; slot++) {
 361		if (r10_bio->devs[slot].bio == bio)
 362			break;
 363		if (r10_bio->devs[slot].repl_bio == bio) {
 364			repl = 1;
 365			break;
 366		}
 367	}
 368
 
 369	update_head_pos(slot, r10_bio);
 370
 371	if (slotp)
 372		*slotp = slot;
 373	if (replp)
 374		*replp = repl;
 375	return r10_bio->devs[slot].devnum;
 376}
 377
 378static void raid10_end_read_request(struct bio *bio)
 379{
 380	int uptodate = !bio->bi_status;
 381	struct r10bio *r10_bio = bio->bi_private;
 382	int slot;
 383	struct md_rdev *rdev;
 384	struct r10conf *conf = r10_bio->mddev->private;
 385
 386	slot = r10_bio->read_slot;
 387	rdev = r10_bio->devs[slot].rdev;
 388	/*
 389	 * this branch is our 'one mirror IO has finished' event handler:
 390	 */
 391	update_head_pos(slot, r10_bio);
 392
 393	if (uptodate) {
 394		/*
 395		 * Set R10BIO_Uptodate in our master bio, so that
 396		 * we will return a good error code to the higher
 397		 * levels even if IO on some other mirrored buffer fails.
 398		 *
 399		 * The 'master' represents the composite IO operation to
 400		 * user-side. So if something waits for IO, then it will
 401		 * wait for the 'master' bio.
 402		 */
 403		set_bit(R10BIO_Uptodate, &r10_bio->state);
 404	} else {
 405		/* If all other devices that store this block have
 406		 * failed, we want to return the error upwards rather
 407		 * than fail the last device.  Here we redefine
 408		 * "uptodate" to mean "Don't want to retry"
 409		 */
 410		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
 411			     rdev->raid_disk))
 412			uptodate = 1;
 413	}
 414	if (uptodate) {
 415		raid_end_bio_io(r10_bio);
 416		rdev_dec_pending(rdev, conf->mddev);
 417	} else {
 418		/*
 419		 * oops, read error - keep the refcount on the rdev
 420		 */
 421		pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
 
 422				   mdname(conf->mddev),
 423				   rdev->bdev,
 424				   (unsigned long long)r10_bio->sector);
 425		set_bit(R10BIO_ReadError, &r10_bio->state);
 426		reschedule_retry(r10_bio);
 427	}
 428}
 429
 430static void close_write(struct r10bio *r10_bio)
 431{
 432	/* clear the bitmap if all writes complete successfully */
 433	md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 434			   r10_bio->sectors,
 435			   !test_bit(R10BIO_Degraded, &r10_bio->state),
 436			   0);
 437	md_write_end(r10_bio->mddev);
 438}
 439
 440static void one_write_done(struct r10bio *r10_bio)
 441{
 442	if (atomic_dec_and_test(&r10_bio->remaining)) {
 443		if (test_bit(R10BIO_WriteError, &r10_bio->state))
 444			reschedule_retry(r10_bio);
 445		else {
 446			close_write(r10_bio);
 447			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
 448				reschedule_retry(r10_bio);
 449			else
 450				raid_end_bio_io(r10_bio);
 451		}
 452	}
 453}
 454
 455static void raid10_end_write_request(struct bio *bio)
 456{
 457	struct r10bio *r10_bio = bio->bi_private;
 458	int dev;
 459	int dec_rdev = 1;
 460	struct r10conf *conf = r10_bio->mddev->private;
 461	int slot, repl;
 462	struct md_rdev *rdev = NULL;
 463	struct bio *to_put = NULL;
 464	bool discard_error;
 465
 466	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 467
 468	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 469
 470	if (repl)
 471		rdev = conf->mirrors[dev].replacement;
 472	if (!rdev) {
 473		smp_rmb();
 474		repl = 0;
 475		rdev = conf->mirrors[dev].rdev;
 476	}
 477	/*
 478	 * this branch is our 'one mirror IO has finished' event handler:
 479	 */
 480	if (bio->bi_status && !discard_error) {
 481		if (repl)
 482			/* Never record new bad blocks to replacement,
 483			 * just fail it.
 484			 */
 485			md_error(rdev->mddev, rdev);
 486		else {
 487			set_bit(WriteErrorSeen,	&rdev->flags);
 488			if (!test_and_set_bit(WantReplacement, &rdev->flags))
 489				set_bit(MD_RECOVERY_NEEDED,
 490					&rdev->mddev->recovery);
 491
 492			dec_rdev = 0;
 493			if (test_bit(FailFast, &rdev->flags) &&
 494			    (bio->bi_opf & MD_FAILFAST)) {
 495				md_error(rdev->mddev, rdev);
 496			}
 497
 498			/*
 499			 * When the device is faulty, it is not necessary to
 500			 * handle write error.
 501			 */
 502			if (!test_bit(Faulty, &rdev->flags))
 
 
 
 
 
 503				set_bit(R10BIO_WriteError, &r10_bio->state);
 504			else {
 505				/* Fail the request */
 506				set_bit(R10BIO_Degraded, &r10_bio->state);
 507				r10_bio->devs[slot].bio = NULL;
 508				to_put = bio;
 509				dec_rdev = 1;
 510			}
 511		}
 512	} else {
 513		/*
 514		 * Set R10BIO_Uptodate in our master bio, so that
 515		 * we will return a good error code for to the higher
 516		 * levels even if IO on some other mirrored buffer fails.
 517		 *
 518		 * The 'master' represents the composite IO operation to
 519		 * user-side. So if something waits for IO, then it will
 520		 * wait for the 'master' bio.
 521		 */
 522		sector_t first_bad;
 523		int bad_sectors;
 524
 525		/*
 526		 * Do not set R10BIO_Uptodate if the current device is
 527		 * rebuilding or Faulty. This is because we cannot use
 528		 * such device for properly reading the data back (we could
 529		 * potentially use it, if the current write would have felt
 530		 * before rdev->recovery_offset, but for simplicity we don't
 531		 * check this here.
 532		 */
 533		if (test_bit(In_sync, &rdev->flags) &&
 534		    !test_bit(Faulty, &rdev->flags))
 535			set_bit(R10BIO_Uptodate, &r10_bio->state);
 536
 537		/* Maybe we can clear some bad blocks. */
 538		if (is_badblock(rdev,
 539				r10_bio->devs[slot].addr,
 540				r10_bio->sectors,
 541				&first_bad, &bad_sectors) && !discard_error) {
 542			bio_put(bio);
 543			if (repl)
 544				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
 545			else
 546				r10_bio->devs[slot].bio = IO_MADE_GOOD;
 547			dec_rdev = 0;
 548			set_bit(R10BIO_MadeGood, &r10_bio->state);
 549		}
 550	}
 551
 552	/*
 553	 *
 554	 * Let's see if all mirrored write operations have finished
 555	 * already.
 556	 */
 557	one_write_done(r10_bio);
 558	if (dec_rdev)
 559		rdev_dec_pending(rdev, conf->mddev);
 560	if (to_put)
 561		bio_put(to_put);
 562}
 563
 564/*
 565 * RAID10 layout manager
 566 * As well as the chunksize and raid_disks count, there are two
 567 * parameters: near_copies and far_copies.
 568 * near_copies * far_copies must be <= raid_disks.
 569 * Normally one of these will be 1.
 570 * If both are 1, we get raid0.
 571 * If near_copies == raid_disks, we get raid1.
 572 *
 573 * Chunks are laid out in raid0 style with near_copies copies of the
 574 * first chunk, followed by near_copies copies of the next chunk and
 575 * so on.
 576 * If far_copies > 1, then after 1/far_copies of the array has been assigned
 577 * as described above, we start again with a device offset of near_copies.
 578 * So we effectively have another copy of the whole array further down all
 579 * the drives, but with blocks on different drives.
 580 * With this layout, and block is never stored twice on the one device.
 581 *
 582 * raid10_find_phys finds the sector offset of a given virtual sector
 583 * on each device that it is on.
 584 *
 585 * raid10_find_virt does the reverse mapping, from a device and a
 586 * sector offset to a virtual address
 587 */
 588
 589static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
 590{
 591	int n,f;
 592	sector_t sector;
 593	sector_t chunk;
 594	sector_t stripe;
 595	int dev;
 596	int slot = 0;
 597	int last_far_set_start, last_far_set_size;
 598
 599	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 600	last_far_set_start *= geo->far_set_size;
 601
 602	last_far_set_size = geo->far_set_size;
 603	last_far_set_size += (geo->raid_disks % geo->far_set_size);
 604
 605	/* now calculate first sector/dev */
 606	chunk = r10bio->sector >> geo->chunk_shift;
 607	sector = r10bio->sector & geo->chunk_mask;
 608
 609	chunk *= geo->near_copies;
 610	stripe = chunk;
 611	dev = sector_div(stripe, geo->raid_disks);
 612	if (geo->far_offset)
 613		stripe *= geo->far_copies;
 614
 615	sector += stripe << geo->chunk_shift;
 616
 617	/* and calculate all the others */
 618	for (n = 0; n < geo->near_copies; n++) {
 619		int d = dev;
 620		int set;
 621		sector_t s = sector;
 622		r10bio->devs[slot].devnum = d;
 623		r10bio->devs[slot].addr = s;
 624		slot++;
 625
 626		for (f = 1; f < geo->far_copies; f++) {
 627			set = d / geo->far_set_size;
 628			d += geo->near_copies;
 629
 630			if ((geo->raid_disks % geo->far_set_size) &&
 631			    (d > last_far_set_start)) {
 632				d -= last_far_set_start;
 633				d %= last_far_set_size;
 634				d += last_far_set_start;
 635			} else {
 636				d %= geo->far_set_size;
 637				d += geo->far_set_size * set;
 638			}
 639			s += geo->stride;
 640			r10bio->devs[slot].devnum = d;
 641			r10bio->devs[slot].addr = s;
 642			slot++;
 643		}
 644		dev++;
 645		if (dev >= geo->raid_disks) {
 646			dev = 0;
 647			sector += (geo->chunk_mask + 1);
 648		}
 649	}
 650}
 651
 652static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
 653{
 654	struct geom *geo = &conf->geo;
 655
 656	if (conf->reshape_progress != MaxSector &&
 657	    ((r10bio->sector >= conf->reshape_progress) !=
 658	     conf->mddev->reshape_backwards)) {
 659		set_bit(R10BIO_Previous, &r10bio->state);
 660		geo = &conf->prev;
 661	} else
 662		clear_bit(R10BIO_Previous, &r10bio->state);
 663
 664	__raid10_find_phys(geo, r10bio);
 665}
 666
 667static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
 668{
 669	sector_t offset, chunk, vchunk;
 670	/* Never use conf->prev as this is only called during resync
 671	 * or recovery, so reshape isn't happening
 672	 */
 673	struct geom *geo = &conf->geo;
 674	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
 675	int far_set_size = geo->far_set_size;
 676	int last_far_set_start;
 677
 678	if (geo->raid_disks % geo->far_set_size) {
 679		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 680		last_far_set_start *= geo->far_set_size;
 681
 682		if (dev >= last_far_set_start) {
 683			far_set_size = geo->far_set_size;
 684			far_set_size += (geo->raid_disks % geo->far_set_size);
 685			far_set_start = last_far_set_start;
 686		}
 687	}
 688
 689	offset = sector & geo->chunk_mask;
 690	if (geo->far_offset) {
 691		int fc;
 692		chunk = sector >> geo->chunk_shift;
 693		fc = sector_div(chunk, geo->far_copies);
 694		dev -= fc * geo->near_copies;
 695		if (dev < far_set_start)
 696			dev += far_set_size;
 697	} else {
 698		while (sector >= geo->stride) {
 699			sector -= geo->stride;
 700			if (dev < (geo->near_copies + far_set_start))
 701				dev += far_set_size - geo->near_copies;
 702			else
 703				dev -= geo->near_copies;
 704		}
 705		chunk = sector >> geo->chunk_shift;
 706	}
 707	vchunk = chunk * geo->raid_disks + dev;
 708	sector_div(vchunk, geo->near_copies);
 709	return (vchunk << geo->chunk_shift) + offset;
 710}
 711
 712/*
 713 * This routine returns the disk from which the requested read should
 714 * be done. There is a per-array 'next expected sequential IO' sector
 715 * number - if this matches on the next IO then we use the last disk.
 716 * There is also a per-disk 'last know head position' sector that is
 717 * maintained from IRQ contexts, both the normal and the resync IO
 718 * completion handlers update this position correctly. If there is no
 719 * perfect sequential match then we pick the disk whose head is closest.
 720 *
 721 * If there are 2 mirrors in the same 2 devices, performance degrades
 722 * because position is mirror, not device based.
 723 *
 724 * The rdev for the device selected will have nr_pending incremented.
 725 */
 726
 727/*
 728 * FIXME: possibly should rethink readbalancing and do it differently
 729 * depending on near_copies / far_copies geometry.
 730 */
 731static struct md_rdev *read_balance(struct r10conf *conf,
 732				    struct r10bio *r10_bio,
 733				    int *max_sectors)
 734{
 735	const sector_t this_sector = r10_bio->sector;
 736	int disk, slot;
 737	int sectors = r10_bio->sectors;
 738	int best_good_sectors;
 739	sector_t new_distance, best_dist;
 740	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
 741	int do_balance;
 742	int best_dist_slot, best_pending_slot;
 743	bool has_nonrot_disk = false;
 744	unsigned int min_pending;
 745	struct geom *geo = &conf->geo;
 746
 747	raid10_find_phys(conf, r10_bio);
 748	rcu_read_lock();
 749	best_dist_slot = -1;
 750	min_pending = UINT_MAX;
 751	best_dist_rdev = NULL;
 752	best_pending_rdev = NULL;
 753	best_dist = MaxSector;
 754	best_good_sectors = 0;
 755	do_balance = 1;
 756	clear_bit(R10BIO_FailFast, &r10_bio->state);
 757	/*
 758	 * Check if we can balance. We can balance on the whole
 759	 * device if no resync is going on (recovery is ok), or below
 760	 * the resync window. We take the first readable disk when
 761	 * above the resync window.
 762	 */
 763	if ((conf->mddev->recovery_cp < MaxSector
 764	     && (this_sector + sectors >= conf->next_resync)) ||
 765	    (mddev_is_clustered(conf->mddev) &&
 766	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 767					    this_sector + sectors)))
 768		do_balance = 0;
 769
 770	for (slot = 0; slot < conf->copies ; slot++) {
 771		sector_t first_bad;
 772		int bad_sectors;
 773		sector_t dev_sector;
 774		unsigned int pending;
 775		bool nonrot;
 776
 777		if (r10_bio->devs[slot].bio == IO_BLOCKED)
 778			continue;
 779		disk = r10_bio->devs[slot].devnum;
 780		rdev = rcu_dereference(conf->mirrors[disk].replacement);
 781		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
 782		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 783			rdev = rcu_dereference(conf->mirrors[disk].rdev);
 784		if (rdev == NULL ||
 785		    test_bit(Faulty, &rdev->flags))
 786			continue;
 787		if (!test_bit(In_sync, &rdev->flags) &&
 788		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 789			continue;
 790
 791		dev_sector = r10_bio->devs[slot].addr;
 792		if (is_badblock(rdev, dev_sector, sectors,
 793				&first_bad, &bad_sectors)) {
 794			if (best_dist < MaxSector)
 795				/* Already have a better slot */
 796				continue;
 797			if (first_bad <= dev_sector) {
 798				/* Cannot read here.  If this is the
 799				 * 'primary' device, then we must not read
 800				 * beyond 'bad_sectors' from another device.
 801				 */
 802				bad_sectors -= (dev_sector - first_bad);
 803				if (!do_balance && sectors > bad_sectors)
 804					sectors = bad_sectors;
 805				if (best_good_sectors > sectors)
 806					best_good_sectors = sectors;
 807			} else {
 808				sector_t good_sectors =
 809					first_bad - dev_sector;
 810				if (good_sectors > best_good_sectors) {
 811					best_good_sectors = good_sectors;
 812					best_dist_slot = slot;
 813					best_dist_rdev = rdev;
 814				}
 815				if (!do_balance)
 816					/* Must read from here */
 817					break;
 818			}
 819			continue;
 820		} else
 821			best_good_sectors = sectors;
 822
 823		if (!do_balance)
 824			break;
 825
 826		nonrot = bdev_nonrot(rdev->bdev);
 827		has_nonrot_disk |= nonrot;
 828		pending = atomic_read(&rdev->nr_pending);
 829		if (min_pending > pending && nonrot) {
 830			min_pending = pending;
 831			best_pending_slot = slot;
 832			best_pending_rdev = rdev;
 833		}
 834
 835		if (best_dist_slot >= 0)
 836			/* At least 2 disks to choose from so failfast is OK */
 837			set_bit(R10BIO_FailFast, &r10_bio->state);
 838		/* This optimisation is debatable, and completely destroys
 839		 * sequential read speed for 'far copies' arrays.  So only
 840		 * keep it for 'near' arrays, and review those later.
 841		 */
 842		if (geo->near_copies > 1 && !pending)
 843			new_distance = 0;
 844
 845		/* for far > 1 always use the lowest address */
 846		else if (geo->far_copies > 1)
 847			new_distance = r10_bio->devs[slot].addr;
 848		else
 849			new_distance = abs(r10_bio->devs[slot].addr -
 850					   conf->mirrors[disk].head_position);
 851
 852		if (new_distance < best_dist) {
 853			best_dist = new_distance;
 854			best_dist_slot = slot;
 855			best_dist_rdev = rdev;
 856		}
 857	}
 858	if (slot >= conf->copies) {
 859		if (has_nonrot_disk) {
 860			slot = best_pending_slot;
 861			rdev = best_pending_rdev;
 862		} else {
 863			slot = best_dist_slot;
 864			rdev = best_dist_rdev;
 865		}
 866	}
 867
 868	if (slot >= 0) {
 869		atomic_inc(&rdev->nr_pending);
 870		r10_bio->read_slot = slot;
 871	} else
 872		rdev = NULL;
 873	rcu_read_unlock();
 874	*max_sectors = best_good_sectors;
 875
 876	return rdev;
 877}
 878
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 879static void flush_pending_writes(struct r10conf *conf)
 880{
 881	/* Any writes that have been queued but are awaiting
 882	 * bitmap updates get flushed here.
 883	 */
 884	spin_lock_irq(&conf->device_lock);
 885
 886	if (conf->pending_bio_list.head) {
 887		struct blk_plug plug;
 888		struct bio *bio;
 889
 890		bio = bio_list_get(&conf->pending_bio_list);
 
 891		spin_unlock_irq(&conf->device_lock);
 892
 893		/*
 894		 * As this is called in a wait_event() loop (see freeze_array),
 895		 * current->state might be TASK_UNINTERRUPTIBLE which will
 896		 * cause a warning when we prepare to wait again.  As it is
 897		 * rare that this path is taken, it is perfectly safe to force
 898		 * us to go around the wait_event() loop again, so the warning
 899		 * is a false-positive. Silence the warning by resetting
 900		 * thread state
 901		 */
 902		__set_current_state(TASK_RUNNING);
 903
 904		blk_start_plug(&plug);
 905		/* flush any pending bitmap writes to disk
 906		 * before proceeding w/ I/O */
 907		md_bitmap_unplug(conf->mddev->bitmap);
 908		wake_up(&conf->wait_barrier);
 909
 910		while (bio) { /* submit pending writes */
 911			struct bio *next = bio->bi_next;
 912			struct md_rdev *rdev = (void*)bio->bi_bdev;
 913			bio->bi_next = NULL;
 914			bio_set_dev(bio, rdev->bdev);
 915			if (test_bit(Faulty, &rdev->flags)) {
 916				bio_io_error(bio);
 917			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
 918					    !bdev_max_discard_sectors(bio->bi_bdev)))
 919				/* Just ignore it */
 920				bio_endio(bio);
 921			else
 922				submit_bio_noacct(bio);
 923			bio = next;
 924		}
 925		blk_finish_plug(&plug);
 926	} else
 927		spin_unlock_irq(&conf->device_lock);
 928}
 929
 930/* Barriers....
 931 * Sometimes we need to suspend IO while we do something else,
 932 * either some resync/recovery, or reconfigure the array.
 933 * To do this we raise a 'barrier'.
 934 * The 'barrier' is a counter that can be raised multiple times
 935 * to count how many activities are happening which preclude
 936 * normal IO.
 937 * We can only raise the barrier if there is no pending IO.
 938 * i.e. if nr_pending == 0.
 939 * We choose only to raise the barrier if no-one is waiting for the
 940 * barrier to go down.  This means that as soon as an IO request
 941 * is ready, no other operations which require a barrier will start
 942 * until the IO request has had a chance.
 943 *
 944 * So: regular IO calls 'wait_barrier'.  When that returns there
 945 *    is no backgroup IO happening,  It must arrange to call
 946 *    allow_barrier when it has finished its IO.
 947 * backgroup IO calls must call raise_barrier.  Once that returns
 948 *    there is no normal IO happeing.  It must arrange to call
 949 *    lower_barrier when the particular background IO completes.
 950 */
 951
 952static void raise_barrier(struct r10conf *conf, int force)
 953{
 954	write_seqlock_irq(&conf->resync_lock);
 955	BUG_ON(force && !conf->barrier);
 
 956
 957	/* Wait until no block IO is waiting (unless 'force') */
 958	wait_event_barrier(conf, force || !conf->nr_waiting);
 
 959
 960	/* block any new IO from starting */
 961	WRITE_ONCE(conf->barrier, conf->barrier + 1);
 962
 963	/* Now wait for all pending IO to complete */
 964	wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
 965				 conf->barrier < RESYNC_DEPTH);
 
 966
 967	write_sequnlock_irq(&conf->resync_lock);
 968}
 969
 970static void lower_barrier(struct r10conf *conf)
 971{
 972	unsigned long flags;
 973
 974	write_seqlock_irqsave(&conf->resync_lock, flags);
 975	WRITE_ONCE(conf->barrier, conf->barrier - 1);
 976	write_sequnlock_irqrestore(&conf->resync_lock, flags);
 977	wake_up(&conf->wait_barrier);
 978}
 979
 980static bool stop_waiting_barrier(struct r10conf *conf)
 981{
 982	struct bio_list *bio_list = current->bio_list;
 983
 984	/* barrier is dropped */
 985	if (!conf->barrier)
 986		return true;
 987
 988	/*
 989	 * If there are already pending requests (preventing the barrier from
 990	 * rising completely), and the pre-process bio queue isn't empty, then
 991	 * don't wait, as we need to empty that queue to get the nr_pending
 992	 * count down.
 993	 */
 994	if (atomic_read(&conf->nr_pending) && bio_list &&
 995	    (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
 996		return true;
 997
 998	/* move on if recovery thread is blocked by us */
 999	if (conf->mddev->thread->tsk == current &&
1000	    test_bit(MD_RECOVERY_RUNNING, &conf->mddev->recovery) &&
1001	    conf->nr_queued > 0)
1002		return true;
1003
1004	return false;
1005}
1006
1007static bool wait_barrier_nolock(struct r10conf *conf)
1008{
1009	unsigned int seq = read_seqbegin(&conf->resync_lock);
1010
1011	if (READ_ONCE(conf->barrier))
1012		return false;
1013
1014	atomic_inc(&conf->nr_pending);
1015	if (!read_seqretry(&conf->resync_lock, seq))
1016		return true;
1017
1018	if (atomic_dec_and_test(&conf->nr_pending))
1019		wake_up_barrier(conf);
1020
1021	return false;
1022}
1023
1024static bool wait_barrier(struct r10conf *conf, bool nowait)
1025{
1026	bool ret = true;
1027
1028	if (wait_barrier_nolock(conf))
1029		return true;
1030
1031	write_seqlock_irq(&conf->resync_lock);
1032	if (conf->barrier) {
1033		/* Return false when nowait flag is set */
1034		if (nowait) {
1035			ret = false;
1036		} else {
1037			conf->nr_waiting++;
1038			raid10_log(conf->mddev, "wait barrier");
1039			wait_event_barrier(conf, stop_waiting_barrier(conf));
1040			conf->nr_waiting--;
1041		}
 
 
 
 
 
 
 
 
 
 
1042		if (!conf->nr_waiting)
1043			wake_up(&conf->wait_barrier);
1044	}
1045	/* Only increment nr_pending when we wait */
1046	if (ret)
1047		atomic_inc(&conf->nr_pending);
1048	write_sequnlock_irq(&conf->resync_lock);
1049	return ret;
1050}
1051
1052static void allow_barrier(struct r10conf *conf)
1053{
1054	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1055			(conf->array_freeze_pending))
1056		wake_up_barrier(conf);
1057}
1058
1059static void freeze_array(struct r10conf *conf, int extra)
1060{
1061	/* stop syncio and normal IO and wait for everything to
1062	 * go quiet.
1063	 * We increment barrier and nr_waiting, and then
1064	 * wait until nr_pending match nr_queued+extra
1065	 * This is called in the context of one normal IO request
1066	 * that has failed. Thus any sync request that might be pending
1067	 * will be blocked by nr_pending, and we need to wait for
1068	 * pending IO requests to complete or be queued for re-try.
1069	 * Thus the number queued (nr_queued) plus this request (extra)
1070	 * must match the number of pending IOs (nr_pending) before
1071	 * we continue.
1072	 */
1073	write_seqlock_irq(&conf->resync_lock);
1074	conf->array_freeze_pending++;
1075	WRITE_ONCE(conf->barrier, conf->barrier + 1);
1076	conf->nr_waiting++;
1077	wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
1078			conf->nr_queued + extra, flush_pending_writes(conf));
 
 
 
1079	conf->array_freeze_pending--;
1080	write_sequnlock_irq(&conf->resync_lock);
1081}
1082
1083static void unfreeze_array(struct r10conf *conf)
1084{
1085	/* reverse the effect of the freeze */
1086	write_seqlock_irq(&conf->resync_lock);
1087	WRITE_ONCE(conf->barrier, conf->barrier - 1);
1088	conf->nr_waiting--;
1089	wake_up(&conf->wait_barrier);
1090	write_sequnlock_irq(&conf->resync_lock);
1091}
1092
1093static sector_t choose_data_offset(struct r10bio *r10_bio,
1094				   struct md_rdev *rdev)
1095{
1096	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1097	    test_bit(R10BIO_Previous, &r10_bio->state))
1098		return rdev->data_offset;
1099	else
1100		return rdev->new_data_offset;
1101}
1102
 
 
 
 
 
 
1103static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1104{
1105	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
 
1106	struct mddev *mddev = plug->cb.data;
1107	struct r10conf *conf = mddev->private;
1108	struct bio *bio;
1109
1110	if (from_schedule || current->bio_list) {
1111		spin_lock_irq(&conf->device_lock);
1112		bio_list_merge(&conf->pending_bio_list, &plug->pending);
 
1113		spin_unlock_irq(&conf->device_lock);
1114		wake_up(&conf->wait_barrier);
1115		md_wakeup_thread(mddev->thread);
1116		kfree(plug);
1117		return;
1118	}
1119
1120	/* we aren't scheduling, so we can do the write-out directly. */
1121	bio = bio_list_get(&plug->pending);
1122	md_bitmap_unplug(mddev->bitmap);
1123	wake_up(&conf->wait_barrier);
1124
1125	while (bio) { /* submit pending writes */
1126		struct bio *next = bio->bi_next;
1127		struct md_rdev *rdev = (void*)bio->bi_bdev;
1128		bio->bi_next = NULL;
1129		bio_set_dev(bio, rdev->bdev);
1130		if (test_bit(Faulty, &rdev->flags)) {
1131			bio_io_error(bio);
1132		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1133				    !bdev_max_discard_sectors(bio->bi_bdev)))
1134			/* Just ignore it */
1135			bio_endio(bio);
1136		else
1137			submit_bio_noacct(bio);
1138		bio = next;
1139	}
1140	kfree(plug);
1141}
1142
1143/*
1144 * 1. Register the new request and wait if the reconstruction thread has put
1145 * up a bar for new requests. Continue immediately if no resync is active
1146 * currently.
1147 * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1148 */
1149static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1150				 struct bio *bio, sector_t sectors)
1151{
1152	/* Bail out if REQ_NOWAIT is set for the bio */
1153	if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1154		bio_wouldblock_error(bio);
1155		return false;
1156	}
1157	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1158	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1159	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1160		allow_barrier(conf);
1161		if (bio->bi_opf & REQ_NOWAIT) {
1162			bio_wouldblock_error(bio);
1163			return false;
1164		}
1165		raid10_log(conf->mddev, "wait reshape");
1166		wait_event(conf->wait_barrier,
1167			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1168			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1169			   sectors);
1170		wait_barrier(conf, false);
1171	}
1172	return true;
1173}
1174
1175static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1176				struct r10bio *r10_bio)
1177{
1178	struct r10conf *conf = mddev->private;
1179	struct bio *read_bio;
1180	const enum req_op op = bio_op(bio);
1181	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1182	int max_sectors;
 
1183	struct md_rdev *rdev;
1184	char b[BDEVNAME_SIZE];
1185	int slot = r10_bio->read_slot;
1186	struct md_rdev *err_rdev = NULL;
1187	gfp_t gfp = GFP_NOIO;
1188
1189	if (slot >= 0 && r10_bio->devs[slot].rdev) {
1190		/*
1191		 * This is an error retry, but we cannot
1192		 * safely dereference the rdev in the r10_bio,
1193		 * we must use the one in conf.
1194		 * If it has already been disconnected (unlikely)
1195		 * we lose the device name in error messages.
1196		 */
1197		int disk;
1198		/*
1199		 * As we are blocking raid10, it is a little safer to
1200		 * use __GFP_HIGH.
1201		 */
1202		gfp = GFP_NOIO | __GFP_HIGH;
1203
1204		rcu_read_lock();
1205		disk = r10_bio->devs[slot].devnum;
1206		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1207		if (err_rdev)
1208			snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
1209		else {
1210			strcpy(b, "???");
1211			/* This never gets dereferenced */
1212			err_rdev = r10_bio->devs[slot].rdev;
1213		}
1214		rcu_read_unlock();
1215	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1216
1217	if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1218		return;
1219	rdev = read_balance(conf, r10_bio, &max_sectors);
1220	if (!rdev) {
1221		if (err_rdev) {
1222			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1223					    mdname(mddev), b,
1224					    (unsigned long long)r10_bio->sector);
1225		}
1226		raid_end_bio_io(r10_bio);
1227		return;
1228	}
1229	if (err_rdev)
1230		pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1231				   mdname(mddev),
1232				   rdev->bdev,
1233				   (unsigned long long)r10_bio->sector);
1234	if (max_sectors < bio_sectors(bio)) {
1235		struct bio *split = bio_split(bio, max_sectors,
1236					      gfp, &conf->bio_split);
1237		bio_chain(split, bio);
1238		allow_barrier(conf);
1239		submit_bio_noacct(bio);
1240		wait_barrier(conf, false);
1241		bio = split;
1242		r10_bio->master_bio = bio;
1243		r10_bio->sectors = max_sectors;
1244	}
1245	slot = r10_bio->read_slot;
1246
1247	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1248		r10_bio->start_time = bio_start_io_acct(bio);
1249	read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1250
1251	r10_bio->devs[slot].bio = read_bio;
1252	r10_bio->devs[slot].rdev = rdev;
1253
1254	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1255		choose_data_offset(r10_bio, rdev);
 
1256	read_bio->bi_end_io = raid10_end_read_request;
1257	read_bio->bi_opf = op | do_sync;
1258	if (test_bit(FailFast, &rdev->flags) &&
1259	    test_bit(R10BIO_FailFast, &r10_bio->state))
1260	        read_bio->bi_opf |= MD_FAILFAST;
1261	read_bio->bi_private = r10_bio;
1262
1263	if (mddev->gendisk)
1264	        trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
 
1265	                              r10_bio->sector);
1266	submit_bio_noacct(read_bio);
1267	return;
1268}
1269
1270static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1271				  struct bio *bio, bool replacement,
1272				  int n_copy)
1273{
1274	const enum req_op op = bio_op(bio);
1275	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1276	const blk_opf_t do_fua = bio->bi_opf & REQ_FUA;
1277	unsigned long flags;
1278	struct blk_plug_cb *cb;
1279	struct raid1_plug_cb *plug = NULL;
1280	struct r10conf *conf = mddev->private;
1281	struct md_rdev *rdev;
1282	int devnum = r10_bio->devs[n_copy].devnum;
1283	struct bio *mbio;
1284
1285	if (replacement) {
1286		rdev = conf->mirrors[devnum].replacement;
1287		if (rdev == NULL) {
1288			/* Replacement just got moved to main 'rdev' */
1289			smp_mb();
1290			rdev = conf->mirrors[devnum].rdev;
1291		}
1292	} else
1293		rdev = conf->mirrors[devnum].rdev;
1294
1295	mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1296	if (replacement)
1297		r10_bio->devs[n_copy].repl_bio = mbio;
1298	else
1299		r10_bio->devs[n_copy].bio = mbio;
1300
1301	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1302				   choose_data_offset(r10_bio, rdev));
 
1303	mbio->bi_end_io	= raid10_end_write_request;
1304	mbio->bi_opf = op | do_sync | do_fua;
1305	if (!replacement && test_bit(FailFast,
1306				     &conf->mirrors[devnum].rdev->flags)
1307			 && enough(conf, devnum))
1308		mbio->bi_opf |= MD_FAILFAST;
1309	mbio->bi_private = r10_bio;
1310
1311	if (conf->mddev->gendisk)
1312		trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
 
1313				      r10_bio->sector);
1314	/* flush_pending_writes() needs access to the rdev so...*/
1315	mbio->bi_bdev = (void *)rdev;
1316
1317	atomic_inc(&r10_bio->remaining);
1318
1319	cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1320	if (cb)
1321		plug = container_of(cb, struct raid1_plug_cb, cb);
1322	else
1323		plug = NULL;
1324	if (plug) {
1325		bio_list_add(&plug->pending, mbio);
 
1326	} else {
1327		spin_lock_irqsave(&conf->device_lock, flags);
1328		bio_list_add(&conf->pending_bio_list, mbio);
 
1329		spin_unlock_irqrestore(&conf->device_lock, flags);
1330		md_wakeup_thread(mddev->thread);
1331	}
1332}
1333
1334static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1335{
1336	int i;
1337	struct r10conf *conf = mddev->private;
1338	struct md_rdev *blocked_rdev;
1339
1340retry_wait:
1341	blocked_rdev = NULL;
1342	rcu_read_lock();
1343	for (i = 0; i < conf->copies; i++) {
1344		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1345		struct md_rdev *rrdev = rcu_dereference(
1346			conf->mirrors[i].replacement);
1347		if (rdev == rrdev)
1348			rrdev = NULL;
1349		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1350			atomic_inc(&rdev->nr_pending);
1351			blocked_rdev = rdev;
1352			break;
1353		}
1354		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1355			atomic_inc(&rrdev->nr_pending);
1356			blocked_rdev = rrdev;
1357			break;
1358		}
1359
1360		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1361			sector_t first_bad;
1362			sector_t dev_sector = r10_bio->devs[i].addr;
1363			int bad_sectors;
1364			int is_bad;
1365
1366			/*
1367			 * Discard request doesn't care the write result
1368			 * so it doesn't need to wait blocked disk here.
1369			 */
1370			if (!r10_bio->sectors)
1371				continue;
1372
1373			is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1374					     &first_bad, &bad_sectors);
1375			if (is_bad < 0) {
1376				/*
1377				 * Mustn't write here until the bad block
1378				 * is acknowledged
1379				 */
1380				atomic_inc(&rdev->nr_pending);
1381				set_bit(BlockedBadBlocks, &rdev->flags);
1382				blocked_rdev = rdev;
1383				break;
1384			}
1385		}
1386	}
1387	rcu_read_unlock();
1388
1389	if (unlikely(blocked_rdev)) {
1390		/* Have to wait for this device to get unblocked, then retry */
1391		allow_barrier(conf);
1392		raid10_log(conf->mddev, "%s wait rdev %d blocked",
1393				__func__, blocked_rdev->raid_disk);
1394		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1395		wait_barrier(conf, false);
1396		goto retry_wait;
1397	}
1398}
1399
1400static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1401				 struct r10bio *r10_bio)
1402{
1403	struct r10conf *conf = mddev->private;
1404	int i;
 
1405	sector_t sectors;
1406	int max_sectors;
1407
1408	if ((mddev_is_clustered(mddev) &&
1409	     md_cluster_ops->area_resyncing(mddev, WRITE,
1410					    bio->bi_iter.bi_sector,
1411					    bio_end_sector(bio)))) {
1412		DEFINE_WAIT(w);
1413		/* Bail out if REQ_NOWAIT is set for the bio */
1414		if (bio->bi_opf & REQ_NOWAIT) {
1415			bio_wouldblock_error(bio);
1416			return;
1417		}
1418		for (;;) {
1419			prepare_to_wait(&conf->wait_barrier,
1420					&w, TASK_IDLE);
1421			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1422				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1423				break;
1424			schedule();
1425		}
1426		finish_wait(&conf->wait_barrier, &w);
1427	}
1428
 
 
 
 
 
 
 
1429	sectors = r10_bio->sectors;
1430	if (!regular_request_wait(mddev, conf, bio, sectors))
1431		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1432	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1433	    (mddev->reshape_backwards
1434	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1435		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1436	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1437		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1438		/* Need to update reshape_position in metadata */
1439		mddev->reshape_position = conf->reshape_progress;
1440		set_mask_bits(&mddev->sb_flags, 0,
1441			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1442		md_wakeup_thread(mddev->thread);
1443		if (bio->bi_opf & REQ_NOWAIT) {
1444			allow_barrier(conf);
1445			bio_wouldblock_error(bio);
1446			return;
1447		}
1448		raid10_log(conf->mddev, "wait reshape metadata");
1449		wait_event(mddev->sb_wait,
1450			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1451
1452		conf->reshape_safe = mddev->reshape_position;
1453	}
1454
 
 
 
 
 
 
1455	/* first select target devices under rcu_lock and
1456	 * inc refcount on their rdev.  Record them by setting
1457	 * bios[x] to bio
1458	 * If there are known/acknowledged bad blocks on any device
1459	 * on which we have seen a write error, we want to avoid
1460	 * writing to those blocks.  This potentially requires several
1461	 * writes to write around the bad blocks.  Each set of writes
1462	 * gets its own r10_bio with a set of bios attached.
1463	 */
1464
1465	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1466	raid10_find_phys(conf, r10_bio);
1467
1468	wait_blocked_dev(mddev, r10_bio);
1469
1470	rcu_read_lock();
1471	max_sectors = r10_bio->sectors;
1472
1473	for (i = 0;  i < conf->copies; i++) {
1474		int d = r10_bio->devs[i].devnum;
1475		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1476		struct md_rdev *rrdev = rcu_dereference(
1477			conf->mirrors[d].replacement);
1478		if (rdev == rrdev)
1479			rrdev = NULL;
 
 
 
 
 
 
 
 
 
 
1480		if (rdev && (test_bit(Faulty, &rdev->flags)))
1481			rdev = NULL;
1482		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1483			rrdev = NULL;
1484
1485		r10_bio->devs[i].bio = NULL;
1486		r10_bio->devs[i].repl_bio = NULL;
1487
1488		if (!rdev && !rrdev) {
1489			set_bit(R10BIO_Degraded, &r10_bio->state);
1490			continue;
1491		}
1492		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1493			sector_t first_bad;
1494			sector_t dev_sector = r10_bio->devs[i].addr;
1495			int bad_sectors;
1496			int is_bad;
1497
1498			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1499					     &first_bad, &bad_sectors);
 
 
 
 
 
 
 
 
 
1500			if (is_bad && first_bad <= dev_sector) {
1501				/* Cannot write here at all */
1502				bad_sectors -= (dev_sector - first_bad);
1503				if (bad_sectors < max_sectors)
1504					/* Mustn't write more than bad_sectors
1505					 * to other devices yet
1506					 */
1507					max_sectors = bad_sectors;
1508				/* We don't set R10BIO_Degraded as that
1509				 * only applies if the disk is missing,
1510				 * so it might be re-added, and we want to
1511				 * know to recover this chunk.
1512				 * In this case the device is here, and the
1513				 * fact that this chunk is not in-sync is
1514				 * recorded in the bad block log.
1515				 */
1516				continue;
1517			}
1518			if (is_bad) {
1519				int good_sectors = first_bad - dev_sector;
1520				if (good_sectors < max_sectors)
1521					max_sectors = good_sectors;
1522			}
1523		}
1524		if (rdev) {
1525			r10_bio->devs[i].bio = bio;
1526			atomic_inc(&rdev->nr_pending);
1527		}
1528		if (rrdev) {
1529			r10_bio->devs[i].repl_bio = bio;
1530			atomic_inc(&rrdev->nr_pending);
1531		}
1532	}
1533	rcu_read_unlock();
1534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1535	if (max_sectors < r10_bio->sectors)
1536		r10_bio->sectors = max_sectors;
1537
1538	if (r10_bio->sectors < bio_sectors(bio)) {
1539		struct bio *split = bio_split(bio, r10_bio->sectors,
1540					      GFP_NOIO, &conf->bio_split);
1541		bio_chain(split, bio);
1542		allow_barrier(conf);
1543		submit_bio_noacct(bio);
1544		wait_barrier(conf, false);
1545		bio = split;
1546		r10_bio->master_bio = bio;
1547	}
1548
1549	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1550		r10_bio->start_time = bio_start_io_acct(bio);
1551	atomic_set(&r10_bio->remaining, 1);
1552	md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1553
1554	for (i = 0; i < conf->copies; i++) {
1555		if (r10_bio->devs[i].bio)
1556			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1557		if (r10_bio->devs[i].repl_bio)
1558			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1559	}
1560	one_write_done(r10_bio);
1561}
1562
1563static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1564{
1565	struct r10conf *conf = mddev->private;
1566	struct r10bio *r10_bio;
1567
1568	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1569
1570	r10_bio->master_bio = bio;
1571	r10_bio->sectors = sectors;
1572
1573	r10_bio->mddev = mddev;
1574	r10_bio->sector = bio->bi_iter.bi_sector;
1575	r10_bio->state = 0;
1576	r10_bio->read_slot = -1;
1577	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1578			conf->geo.raid_disks);
1579
1580	if (bio_data_dir(bio) == READ)
1581		raid10_read_request(mddev, bio, r10_bio);
1582	else
1583		raid10_write_request(mddev, bio, r10_bio);
1584}
1585
1586static void raid_end_discard_bio(struct r10bio *r10bio)
1587{
1588	struct r10conf *conf = r10bio->mddev->private;
1589	struct r10bio *first_r10bio;
1590
1591	while (atomic_dec_and_test(&r10bio->remaining)) {
1592
1593		allow_barrier(conf);
1594
1595		if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1596			first_r10bio = (struct r10bio *)r10bio->master_bio;
1597			free_r10bio(r10bio);
1598			r10bio = first_r10bio;
1599		} else {
1600			md_write_end(r10bio->mddev);
1601			bio_endio(r10bio->master_bio);
1602			free_r10bio(r10bio);
1603			break;
1604		}
1605	}
1606}
1607
1608static void raid10_end_discard_request(struct bio *bio)
1609{
1610	struct r10bio *r10_bio = bio->bi_private;
1611	struct r10conf *conf = r10_bio->mddev->private;
1612	struct md_rdev *rdev = NULL;
1613	int dev;
1614	int slot, repl;
1615
1616	/*
1617	 * We don't care the return value of discard bio
1618	 */
1619	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1620		set_bit(R10BIO_Uptodate, &r10_bio->state);
1621
1622	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1623	if (repl)
1624		rdev = conf->mirrors[dev].replacement;
1625	if (!rdev) {
1626		/*
1627		 * raid10_remove_disk uses smp_mb to make sure rdev is set to
1628		 * replacement before setting replacement to NULL. It can read
1629		 * rdev first without barrier protect even replacment is NULL
1630		 */
1631		smp_rmb();
1632		rdev = conf->mirrors[dev].rdev;
1633	}
1634
1635	raid_end_discard_bio(r10_bio);
1636	rdev_dec_pending(rdev, conf->mddev);
1637}
1638
1639/*
1640 * There are some limitations to handle discard bio
1641 * 1st, the discard size is bigger than stripe_size*2.
1642 * 2st, if the discard bio spans reshape progress, we use the old way to
1643 * handle discard bio
1644 */
1645static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1646{
1647	struct r10conf *conf = mddev->private;
1648	struct geom *geo = &conf->geo;
1649	int far_copies = geo->far_copies;
1650	bool first_copy = true;
1651	struct r10bio *r10_bio, *first_r10bio;
1652	struct bio *split;
1653	int disk;
1654	sector_t chunk;
1655	unsigned int stripe_size;
1656	unsigned int stripe_data_disks;
1657	sector_t split_size;
1658	sector_t bio_start, bio_end;
1659	sector_t first_stripe_index, last_stripe_index;
1660	sector_t start_disk_offset;
1661	unsigned int start_disk_index;
1662	sector_t end_disk_offset;
1663	unsigned int end_disk_index;
1664	unsigned int remainder;
1665
1666	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1667		return -EAGAIN;
1668
1669	if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1670		bio_wouldblock_error(bio);
1671		return 0;
1672	}
1673	wait_barrier(conf, false);
1674
1675	/*
1676	 * Check reshape again to avoid reshape happens after checking
1677	 * MD_RECOVERY_RESHAPE and before wait_barrier
1678	 */
1679	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1680		goto out;
1681
1682	if (geo->near_copies)
1683		stripe_data_disks = geo->raid_disks / geo->near_copies +
1684					geo->raid_disks % geo->near_copies;
1685	else
1686		stripe_data_disks = geo->raid_disks;
1687
1688	stripe_size = stripe_data_disks << geo->chunk_shift;
1689
1690	bio_start = bio->bi_iter.bi_sector;
1691	bio_end = bio_end_sector(bio);
1692
1693	/*
1694	 * Maybe one discard bio is smaller than strip size or across one
1695	 * stripe and discard region is larger than one stripe size. For far
1696	 * offset layout, if the discard region is not aligned with stripe
1697	 * size, there is hole when we submit discard bio to member disk.
1698	 * For simplicity, we only handle discard bio which discard region
1699	 * is bigger than stripe_size * 2
1700	 */
1701	if (bio_sectors(bio) < stripe_size*2)
1702		goto out;
1703
1704	/*
1705	 * Keep bio aligned with strip size.
1706	 */
1707	div_u64_rem(bio_start, stripe_size, &remainder);
1708	if (remainder) {
1709		split_size = stripe_size - remainder;
1710		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1711		bio_chain(split, bio);
1712		allow_barrier(conf);
1713		/* Resend the fist split part */
1714		submit_bio_noacct(split);
1715		wait_barrier(conf, false);
1716	}
1717	div_u64_rem(bio_end, stripe_size, &remainder);
1718	if (remainder) {
1719		split_size = bio_sectors(bio) - remainder;
1720		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1721		bio_chain(split, bio);
1722		allow_barrier(conf);
1723		/* Resend the second split part */
1724		submit_bio_noacct(bio);
1725		bio = split;
1726		wait_barrier(conf, false);
1727	}
1728
1729	bio_start = bio->bi_iter.bi_sector;
1730	bio_end = bio_end_sector(bio);
1731
1732	/*
1733	 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1734	 * One stripe contains the chunks from all member disk (one chunk from
1735	 * one disk at the same HBA address). For layout detail, see 'man md 4'
1736	 */
1737	chunk = bio_start >> geo->chunk_shift;
1738	chunk *= geo->near_copies;
1739	first_stripe_index = chunk;
1740	start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1741	if (geo->far_offset)
1742		first_stripe_index *= geo->far_copies;
1743	start_disk_offset = (bio_start & geo->chunk_mask) +
1744				(first_stripe_index << geo->chunk_shift);
1745
1746	chunk = bio_end >> geo->chunk_shift;
1747	chunk *= geo->near_copies;
1748	last_stripe_index = chunk;
1749	end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1750	if (geo->far_offset)
1751		last_stripe_index *= geo->far_copies;
1752	end_disk_offset = (bio_end & geo->chunk_mask) +
1753				(last_stripe_index << geo->chunk_shift);
1754
1755retry_discard:
1756	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1757	r10_bio->mddev = mddev;
1758	r10_bio->state = 0;
1759	r10_bio->sectors = 0;
1760	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1761	wait_blocked_dev(mddev, r10_bio);
1762
1763	/*
1764	 * For far layout it needs more than one r10bio to cover all regions.
1765	 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1766	 * to record the discard bio. Other r10bio->master_bio record the first
1767	 * r10bio. The first r10bio only release after all other r10bios finish.
1768	 * The discard bio returns only first r10bio finishes
1769	 */
1770	if (first_copy) {
1771		r10_bio->master_bio = bio;
1772		set_bit(R10BIO_Discard, &r10_bio->state);
1773		first_copy = false;
1774		first_r10bio = r10_bio;
1775	} else
1776		r10_bio->master_bio = (struct bio *)first_r10bio;
1777
1778	/*
1779	 * first select target devices under rcu_lock and
1780	 * inc refcount on their rdev.  Record them by setting
1781	 * bios[x] to bio
1782	 */
1783	rcu_read_lock();
1784	for (disk = 0; disk < geo->raid_disks; disk++) {
1785		struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
1786		struct md_rdev *rrdev = rcu_dereference(
1787			conf->mirrors[disk].replacement);
1788
1789		r10_bio->devs[disk].bio = NULL;
1790		r10_bio->devs[disk].repl_bio = NULL;
1791
1792		if (rdev && (test_bit(Faulty, &rdev->flags)))
1793			rdev = NULL;
1794		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1795			rrdev = NULL;
1796		if (!rdev && !rrdev)
1797			continue;
1798
1799		if (rdev) {
1800			r10_bio->devs[disk].bio = bio;
1801			atomic_inc(&rdev->nr_pending);
1802		}
1803		if (rrdev) {
1804			r10_bio->devs[disk].repl_bio = bio;
1805			atomic_inc(&rrdev->nr_pending);
1806		}
1807	}
1808	rcu_read_unlock();
1809
1810	atomic_set(&r10_bio->remaining, 1);
1811	for (disk = 0; disk < geo->raid_disks; disk++) {
1812		sector_t dev_start, dev_end;
1813		struct bio *mbio, *rbio = NULL;
1814
1815		/*
1816		 * Now start to calculate the start and end address for each disk.
1817		 * The space between dev_start and dev_end is the discard region.
1818		 *
1819		 * For dev_start, it needs to consider three conditions:
1820		 * 1st, the disk is before start_disk, you can imagine the disk in
1821		 * the next stripe. So the dev_start is the start address of next
1822		 * stripe.
1823		 * 2st, the disk is after start_disk, it means the disk is at the
1824		 * same stripe of first disk
1825		 * 3st, the first disk itself, we can use start_disk_offset directly
1826		 */
1827		if (disk < start_disk_index)
1828			dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1829		else if (disk > start_disk_index)
1830			dev_start = first_stripe_index * mddev->chunk_sectors;
1831		else
1832			dev_start = start_disk_offset;
1833
1834		if (disk < end_disk_index)
1835			dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1836		else if (disk > end_disk_index)
1837			dev_end = last_stripe_index * mddev->chunk_sectors;
1838		else
1839			dev_end = end_disk_offset;
1840
1841		/*
1842		 * It only handles discard bio which size is >= stripe size, so
1843		 * dev_end > dev_start all the time.
1844		 * It doesn't need to use rcu lock to get rdev here. We already
1845		 * add rdev->nr_pending in the first loop.
1846		 */
1847		if (r10_bio->devs[disk].bio) {
1848			struct md_rdev *rdev = conf->mirrors[disk].rdev;
1849			mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1850					       &mddev->bio_set);
1851			mbio->bi_end_io = raid10_end_discard_request;
1852			mbio->bi_private = r10_bio;
1853			r10_bio->devs[disk].bio = mbio;
1854			r10_bio->devs[disk].devnum = disk;
1855			atomic_inc(&r10_bio->remaining);
1856			md_submit_discard_bio(mddev, rdev, mbio,
1857					dev_start + choose_data_offset(r10_bio, rdev),
1858					dev_end - dev_start);
1859			bio_endio(mbio);
1860		}
1861		if (r10_bio->devs[disk].repl_bio) {
1862			struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1863			rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1864					       &mddev->bio_set);
1865			rbio->bi_end_io = raid10_end_discard_request;
1866			rbio->bi_private = r10_bio;
1867			r10_bio->devs[disk].repl_bio = rbio;
1868			r10_bio->devs[disk].devnum = disk;
1869			atomic_inc(&r10_bio->remaining);
1870			md_submit_discard_bio(mddev, rrdev, rbio,
1871					dev_start + choose_data_offset(r10_bio, rrdev),
1872					dev_end - dev_start);
1873			bio_endio(rbio);
1874		}
1875	}
1876
1877	if (!geo->far_offset && --far_copies) {
1878		first_stripe_index += geo->stride >> geo->chunk_shift;
1879		start_disk_offset += geo->stride;
1880		last_stripe_index += geo->stride >> geo->chunk_shift;
1881		end_disk_offset += geo->stride;
1882		atomic_inc(&first_r10bio->remaining);
1883		raid_end_discard_bio(r10_bio);
1884		wait_barrier(conf, false);
1885		goto retry_discard;
1886	}
1887
1888	raid_end_discard_bio(r10_bio);
1889
1890	return 0;
1891out:
1892	allow_barrier(conf);
1893	return -EAGAIN;
1894}
1895
1896static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1897{
1898	struct r10conf *conf = mddev->private;
1899	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1900	int chunk_sects = chunk_mask + 1;
1901	int sectors = bio_sectors(bio);
1902
1903	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1904	    && md_flush_request(mddev, bio))
1905		return true;
 
1906
1907	if (!md_write_start(mddev, bio))
1908		return false;
1909
1910	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1911		if (!raid10_handle_discard(mddev, bio))
1912			return true;
1913
1914	/*
1915	 * If this request crosses a chunk boundary, we need to split
1916	 * it.
1917	 */
1918	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1919		     sectors > chunk_sects
1920		     && (conf->geo.near_copies < conf->geo.raid_disks
1921			 || conf->prev.near_copies <
1922			 conf->prev.raid_disks)))
1923		sectors = chunk_sects -
1924			(bio->bi_iter.bi_sector &
1925			 (chunk_sects - 1));
1926	__make_request(mddev, bio, sectors);
1927
1928	/* In case raid10d snuck in to freeze_array */
1929	wake_up_barrier(conf);
1930	return true;
1931}
1932
1933static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1934{
1935	struct r10conf *conf = mddev->private;
1936	int i;
1937
1938	if (conf->geo.near_copies < conf->geo.raid_disks)
1939		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1940	if (conf->geo.near_copies > 1)
1941		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1942	if (conf->geo.far_copies > 1) {
1943		if (conf->geo.far_offset)
1944			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1945		else
1946			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1947		if (conf->geo.far_set_size != conf->geo.raid_disks)
1948			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1949	}
1950	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1951					conf->geo.raid_disks - mddev->degraded);
1952	rcu_read_lock();
1953	for (i = 0; i < conf->geo.raid_disks; i++) {
1954		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1955		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1956	}
1957	rcu_read_unlock();
1958	seq_printf(seq, "]");
1959}
1960
1961/* check if there are enough drives for
1962 * every block to appear on atleast one.
1963 * Don't consider the device numbered 'ignore'
1964 * as we might be about to remove it.
1965 */
1966static int _enough(struct r10conf *conf, int previous, int ignore)
1967{
1968	int first = 0;
1969	int has_enough = 0;
1970	int disks, ncopies;
1971	if (previous) {
1972		disks = conf->prev.raid_disks;
1973		ncopies = conf->prev.near_copies;
1974	} else {
1975		disks = conf->geo.raid_disks;
1976		ncopies = conf->geo.near_copies;
1977	}
1978
1979	rcu_read_lock();
1980	do {
1981		int n = conf->copies;
1982		int cnt = 0;
1983		int this = first;
1984		while (n--) {
1985			struct md_rdev *rdev;
1986			if (this != ignore &&
1987			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1988			    test_bit(In_sync, &rdev->flags))
1989				cnt++;
1990			this = (this+1) % disks;
1991		}
1992		if (cnt == 0)
1993			goto out;
1994		first = (first + ncopies) % disks;
1995	} while (first != 0);
1996	has_enough = 1;
1997out:
1998	rcu_read_unlock();
1999	return has_enough;
2000}
2001
2002static int enough(struct r10conf *conf, int ignore)
2003{
2004	/* when calling 'enough', both 'prev' and 'geo' must
2005	 * be stable.
2006	 * This is ensured if ->reconfig_mutex or ->device_lock
2007	 * is held.
2008	 */
2009	return _enough(conf, 0, ignore) &&
2010		_enough(conf, 1, ignore);
2011}
2012
2013/**
2014 * raid10_error() - RAID10 error handler.
2015 * @mddev: affected md device.
2016 * @rdev: member device to fail.
2017 *
2018 * The routine acknowledges &rdev failure and determines new @mddev state.
2019 * If it failed, then:
2020 *	- &MD_BROKEN flag is set in &mddev->flags.
2021 * Otherwise, it must be degraded:
2022 *	- recovery is interrupted.
2023 *	- &mddev->degraded is bumped.
2024 *
2025 * @rdev is marked as &Faulty excluding case when array is failed and
2026 * &mddev->fail_last_dev is off.
2027 */
2028static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
2029{
 
2030	struct r10conf *conf = mddev->private;
2031	unsigned long flags;
2032
 
 
 
 
 
 
2033	spin_lock_irqsave(&conf->device_lock, flags);
2034
2035	if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
2036		set_bit(MD_BROKEN, &mddev->flags);
2037
2038		if (!mddev->fail_last_dev) {
2039			spin_unlock_irqrestore(&conf->device_lock, flags);
2040			return;
2041		}
2042	}
2043	if (test_and_clear_bit(In_sync, &rdev->flags))
2044		mddev->degraded++;
2045
 
 
2046	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2047	set_bit(Blocked, &rdev->flags);
2048	set_bit(Faulty, &rdev->flags);
2049	set_mask_bits(&mddev->sb_flags, 0,
2050		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2051	spin_unlock_irqrestore(&conf->device_lock, flags);
2052	pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
2053		"md/raid10:%s: Operation continuing on %d devices.\n",
2054		mdname(mddev), rdev->bdev,
2055		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
2056}
2057
2058static void print_conf(struct r10conf *conf)
2059{
2060	int i;
2061	struct md_rdev *rdev;
2062
2063	pr_debug("RAID10 conf printout:\n");
2064	if (!conf) {
2065		pr_debug("(!conf)\n");
2066		return;
2067	}
2068	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2069		 conf->geo.raid_disks);
2070
2071	/* This is only called with ->reconfix_mutex held, so
2072	 * rcu protection of rdev is not needed */
2073	for (i = 0; i < conf->geo.raid_disks; i++) {
 
2074		rdev = conf->mirrors[i].rdev;
2075		if (rdev)
2076			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2077				 i, !test_bit(In_sync, &rdev->flags),
2078				 !test_bit(Faulty, &rdev->flags),
2079				 rdev->bdev);
2080	}
2081}
2082
2083static void close_sync(struct r10conf *conf)
2084{
2085	wait_barrier(conf, false);
2086	allow_barrier(conf);
2087
2088	mempool_exit(&conf->r10buf_pool);
 
2089}
2090
2091static int raid10_spare_active(struct mddev *mddev)
2092{
2093	int i;
2094	struct r10conf *conf = mddev->private;
2095	struct raid10_info *tmp;
2096	int count = 0;
2097	unsigned long flags;
2098
2099	/*
2100	 * Find all non-in_sync disks within the RAID10 configuration
2101	 * and mark them in_sync
2102	 */
2103	for (i = 0; i < conf->geo.raid_disks; i++) {
2104		tmp = conf->mirrors + i;
2105		if (tmp->replacement
2106		    && tmp->replacement->recovery_offset == MaxSector
2107		    && !test_bit(Faulty, &tmp->replacement->flags)
2108		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2109			/* Replacement has just become active */
2110			if (!tmp->rdev
2111			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2112				count++;
2113			if (tmp->rdev) {
2114				/* Replaced device not technically faulty,
2115				 * but we need to be sure it gets removed
2116				 * and never re-added.
2117				 */
2118				set_bit(Faulty, &tmp->rdev->flags);
2119				sysfs_notify_dirent_safe(
2120					tmp->rdev->sysfs_state);
2121			}
2122			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2123		} else if (tmp->rdev
2124			   && tmp->rdev->recovery_offset == MaxSector
2125			   && !test_bit(Faulty, &tmp->rdev->flags)
2126			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2127			count++;
2128			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2129		}
2130	}
2131	spin_lock_irqsave(&conf->device_lock, flags);
2132	mddev->degraded -= count;
2133	spin_unlock_irqrestore(&conf->device_lock, flags);
2134
2135	print_conf(conf);
2136	return count;
2137}
2138
2139static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2140{
2141	struct r10conf *conf = mddev->private;
2142	int err = -EEXIST;
2143	int mirror;
2144	int first = 0;
2145	int last = conf->geo.raid_disks - 1;
2146
2147	if (mddev->recovery_cp < MaxSector)
2148		/* only hot-add to in-sync arrays, as recovery is
2149		 * very different from resync
2150		 */
2151		return -EBUSY;
2152	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2153		return -EINVAL;
2154
2155	if (md_integrity_add_rdev(rdev, mddev))
2156		return -ENXIO;
2157
2158	if (rdev->raid_disk >= 0)
2159		first = last = rdev->raid_disk;
2160
2161	if (rdev->saved_raid_disk >= first &&
2162	    rdev->saved_raid_disk < conf->geo.raid_disks &&
2163	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2164		mirror = rdev->saved_raid_disk;
2165	else
2166		mirror = first;
2167	for ( ; mirror <= last ; mirror++) {
2168		struct raid10_info *p = &conf->mirrors[mirror];
2169		if (p->recovery_disabled == mddev->recovery_disabled)
2170			continue;
2171		if (p->rdev) {
2172			if (!test_bit(WantReplacement, &p->rdev->flags) ||
2173			    p->replacement != NULL)
2174				continue;
2175			clear_bit(In_sync, &rdev->flags);
2176			set_bit(Replacement, &rdev->flags);
2177			rdev->raid_disk = mirror;
2178			err = 0;
2179			if (mddev->gendisk)
2180				disk_stack_limits(mddev->gendisk, rdev->bdev,
2181						  rdev->data_offset << 9);
2182			conf->fullsync = 1;
2183			rcu_assign_pointer(p->replacement, rdev);
2184			break;
2185		}
2186
2187		if (mddev->gendisk)
2188			disk_stack_limits(mddev->gendisk, rdev->bdev,
2189					  rdev->data_offset << 9);
2190
2191		p->head_position = 0;
2192		p->recovery_disabled = mddev->recovery_disabled - 1;
2193		rdev->raid_disk = mirror;
2194		err = 0;
2195		if (rdev->saved_raid_disk != mirror)
2196			conf->fullsync = 1;
2197		rcu_assign_pointer(p->rdev, rdev);
2198		break;
2199	}
 
 
2200
2201	print_conf(conf);
2202	return err;
2203}
2204
2205static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2206{
2207	struct r10conf *conf = mddev->private;
2208	int err = 0;
2209	int number = rdev->raid_disk;
2210	struct md_rdev **rdevp;
2211	struct raid10_info *p;
2212
2213	print_conf(conf);
2214	if (unlikely(number >= mddev->raid_disks))
2215		return 0;
2216	p = conf->mirrors + number;
2217	if (rdev == p->rdev)
2218		rdevp = &p->rdev;
2219	else if (rdev == p->replacement)
2220		rdevp = &p->replacement;
2221	else
2222		return 0;
2223
2224	if (test_bit(In_sync, &rdev->flags) ||
2225	    atomic_read(&rdev->nr_pending)) {
2226		err = -EBUSY;
2227		goto abort;
2228	}
2229	/* Only remove non-faulty devices if recovery
2230	 * is not possible.
2231	 */
2232	if (!test_bit(Faulty, &rdev->flags) &&
2233	    mddev->recovery_disabled != p->recovery_disabled &&
2234	    (!p->replacement || p->replacement == rdev) &&
2235	    number < conf->geo.raid_disks &&
2236	    enough(conf, -1)) {
2237		err = -EBUSY;
2238		goto abort;
2239	}
2240	*rdevp = NULL;
2241	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2242		synchronize_rcu();
2243		if (atomic_read(&rdev->nr_pending)) {
2244			/* lost the race, try later */
2245			err = -EBUSY;
2246			*rdevp = rdev;
2247			goto abort;
2248		}
2249	}
2250	if (p->replacement) {
2251		/* We must have just cleared 'rdev' */
2252		p->rdev = p->replacement;
2253		clear_bit(Replacement, &p->replacement->flags);
2254		smp_mb(); /* Make sure other CPUs may see both as identical
2255			   * but will never see neither -- if they are careful.
2256			   */
2257		p->replacement = NULL;
2258	}
2259
2260	clear_bit(WantReplacement, &rdev->flags);
2261	err = md_integrity_register(mddev);
2262
2263abort:
2264
2265	print_conf(conf);
2266	return err;
2267}
2268
2269static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2270{
2271	struct r10conf *conf = r10_bio->mddev->private;
2272
2273	if (!bio->bi_status)
2274		set_bit(R10BIO_Uptodate, &r10_bio->state);
2275	else
2276		/* The write handler will notice the lack of
2277		 * R10BIO_Uptodate and record any errors etc
2278		 */
2279		atomic_add(r10_bio->sectors,
2280			   &conf->mirrors[d].rdev->corrected_errors);
2281
2282	/* for reconstruct, we always reschedule after a read.
2283	 * for resync, only after all reads
2284	 */
2285	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2286	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2287	    atomic_dec_and_test(&r10_bio->remaining)) {
2288		/* we have read all the blocks,
2289		 * do the comparison in process context in raid10d
2290		 */
2291		reschedule_retry(r10_bio);
2292	}
2293}
2294
2295static void end_sync_read(struct bio *bio)
2296{
2297	struct r10bio *r10_bio = get_resync_r10bio(bio);
2298	struct r10conf *conf = r10_bio->mddev->private;
2299	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2300
2301	__end_sync_read(r10_bio, bio, d);
2302}
2303
2304static void end_reshape_read(struct bio *bio)
2305{
2306	/* reshape read bio isn't allocated from r10buf_pool */
2307	struct r10bio *r10_bio = bio->bi_private;
2308
2309	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
2310}
2311
2312static void end_sync_request(struct r10bio *r10_bio)
2313{
2314	struct mddev *mddev = r10_bio->mddev;
2315
2316	while (atomic_dec_and_test(&r10_bio->remaining)) {
2317		if (r10_bio->master_bio == NULL) {
2318			/* the primary of several recovery bios */
2319			sector_t s = r10_bio->sectors;
2320			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2321			    test_bit(R10BIO_WriteError, &r10_bio->state))
2322				reschedule_retry(r10_bio);
2323			else
2324				put_buf(r10_bio);
2325			md_done_sync(mddev, s, 1);
2326			break;
2327		} else {
2328			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2329			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2330			    test_bit(R10BIO_WriteError, &r10_bio->state))
2331				reschedule_retry(r10_bio);
2332			else
2333				put_buf(r10_bio);
2334			r10_bio = r10_bio2;
2335		}
2336	}
2337}
2338
2339static void end_sync_write(struct bio *bio)
2340{
2341	struct r10bio *r10_bio = get_resync_r10bio(bio);
2342	struct mddev *mddev = r10_bio->mddev;
2343	struct r10conf *conf = mddev->private;
2344	int d;
2345	sector_t first_bad;
2346	int bad_sectors;
2347	int slot;
2348	int repl;
2349	struct md_rdev *rdev = NULL;
2350
2351	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2352	if (repl)
2353		rdev = conf->mirrors[d].replacement;
2354	else
2355		rdev = conf->mirrors[d].rdev;
2356
2357	if (bio->bi_status) {
2358		if (repl)
2359			md_error(mddev, rdev);
2360		else {
2361			set_bit(WriteErrorSeen, &rdev->flags);
2362			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2363				set_bit(MD_RECOVERY_NEEDED,
2364					&rdev->mddev->recovery);
2365			set_bit(R10BIO_WriteError, &r10_bio->state);
2366		}
2367	} else if (is_badblock(rdev,
2368			     r10_bio->devs[slot].addr,
2369			     r10_bio->sectors,
2370			     &first_bad, &bad_sectors))
2371		set_bit(R10BIO_MadeGood, &r10_bio->state);
2372
2373	rdev_dec_pending(rdev, mddev);
2374
2375	end_sync_request(r10_bio);
2376}
2377
2378/*
2379 * Note: sync and recover and handled very differently for raid10
2380 * This code is for resync.
2381 * For resync, we read through virtual addresses and read all blocks.
2382 * If there is any error, we schedule a write.  The lowest numbered
2383 * drive is authoritative.
2384 * However requests come for physical address, so we need to map.
2385 * For every physical address there are raid_disks/copies virtual addresses,
2386 * which is always are least one, but is not necessarly an integer.
2387 * This means that a physical address can span multiple chunks, so we may
2388 * have to submit multiple io requests for a single sync request.
2389 */
2390/*
2391 * We check if all blocks are in-sync and only write to blocks that
2392 * aren't in sync
2393 */
2394static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2395{
2396	struct r10conf *conf = mddev->private;
2397	int i, first;
2398	struct bio *tbio, *fbio;
2399	int vcnt;
2400	struct page **tpages, **fpages;
2401
2402	atomic_set(&r10_bio->remaining, 1);
2403
2404	/* find the first device with a block */
2405	for (i=0; i<conf->copies; i++)
2406		if (!r10_bio->devs[i].bio->bi_status)
2407			break;
2408
2409	if (i == conf->copies)
2410		goto done;
2411
2412	first = i;
2413	fbio = r10_bio->devs[i].bio;
2414	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2415	fbio->bi_iter.bi_idx = 0;
2416	fpages = get_resync_pages(fbio)->pages;
2417
2418	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2419	/* now find blocks with errors */
2420	for (i=0 ; i < conf->copies ; i++) {
2421		int  j, d;
2422		struct md_rdev *rdev;
2423		struct resync_pages *rp;
2424
2425		tbio = r10_bio->devs[i].bio;
2426
2427		if (tbio->bi_end_io != end_sync_read)
2428			continue;
2429		if (i == first)
2430			continue;
2431
2432		tpages = get_resync_pages(tbio)->pages;
2433		d = r10_bio->devs[i].devnum;
2434		rdev = conf->mirrors[d].rdev;
2435		if (!r10_bio->devs[i].bio->bi_status) {
2436			/* We know that the bi_io_vec layout is the same for
2437			 * both 'first' and 'i', so we just compare them.
2438			 * All vec entries are PAGE_SIZE;
2439			 */
2440			int sectors = r10_bio->sectors;
2441			for (j = 0; j < vcnt; j++) {
2442				int len = PAGE_SIZE;
2443				if (sectors < (len / 512))
2444					len = sectors * 512;
2445				if (memcmp(page_address(fpages[j]),
2446					   page_address(tpages[j]),
2447					   len))
2448					break;
2449				sectors -= len/512;
2450			}
2451			if (j == vcnt)
2452				continue;
2453			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2454			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2455				/* Don't fix anything. */
2456				continue;
2457		} else if (test_bit(FailFast, &rdev->flags)) {
2458			/* Just give up on this device */
2459			md_error(rdev->mddev, rdev);
2460			continue;
2461		}
2462		/* Ok, we need to write this bio, either to correct an
2463		 * inconsistency or to correct an unreadable block.
2464		 * First we need to fixup bv_offset, bv_len and
2465		 * bi_vecs, as the read request might have corrupted these
2466		 */
2467		rp = get_resync_pages(tbio);
2468		bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2469
2470		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2471
2472		rp->raid_bio = r10_bio;
2473		tbio->bi_private = rp;
2474		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2475		tbio->bi_end_io = end_sync_write;
 
2476
2477		bio_copy_data(tbio, fbio);
2478
2479		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2480		atomic_inc(&r10_bio->remaining);
2481		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2482
2483		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2484			tbio->bi_opf |= MD_FAILFAST;
2485		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2486		submit_bio_noacct(tbio);
 
2487	}
2488
2489	/* Now write out to any replacement devices
2490	 * that are active
2491	 */
2492	for (i = 0; i < conf->copies; i++) {
2493		int d;
2494
2495		tbio = r10_bio->devs[i].repl_bio;
2496		if (!tbio || !tbio->bi_end_io)
2497			continue;
2498		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2499		    && r10_bio->devs[i].bio != fbio)
2500			bio_copy_data(tbio, fbio);
2501		d = r10_bio->devs[i].devnum;
2502		atomic_inc(&r10_bio->remaining);
2503		md_sync_acct(conf->mirrors[d].replacement->bdev,
2504			     bio_sectors(tbio));
2505		submit_bio_noacct(tbio);
2506	}
2507
2508done:
2509	if (atomic_dec_and_test(&r10_bio->remaining)) {
2510		md_done_sync(mddev, r10_bio->sectors, 1);
2511		put_buf(r10_bio);
2512	}
2513}
2514
2515/*
2516 * Now for the recovery code.
2517 * Recovery happens across physical sectors.
2518 * We recover all non-is_sync drives by finding the virtual address of
2519 * each, and then choose a working drive that also has that virt address.
2520 * There is a separate r10_bio for each non-in_sync drive.
2521 * Only the first two slots are in use. The first for reading,
2522 * The second for writing.
2523 *
2524 */
2525static void fix_recovery_read_error(struct r10bio *r10_bio)
2526{
2527	/* We got a read error during recovery.
2528	 * We repeat the read in smaller page-sized sections.
2529	 * If a read succeeds, write it to the new device or record
2530	 * a bad block if we cannot.
2531	 * If a read fails, record a bad block on both old and
2532	 * new devices.
2533	 */
2534	struct mddev *mddev = r10_bio->mddev;
2535	struct r10conf *conf = mddev->private;
2536	struct bio *bio = r10_bio->devs[0].bio;
2537	sector_t sect = 0;
2538	int sectors = r10_bio->sectors;
2539	int idx = 0;
2540	int dr = r10_bio->devs[0].devnum;
2541	int dw = r10_bio->devs[1].devnum;
2542	struct page **pages = get_resync_pages(bio)->pages;
2543
2544	while (sectors) {
2545		int s = sectors;
2546		struct md_rdev *rdev;
2547		sector_t addr;
2548		int ok;
2549
2550		if (s > (PAGE_SIZE>>9))
2551			s = PAGE_SIZE >> 9;
2552
2553		rdev = conf->mirrors[dr].rdev;
2554		addr = r10_bio->devs[0].addr + sect,
2555		ok = sync_page_io(rdev,
2556				  addr,
2557				  s << 9,
2558				  pages[idx],
2559				  REQ_OP_READ, false);
2560		if (ok) {
2561			rdev = conf->mirrors[dw].rdev;
2562			addr = r10_bio->devs[1].addr + sect;
2563			ok = sync_page_io(rdev,
2564					  addr,
2565					  s << 9,
2566					  pages[idx],
2567					  REQ_OP_WRITE, false);
2568			if (!ok) {
2569				set_bit(WriteErrorSeen, &rdev->flags);
2570				if (!test_and_set_bit(WantReplacement,
2571						      &rdev->flags))
2572					set_bit(MD_RECOVERY_NEEDED,
2573						&rdev->mddev->recovery);
2574			}
2575		}
2576		if (!ok) {
2577			/* We don't worry if we cannot set a bad block -
2578			 * it really is bad so there is no loss in not
2579			 * recording it yet
2580			 */
2581			rdev_set_badblocks(rdev, addr, s, 0);
2582
2583			if (rdev != conf->mirrors[dw].rdev) {
2584				/* need bad block on destination too */
2585				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2586				addr = r10_bio->devs[1].addr + sect;
2587				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2588				if (!ok) {
2589					/* just abort the recovery */
2590					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2591						  mdname(mddev));
2592
2593					conf->mirrors[dw].recovery_disabled
2594						= mddev->recovery_disabled;
2595					set_bit(MD_RECOVERY_INTR,
2596						&mddev->recovery);
2597					break;
2598				}
2599			}
2600		}
2601
2602		sectors -= s;
2603		sect += s;
2604		idx++;
2605	}
2606}
2607
2608static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2609{
2610	struct r10conf *conf = mddev->private;
2611	int d;
2612	struct bio *wbio, *wbio2;
2613
2614	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2615		fix_recovery_read_error(r10_bio);
2616		end_sync_request(r10_bio);
2617		return;
2618	}
2619
2620	/*
2621	 * share the pages with the first bio
2622	 * and submit the write request
2623	 */
2624	d = r10_bio->devs[1].devnum;
2625	wbio = r10_bio->devs[1].bio;
2626	wbio2 = r10_bio->devs[1].repl_bio;
2627	/* Need to test wbio2->bi_end_io before we call
2628	 * submit_bio_noacct as if the former is NULL,
2629	 * the latter is free to free wbio2.
2630	 */
2631	if (wbio2 && !wbio2->bi_end_io)
2632		wbio2 = NULL;
2633	if (wbio->bi_end_io) {
2634		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2635		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2636		submit_bio_noacct(wbio);
2637	}
2638	if (wbio2) {
2639		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2640		md_sync_acct(conf->mirrors[d].replacement->bdev,
2641			     bio_sectors(wbio2));
2642		submit_bio_noacct(wbio2);
2643	}
2644}
2645
2646/*
2647 * Used by fix_read_error() to decay the per rdev read_errors.
2648 * We halve the read error count for every hour that has elapsed
2649 * since the last recorded read error.
2650 *
2651 */
2652static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2653{
2654	long cur_time_mon;
2655	unsigned long hours_since_last;
2656	unsigned int read_errors = atomic_read(&rdev->read_errors);
2657
2658	cur_time_mon = ktime_get_seconds();
2659
2660	if (rdev->last_read_error == 0) {
2661		/* first time we've seen a read error */
2662		rdev->last_read_error = cur_time_mon;
2663		return;
2664	}
2665
2666	hours_since_last = (long)(cur_time_mon -
2667			    rdev->last_read_error) / 3600;
2668
2669	rdev->last_read_error = cur_time_mon;
2670
2671	/*
2672	 * if hours_since_last is > the number of bits in read_errors
2673	 * just set read errors to 0. We do this to avoid
2674	 * overflowing the shift of read_errors by hours_since_last.
2675	 */
2676	if (hours_since_last >= 8 * sizeof(read_errors))
2677		atomic_set(&rdev->read_errors, 0);
2678	else
2679		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2680}
2681
2682static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2683			    int sectors, struct page *page, enum req_op op)
2684{
2685	sector_t first_bad;
2686	int bad_sectors;
2687
2688	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2689	    && (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
2690		return -1;
2691	if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
2692		/* success */
2693		return 1;
2694	if (op == REQ_OP_WRITE) {
2695		set_bit(WriteErrorSeen, &rdev->flags);
2696		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2697			set_bit(MD_RECOVERY_NEEDED,
2698				&rdev->mddev->recovery);
2699	}
2700	/* need to record an error - either for the block or the device */
2701	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2702		md_error(rdev->mddev, rdev);
2703	return 0;
2704}
2705
2706/*
2707 * This is a kernel thread which:
2708 *
2709 *	1.	Retries failed read operations on working mirrors.
2710 *	2.	Updates the raid superblock when problems encounter.
2711 *	3.	Performs writes following reads for array synchronising.
2712 */
2713
2714static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2715{
2716	int sect = 0; /* Offset from r10_bio->sector */
2717	int sectors = r10_bio->sectors;
2718	struct md_rdev *rdev;
2719	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2720	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2721
2722	/* still own a reference to this rdev, so it cannot
2723	 * have been cleared recently.
2724	 */
2725	rdev = conf->mirrors[d].rdev;
2726
2727	if (test_bit(Faulty, &rdev->flags))
2728		/* drive has already been failed, just ignore any
2729		   more fix_read_error() attempts */
2730		return;
2731
2732	check_decay_read_errors(mddev, rdev);
2733	atomic_inc(&rdev->read_errors);
2734	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2735		pr_notice("md/raid10:%s: %pg: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2736			  mdname(mddev), rdev->bdev,
 
 
 
2737			  atomic_read(&rdev->read_errors), max_read_errors);
2738		pr_notice("md/raid10:%s: %pg: Failing raid device\n",
2739			  mdname(mddev), rdev->bdev);
2740		md_error(mddev, rdev);
2741		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2742		return;
2743	}
2744
2745	while(sectors) {
2746		int s = sectors;
2747		int sl = r10_bio->read_slot;
2748		int success = 0;
2749		int start;
2750
2751		if (s > (PAGE_SIZE>>9))
2752			s = PAGE_SIZE >> 9;
2753
2754		rcu_read_lock();
2755		do {
2756			sector_t first_bad;
2757			int bad_sectors;
2758
2759			d = r10_bio->devs[sl].devnum;
2760			rdev = rcu_dereference(conf->mirrors[d].rdev);
2761			if (rdev &&
2762			    test_bit(In_sync, &rdev->flags) &&
2763			    !test_bit(Faulty, &rdev->flags) &&
2764			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2765					&first_bad, &bad_sectors) == 0) {
2766				atomic_inc(&rdev->nr_pending);
2767				rcu_read_unlock();
2768				success = sync_page_io(rdev,
2769						       r10_bio->devs[sl].addr +
2770						       sect,
2771						       s<<9,
2772						       conf->tmppage,
2773						       REQ_OP_READ, false);
2774				rdev_dec_pending(rdev, mddev);
2775				rcu_read_lock();
2776				if (success)
2777					break;
2778			}
2779			sl++;
2780			if (sl == conf->copies)
2781				sl = 0;
2782		} while (!success && sl != r10_bio->read_slot);
2783		rcu_read_unlock();
2784
2785		if (!success) {
2786			/* Cannot read from anywhere, just mark the block
2787			 * as bad on the first device to discourage future
2788			 * reads.
2789			 */
2790			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2791			rdev = conf->mirrors[dn].rdev;
2792
2793			if (!rdev_set_badblocks(
2794				    rdev,
2795				    r10_bio->devs[r10_bio->read_slot].addr
2796				    + sect,
2797				    s, 0)) {
2798				md_error(mddev, rdev);
2799				r10_bio->devs[r10_bio->read_slot].bio
2800					= IO_BLOCKED;
2801			}
2802			break;
2803		}
2804
2805		start = sl;
2806		/* write it back and re-read */
2807		rcu_read_lock();
2808		while (sl != r10_bio->read_slot) {
 
 
2809			if (sl==0)
2810				sl = conf->copies;
2811			sl--;
2812			d = r10_bio->devs[sl].devnum;
2813			rdev = rcu_dereference(conf->mirrors[d].rdev);
2814			if (!rdev ||
2815			    test_bit(Faulty, &rdev->flags) ||
2816			    !test_bit(In_sync, &rdev->flags))
2817				continue;
2818
2819			atomic_inc(&rdev->nr_pending);
2820			rcu_read_unlock();
2821			if (r10_sync_page_io(rdev,
2822					     r10_bio->devs[sl].addr +
2823					     sect,
2824					     s, conf->tmppage, REQ_OP_WRITE)
2825			    == 0) {
2826				/* Well, this device is dead */
2827				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2828					  mdname(mddev), s,
2829					  (unsigned long long)(
2830						  sect +
2831						  choose_data_offset(r10_bio,
2832								     rdev)),
2833					  rdev->bdev);
2834				pr_notice("md/raid10:%s: %pg: failing drive\n",
2835					  mdname(mddev),
2836					  rdev->bdev);
2837			}
2838			rdev_dec_pending(rdev, mddev);
2839			rcu_read_lock();
2840		}
2841		sl = start;
2842		while (sl != r10_bio->read_slot) {
 
 
2843			if (sl==0)
2844				sl = conf->copies;
2845			sl--;
2846			d = r10_bio->devs[sl].devnum;
2847			rdev = rcu_dereference(conf->mirrors[d].rdev);
2848			if (!rdev ||
2849			    test_bit(Faulty, &rdev->flags) ||
2850			    !test_bit(In_sync, &rdev->flags))
2851				continue;
2852
2853			atomic_inc(&rdev->nr_pending);
2854			rcu_read_unlock();
2855			switch (r10_sync_page_io(rdev,
2856					     r10_bio->devs[sl].addr +
2857					     sect,
2858					     s, conf->tmppage, REQ_OP_READ)) {
 
2859			case 0:
2860				/* Well, this device is dead */
2861				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2862				       mdname(mddev), s,
2863				       (unsigned long long)(
2864					       sect +
2865					       choose_data_offset(r10_bio, rdev)),
2866				       rdev->bdev);
2867				pr_notice("md/raid10:%s: %pg: failing drive\n",
2868				       mdname(mddev),
2869				       rdev->bdev);
2870				break;
2871			case 1:
2872				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2873				       mdname(mddev), s,
2874				       (unsigned long long)(
2875					       sect +
2876					       choose_data_offset(r10_bio, rdev)),
2877				       rdev->bdev);
2878				atomic_add(s, &rdev->corrected_errors);
2879			}
2880
2881			rdev_dec_pending(rdev, mddev);
2882			rcu_read_lock();
2883		}
2884		rcu_read_unlock();
2885
2886		sectors -= s;
2887		sect += s;
2888	}
2889}
2890
2891static int narrow_write_error(struct r10bio *r10_bio, int i)
2892{
2893	struct bio *bio = r10_bio->master_bio;
2894	struct mddev *mddev = r10_bio->mddev;
2895	struct r10conf *conf = mddev->private;
2896	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2897	/* bio has the data to be written to slot 'i' where
2898	 * we just recently had a write error.
2899	 * We repeatedly clone the bio and trim down to one block,
2900	 * then try the write.  Where the write fails we record
2901	 * a bad block.
2902	 * It is conceivable that the bio doesn't exactly align with
2903	 * blocks.  We must handle this.
2904	 *
2905	 * We currently own a reference to the rdev.
2906	 */
2907
2908	int block_sectors;
2909	sector_t sector;
2910	int sectors;
2911	int sect_to_write = r10_bio->sectors;
2912	int ok = 1;
2913
2914	if (rdev->badblocks.shift < 0)
2915		return 0;
2916
2917	block_sectors = roundup(1 << rdev->badblocks.shift,
2918				bdev_logical_block_size(rdev->bdev) >> 9);
2919	sector = r10_bio->sector;
2920	sectors = ((r10_bio->sector + block_sectors)
2921		   & ~(sector_t)(block_sectors - 1))
2922		- sector;
2923
2924	while (sect_to_write) {
2925		struct bio *wbio;
2926		sector_t wsector;
2927		if (sectors > sect_to_write)
2928			sectors = sect_to_write;
2929		/* Write at 'sector' for 'sectors' */
2930		wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2931				       &mddev->bio_set);
2932		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2933		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2934		wbio->bi_iter.bi_sector = wsector +
2935				   choose_data_offset(r10_bio, rdev);
2936		wbio->bi_opf = REQ_OP_WRITE;
 
2937
2938		if (submit_bio_wait(wbio) < 0)
2939			/* Failure! */
2940			ok = rdev_set_badblocks(rdev, wsector,
2941						sectors, 0)
2942				&& ok;
2943
2944		bio_put(wbio);
2945		sect_to_write -= sectors;
2946		sector += sectors;
2947		sectors = block_sectors;
2948	}
2949	return ok;
2950}
2951
2952static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2953{
2954	int slot = r10_bio->read_slot;
2955	struct bio *bio;
2956	struct r10conf *conf = mddev->private;
2957	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2958
2959	/* we got a read error. Maybe the drive is bad.  Maybe just
2960	 * the block and we can fix it.
2961	 * We freeze all other IO, and try reading the block from
2962	 * other devices.  When we find one, we re-write
2963	 * and check it that fixes the read error.
2964	 * This is all done synchronously while the array is
2965	 * frozen.
2966	 */
2967	bio = r10_bio->devs[slot].bio;
2968	bio_put(bio);
2969	r10_bio->devs[slot].bio = NULL;
2970
2971	if (mddev->ro)
2972		r10_bio->devs[slot].bio = IO_BLOCKED;
2973	else if (!test_bit(FailFast, &rdev->flags)) {
2974		freeze_array(conf, 1);
2975		fix_read_error(conf, mddev, r10_bio);
2976		unfreeze_array(conf);
2977	} else
2978		md_error(mddev, rdev);
2979
2980	rdev_dec_pending(rdev, mddev);
2981	allow_barrier(conf);
2982	r10_bio->state = 0;
2983	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2984}
2985
2986static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2987{
2988	/* Some sort of write request has finished and it
2989	 * succeeded in writing where we thought there was a
2990	 * bad block.  So forget the bad block.
2991	 * Or possibly if failed and we need to record
2992	 * a bad block.
2993	 */
2994	int m;
2995	struct md_rdev *rdev;
2996
2997	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2998	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2999		for (m = 0; m < conf->copies; m++) {
3000			int dev = r10_bio->devs[m].devnum;
3001			rdev = conf->mirrors[dev].rdev;
3002			if (r10_bio->devs[m].bio == NULL ||
3003				r10_bio->devs[m].bio->bi_end_io == NULL)
3004				continue;
3005			if (!r10_bio->devs[m].bio->bi_status) {
3006				rdev_clear_badblocks(
3007					rdev,
3008					r10_bio->devs[m].addr,
3009					r10_bio->sectors, 0);
3010			} else {
3011				if (!rdev_set_badblocks(
3012					    rdev,
3013					    r10_bio->devs[m].addr,
3014					    r10_bio->sectors, 0))
3015					md_error(conf->mddev, rdev);
3016			}
3017			rdev = conf->mirrors[dev].replacement;
3018			if (r10_bio->devs[m].repl_bio == NULL ||
3019				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
3020				continue;
3021
3022			if (!r10_bio->devs[m].repl_bio->bi_status) {
3023				rdev_clear_badblocks(
3024					rdev,
3025					r10_bio->devs[m].addr,
3026					r10_bio->sectors, 0);
3027			} else {
3028				if (!rdev_set_badblocks(
3029					    rdev,
3030					    r10_bio->devs[m].addr,
3031					    r10_bio->sectors, 0))
3032					md_error(conf->mddev, rdev);
3033			}
3034		}
3035		put_buf(r10_bio);
3036	} else {
3037		bool fail = false;
3038		for (m = 0; m < conf->copies; m++) {
3039			int dev = r10_bio->devs[m].devnum;
3040			struct bio *bio = r10_bio->devs[m].bio;
3041			rdev = conf->mirrors[dev].rdev;
3042			if (bio == IO_MADE_GOOD) {
3043				rdev_clear_badblocks(
3044					rdev,
3045					r10_bio->devs[m].addr,
3046					r10_bio->sectors, 0);
3047				rdev_dec_pending(rdev, conf->mddev);
3048			} else if (bio != NULL && bio->bi_status) {
3049				fail = true;
3050				if (!narrow_write_error(r10_bio, m)) {
3051					md_error(conf->mddev, rdev);
3052					set_bit(R10BIO_Degraded,
3053						&r10_bio->state);
3054				}
3055				rdev_dec_pending(rdev, conf->mddev);
3056			}
3057			bio = r10_bio->devs[m].repl_bio;
3058			rdev = conf->mirrors[dev].replacement;
3059			if (rdev && bio == IO_MADE_GOOD) {
3060				rdev_clear_badblocks(
3061					rdev,
3062					r10_bio->devs[m].addr,
3063					r10_bio->sectors, 0);
3064				rdev_dec_pending(rdev, conf->mddev);
3065			}
3066		}
3067		if (fail) {
3068			spin_lock_irq(&conf->device_lock);
3069			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
3070			conf->nr_queued++;
3071			spin_unlock_irq(&conf->device_lock);
3072			/*
3073			 * In case freeze_array() is waiting for condition
3074			 * nr_pending == nr_queued + extra to be true.
3075			 */
3076			wake_up(&conf->wait_barrier);
3077			md_wakeup_thread(conf->mddev->thread);
3078		} else {
3079			if (test_bit(R10BIO_WriteError,
3080				     &r10_bio->state))
3081				close_write(r10_bio);
3082			raid_end_bio_io(r10_bio);
3083		}
3084	}
3085}
3086
3087static void raid10d(struct md_thread *thread)
3088{
3089	struct mddev *mddev = thread->mddev;
3090	struct r10bio *r10_bio;
3091	unsigned long flags;
3092	struct r10conf *conf = mddev->private;
3093	struct list_head *head = &conf->retry_list;
3094	struct blk_plug plug;
3095
3096	md_check_recovery(mddev);
3097
3098	if (!list_empty_careful(&conf->bio_end_io_list) &&
3099	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3100		LIST_HEAD(tmp);
3101		spin_lock_irqsave(&conf->device_lock, flags);
3102		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3103			while (!list_empty(&conf->bio_end_io_list)) {
3104				list_move(conf->bio_end_io_list.prev, &tmp);
3105				conf->nr_queued--;
3106			}
3107		}
3108		spin_unlock_irqrestore(&conf->device_lock, flags);
3109		while (!list_empty(&tmp)) {
3110			r10_bio = list_first_entry(&tmp, struct r10bio,
3111						   retry_list);
3112			list_del(&r10_bio->retry_list);
3113			if (mddev->degraded)
3114				set_bit(R10BIO_Degraded, &r10_bio->state);
3115
3116			if (test_bit(R10BIO_WriteError,
3117				     &r10_bio->state))
3118				close_write(r10_bio);
3119			raid_end_bio_io(r10_bio);
3120		}
3121	}
3122
3123	blk_start_plug(&plug);
3124	for (;;) {
3125
3126		flush_pending_writes(conf);
3127
3128		spin_lock_irqsave(&conf->device_lock, flags);
3129		if (list_empty(head)) {
3130			spin_unlock_irqrestore(&conf->device_lock, flags);
3131			break;
3132		}
3133		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3134		list_del(head->prev);
3135		conf->nr_queued--;
3136		spin_unlock_irqrestore(&conf->device_lock, flags);
3137
3138		mddev = r10_bio->mddev;
3139		conf = mddev->private;
3140		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3141		    test_bit(R10BIO_WriteError, &r10_bio->state))
3142			handle_write_completed(conf, r10_bio);
3143		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3144			reshape_request_write(mddev, r10_bio);
3145		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3146			sync_request_write(mddev, r10_bio);
3147		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3148			recovery_request_write(mddev, r10_bio);
3149		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3150			handle_read_error(mddev, r10_bio);
3151		else
3152			WARN_ON_ONCE(1);
3153
3154		cond_resched();
3155		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3156			md_check_recovery(mddev);
3157	}
3158	blk_finish_plug(&plug);
3159}
3160
3161static int init_resync(struct r10conf *conf)
3162{
3163	int ret, buffs, i;
 
3164
3165	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3166	BUG_ON(mempool_initialized(&conf->r10buf_pool));
3167	conf->have_replacement = 0;
3168	for (i = 0; i < conf->geo.raid_disks; i++)
3169		if (conf->mirrors[i].replacement)
3170			conf->have_replacement = 1;
3171	ret = mempool_init(&conf->r10buf_pool, buffs,
3172			   r10buf_pool_alloc, r10buf_pool_free, conf);
3173	if (ret)
3174		return ret;
3175	conf->next_resync = 0;
3176	return 0;
3177}
3178
3179static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3180{
3181	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3182	struct rsync_pages *rp;
3183	struct bio *bio;
3184	int nalloc;
3185	int i;
3186
3187	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3188	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3189		nalloc = conf->copies; /* resync */
3190	else
3191		nalloc = 2; /* recovery */
3192
3193	for (i = 0; i < nalloc; i++) {
3194		bio = r10bio->devs[i].bio;
3195		rp = bio->bi_private;
3196		bio_reset(bio, NULL, 0);
3197		bio->bi_private = rp;
3198		bio = r10bio->devs[i].repl_bio;
3199		if (bio) {
3200			rp = bio->bi_private;
3201			bio_reset(bio, NULL, 0);
3202			bio->bi_private = rp;
3203		}
3204	}
3205	return r10bio;
3206}
3207
3208/*
3209 * Set cluster_sync_high since we need other nodes to add the
3210 * range [cluster_sync_low, cluster_sync_high] to suspend list.
3211 */
3212static void raid10_set_cluster_sync_high(struct r10conf *conf)
3213{
3214	sector_t window_size;
3215	int extra_chunk, chunks;
3216
3217	/*
3218	 * First, here we define "stripe" as a unit which across
3219	 * all member devices one time, so we get chunks by use
3220	 * raid_disks / near_copies. Otherwise, if near_copies is
3221	 * close to raid_disks, then resync window could increases
3222	 * linearly with the increase of raid_disks, which means
3223	 * we will suspend a really large IO window while it is not
3224	 * necessary. If raid_disks is not divisible by near_copies,
3225	 * an extra chunk is needed to ensure the whole "stripe" is
3226	 * covered.
3227	 */
3228
3229	chunks = conf->geo.raid_disks / conf->geo.near_copies;
3230	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3231		extra_chunk = 0;
3232	else
3233		extra_chunk = 1;
3234	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3235
3236	/*
3237	 * At least use a 32M window to align with raid1's resync window
3238	 */
3239	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3240			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3241
3242	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3243}
3244
3245/*
3246 * perform a "sync" on one "block"
3247 *
3248 * We need to make sure that no normal I/O request - particularly write
3249 * requests - conflict with active sync requests.
3250 *
3251 * This is achieved by tracking pending requests and a 'barrier' concept
3252 * that can be installed to exclude normal IO requests.
3253 *
3254 * Resync and recovery are handled very differently.
3255 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3256 *
3257 * For resync, we iterate over virtual addresses, read all copies,
3258 * and update if there are differences.  If only one copy is live,
3259 * skip it.
3260 * For recovery, we iterate over physical addresses, read a good
3261 * value for each non-in_sync drive, and over-write.
3262 *
3263 * So, for recovery we may have several outstanding complex requests for a
3264 * given address, one for each out-of-sync device.  We model this by allocating
3265 * a number of r10_bio structures, one for each out-of-sync device.
3266 * As we setup these structures, we collect all bio's together into a list
3267 * which we then process collectively to add pages, and then process again
3268 * to pass to submit_bio_noacct.
3269 *
3270 * The r10_bio structures are linked using a borrowed master_bio pointer.
3271 * This link is counted in ->remaining.  When the r10_bio that points to NULL
3272 * has its remaining count decremented to 0, the whole complex operation
3273 * is complete.
3274 *
3275 */
3276
3277static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3278			     int *skipped)
3279{
3280	struct r10conf *conf = mddev->private;
3281	struct r10bio *r10_bio;
3282	struct bio *biolist = NULL, *bio;
3283	sector_t max_sector, nr_sectors;
3284	int i;
3285	int max_sync;
3286	sector_t sync_blocks;
3287	sector_t sectors_skipped = 0;
3288	int chunks_skipped = 0;
3289	sector_t chunk_mask = conf->geo.chunk_mask;
3290	int page_idx = 0;
3291
3292	if (!mempool_initialized(&conf->r10buf_pool))
3293		if (init_resync(conf))
3294			return 0;
3295
3296	/*
3297	 * Allow skipping a full rebuild for incremental assembly
3298	 * of a clean array, like RAID1 does.
3299	 */
3300	if (mddev->bitmap == NULL &&
3301	    mddev->recovery_cp == MaxSector &&
3302	    mddev->reshape_position == MaxSector &&
3303	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3304	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3305	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3306	    conf->fullsync == 0) {
3307		*skipped = 1;
3308		return mddev->dev_sectors - sector_nr;
3309	}
3310
3311 skipped:
3312	max_sector = mddev->dev_sectors;
3313	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3314	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3315		max_sector = mddev->resync_max_sectors;
3316	if (sector_nr >= max_sector) {
3317		conf->cluster_sync_low = 0;
3318		conf->cluster_sync_high = 0;
3319
3320		/* If we aborted, we need to abort the
3321		 * sync on the 'current' bitmap chucks (there can
3322		 * be several when recovering multiple devices).
3323		 * as we may have started syncing it but not finished.
3324		 * We can find the current address in
3325		 * mddev->curr_resync, but for recovery,
3326		 * we need to convert that to several
3327		 * virtual addresses.
3328		 */
3329		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3330			end_reshape(conf);
3331			close_sync(conf);
3332			return 0;
3333		}
3334
3335		if (mddev->curr_resync < max_sector) { /* aborted */
3336			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3337				md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3338						   &sync_blocks, 1);
3339			else for (i = 0; i < conf->geo.raid_disks; i++) {
3340				sector_t sect =
3341					raid10_find_virt(conf, mddev->curr_resync, i);
3342				md_bitmap_end_sync(mddev->bitmap, sect,
3343						   &sync_blocks, 1);
3344			}
3345		} else {
3346			/* completed sync */
3347			if ((!mddev->bitmap || conf->fullsync)
3348			    && conf->have_replacement
3349			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3350				/* Completed a full sync so the replacements
3351				 * are now fully recovered.
3352				 */
3353				rcu_read_lock();
3354				for (i = 0; i < conf->geo.raid_disks; i++) {
3355					struct md_rdev *rdev =
3356						rcu_dereference(conf->mirrors[i].replacement);
3357					if (rdev)
3358						rdev->recovery_offset = MaxSector;
3359				}
3360				rcu_read_unlock();
3361			}
3362			conf->fullsync = 0;
3363		}
3364		md_bitmap_close_sync(mddev->bitmap);
3365		close_sync(conf);
3366		*skipped = 1;
3367		return sectors_skipped;
3368	}
3369
3370	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3371		return reshape_request(mddev, sector_nr, skipped);
3372
3373	if (chunks_skipped >= conf->geo.raid_disks) {
3374		/* if there has been nothing to do on any drive,
3375		 * then there is nothing to do at all..
3376		 */
3377		*skipped = 1;
3378		return (max_sector - sector_nr) + sectors_skipped;
3379	}
3380
3381	if (max_sector > mddev->resync_max)
3382		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3383
3384	/* make sure whole request will fit in a chunk - if chunks
3385	 * are meaningful
3386	 */
3387	if (conf->geo.near_copies < conf->geo.raid_disks &&
3388	    max_sector > (sector_nr | chunk_mask))
3389		max_sector = (sector_nr | chunk_mask) + 1;
3390
3391	/*
3392	 * If there is non-resync activity waiting for a turn, then let it
3393	 * though before starting on this new sync request.
3394	 */
3395	if (conf->nr_waiting)
3396		schedule_timeout_uninterruptible(1);
3397
3398	/* Again, very different code for resync and recovery.
3399	 * Both must result in an r10bio with a list of bios that
3400	 * have bi_end_io, bi_sector, bi_bdev set,
3401	 * and bi_private set to the r10bio.
3402	 * For recovery, we may actually create several r10bios
3403	 * with 2 bios in each, that correspond to the bios in the main one.
3404	 * In this case, the subordinate r10bios link back through a
3405	 * borrowed master_bio pointer, and the counter in the master
3406	 * includes a ref from each subordinate.
3407	 */
3408	/* First, we decide what to do and set ->bi_end_io
3409	 * To end_sync_read if we want to read, and
3410	 * end_sync_write if we will want to write.
3411	 */
3412
3413	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3414	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3415		/* recovery... the complicated one */
3416		int j;
3417		r10_bio = NULL;
3418
3419		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3420			int still_degraded;
3421			struct r10bio *rb2;
3422			sector_t sect;
3423			int must_sync;
3424			int any_working;
3425			int need_recover = 0;
3426			int need_replace = 0;
3427			struct raid10_info *mirror = &conf->mirrors[i];
3428			struct md_rdev *mrdev, *mreplace;
3429
3430			rcu_read_lock();
3431			mrdev = rcu_dereference(mirror->rdev);
3432			mreplace = rcu_dereference(mirror->replacement);
3433
3434			if (mrdev != NULL &&
3435			    !test_bit(Faulty, &mrdev->flags) &&
3436			    !test_bit(In_sync, &mrdev->flags))
3437				need_recover = 1;
3438			if (mreplace != NULL &&
3439			    !test_bit(Faulty, &mreplace->flags))
3440				need_replace = 1;
3441
3442			if (!need_recover && !need_replace) {
3443				rcu_read_unlock();
3444				continue;
3445			}
3446
3447			still_degraded = 0;
3448			/* want to reconstruct this device */
3449			rb2 = r10_bio;
3450			sect = raid10_find_virt(conf, sector_nr, i);
3451			if (sect >= mddev->resync_max_sectors) {
3452				/* last stripe is not complete - don't
3453				 * try to recover this sector.
3454				 */
3455				rcu_read_unlock();
3456				continue;
3457			}
3458			if (mreplace && test_bit(Faulty, &mreplace->flags))
3459				mreplace = NULL;
3460			/* Unless we are doing a full sync, or a replacement
3461			 * we only need to recover the block if it is set in
3462			 * the bitmap
3463			 */
3464			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3465							 &sync_blocks, 1);
3466			if (sync_blocks < max_sync)
3467				max_sync = sync_blocks;
3468			if (!must_sync &&
3469			    mreplace == NULL &&
3470			    !conf->fullsync) {
3471				/* yep, skip the sync_blocks here, but don't assume
3472				 * that there will never be anything to do here
3473				 */
3474				chunks_skipped = -1;
3475				rcu_read_unlock();
3476				continue;
3477			}
3478			atomic_inc(&mrdev->nr_pending);
3479			if (mreplace)
3480				atomic_inc(&mreplace->nr_pending);
3481			rcu_read_unlock();
3482
3483			r10_bio = raid10_alloc_init_r10buf(conf);
3484			r10_bio->state = 0;
3485			raise_barrier(conf, rb2 != NULL);
3486			atomic_set(&r10_bio->remaining, 0);
3487
3488			r10_bio->master_bio = (struct bio*)rb2;
3489			if (rb2)
3490				atomic_inc(&rb2->remaining);
3491			r10_bio->mddev = mddev;
3492			set_bit(R10BIO_IsRecover, &r10_bio->state);
3493			r10_bio->sector = sect;
3494
3495			raid10_find_phys(conf, r10_bio);
3496
3497			/* Need to check if the array will still be
3498			 * degraded
3499			 */
3500			rcu_read_lock();
3501			for (j = 0; j < conf->geo.raid_disks; j++) {
3502				struct md_rdev *rdev = rcu_dereference(
3503					conf->mirrors[j].rdev);
3504				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3505					still_degraded = 1;
3506					break;
3507				}
3508			}
3509
3510			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3511							 &sync_blocks, still_degraded);
3512
3513			any_working = 0;
3514			for (j=0; j<conf->copies;j++) {
3515				int k;
3516				int d = r10_bio->devs[j].devnum;
3517				sector_t from_addr, to_addr;
3518				struct md_rdev *rdev =
3519					rcu_dereference(conf->mirrors[d].rdev);
3520				sector_t sector, first_bad;
3521				int bad_sectors;
3522				if (!rdev ||
3523				    !test_bit(In_sync, &rdev->flags))
3524					continue;
3525				/* This is where we read from */
3526				any_working = 1;
3527				sector = r10_bio->devs[j].addr;
3528
3529				if (is_badblock(rdev, sector, max_sync,
3530						&first_bad, &bad_sectors)) {
3531					if (first_bad > sector)
3532						max_sync = first_bad - sector;
3533					else {
3534						bad_sectors -= (sector
3535								- first_bad);
3536						if (max_sync > bad_sectors)
3537							max_sync = bad_sectors;
3538						continue;
3539					}
3540				}
3541				bio = r10_bio->devs[0].bio;
3542				bio->bi_next = biolist;
3543				biolist = bio;
3544				bio->bi_end_io = end_sync_read;
3545				bio->bi_opf = REQ_OP_READ;
3546				if (test_bit(FailFast, &rdev->flags))
3547					bio->bi_opf |= MD_FAILFAST;
3548				from_addr = r10_bio->devs[j].addr;
3549				bio->bi_iter.bi_sector = from_addr +
3550					rdev->data_offset;
3551				bio_set_dev(bio, rdev->bdev);
3552				atomic_inc(&rdev->nr_pending);
3553				/* and we write to 'i' (if not in_sync) */
3554
3555				for (k=0; k<conf->copies; k++)
3556					if (r10_bio->devs[k].devnum == i)
3557						break;
3558				BUG_ON(k == conf->copies);
3559				to_addr = r10_bio->devs[k].addr;
3560				r10_bio->devs[0].devnum = d;
3561				r10_bio->devs[0].addr = from_addr;
3562				r10_bio->devs[1].devnum = i;
3563				r10_bio->devs[1].addr = to_addr;
3564
3565				if (need_recover) {
3566					bio = r10_bio->devs[1].bio;
3567					bio->bi_next = biolist;
3568					biolist = bio;
3569					bio->bi_end_io = end_sync_write;
3570					bio->bi_opf = REQ_OP_WRITE;
3571					bio->bi_iter.bi_sector = to_addr
3572						+ mrdev->data_offset;
3573					bio_set_dev(bio, mrdev->bdev);
3574					atomic_inc(&r10_bio->remaining);
3575				} else
3576					r10_bio->devs[1].bio->bi_end_io = NULL;
3577
3578				/* and maybe write to replacement */
3579				bio = r10_bio->devs[1].repl_bio;
3580				if (bio)
3581					bio->bi_end_io = NULL;
3582				/* Note: if need_replace, then bio
3583				 * cannot be NULL as r10buf_pool_alloc will
3584				 * have allocated it.
 
 
 
 
3585				 */
3586				if (!need_replace)
 
3587					break;
3588				bio->bi_next = biolist;
3589				biolist = bio;
3590				bio->bi_end_io = end_sync_write;
3591				bio->bi_opf = REQ_OP_WRITE;
3592				bio->bi_iter.bi_sector = to_addr +
3593					mreplace->data_offset;
3594				bio_set_dev(bio, mreplace->bdev);
3595				atomic_inc(&r10_bio->remaining);
3596				break;
3597			}
3598			rcu_read_unlock();
3599			if (j == conf->copies) {
3600				/* Cannot recover, so abort the recovery or
3601				 * record a bad block */
3602				if (any_working) {
3603					/* problem is that there are bad blocks
3604					 * on other device(s)
3605					 */
3606					int k;
3607					for (k = 0; k < conf->copies; k++)
3608						if (r10_bio->devs[k].devnum == i)
3609							break;
3610					if (!test_bit(In_sync,
3611						      &mrdev->flags)
3612					    && !rdev_set_badblocks(
3613						    mrdev,
3614						    r10_bio->devs[k].addr,
3615						    max_sync, 0))
3616						any_working = 0;
3617					if (mreplace &&
3618					    !rdev_set_badblocks(
3619						    mreplace,
3620						    r10_bio->devs[k].addr,
3621						    max_sync, 0))
3622						any_working = 0;
3623				}
3624				if (!any_working)  {
3625					if (!test_and_set_bit(MD_RECOVERY_INTR,
3626							      &mddev->recovery))
3627						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3628						       mdname(mddev));
3629					mirror->recovery_disabled
3630						= mddev->recovery_disabled;
3631				}
3632				put_buf(r10_bio);
3633				if (rb2)
3634					atomic_dec(&rb2->remaining);
3635				r10_bio = rb2;
3636				rdev_dec_pending(mrdev, mddev);
3637				if (mreplace)
3638					rdev_dec_pending(mreplace, mddev);
3639				break;
3640			}
3641			rdev_dec_pending(mrdev, mddev);
3642			if (mreplace)
3643				rdev_dec_pending(mreplace, mddev);
3644			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3645				/* Only want this if there is elsewhere to
3646				 * read from. 'j' is currently the first
3647				 * readable copy.
3648				 */
3649				int targets = 1;
3650				for (; j < conf->copies; j++) {
3651					int d = r10_bio->devs[j].devnum;
3652					if (conf->mirrors[d].rdev &&
3653					    test_bit(In_sync,
3654						      &conf->mirrors[d].rdev->flags))
3655						targets++;
3656				}
3657				if (targets == 1)
3658					r10_bio->devs[0].bio->bi_opf
3659						&= ~MD_FAILFAST;
3660			}
3661		}
3662		if (biolist == NULL) {
3663			while (r10_bio) {
3664				struct r10bio *rb2 = r10_bio;
3665				r10_bio = (struct r10bio*) rb2->master_bio;
3666				rb2->master_bio = NULL;
3667				put_buf(rb2);
3668			}
3669			goto giveup;
3670		}
3671	} else {
3672		/* resync. Schedule a read for every block at this virt offset */
3673		int count = 0;
3674
3675		/*
3676		 * Since curr_resync_completed could probably not update in
3677		 * time, and we will set cluster_sync_low based on it.
3678		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3679		 * safety reason, which ensures curr_resync_completed is
3680		 * updated in bitmap_cond_end_sync.
3681		 */
3682		md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3683					mddev_is_clustered(mddev) &&
3684					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
 
3685
3686		if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3687					  &sync_blocks, mddev->degraded) &&
3688		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3689						 &mddev->recovery)) {
3690			/* We can skip this block */
3691			*skipped = 1;
3692			return sync_blocks + sectors_skipped;
3693		}
3694		if (sync_blocks < max_sync)
3695			max_sync = sync_blocks;
3696		r10_bio = raid10_alloc_init_r10buf(conf);
3697		r10_bio->state = 0;
3698
3699		r10_bio->mddev = mddev;
3700		atomic_set(&r10_bio->remaining, 0);
3701		raise_barrier(conf, 0);
3702		conf->next_resync = sector_nr;
3703
3704		r10_bio->master_bio = NULL;
3705		r10_bio->sector = sector_nr;
3706		set_bit(R10BIO_IsSync, &r10_bio->state);
3707		raid10_find_phys(conf, r10_bio);
3708		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3709
3710		for (i = 0; i < conf->copies; i++) {
3711			int d = r10_bio->devs[i].devnum;
3712			sector_t first_bad, sector;
3713			int bad_sectors;
3714			struct md_rdev *rdev;
3715
3716			if (r10_bio->devs[i].repl_bio)
3717				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3718
3719			bio = r10_bio->devs[i].bio;
3720			bio->bi_status = BLK_STS_IOERR;
3721			rcu_read_lock();
3722			rdev = rcu_dereference(conf->mirrors[d].rdev);
3723			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3724				rcu_read_unlock();
3725				continue;
3726			}
3727			sector = r10_bio->devs[i].addr;
3728			if (is_badblock(rdev, sector, max_sync,
3729					&first_bad, &bad_sectors)) {
3730				if (first_bad > sector)
3731					max_sync = first_bad - sector;
3732				else {
3733					bad_sectors -= (sector - first_bad);
3734					if (max_sync > bad_sectors)
3735						max_sync = bad_sectors;
3736					rcu_read_unlock();
3737					continue;
3738				}
3739			}
3740			atomic_inc(&rdev->nr_pending);
3741			atomic_inc(&r10_bio->remaining);
3742			bio->bi_next = biolist;
3743			biolist = bio;
3744			bio->bi_end_io = end_sync_read;
3745			bio->bi_opf = REQ_OP_READ;
3746			if (test_bit(FailFast, &rdev->flags))
3747				bio->bi_opf |= MD_FAILFAST;
3748			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3749			bio_set_dev(bio, rdev->bdev);
3750			count++;
3751
3752			rdev = rcu_dereference(conf->mirrors[d].replacement);
3753			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3754				rcu_read_unlock();
3755				continue;
3756			}
3757			atomic_inc(&rdev->nr_pending);
3758
3759			/* Need to set up for writing to the replacement */
3760			bio = r10_bio->devs[i].repl_bio;
3761			bio->bi_status = BLK_STS_IOERR;
3762
3763			sector = r10_bio->devs[i].addr;
3764			bio->bi_next = biolist;
3765			biolist = bio;
3766			bio->bi_end_io = end_sync_write;
3767			bio->bi_opf = REQ_OP_WRITE;
3768			if (test_bit(FailFast, &rdev->flags))
3769				bio->bi_opf |= MD_FAILFAST;
3770			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3771			bio_set_dev(bio, rdev->bdev);
3772			count++;
3773			rcu_read_unlock();
3774		}
3775
3776		if (count < 2) {
3777			for (i=0; i<conf->copies; i++) {
3778				int d = r10_bio->devs[i].devnum;
3779				if (r10_bio->devs[i].bio->bi_end_io)
3780					rdev_dec_pending(conf->mirrors[d].rdev,
3781							 mddev);
3782				if (r10_bio->devs[i].repl_bio &&
3783				    r10_bio->devs[i].repl_bio->bi_end_io)
3784					rdev_dec_pending(
3785						conf->mirrors[d].replacement,
3786						mddev);
3787			}
3788			put_buf(r10_bio);
3789			biolist = NULL;
3790			goto giveup;
3791		}
3792	}
3793
3794	nr_sectors = 0;
3795	if (sector_nr + max_sync < max_sector)
3796		max_sector = sector_nr + max_sync;
3797	do {
3798		struct page *page;
3799		int len = PAGE_SIZE;
3800		if (sector_nr + (len>>9) > max_sector)
3801			len = (max_sector - sector_nr) << 9;
3802		if (len == 0)
3803			break;
3804		for (bio= biolist ; bio ; bio=bio->bi_next) {
3805			struct resync_pages *rp = get_resync_pages(bio);
3806			page = resync_fetch_page(rp, page_idx);
3807			/*
3808			 * won't fail because the vec table is big enough
3809			 * to hold all these pages
3810			 */
3811			bio_add_page(bio, page, len, 0);
3812		}
3813		nr_sectors += len>>9;
3814		sector_nr += len>>9;
3815	} while (++page_idx < RESYNC_PAGES);
3816	r10_bio->sectors = nr_sectors;
3817
3818	if (mddev_is_clustered(mddev) &&
3819	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3820		/* It is resync not recovery */
3821		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3822			conf->cluster_sync_low = mddev->curr_resync_completed;
3823			raid10_set_cluster_sync_high(conf);
3824			/* Send resync message */
3825			md_cluster_ops->resync_info_update(mddev,
3826						conf->cluster_sync_low,
3827						conf->cluster_sync_high);
3828		}
3829	} else if (mddev_is_clustered(mddev)) {
3830		/* This is recovery not resync */
3831		sector_t sect_va1, sect_va2;
3832		bool broadcast_msg = false;
3833
3834		for (i = 0; i < conf->geo.raid_disks; i++) {
3835			/*
3836			 * sector_nr is a device address for recovery, so we
3837			 * need translate it to array address before compare
3838			 * with cluster_sync_high.
3839			 */
3840			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3841
3842			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3843				broadcast_msg = true;
3844				/*
3845				 * curr_resync_completed is similar as
3846				 * sector_nr, so make the translation too.
3847				 */
3848				sect_va2 = raid10_find_virt(conf,
3849					mddev->curr_resync_completed, i);
3850
3851				if (conf->cluster_sync_low == 0 ||
3852				    conf->cluster_sync_low > sect_va2)
3853					conf->cluster_sync_low = sect_va2;
3854			}
3855		}
3856		if (broadcast_msg) {
3857			raid10_set_cluster_sync_high(conf);
3858			md_cluster_ops->resync_info_update(mddev,
3859						conf->cluster_sync_low,
3860						conf->cluster_sync_high);
3861		}
3862	}
3863
3864	while (biolist) {
3865		bio = biolist;
3866		biolist = biolist->bi_next;
3867
3868		bio->bi_next = NULL;
3869		r10_bio = get_resync_r10bio(bio);
3870		r10_bio->sectors = nr_sectors;
3871
3872		if (bio->bi_end_io == end_sync_read) {
3873			md_sync_acct_bio(bio, nr_sectors);
3874			bio->bi_status = 0;
3875			submit_bio_noacct(bio);
3876		}
3877	}
3878
3879	if (sectors_skipped)
3880		/* pretend they weren't skipped, it makes
3881		 * no important difference in this case
3882		 */
3883		md_done_sync(mddev, sectors_skipped, 1);
3884
3885	return sectors_skipped + nr_sectors;
3886 giveup:
3887	/* There is nowhere to write, so all non-sync
3888	 * drives must be failed or in resync, all drives
3889	 * have a bad block, so try the next chunk...
3890	 */
3891	if (sector_nr + max_sync < max_sector)
3892		max_sector = sector_nr + max_sync;
3893
3894	sectors_skipped += (max_sector - sector_nr);
3895	chunks_skipped ++;
3896	sector_nr = max_sector;
3897	goto skipped;
3898}
3899
3900static sector_t
3901raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3902{
3903	sector_t size;
3904	struct r10conf *conf = mddev->private;
3905
3906	if (!raid_disks)
3907		raid_disks = min(conf->geo.raid_disks,
3908				 conf->prev.raid_disks);
3909	if (!sectors)
3910		sectors = conf->dev_sectors;
3911
3912	size = sectors >> conf->geo.chunk_shift;
3913	sector_div(size, conf->geo.far_copies);
3914	size = size * raid_disks;
3915	sector_div(size, conf->geo.near_copies);
3916
3917	return size << conf->geo.chunk_shift;
3918}
3919
3920static void calc_sectors(struct r10conf *conf, sector_t size)
3921{
3922	/* Calculate the number of sectors-per-device that will
3923	 * actually be used, and set conf->dev_sectors and
3924	 * conf->stride
3925	 */
3926
3927	size = size >> conf->geo.chunk_shift;
3928	sector_div(size, conf->geo.far_copies);
3929	size = size * conf->geo.raid_disks;
3930	sector_div(size, conf->geo.near_copies);
3931	/* 'size' is now the number of chunks in the array */
3932	/* calculate "used chunks per device" */
3933	size = size * conf->copies;
3934
3935	/* We need to round up when dividing by raid_disks to
3936	 * get the stride size.
3937	 */
3938	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3939
3940	conf->dev_sectors = size << conf->geo.chunk_shift;
3941
3942	if (conf->geo.far_offset)
3943		conf->geo.stride = 1 << conf->geo.chunk_shift;
3944	else {
3945		sector_div(size, conf->geo.far_copies);
3946		conf->geo.stride = size << conf->geo.chunk_shift;
3947	}
3948}
3949
3950enum geo_type {geo_new, geo_old, geo_start};
3951static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3952{
3953	int nc, fc, fo;
3954	int layout, chunk, disks;
3955	switch (new) {
3956	case geo_old:
3957		layout = mddev->layout;
3958		chunk = mddev->chunk_sectors;
3959		disks = mddev->raid_disks - mddev->delta_disks;
3960		break;
3961	case geo_new:
3962		layout = mddev->new_layout;
3963		chunk = mddev->new_chunk_sectors;
3964		disks = mddev->raid_disks;
3965		break;
3966	default: /* avoid 'may be unused' warnings */
3967	case geo_start: /* new when starting reshape - raid_disks not
3968			 * updated yet. */
3969		layout = mddev->new_layout;
3970		chunk = mddev->new_chunk_sectors;
3971		disks = mddev->raid_disks + mddev->delta_disks;
3972		break;
3973	}
3974	if (layout >> 19)
3975		return -1;
3976	if (chunk < (PAGE_SIZE >> 9) ||
3977	    !is_power_of_2(chunk))
3978		return -2;
3979	nc = layout & 255;
3980	fc = (layout >> 8) & 255;
3981	fo = layout & (1<<16);
3982	geo->raid_disks = disks;
3983	geo->near_copies = nc;
3984	geo->far_copies = fc;
3985	geo->far_offset = fo;
3986	switch (layout >> 17) {
3987	case 0:	/* original layout.  simple but not always optimal */
3988		geo->far_set_size = disks;
3989		break;
3990	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3991		 * actually using this, but leave code here just in case.*/
3992		geo->far_set_size = disks/fc;
3993		WARN(geo->far_set_size < fc,
3994		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3995		break;
3996	case 2: /* "improved" layout fixed to match documentation */
3997		geo->far_set_size = fc * nc;
3998		break;
3999	default: /* Not a valid layout */
4000		return -1;
4001	}
4002	geo->chunk_mask = chunk - 1;
4003	geo->chunk_shift = ffz(~chunk);
4004	return nc*fc;
4005}
4006
4007static struct r10conf *setup_conf(struct mddev *mddev)
4008{
4009	struct r10conf *conf = NULL;
4010	int err = -EINVAL;
4011	struct geom geo;
4012	int copies;
4013
4014	copies = setup_geo(&geo, mddev, geo_new);
4015
4016	if (copies == -2) {
4017		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
4018			mdname(mddev), PAGE_SIZE);
4019		goto out;
4020	}
4021
4022	if (copies < 2 || copies > mddev->raid_disks) {
4023		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
4024			mdname(mddev), mddev->new_layout);
4025		goto out;
4026	}
4027
4028	err = -ENOMEM;
4029	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
4030	if (!conf)
4031		goto out;
4032
4033	/* FIXME calc properly */
4034	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
4035				sizeof(struct raid10_info),
4036				GFP_KERNEL);
4037	if (!conf->mirrors)
4038		goto out;
4039
4040	conf->tmppage = alloc_page(GFP_KERNEL);
4041	if (!conf->tmppage)
4042		goto out;
4043
4044	conf->geo = geo;
4045	conf->copies = copies;
4046	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
4047			   rbio_pool_free, conf);
4048	if (err)
4049		goto out;
4050
4051	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
4052	if (err)
4053		goto out;
4054
4055	calc_sectors(conf, mddev->dev_sectors);
4056	if (mddev->reshape_position == MaxSector) {
4057		conf->prev = conf->geo;
4058		conf->reshape_progress = MaxSector;
4059	} else {
4060		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
4061			err = -EINVAL;
4062			goto out;
4063		}
4064		conf->reshape_progress = mddev->reshape_position;
4065		if (conf->prev.far_offset)
4066			conf->prev.stride = 1 << conf->prev.chunk_shift;
4067		else
4068			/* far_copies must be 1 */
4069			conf->prev.stride = conf->dev_sectors;
4070	}
4071	conf->reshape_safe = conf->reshape_progress;
4072	spin_lock_init(&conf->device_lock);
4073	INIT_LIST_HEAD(&conf->retry_list);
4074	INIT_LIST_HEAD(&conf->bio_end_io_list);
4075
4076	seqlock_init(&conf->resync_lock);
4077	init_waitqueue_head(&conf->wait_barrier);
4078	atomic_set(&conf->nr_pending, 0);
4079
4080	err = -ENOMEM;
4081	conf->thread = md_register_thread(raid10d, mddev, "raid10");
4082	if (!conf->thread)
4083		goto out;
4084
4085	conf->mddev = mddev;
4086	return conf;
4087
4088 out:
4089	if (conf) {
4090		mempool_exit(&conf->r10bio_pool);
4091		kfree(conf->mirrors);
4092		safe_put_page(conf->tmppage);
4093		bioset_exit(&conf->bio_split);
 
4094		kfree(conf);
4095	}
4096	return ERR_PTR(err);
4097}
4098
4099static void raid10_set_io_opt(struct r10conf *conf)
4100{
4101	int raid_disks = conf->geo.raid_disks;
4102
4103	if (!(conf->geo.raid_disks % conf->geo.near_copies))
4104		raid_disks /= conf->geo.near_copies;
4105	blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4106			 raid_disks);
4107}
4108
4109static int raid10_run(struct mddev *mddev)
4110{
4111	struct r10conf *conf;
4112	int i, disk_idx;
4113	struct raid10_info *disk;
4114	struct md_rdev *rdev;
4115	sector_t size;
4116	sector_t min_offset_diff = 0;
4117	int first = 1;
 
4118
4119	if (mddev_init_writes_pending(mddev) < 0)
4120		return -ENOMEM;
4121
4122	if (mddev->private == NULL) {
4123		conf = setup_conf(mddev);
4124		if (IS_ERR(conf))
4125			return PTR_ERR(conf);
4126		mddev->private = conf;
4127	}
4128	conf = mddev->private;
4129	if (!conf)
4130		goto out;
4131
4132	if (mddev_is_clustered(conf->mddev)) {
4133		int fc, fo;
4134
4135		fc = (mddev->layout >> 8) & 255;
4136		fo = mddev->layout & (1<<16);
4137		if (fc > 1 || fo > 0) {
4138			pr_err("only near layout is supported by clustered"
4139				" raid10\n");
4140			goto out_free_conf;
4141		}
4142	}
4143
4144	mddev->thread = conf->thread;
4145	conf->thread = NULL;
4146
 
4147	if (mddev->queue) {
 
 
 
4148		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
4149		blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4150		raid10_set_io_opt(conf);
 
 
 
 
4151	}
4152
4153	rdev_for_each(rdev, mddev) {
4154		long long diff;
4155
4156		disk_idx = rdev->raid_disk;
4157		if (disk_idx < 0)
4158			continue;
4159		if (disk_idx >= conf->geo.raid_disks &&
4160		    disk_idx >= conf->prev.raid_disks)
4161			continue;
4162		disk = conf->mirrors + disk_idx;
4163
4164		if (test_bit(Replacement, &rdev->flags)) {
4165			if (disk->replacement)
4166				goto out_free_conf;
4167			disk->replacement = rdev;
4168		} else {
4169			if (disk->rdev)
4170				goto out_free_conf;
4171			disk->rdev = rdev;
4172		}
4173		diff = (rdev->new_data_offset - rdev->data_offset);
4174		if (!mddev->reshape_backwards)
4175			diff = -diff;
4176		if (diff < 0)
4177			diff = 0;
4178		if (first || diff < min_offset_diff)
4179			min_offset_diff = diff;
4180
4181		if (mddev->gendisk)
4182			disk_stack_limits(mddev->gendisk, rdev->bdev,
4183					  rdev->data_offset << 9);
4184
4185		disk->head_position = 0;
 
 
 
4186		first = 0;
4187	}
4188
 
 
 
 
 
 
 
 
4189	/* need to check that every block has at least one working mirror */
4190	if (!enough(conf, -1)) {
4191		pr_err("md/raid10:%s: not enough operational mirrors.\n",
4192		       mdname(mddev));
4193		goto out_free_conf;
4194	}
4195
4196	if (conf->reshape_progress != MaxSector) {
4197		/* must ensure that shape change is supported */
4198		if (conf->geo.far_copies != 1 &&
4199		    conf->geo.far_offset == 0)
4200			goto out_free_conf;
4201		if (conf->prev.far_copies != 1 &&
4202		    conf->prev.far_offset == 0)
4203			goto out_free_conf;
4204	}
4205
4206	mddev->degraded = 0;
4207	for (i = 0;
4208	     i < conf->geo.raid_disks
4209		     || i < conf->prev.raid_disks;
4210	     i++) {
4211
4212		disk = conf->mirrors + i;
4213
4214		if (!disk->rdev && disk->replacement) {
4215			/* The replacement is all we have - use it */
4216			disk->rdev = disk->replacement;
4217			disk->replacement = NULL;
4218			clear_bit(Replacement, &disk->rdev->flags);
4219		}
4220
4221		if (!disk->rdev ||
4222		    !test_bit(In_sync, &disk->rdev->flags)) {
4223			disk->head_position = 0;
4224			mddev->degraded++;
4225			if (disk->rdev &&
4226			    disk->rdev->saved_raid_disk < 0)
4227				conf->fullsync = 1;
4228		}
4229
4230		if (disk->replacement &&
4231		    !test_bit(In_sync, &disk->replacement->flags) &&
4232		    disk->replacement->saved_raid_disk < 0) {
4233			conf->fullsync = 1;
4234		}
4235
4236		disk->recovery_disabled = mddev->recovery_disabled - 1;
4237	}
4238
4239	if (mddev->recovery_cp != MaxSector)
4240		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4241			  mdname(mddev));
4242	pr_info("md/raid10:%s: active with %d out of %d devices\n",
4243		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4244		conf->geo.raid_disks);
4245	/*
4246	 * Ok, everything is just fine now
4247	 */
4248	mddev->dev_sectors = conf->dev_sectors;
4249	size = raid10_size(mddev, 0, 0);
4250	md_set_array_sectors(mddev, size);
4251	mddev->resync_max_sectors = size;
4252	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4253
 
 
 
 
 
 
 
 
 
 
 
 
 
4254	if (md_integrity_register(mddev))
4255		goto out_free_conf;
4256
4257	if (conf->reshape_progress != MaxSector) {
4258		unsigned long before_length, after_length;
4259
4260		before_length = ((1 << conf->prev.chunk_shift) *
4261				 conf->prev.far_copies);
4262		after_length = ((1 << conf->geo.chunk_shift) *
4263				conf->geo.far_copies);
4264
4265		if (max(before_length, after_length) > min_offset_diff) {
4266			/* This cannot work */
4267			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4268			goto out_free_conf;
4269		}
4270		conf->offset_diff = min_offset_diff;
4271
4272		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4273		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4274		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4275		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4276		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4277							"reshape");
4278		if (!mddev->sync_thread)
4279			goto out_free_conf;
4280	}
4281
4282	return 0;
4283
4284out_free_conf:
4285	md_unregister_thread(&mddev->thread);
4286	mempool_exit(&conf->r10bio_pool);
4287	safe_put_page(conf->tmppage);
4288	kfree(conf->mirrors);
4289	kfree(conf);
4290	mddev->private = NULL;
4291out:
4292	return -EIO;
4293}
4294
4295static void raid10_free(struct mddev *mddev, void *priv)
4296{
4297	struct r10conf *conf = priv;
4298
4299	mempool_exit(&conf->r10bio_pool);
4300	safe_put_page(conf->tmppage);
4301	kfree(conf->mirrors);
4302	kfree(conf->mirrors_old);
4303	kfree(conf->mirrors_new);
4304	bioset_exit(&conf->bio_split);
 
4305	kfree(conf);
4306}
4307
4308static void raid10_quiesce(struct mddev *mddev, int quiesce)
4309{
4310	struct r10conf *conf = mddev->private;
4311
4312	if (quiesce)
4313		raise_barrier(conf, 0);
4314	else
4315		lower_barrier(conf);
4316}
4317
4318static int raid10_resize(struct mddev *mddev, sector_t sectors)
4319{
4320	/* Resize of 'far' arrays is not supported.
4321	 * For 'near' and 'offset' arrays we can set the
4322	 * number of sectors used to be an appropriate multiple
4323	 * of the chunk size.
4324	 * For 'offset', this is far_copies*chunksize.
4325	 * For 'near' the multiplier is the LCM of
4326	 * near_copies and raid_disks.
4327	 * So if far_copies > 1 && !far_offset, fail.
4328	 * Else find LCM(raid_disks, near_copy)*far_copies and
4329	 * multiply by chunk_size.  Then round to this number.
4330	 * This is mostly done by raid10_size()
4331	 */
4332	struct r10conf *conf = mddev->private;
4333	sector_t oldsize, size;
4334
4335	if (mddev->reshape_position != MaxSector)
4336		return -EBUSY;
4337
4338	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4339		return -EINVAL;
4340
4341	oldsize = raid10_size(mddev, 0, 0);
4342	size = raid10_size(mddev, sectors, 0);
4343	if (mddev->external_size &&
4344	    mddev->array_sectors > size)
4345		return -EINVAL;
4346	if (mddev->bitmap) {
4347		int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4348		if (ret)
4349			return ret;
4350	}
4351	md_set_array_sectors(mddev, size);
4352	if (sectors > mddev->dev_sectors &&
4353	    mddev->recovery_cp > oldsize) {
4354		mddev->recovery_cp = oldsize;
4355		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4356	}
4357	calc_sectors(conf, sectors);
4358	mddev->dev_sectors = conf->dev_sectors;
4359	mddev->resync_max_sectors = size;
4360	return 0;
4361}
4362
4363static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4364{
4365	struct md_rdev *rdev;
4366	struct r10conf *conf;
4367
4368	if (mddev->degraded > 0) {
4369		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4370			mdname(mddev));
4371		return ERR_PTR(-EINVAL);
4372	}
4373	sector_div(size, devs);
4374
4375	/* Set new parameters */
4376	mddev->new_level = 10;
4377	/* new layout: far_copies = 1, near_copies = 2 */
4378	mddev->new_layout = (1<<8) + 2;
4379	mddev->new_chunk_sectors = mddev->chunk_sectors;
4380	mddev->delta_disks = mddev->raid_disks;
4381	mddev->raid_disks *= 2;
4382	/* make sure it will be not marked as dirty */
4383	mddev->recovery_cp = MaxSector;
4384	mddev->dev_sectors = size;
4385
4386	conf = setup_conf(mddev);
4387	if (!IS_ERR(conf)) {
4388		rdev_for_each(rdev, mddev)
4389			if (rdev->raid_disk >= 0) {
4390				rdev->new_raid_disk = rdev->raid_disk * 2;
4391				rdev->sectors = size;
4392			}
4393		WRITE_ONCE(conf->barrier, 1);
4394	}
4395
4396	return conf;
4397}
4398
4399static void *raid10_takeover(struct mddev *mddev)
4400{
4401	struct r0conf *raid0_conf;
4402
4403	/* raid10 can take over:
4404	 *  raid0 - providing it has only two drives
4405	 */
4406	if (mddev->level == 0) {
4407		/* for raid0 takeover only one zone is supported */
4408		raid0_conf = mddev->private;
4409		if (raid0_conf->nr_strip_zones > 1) {
4410			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4411				mdname(mddev));
4412			return ERR_PTR(-EINVAL);
4413		}
4414		return raid10_takeover_raid0(mddev,
4415			raid0_conf->strip_zone->zone_end,
4416			raid0_conf->strip_zone->nb_dev);
4417	}
4418	return ERR_PTR(-EINVAL);
4419}
4420
4421static int raid10_check_reshape(struct mddev *mddev)
4422{
4423	/* Called when there is a request to change
4424	 * - layout (to ->new_layout)
4425	 * - chunk size (to ->new_chunk_sectors)
4426	 * - raid_disks (by delta_disks)
4427	 * or when trying to restart a reshape that was ongoing.
4428	 *
4429	 * We need to validate the request and possibly allocate
4430	 * space if that might be an issue later.
4431	 *
4432	 * Currently we reject any reshape of a 'far' mode array,
4433	 * allow chunk size to change if new is generally acceptable,
4434	 * allow raid_disks to increase, and allow
4435	 * a switch between 'near' mode and 'offset' mode.
4436	 */
4437	struct r10conf *conf = mddev->private;
4438	struct geom geo;
4439
4440	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4441		return -EINVAL;
4442
4443	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4444		/* mustn't change number of copies */
4445		return -EINVAL;
4446	if (geo.far_copies > 1 && !geo.far_offset)
4447		/* Cannot switch to 'far' mode */
4448		return -EINVAL;
4449
4450	if (mddev->array_sectors & geo.chunk_mask)
4451			/* not factor of array size */
4452			return -EINVAL;
4453
4454	if (!enough(conf, -1))
4455		return -EINVAL;
4456
4457	kfree(conf->mirrors_new);
4458	conf->mirrors_new = NULL;
4459	if (mddev->delta_disks > 0) {
4460		/* allocate new 'mirrors' list */
4461		conf->mirrors_new =
4462			kcalloc(mddev->raid_disks + mddev->delta_disks,
4463				sizeof(struct raid10_info),
4464				GFP_KERNEL);
 
4465		if (!conf->mirrors_new)
4466			return -ENOMEM;
4467	}
4468	return 0;
4469}
4470
4471/*
4472 * Need to check if array has failed when deciding whether to:
4473 *  - start an array
4474 *  - remove non-faulty devices
4475 *  - add a spare
4476 *  - allow a reshape
4477 * This determination is simple when no reshape is happening.
4478 * However if there is a reshape, we need to carefully check
4479 * both the before and after sections.
4480 * This is because some failed devices may only affect one
4481 * of the two sections, and some non-in_sync devices may
4482 * be insync in the section most affected by failed devices.
4483 */
4484static int calc_degraded(struct r10conf *conf)
4485{
4486	int degraded, degraded2;
4487	int i;
4488
4489	rcu_read_lock();
4490	degraded = 0;
4491	/* 'prev' section first */
4492	for (i = 0; i < conf->prev.raid_disks; i++) {
4493		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4494		if (!rdev || test_bit(Faulty, &rdev->flags))
4495			degraded++;
4496		else if (!test_bit(In_sync, &rdev->flags))
4497			/* When we can reduce the number of devices in
4498			 * an array, this might not contribute to
4499			 * 'degraded'.  It does now.
4500			 */
4501			degraded++;
4502	}
4503	rcu_read_unlock();
4504	if (conf->geo.raid_disks == conf->prev.raid_disks)
4505		return degraded;
4506	rcu_read_lock();
4507	degraded2 = 0;
4508	for (i = 0; i < conf->geo.raid_disks; i++) {
4509		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4510		if (!rdev || test_bit(Faulty, &rdev->flags))
4511			degraded2++;
4512		else if (!test_bit(In_sync, &rdev->flags)) {
4513			/* If reshape is increasing the number of devices,
4514			 * this section has already been recovered, so
4515			 * it doesn't contribute to degraded.
4516			 * else it does.
4517			 */
4518			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4519				degraded2++;
4520		}
4521	}
4522	rcu_read_unlock();
4523	if (degraded2 > degraded)
4524		return degraded2;
4525	return degraded;
4526}
4527
4528static int raid10_start_reshape(struct mddev *mddev)
4529{
4530	/* A 'reshape' has been requested. This commits
4531	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4532	 * This also checks if there are enough spares and adds them
4533	 * to the array.
4534	 * We currently require enough spares to make the final
4535	 * array non-degraded.  We also require that the difference
4536	 * between old and new data_offset - on each device - is
4537	 * enough that we never risk over-writing.
4538	 */
4539
4540	unsigned long before_length, after_length;
4541	sector_t min_offset_diff = 0;
4542	int first = 1;
4543	struct geom new;
4544	struct r10conf *conf = mddev->private;
4545	struct md_rdev *rdev;
4546	int spares = 0;
4547	int ret;
4548
4549	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4550		return -EBUSY;
4551
4552	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4553		return -EINVAL;
4554
4555	before_length = ((1 << conf->prev.chunk_shift) *
4556			 conf->prev.far_copies);
4557	after_length = ((1 << conf->geo.chunk_shift) *
4558			conf->geo.far_copies);
4559
4560	rdev_for_each(rdev, mddev) {
4561		if (!test_bit(In_sync, &rdev->flags)
4562		    && !test_bit(Faulty, &rdev->flags))
4563			spares++;
4564		if (rdev->raid_disk >= 0) {
4565			long long diff = (rdev->new_data_offset
4566					  - rdev->data_offset);
4567			if (!mddev->reshape_backwards)
4568				diff = -diff;
4569			if (diff < 0)
4570				diff = 0;
4571			if (first || diff < min_offset_diff)
4572				min_offset_diff = diff;
4573			first = 0;
4574		}
4575	}
4576
4577	if (max(before_length, after_length) > min_offset_diff)
4578		return -EINVAL;
4579
4580	if (spares < mddev->delta_disks)
4581		return -EINVAL;
4582
4583	conf->offset_diff = min_offset_diff;
4584	spin_lock_irq(&conf->device_lock);
4585	if (conf->mirrors_new) {
4586		memcpy(conf->mirrors_new, conf->mirrors,
4587		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4588		smp_mb();
4589		kfree(conf->mirrors_old);
4590		conf->mirrors_old = conf->mirrors;
4591		conf->mirrors = conf->mirrors_new;
4592		conf->mirrors_new = NULL;
4593	}
4594	setup_geo(&conf->geo, mddev, geo_start);
4595	smp_mb();
4596	if (mddev->reshape_backwards) {
4597		sector_t size = raid10_size(mddev, 0, 0);
4598		if (size < mddev->array_sectors) {
4599			spin_unlock_irq(&conf->device_lock);
4600			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4601				mdname(mddev));
4602			return -EINVAL;
4603		}
4604		mddev->resync_max_sectors = size;
4605		conf->reshape_progress = size;
4606	} else
4607		conf->reshape_progress = 0;
4608	conf->reshape_safe = conf->reshape_progress;
4609	spin_unlock_irq(&conf->device_lock);
4610
4611	if (mddev->delta_disks && mddev->bitmap) {
4612		struct mdp_superblock_1 *sb = NULL;
4613		sector_t oldsize, newsize;
4614
4615		oldsize = raid10_size(mddev, 0, 0);
4616		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4617
4618		if (!mddev_is_clustered(mddev)) {
4619			ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4620			if (ret)
4621				goto abort;
4622			else
4623				goto out;
4624		}
4625
4626		rdev_for_each(rdev, mddev) {
4627			if (rdev->raid_disk > -1 &&
4628			    !test_bit(Faulty, &rdev->flags))
4629				sb = page_address(rdev->sb_page);
4630		}
4631
4632		/*
4633		 * some node is already performing reshape, and no need to
4634		 * call md_bitmap_resize again since it should be called when
4635		 * receiving BITMAP_RESIZE msg
4636		 */
4637		if ((sb && (le32_to_cpu(sb->feature_map) &
4638			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4639			goto out;
4640
4641		ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4642		if (ret)
4643			goto abort;
4644
4645		ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4646		if (ret) {
4647			md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4648			goto abort;
4649		}
4650	}
4651out:
4652	if (mddev->delta_disks > 0) {
4653		rdev_for_each(rdev, mddev)
4654			if (rdev->raid_disk < 0 &&
4655			    !test_bit(Faulty, &rdev->flags)) {
4656				if (raid10_add_disk(mddev, rdev) == 0) {
4657					if (rdev->raid_disk >=
4658					    conf->prev.raid_disks)
4659						set_bit(In_sync, &rdev->flags);
4660					else
4661						rdev->recovery_offset = 0;
4662
4663					/* Failure here is OK */
4664					sysfs_link_rdev(mddev, rdev);
4665				}
4666			} else if (rdev->raid_disk >= conf->prev.raid_disks
4667				   && !test_bit(Faulty, &rdev->flags)) {
4668				/* This is a spare that was manually added */
4669				set_bit(In_sync, &rdev->flags);
4670			}
4671	}
4672	/* When a reshape changes the number of devices,
4673	 * ->degraded is measured against the larger of the
4674	 * pre and  post numbers.
4675	 */
4676	spin_lock_irq(&conf->device_lock);
4677	mddev->degraded = calc_degraded(conf);
4678	spin_unlock_irq(&conf->device_lock);
4679	mddev->raid_disks = conf->geo.raid_disks;
4680	mddev->reshape_position = conf->reshape_progress;
4681	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4682
4683	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4684	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4685	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4686	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4687	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4688
4689	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4690						"reshape");
4691	if (!mddev->sync_thread) {
4692		ret = -EAGAIN;
4693		goto abort;
4694	}
4695	conf->reshape_checkpoint = jiffies;
4696	md_wakeup_thread(mddev->sync_thread);
4697	md_new_event();
4698	return 0;
4699
4700abort:
4701	mddev->recovery = 0;
4702	spin_lock_irq(&conf->device_lock);
4703	conf->geo = conf->prev;
4704	mddev->raid_disks = conf->geo.raid_disks;
4705	rdev_for_each(rdev, mddev)
4706		rdev->new_data_offset = rdev->data_offset;
4707	smp_wmb();
4708	conf->reshape_progress = MaxSector;
4709	conf->reshape_safe = MaxSector;
4710	mddev->reshape_position = MaxSector;
4711	spin_unlock_irq(&conf->device_lock);
4712	return ret;
4713}
4714
4715/* Calculate the last device-address that could contain
4716 * any block from the chunk that includes the array-address 's'
4717 * and report the next address.
4718 * i.e. the address returned will be chunk-aligned and after
4719 * any data that is in the chunk containing 's'.
4720 */
4721static sector_t last_dev_address(sector_t s, struct geom *geo)
4722{
4723	s = (s | geo->chunk_mask) + 1;
4724	s >>= geo->chunk_shift;
4725	s *= geo->near_copies;
4726	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4727	s *= geo->far_copies;
4728	s <<= geo->chunk_shift;
4729	return s;
4730}
4731
4732/* Calculate the first device-address that could contain
4733 * any block from the chunk that includes the array-address 's'.
4734 * This too will be the start of a chunk
4735 */
4736static sector_t first_dev_address(sector_t s, struct geom *geo)
4737{
4738	s >>= geo->chunk_shift;
4739	s *= geo->near_copies;
4740	sector_div(s, geo->raid_disks);
4741	s *= geo->far_copies;
4742	s <<= geo->chunk_shift;
4743	return s;
4744}
4745
4746static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4747				int *skipped)
4748{
4749	/* We simply copy at most one chunk (smallest of old and new)
4750	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4751	 * or we hit a bad block or something.
4752	 * This might mean we pause for normal IO in the middle of
4753	 * a chunk, but that is not a problem as mddev->reshape_position
4754	 * can record any location.
4755	 *
4756	 * If we will want to write to a location that isn't
4757	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4758	 * we need to flush all reshape requests and update the metadata.
4759	 *
4760	 * When reshaping forwards (e.g. to more devices), we interpret
4761	 * 'safe' as the earliest block which might not have been copied
4762	 * down yet.  We divide this by previous stripe size and multiply
4763	 * by previous stripe length to get lowest device offset that we
4764	 * cannot write to yet.
4765	 * We interpret 'sector_nr' as an address that we want to write to.
4766	 * From this we use last_device_address() to find where we might
4767	 * write to, and first_device_address on the  'safe' position.
4768	 * If this 'next' write position is after the 'safe' position,
4769	 * we must update the metadata to increase the 'safe' position.
4770	 *
4771	 * When reshaping backwards, we round in the opposite direction
4772	 * and perform the reverse test:  next write position must not be
4773	 * less than current safe position.
4774	 *
4775	 * In all this the minimum difference in data offsets
4776	 * (conf->offset_diff - always positive) allows a bit of slack,
4777	 * so next can be after 'safe', but not by more than offset_diff
4778	 *
4779	 * We need to prepare all the bios here before we start any IO
4780	 * to ensure the size we choose is acceptable to all devices.
4781	 * The means one for each copy for write-out and an extra one for
4782	 * read-in.
4783	 * We store the read-in bio in ->master_bio and the others in
4784	 * ->devs[x].bio and ->devs[x].repl_bio.
4785	 */
4786	struct r10conf *conf = mddev->private;
4787	struct r10bio *r10_bio;
4788	sector_t next, safe, last;
4789	int max_sectors;
4790	int nr_sectors;
4791	int s;
4792	struct md_rdev *rdev;
4793	int need_flush = 0;
4794	struct bio *blist;
4795	struct bio *bio, *read_bio;
4796	int sectors_done = 0;
4797	struct page **pages;
4798
4799	if (sector_nr == 0) {
4800		/* If restarting in the middle, skip the initial sectors */
4801		if (mddev->reshape_backwards &&
4802		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4803			sector_nr = (raid10_size(mddev, 0, 0)
4804				     - conf->reshape_progress);
4805		} else if (!mddev->reshape_backwards &&
4806			   conf->reshape_progress > 0)
4807			sector_nr = conf->reshape_progress;
4808		if (sector_nr) {
4809			mddev->curr_resync_completed = sector_nr;
4810			sysfs_notify_dirent_safe(mddev->sysfs_completed);
4811			*skipped = 1;
4812			return sector_nr;
4813		}
4814	}
4815
4816	/* We don't use sector_nr to track where we are up to
4817	 * as that doesn't work well for ->reshape_backwards.
4818	 * So just use ->reshape_progress.
4819	 */
4820	if (mddev->reshape_backwards) {
4821		/* 'next' is the earliest device address that we might
4822		 * write to for this chunk in the new layout
4823		 */
4824		next = first_dev_address(conf->reshape_progress - 1,
4825					 &conf->geo);
4826
4827		/* 'safe' is the last device address that we might read from
4828		 * in the old layout after a restart
4829		 */
4830		safe = last_dev_address(conf->reshape_safe - 1,
4831					&conf->prev);
4832
4833		if (next + conf->offset_diff < safe)
4834			need_flush = 1;
4835
4836		last = conf->reshape_progress - 1;
4837		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4838					       & conf->prev.chunk_mask);
4839		if (sector_nr + RESYNC_SECTORS < last)
4840			sector_nr = last + 1 - RESYNC_SECTORS;
4841	} else {
4842		/* 'next' is after the last device address that we
4843		 * might write to for this chunk in the new layout
4844		 */
4845		next = last_dev_address(conf->reshape_progress, &conf->geo);
4846
4847		/* 'safe' is the earliest device address that we might
4848		 * read from in the old layout after a restart
4849		 */
4850		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4851
4852		/* Need to update metadata if 'next' might be beyond 'safe'
4853		 * as that would possibly corrupt data
4854		 */
4855		if (next > safe + conf->offset_diff)
4856			need_flush = 1;
4857
4858		sector_nr = conf->reshape_progress;
4859		last  = sector_nr | (conf->geo.chunk_mask
4860				     & conf->prev.chunk_mask);
4861
4862		if (sector_nr + RESYNC_SECTORS <= last)
4863			last = sector_nr + RESYNC_SECTORS - 1;
4864	}
4865
4866	if (need_flush ||
4867	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4868		/* Need to update reshape_position in metadata */
4869		wait_barrier(conf, false);
4870		mddev->reshape_position = conf->reshape_progress;
4871		if (mddev->reshape_backwards)
4872			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4873				- conf->reshape_progress;
4874		else
4875			mddev->curr_resync_completed = conf->reshape_progress;
4876		conf->reshape_checkpoint = jiffies;
4877		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4878		md_wakeup_thread(mddev->thread);
4879		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4880			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4881		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4882			allow_barrier(conf);
4883			return sectors_done;
4884		}
4885		conf->reshape_safe = mddev->reshape_position;
4886		allow_barrier(conf);
4887	}
4888
4889	raise_barrier(conf, 0);
4890read_more:
4891	/* Now schedule reads for blocks from sector_nr to last */
4892	r10_bio = raid10_alloc_init_r10buf(conf);
4893	r10_bio->state = 0;
4894	raise_barrier(conf, 1);
4895	atomic_set(&r10_bio->remaining, 0);
4896	r10_bio->mddev = mddev;
4897	r10_bio->sector = sector_nr;
4898	set_bit(R10BIO_IsReshape, &r10_bio->state);
4899	r10_bio->sectors = last - sector_nr + 1;
4900	rdev = read_balance(conf, r10_bio, &max_sectors);
4901	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4902
4903	if (!rdev) {
4904		/* Cannot read from here, so need to record bad blocks
4905		 * on all the target devices.
4906		 */
4907		// FIXME
4908		mempool_free(r10_bio, &conf->r10buf_pool);
4909		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4910		return sectors_done;
4911	}
4912
4913	read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4914				    GFP_KERNEL, &mddev->bio_set);
 
4915	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4916			       + rdev->data_offset);
4917	read_bio->bi_private = r10_bio;
4918	read_bio->bi_end_io = end_reshape_read;
 
 
 
 
 
4919	r10_bio->master_bio = read_bio;
4920	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4921
4922	/*
4923	 * Broadcast RESYNC message to other nodes, so all nodes would not
4924	 * write to the region to avoid conflict.
4925	*/
4926	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4927		struct mdp_superblock_1 *sb = NULL;
4928		int sb_reshape_pos = 0;
4929
4930		conf->cluster_sync_low = sector_nr;
4931		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4932		sb = page_address(rdev->sb_page);
4933		if (sb) {
4934			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4935			/*
4936			 * Set cluster_sync_low again if next address for array
4937			 * reshape is less than cluster_sync_low. Since we can't
4938			 * update cluster_sync_low until it has finished reshape.
4939			 */
4940			if (sb_reshape_pos < conf->cluster_sync_low)
4941				conf->cluster_sync_low = sb_reshape_pos;
4942		}
4943
4944		md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4945							  conf->cluster_sync_high);
4946	}
4947
4948	/* Now find the locations in the new layout */
4949	__raid10_find_phys(&conf->geo, r10_bio);
4950
4951	blist = read_bio;
4952	read_bio->bi_next = NULL;
4953
4954	rcu_read_lock();
4955	for (s = 0; s < conf->copies*2; s++) {
4956		struct bio *b;
4957		int d = r10_bio->devs[s/2].devnum;
4958		struct md_rdev *rdev2;
4959		if (s&1) {
4960			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4961			b = r10_bio->devs[s/2].repl_bio;
4962		} else {
4963			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4964			b = r10_bio->devs[s/2].bio;
4965		}
4966		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4967			continue;
4968
4969		bio_set_dev(b, rdev2->bdev);
4970		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4971			rdev2->new_data_offset;
4972		b->bi_end_io = end_reshape_write;
4973		b->bi_opf = REQ_OP_WRITE;
4974		b->bi_next = blist;
4975		blist = b;
4976	}
4977
4978	/* Now add as many pages as possible to all of these bios. */
4979
4980	nr_sectors = 0;
4981	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4982	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4983		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4984		int len = (max_sectors - s) << 9;
4985		if (len > PAGE_SIZE)
4986			len = PAGE_SIZE;
4987		for (bio = blist; bio ; bio = bio->bi_next) {
4988			/*
4989			 * won't fail because the vec table is big enough
4990			 * to hold all these pages
4991			 */
4992			bio_add_page(bio, page, len, 0);
4993		}
4994		sector_nr += len >> 9;
4995		nr_sectors += len >> 9;
4996	}
4997	rcu_read_unlock();
4998	r10_bio->sectors = nr_sectors;
4999
5000	/* Now submit the read */
5001	md_sync_acct_bio(read_bio, r10_bio->sectors);
5002	atomic_inc(&r10_bio->remaining);
5003	read_bio->bi_next = NULL;
5004	submit_bio_noacct(read_bio);
 
5005	sectors_done += nr_sectors;
5006	if (sector_nr <= last)
5007		goto read_more;
5008
5009	lower_barrier(conf);
5010
5011	/* Now that we have done the whole section we can
5012	 * update reshape_progress
5013	 */
5014	if (mddev->reshape_backwards)
5015		conf->reshape_progress -= sectors_done;
5016	else
5017		conf->reshape_progress += sectors_done;
5018
5019	return sectors_done;
5020}
5021
5022static void end_reshape_request(struct r10bio *r10_bio);
5023static int handle_reshape_read_error(struct mddev *mddev,
5024				     struct r10bio *r10_bio);
5025static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
5026{
5027	/* Reshape read completed.  Hopefully we have a block
5028	 * to write out.
5029	 * If we got a read error then we do sync 1-page reads from
5030	 * elsewhere until we find the data - or give up.
5031	 */
5032	struct r10conf *conf = mddev->private;
5033	int s;
5034
5035	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
5036		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
5037			/* Reshape has been aborted */
5038			md_done_sync(mddev, r10_bio->sectors, 0);
5039			return;
5040		}
5041
5042	/* We definitely have the data in the pages, schedule the
5043	 * writes.
5044	 */
5045	atomic_set(&r10_bio->remaining, 1);
5046	for (s = 0; s < conf->copies*2; s++) {
5047		struct bio *b;
5048		int d = r10_bio->devs[s/2].devnum;
5049		struct md_rdev *rdev;
5050		rcu_read_lock();
5051		if (s&1) {
5052			rdev = rcu_dereference(conf->mirrors[d].replacement);
5053			b = r10_bio->devs[s/2].repl_bio;
5054		} else {
5055			rdev = rcu_dereference(conf->mirrors[d].rdev);
5056			b = r10_bio->devs[s/2].bio;
5057		}
5058		if (!rdev || test_bit(Faulty, &rdev->flags)) {
5059			rcu_read_unlock();
5060			continue;
5061		}
5062		atomic_inc(&rdev->nr_pending);
5063		rcu_read_unlock();
5064		md_sync_acct_bio(b, r10_bio->sectors);
5065		atomic_inc(&r10_bio->remaining);
5066		b->bi_next = NULL;
5067		submit_bio_noacct(b);
5068	}
5069	end_reshape_request(r10_bio);
5070}
5071
5072static void end_reshape(struct r10conf *conf)
5073{
5074	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5075		return;
5076
5077	spin_lock_irq(&conf->device_lock);
5078	conf->prev = conf->geo;
5079	md_finish_reshape(conf->mddev);
5080	smp_wmb();
5081	conf->reshape_progress = MaxSector;
5082	conf->reshape_safe = MaxSector;
5083	spin_unlock_irq(&conf->device_lock);
5084
5085	if (conf->mddev->queue)
5086		raid10_set_io_opt(conf);
 
 
 
 
 
 
 
 
5087	conf->fullsync = 0;
5088}
5089
5090static void raid10_update_reshape_pos(struct mddev *mddev)
5091{
5092	struct r10conf *conf = mddev->private;
5093	sector_t lo, hi;
5094
5095	md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5096	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5097	    || mddev->reshape_position == MaxSector)
5098		conf->reshape_progress = mddev->reshape_position;
5099	else
5100		WARN_ON_ONCE(1);
5101}
5102
5103static int handle_reshape_read_error(struct mddev *mddev,
5104				     struct r10bio *r10_bio)
5105{
5106	/* Use sync reads to get the blocks from somewhere else */
5107	int sectors = r10_bio->sectors;
5108	struct r10conf *conf = mddev->private;
5109	struct r10bio *r10b;
5110	int slot = 0;
5111	int idx = 0;
5112	struct page **pages;
5113
5114	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
 
5115	if (!r10b) {
5116		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5117		return -ENOMEM;
5118	}
5119
5120	/* reshape IOs share pages from .devs[0].bio */
5121	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5122
5123	r10b->sector = r10_bio->sector;
5124	__raid10_find_phys(&conf->prev, r10b);
5125
5126	while (sectors) {
5127		int s = sectors;
5128		int success = 0;
5129		int first_slot = slot;
5130
5131		if (s > (PAGE_SIZE >> 9))
5132			s = PAGE_SIZE >> 9;
5133
5134		rcu_read_lock();
5135		while (!success) {
5136			int d = r10b->devs[slot].devnum;
5137			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5138			sector_t addr;
5139			if (rdev == NULL ||
5140			    test_bit(Faulty, &rdev->flags) ||
5141			    !test_bit(In_sync, &rdev->flags))
5142				goto failed;
5143
5144			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5145			atomic_inc(&rdev->nr_pending);
5146			rcu_read_unlock();
5147			success = sync_page_io(rdev,
5148					       addr,
5149					       s << 9,
5150					       pages[idx],
5151					       REQ_OP_READ, false);
5152			rdev_dec_pending(rdev, mddev);
5153			rcu_read_lock();
5154			if (success)
5155				break;
5156		failed:
5157			slot++;
5158			if (slot >= conf->copies)
5159				slot = 0;
5160			if (slot == first_slot)
5161				break;
5162		}
5163		rcu_read_unlock();
5164		if (!success) {
5165			/* couldn't read this block, must give up */
5166			set_bit(MD_RECOVERY_INTR,
5167				&mddev->recovery);
5168			kfree(r10b);
5169			return -EIO;
5170		}
5171		sectors -= s;
5172		idx++;
5173	}
5174	kfree(r10b);
5175	return 0;
5176}
5177
5178static void end_reshape_write(struct bio *bio)
5179{
5180	struct r10bio *r10_bio = get_resync_r10bio(bio);
5181	struct mddev *mddev = r10_bio->mddev;
5182	struct r10conf *conf = mddev->private;
5183	int d;
5184	int slot;
5185	int repl;
5186	struct md_rdev *rdev = NULL;
5187
5188	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5189	if (repl)
5190		rdev = conf->mirrors[d].replacement;
5191	if (!rdev) {
5192		smp_mb();
5193		rdev = conf->mirrors[d].rdev;
5194	}
5195
5196	if (bio->bi_status) {
5197		/* FIXME should record badblock */
5198		md_error(mddev, rdev);
5199	}
5200
5201	rdev_dec_pending(rdev, mddev);
5202	end_reshape_request(r10_bio);
5203}
5204
5205static void end_reshape_request(struct r10bio *r10_bio)
5206{
5207	if (!atomic_dec_and_test(&r10_bio->remaining))
5208		return;
5209	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5210	bio_put(r10_bio->master_bio);
5211	put_buf(r10_bio);
5212}
5213
5214static void raid10_finish_reshape(struct mddev *mddev)
5215{
5216	struct r10conf *conf = mddev->private;
5217
5218	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5219		return;
5220
5221	if (mddev->delta_disks > 0) {
5222		if (mddev->recovery_cp > mddev->resync_max_sectors) {
5223			mddev->recovery_cp = mddev->resync_max_sectors;
5224			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5225		}
5226		mddev->resync_max_sectors = mddev->array_sectors;
5227	} else {
5228		int d;
5229		rcu_read_lock();
5230		for (d = conf->geo.raid_disks ;
5231		     d < conf->geo.raid_disks - mddev->delta_disks;
5232		     d++) {
5233			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5234			if (rdev)
5235				clear_bit(In_sync, &rdev->flags);
5236			rdev = rcu_dereference(conf->mirrors[d].replacement);
5237			if (rdev)
5238				clear_bit(In_sync, &rdev->flags);
5239		}
5240		rcu_read_unlock();
5241	}
5242	mddev->layout = mddev->new_layout;
5243	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5244	mddev->reshape_position = MaxSector;
5245	mddev->delta_disks = 0;
5246	mddev->reshape_backwards = 0;
5247}
5248
5249static struct md_personality raid10_personality =
5250{
5251	.name		= "raid10",
5252	.level		= 10,
5253	.owner		= THIS_MODULE,
5254	.make_request	= raid10_make_request,
5255	.run		= raid10_run,
5256	.free		= raid10_free,
5257	.status		= raid10_status,
5258	.error_handler	= raid10_error,
5259	.hot_add_disk	= raid10_add_disk,
5260	.hot_remove_disk= raid10_remove_disk,
5261	.spare_active	= raid10_spare_active,
5262	.sync_request	= raid10_sync_request,
5263	.quiesce	= raid10_quiesce,
5264	.size		= raid10_size,
5265	.resize		= raid10_resize,
5266	.takeover	= raid10_takeover,
5267	.check_reshape	= raid10_check_reshape,
5268	.start_reshape	= raid10_start_reshape,
5269	.finish_reshape	= raid10_finish_reshape,
5270	.update_reshape_pos = raid10_update_reshape_pos,
5271};
5272
5273static int __init raid_init(void)
5274{
5275	return register_md_personality(&raid10_personality);
5276}
5277
5278static void raid_exit(void)
5279{
5280	unregister_md_personality(&raid10_personality);
5281}
5282
5283module_init(raid_init);
5284module_exit(raid_exit);
5285MODULE_LICENSE("GPL");
5286MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5287MODULE_ALIAS("md-personality-9"); /* RAID10 */
5288MODULE_ALIAS("md-raid10");
5289MODULE_ALIAS("md-level-10");
v4.17
 
   1/*
   2 * raid10.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 2000-2004 Neil Brown
   5 *
   6 * RAID-10 support for md.
   7 *
   8 * Base on code in raid1.c.  See raid1.c for further copyright information.
   9 *
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2, or (at your option)
  14 * any later version.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * (for example /usr/src/linux/COPYING); if not, write to the Free
  18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21#include <linux/slab.h>
  22#include <linux/delay.h>
  23#include <linux/blkdev.h>
  24#include <linux/module.h>
  25#include <linux/seq_file.h>
  26#include <linux/ratelimit.h>
  27#include <linux/kthread.h>
 
  28#include <trace/events/block.h>
  29#include "md.h"
  30#include "raid10.h"
  31#include "raid0.h"
  32#include "md-bitmap.h"
  33
  34/*
  35 * RAID10 provides a combination of RAID0 and RAID1 functionality.
  36 * The layout of data is defined by
  37 *    chunk_size
  38 *    raid_disks
  39 *    near_copies (stored in low byte of layout)
  40 *    far_copies (stored in second byte of layout)
  41 *    far_offset (stored in bit 16 of layout )
  42 *    use_far_sets (stored in bit 17 of layout )
  43 *    use_far_sets_bugfixed (stored in bit 18 of layout )
  44 *
  45 * The data to be stored is divided into chunks using chunksize.  Each device
  46 * is divided into far_copies sections.   In each section, chunks are laid out
  47 * in a style similar to raid0, but near_copies copies of each chunk is stored
  48 * (each on a different drive).  The starting device for each section is offset
  49 * near_copies from the starting device of the previous section.  Thus there
  50 * are (near_copies * far_copies) of each chunk, and each is on a different
  51 * drive.  near_copies and far_copies must be at least one, and their product
  52 * is at most raid_disks.
  53 *
  54 * If far_offset is true, then the far_copies are handled a bit differently.
  55 * The copies are still in different stripes, but instead of being very far
  56 * apart on disk, there are adjacent stripes.
  57 *
  58 * The far and offset algorithms are handled slightly differently if
  59 * 'use_far_sets' is true.  In this case, the array's devices are grouped into
  60 * sets that are (near_copies * far_copies) in size.  The far copied stripes
  61 * are still shifted by 'near_copies' devices, but this shifting stays confined
  62 * to the set rather than the entire array.  This is done to improve the number
  63 * of device combinations that can fail without causing the array to fail.
  64 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
  65 * on a device):
  66 *    A B C D    A B C D E
  67 *      ...         ...
  68 *    D A B C    E A B C D
  69 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
  70 *    [A B] [C D]    [A B] [C D E]
  71 *    |...| |...|    |...| | ... |
  72 *    [B A] [D C]    [B A] [E C D]
  73 */
  74
  75/*
  76 * Number of guaranteed r10bios in case of extreme VM load:
  77 */
  78#define	NR_RAID10_BIOS 256
  79
  80/* when we get a read error on a read-only array, we redirect to another
  81 * device without failing the first device, or trying to over-write to
  82 * correct the read error.  To keep track of bad blocks on a per-bio
  83 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
  84 */
  85#define IO_BLOCKED ((struct bio *)1)
  86/* When we successfully write to a known bad-block, we need to remove the
  87 * bad-block marking which must be done from process context.  So we record
  88 * the success by setting devs[n].bio to IO_MADE_GOOD
  89 */
  90#define IO_MADE_GOOD ((struct bio *)2)
  91
  92#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
  93
  94/* When there are this many requests queued to be written by
  95 * the raid10 thread, we become 'congested' to provide back-pressure
  96 * for writeback.
  97 */
  98static int max_queued_requests = 1024;
  99
 100static void allow_barrier(struct r10conf *conf);
 101static void lower_barrier(struct r10conf *conf);
 102static int _enough(struct r10conf *conf, int previous, int ignore);
 103static int enough(struct r10conf *conf, int ignore);
 104static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
 105				int *skipped);
 106static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
 107static void end_reshape_write(struct bio *bio);
 108static void end_reshape(struct r10conf *conf);
 109
 110#define raid10_log(md, fmt, args...)				\
 111	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
 112
 113#include "raid1-10.c"
 114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115/*
 116 * for resync bio, r10bio pointer can be retrieved from the per-bio
 117 * 'struct resync_pages'.
 118 */
 119static inline struct r10bio *get_resync_r10bio(struct bio *bio)
 120{
 121	return get_resync_pages(bio)->raid_bio;
 122}
 123
 124static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
 125{
 126	struct r10conf *conf = data;
 127	int size = offsetof(struct r10bio, devs[conf->copies]);
 128
 129	/* allocate a r10bio with room for raid_disks entries in the
 130	 * bios array */
 131	return kzalloc(size, gfp_flags);
 132}
 133
 134static void r10bio_pool_free(void *r10_bio, void *data)
 135{
 136	kfree(r10_bio);
 137}
 138
 139#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 140/* amount of memory to reserve for resync requests */
 141#define RESYNC_WINDOW (1024*1024)
 142/* maximum number of concurrent requests, memory permitting */
 143#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
 144#define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
 145#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 146
 147/*
 148 * When performing a resync, we need to read and compare, so
 149 * we need as many pages are there are copies.
 150 * When performing a recovery, we need 2 bios, one for read,
 151 * one for write (we recover only one drive per r10buf)
 152 *
 153 */
 154static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
 155{
 156	struct r10conf *conf = data;
 157	struct r10bio *r10_bio;
 158	struct bio *bio;
 159	int j;
 160	int nalloc, nalloc_rp;
 161	struct resync_pages *rps;
 162
 163	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 164	if (!r10_bio)
 165		return NULL;
 166
 167	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
 168	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
 169		nalloc = conf->copies; /* resync */
 170	else
 171		nalloc = 2; /* recovery */
 172
 173	/* allocate once for all bios */
 174	if (!conf->have_replacement)
 175		nalloc_rp = nalloc;
 176	else
 177		nalloc_rp = nalloc * 2;
 178	rps = kmalloc(sizeof(struct resync_pages) * nalloc_rp, gfp_flags);
 179	if (!rps)
 180		goto out_free_r10bio;
 181
 182	/*
 183	 * Allocate bios.
 184	 */
 185	for (j = nalloc ; j-- ; ) {
 186		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 187		if (!bio)
 188			goto out_free_bio;
 
 189		r10_bio->devs[j].bio = bio;
 190		if (!conf->have_replacement)
 191			continue;
 192		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 193		if (!bio)
 194			goto out_free_bio;
 
 195		r10_bio->devs[j].repl_bio = bio;
 196	}
 197	/*
 198	 * Allocate RESYNC_PAGES data pages and attach them
 199	 * where needed.
 200	 */
 201	for (j = 0; j < nalloc; j++) {
 202		struct bio *rbio = r10_bio->devs[j].repl_bio;
 203		struct resync_pages *rp, *rp_repl;
 204
 205		rp = &rps[j];
 206		if (rbio)
 207			rp_repl = &rps[nalloc + j];
 208
 209		bio = r10_bio->devs[j].bio;
 210
 211		if (!j || test_bit(MD_RECOVERY_SYNC,
 212				   &conf->mddev->recovery)) {
 213			if (resync_alloc_pages(rp, gfp_flags))
 214				goto out_free_pages;
 215		} else {
 216			memcpy(rp, &rps[0], sizeof(*rp));
 217			resync_get_all_pages(rp);
 218		}
 219
 220		rp->raid_bio = r10_bio;
 221		bio->bi_private = rp;
 222		if (rbio) {
 223			memcpy(rp_repl, rp, sizeof(*rp));
 224			rbio->bi_private = rp_repl;
 225		}
 226	}
 227
 228	return r10_bio;
 229
 230out_free_pages:
 231	while (--j >= 0)
 232		resync_free_pages(&rps[j * 2]);
 233
 234	j = 0;
 235out_free_bio:
 236	for ( ; j < nalloc; j++) {
 237		if (r10_bio->devs[j].bio)
 238			bio_put(r10_bio->devs[j].bio);
 
 239		if (r10_bio->devs[j].repl_bio)
 240			bio_put(r10_bio->devs[j].repl_bio);
 
 241	}
 242	kfree(rps);
 243out_free_r10bio:
 244	r10bio_pool_free(r10_bio, conf);
 245	return NULL;
 246}
 247
 248static void r10buf_pool_free(void *__r10_bio, void *data)
 249{
 250	struct r10conf *conf = data;
 251	struct r10bio *r10bio = __r10_bio;
 252	int j;
 253	struct resync_pages *rp = NULL;
 254
 255	for (j = conf->copies; j--; ) {
 256		struct bio *bio = r10bio->devs[j].bio;
 257
 258		rp = get_resync_pages(bio);
 259		resync_free_pages(rp);
 260		bio_put(bio);
 
 
 
 261
 262		bio = r10bio->devs[j].repl_bio;
 263		if (bio)
 264			bio_put(bio);
 
 
 265	}
 266
 267	/* resync pages array stored in the 1st bio's .bi_private */
 268	kfree(rp);
 269
 270	r10bio_pool_free(r10bio, conf);
 271}
 272
 273static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
 274{
 275	int i;
 276
 277	for (i = 0; i < conf->copies; i++) {
 278		struct bio **bio = & r10_bio->devs[i].bio;
 279		if (!BIO_SPECIAL(*bio))
 280			bio_put(*bio);
 281		*bio = NULL;
 282		bio = &r10_bio->devs[i].repl_bio;
 283		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
 284			bio_put(*bio);
 285		*bio = NULL;
 286	}
 287}
 288
 289static void free_r10bio(struct r10bio *r10_bio)
 290{
 291	struct r10conf *conf = r10_bio->mddev->private;
 292
 293	put_all_bios(conf, r10_bio);
 294	mempool_free(r10_bio, conf->r10bio_pool);
 295}
 296
 297static void put_buf(struct r10bio *r10_bio)
 298{
 299	struct r10conf *conf = r10_bio->mddev->private;
 300
 301	mempool_free(r10_bio, conf->r10buf_pool);
 302
 303	lower_barrier(conf);
 304}
 305
 
 
 
 
 
 
 306static void reschedule_retry(struct r10bio *r10_bio)
 307{
 308	unsigned long flags;
 309	struct mddev *mddev = r10_bio->mddev;
 310	struct r10conf *conf = mddev->private;
 311
 312	spin_lock_irqsave(&conf->device_lock, flags);
 313	list_add(&r10_bio->retry_list, &conf->retry_list);
 314	conf->nr_queued ++;
 315	spin_unlock_irqrestore(&conf->device_lock, flags);
 316
 317	/* wake up frozen array... */
 318	wake_up(&conf->wait_barrier);
 319
 320	md_wakeup_thread(mddev->thread);
 321}
 322
 323/*
 324 * raid_end_bio_io() is called when we have finished servicing a mirrored
 325 * operation and are ready to return a success/failure code to the buffer
 326 * cache layer.
 327 */
 328static void raid_end_bio_io(struct r10bio *r10_bio)
 329{
 330	struct bio *bio = r10_bio->master_bio;
 331	struct r10conf *conf = r10_bio->mddev->private;
 332
 333	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 334		bio->bi_status = BLK_STS_IOERR;
 335
 
 
 336	bio_endio(bio);
 337	/*
 338	 * Wake up any possible resync thread that waits for the device
 339	 * to go idle.
 340	 */
 341	allow_barrier(conf);
 342
 343	free_r10bio(r10_bio);
 344}
 345
 346/*
 347 * Update disk head position estimator based on IRQ completion info.
 348 */
 349static inline void update_head_pos(int slot, struct r10bio *r10_bio)
 350{
 351	struct r10conf *conf = r10_bio->mddev->private;
 352
 353	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 354		r10_bio->devs[slot].addr + (r10_bio->sectors);
 355}
 356
 357/*
 358 * Find the disk number which triggered given bio
 359 */
 360static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
 361			 struct bio *bio, int *slotp, int *replp)
 362{
 363	int slot;
 364	int repl = 0;
 365
 366	for (slot = 0; slot < conf->copies; slot++) {
 367		if (r10_bio->devs[slot].bio == bio)
 368			break;
 369		if (r10_bio->devs[slot].repl_bio == bio) {
 370			repl = 1;
 371			break;
 372		}
 373	}
 374
 375	BUG_ON(slot == conf->copies);
 376	update_head_pos(slot, r10_bio);
 377
 378	if (slotp)
 379		*slotp = slot;
 380	if (replp)
 381		*replp = repl;
 382	return r10_bio->devs[slot].devnum;
 383}
 384
 385static void raid10_end_read_request(struct bio *bio)
 386{
 387	int uptodate = !bio->bi_status;
 388	struct r10bio *r10_bio = bio->bi_private;
 389	int slot;
 390	struct md_rdev *rdev;
 391	struct r10conf *conf = r10_bio->mddev->private;
 392
 393	slot = r10_bio->read_slot;
 394	rdev = r10_bio->devs[slot].rdev;
 395	/*
 396	 * this branch is our 'one mirror IO has finished' event handler:
 397	 */
 398	update_head_pos(slot, r10_bio);
 399
 400	if (uptodate) {
 401		/*
 402		 * Set R10BIO_Uptodate in our master bio, so that
 403		 * we will return a good error code to the higher
 404		 * levels even if IO on some other mirrored buffer fails.
 405		 *
 406		 * The 'master' represents the composite IO operation to
 407		 * user-side. So if something waits for IO, then it will
 408		 * wait for the 'master' bio.
 409		 */
 410		set_bit(R10BIO_Uptodate, &r10_bio->state);
 411	} else {
 412		/* If all other devices that store this block have
 413		 * failed, we want to return the error upwards rather
 414		 * than fail the last device.  Here we redefine
 415		 * "uptodate" to mean "Don't want to retry"
 416		 */
 417		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
 418			     rdev->raid_disk))
 419			uptodate = 1;
 420	}
 421	if (uptodate) {
 422		raid_end_bio_io(r10_bio);
 423		rdev_dec_pending(rdev, conf->mddev);
 424	} else {
 425		/*
 426		 * oops, read error - keep the refcount on the rdev
 427		 */
 428		char b[BDEVNAME_SIZE];
 429		pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
 430				   mdname(conf->mddev),
 431				   bdevname(rdev->bdev, b),
 432				   (unsigned long long)r10_bio->sector);
 433		set_bit(R10BIO_ReadError, &r10_bio->state);
 434		reschedule_retry(r10_bio);
 435	}
 436}
 437
 438static void close_write(struct r10bio *r10_bio)
 439{
 440	/* clear the bitmap if all writes complete successfully */
 441	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 442			r10_bio->sectors,
 443			!test_bit(R10BIO_Degraded, &r10_bio->state),
 444			0);
 445	md_write_end(r10_bio->mddev);
 446}
 447
 448static void one_write_done(struct r10bio *r10_bio)
 449{
 450	if (atomic_dec_and_test(&r10_bio->remaining)) {
 451		if (test_bit(R10BIO_WriteError, &r10_bio->state))
 452			reschedule_retry(r10_bio);
 453		else {
 454			close_write(r10_bio);
 455			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
 456				reschedule_retry(r10_bio);
 457			else
 458				raid_end_bio_io(r10_bio);
 459		}
 460	}
 461}
 462
 463static void raid10_end_write_request(struct bio *bio)
 464{
 465	struct r10bio *r10_bio = bio->bi_private;
 466	int dev;
 467	int dec_rdev = 1;
 468	struct r10conf *conf = r10_bio->mddev->private;
 469	int slot, repl;
 470	struct md_rdev *rdev = NULL;
 471	struct bio *to_put = NULL;
 472	bool discard_error;
 473
 474	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 475
 476	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 477
 478	if (repl)
 479		rdev = conf->mirrors[dev].replacement;
 480	if (!rdev) {
 481		smp_rmb();
 482		repl = 0;
 483		rdev = conf->mirrors[dev].rdev;
 484	}
 485	/*
 486	 * this branch is our 'one mirror IO has finished' event handler:
 487	 */
 488	if (bio->bi_status && !discard_error) {
 489		if (repl)
 490			/* Never record new bad blocks to replacement,
 491			 * just fail it.
 492			 */
 493			md_error(rdev->mddev, rdev);
 494		else {
 495			set_bit(WriteErrorSeen,	&rdev->flags);
 496			if (!test_and_set_bit(WantReplacement, &rdev->flags))
 497				set_bit(MD_RECOVERY_NEEDED,
 498					&rdev->mddev->recovery);
 499
 500			dec_rdev = 0;
 501			if (test_bit(FailFast, &rdev->flags) &&
 502			    (bio->bi_opf & MD_FAILFAST)) {
 503				md_error(rdev->mddev, rdev);
 504				if (!test_bit(Faulty, &rdev->flags))
 505					/* This is the only remaining device,
 506					 * We need to retry the write without
 507					 * FailFast
 508					 */
 509					set_bit(R10BIO_WriteError, &r10_bio->state);
 510				else {
 511					r10_bio->devs[slot].bio = NULL;
 512					to_put = bio;
 513					dec_rdev = 1;
 514				}
 515			} else
 516				set_bit(R10BIO_WriteError, &r10_bio->state);
 
 
 
 
 
 
 
 517		}
 518	} else {
 519		/*
 520		 * Set R10BIO_Uptodate in our master bio, so that
 521		 * we will return a good error code for to the higher
 522		 * levels even if IO on some other mirrored buffer fails.
 523		 *
 524		 * The 'master' represents the composite IO operation to
 525		 * user-side. So if something waits for IO, then it will
 526		 * wait for the 'master' bio.
 527		 */
 528		sector_t first_bad;
 529		int bad_sectors;
 530
 531		/*
 532		 * Do not set R10BIO_Uptodate if the current device is
 533		 * rebuilding or Faulty. This is because we cannot use
 534		 * such device for properly reading the data back (we could
 535		 * potentially use it, if the current write would have felt
 536		 * before rdev->recovery_offset, but for simplicity we don't
 537		 * check this here.
 538		 */
 539		if (test_bit(In_sync, &rdev->flags) &&
 540		    !test_bit(Faulty, &rdev->flags))
 541			set_bit(R10BIO_Uptodate, &r10_bio->state);
 542
 543		/* Maybe we can clear some bad blocks. */
 544		if (is_badblock(rdev,
 545				r10_bio->devs[slot].addr,
 546				r10_bio->sectors,
 547				&first_bad, &bad_sectors) && !discard_error) {
 548			bio_put(bio);
 549			if (repl)
 550				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
 551			else
 552				r10_bio->devs[slot].bio = IO_MADE_GOOD;
 553			dec_rdev = 0;
 554			set_bit(R10BIO_MadeGood, &r10_bio->state);
 555		}
 556	}
 557
 558	/*
 559	 *
 560	 * Let's see if all mirrored write operations have finished
 561	 * already.
 562	 */
 563	one_write_done(r10_bio);
 564	if (dec_rdev)
 565		rdev_dec_pending(rdev, conf->mddev);
 566	if (to_put)
 567		bio_put(to_put);
 568}
 569
 570/*
 571 * RAID10 layout manager
 572 * As well as the chunksize and raid_disks count, there are two
 573 * parameters: near_copies and far_copies.
 574 * near_copies * far_copies must be <= raid_disks.
 575 * Normally one of these will be 1.
 576 * If both are 1, we get raid0.
 577 * If near_copies == raid_disks, we get raid1.
 578 *
 579 * Chunks are laid out in raid0 style with near_copies copies of the
 580 * first chunk, followed by near_copies copies of the next chunk and
 581 * so on.
 582 * If far_copies > 1, then after 1/far_copies of the array has been assigned
 583 * as described above, we start again with a device offset of near_copies.
 584 * So we effectively have another copy of the whole array further down all
 585 * the drives, but with blocks on different drives.
 586 * With this layout, and block is never stored twice on the one device.
 587 *
 588 * raid10_find_phys finds the sector offset of a given virtual sector
 589 * on each device that it is on.
 590 *
 591 * raid10_find_virt does the reverse mapping, from a device and a
 592 * sector offset to a virtual address
 593 */
 594
 595static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
 596{
 597	int n,f;
 598	sector_t sector;
 599	sector_t chunk;
 600	sector_t stripe;
 601	int dev;
 602	int slot = 0;
 603	int last_far_set_start, last_far_set_size;
 604
 605	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 606	last_far_set_start *= geo->far_set_size;
 607
 608	last_far_set_size = geo->far_set_size;
 609	last_far_set_size += (geo->raid_disks % geo->far_set_size);
 610
 611	/* now calculate first sector/dev */
 612	chunk = r10bio->sector >> geo->chunk_shift;
 613	sector = r10bio->sector & geo->chunk_mask;
 614
 615	chunk *= geo->near_copies;
 616	stripe = chunk;
 617	dev = sector_div(stripe, geo->raid_disks);
 618	if (geo->far_offset)
 619		stripe *= geo->far_copies;
 620
 621	sector += stripe << geo->chunk_shift;
 622
 623	/* and calculate all the others */
 624	for (n = 0; n < geo->near_copies; n++) {
 625		int d = dev;
 626		int set;
 627		sector_t s = sector;
 628		r10bio->devs[slot].devnum = d;
 629		r10bio->devs[slot].addr = s;
 630		slot++;
 631
 632		for (f = 1; f < geo->far_copies; f++) {
 633			set = d / geo->far_set_size;
 634			d += geo->near_copies;
 635
 636			if ((geo->raid_disks % geo->far_set_size) &&
 637			    (d > last_far_set_start)) {
 638				d -= last_far_set_start;
 639				d %= last_far_set_size;
 640				d += last_far_set_start;
 641			} else {
 642				d %= geo->far_set_size;
 643				d += geo->far_set_size * set;
 644			}
 645			s += geo->stride;
 646			r10bio->devs[slot].devnum = d;
 647			r10bio->devs[slot].addr = s;
 648			slot++;
 649		}
 650		dev++;
 651		if (dev >= geo->raid_disks) {
 652			dev = 0;
 653			sector += (geo->chunk_mask + 1);
 654		}
 655	}
 656}
 657
 658static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
 659{
 660	struct geom *geo = &conf->geo;
 661
 662	if (conf->reshape_progress != MaxSector &&
 663	    ((r10bio->sector >= conf->reshape_progress) !=
 664	     conf->mddev->reshape_backwards)) {
 665		set_bit(R10BIO_Previous, &r10bio->state);
 666		geo = &conf->prev;
 667	} else
 668		clear_bit(R10BIO_Previous, &r10bio->state);
 669
 670	__raid10_find_phys(geo, r10bio);
 671}
 672
 673static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
 674{
 675	sector_t offset, chunk, vchunk;
 676	/* Never use conf->prev as this is only called during resync
 677	 * or recovery, so reshape isn't happening
 678	 */
 679	struct geom *geo = &conf->geo;
 680	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
 681	int far_set_size = geo->far_set_size;
 682	int last_far_set_start;
 683
 684	if (geo->raid_disks % geo->far_set_size) {
 685		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 686		last_far_set_start *= geo->far_set_size;
 687
 688		if (dev >= last_far_set_start) {
 689			far_set_size = geo->far_set_size;
 690			far_set_size += (geo->raid_disks % geo->far_set_size);
 691			far_set_start = last_far_set_start;
 692		}
 693	}
 694
 695	offset = sector & geo->chunk_mask;
 696	if (geo->far_offset) {
 697		int fc;
 698		chunk = sector >> geo->chunk_shift;
 699		fc = sector_div(chunk, geo->far_copies);
 700		dev -= fc * geo->near_copies;
 701		if (dev < far_set_start)
 702			dev += far_set_size;
 703	} else {
 704		while (sector >= geo->stride) {
 705			sector -= geo->stride;
 706			if (dev < (geo->near_copies + far_set_start))
 707				dev += far_set_size - geo->near_copies;
 708			else
 709				dev -= geo->near_copies;
 710		}
 711		chunk = sector >> geo->chunk_shift;
 712	}
 713	vchunk = chunk * geo->raid_disks + dev;
 714	sector_div(vchunk, geo->near_copies);
 715	return (vchunk << geo->chunk_shift) + offset;
 716}
 717
 718/*
 719 * This routine returns the disk from which the requested read should
 720 * be done. There is a per-array 'next expected sequential IO' sector
 721 * number - if this matches on the next IO then we use the last disk.
 722 * There is also a per-disk 'last know head position' sector that is
 723 * maintained from IRQ contexts, both the normal and the resync IO
 724 * completion handlers update this position correctly. If there is no
 725 * perfect sequential match then we pick the disk whose head is closest.
 726 *
 727 * If there are 2 mirrors in the same 2 devices, performance degrades
 728 * because position is mirror, not device based.
 729 *
 730 * The rdev for the device selected will have nr_pending incremented.
 731 */
 732
 733/*
 734 * FIXME: possibly should rethink readbalancing and do it differently
 735 * depending on near_copies / far_copies geometry.
 736 */
 737static struct md_rdev *read_balance(struct r10conf *conf,
 738				    struct r10bio *r10_bio,
 739				    int *max_sectors)
 740{
 741	const sector_t this_sector = r10_bio->sector;
 742	int disk, slot;
 743	int sectors = r10_bio->sectors;
 744	int best_good_sectors;
 745	sector_t new_distance, best_dist;
 746	struct md_rdev *best_rdev, *rdev = NULL;
 747	int do_balance;
 748	int best_slot;
 
 
 749	struct geom *geo = &conf->geo;
 750
 751	raid10_find_phys(conf, r10_bio);
 752	rcu_read_lock();
 753	best_slot = -1;
 754	best_rdev = NULL;
 
 
 755	best_dist = MaxSector;
 756	best_good_sectors = 0;
 757	do_balance = 1;
 758	clear_bit(R10BIO_FailFast, &r10_bio->state);
 759	/*
 760	 * Check if we can balance. We can balance on the whole
 761	 * device if no resync is going on (recovery is ok), or below
 762	 * the resync window. We take the first readable disk when
 763	 * above the resync window.
 764	 */
 765	if ((conf->mddev->recovery_cp < MaxSector
 766	     && (this_sector + sectors >= conf->next_resync)) ||
 767	    (mddev_is_clustered(conf->mddev) &&
 768	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 769					    this_sector + sectors)))
 770		do_balance = 0;
 771
 772	for (slot = 0; slot < conf->copies ; slot++) {
 773		sector_t first_bad;
 774		int bad_sectors;
 775		sector_t dev_sector;
 
 
 776
 777		if (r10_bio->devs[slot].bio == IO_BLOCKED)
 778			continue;
 779		disk = r10_bio->devs[slot].devnum;
 780		rdev = rcu_dereference(conf->mirrors[disk].replacement);
 781		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
 782		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 783			rdev = rcu_dereference(conf->mirrors[disk].rdev);
 784		if (rdev == NULL ||
 785		    test_bit(Faulty, &rdev->flags))
 786			continue;
 787		if (!test_bit(In_sync, &rdev->flags) &&
 788		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 789			continue;
 790
 791		dev_sector = r10_bio->devs[slot].addr;
 792		if (is_badblock(rdev, dev_sector, sectors,
 793				&first_bad, &bad_sectors)) {
 794			if (best_dist < MaxSector)
 795				/* Already have a better slot */
 796				continue;
 797			if (first_bad <= dev_sector) {
 798				/* Cannot read here.  If this is the
 799				 * 'primary' device, then we must not read
 800				 * beyond 'bad_sectors' from another device.
 801				 */
 802				bad_sectors -= (dev_sector - first_bad);
 803				if (!do_balance && sectors > bad_sectors)
 804					sectors = bad_sectors;
 805				if (best_good_sectors > sectors)
 806					best_good_sectors = sectors;
 807			} else {
 808				sector_t good_sectors =
 809					first_bad - dev_sector;
 810				if (good_sectors > best_good_sectors) {
 811					best_good_sectors = good_sectors;
 812					best_slot = slot;
 813					best_rdev = rdev;
 814				}
 815				if (!do_balance)
 816					/* Must read from here */
 817					break;
 818			}
 819			continue;
 820		} else
 821			best_good_sectors = sectors;
 822
 823		if (!do_balance)
 824			break;
 825
 826		if (best_slot >= 0)
 
 
 
 
 
 
 
 
 
 827			/* At least 2 disks to choose from so failfast is OK */
 828			set_bit(R10BIO_FailFast, &r10_bio->state);
 829		/* This optimisation is debatable, and completely destroys
 830		 * sequential read speed for 'far copies' arrays.  So only
 831		 * keep it for 'near' arrays, and review those later.
 832		 */
 833		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
 834			new_distance = 0;
 835
 836		/* for far > 1 always use the lowest address */
 837		else if (geo->far_copies > 1)
 838			new_distance = r10_bio->devs[slot].addr;
 839		else
 840			new_distance = abs(r10_bio->devs[slot].addr -
 841					   conf->mirrors[disk].head_position);
 
 842		if (new_distance < best_dist) {
 843			best_dist = new_distance;
 844			best_slot = slot;
 845			best_rdev = rdev;
 846		}
 847	}
 848	if (slot >= conf->copies) {
 849		slot = best_slot;
 850		rdev = best_rdev;
 
 
 
 
 
 851	}
 852
 853	if (slot >= 0) {
 854		atomic_inc(&rdev->nr_pending);
 855		r10_bio->read_slot = slot;
 856	} else
 857		rdev = NULL;
 858	rcu_read_unlock();
 859	*max_sectors = best_good_sectors;
 860
 861	return rdev;
 862}
 863
 864static int raid10_congested(struct mddev *mddev, int bits)
 865{
 866	struct r10conf *conf = mddev->private;
 867	int i, ret = 0;
 868
 869	if ((bits & (1 << WB_async_congested)) &&
 870	    conf->pending_count >= max_queued_requests)
 871		return 1;
 872
 873	rcu_read_lock();
 874	for (i = 0;
 875	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
 876		     && ret == 0;
 877	     i++) {
 878		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 879		if (rdev && !test_bit(Faulty, &rdev->flags)) {
 880			struct request_queue *q = bdev_get_queue(rdev->bdev);
 881
 882			ret |= bdi_congested(q->backing_dev_info, bits);
 883		}
 884	}
 885	rcu_read_unlock();
 886	return ret;
 887}
 888
 889static void flush_pending_writes(struct r10conf *conf)
 890{
 891	/* Any writes that have been queued but are awaiting
 892	 * bitmap updates get flushed here.
 893	 */
 894	spin_lock_irq(&conf->device_lock);
 895
 896	if (conf->pending_bio_list.head) {
 897		struct blk_plug plug;
 898		struct bio *bio;
 899
 900		bio = bio_list_get(&conf->pending_bio_list);
 901		conf->pending_count = 0;
 902		spin_unlock_irq(&conf->device_lock);
 903
 904		/*
 905		 * As this is called in a wait_event() loop (see freeze_array),
 906		 * current->state might be TASK_UNINTERRUPTIBLE which will
 907		 * cause a warning when we prepare to wait again.  As it is
 908		 * rare that this path is taken, it is perfectly safe to force
 909		 * us to go around the wait_event() loop again, so the warning
 910		 * is a false-positive. Silence the warning by resetting
 911		 * thread state
 912		 */
 913		__set_current_state(TASK_RUNNING);
 914
 915		blk_start_plug(&plug);
 916		/* flush any pending bitmap writes to disk
 917		 * before proceeding w/ I/O */
 918		bitmap_unplug(conf->mddev->bitmap);
 919		wake_up(&conf->wait_barrier);
 920
 921		while (bio) { /* submit pending writes */
 922			struct bio *next = bio->bi_next;
 923			struct md_rdev *rdev = (void*)bio->bi_disk;
 924			bio->bi_next = NULL;
 925			bio_set_dev(bio, rdev->bdev);
 926			if (test_bit(Faulty, &rdev->flags)) {
 927				bio_io_error(bio);
 928			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
 929					    !blk_queue_discard(bio->bi_disk->queue)))
 930				/* Just ignore it */
 931				bio_endio(bio);
 932			else
 933				generic_make_request(bio);
 934			bio = next;
 935		}
 936		blk_finish_plug(&plug);
 937	} else
 938		spin_unlock_irq(&conf->device_lock);
 939}
 940
 941/* Barriers....
 942 * Sometimes we need to suspend IO while we do something else,
 943 * either some resync/recovery, or reconfigure the array.
 944 * To do this we raise a 'barrier'.
 945 * The 'barrier' is a counter that can be raised multiple times
 946 * to count how many activities are happening which preclude
 947 * normal IO.
 948 * We can only raise the barrier if there is no pending IO.
 949 * i.e. if nr_pending == 0.
 950 * We choose only to raise the barrier if no-one is waiting for the
 951 * barrier to go down.  This means that as soon as an IO request
 952 * is ready, no other operations which require a barrier will start
 953 * until the IO request has had a chance.
 954 *
 955 * So: regular IO calls 'wait_barrier'.  When that returns there
 956 *    is no backgroup IO happening,  It must arrange to call
 957 *    allow_barrier when it has finished its IO.
 958 * backgroup IO calls must call raise_barrier.  Once that returns
 959 *    there is no normal IO happeing.  It must arrange to call
 960 *    lower_barrier when the particular background IO completes.
 961 */
 962
 963static void raise_barrier(struct r10conf *conf, int force)
 964{
 
 965	BUG_ON(force && !conf->barrier);
 966	spin_lock_irq(&conf->resync_lock);
 967
 968	/* Wait until no block IO is waiting (unless 'force') */
 969	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
 970			    conf->resync_lock);
 971
 972	/* block any new IO from starting */
 973	conf->barrier++;
 974
 975	/* Now wait for all pending IO to complete */
 976	wait_event_lock_irq(conf->wait_barrier,
 977			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
 978			    conf->resync_lock);
 979
 980	spin_unlock_irq(&conf->resync_lock);
 981}
 982
 983static void lower_barrier(struct r10conf *conf)
 984{
 985	unsigned long flags;
 986	spin_lock_irqsave(&conf->resync_lock, flags);
 987	conf->barrier--;
 988	spin_unlock_irqrestore(&conf->resync_lock, flags);
 
 989	wake_up(&conf->wait_barrier);
 990}
 991
 992static void wait_barrier(struct r10conf *conf)
 993{
 994	spin_lock_irq(&conf->resync_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 995	if (conf->barrier) {
 996		conf->nr_waiting++;
 997		/* Wait for the barrier to drop.
 998		 * However if there are already pending
 999		 * requests (preventing the barrier from
1000		 * rising completely), and the
1001		 * pre-process bio queue isn't empty,
1002		 * then don't wait, as we need to empty
1003		 * that queue to get the nr_pending
1004		 * count down.
1005		 */
1006		raid10_log(conf->mddev, "wait barrier");
1007		wait_event_lock_irq(conf->wait_barrier,
1008				    !conf->barrier ||
1009				    (atomic_read(&conf->nr_pending) &&
1010				     current->bio_list &&
1011				     (!bio_list_empty(&current->bio_list[0]) ||
1012				      !bio_list_empty(&current->bio_list[1]))),
1013				    conf->resync_lock);
1014		conf->nr_waiting--;
1015		if (!conf->nr_waiting)
1016			wake_up(&conf->wait_barrier);
1017	}
1018	atomic_inc(&conf->nr_pending);
1019	spin_unlock_irq(&conf->resync_lock);
 
 
 
1020}
1021
1022static void allow_barrier(struct r10conf *conf)
1023{
1024	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1025			(conf->array_freeze_pending))
1026		wake_up(&conf->wait_barrier);
1027}
1028
1029static void freeze_array(struct r10conf *conf, int extra)
1030{
1031	/* stop syncio and normal IO and wait for everything to
1032	 * go quiet.
1033	 * We increment barrier and nr_waiting, and then
1034	 * wait until nr_pending match nr_queued+extra
1035	 * This is called in the context of one normal IO request
1036	 * that has failed. Thus any sync request that might be pending
1037	 * will be blocked by nr_pending, and we need to wait for
1038	 * pending IO requests to complete or be queued for re-try.
1039	 * Thus the number queued (nr_queued) plus this request (extra)
1040	 * must match the number of pending IOs (nr_pending) before
1041	 * we continue.
1042	 */
1043	spin_lock_irq(&conf->resync_lock);
1044	conf->array_freeze_pending++;
1045	conf->barrier++;
1046	conf->nr_waiting++;
1047	wait_event_lock_irq_cmd(conf->wait_barrier,
1048				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1049				conf->resync_lock,
1050				flush_pending_writes(conf));
1051
1052	conf->array_freeze_pending--;
1053	spin_unlock_irq(&conf->resync_lock);
1054}
1055
1056static void unfreeze_array(struct r10conf *conf)
1057{
1058	/* reverse the effect of the freeze */
1059	spin_lock_irq(&conf->resync_lock);
1060	conf->barrier--;
1061	conf->nr_waiting--;
1062	wake_up(&conf->wait_barrier);
1063	spin_unlock_irq(&conf->resync_lock);
1064}
1065
1066static sector_t choose_data_offset(struct r10bio *r10_bio,
1067				   struct md_rdev *rdev)
1068{
1069	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1070	    test_bit(R10BIO_Previous, &r10_bio->state))
1071		return rdev->data_offset;
1072	else
1073		return rdev->new_data_offset;
1074}
1075
1076struct raid10_plug_cb {
1077	struct blk_plug_cb	cb;
1078	struct bio_list		pending;
1079	int			pending_cnt;
1080};
1081
1082static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1083{
1084	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1085						   cb);
1086	struct mddev *mddev = plug->cb.data;
1087	struct r10conf *conf = mddev->private;
1088	struct bio *bio;
1089
1090	if (from_schedule || current->bio_list) {
1091		spin_lock_irq(&conf->device_lock);
1092		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1093		conf->pending_count += plug->pending_cnt;
1094		spin_unlock_irq(&conf->device_lock);
1095		wake_up(&conf->wait_barrier);
1096		md_wakeup_thread(mddev->thread);
1097		kfree(plug);
1098		return;
1099	}
1100
1101	/* we aren't scheduling, so we can do the write-out directly. */
1102	bio = bio_list_get(&plug->pending);
1103	bitmap_unplug(mddev->bitmap);
1104	wake_up(&conf->wait_barrier);
1105
1106	while (bio) { /* submit pending writes */
1107		struct bio *next = bio->bi_next;
1108		struct md_rdev *rdev = (void*)bio->bi_disk;
1109		bio->bi_next = NULL;
1110		bio_set_dev(bio, rdev->bdev);
1111		if (test_bit(Faulty, &rdev->flags)) {
1112			bio_io_error(bio);
1113		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1114				    !blk_queue_discard(bio->bi_disk->queue)))
1115			/* Just ignore it */
1116			bio_endio(bio);
1117		else
1118			generic_make_request(bio);
1119		bio = next;
1120	}
1121	kfree(plug);
1122}
1123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1124static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1125				struct r10bio *r10_bio)
1126{
1127	struct r10conf *conf = mddev->private;
1128	struct bio *read_bio;
1129	const int op = bio_op(bio);
1130	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1131	int max_sectors;
1132	sector_t sectors;
1133	struct md_rdev *rdev;
1134	char b[BDEVNAME_SIZE];
1135	int slot = r10_bio->read_slot;
1136	struct md_rdev *err_rdev = NULL;
1137	gfp_t gfp = GFP_NOIO;
1138
1139	if (r10_bio->devs[slot].rdev) {
1140		/*
1141		 * This is an error retry, but we cannot
1142		 * safely dereference the rdev in the r10_bio,
1143		 * we must use the one in conf.
1144		 * If it has already been disconnected (unlikely)
1145		 * we lose the device name in error messages.
1146		 */
1147		int disk;
1148		/*
1149		 * As we are blocking raid10, it is a little safer to
1150		 * use __GFP_HIGH.
1151		 */
1152		gfp = GFP_NOIO | __GFP_HIGH;
1153
1154		rcu_read_lock();
1155		disk = r10_bio->devs[slot].devnum;
1156		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1157		if (err_rdev)
1158			bdevname(err_rdev->bdev, b);
1159		else {
1160			strcpy(b, "???");
1161			/* This never gets dereferenced */
1162			err_rdev = r10_bio->devs[slot].rdev;
1163		}
1164		rcu_read_unlock();
1165	}
1166	/*
1167	 * Register the new request and wait if the reconstruction
1168	 * thread has put up a bar for new requests.
1169	 * Continue immediately if no resync is active currently.
1170	 */
1171	wait_barrier(conf);
1172
1173	sectors = r10_bio->sectors;
1174	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1175	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1176	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1177		/*
1178		 * IO spans the reshape position.  Need to wait for reshape to
1179		 * pass
1180		 */
1181		raid10_log(conf->mddev, "wait reshape");
1182		allow_barrier(conf);
1183		wait_event(conf->wait_barrier,
1184			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1185			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1186			   sectors);
1187		wait_barrier(conf);
1188	}
1189
 
 
1190	rdev = read_balance(conf, r10_bio, &max_sectors);
1191	if (!rdev) {
1192		if (err_rdev) {
1193			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1194					    mdname(mddev), b,
1195					    (unsigned long long)r10_bio->sector);
1196		}
1197		raid_end_bio_io(r10_bio);
1198		return;
1199	}
1200	if (err_rdev)
1201		pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1202				   mdname(mddev),
1203				   bdevname(rdev->bdev, b),
1204				   (unsigned long long)r10_bio->sector);
1205	if (max_sectors < bio_sectors(bio)) {
1206		struct bio *split = bio_split(bio, max_sectors,
1207					      gfp, conf->bio_split);
1208		bio_chain(split, bio);
1209		generic_make_request(bio);
 
 
1210		bio = split;
1211		r10_bio->master_bio = bio;
1212		r10_bio->sectors = max_sectors;
1213	}
1214	slot = r10_bio->read_slot;
1215
1216	read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
 
 
1217
1218	r10_bio->devs[slot].bio = read_bio;
1219	r10_bio->devs[slot].rdev = rdev;
1220
1221	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1222		choose_data_offset(r10_bio, rdev);
1223	bio_set_dev(read_bio, rdev->bdev);
1224	read_bio->bi_end_io = raid10_end_read_request;
1225	bio_set_op_attrs(read_bio, op, do_sync);
1226	if (test_bit(FailFast, &rdev->flags) &&
1227	    test_bit(R10BIO_FailFast, &r10_bio->state))
1228	        read_bio->bi_opf |= MD_FAILFAST;
1229	read_bio->bi_private = r10_bio;
1230
1231	if (mddev->gendisk)
1232	        trace_block_bio_remap(read_bio->bi_disk->queue,
1233	                              read_bio, disk_devt(mddev->gendisk),
1234	                              r10_bio->sector);
1235	generic_make_request(read_bio);
1236	return;
1237}
1238
1239static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1240				  struct bio *bio, bool replacement,
1241				  int n_copy)
1242{
1243	const int op = bio_op(bio);
1244	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1245	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1246	unsigned long flags;
1247	struct blk_plug_cb *cb;
1248	struct raid10_plug_cb *plug = NULL;
1249	struct r10conf *conf = mddev->private;
1250	struct md_rdev *rdev;
1251	int devnum = r10_bio->devs[n_copy].devnum;
1252	struct bio *mbio;
1253
1254	if (replacement) {
1255		rdev = conf->mirrors[devnum].replacement;
1256		if (rdev == NULL) {
1257			/* Replacement just got moved to main 'rdev' */
1258			smp_mb();
1259			rdev = conf->mirrors[devnum].rdev;
1260		}
1261	} else
1262		rdev = conf->mirrors[devnum].rdev;
1263
1264	mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1265	if (replacement)
1266		r10_bio->devs[n_copy].repl_bio = mbio;
1267	else
1268		r10_bio->devs[n_copy].bio = mbio;
1269
1270	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1271				   choose_data_offset(r10_bio, rdev));
1272	bio_set_dev(mbio, rdev->bdev);
1273	mbio->bi_end_io	= raid10_end_write_request;
1274	bio_set_op_attrs(mbio, op, do_sync | do_fua);
1275	if (!replacement && test_bit(FailFast,
1276				     &conf->mirrors[devnum].rdev->flags)
1277			 && enough(conf, devnum))
1278		mbio->bi_opf |= MD_FAILFAST;
1279	mbio->bi_private = r10_bio;
1280
1281	if (conf->mddev->gendisk)
1282		trace_block_bio_remap(mbio->bi_disk->queue,
1283				      mbio, disk_devt(conf->mddev->gendisk),
1284				      r10_bio->sector);
1285	/* flush_pending_writes() needs access to the rdev so...*/
1286	mbio->bi_disk = (void *)rdev;
1287
1288	atomic_inc(&r10_bio->remaining);
1289
1290	cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1291	if (cb)
1292		plug = container_of(cb, struct raid10_plug_cb, cb);
1293	else
1294		plug = NULL;
1295	if (plug) {
1296		bio_list_add(&plug->pending, mbio);
1297		plug->pending_cnt++;
1298	} else {
1299		spin_lock_irqsave(&conf->device_lock, flags);
1300		bio_list_add(&conf->pending_bio_list, mbio);
1301		conf->pending_count++;
1302		spin_unlock_irqrestore(&conf->device_lock, flags);
1303		md_wakeup_thread(mddev->thread);
1304	}
1305}
1306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1307static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1308				 struct r10bio *r10_bio)
1309{
1310	struct r10conf *conf = mddev->private;
1311	int i;
1312	struct md_rdev *blocked_rdev;
1313	sector_t sectors;
1314	int max_sectors;
1315
1316	if ((mddev_is_clustered(mddev) &&
1317	     md_cluster_ops->area_resyncing(mddev, WRITE,
1318					    bio->bi_iter.bi_sector,
1319					    bio_end_sector(bio)))) {
1320		DEFINE_WAIT(w);
 
 
 
 
 
1321		for (;;) {
1322			prepare_to_wait(&conf->wait_barrier,
1323					&w, TASK_IDLE);
1324			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1325				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1326				break;
1327			schedule();
1328		}
1329		finish_wait(&conf->wait_barrier, &w);
1330	}
1331
1332	/*
1333	 * Register the new request and wait if the reconstruction
1334	 * thread has put up a bar for new requests.
1335	 * Continue immediately if no resync is active currently.
1336	 */
1337	wait_barrier(conf);
1338
1339	sectors = r10_bio->sectors;
1340	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1341	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1342	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1343		/*
1344		 * IO spans the reshape position.  Need to wait for reshape to
1345		 * pass
1346		 */
1347		raid10_log(conf->mddev, "wait reshape");
1348		allow_barrier(conf);
1349		wait_event(conf->wait_barrier,
1350			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1351			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1352			   sectors);
1353		wait_barrier(conf);
1354	}
1355
1356	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1357	    (mddev->reshape_backwards
1358	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1359		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1360	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1361		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1362		/* Need to update reshape_position in metadata */
1363		mddev->reshape_position = conf->reshape_progress;
1364		set_mask_bits(&mddev->sb_flags, 0,
1365			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1366		md_wakeup_thread(mddev->thread);
 
 
 
 
 
1367		raid10_log(conf->mddev, "wait reshape metadata");
1368		wait_event(mddev->sb_wait,
1369			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1370
1371		conf->reshape_safe = mddev->reshape_position;
1372	}
1373
1374	if (conf->pending_count >= max_queued_requests) {
1375		md_wakeup_thread(mddev->thread);
1376		raid10_log(mddev, "wait queued");
1377		wait_event(conf->wait_barrier,
1378			   conf->pending_count < max_queued_requests);
1379	}
1380	/* first select target devices under rcu_lock and
1381	 * inc refcount on their rdev.  Record them by setting
1382	 * bios[x] to bio
1383	 * If there are known/acknowledged bad blocks on any device
1384	 * on which we have seen a write error, we want to avoid
1385	 * writing to those blocks.  This potentially requires several
1386	 * writes to write around the bad blocks.  Each set of writes
1387	 * gets its own r10_bio with a set of bios attached.
1388	 */
1389
1390	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1391	raid10_find_phys(conf, r10_bio);
1392retry_write:
1393	blocked_rdev = NULL;
 
1394	rcu_read_lock();
1395	max_sectors = r10_bio->sectors;
1396
1397	for (i = 0;  i < conf->copies; i++) {
1398		int d = r10_bio->devs[i].devnum;
1399		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1400		struct md_rdev *rrdev = rcu_dereference(
1401			conf->mirrors[d].replacement);
1402		if (rdev == rrdev)
1403			rrdev = NULL;
1404		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1405			atomic_inc(&rdev->nr_pending);
1406			blocked_rdev = rdev;
1407			break;
1408		}
1409		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1410			atomic_inc(&rrdev->nr_pending);
1411			blocked_rdev = rrdev;
1412			break;
1413		}
1414		if (rdev && (test_bit(Faulty, &rdev->flags)))
1415			rdev = NULL;
1416		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1417			rrdev = NULL;
1418
1419		r10_bio->devs[i].bio = NULL;
1420		r10_bio->devs[i].repl_bio = NULL;
1421
1422		if (!rdev && !rrdev) {
1423			set_bit(R10BIO_Degraded, &r10_bio->state);
1424			continue;
1425		}
1426		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1427			sector_t first_bad;
1428			sector_t dev_sector = r10_bio->devs[i].addr;
1429			int bad_sectors;
1430			int is_bad;
1431
1432			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1433					     &first_bad, &bad_sectors);
1434			if (is_bad < 0) {
1435				/* Mustn't write here until the bad block
1436				 * is acknowledged
1437				 */
1438				atomic_inc(&rdev->nr_pending);
1439				set_bit(BlockedBadBlocks, &rdev->flags);
1440				blocked_rdev = rdev;
1441				break;
1442			}
1443			if (is_bad && first_bad <= dev_sector) {
1444				/* Cannot write here at all */
1445				bad_sectors -= (dev_sector - first_bad);
1446				if (bad_sectors < max_sectors)
1447					/* Mustn't write more than bad_sectors
1448					 * to other devices yet
1449					 */
1450					max_sectors = bad_sectors;
1451				/* We don't set R10BIO_Degraded as that
1452				 * only applies if the disk is missing,
1453				 * so it might be re-added, and we want to
1454				 * know to recover this chunk.
1455				 * In this case the device is here, and the
1456				 * fact that this chunk is not in-sync is
1457				 * recorded in the bad block log.
1458				 */
1459				continue;
1460			}
1461			if (is_bad) {
1462				int good_sectors = first_bad - dev_sector;
1463				if (good_sectors < max_sectors)
1464					max_sectors = good_sectors;
1465			}
1466		}
1467		if (rdev) {
1468			r10_bio->devs[i].bio = bio;
1469			atomic_inc(&rdev->nr_pending);
1470		}
1471		if (rrdev) {
1472			r10_bio->devs[i].repl_bio = bio;
1473			atomic_inc(&rrdev->nr_pending);
1474		}
1475	}
1476	rcu_read_unlock();
1477
1478	if (unlikely(blocked_rdev)) {
1479		/* Have to wait for this device to get unblocked, then retry */
1480		int j;
1481		int d;
1482
1483		for (j = 0; j < i; j++) {
1484			if (r10_bio->devs[j].bio) {
1485				d = r10_bio->devs[j].devnum;
1486				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1487			}
1488			if (r10_bio->devs[j].repl_bio) {
1489				struct md_rdev *rdev;
1490				d = r10_bio->devs[j].devnum;
1491				rdev = conf->mirrors[d].replacement;
1492				if (!rdev) {
1493					/* Race with remove_disk */
1494					smp_mb();
1495					rdev = conf->mirrors[d].rdev;
1496				}
1497				rdev_dec_pending(rdev, mddev);
1498			}
1499		}
1500		allow_barrier(conf);
1501		raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1502		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1503		wait_barrier(conf);
1504		goto retry_write;
1505	}
1506
1507	if (max_sectors < r10_bio->sectors)
1508		r10_bio->sectors = max_sectors;
1509
1510	if (r10_bio->sectors < bio_sectors(bio)) {
1511		struct bio *split = bio_split(bio, r10_bio->sectors,
1512					      GFP_NOIO, conf->bio_split);
1513		bio_chain(split, bio);
1514		generic_make_request(bio);
 
 
1515		bio = split;
1516		r10_bio->master_bio = bio;
1517	}
1518
 
 
1519	atomic_set(&r10_bio->remaining, 1);
1520	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1521
1522	for (i = 0; i < conf->copies; i++) {
1523		if (r10_bio->devs[i].bio)
1524			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1525		if (r10_bio->devs[i].repl_bio)
1526			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1527	}
1528	one_write_done(r10_bio);
1529}
1530
1531static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1532{
1533	struct r10conf *conf = mddev->private;
1534	struct r10bio *r10_bio;
1535
1536	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1537
1538	r10_bio->master_bio = bio;
1539	r10_bio->sectors = sectors;
1540
1541	r10_bio->mddev = mddev;
1542	r10_bio->sector = bio->bi_iter.bi_sector;
1543	r10_bio->state = 0;
1544	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
 
 
1545
1546	if (bio_data_dir(bio) == READ)
1547		raid10_read_request(mddev, bio, r10_bio);
1548	else
1549		raid10_write_request(mddev, bio, r10_bio);
1550}
1551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1552static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1553{
1554	struct r10conf *conf = mddev->private;
1555	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1556	int chunk_sects = chunk_mask + 1;
1557	int sectors = bio_sectors(bio);
1558
1559	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1560		md_flush_request(mddev, bio);
1561		return true;
1562	}
1563
1564	if (!md_write_start(mddev, bio))
1565		return false;
1566
 
 
 
 
1567	/*
1568	 * If this request crosses a chunk boundary, we need to split
1569	 * it.
1570	 */
1571	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1572		     sectors > chunk_sects
1573		     && (conf->geo.near_copies < conf->geo.raid_disks
1574			 || conf->prev.near_copies <
1575			 conf->prev.raid_disks)))
1576		sectors = chunk_sects -
1577			(bio->bi_iter.bi_sector &
1578			 (chunk_sects - 1));
1579	__make_request(mddev, bio, sectors);
1580
1581	/* In case raid10d snuck in to freeze_array */
1582	wake_up(&conf->wait_barrier);
1583	return true;
1584}
1585
1586static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1587{
1588	struct r10conf *conf = mddev->private;
1589	int i;
1590
1591	if (conf->geo.near_copies < conf->geo.raid_disks)
1592		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1593	if (conf->geo.near_copies > 1)
1594		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1595	if (conf->geo.far_copies > 1) {
1596		if (conf->geo.far_offset)
1597			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1598		else
1599			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1600		if (conf->geo.far_set_size != conf->geo.raid_disks)
1601			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1602	}
1603	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1604					conf->geo.raid_disks - mddev->degraded);
1605	rcu_read_lock();
1606	for (i = 0; i < conf->geo.raid_disks; i++) {
1607		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1608		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1609	}
1610	rcu_read_unlock();
1611	seq_printf(seq, "]");
1612}
1613
1614/* check if there are enough drives for
1615 * every block to appear on atleast one.
1616 * Don't consider the device numbered 'ignore'
1617 * as we might be about to remove it.
1618 */
1619static int _enough(struct r10conf *conf, int previous, int ignore)
1620{
1621	int first = 0;
1622	int has_enough = 0;
1623	int disks, ncopies;
1624	if (previous) {
1625		disks = conf->prev.raid_disks;
1626		ncopies = conf->prev.near_copies;
1627	} else {
1628		disks = conf->geo.raid_disks;
1629		ncopies = conf->geo.near_copies;
1630	}
1631
1632	rcu_read_lock();
1633	do {
1634		int n = conf->copies;
1635		int cnt = 0;
1636		int this = first;
1637		while (n--) {
1638			struct md_rdev *rdev;
1639			if (this != ignore &&
1640			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1641			    test_bit(In_sync, &rdev->flags))
1642				cnt++;
1643			this = (this+1) % disks;
1644		}
1645		if (cnt == 0)
1646			goto out;
1647		first = (first + ncopies) % disks;
1648	} while (first != 0);
1649	has_enough = 1;
1650out:
1651	rcu_read_unlock();
1652	return has_enough;
1653}
1654
1655static int enough(struct r10conf *conf, int ignore)
1656{
1657	/* when calling 'enough', both 'prev' and 'geo' must
1658	 * be stable.
1659	 * This is ensured if ->reconfig_mutex or ->device_lock
1660	 * is held.
1661	 */
1662	return _enough(conf, 0, ignore) &&
1663		_enough(conf, 1, ignore);
1664}
1665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1666static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1667{
1668	char b[BDEVNAME_SIZE];
1669	struct r10conf *conf = mddev->private;
1670	unsigned long flags;
1671
1672	/*
1673	 * If it is not operational, then we have already marked it as dead
1674	 * else if it is the last working disks, ignore the error, let the
1675	 * next level up know.
1676	 * else mark the drive as failed
1677	 */
1678	spin_lock_irqsave(&conf->device_lock, flags);
1679	if (test_bit(In_sync, &rdev->flags)
1680	    && !enough(conf, rdev->raid_disk)) {
1681		/*
1682		 * Don't fail the drive, just return an IO error.
1683		 */
1684		spin_unlock_irqrestore(&conf->device_lock, flags);
1685		return;
 
1686	}
1687	if (test_and_clear_bit(In_sync, &rdev->flags))
1688		mddev->degraded++;
1689	/*
1690	 * If recovery is running, make sure it aborts.
1691	 */
1692	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1693	set_bit(Blocked, &rdev->flags);
1694	set_bit(Faulty, &rdev->flags);
1695	set_mask_bits(&mddev->sb_flags, 0,
1696		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1697	spin_unlock_irqrestore(&conf->device_lock, flags);
1698	pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1699		"md/raid10:%s: Operation continuing on %d devices.\n",
1700		mdname(mddev), bdevname(rdev->bdev, b),
1701		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1702}
1703
1704static void print_conf(struct r10conf *conf)
1705{
1706	int i;
1707	struct md_rdev *rdev;
1708
1709	pr_debug("RAID10 conf printout:\n");
1710	if (!conf) {
1711		pr_debug("(!conf)\n");
1712		return;
1713	}
1714	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1715		 conf->geo.raid_disks);
1716
1717	/* This is only called with ->reconfix_mutex held, so
1718	 * rcu protection of rdev is not needed */
1719	for (i = 0; i < conf->geo.raid_disks; i++) {
1720		char b[BDEVNAME_SIZE];
1721		rdev = conf->mirrors[i].rdev;
1722		if (rdev)
1723			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1724				 i, !test_bit(In_sync, &rdev->flags),
1725				 !test_bit(Faulty, &rdev->flags),
1726				 bdevname(rdev->bdev,b));
1727	}
1728}
1729
1730static void close_sync(struct r10conf *conf)
1731{
1732	wait_barrier(conf);
1733	allow_barrier(conf);
1734
1735	mempool_destroy(conf->r10buf_pool);
1736	conf->r10buf_pool = NULL;
1737}
1738
1739static int raid10_spare_active(struct mddev *mddev)
1740{
1741	int i;
1742	struct r10conf *conf = mddev->private;
1743	struct raid10_info *tmp;
1744	int count = 0;
1745	unsigned long flags;
1746
1747	/*
1748	 * Find all non-in_sync disks within the RAID10 configuration
1749	 * and mark them in_sync
1750	 */
1751	for (i = 0; i < conf->geo.raid_disks; i++) {
1752		tmp = conf->mirrors + i;
1753		if (tmp->replacement
1754		    && tmp->replacement->recovery_offset == MaxSector
1755		    && !test_bit(Faulty, &tmp->replacement->flags)
1756		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1757			/* Replacement has just become active */
1758			if (!tmp->rdev
1759			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1760				count++;
1761			if (tmp->rdev) {
1762				/* Replaced device not technically faulty,
1763				 * but we need to be sure it gets removed
1764				 * and never re-added.
1765				 */
1766				set_bit(Faulty, &tmp->rdev->flags);
1767				sysfs_notify_dirent_safe(
1768					tmp->rdev->sysfs_state);
1769			}
1770			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1771		} else if (tmp->rdev
1772			   && tmp->rdev->recovery_offset == MaxSector
1773			   && !test_bit(Faulty, &tmp->rdev->flags)
1774			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1775			count++;
1776			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1777		}
1778	}
1779	spin_lock_irqsave(&conf->device_lock, flags);
1780	mddev->degraded -= count;
1781	spin_unlock_irqrestore(&conf->device_lock, flags);
1782
1783	print_conf(conf);
1784	return count;
1785}
1786
1787static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1788{
1789	struct r10conf *conf = mddev->private;
1790	int err = -EEXIST;
1791	int mirror;
1792	int first = 0;
1793	int last = conf->geo.raid_disks - 1;
1794
1795	if (mddev->recovery_cp < MaxSector)
1796		/* only hot-add to in-sync arrays, as recovery is
1797		 * very different from resync
1798		 */
1799		return -EBUSY;
1800	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1801		return -EINVAL;
1802
1803	if (md_integrity_add_rdev(rdev, mddev))
1804		return -ENXIO;
1805
1806	if (rdev->raid_disk >= 0)
1807		first = last = rdev->raid_disk;
1808
1809	if (rdev->saved_raid_disk >= first &&
 
1810	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1811		mirror = rdev->saved_raid_disk;
1812	else
1813		mirror = first;
1814	for ( ; mirror <= last ; mirror++) {
1815		struct raid10_info *p = &conf->mirrors[mirror];
1816		if (p->recovery_disabled == mddev->recovery_disabled)
1817			continue;
1818		if (p->rdev) {
1819			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1820			    p->replacement != NULL)
1821				continue;
1822			clear_bit(In_sync, &rdev->flags);
1823			set_bit(Replacement, &rdev->flags);
1824			rdev->raid_disk = mirror;
1825			err = 0;
1826			if (mddev->gendisk)
1827				disk_stack_limits(mddev->gendisk, rdev->bdev,
1828						  rdev->data_offset << 9);
1829			conf->fullsync = 1;
1830			rcu_assign_pointer(p->replacement, rdev);
1831			break;
1832		}
1833
1834		if (mddev->gendisk)
1835			disk_stack_limits(mddev->gendisk, rdev->bdev,
1836					  rdev->data_offset << 9);
1837
1838		p->head_position = 0;
1839		p->recovery_disabled = mddev->recovery_disabled - 1;
1840		rdev->raid_disk = mirror;
1841		err = 0;
1842		if (rdev->saved_raid_disk != mirror)
1843			conf->fullsync = 1;
1844		rcu_assign_pointer(p->rdev, rdev);
1845		break;
1846	}
1847	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1848		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1849
1850	print_conf(conf);
1851	return err;
1852}
1853
1854static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1855{
1856	struct r10conf *conf = mddev->private;
1857	int err = 0;
1858	int number = rdev->raid_disk;
1859	struct md_rdev **rdevp;
1860	struct raid10_info *p = conf->mirrors + number;
1861
1862	print_conf(conf);
 
 
 
1863	if (rdev == p->rdev)
1864		rdevp = &p->rdev;
1865	else if (rdev == p->replacement)
1866		rdevp = &p->replacement;
1867	else
1868		return 0;
1869
1870	if (test_bit(In_sync, &rdev->flags) ||
1871	    atomic_read(&rdev->nr_pending)) {
1872		err = -EBUSY;
1873		goto abort;
1874	}
1875	/* Only remove non-faulty devices if recovery
1876	 * is not possible.
1877	 */
1878	if (!test_bit(Faulty, &rdev->flags) &&
1879	    mddev->recovery_disabled != p->recovery_disabled &&
1880	    (!p->replacement || p->replacement == rdev) &&
1881	    number < conf->geo.raid_disks &&
1882	    enough(conf, -1)) {
1883		err = -EBUSY;
1884		goto abort;
1885	}
1886	*rdevp = NULL;
1887	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1888		synchronize_rcu();
1889		if (atomic_read(&rdev->nr_pending)) {
1890			/* lost the race, try later */
1891			err = -EBUSY;
1892			*rdevp = rdev;
1893			goto abort;
1894		}
1895	}
1896	if (p->replacement) {
1897		/* We must have just cleared 'rdev' */
1898		p->rdev = p->replacement;
1899		clear_bit(Replacement, &p->replacement->flags);
1900		smp_mb(); /* Make sure other CPUs may see both as identical
1901			   * but will never see neither -- if they are careful.
1902			   */
1903		p->replacement = NULL;
1904	}
1905
1906	clear_bit(WantReplacement, &rdev->flags);
1907	err = md_integrity_register(mddev);
1908
1909abort:
1910
1911	print_conf(conf);
1912	return err;
1913}
1914
1915static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1916{
1917	struct r10conf *conf = r10_bio->mddev->private;
1918
1919	if (!bio->bi_status)
1920		set_bit(R10BIO_Uptodate, &r10_bio->state);
1921	else
1922		/* The write handler will notice the lack of
1923		 * R10BIO_Uptodate and record any errors etc
1924		 */
1925		atomic_add(r10_bio->sectors,
1926			   &conf->mirrors[d].rdev->corrected_errors);
1927
1928	/* for reconstruct, we always reschedule after a read.
1929	 * for resync, only after all reads
1930	 */
1931	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1932	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1933	    atomic_dec_and_test(&r10_bio->remaining)) {
1934		/* we have read all the blocks,
1935		 * do the comparison in process context in raid10d
1936		 */
1937		reschedule_retry(r10_bio);
1938	}
1939}
1940
1941static void end_sync_read(struct bio *bio)
1942{
1943	struct r10bio *r10_bio = get_resync_r10bio(bio);
1944	struct r10conf *conf = r10_bio->mddev->private;
1945	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1946
1947	__end_sync_read(r10_bio, bio, d);
1948}
1949
1950static void end_reshape_read(struct bio *bio)
1951{
1952	/* reshape read bio isn't allocated from r10buf_pool */
1953	struct r10bio *r10_bio = bio->bi_private;
1954
1955	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
1956}
1957
1958static void end_sync_request(struct r10bio *r10_bio)
1959{
1960	struct mddev *mddev = r10_bio->mddev;
1961
1962	while (atomic_dec_and_test(&r10_bio->remaining)) {
1963		if (r10_bio->master_bio == NULL) {
1964			/* the primary of several recovery bios */
1965			sector_t s = r10_bio->sectors;
1966			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1967			    test_bit(R10BIO_WriteError, &r10_bio->state))
1968				reschedule_retry(r10_bio);
1969			else
1970				put_buf(r10_bio);
1971			md_done_sync(mddev, s, 1);
1972			break;
1973		} else {
1974			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1975			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1976			    test_bit(R10BIO_WriteError, &r10_bio->state))
1977				reschedule_retry(r10_bio);
1978			else
1979				put_buf(r10_bio);
1980			r10_bio = r10_bio2;
1981		}
1982	}
1983}
1984
1985static void end_sync_write(struct bio *bio)
1986{
1987	struct r10bio *r10_bio = get_resync_r10bio(bio);
1988	struct mddev *mddev = r10_bio->mddev;
1989	struct r10conf *conf = mddev->private;
1990	int d;
1991	sector_t first_bad;
1992	int bad_sectors;
1993	int slot;
1994	int repl;
1995	struct md_rdev *rdev = NULL;
1996
1997	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1998	if (repl)
1999		rdev = conf->mirrors[d].replacement;
2000	else
2001		rdev = conf->mirrors[d].rdev;
2002
2003	if (bio->bi_status) {
2004		if (repl)
2005			md_error(mddev, rdev);
2006		else {
2007			set_bit(WriteErrorSeen, &rdev->flags);
2008			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2009				set_bit(MD_RECOVERY_NEEDED,
2010					&rdev->mddev->recovery);
2011			set_bit(R10BIO_WriteError, &r10_bio->state);
2012		}
2013	} else if (is_badblock(rdev,
2014			     r10_bio->devs[slot].addr,
2015			     r10_bio->sectors,
2016			     &first_bad, &bad_sectors))
2017		set_bit(R10BIO_MadeGood, &r10_bio->state);
2018
2019	rdev_dec_pending(rdev, mddev);
2020
2021	end_sync_request(r10_bio);
2022}
2023
2024/*
2025 * Note: sync and recover and handled very differently for raid10
2026 * This code is for resync.
2027 * For resync, we read through virtual addresses and read all blocks.
2028 * If there is any error, we schedule a write.  The lowest numbered
2029 * drive is authoritative.
2030 * However requests come for physical address, so we need to map.
2031 * For every physical address there are raid_disks/copies virtual addresses,
2032 * which is always are least one, but is not necessarly an integer.
2033 * This means that a physical address can span multiple chunks, so we may
2034 * have to submit multiple io requests for a single sync request.
2035 */
2036/*
2037 * We check if all blocks are in-sync and only write to blocks that
2038 * aren't in sync
2039 */
2040static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2041{
2042	struct r10conf *conf = mddev->private;
2043	int i, first;
2044	struct bio *tbio, *fbio;
2045	int vcnt;
2046	struct page **tpages, **fpages;
2047
2048	atomic_set(&r10_bio->remaining, 1);
2049
2050	/* find the first device with a block */
2051	for (i=0; i<conf->copies; i++)
2052		if (!r10_bio->devs[i].bio->bi_status)
2053			break;
2054
2055	if (i == conf->copies)
2056		goto done;
2057
2058	first = i;
2059	fbio = r10_bio->devs[i].bio;
2060	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2061	fbio->bi_iter.bi_idx = 0;
2062	fpages = get_resync_pages(fbio)->pages;
2063
2064	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2065	/* now find blocks with errors */
2066	for (i=0 ; i < conf->copies ; i++) {
2067		int  j, d;
2068		struct md_rdev *rdev;
2069		struct resync_pages *rp;
2070
2071		tbio = r10_bio->devs[i].bio;
2072
2073		if (tbio->bi_end_io != end_sync_read)
2074			continue;
2075		if (i == first)
2076			continue;
2077
2078		tpages = get_resync_pages(tbio)->pages;
2079		d = r10_bio->devs[i].devnum;
2080		rdev = conf->mirrors[d].rdev;
2081		if (!r10_bio->devs[i].bio->bi_status) {
2082			/* We know that the bi_io_vec layout is the same for
2083			 * both 'first' and 'i', so we just compare them.
2084			 * All vec entries are PAGE_SIZE;
2085			 */
2086			int sectors = r10_bio->sectors;
2087			for (j = 0; j < vcnt; j++) {
2088				int len = PAGE_SIZE;
2089				if (sectors < (len / 512))
2090					len = sectors * 512;
2091				if (memcmp(page_address(fpages[j]),
2092					   page_address(tpages[j]),
2093					   len))
2094					break;
2095				sectors -= len/512;
2096			}
2097			if (j == vcnt)
2098				continue;
2099			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2100			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2101				/* Don't fix anything. */
2102				continue;
2103		} else if (test_bit(FailFast, &rdev->flags)) {
2104			/* Just give up on this device */
2105			md_error(rdev->mddev, rdev);
2106			continue;
2107		}
2108		/* Ok, we need to write this bio, either to correct an
2109		 * inconsistency or to correct an unreadable block.
2110		 * First we need to fixup bv_offset, bv_len and
2111		 * bi_vecs, as the read request might have corrupted these
2112		 */
2113		rp = get_resync_pages(tbio);
2114		bio_reset(tbio);
2115
2116		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2117
2118		rp->raid_bio = r10_bio;
2119		tbio->bi_private = rp;
2120		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2121		tbio->bi_end_io = end_sync_write;
2122		bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2123
2124		bio_copy_data(tbio, fbio);
2125
2126		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2127		atomic_inc(&r10_bio->remaining);
2128		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2129
2130		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2131			tbio->bi_opf |= MD_FAILFAST;
2132		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2133		bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2134		generic_make_request(tbio);
2135	}
2136
2137	/* Now write out to any replacement devices
2138	 * that are active
2139	 */
2140	for (i = 0; i < conf->copies; i++) {
2141		int d;
2142
2143		tbio = r10_bio->devs[i].repl_bio;
2144		if (!tbio || !tbio->bi_end_io)
2145			continue;
2146		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2147		    && r10_bio->devs[i].bio != fbio)
2148			bio_copy_data(tbio, fbio);
2149		d = r10_bio->devs[i].devnum;
2150		atomic_inc(&r10_bio->remaining);
2151		md_sync_acct(conf->mirrors[d].replacement->bdev,
2152			     bio_sectors(tbio));
2153		generic_make_request(tbio);
2154	}
2155
2156done:
2157	if (atomic_dec_and_test(&r10_bio->remaining)) {
2158		md_done_sync(mddev, r10_bio->sectors, 1);
2159		put_buf(r10_bio);
2160	}
2161}
2162
2163/*
2164 * Now for the recovery code.
2165 * Recovery happens across physical sectors.
2166 * We recover all non-is_sync drives by finding the virtual address of
2167 * each, and then choose a working drive that also has that virt address.
2168 * There is a separate r10_bio for each non-in_sync drive.
2169 * Only the first two slots are in use. The first for reading,
2170 * The second for writing.
2171 *
2172 */
2173static void fix_recovery_read_error(struct r10bio *r10_bio)
2174{
2175	/* We got a read error during recovery.
2176	 * We repeat the read in smaller page-sized sections.
2177	 * If a read succeeds, write it to the new device or record
2178	 * a bad block if we cannot.
2179	 * If a read fails, record a bad block on both old and
2180	 * new devices.
2181	 */
2182	struct mddev *mddev = r10_bio->mddev;
2183	struct r10conf *conf = mddev->private;
2184	struct bio *bio = r10_bio->devs[0].bio;
2185	sector_t sect = 0;
2186	int sectors = r10_bio->sectors;
2187	int idx = 0;
2188	int dr = r10_bio->devs[0].devnum;
2189	int dw = r10_bio->devs[1].devnum;
2190	struct page **pages = get_resync_pages(bio)->pages;
2191
2192	while (sectors) {
2193		int s = sectors;
2194		struct md_rdev *rdev;
2195		sector_t addr;
2196		int ok;
2197
2198		if (s > (PAGE_SIZE>>9))
2199			s = PAGE_SIZE >> 9;
2200
2201		rdev = conf->mirrors[dr].rdev;
2202		addr = r10_bio->devs[0].addr + sect,
2203		ok = sync_page_io(rdev,
2204				  addr,
2205				  s << 9,
2206				  pages[idx],
2207				  REQ_OP_READ, 0, false);
2208		if (ok) {
2209			rdev = conf->mirrors[dw].rdev;
2210			addr = r10_bio->devs[1].addr + sect;
2211			ok = sync_page_io(rdev,
2212					  addr,
2213					  s << 9,
2214					  pages[idx],
2215					  REQ_OP_WRITE, 0, false);
2216			if (!ok) {
2217				set_bit(WriteErrorSeen, &rdev->flags);
2218				if (!test_and_set_bit(WantReplacement,
2219						      &rdev->flags))
2220					set_bit(MD_RECOVERY_NEEDED,
2221						&rdev->mddev->recovery);
2222			}
2223		}
2224		if (!ok) {
2225			/* We don't worry if we cannot set a bad block -
2226			 * it really is bad so there is no loss in not
2227			 * recording it yet
2228			 */
2229			rdev_set_badblocks(rdev, addr, s, 0);
2230
2231			if (rdev != conf->mirrors[dw].rdev) {
2232				/* need bad block on destination too */
2233				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2234				addr = r10_bio->devs[1].addr + sect;
2235				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2236				if (!ok) {
2237					/* just abort the recovery */
2238					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2239						  mdname(mddev));
2240
2241					conf->mirrors[dw].recovery_disabled
2242						= mddev->recovery_disabled;
2243					set_bit(MD_RECOVERY_INTR,
2244						&mddev->recovery);
2245					break;
2246				}
2247			}
2248		}
2249
2250		sectors -= s;
2251		sect += s;
2252		idx++;
2253	}
2254}
2255
2256static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2257{
2258	struct r10conf *conf = mddev->private;
2259	int d;
2260	struct bio *wbio, *wbio2;
2261
2262	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2263		fix_recovery_read_error(r10_bio);
2264		end_sync_request(r10_bio);
2265		return;
2266	}
2267
2268	/*
2269	 * share the pages with the first bio
2270	 * and submit the write request
2271	 */
2272	d = r10_bio->devs[1].devnum;
2273	wbio = r10_bio->devs[1].bio;
2274	wbio2 = r10_bio->devs[1].repl_bio;
2275	/* Need to test wbio2->bi_end_io before we call
2276	 * generic_make_request as if the former is NULL,
2277	 * the latter is free to free wbio2.
2278	 */
2279	if (wbio2 && !wbio2->bi_end_io)
2280		wbio2 = NULL;
2281	if (wbio->bi_end_io) {
2282		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2283		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2284		generic_make_request(wbio);
2285	}
2286	if (wbio2) {
2287		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2288		md_sync_acct(conf->mirrors[d].replacement->bdev,
2289			     bio_sectors(wbio2));
2290		generic_make_request(wbio2);
2291	}
2292}
2293
2294/*
2295 * Used by fix_read_error() to decay the per rdev read_errors.
2296 * We halve the read error count for every hour that has elapsed
2297 * since the last recorded read error.
2298 *
2299 */
2300static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2301{
2302	long cur_time_mon;
2303	unsigned long hours_since_last;
2304	unsigned int read_errors = atomic_read(&rdev->read_errors);
2305
2306	cur_time_mon = ktime_get_seconds();
2307
2308	if (rdev->last_read_error == 0) {
2309		/* first time we've seen a read error */
2310		rdev->last_read_error = cur_time_mon;
2311		return;
2312	}
2313
2314	hours_since_last = (long)(cur_time_mon -
2315			    rdev->last_read_error) / 3600;
2316
2317	rdev->last_read_error = cur_time_mon;
2318
2319	/*
2320	 * if hours_since_last is > the number of bits in read_errors
2321	 * just set read errors to 0. We do this to avoid
2322	 * overflowing the shift of read_errors by hours_since_last.
2323	 */
2324	if (hours_since_last >= 8 * sizeof(read_errors))
2325		atomic_set(&rdev->read_errors, 0);
2326	else
2327		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2328}
2329
2330static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2331			    int sectors, struct page *page, int rw)
2332{
2333	sector_t first_bad;
2334	int bad_sectors;
2335
2336	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2337	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2338		return -1;
2339	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2340		/* success */
2341		return 1;
2342	if (rw == WRITE) {
2343		set_bit(WriteErrorSeen, &rdev->flags);
2344		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2345			set_bit(MD_RECOVERY_NEEDED,
2346				&rdev->mddev->recovery);
2347	}
2348	/* need to record an error - either for the block or the device */
2349	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2350		md_error(rdev->mddev, rdev);
2351	return 0;
2352}
2353
2354/*
2355 * This is a kernel thread which:
2356 *
2357 *	1.	Retries failed read operations on working mirrors.
2358 *	2.	Updates the raid superblock when problems encounter.
2359 *	3.	Performs writes following reads for array synchronising.
2360 */
2361
2362static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2363{
2364	int sect = 0; /* Offset from r10_bio->sector */
2365	int sectors = r10_bio->sectors;
2366	struct md_rdev*rdev;
2367	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2368	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2369
2370	/* still own a reference to this rdev, so it cannot
2371	 * have been cleared recently.
2372	 */
2373	rdev = conf->mirrors[d].rdev;
2374
2375	if (test_bit(Faulty, &rdev->flags))
2376		/* drive has already been failed, just ignore any
2377		   more fix_read_error() attempts */
2378		return;
2379
2380	check_decay_read_errors(mddev, rdev);
2381	atomic_inc(&rdev->read_errors);
2382	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2383		char b[BDEVNAME_SIZE];
2384		bdevname(rdev->bdev, b);
2385
2386		pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2387			  mdname(mddev), b,
2388			  atomic_read(&rdev->read_errors), max_read_errors);
2389		pr_notice("md/raid10:%s: %s: Failing raid device\n",
2390			  mdname(mddev), b);
2391		md_error(mddev, rdev);
2392		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2393		return;
2394	}
2395
2396	while(sectors) {
2397		int s = sectors;
2398		int sl = r10_bio->read_slot;
2399		int success = 0;
2400		int start;
2401
2402		if (s > (PAGE_SIZE>>9))
2403			s = PAGE_SIZE >> 9;
2404
2405		rcu_read_lock();
2406		do {
2407			sector_t first_bad;
2408			int bad_sectors;
2409
2410			d = r10_bio->devs[sl].devnum;
2411			rdev = rcu_dereference(conf->mirrors[d].rdev);
2412			if (rdev &&
2413			    test_bit(In_sync, &rdev->flags) &&
2414			    !test_bit(Faulty, &rdev->flags) &&
2415			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2416					&first_bad, &bad_sectors) == 0) {
2417				atomic_inc(&rdev->nr_pending);
2418				rcu_read_unlock();
2419				success = sync_page_io(rdev,
2420						       r10_bio->devs[sl].addr +
2421						       sect,
2422						       s<<9,
2423						       conf->tmppage,
2424						       REQ_OP_READ, 0, false);
2425				rdev_dec_pending(rdev, mddev);
2426				rcu_read_lock();
2427				if (success)
2428					break;
2429			}
2430			sl++;
2431			if (sl == conf->copies)
2432				sl = 0;
2433		} while (!success && sl != r10_bio->read_slot);
2434		rcu_read_unlock();
2435
2436		if (!success) {
2437			/* Cannot read from anywhere, just mark the block
2438			 * as bad on the first device to discourage future
2439			 * reads.
2440			 */
2441			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2442			rdev = conf->mirrors[dn].rdev;
2443
2444			if (!rdev_set_badblocks(
2445				    rdev,
2446				    r10_bio->devs[r10_bio->read_slot].addr
2447				    + sect,
2448				    s, 0)) {
2449				md_error(mddev, rdev);
2450				r10_bio->devs[r10_bio->read_slot].bio
2451					= IO_BLOCKED;
2452			}
2453			break;
2454		}
2455
2456		start = sl;
2457		/* write it back and re-read */
2458		rcu_read_lock();
2459		while (sl != r10_bio->read_slot) {
2460			char b[BDEVNAME_SIZE];
2461
2462			if (sl==0)
2463				sl = conf->copies;
2464			sl--;
2465			d = r10_bio->devs[sl].devnum;
2466			rdev = rcu_dereference(conf->mirrors[d].rdev);
2467			if (!rdev ||
2468			    test_bit(Faulty, &rdev->flags) ||
2469			    !test_bit(In_sync, &rdev->flags))
2470				continue;
2471
2472			atomic_inc(&rdev->nr_pending);
2473			rcu_read_unlock();
2474			if (r10_sync_page_io(rdev,
2475					     r10_bio->devs[sl].addr +
2476					     sect,
2477					     s, conf->tmppage, WRITE)
2478			    == 0) {
2479				/* Well, this device is dead */
2480				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2481					  mdname(mddev), s,
2482					  (unsigned long long)(
2483						  sect +
2484						  choose_data_offset(r10_bio,
2485								     rdev)),
2486					  bdevname(rdev->bdev, b));
2487				pr_notice("md/raid10:%s: %s: failing drive\n",
2488					  mdname(mddev),
2489					  bdevname(rdev->bdev, b));
2490			}
2491			rdev_dec_pending(rdev, mddev);
2492			rcu_read_lock();
2493		}
2494		sl = start;
2495		while (sl != r10_bio->read_slot) {
2496			char b[BDEVNAME_SIZE];
2497
2498			if (sl==0)
2499				sl = conf->copies;
2500			sl--;
2501			d = r10_bio->devs[sl].devnum;
2502			rdev = rcu_dereference(conf->mirrors[d].rdev);
2503			if (!rdev ||
2504			    test_bit(Faulty, &rdev->flags) ||
2505			    !test_bit(In_sync, &rdev->flags))
2506				continue;
2507
2508			atomic_inc(&rdev->nr_pending);
2509			rcu_read_unlock();
2510			switch (r10_sync_page_io(rdev,
2511					     r10_bio->devs[sl].addr +
2512					     sect,
2513					     s, conf->tmppage,
2514						 READ)) {
2515			case 0:
2516				/* Well, this device is dead */
2517				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2518				       mdname(mddev), s,
2519				       (unsigned long long)(
2520					       sect +
2521					       choose_data_offset(r10_bio, rdev)),
2522				       bdevname(rdev->bdev, b));
2523				pr_notice("md/raid10:%s: %s: failing drive\n",
2524				       mdname(mddev),
2525				       bdevname(rdev->bdev, b));
2526				break;
2527			case 1:
2528				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2529				       mdname(mddev), s,
2530				       (unsigned long long)(
2531					       sect +
2532					       choose_data_offset(r10_bio, rdev)),
2533				       bdevname(rdev->bdev, b));
2534				atomic_add(s, &rdev->corrected_errors);
2535			}
2536
2537			rdev_dec_pending(rdev, mddev);
2538			rcu_read_lock();
2539		}
2540		rcu_read_unlock();
2541
2542		sectors -= s;
2543		sect += s;
2544	}
2545}
2546
2547static int narrow_write_error(struct r10bio *r10_bio, int i)
2548{
2549	struct bio *bio = r10_bio->master_bio;
2550	struct mddev *mddev = r10_bio->mddev;
2551	struct r10conf *conf = mddev->private;
2552	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2553	/* bio has the data to be written to slot 'i' where
2554	 * we just recently had a write error.
2555	 * We repeatedly clone the bio and trim down to one block,
2556	 * then try the write.  Where the write fails we record
2557	 * a bad block.
2558	 * It is conceivable that the bio doesn't exactly align with
2559	 * blocks.  We must handle this.
2560	 *
2561	 * We currently own a reference to the rdev.
2562	 */
2563
2564	int block_sectors;
2565	sector_t sector;
2566	int sectors;
2567	int sect_to_write = r10_bio->sectors;
2568	int ok = 1;
2569
2570	if (rdev->badblocks.shift < 0)
2571		return 0;
2572
2573	block_sectors = roundup(1 << rdev->badblocks.shift,
2574				bdev_logical_block_size(rdev->bdev) >> 9);
2575	sector = r10_bio->sector;
2576	sectors = ((r10_bio->sector + block_sectors)
2577		   & ~(sector_t)(block_sectors - 1))
2578		- sector;
2579
2580	while (sect_to_write) {
2581		struct bio *wbio;
2582		sector_t wsector;
2583		if (sectors > sect_to_write)
2584			sectors = sect_to_write;
2585		/* Write at 'sector' for 'sectors' */
2586		wbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
 
2587		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2588		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2589		wbio->bi_iter.bi_sector = wsector +
2590				   choose_data_offset(r10_bio, rdev);
2591		bio_set_dev(wbio, rdev->bdev);
2592		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2593
2594		if (submit_bio_wait(wbio) < 0)
2595			/* Failure! */
2596			ok = rdev_set_badblocks(rdev, wsector,
2597						sectors, 0)
2598				&& ok;
2599
2600		bio_put(wbio);
2601		sect_to_write -= sectors;
2602		sector += sectors;
2603		sectors = block_sectors;
2604	}
2605	return ok;
2606}
2607
2608static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2609{
2610	int slot = r10_bio->read_slot;
2611	struct bio *bio;
2612	struct r10conf *conf = mddev->private;
2613	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2614
2615	/* we got a read error. Maybe the drive is bad.  Maybe just
2616	 * the block and we can fix it.
2617	 * We freeze all other IO, and try reading the block from
2618	 * other devices.  When we find one, we re-write
2619	 * and check it that fixes the read error.
2620	 * This is all done synchronously while the array is
2621	 * frozen.
2622	 */
2623	bio = r10_bio->devs[slot].bio;
2624	bio_put(bio);
2625	r10_bio->devs[slot].bio = NULL;
2626
2627	if (mddev->ro)
2628		r10_bio->devs[slot].bio = IO_BLOCKED;
2629	else if (!test_bit(FailFast, &rdev->flags)) {
2630		freeze_array(conf, 1);
2631		fix_read_error(conf, mddev, r10_bio);
2632		unfreeze_array(conf);
2633	} else
2634		md_error(mddev, rdev);
2635
2636	rdev_dec_pending(rdev, mddev);
2637	allow_barrier(conf);
2638	r10_bio->state = 0;
2639	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2640}
2641
2642static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2643{
2644	/* Some sort of write request has finished and it
2645	 * succeeded in writing where we thought there was a
2646	 * bad block.  So forget the bad block.
2647	 * Or possibly if failed and we need to record
2648	 * a bad block.
2649	 */
2650	int m;
2651	struct md_rdev *rdev;
2652
2653	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2654	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2655		for (m = 0; m < conf->copies; m++) {
2656			int dev = r10_bio->devs[m].devnum;
2657			rdev = conf->mirrors[dev].rdev;
2658			if (r10_bio->devs[m].bio == NULL ||
2659				r10_bio->devs[m].bio->bi_end_io == NULL)
2660				continue;
2661			if (!r10_bio->devs[m].bio->bi_status) {
2662				rdev_clear_badblocks(
2663					rdev,
2664					r10_bio->devs[m].addr,
2665					r10_bio->sectors, 0);
2666			} else {
2667				if (!rdev_set_badblocks(
2668					    rdev,
2669					    r10_bio->devs[m].addr,
2670					    r10_bio->sectors, 0))
2671					md_error(conf->mddev, rdev);
2672			}
2673			rdev = conf->mirrors[dev].replacement;
2674			if (r10_bio->devs[m].repl_bio == NULL ||
2675				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2676				continue;
2677
2678			if (!r10_bio->devs[m].repl_bio->bi_status) {
2679				rdev_clear_badblocks(
2680					rdev,
2681					r10_bio->devs[m].addr,
2682					r10_bio->sectors, 0);
2683			} else {
2684				if (!rdev_set_badblocks(
2685					    rdev,
2686					    r10_bio->devs[m].addr,
2687					    r10_bio->sectors, 0))
2688					md_error(conf->mddev, rdev);
2689			}
2690		}
2691		put_buf(r10_bio);
2692	} else {
2693		bool fail = false;
2694		for (m = 0; m < conf->copies; m++) {
2695			int dev = r10_bio->devs[m].devnum;
2696			struct bio *bio = r10_bio->devs[m].bio;
2697			rdev = conf->mirrors[dev].rdev;
2698			if (bio == IO_MADE_GOOD) {
2699				rdev_clear_badblocks(
2700					rdev,
2701					r10_bio->devs[m].addr,
2702					r10_bio->sectors, 0);
2703				rdev_dec_pending(rdev, conf->mddev);
2704			} else if (bio != NULL && bio->bi_status) {
2705				fail = true;
2706				if (!narrow_write_error(r10_bio, m)) {
2707					md_error(conf->mddev, rdev);
2708					set_bit(R10BIO_Degraded,
2709						&r10_bio->state);
2710				}
2711				rdev_dec_pending(rdev, conf->mddev);
2712			}
2713			bio = r10_bio->devs[m].repl_bio;
2714			rdev = conf->mirrors[dev].replacement;
2715			if (rdev && bio == IO_MADE_GOOD) {
2716				rdev_clear_badblocks(
2717					rdev,
2718					r10_bio->devs[m].addr,
2719					r10_bio->sectors, 0);
2720				rdev_dec_pending(rdev, conf->mddev);
2721			}
2722		}
2723		if (fail) {
2724			spin_lock_irq(&conf->device_lock);
2725			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2726			conf->nr_queued++;
2727			spin_unlock_irq(&conf->device_lock);
2728			/*
2729			 * In case freeze_array() is waiting for condition
2730			 * nr_pending == nr_queued + extra to be true.
2731			 */
2732			wake_up(&conf->wait_barrier);
2733			md_wakeup_thread(conf->mddev->thread);
2734		} else {
2735			if (test_bit(R10BIO_WriteError,
2736				     &r10_bio->state))
2737				close_write(r10_bio);
2738			raid_end_bio_io(r10_bio);
2739		}
2740	}
2741}
2742
2743static void raid10d(struct md_thread *thread)
2744{
2745	struct mddev *mddev = thread->mddev;
2746	struct r10bio *r10_bio;
2747	unsigned long flags;
2748	struct r10conf *conf = mddev->private;
2749	struct list_head *head = &conf->retry_list;
2750	struct blk_plug plug;
2751
2752	md_check_recovery(mddev);
2753
2754	if (!list_empty_careful(&conf->bio_end_io_list) &&
2755	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2756		LIST_HEAD(tmp);
2757		spin_lock_irqsave(&conf->device_lock, flags);
2758		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2759			while (!list_empty(&conf->bio_end_io_list)) {
2760				list_move(conf->bio_end_io_list.prev, &tmp);
2761				conf->nr_queued--;
2762			}
2763		}
2764		spin_unlock_irqrestore(&conf->device_lock, flags);
2765		while (!list_empty(&tmp)) {
2766			r10_bio = list_first_entry(&tmp, struct r10bio,
2767						   retry_list);
2768			list_del(&r10_bio->retry_list);
2769			if (mddev->degraded)
2770				set_bit(R10BIO_Degraded, &r10_bio->state);
2771
2772			if (test_bit(R10BIO_WriteError,
2773				     &r10_bio->state))
2774				close_write(r10_bio);
2775			raid_end_bio_io(r10_bio);
2776		}
2777	}
2778
2779	blk_start_plug(&plug);
2780	for (;;) {
2781
2782		flush_pending_writes(conf);
2783
2784		spin_lock_irqsave(&conf->device_lock, flags);
2785		if (list_empty(head)) {
2786			spin_unlock_irqrestore(&conf->device_lock, flags);
2787			break;
2788		}
2789		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2790		list_del(head->prev);
2791		conf->nr_queued--;
2792		spin_unlock_irqrestore(&conf->device_lock, flags);
2793
2794		mddev = r10_bio->mddev;
2795		conf = mddev->private;
2796		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2797		    test_bit(R10BIO_WriteError, &r10_bio->state))
2798			handle_write_completed(conf, r10_bio);
2799		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2800			reshape_request_write(mddev, r10_bio);
2801		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2802			sync_request_write(mddev, r10_bio);
2803		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2804			recovery_request_write(mddev, r10_bio);
2805		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2806			handle_read_error(mddev, r10_bio);
2807		else
2808			WARN_ON_ONCE(1);
2809
2810		cond_resched();
2811		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2812			md_check_recovery(mddev);
2813	}
2814	blk_finish_plug(&plug);
2815}
2816
2817static int init_resync(struct r10conf *conf)
2818{
2819	int buffs;
2820	int i;
2821
2822	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2823	BUG_ON(conf->r10buf_pool);
2824	conf->have_replacement = 0;
2825	for (i = 0; i < conf->geo.raid_disks; i++)
2826		if (conf->mirrors[i].replacement)
2827			conf->have_replacement = 1;
2828	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2829	if (!conf->r10buf_pool)
2830		return -ENOMEM;
 
2831	conf->next_resync = 0;
2832	return 0;
2833}
2834
2835static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2836{
2837	struct r10bio *r10bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2838	struct rsync_pages *rp;
2839	struct bio *bio;
2840	int nalloc;
2841	int i;
2842
2843	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2844	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2845		nalloc = conf->copies; /* resync */
2846	else
2847		nalloc = 2; /* recovery */
2848
2849	for (i = 0; i < nalloc; i++) {
2850		bio = r10bio->devs[i].bio;
2851		rp = bio->bi_private;
2852		bio_reset(bio);
2853		bio->bi_private = rp;
2854		bio = r10bio->devs[i].repl_bio;
2855		if (bio) {
2856			rp = bio->bi_private;
2857			bio_reset(bio);
2858			bio->bi_private = rp;
2859		}
2860	}
2861	return r10bio;
2862}
2863
2864/*
2865 * Set cluster_sync_high since we need other nodes to add the
2866 * range [cluster_sync_low, cluster_sync_high] to suspend list.
2867 */
2868static void raid10_set_cluster_sync_high(struct r10conf *conf)
2869{
2870	sector_t window_size;
2871	int extra_chunk, chunks;
2872
2873	/*
2874	 * First, here we define "stripe" as a unit which across
2875	 * all member devices one time, so we get chunks by use
2876	 * raid_disks / near_copies. Otherwise, if near_copies is
2877	 * close to raid_disks, then resync window could increases
2878	 * linearly with the increase of raid_disks, which means
2879	 * we will suspend a really large IO window while it is not
2880	 * necessary. If raid_disks is not divisible by near_copies,
2881	 * an extra chunk is needed to ensure the whole "stripe" is
2882	 * covered.
2883	 */
2884
2885	chunks = conf->geo.raid_disks / conf->geo.near_copies;
2886	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2887		extra_chunk = 0;
2888	else
2889		extra_chunk = 1;
2890	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2891
2892	/*
2893	 * At least use a 32M window to align with raid1's resync window
2894	 */
2895	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2896			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2897
2898	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2899}
2900
2901/*
2902 * perform a "sync" on one "block"
2903 *
2904 * We need to make sure that no normal I/O request - particularly write
2905 * requests - conflict with active sync requests.
2906 *
2907 * This is achieved by tracking pending requests and a 'barrier' concept
2908 * that can be installed to exclude normal IO requests.
2909 *
2910 * Resync and recovery are handled very differently.
2911 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2912 *
2913 * For resync, we iterate over virtual addresses, read all copies,
2914 * and update if there are differences.  If only one copy is live,
2915 * skip it.
2916 * For recovery, we iterate over physical addresses, read a good
2917 * value for each non-in_sync drive, and over-write.
2918 *
2919 * So, for recovery we may have several outstanding complex requests for a
2920 * given address, one for each out-of-sync device.  We model this by allocating
2921 * a number of r10_bio structures, one for each out-of-sync device.
2922 * As we setup these structures, we collect all bio's together into a list
2923 * which we then process collectively to add pages, and then process again
2924 * to pass to generic_make_request.
2925 *
2926 * The r10_bio structures are linked using a borrowed master_bio pointer.
2927 * This link is counted in ->remaining.  When the r10_bio that points to NULL
2928 * has its remaining count decremented to 0, the whole complex operation
2929 * is complete.
2930 *
2931 */
2932
2933static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2934			     int *skipped)
2935{
2936	struct r10conf *conf = mddev->private;
2937	struct r10bio *r10_bio;
2938	struct bio *biolist = NULL, *bio;
2939	sector_t max_sector, nr_sectors;
2940	int i;
2941	int max_sync;
2942	sector_t sync_blocks;
2943	sector_t sectors_skipped = 0;
2944	int chunks_skipped = 0;
2945	sector_t chunk_mask = conf->geo.chunk_mask;
2946	int page_idx = 0;
2947
2948	if (!conf->r10buf_pool)
2949		if (init_resync(conf))
2950			return 0;
2951
2952	/*
2953	 * Allow skipping a full rebuild for incremental assembly
2954	 * of a clean array, like RAID1 does.
2955	 */
2956	if (mddev->bitmap == NULL &&
2957	    mddev->recovery_cp == MaxSector &&
2958	    mddev->reshape_position == MaxSector &&
2959	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2960	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2961	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2962	    conf->fullsync == 0) {
2963		*skipped = 1;
2964		return mddev->dev_sectors - sector_nr;
2965	}
2966
2967 skipped:
2968	max_sector = mddev->dev_sectors;
2969	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2970	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2971		max_sector = mddev->resync_max_sectors;
2972	if (sector_nr >= max_sector) {
2973		conf->cluster_sync_low = 0;
2974		conf->cluster_sync_high = 0;
2975
2976		/* If we aborted, we need to abort the
2977		 * sync on the 'current' bitmap chucks (there can
2978		 * be several when recovering multiple devices).
2979		 * as we may have started syncing it but not finished.
2980		 * We can find the current address in
2981		 * mddev->curr_resync, but for recovery,
2982		 * we need to convert that to several
2983		 * virtual addresses.
2984		 */
2985		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2986			end_reshape(conf);
2987			close_sync(conf);
2988			return 0;
2989		}
2990
2991		if (mddev->curr_resync < max_sector) { /* aborted */
2992			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2993				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2994						&sync_blocks, 1);
2995			else for (i = 0; i < conf->geo.raid_disks; i++) {
2996				sector_t sect =
2997					raid10_find_virt(conf, mddev->curr_resync, i);
2998				bitmap_end_sync(mddev->bitmap, sect,
2999						&sync_blocks, 1);
3000			}
3001		} else {
3002			/* completed sync */
3003			if ((!mddev->bitmap || conf->fullsync)
3004			    && conf->have_replacement
3005			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3006				/* Completed a full sync so the replacements
3007				 * are now fully recovered.
3008				 */
3009				rcu_read_lock();
3010				for (i = 0; i < conf->geo.raid_disks; i++) {
3011					struct md_rdev *rdev =
3012						rcu_dereference(conf->mirrors[i].replacement);
3013					if (rdev)
3014						rdev->recovery_offset = MaxSector;
3015				}
3016				rcu_read_unlock();
3017			}
3018			conf->fullsync = 0;
3019		}
3020		bitmap_close_sync(mddev->bitmap);
3021		close_sync(conf);
3022		*skipped = 1;
3023		return sectors_skipped;
3024	}
3025
3026	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3027		return reshape_request(mddev, sector_nr, skipped);
3028
3029	if (chunks_skipped >= conf->geo.raid_disks) {
3030		/* if there has been nothing to do on any drive,
3031		 * then there is nothing to do at all..
3032		 */
3033		*skipped = 1;
3034		return (max_sector - sector_nr) + sectors_skipped;
3035	}
3036
3037	if (max_sector > mddev->resync_max)
3038		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3039
3040	/* make sure whole request will fit in a chunk - if chunks
3041	 * are meaningful
3042	 */
3043	if (conf->geo.near_copies < conf->geo.raid_disks &&
3044	    max_sector > (sector_nr | chunk_mask))
3045		max_sector = (sector_nr | chunk_mask) + 1;
3046
3047	/*
3048	 * If there is non-resync activity waiting for a turn, then let it
3049	 * though before starting on this new sync request.
3050	 */
3051	if (conf->nr_waiting)
3052		schedule_timeout_uninterruptible(1);
3053
3054	/* Again, very different code for resync and recovery.
3055	 * Both must result in an r10bio with a list of bios that
3056	 * have bi_end_io, bi_sector, bi_disk set,
3057	 * and bi_private set to the r10bio.
3058	 * For recovery, we may actually create several r10bios
3059	 * with 2 bios in each, that correspond to the bios in the main one.
3060	 * In this case, the subordinate r10bios link back through a
3061	 * borrowed master_bio pointer, and the counter in the master
3062	 * includes a ref from each subordinate.
3063	 */
3064	/* First, we decide what to do and set ->bi_end_io
3065	 * To end_sync_read if we want to read, and
3066	 * end_sync_write if we will want to write.
3067	 */
3068
3069	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3070	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3071		/* recovery... the complicated one */
3072		int j;
3073		r10_bio = NULL;
3074
3075		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3076			int still_degraded;
3077			struct r10bio *rb2;
3078			sector_t sect;
3079			int must_sync;
3080			int any_working;
 
 
3081			struct raid10_info *mirror = &conf->mirrors[i];
3082			struct md_rdev *mrdev, *mreplace;
3083
3084			rcu_read_lock();
3085			mrdev = rcu_dereference(mirror->rdev);
3086			mreplace = rcu_dereference(mirror->replacement);
3087
3088			if ((mrdev == NULL ||
3089			     test_bit(Faulty, &mrdev->flags) ||
3090			     test_bit(In_sync, &mrdev->flags)) &&
3091			    (mreplace == NULL ||
3092			     test_bit(Faulty, &mreplace->flags))) {
 
 
 
 
3093				rcu_read_unlock();
3094				continue;
3095			}
3096
3097			still_degraded = 0;
3098			/* want to reconstruct this device */
3099			rb2 = r10_bio;
3100			sect = raid10_find_virt(conf, sector_nr, i);
3101			if (sect >= mddev->resync_max_sectors) {
3102				/* last stripe is not complete - don't
3103				 * try to recover this sector.
3104				 */
3105				rcu_read_unlock();
3106				continue;
3107			}
3108			if (mreplace && test_bit(Faulty, &mreplace->flags))
3109				mreplace = NULL;
3110			/* Unless we are doing a full sync, or a replacement
3111			 * we only need to recover the block if it is set in
3112			 * the bitmap
3113			 */
3114			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3115						      &sync_blocks, 1);
3116			if (sync_blocks < max_sync)
3117				max_sync = sync_blocks;
3118			if (!must_sync &&
3119			    mreplace == NULL &&
3120			    !conf->fullsync) {
3121				/* yep, skip the sync_blocks here, but don't assume
3122				 * that there will never be anything to do here
3123				 */
3124				chunks_skipped = -1;
3125				rcu_read_unlock();
3126				continue;
3127			}
3128			atomic_inc(&mrdev->nr_pending);
3129			if (mreplace)
3130				atomic_inc(&mreplace->nr_pending);
3131			rcu_read_unlock();
3132
3133			r10_bio = raid10_alloc_init_r10buf(conf);
3134			r10_bio->state = 0;
3135			raise_barrier(conf, rb2 != NULL);
3136			atomic_set(&r10_bio->remaining, 0);
3137
3138			r10_bio->master_bio = (struct bio*)rb2;
3139			if (rb2)
3140				atomic_inc(&rb2->remaining);
3141			r10_bio->mddev = mddev;
3142			set_bit(R10BIO_IsRecover, &r10_bio->state);
3143			r10_bio->sector = sect;
3144
3145			raid10_find_phys(conf, r10_bio);
3146
3147			/* Need to check if the array will still be
3148			 * degraded
3149			 */
3150			rcu_read_lock();
3151			for (j = 0; j < conf->geo.raid_disks; j++) {
3152				struct md_rdev *rdev = rcu_dereference(
3153					conf->mirrors[j].rdev);
3154				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3155					still_degraded = 1;
3156					break;
3157				}
3158			}
3159
3160			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3161						      &sync_blocks, still_degraded);
3162
3163			any_working = 0;
3164			for (j=0; j<conf->copies;j++) {
3165				int k;
3166				int d = r10_bio->devs[j].devnum;
3167				sector_t from_addr, to_addr;
3168				struct md_rdev *rdev =
3169					rcu_dereference(conf->mirrors[d].rdev);
3170				sector_t sector, first_bad;
3171				int bad_sectors;
3172				if (!rdev ||
3173				    !test_bit(In_sync, &rdev->flags))
3174					continue;
3175				/* This is where we read from */
3176				any_working = 1;
3177				sector = r10_bio->devs[j].addr;
3178
3179				if (is_badblock(rdev, sector, max_sync,
3180						&first_bad, &bad_sectors)) {
3181					if (first_bad > sector)
3182						max_sync = first_bad - sector;
3183					else {
3184						bad_sectors -= (sector
3185								- first_bad);
3186						if (max_sync > bad_sectors)
3187							max_sync = bad_sectors;
3188						continue;
3189					}
3190				}
3191				bio = r10_bio->devs[0].bio;
3192				bio->bi_next = biolist;
3193				biolist = bio;
3194				bio->bi_end_io = end_sync_read;
3195				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3196				if (test_bit(FailFast, &rdev->flags))
3197					bio->bi_opf |= MD_FAILFAST;
3198				from_addr = r10_bio->devs[j].addr;
3199				bio->bi_iter.bi_sector = from_addr +
3200					rdev->data_offset;
3201				bio_set_dev(bio, rdev->bdev);
3202				atomic_inc(&rdev->nr_pending);
3203				/* and we write to 'i' (if not in_sync) */
3204
3205				for (k=0; k<conf->copies; k++)
3206					if (r10_bio->devs[k].devnum == i)
3207						break;
3208				BUG_ON(k == conf->copies);
3209				to_addr = r10_bio->devs[k].addr;
3210				r10_bio->devs[0].devnum = d;
3211				r10_bio->devs[0].addr = from_addr;
3212				r10_bio->devs[1].devnum = i;
3213				r10_bio->devs[1].addr = to_addr;
3214
3215				if (!test_bit(In_sync, &mrdev->flags)) {
3216					bio = r10_bio->devs[1].bio;
3217					bio->bi_next = biolist;
3218					biolist = bio;
3219					bio->bi_end_io = end_sync_write;
3220					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3221					bio->bi_iter.bi_sector = to_addr
3222						+ mrdev->data_offset;
3223					bio_set_dev(bio, mrdev->bdev);
3224					atomic_inc(&r10_bio->remaining);
3225				} else
3226					r10_bio->devs[1].bio->bi_end_io = NULL;
3227
3228				/* and maybe write to replacement */
3229				bio = r10_bio->devs[1].repl_bio;
3230				if (bio)
3231					bio->bi_end_io = NULL;
3232				/* Note: if mreplace != NULL, then bio
3233				 * cannot be NULL as r10buf_pool_alloc will
3234				 * have allocated it.
3235				 * So the second test here is pointless.
3236				 * But it keeps semantic-checkers happy, and
3237				 * this comment keeps human reviewers
3238				 * happy.
3239				 */
3240				if (mreplace == NULL || bio == NULL ||
3241				    test_bit(Faulty, &mreplace->flags))
3242					break;
3243				bio->bi_next = biolist;
3244				biolist = bio;
3245				bio->bi_end_io = end_sync_write;
3246				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3247				bio->bi_iter.bi_sector = to_addr +
3248					mreplace->data_offset;
3249				bio_set_dev(bio, mreplace->bdev);
3250				atomic_inc(&r10_bio->remaining);
3251				break;
3252			}
3253			rcu_read_unlock();
3254			if (j == conf->copies) {
3255				/* Cannot recover, so abort the recovery or
3256				 * record a bad block */
3257				if (any_working) {
3258					/* problem is that there are bad blocks
3259					 * on other device(s)
3260					 */
3261					int k;
3262					for (k = 0; k < conf->copies; k++)
3263						if (r10_bio->devs[k].devnum == i)
3264							break;
3265					if (!test_bit(In_sync,
3266						      &mrdev->flags)
3267					    && !rdev_set_badblocks(
3268						    mrdev,
3269						    r10_bio->devs[k].addr,
3270						    max_sync, 0))
3271						any_working = 0;
3272					if (mreplace &&
3273					    !rdev_set_badblocks(
3274						    mreplace,
3275						    r10_bio->devs[k].addr,
3276						    max_sync, 0))
3277						any_working = 0;
3278				}
3279				if (!any_working)  {
3280					if (!test_and_set_bit(MD_RECOVERY_INTR,
3281							      &mddev->recovery))
3282						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3283						       mdname(mddev));
3284					mirror->recovery_disabled
3285						= mddev->recovery_disabled;
3286				}
3287				put_buf(r10_bio);
3288				if (rb2)
3289					atomic_dec(&rb2->remaining);
3290				r10_bio = rb2;
3291				rdev_dec_pending(mrdev, mddev);
3292				if (mreplace)
3293					rdev_dec_pending(mreplace, mddev);
3294				break;
3295			}
3296			rdev_dec_pending(mrdev, mddev);
3297			if (mreplace)
3298				rdev_dec_pending(mreplace, mddev);
3299			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3300				/* Only want this if there is elsewhere to
3301				 * read from. 'j' is currently the first
3302				 * readable copy.
3303				 */
3304				int targets = 1;
3305				for (; j < conf->copies; j++) {
3306					int d = r10_bio->devs[j].devnum;
3307					if (conf->mirrors[d].rdev &&
3308					    test_bit(In_sync,
3309						      &conf->mirrors[d].rdev->flags))
3310						targets++;
3311				}
3312				if (targets == 1)
3313					r10_bio->devs[0].bio->bi_opf
3314						&= ~MD_FAILFAST;
3315			}
3316		}
3317		if (biolist == NULL) {
3318			while (r10_bio) {
3319				struct r10bio *rb2 = r10_bio;
3320				r10_bio = (struct r10bio*) rb2->master_bio;
3321				rb2->master_bio = NULL;
3322				put_buf(rb2);
3323			}
3324			goto giveup;
3325		}
3326	} else {
3327		/* resync. Schedule a read for every block at this virt offset */
3328		int count = 0;
3329
3330		/*
3331		 * Since curr_resync_completed could probably not update in
3332		 * time, and we will set cluster_sync_low based on it.
3333		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3334		 * safety reason, which ensures curr_resync_completed is
3335		 * updated in bitmap_cond_end_sync.
3336		 */
3337		bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3338				     mddev_is_clustered(mddev) &&
3339				     (sector_nr + 2 * RESYNC_SECTORS >
3340				      conf->cluster_sync_high));
3341
3342		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3343				       &sync_blocks, mddev->degraded) &&
3344		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3345						 &mddev->recovery)) {
3346			/* We can skip this block */
3347			*skipped = 1;
3348			return sync_blocks + sectors_skipped;
3349		}
3350		if (sync_blocks < max_sync)
3351			max_sync = sync_blocks;
3352		r10_bio = raid10_alloc_init_r10buf(conf);
3353		r10_bio->state = 0;
3354
3355		r10_bio->mddev = mddev;
3356		atomic_set(&r10_bio->remaining, 0);
3357		raise_barrier(conf, 0);
3358		conf->next_resync = sector_nr;
3359
3360		r10_bio->master_bio = NULL;
3361		r10_bio->sector = sector_nr;
3362		set_bit(R10BIO_IsSync, &r10_bio->state);
3363		raid10_find_phys(conf, r10_bio);
3364		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3365
3366		for (i = 0; i < conf->copies; i++) {
3367			int d = r10_bio->devs[i].devnum;
3368			sector_t first_bad, sector;
3369			int bad_sectors;
3370			struct md_rdev *rdev;
3371
3372			if (r10_bio->devs[i].repl_bio)
3373				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3374
3375			bio = r10_bio->devs[i].bio;
3376			bio->bi_status = BLK_STS_IOERR;
3377			rcu_read_lock();
3378			rdev = rcu_dereference(conf->mirrors[d].rdev);
3379			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3380				rcu_read_unlock();
3381				continue;
3382			}
3383			sector = r10_bio->devs[i].addr;
3384			if (is_badblock(rdev, sector, max_sync,
3385					&first_bad, &bad_sectors)) {
3386				if (first_bad > sector)
3387					max_sync = first_bad - sector;
3388				else {
3389					bad_sectors -= (sector - first_bad);
3390					if (max_sync > bad_sectors)
3391						max_sync = bad_sectors;
3392					rcu_read_unlock();
3393					continue;
3394				}
3395			}
3396			atomic_inc(&rdev->nr_pending);
3397			atomic_inc(&r10_bio->remaining);
3398			bio->bi_next = biolist;
3399			biolist = bio;
3400			bio->bi_end_io = end_sync_read;
3401			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3402			if (test_bit(FailFast, &rdev->flags))
3403				bio->bi_opf |= MD_FAILFAST;
3404			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3405			bio_set_dev(bio, rdev->bdev);
3406			count++;
3407
3408			rdev = rcu_dereference(conf->mirrors[d].replacement);
3409			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3410				rcu_read_unlock();
3411				continue;
3412			}
3413			atomic_inc(&rdev->nr_pending);
3414
3415			/* Need to set up for writing to the replacement */
3416			bio = r10_bio->devs[i].repl_bio;
3417			bio->bi_status = BLK_STS_IOERR;
3418
3419			sector = r10_bio->devs[i].addr;
3420			bio->bi_next = biolist;
3421			biolist = bio;
3422			bio->bi_end_io = end_sync_write;
3423			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3424			if (test_bit(FailFast, &rdev->flags))
3425				bio->bi_opf |= MD_FAILFAST;
3426			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3427			bio_set_dev(bio, rdev->bdev);
3428			count++;
3429			rcu_read_unlock();
3430		}
3431
3432		if (count < 2) {
3433			for (i=0; i<conf->copies; i++) {
3434				int d = r10_bio->devs[i].devnum;
3435				if (r10_bio->devs[i].bio->bi_end_io)
3436					rdev_dec_pending(conf->mirrors[d].rdev,
3437							 mddev);
3438				if (r10_bio->devs[i].repl_bio &&
3439				    r10_bio->devs[i].repl_bio->bi_end_io)
3440					rdev_dec_pending(
3441						conf->mirrors[d].replacement,
3442						mddev);
3443			}
3444			put_buf(r10_bio);
3445			biolist = NULL;
3446			goto giveup;
3447		}
3448	}
3449
3450	nr_sectors = 0;
3451	if (sector_nr + max_sync < max_sector)
3452		max_sector = sector_nr + max_sync;
3453	do {
3454		struct page *page;
3455		int len = PAGE_SIZE;
3456		if (sector_nr + (len>>9) > max_sector)
3457			len = (max_sector - sector_nr) << 9;
3458		if (len == 0)
3459			break;
3460		for (bio= biolist ; bio ; bio=bio->bi_next) {
3461			struct resync_pages *rp = get_resync_pages(bio);
3462			page = resync_fetch_page(rp, page_idx);
3463			/*
3464			 * won't fail because the vec table is big enough
3465			 * to hold all these pages
3466			 */
3467			bio_add_page(bio, page, len, 0);
3468		}
3469		nr_sectors += len>>9;
3470		sector_nr += len>>9;
3471	} while (++page_idx < RESYNC_PAGES);
3472	r10_bio->sectors = nr_sectors;
3473
3474	if (mddev_is_clustered(mddev) &&
3475	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3476		/* It is resync not recovery */
3477		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3478			conf->cluster_sync_low = mddev->curr_resync_completed;
3479			raid10_set_cluster_sync_high(conf);
3480			/* Send resync message */
3481			md_cluster_ops->resync_info_update(mddev,
3482						conf->cluster_sync_low,
3483						conf->cluster_sync_high);
3484		}
3485	} else if (mddev_is_clustered(mddev)) {
3486		/* This is recovery not resync */
3487		sector_t sect_va1, sect_va2;
3488		bool broadcast_msg = false;
3489
3490		for (i = 0; i < conf->geo.raid_disks; i++) {
3491			/*
3492			 * sector_nr is a device address for recovery, so we
3493			 * need translate it to array address before compare
3494			 * with cluster_sync_high.
3495			 */
3496			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3497
3498			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3499				broadcast_msg = true;
3500				/*
3501				 * curr_resync_completed is similar as
3502				 * sector_nr, so make the translation too.
3503				 */
3504				sect_va2 = raid10_find_virt(conf,
3505					mddev->curr_resync_completed, i);
3506
3507				if (conf->cluster_sync_low == 0 ||
3508				    conf->cluster_sync_low > sect_va2)
3509					conf->cluster_sync_low = sect_va2;
3510			}
3511		}
3512		if (broadcast_msg) {
3513			raid10_set_cluster_sync_high(conf);
3514			md_cluster_ops->resync_info_update(mddev,
3515						conf->cluster_sync_low,
3516						conf->cluster_sync_high);
3517		}
3518	}
3519
3520	while (biolist) {
3521		bio = biolist;
3522		biolist = biolist->bi_next;
3523
3524		bio->bi_next = NULL;
3525		r10_bio = get_resync_r10bio(bio);
3526		r10_bio->sectors = nr_sectors;
3527
3528		if (bio->bi_end_io == end_sync_read) {
3529			md_sync_acct_bio(bio, nr_sectors);
3530			bio->bi_status = 0;
3531			generic_make_request(bio);
3532		}
3533	}
3534
3535	if (sectors_skipped)
3536		/* pretend they weren't skipped, it makes
3537		 * no important difference in this case
3538		 */
3539		md_done_sync(mddev, sectors_skipped, 1);
3540
3541	return sectors_skipped + nr_sectors;
3542 giveup:
3543	/* There is nowhere to write, so all non-sync
3544	 * drives must be failed or in resync, all drives
3545	 * have a bad block, so try the next chunk...
3546	 */
3547	if (sector_nr + max_sync < max_sector)
3548		max_sector = sector_nr + max_sync;
3549
3550	sectors_skipped += (max_sector - sector_nr);
3551	chunks_skipped ++;
3552	sector_nr = max_sector;
3553	goto skipped;
3554}
3555
3556static sector_t
3557raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3558{
3559	sector_t size;
3560	struct r10conf *conf = mddev->private;
3561
3562	if (!raid_disks)
3563		raid_disks = min(conf->geo.raid_disks,
3564				 conf->prev.raid_disks);
3565	if (!sectors)
3566		sectors = conf->dev_sectors;
3567
3568	size = sectors >> conf->geo.chunk_shift;
3569	sector_div(size, conf->geo.far_copies);
3570	size = size * raid_disks;
3571	sector_div(size, conf->geo.near_copies);
3572
3573	return size << conf->geo.chunk_shift;
3574}
3575
3576static void calc_sectors(struct r10conf *conf, sector_t size)
3577{
3578	/* Calculate the number of sectors-per-device that will
3579	 * actually be used, and set conf->dev_sectors and
3580	 * conf->stride
3581	 */
3582
3583	size = size >> conf->geo.chunk_shift;
3584	sector_div(size, conf->geo.far_copies);
3585	size = size * conf->geo.raid_disks;
3586	sector_div(size, conf->geo.near_copies);
3587	/* 'size' is now the number of chunks in the array */
3588	/* calculate "used chunks per device" */
3589	size = size * conf->copies;
3590
3591	/* We need to round up when dividing by raid_disks to
3592	 * get the stride size.
3593	 */
3594	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3595
3596	conf->dev_sectors = size << conf->geo.chunk_shift;
3597
3598	if (conf->geo.far_offset)
3599		conf->geo.stride = 1 << conf->geo.chunk_shift;
3600	else {
3601		sector_div(size, conf->geo.far_copies);
3602		conf->geo.stride = size << conf->geo.chunk_shift;
3603	}
3604}
3605
3606enum geo_type {geo_new, geo_old, geo_start};
3607static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3608{
3609	int nc, fc, fo;
3610	int layout, chunk, disks;
3611	switch (new) {
3612	case geo_old:
3613		layout = mddev->layout;
3614		chunk = mddev->chunk_sectors;
3615		disks = mddev->raid_disks - mddev->delta_disks;
3616		break;
3617	case geo_new:
3618		layout = mddev->new_layout;
3619		chunk = mddev->new_chunk_sectors;
3620		disks = mddev->raid_disks;
3621		break;
3622	default: /* avoid 'may be unused' warnings */
3623	case geo_start: /* new when starting reshape - raid_disks not
3624			 * updated yet. */
3625		layout = mddev->new_layout;
3626		chunk = mddev->new_chunk_sectors;
3627		disks = mddev->raid_disks + mddev->delta_disks;
3628		break;
3629	}
3630	if (layout >> 19)
3631		return -1;
3632	if (chunk < (PAGE_SIZE >> 9) ||
3633	    !is_power_of_2(chunk))
3634		return -2;
3635	nc = layout & 255;
3636	fc = (layout >> 8) & 255;
3637	fo = layout & (1<<16);
3638	geo->raid_disks = disks;
3639	geo->near_copies = nc;
3640	geo->far_copies = fc;
3641	geo->far_offset = fo;
3642	switch (layout >> 17) {
3643	case 0:	/* original layout.  simple but not always optimal */
3644		geo->far_set_size = disks;
3645		break;
3646	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3647		 * actually using this, but leave code here just in case.*/
3648		geo->far_set_size = disks/fc;
3649		WARN(geo->far_set_size < fc,
3650		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3651		break;
3652	case 2: /* "improved" layout fixed to match documentation */
3653		geo->far_set_size = fc * nc;
3654		break;
3655	default: /* Not a valid layout */
3656		return -1;
3657	}
3658	geo->chunk_mask = chunk - 1;
3659	geo->chunk_shift = ffz(~chunk);
3660	return nc*fc;
3661}
3662
3663static struct r10conf *setup_conf(struct mddev *mddev)
3664{
3665	struct r10conf *conf = NULL;
3666	int err = -EINVAL;
3667	struct geom geo;
3668	int copies;
3669
3670	copies = setup_geo(&geo, mddev, geo_new);
3671
3672	if (copies == -2) {
3673		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3674			mdname(mddev), PAGE_SIZE);
3675		goto out;
3676	}
3677
3678	if (copies < 2 || copies > mddev->raid_disks) {
3679		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3680			mdname(mddev), mddev->new_layout);
3681		goto out;
3682	}
3683
3684	err = -ENOMEM;
3685	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3686	if (!conf)
3687		goto out;
3688
3689	/* FIXME calc properly */
3690	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3691							    max(0,-mddev->delta_disks)),
3692				GFP_KERNEL);
3693	if (!conf->mirrors)
3694		goto out;
3695
3696	conf->tmppage = alloc_page(GFP_KERNEL);
3697	if (!conf->tmppage)
3698		goto out;
3699
3700	conf->geo = geo;
3701	conf->copies = copies;
3702	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3703					   r10bio_pool_free, conf);
3704	if (!conf->r10bio_pool)
3705		goto out;
3706
3707	conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
3708	if (!conf->bio_split)
3709		goto out;
3710
3711	calc_sectors(conf, mddev->dev_sectors);
3712	if (mddev->reshape_position == MaxSector) {
3713		conf->prev = conf->geo;
3714		conf->reshape_progress = MaxSector;
3715	} else {
3716		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3717			err = -EINVAL;
3718			goto out;
3719		}
3720		conf->reshape_progress = mddev->reshape_position;
3721		if (conf->prev.far_offset)
3722			conf->prev.stride = 1 << conf->prev.chunk_shift;
3723		else
3724			/* far_copies must be 1 */
3725			conf->prev.stride = conf->dev_sectors;
3726	}
3727	conf->reshape_safe = conf->reshape_progress;
3728	spin_lock_init(&conf->device_lock);
3729	INIT_LIST_HEAD(&conf->retry_list);
3730	INIT_LIST_HEAD(&conf->bio_end_io_list);
3731
3732	spin_lock_init(&conf->resync_lock);
3733	init_waitqueue_head(&conf->wait_barrier);
3734	atomic_set(&conf->nr_pending, 0);
3735
 
3736	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3737	if (!conf->thread)
3738		goto out;
3739
3740	conf->mddev = mddev;
3741	return conf;
3742
3743 out:
3744	if (conf) {
3745		mempool_destroy(conf->r10bio_pool);
3746		kfree(conf->mirrors);
3747		safe_put_page(conf->tmppage);
3748		if (conf->bio_split)
3749			bioset_free(conf->bio_split);
3750		kfree(conf);
3751	}
3752	return ERR_PTR(err);
3753}
3754
 
 
 
 
 
 
 
 
 
 
3755static int raid10_run(struct mddev *mddev)
3756{
3757	struct r10conf *conf;
3758	int i, disk_idx, chunk_size;
3759	struct raid10_info *disk;
3760	struct md_rdev *rdev;
3761	sector_t size;
3762	sector_t min_offset_diff = 0;
3763	int first = 1;
3764	bool discard_supported = false;
3765
3766	if (mddev_init_writes_pending(mddev) < 0)
3767		return -ENOMEM;
3768
3769	if (mddev->private == NULL) {
3770		conf = setup_conf(mddev);
3771		if (IS_ERR(conf))
3772			return PTR_ERR(conf);
3773		mddev->private = conf;
3774	}
3775	conf = mddev->private;
3776	if (!conf)
3777		goto out;
3778
3779	if (mddev_is_clustered(conf->mddev)) {
3780		int fc, fo;
3781
3782		fc = (mddev->layout >> 8) & 255;
3783		fo = mddev->layout & (1<<16);
3784		if (fc > 1 || fo > 0) {
3785			pr_err("only near layout is supported by clustered"
3786				" raid10\n");
3787			goto out_free_conf;
3788		}
3789	}
3790
3791	mddev->thread = conf->thread;
3792	conf->thread = NULL;
3793
3794	chunk_size = mddev->chunk_sectors << 9;
3795	if (mddev->queue) {
3796		blk_queue_max_discard_sectors(mddev->queue,
3797					      mddev->chunk_sectors);
3798		blk_queue_max_write_same_sectors(mddev->queue, 0);
3799		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3800		blk_queue_io_min(mddev->queue, chunk_size);
3801		if (conf->geo.raid_disks % conf->geo.near_copies)
3802			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3803		else
3804			blk_queue_io_opt(mddev->queue, chunk_size *
3805					 (conf->geo.raid_disks / conf->geo.near_copies));
3806	}
3807
3808	rdev_for_each(rdev, mddev) {
3809		long long diff;
3810
3811		disk_idx = rdev->raid_disk;
3812		if (disk_idx < 0)
3813			continue;
3814		if (disk_idx >= conf->geo.raid_disks &&
3815		    disk_idx >= conf->prev.raid_disks)
3816			continue;
3817		disk = conf->mirrors + disk_idx;
3818
3819		if (test_bit(Replacement, &rdev->flags)) {
3820			if (disk->replacement)
3821				goto out_free_conf;
3822			disk->replacement = rdev;
3823		} else {
3824			if (disk->rdev)
3825				goto out_free_conf;
3826			disk->rdev = rdev;
3827		}
3828		diff = (rdev->new_data_offset - rdev->data_offset);
3829		if (!mddev->reshape_backwards)
3830			diff = -diff;
3831		if (diff < 0)
3832			diff = 0;
3833		if (first || diff < min_offset_diff)
3834			min_offset_diff = diff;
3835
3836		if (mddev->gendisk)
3837			disk_stack_limits(mddev->gendisk, rdev->bdev,
3838					  rdev->data_offset << 9);
3839
3840		disk->head_position = 0;
3841
3842		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3843			discard_supported = true;
3844		first = 0;
3845	}
3846
3847	if (mddev->queue) {
3848		if (discard_supported)
3849			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3850						mddev->queue);
3851		else
3852			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3853						  mddev->queue);
3854	}
3855	/* need to check that every block has at least one working mirror */
3856	if (!enough(conf, -1)) {
3857		pr_err("md/raid10:%s: not enough operational mirrors.\n",
3858		       mdname(mddev));
3859		goto out_free_conf;
3860	}
3861
3862	if (conf->reshape_progress != MaxSector) {
3863		/* must ensure that shape change is supported */
3864		if (conf->geo.far_copies != 1 &&
3865		    conf->geo.far_offset == 0)
3866			goto out_free_conf;
3867		if (conf->prev.far_copies != 1 &&
3868		    conf->prev.far_offset == 0)
3869			goto out_free_conf;
3870	}
3871
3872	mddev->degraded = 0;
3873	for (i = 0;
3874	     i < conf->geo.raid_disks
3875		     || i < conf->prev.raid_disks;
3876	     i++) {
3877
3878		disk = conf->mirrors + i;
3879
3880		if (!disk->rdev && disk->replacement) {
3881			/* The replacement is all we have - use it */
3882			disk->rdev = disk->replacement;
3883			disk->replacement = NULL;
3884			clear_bit(Replacement, &disk->rdev->flags);
3885		}
3886
3887		if (!disk->rdev ||
3888		    !test_bit(In_sync, &disk->rdev->flags)) {
3889			disk->head_position = 0;
3890			mddev->degraded++;
3891			if (disk->rdev &&
3892			    disk->rdev->saved_raid_disk < 0)
3893				conf->fullsync = 1;
3894		}
 
 
 
 
 
 
 
3895		disk->recovery_disabled = mddev->recovery_disabled - 1;
3896	}
3897
3898	if (mddev->recovery_cp != MaxSector)
3899		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3900			  mdname(mddev));
3901	pr_info("md/raid10:%s: active with %d out of %d devices\n",
3902		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3903		conf->geo.raid_disks);
3904	/*
3905	 * Ok, everything is just fine now
3906	 */
3907	mddev->dev_sectors = conf->dev_sectors;
3908	size = raid10_size(mddev, 0, 0);
3909	md_set_array_sectors(mddev, size);
3910	mddev->resync_max_sectors = size;
3911	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3912
3913	if (mddev->queue) {
3914		int stripe = conf->geo.raid_disks *
3915			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3916
3917		/* Calculate max read-ahead size.
3918		 * We need to readahead at least twice a whole stripe....
3919		 * maybe...
3920		 */
3921		stripe /= conf->geo.near_copies;
3922		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3923			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3924	}
3925
3926	if (md_integrity_register(mddev))
3927		goto out_free_conf;
3928
3929	if (conf->reshape_progress != MaxSector) {
3930		unsigned long before_length, after_length;
3931
3932		before_length = ((1 << conf->prev.chunk_shift) *
3933				 conf->prev.far_copies);
3934		after_length = ((1 << conf->geo.chunk_shift) *
3935				conf->geo.far_copies);
3936
3937		if (max(before_length, after_length) > min_offset_diff) {
3938			/* This cannot work */
3939			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3940			goto out_free_conf;
3941		}
3942		conf->offset_diff = min_offset_diff;
3943
3944		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3945		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3946		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3947		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3948		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3949							"reshape");
 
 
3950	}
3951
3952	return 0;
3953
3954out_free_conf:
3955	md_unregister_thread(&mddev->thread);
3956	mempool_destroy(conf->r10bio_pool);
3957	safe_put_page(conf->tmppage);
3958	kfree(conf->mirrors);
3959	kfree(conf);
3960	mddev->private = NULL;
3961out:
3962	return -EIO;
3963}
3964
3965static void raid10_free(struct mddev *mddev, void *priv)
3966{
3967	struct r10conf *conf = priv;
3968
3969	mempool_destroy(conf->r10bio_pool);
3970	safe_put_page(conf->tmppage);
3971	kfree(conf->mirrors);
3972	kfree(conf->mirrors_old);
3973	kfree(conf->mirrors_new);
3974	if (conf->bio_split)
3975		bioset_free(conf->bio_split);
3976	kfree(conf);
3977}
3978
3979static void raid10_quiesce(struct mddev *mddev, int quiesce)
3980{
3981	struct r10conf *conf = mddev->private;
3982
3983	if (quiesce)
3984		raise_barrier(conf, 0);
3985	else
3986		lower_barrier(conf);
3987}
3988
3989static int raid10_resize(struct mddev *mddev, sector_t sectors)
3990{
3991	/* Resize of 'far' arrays is not supported.
3992	 * For 'near' and 'offset' arrays we can set the
3993	 * number of sectors used to be an appropriate multiple
3994	 * of the chunk size.
3995	 * For 'offset', this is far_copies*chunksize.
3996	 * For 'near' the multiplier is the LCM of
3997	 * near_copies and raid_disks.
3998	 * So if far_copies > 1 && !far_offset, fail.
3999	 * Else find LCM(raid_disks, near_copy)*far_copies and
4000	 * multiply by chunk_size.  Then round to this number.
4001	 * This is mostly done by raid10_size()
4002	 */
4003	struct r10conf *conf = mddev->private;
4004	sector_t oldsize, size;
4005
4006	if (mddev->reshape_position != MaxSector)
4007		return -EBUSY;
4008
4009	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4010		return -EINVAL;
4011
4012	oldsize = raid10_size(mddev, 0, 0);
4013	size = raid10_size(mddev, sectors, 0);
4014	if (mddev->external_size &&
4015	    mddev->array_sectors > size)
4016		return -EINVAL;
4017	if (mddev->bitmap) {
4018		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
4019		if (ret)
4020			return ret;
4021	}
4022	md_set_array_sectors(mddev, size);
4023	if (sectors > mddev->dev_sectors &&
4024	    mddev->recovery_cp > oldsize) {
4025		mddev->recovery_cp = oldsize;
4026		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4027	}
4028	calc_sectors(conf, sectors);
4029	mddev->dev_sectors = conf->dev_sectors;
4030	mddev->resync_max_sectors = size;
4031	return 0;
4032}
4033
4034static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4035{
4036	struct md_rdev *rdev;
4037	struct r10conf *conf;
4038
4039	if (mddev->degraded > 0) {
4040		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4041			mdname(mddev));
4042		return ERR_PTR(-EINVAL);
4043	}
4044	sector_div(size, devs);
4045
4046	/* Set new parameters */
4047	mddev->new_level = 10;
4048	/* new layout: far_copies = 1, near_copies = 2 */
4049	mddev->new_layout = (1<<8) + 2;
4050	mddev->new_chunk_sectors = mddev->chunk_sectors;
4051	mddev->delta_disks = mddev->raid_disks;
4052	mddev->raid_disks *= 2;
4053	/* make sure it will be not marked as dirty */
4054	mddev->recovery_cp = MaxSector;
4055	mddev->dev_sectors = size;
4056
4057	conf = setup_conf(mddev);
4058	if (!IS_ERR(conf)) {
4059		rdev_for_each(rdev, mddev)
4060			if (rdev->raid_disk >= 0) {
4061				rdev->new_raid_disk = rdev->raid_disk * 2;
4062				rdev->sectors = size;
4063			}
4064		conf->barrier = 1;
4065	}
4066
4067	return conf;
4068}
4069
4070static void *raid10_takeover(struct mddev *mddev)
4071{
4072	struct r0conf *raid0_conf;
4073
4074	/* raid10 can take over:
4075	 *  raid0 - providing it has only two drives
4076	 */
4077	if (mddev->level == 0) {
4078		/* for raid0 takeover only one zone is supported */
4079		raid0_conf = mddev->private;
4080		if (raid0_conf->nr_strip_zones > 1) {
4081			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4082				mdname(mddev));
4083			return ERR_PTR(-EINVAL);
4084		}
4085		return raid10_takeover_raid0(mddev,
4086			raid0_conf->strip_zone->zone_end,
4087			raid0_conf->strip_zone->nb_dev);
4088	}
4089	return ERR_PTR(-EINVAL);
4090}
4091
4092static int raid10_check_reshape(struct mddev *mddev)
4093{
4094	/* Called when there is a request to change
4095	 * - layout (to ->new_layout)
4096	 * - chunk size (to ->new_chunk_sectors)
4097	 * - raid_disks (by delta_disks)
4098	 * or when trying to restart a reshape that was ongoing.
4099	 *
4100	 * We need to validate the request and possibly allocate
4101	 * space if that might be an issue later.
4102	 *
4103	 * Currently we reject any reshape of a 'far' mode array,
4104	 * allow chunk size to change if new is generally acceptable,
4105	 * allow raid_disks to increase, and allow
4106	 * a switch between 'near' mode and 'offset' mode.
4107	 */
4108	struct r10conf *conf = mddev->private;
4109	struct geom geo;
4110
4111	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4112		return -EINVAL;
4113
4114	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4115		/* mustn't change number of copies */
4116		return -EINVAL;
4117	if (geo.far_copies > 1 && !geo.far_offset)
4118		/* Cannot switch to 'far' mode */
4119		return -EINVAL;
4120
4121	if (mddev->array_sectors & geo.chunk_mask)
4122			/* not factor of array size */
4123			return -EINVAL;
4124
4125	if (!enough(conf, -1))
4126		return -EINVAL;
4127
4128	kfree(conf->mirrors_new);
4129	conf->mirrors_new = NULL;
4130	if (mddev->delta_disks > 0) {
4131		/* allocate new 'mirrors' list */
4132		conf->mirrors_new = kzalloc(
4133			sizeof(struct raid10_info)
4134			*(mddev->raid_disks +
4135			  mddev->delta_disks),
4136			GFP_KERNEL);
4137		if (!conf->mirrors_new)
4138			return -ENOMEM;
4139	}
4140	return 0;
4141}
4142
4143/*
4144 * Need to check if array has failed when deciding whether to:
4145 *  - start an array
4146 *  - remove non-faulty devices
4147 *  - add a spare
4148 *  - allow a reshape
4149 * This determination is simple when no reshape is happening.
4150 * However if there is a reshape, we need to carefully check
4151 * both the before and after sections.
4152 * This is because some failed devices may only affect one
4153 * of the two sections, and some non-in_sync devices may
4154 * be insync in the section most affected by failed devices.
4155 */
4156static int calc_degraded(struct r10conf *conf)
4157{
4158	int degraded, degraded2;
4159	int i;
4160
4161	rcu_read_lock();
4162	degraded = 0;
4163	/* 'prev' section first */
4164	for (i = 0; i < conf->prev.raid_disks; i++) {
4165		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4166		if (!rdev || test_bit(Faulty, &rdev->flags))
4167			degraded++;
4168		else if (!test_bit(In_sync, &rdev->flags))
4169			/* When we can reduce the number of devices in
4170			 * an array, this might not contribute to
4171			 * 'degraded'.  It does now.
4172			 */
4173			degraded++;
4174	}
4175	rcu_read_unlock();
4176	if (conf->geo.raid_disks == conf->prev.raid_disks)
4177		return degraded;
4178	rcu_read_lock();
4179	degraded2 = 0;
4180	for (i = 0; i < conf->geo.raid_disks; i++) {
4181		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4182		if (!rdev || test_bit(Faulty, &rdev->flags))
4183			degraded2++;
4184		else if (!test_bit(In_sync, &rdev->flags)) {
4185			/* If reshape is increasing the number of devices,
4186			 * this section has already been recovered, so
4187			 * it doesn't contribute to degraded.
4188			 * else it does.
4189			 */
4190			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4191				degraded2++;
4192		}
4193	}
4194	rcu_read_unlock();
4195	if (degraded2 > degraded)
4196		return degraded2;
4197	return degraded;
4198}
4199
4200static int raid10_start_reshape(struct mddev *mddev)
4201{
4202	/* A 'reshape' has been requested. This commits
4203	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4204	 * This also checks if there are enough spares and adds them
4205	 * to the array.
4206	 * We currently require enough spares to make the final
4207	 * array non-degraded.  We also require that the difference
4208	 * between old and new data_offset - on each device - is
4209	 * enough that we never risk over-writing.
4210	 */
4211
4212	unsigned long before_length, after_length;
4213	sector_t min_offset_diff = 0;
4214	int first = 1;
4215	struct geom new;
4216	struct r10conf *conf = mddev->private;
4217	struct md_rdev *rdev;
4218	int spares = 0;
4219	int ret;
4220
4221	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4222		return -EBUSY;
4223
4224	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4225		return -EINVAL;
4226
4227	before_length = ((1 << conf->prev.chunk_shift) *
4228			 conf->prev.far_copies);
4229	after_length = ((1 << conf->geo.chunk_shift) *
4230			conf->geo.far_copies);
4231
4232	rdev_for_each(rdev, mddev) {
4233		if (!test_bit(In_sync, &rdev->flags)
4234		    && !test_bit(Faulty, &rdev->flags))
4235			spares++;
4236		if (rdev->raid_disk >= 0) {
4237			long long diff = (rdev->new_data_offset
4238					  - rdev->data_offset);
4239			if (!mddev->reshape_backwards)
4240				diff = -diff;
4241			if (diff < 0)
4242				diff = 0;
4243			if (first || diff < min_offset_diff)
4244				min_offset_diff = diff;
4245			first = 0;
4246		}
4247	}
4248
4249	if (max(before_length, after_length) > min_offset_diff)
4250		return -EINVAL;
4251
4252	if (spares < mddev->delta_disks)
4253		return -EINVAL;
4254
4255	conf->offset_diff = min_offset_diff;
4256	spin_lock_irq(&conf->device_lock);
4257	if (conf->mirrors_new) {
4258		memcpy(conf->mirrors_new, conf->mirrors,
4259		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4260		smp_mb();
4261		kfree(conf->mirrors_old);
4262		conf->mirrors_old = conf->mirrors;
4263		conf->mirrors = conf->mirrors_new;
4264		conf->mirrors_new = NULL;
4265	}
4266	setup_geo(&conf->geo, mddev, geo_start);
4267	smp_mb();
4268	if (mddev->reshape_backwards) {
4269		sector_t size = raid10_size(mddev, 0, 0);
4270		if (size < mddev->array_sectors) {
4271			spin_unlock_irq(&conf->device_lock);
4272			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4273				mdname(mddev));
4274			return -EINVAL;
4275		}
4276		mddev->resync_max_sectors = size;
4277		conf->reshape_progress = size;
4278	} else
4279		conf->reshape_progress = 0;
4280	conf->reshape_safe = conf->reshape_progress;
4281	spin_unlock_irq(&conf->device_lock);
4282
4283	if (mddev->delta_disks && mddev->bitmap) {
4284		ret = bitmap_resize(mddev->bitmap,
4285				    raid10_size(mddev, 0,
4286						conf->geo.raid_disks),
4287				    0, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4288		if (ret)
4289			goto abort;
 
 
 
 
 
 
4290	}
 
4291	if (mddev->delta_disks > 0) {
4292		rdev_for_each(rdev, mddev)
4293			if (rdev->raid_disk < 0 &&
4294			    !test_bit(Faulty, &rdev->flags)) {
4295				if (raid10_add_disk(mddev, rdev) == 0) {
4296					if (rdev->raid_disk >=
4297					    conf->prev.raid_disks)
4298						set_bit(In_sync, &rdev->flags);
4299					else
4300						rdev->recovery_offset = 0;
4301
4302					if (sysfs_link_rdev(mddev, rdev))
4303						/* Failure here  is OK */;
4304				}
4305			} else if (rdev->raid_disk >= conf->prev.raid_disks
4306				   && !test_bit(Faulty, &rdev->flags)) {
4307				/* This is a spare that was manually added */
4308				set_bit(In_sync, &rdev->flags);
4309			}
4310	}
4311	/* When a reshape changes the number of devices,
4312	 * ->degraded is measured against the larger of the
4313	 * pre and  post numbers.
4314	 */
4315	spin_lock_irq(&conf->device_lock);
4316	mddev->degraded = calc_degraded(conf);
4317	spin_unlock_irq(&conf->device_lock);
4318	mddev->raid_disks = conf->geo.raid_disks;
4319	mddev->reshape_position = conf->reshape_progress;
4320	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4321
4322	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4323	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4324	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4325	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4326	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4327
4328	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4329						"reshape");
4330	if (!mddev->sync_thread) {
4331		ret = -EAGAIN;
4332		goto abort;
4333	}
4334	conf->reshape_checkpoint = jiffies;
4335	md_wakeup_thread(mddev->sync_thread);
4336	md_new_event(mddev);
4337	return 0;
4338
4339abort:
4340	mddev->recovery = 0;
4341	spin_lock_irq(&conf->device_lock);
4342	conf->geo = conf->prev;
4343	mddev->raid_disks = conf->geo.raid_disks;
4344	rdev_for_each(rdev, mddev)
4345		rdev->new_data_offset = rdev->data_offset;
4346	smp_wmb();
4347	conf->reshape_progress = MaxSector;
4348	conf->reshape_safe = MaxSector;
4349	mddev->reshape_position = MaxSector;
4350	spin_unlock_irq(&conf->device_lock);
4351	return ret;
4352}
4353
4354/* Calculate the last device-address that could contain
4355 * any block from the chunk that includes the array-address 's'
4356 * and report the next address.
4357 * i.e. the address returned will be chunk-aligned and after
4358 * any data that is in the chunk containing 's'.
4359 */
4360static sector_t last_dev_address(sector_t s, struct geom *geo)
4361{
4362	s = (s | geo->chunk_mask) + 1;
4363	s >>= geo->chunk_shift;
4364	s *= geo->near_copies;
4365	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4366	s *= geo->far_copies;
4367	s <<= geo->chunk_shift;
4368	return s;
4369}
4370
4371/* Calculate the first device-address that could contain
4372 * any block from the chunk that includes the array-address 's'.
4373 * This too will be the start of a chunk
4374 */
4375static sector_t first_dev_address(sector_t s, struct geom *geo)
4376{
4377	s >>= geo->chunk_shift;
4378	s *= geo->near_copies;
4379	sector_div(s, geo->raid_disks);
4380	s *= geo->far_copies;
4381	s <<= geo->chunk_shift;
4382	return s;
4383}
4384
4385static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4386				int *skipped)
4387{
4388	/* We simply copy at most one chunk (smallest of old and new)
4389	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4390	 * or we hit a bad block or something.
4391	 * This might mean we pause for normal IO in the middle of
4392	 * a chunk, but that is not a problem as mddev->reshape_position
4393	 * can record any location.
4394	 *
4395	 * If we will want to write to a location that isn't
4396	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4397	 * we need to flush all reshape requests and update the metadata.
4398	 *
4399	 * When reshaping forwards (e.g. to more devices), we interpret
4400	 * 'safe' as the earliest block which might not have been copied
4401	 * down yet.  We divide this by previous stripe size and multiply
4402	 * by previous stripe length to get lowest device offset that we
4403	 * cannot write to yet.
4404	 * We interpret 'sector_nr' as an address that we want to write to.
4405	 * From this we use last_device_address() to find where we might
4406	 * write to, and first_device_address on the  'safe' position.
4407	 * If this 'next' write position is after the 'safe' position,
4408	 * we must update the metadata to increase the 'safe' position.
4409	 *
4410	 * When reshaping backwards, we round in the opposite direction
4411	 * and perform the reverse test:  next write position must not be
4412	 * less than current safe position.
4413	 *
4414	 * In all this the minimum difference in data offsets
4415	 * (conf->offset_diff - always positive) allows a bit of slack,
4416	 * so next can be after 'safe', but not by more than offset_diff
4417	 *
4418	 * We need to prepare all the bios here before we start any IO
4419	 * to ensure the size we choose is acceptable to all devices.
4420	 * The means one for each copy for write-out and an extra one for
4421	 * read-in.
4422	 * We store the read-in bio in ->master_bio and the others in
4423	 * ->devs[x].bio and ->devs[x].repl_bio.
4424	 */
4425	struct r10conf *conf = mddev->private;
4426	struct r10bio *r10_bio;
4427	sector_t next, safe, last;
4428	int max_sectors;
4429	int nr_sectors;
4430	int s;
4431	struct md_rdev *rdev;
4432	int need_flush = 0;
4433	struct bio *blist;
4434	struct bio *bio, *read_bio;
4435	int sectors_done = 0;
4436	struct page **pages;
4437
4438	if (sector_nr == 0) {
4439		/* If restarting in the middle, skip the initial sectors */
4440		if (mddev->reshape_backwards &&
4441		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4442			sector_nr = (raid10_size(mddev, 0, 0)
4443				     - conf->reshape_progress);
4444		} else if (!mddev->reshape_backwards &&
4445			   conf->reshape_progress > 0)
4446			sector_nr = conf->reshape_progress;
4447		if (sector_nr) {
4448			mddev->curr_resync_completed = sector_nr;
4449			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4450			*skipped = 1;
4451			return sector_nr;
4452		}
4453	}
4454
4455	/* We don't use sector_nr to track where we are up to
4456	 * as that doesn't work well for ->reshape_backwards.
4457	 * So just use ->reshape_progress.
4458	 */
4459	if (mddev->reshape_backwards) {
4460		/* 'next' is the earliest device address that we might
4461		 * write to for this chunk in the new layout
4462		 */
4463		next = first_dev_address(conf->reshape_progress - 1,
4464					 &conf->geo);
4465
4466		/* 'safe' is the last device address that we might read from
4467		 * in the old layout after a restart
4468		 */
4469		safe = last_dev_address(conf->reshape_safe - 1,
4470					&conf->prev);
4471
4472		if (next + conf->offset_diff < safe)
4473			need_flush = 1;
4474
4475		last = conf->reshape_progress - 1;
4476		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4477					       & conf->prev.chunk_mask);
4478		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4479			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4480	} else {
4481		/* 'next' is after the last device address that we
4482		 * might write to for this chunk in the new layout
4483		 */
4484		next = last_dev_address(conf->reshape_progress, &conf->geo);
4485
4486		/* 'safe' is the earliest device address that we might
4487		 * read from in the old layout after a restart
4488		 */
4489		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4490
4491		/* Need to update metadata if 'next' might be beyond 'safe'
4492		 * as that would possibly corrupt data
4493		 */
4494		if (next > safe + conf->offset_diff)
4495			need_flush = 1;
4496
4497		sector_nr = conf->reshape_progress;
4498		last  = sector_nr | (conf->geo.chunk_mask
4499				     & conf->prev.chunk_mask);
4500
4501		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4502			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4503	}
4504
4505	if (need_flush ||
4506	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4507		/* Need to update reshape_position in metadata */
4508		wait_barrier(conf);
4509		mddev->reshape_position = conf->reshape_progress;
4510		if (mddev->reshape_backwards)
4511			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4512				- conf->reshape_progress;
4513		else
4514			mddev->curr_resync_completed = conf->reshape_progress;
4515		conf->reshape_checkpoint = jiffies;
4516		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4517		md_wakeup_thread(mddev->thread);
4518		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4519			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4520		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4521			allow_barrier(conf);
4522			return sectors_done;
4523		}
4524		conf->reshape_safe = mddev->reshape_position;
4525		allow_barrier(conf);
4526	}
4527
 
4528read_more:
4529	/* Now schedule reads for blocks from sector_nr to last */
4530	r10_bio = raid10_alloc_init_r10buf(conf);
4531	r10_bio->state = 0;
4532	raise_barrier(conf, sectors_done != 0);
4533	atomic_set(&r10_bio->remaining, 0);
4534	r10_bio->mddev = mddev;
4535	r10_bio->sector = sector_nr;
4536	set_bit(R10BIO_IsReshape, &r10_bio->state);
4537	r10_bio->sectors = last - sector_nr + 1;
4538	rdev = read_balance(conf, r10_bio, &max_sectors);
4539	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4540
4541	if (!rdev) {
4542		/* Cannot read from here, so need to record bad blocks
4543		 * on all the target devices.
4544		 */
4545		// FIXME
4546		mempool_free(r10_bio, conf->r10buf_pool);
4547		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4548		return sectors_done;
4549	}
4550
4551	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4552
4553	bio_set_dev(read_bio, rdev->bdev);
4554	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4555			       + rdev->data_offset);
4556	read_bio->bi_private = r10_bio;
4557	read_bio->bi_end_io = end_reshape_read;
4558	bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4559	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4560	read_bio->bi_status = 0;
4561	read_bio->bi_vcnt = 0;
4562	read_bio->bi_iter.bi_size = 0;
4563	r10_bio->master_bio = read_bio;
4564	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4566	/* Now find the locations in the new layout */
4567	__raid10_find_phys(&conf->geo, r10_bio);
4568
4569	blist = read_bio;
4570	read_bio->bi_next = NULL;
4571
4572	rcu_read_lock();
4573	for (s = 0; s < conf->copies*2; s++) {
4574		struct bio *b;
4575		int d = r10_bio->devs[s/2].devnum;
4576		struct md_rdev *rdev2;
4577		if (s&1) {
4578			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4579			b = r10_bio->devs[s/2].repl_bio;
4580		} else {
4581			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4582			b = r10_bio->devs[s/2].bio;
4583		}
4584		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4585			continue;
4586
4587		bio_set_dev(b, rdev2->bdev);
4588		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4589			rdev2->new_data_offset;
4590		b->bi_end_io = end_reshape_write;
4591		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4592		b->bi_next = blist;
4593		blist = b;
4594	}
4595
4596	/* Now add as many pages as possible to all of these bios. */
4597
4598	nr_sectors = 0;
4599	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4600	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4601		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4602		int len = (max_sectors - s) << 9;
4603		if (len > PAGE_SIZE)
4604			len = PAGE_SIZE;
4605		for (bio = blist; bio ; bio = bio->bi_next) {
4606			/*
4607			 * won't fail because the vec table is big enough
4608			 * to hold all these pages
4609			 */
4610			bio_add_page(bio, page, len, 0);
4611		}
4612		sector_nr += len >> 9;
4613		nr_sectors += len >> 9;
4614	}
4615	rcu_read_unlock();
4616	r10_bio->sectors = nr_sectors;
4617
4618	/* Now submit the read */
4619	md_sync_acct_bio(read_bio, r10_bio->sectors);
4620	atomic_inc(&r10_bio->remaining);
4621	read_bio->bi_next = NULL;
4622	generic_make_request(read_bio);
4623	sector_nr += nr_sectors;
4624	sectors_done += nr_sectors;
4625	if (sector_nr <= last)
4626		goto read_more;
4627
 
 
4628	/* Now that we have done the whole section we can
4629	 * update reshape_progress
4630	 */
4631	if (mddev->reshape_backwards)
4632		conf->reshape_progress -= sectors_done;
4633	else
4634		conf->reshape_progress += sectors_done;
4635
4636	return sectors_done;
4637}
4638
4639static void end_reshape_request(struct r10bio *r10_bio);
4640static int handle_reshape_read_error(struct mddev *mddev,
4641				     struct r10bio *r10_bio);
4642static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4643{
4644	/* Reshape read completed.  Hopefully we have a block
4645	 * to write out.
4646	 * If we got a read error then we do sync 1-page reads from
4647	 * elsewhere until we find the data - or give up.
4648	 */
4649	struct r10conf *conf = mddev->private;
4650	int s;
4651
4652	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4653		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4654			/* Reshape has been aborted */
4655			md_done_sync(mddev, r10_bio->sectors, 0);
4656			return;
4657		}
4658
4659	/* We definitely have the data in the pages, schedule the
4660	 * writes.
4661	 */
4662	atomic_set(&r10_bio->remaining, 1);
4663	for (s = 0; s < conf->copies*2; s++) {
4664		struct bio *b;
4665		int d = r10_bio->devs[s/2].devnum;
4666		struct md_rdev *rdev;
4667		rcu_read_lock();
4668		if (s&1) {
4669			rdev = rcu_dereference(conf->mirrors[d].replacement);
4670			b = r10_bio->devs[s/2].repl_bio;
4671		} else {
4672			rdev = rcu_dereference(conf->mirrors[d].rdev);
4673			b = r10_bio->devs[s/2].bio;
4674		}
4675		if (!rdev || test_bit(Faulty, &rdev->flags)) {
4676			rcu_read_unlock();
4677			continue;
4678		}
4679		atomic_inc(&rdev->nr_pending);
4680		rcu_read_unlock();
4681		md_sync_acct_bio(b, r10_bio->sectors);
4682		atomic_inc(&r10_bio->remaining);
4683		b->bi_next = NULL;
4684		generic_make_request(b);
4685	}
4686	end_reshape_request(r10_bio);
4687}
4688
4689static void end_reshape(struct r10conf *conf)
4690{
4691	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4692		return;
4693
4694	spin_lock_irq(&conf->device_lock);
4695	conf->prev = conf->geo;
4696	md_finish_reshape(conf->mddev);
4697	smp_wmb();
4698	conf->reshape_progress = MaxSector;
4699	conf->reshape_safe = MaxSector;
4700	spin_unlock_irq(&conf->device_lock);
4701
4702	/* read-ahead size must cover two whole stripes, which is
4703	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4704	 */
4705	if (conf->mddev->queue) {
4706		int stripe = conf->geo.raid_disks *
4707			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4708		stripe /= conf->geo.near_copies;
4709		if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4710			conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4711	}
4712	conf->fullsync = 0;
4713}
4714
 
 
 
 
 
 
 
 
 
 
 
 
 
4715static int handle_reshape_read_error(struct mddev *mddev,
4716				     struct r10bio *r10_bio)
4717{
4718	/* Use sync reads to get the blocks from somewhere else */
4719	int sectors = r10_bio->sectors;
4720	struct r10conf *conf = mddev->private;
4721	struct r10bio *r10b;
4722	int slot = 0;
4723	int idx = 0;
4724	struct page **pages;
4725
4726	r10b = kmalloc(sizeof(*r10b) +
4727	       sizeof(struct r10dev) * conf->copies, GFP_NOIO);
4728	if (!r10b) {
4729		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4730		return -ENOMEM;
4731	}
4732
4733	/* reshape IOs share pages from .devs[0].bio */
4734	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4735
4736	r10b->sector = r10_bio->sector;
4737	__raid10_find_phys(&conf->prev, r10b);
4738
4739	while (sectors) {
4740		int s = sectors;
4741		int success = 0;
4742		int first_slot = slot;
4743
4744		if (s > (PAGE_SIZE >> 9))
4745			s = PAGE_SIZE >> 9;
4746
4747		rcu_read_lock();
4748		while (!success) {
4749			int d = r10b->devs[slot].devnum;
4750			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4751			sector_t addr;
4752			if (rdev == NULL ||
4753			    test_bit(Faulty, &rdev->flags) ||
4754			    !test_bit(In_sync, &rdev->flags))
4755				goto failed;
4756
4757			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4758			atomic_inc(&rdev->nr_pending);
4759			rcu_read_unlock();
4760			success = sync_page_io(rdev,
4761					       addr,
4762					       s << 9,
4763					       pages[idx],
4764					       REQ_OP_READ, 0, false);
4765			rdev_dec_pending(rdev, mddev);
4766			rcu_read_lock();
4767			if (success)
4768				break;
4769		failed:
4770			slot++;
4771			if (slot >= conf->copies)
4772				slot = 0;
4773			if (slot == first_slot)
4774				break;
4775		}
4776		rcu_read_unlock();
4777		if (!success) {
4778			/* couldn't read this block, must give up */
4779			set_bit(MD_RECOVERY_INTR,
4780				&mddev->recovery);
4781			kfree(r10b);
4782			return -EIO;
4783		}
4784		sectors -= s;
4785		idx++;
4786	}
4787	kfree(r10b);
4788	return 0;
4789}
4790
4791static void end_reshape_write(struct bio *bio)
4792{
4793	struct r10bio *r10_bio = get_resync_r10bio(bio);
4794	struct mddev *mddev = r10_bio->mddev;
4795	struct r10conf *conf = mddev->private;
4796	int d;
4797	int slot;
4798	int repl;
4799	struct md_rdev *rdev = NULL;
4800
4801	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4802	if (repl)
4803		rdev = conf->mirrors[d].replacement;
4804	if (!rdev) {
4805		smp_mb();
4806		rdev = conf->mirrors[d].rdev;
4807	}
4808
4809	if (bio->bi_status) {
4810		/* FIXME should record badblock */
4811		md_error(mddev, rdev);
4812	}
4813
4814	rdev_dec_pending(rdev, mddev);
4815	end_reshape_request(r10_bio);
4816}
4817
4818static void end_reshape_request(struct r10bio *r10_bio)
4819{
4820	if (!atomic_dec_and_test(&r10_bio->remaining))
4821		return;
4822	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4823	bio_put(r10_bio->master_bio);
4824	put_buf(r10_bio);
4825}
4826
4827static void raid10_finish_reshape(struct mddev *mddev)
4828{
4829	struct r10conf *conf = mddev->private;
4830
4831	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4832		return;
4833
4834	if (mddev->delta_disks > 0) {
4835		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4836			mddev->recovery_cp = mddev->resync_max_sectors;
4837			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4838		}
4839		mddev->resync_max_sectors = mddev->array_sectors;
4840	} else {
4841		int d;
4842		rcu_read_lock();
4843		for (d = conf->geo.raid_disks ;
4844		     d < conf->geo.raid_disks - mddev->delta_disks;
4845		     d++) {
4846			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4847			if (rdev)
4848				clear_bit(In_sync, &rdev->flags);
4849			rdev = rcu_dereference(conf->mirrors[d].replacement);
4850			if (rdev)
4851				clear_bit(In_sync, &rdev->flags);
4852		}
4853		rcu_read_unlock();
4854	}
4855	mddev->layout = mddev->new_layout;
4856	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4857	mddev->reshape_position = MaxSector;
4858	mddev->delta_disks = 0;
4859	mddev->reshape_backwards = 0;
4860}
4861
4862static struct md_personality raid10_personality =
4863{
4864	.name		= "raid10",
4865	.level		= 10,
4866	.owner		= THIS_MODULE,
4867	.make_request	= raid10_make_request,
4868	.run		= raid10_run,
4869	.free		= raid10_free,
4870	.status		= raid10_status,
4871	.error_handler	= raid10_error,
4872	.hot_add_disk	= raid10_add_disk,
4873	.hot_remove_disk= raid10_remove_disk,
4874	.spare_active	= raid10_spare_active,
4875	.sync_request	= raid10_sync_request,
4876	.quiesce	= raid10_quiesce,
4877	.size		= raid10_size,
4878	.resize		= raid10_resize,
4879	.takeover	= raid10_takeover,
4880	.check_reshape	= raid10_check_reshape,
4881	.start_reshape	= raid10_start_reshape,
4882	.finish_reshape	= raid10_finish_reshape,
4883	.congested	= raid10_congested,
4884};
4885
4886static int __init raid_init(void)
4887{
4888	return register_md_personality(&raid10_personality);
4889}
4890
4891static void raid_exit(void)
4892{
4893	unregister_md_personality(&raid10_personality);
4894}
4895
4896module_init(raid_init);
4897module_exit(raid_exit);
4898MODULE_LICENSE("GPL");
4899MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4900MODULE_ALIAS("md-personality-9"); /* RAID10 */
4901MODULE_ALIAS("md-raid10");
4902MODULE_ALIAS("md-level-10");
4903
4904module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);