Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * raid10.c : Multiple Devices driver for Linux
   4 *
   5 * Copyright (C) 2000-2004 Neil Brown
   6 *
   7 * RAID-10 support for md.
   8 *
   9 * Base on code in raid1.c.  See raid1.c for further copyright information.
  10 */
  11
  12#include <linux/slab.h>
  13#include <linux/delay.h>
  14#include <linux/blkdev.h>
  15#include <linux/module.h>
  16#include <linux/seq_file.h>
  17#include <linux/ratelimit.h>
  18#include <linux/kthread.h>
  19#include <linux/raid/md_p.h>
  20#include <trace/events/block.h>
  21#include "md.h"
  22#include "raid10.h"
  23#include "raid0.h"
  24#include "md-bitmap.h"
  25
  26/*
  27 * RAID10 provides a combination of RAID0 and RAID1 functionality.
  28 * The layout of data is defined by
  29 *    chunk_size
  30 *    raid_disks
  31 *    near_copies (stored in low byte of layout)
  32 *    far_copies (stored in second byte of layout)
  33 *    far_offset (stored in bit 16 of layout )
  34 *    use_far_sets (stored in bit 17 of layout )
  35 *    use_far_sets_bugfixed (stored in bit 18 of layout )
  36 *
  37 * The data to be stored is divided into chunks using chunksize.  Each device
  38 * is divided into far_copies sections.   In each section, chunks are laid out
  39 * in a style similar to raid0, but near_copies copies of each chunk is stored
  40 * (each on a different drive).  The starting device for each section is offset
  41 * near_copies from the starting device of the previous section.  Thus there
  42 * are (near_copies * far_copies) of each chunk, and each is on a different
  43 * drive.  near_copies and far_copies must be at least one, and their product
  44 * is at most raid_disks.
  45 *
  46 * If far_offset is true, then the far_copies are handled a bit differently.
  47 * The copies are still in different stripes, but instead of being very far
  48 * apart on disk, there are adjacent stripes.
  49 *
  50 * The far and offset algorithms are handled slightly differently if
  51 * 'use_far_sets' is true.  In this case, the array's devices are grouped into
  52 * sets that are (near_copies * far_copies) in size.  The far copied stripes
  53 * are still shifted by 'near_copies' devices, but this shifting stays confined
  54 * to the set rather than the entire array.  This is done to improve the number
  55 * of device combinations that can fail without causing the array to fail.
  56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
  57 * on a device):
  58 *    A B C D    A B C D E
  59 *      ...         ...
  60 *    D A B C    E A B C D
  61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
  62 *    [A B] [C D]    [A B] [C D E]
  63 *    |...| |...|    |...| | ... |
  64 *    [B A] [D C]    [B A] [E C D]
  65 */
  66
  67static void allow_barrier(struct r10conf *conf);
  68static void lower_barrier(struct r10conf *conf);
  69static int _enough(struct r10conf *conf, int previous, int ignore);
  70static int enough(struct r10conf *conf, int ignore);
  71static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
  72				int *skipped);
  73static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
  74static void end_reshape_write(struct bio *bio);
  75static void end_reshape(struct r10conf *conf);
  76
  77#define raid10_log(md, fmt, args...)				\
  78	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
  79
  80#include "raid1-10.c"
  81
  82#define NULL_CMD
  83#define cmd_before(conf, cmd) \
  84	do { \
  85		write_sequnlock_irq(&(conf)->resync_lock); \
  86		cmd; \
  87	} while (0)
  88#define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
  89
  90#define wait_event_barrier_cmd(conf, cond, cmd) \
  91	wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
  92		       cmd_after(conf))
  93
  94#define wait_event_barrier(conf, cond) \
  95	wait_event_barrier_cmd(conf, cond, NULL_CMD)
  96
  97/*
  98 * for resync bio, r10bio pointer can be retrieved from the per-bio
  99 * 'struct resync_pages'.
 100 */
 101static inline struct r10bio *get_resync_r10bio(struct bio *bio)
 102{
 103	return get_resync_pages(bio)->raid_bio;
 104}
 105
 106static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
 107{
 108	struct r10conf *conf = data;
 109	int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
 110
 111	/* allocate a r10bio with room for raid_disks entries in the
 112	 * bios array */
 113	return kzalloc(size, gfp_flags);
 114}
 115
 116#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 117/* amount of memory to reserve for resync requests */
 118#define RESYNC_WINDOW (1024*1024)
 119/* maximum number of concurrent requests, memory permitting */
 120#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
 121#define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
 122#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 123
 124/*
 125 * When performing a resync, we need to read and compare, so
 126 * we need as many pages are there are copies.
 127 * When performing a recovery, we need 2 bios, one for read,
 128 * one for write (we recover only one drive per r10buf)
 129 *
 130 */
 131static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
 132{
 133	struct r10conf *conf = data;
 134	struct r10bio *r10_bio;
 135	struct bio *bio;
 136	int j;
 137	int nalloc, nalloc_rp;
 138	struct resync_pages *rps;
 139
 140	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 141	if (!r10_bio)
 142		return NULL;
 143
 144	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
 145	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
 146		nalloc = conf->copies; /* resync */
 147	else
 148		nalloc = 2; /* recovery */
 149
 150	/* allocate once for all bios */
 151	if (!conf->have_replacement)
 152		nalloc_rp = nalloc;
 153	else
 154		nalloc_rp = nalloc * 2;
 155	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
 156	if (!rps)
 157		goto out_free_r10bio;
 158
 159	/*
 160	 * Allocate bios.
 161	 */
 162	for (j = nalloc ; j-- ; ) {
 163		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
 164		if (!bio)
 165			goto out_free_bio;
 166		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
 167		r10_bio->devs[j].bio = bio;
 168		if (!conf->have_replacement)
 169			continue;
 170		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
 171		if (!bio)
 172			goto out_free_bio;
 173		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
 174		r10_bio->devs[j].repl_bio = bio;
 175	}
 176	/*
 177	 * Allocate RESYNC_PAGES data pages and attach them
 178	 * where needed.
 179	 */
 180	for (j = 0; j < nalloc; j++) {
 181		struct bio *rbio = r10_bio->devs[j].repl_bio;
 182		struct resync_pages *rp, *rp_repl;
 183
 184		rp = &rps[j];
 185		if (rbio)
 186			rp_repl = &rps[nalloc + j];
 187
 188		bio = r10_bio->devs[j].bio;
 189
 190		if (!j || test_bit(MD_RECOVERY_SYNC,
 191				   &conf->mddev->recovery)) {
 192			if (resync_alloc_pages(rp, gfp_flags))
 193				goto out_free_pages;
 194		} else {
 195			memcpy(rp, &rps[0], sizeof(*rp));
 196			resync_get_all_pages(rp);
 197		}
 198
 199		rp->raid_bio = r10_bio;
 200		bio->bi_private = rp;
 201		if (rbio) {
 202			memcpy(rp_repl, rp, sizeof(*rp));
 203			rbio->bi_private = rp_repl;
 204		}
 205	}
 206
 207	return r10_bio;
 208
 209out_free_pages:
 210	while (--j >= 0)
 211		resync_free_pages(&rps[j]);
 212
 213	j = 0;
 214out_free_bio:
 215	for ( ; j < nalloc; j++) {
 216		if (r10_bio->devs[j].bio)
 217			bio_uninit(r10_bio->devs[j].bio);
 218		kfree(r10_bio->devs[j].bio);
 219		if (r10_bio->devs[j].repl_bio)
 220			bio_uninit(r10_bio->devs[j].repl_bio);
 221		kfree(r10_bio->devs[j].repl_bio);
 222	}
 223	kfree(rps);
 224out_free_r10bio:
 225	rbio_pool_free(r10_bio, conf);
 226	return NULL;
 227}
 228
 229static void r10buf_pool_free(void *__r10_bio, void *data)
 230{
 231	struct r10conf *conf = data;
 232	struct r10bio *r10bio = __r10_bio;
 233	int j;
 234	struct resync_pages *rp = NULL;
 235
 236	for (j = conf->copies; j--; ) {
 237		struct bio *bio = r10bio->devs[j].bio;
 238
 239		if (bio) {
 240			rp = get_resync_pages(bio);
 241			resync_free_pages(rp);
 242			bio_uninit(bio);
 243			kfree(bio);
 244		}
 245
 246		bio = r10bio->devs[j].repl_bio;
 247		if (bio) {
 248			bio_uninit(bio);
 249			kfree(bio);
 250		}
 251	}
 252
 253	/* resync pages array stored in the 1st bio's .bi_private */
 254	kfree(rp);
 255
 256	rbio_pool_free(r10bio, conf);
 257}
 258
 259static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
 260{
 261	int i;
 262
 263	for (i = 0; i < conf->geo.raid_disks; i++) {
 264		struct bio **bio = & r10_bio->devs[i].bio;
 265		if (!BIO_SPECIAL(*bio))
 266			bio_put(*bio);
 267		*bio = NULL;
 268		bio = &r10_bio->devs[i].repl_bio;
 269		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
 270			bio_put(*bio);
 271		*bio = NULL;
 272	}
 273}
 274
 275static void free_r10bio(struct r10bio *r10_bio)
 276{
 277	struct r10conf *conf = r10_bio->mddev->private;
 278
 279	put_all_bios(conf, r10_bio);
 280	mempool_free(r10_bio, &conf->r10bio_pool);
 281}
 282
 283static void put_buf(struct r10bio *r10_bio)
 284{
 285	struct r10conf *conf = r10_bio->mddev->private;
 286
 287	mempool_free(r10_bio, &conf->r10buf_pool);
 288
 289	lower_barrier(conf);
 290}
 291
 292static void wake_up_barrier(struct r10conf *conf)
 293{
 294	if (wq_has_sleeper(&conf->wait_barrier))
 295		wake_up(&conf->wait_barrier);
 296}
 297
 298static void reschedule_retry(struct r10bio *r10_bio)
 299{
 300	unsigned long flags;
 301	struct mddev *mddev = r10_bio->mddev;
 302	struct r10conf *conf = mddev->private;
 303
 304	spin_lock_irqsave(&conf->device_lock, flags);
 305	list_add(&r10_bio->retry_list, &conf->retry_list);
 306	conf->nr_queued ++;
 307	spin_unlock_irqrestore(&conf->device_lock, flags);
 308
 309	/* wake up frozen array... */
 310	wake_up(&conf->wait_barrier);
 311
 312	md_wakeup_thread(mddev->thread);
 313}
 314
 315/*
 316 * raid_end_bio_io() is called when we have finished servicing a mirrored
 317 * operation and are ready to return a success/failure code to the buffer
 318 * cache layer.
 319 */
 320static void raid_end_bio_io(struct r10bio *r10_bio)
 321{
 322	struct bio *bio = r10_bio->master_bio;
 323	struct r10conf *conf = r10_bio->mddev->private;
 324
 325	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 326		bio->bi_status = BLK_STS_IOERR;
 327
 328	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
 329		bio_end_io_acct(bio, r10_bio->start_time);
 330	bio_endio(bio);
 331	/*
 332	 * Wake up any possible resync thread that waits for the device
 333	 * to go idle.
 334	 */
 335	allow_barrier(conf);
 336
 337	free_r10bio(r10_bio);
 338}
 339
 340/*
 341 * Update disk head position estimator based on IRQ completion info.
 342 */
 343static inline void update_head_pos(int slot, struct r10bio *r10_bio)
 344{
 345	struct r10conf *conf = r10_bio->mddev->private;
 346
 347	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 348		r10_bio->devs[slot].addr + (r10_bio->sectors);
 349}
 350
 351/*
 352 * Find the disk number which triggered given bio
 353 */
 354static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
 355			 struct bio *bio, int *slotp, int *replp)
 356{
 357	int slot;
 358	int repl = 0;
 359
 360	for (slot = 0; slot < conf->geo.raid_disks; slot++) {
 361		if (r10_bio->devs[slot].bio == bio)
 362			break;
 363		if (r10_bio->devs[slot].repl_bio == bio) {
 364			repl = 1;
 365			break;
 366		}
 367	}
 368
 369	update_head_pos(slot, r10_bio);
 370
 371	if (slotp)
 372		*slotp = slot;
 373	if (replp)
 374		*replp = repl;
 375	return r10_bio->devs[slot].devnum;
 376}
 377
 378static void raid10_end_read_request(struct bio *bio)
 379{
 380	int uptodate = !bio->bi_status;
 381	struct r10bio *r10_bio = bio->bi_private;
 382	int slot;
 383	struct md_rdev *rdev;
 384	struct r10conf *conf = r10_bio->mddev->private;
 385
 386	slot = r10_bio->read_slot;
 387	rdev = r10_bio->devs[slot].rdev;
 388	/*
 389	 * this branch is our 'one mirror IO has finished' event handler:
 390	 */
 391	update_head_pos(slot, r10_bio);
 392
 393	if (uptodate) {
 394		/*
 395		 * Set R10BIO_Uptodate in our master bio, so that
 396		 * we will return a good error code to the higher
 397		 * levels even if IO on some other mirrored buffer fails.
 398		 *
 399		 * The 'master' represents the composite IO operation to
 400		 * user-side. So if something waits for IO, then it will
 401		 * wait for the 'master' bio.
 402		 */
 403		set_bit(R10BIO_Uptodate, &r10_bio->state);
 404	} else {
 405		/* If all other devices that store this block have
 406		 * failed, we want to return the error upwards rather
 407		 * than fail the last device.  Here we redefine
 408		 * "uptodate" to mean "Don't want to retry"
 409		 */
 410		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
 411			     rdev->raid_disk))
 412			uptodate = 1;
 413	}
 414	if (uptodate) {
 415		raid_end_bio_io(r10_bio);
 416		rdev_dec_pending(rdev, conf->mddev);
 417	} else {
 418		/*
 419		 * oops, read error - keep the refcount on the rdev
 420		 */
 421		pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
 
 422				   mdname(conf->mddev),
 423				   rdev->bdev,
 424				   (unsigned long long)r10_bio->sector);
 425		set_bit(R10BIO_ReadError, &r10_bio->state);
 426		reschedule_retry(r10_bio);
 427	}
 428}
 429
 430static void close_write(struct r10bio *r10_bio)
 431{
 432	/* clear the bitmap if all writes complete successfully */
 433	md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 434			   r10_bio->sectors,
 435			   !test_bit(R10BIO_Degraded, &r10_bio->state),
 436			   0);
 437	md_write_end(r10_bio->mddev);
 438}
 439
 440static void one_write_done(struct r10bio *r10_bio)
 441{
 442	if (atomic_dec_and_test(&r10_bio->remaining)) {
 443		if (test_bit(R10BIO_WriteError, &r10_bio->state))
 444			reschedule_retry(r10_bio);
 445		else {
 446			close_write(r10_bio);
 447			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
 448				reschedule_retry(r10_bio);
 449			else
 450				raid_end_bio_io(r10_bio);
 451		}
 452	}
 453}
 454
 455static void raid10_end_write_request(struct bio *bio)
 456{
 457	struct r10bio *r10_bio = bio->bi_private;
 458	int dev;
 459	int dec_rdev = 1;
 460	struct r10conf *conf = r10_bio->mddev->private;
 461	int slot, repl;
 462	struct md_rdev *rdev = NULL;
 463	struct bio *to_put = NULL;
 464	bool discard_error;
 465
 466	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 467
 468	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 469
 470	if (repl)
 471		rdev = conf->mirrors[dev].replacement;
 472	if (!rdev) {
 473		smp_rmb();
 474		repl = 0;
 475		rdev = conf->mirrors[dev].rdev;
 476	}
 477	/*
 478	 * this branch is our 'one mirror IO has finished' event handler:
 479	 */
 480	if (bio->bi_status && !discard_error) {
 481		if (repl)
 482			/* Never record new bad blocks to replacement,
 483			 * just fail it.
 484			 */
 485			md_error(rdev->mddev, rdev);
 486		else {
 487			set_bit(WriteErrorSeen,	&rdev->flags);
 488			if (!test_and_set_bit(WantReplacement, &rdev->flags))
 489				set_bit(MD_RECOVERY_NEEDED,
 490					&rdev->mddev->recovery);
 491
 492			dec_rdev = 0;
 493			if (test_bit(FailFast, &rdev->flags) &&
 494			    (bio->bi_opf & MD_FAILFAST)) {
 495				md_error(rdev->mddev, rdev);
 496			}
 497
 498			/*
 499			 * When the device is faulty, it is not necessary to
 500			 * handle write error.
 501			 */
 502			if (!test_bit(Faulty, &rdev->flags))
 503				set_bit(R10BIO_WriteError, &r10_bio->state);
 504			else {
 505				/* Fail the request */
 506				set_bit(R10BIO_Degraded, &r10_bio->state);
 507				r10_bio->devs[slot].bio = NULL;
 508				to_put = bio;
 509				dec_rdev = 1;
 510			}
 511		}
 512	} else {
 513		/*
 514		 * Set R10BIO_Uptodate in our master bio, so that
 515		 * we will return a good error code for to the higher
 516		 * levels even if IO on some other mirrored buffer fails.
 517		 *
 518		 * The 'master' represents the composite IO operation to
 519		 * user-side. So if something waits for IO, then it will
 520		 * wait for the 'master' bio.
 521		 */
 522		sector_t first_bad;
 523		int bad_sectors;
 524
 525		/*
 526		 * Do not set R10BIO_Uptodate if the current device is
 527		 * rebuilding or Faulty. This is because we cannot use
 528		 * such device for properly reading the data back (we could
 529		 * potentially use it, if the current write would have felt
 530		 * before rdev->recovery_offset, but for simplicity we don't
 531		 * check this here.
 532		 */
 533		if (test_bit(In_sync, &rdev->flags) &&
 534		    !test_bit(Faulty, &rdev->flags))
 535			set_bit(R10BIO_Uptodate, &r10_bio->state);
 536
 537		/* Maybe we can clear some bad blocks. */
 538		if (is_badblock(rdev,
 539				r10_bio->devs[slot].addr,
 540				r10_bio->sectors,
 541				&first_bad, &bad_sectors) && !discard_error) {
 542			bio_put(bio);
 543			if (repl)
 544				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
 545			else
 546				r10_bio->devs[slot].bio = IO_MADE_GOOD;
 547			dec_rdev = 0;
 548			set_bit(R10BIO_MadeGood, &r10_bio->state);
 549		}
 550	}
 551
 552	/*
 553	 *
 554	 * Let's see if all mirrored write operations have finished
 555	 * already.
 556	 */
 557	one_write_done(r10_bio);
 558	if (dec_rdev)
 559		rdev_dec_pending(rdev, conf->mddev);
 560	if (to_put)
 561		bio_put(to_put);
 562}
 563
 564/*
 565 * RAID10 layout manager
 566 * As well as the chunksize and raid_disks count, there are two
 567 * parameters: near_copies and far_copies.
 568 * near_copies * far_copies must be <= raid_disks.
 569 * Normally one of these will be 1.
 570 * If both are 1, we get raid0.
 571 * If near_copies == raid_disks, we get raid1.
 572 *
 573 * Chunks are laid out in raid0 style with near_copies copies of the
 574 * first chunk, followed by near_copies copies of the next chunk and
 575 * so on.
 576 * If far_copies > 1, then after 1/far_copies of the array has been assigned
 577 * as described above, we start again with a device offset of near_copies.
 578 * So we effectively have another copy of the whole array further down all
 579 * the drives, but with blocks on different drives.
 580 * With this layout, and block is never stored twice on the one device.
 581 *
 582 * raid10_find_phys finds the sector offset of a given virtual sector
 583 * on each device that it is on.
 584 *
 585 * raid10_find_virt does the reverse mapping, from a device and a
 586 * sector offset to a virtual address
 587 */
 588
 589static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
 590{
 591	int n,f;
 592	sector_t sector;
 593	sector_t chunk;
 594	sector_t stripe;
 595	int dev;
 596	int slot = 0;
 597	int last_far_set_start, last_far_set_size;
 598
 599	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 600	last_far_set_start *= geo->far_set_size;
 601
 602	last_far_set_size = geo->far_set_size;
 603	last_far_set_size += (geo->raid_disks % geo->far_set_size);
 604
 605	/* now calculate first sector/dev */
 606	chunk = r10bio->sector >> geo->chunk_shift;
 607	sector = r10bio->sector & geo->chunk_mask;
 608
 609	chunk *= geo->near_copies;
 610	stripe = chunk;
 611	dev = sector_div(stripe, geo->raid_disks);
 612	if (geo->far_offset)
 613		stripe *= geo->far_copies;
 614
 615	sector += stripe << geo->chunk_shift;
 616
 617	/* and calculate all the others */
 618	for (n = 0; n < geo->near_copies; n++) {
 619		int d = dev;
 620		int set;
 621		sector_t s = sector;
 622		r10bio->devs[slot].devnum = d;
 623		r10bio->devs[slot].addr = s;
 624		slot++;
 625
 626		for (f = 1; f < geo->far_copies; f++) {
 627			set = d / geo->far_set_size;
 628			d += geo->near_copies;
 629
 630			if ((geo->raid_disks % geo->far_set_size) &&
 631			    (d > last_far_set_start)) {
 632				d -= last_far_set_start;
 633				d %= last_far_set_size;
 634				d += last_far_set_start;
 635			} else {
 636				d %= geo->far_set_size;
 637				d += geo->far_set_size * set;
 638			}
 639			s += geo->stride;
 640			r10bio->devs[slot].devnum = d;
 641			r10bio->devs[slot].addr = s;
 642			slot++;
 643		}
 644		dev++;
 645		if (dev >= geo->raid_disks) {
 646			dev = 0;
 647			sector += (geo->chunk_mask + 1);
 648		}
 649	}
 650}
 651
 652static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
 653{
 654	struct geom *geo = &conf->geo;
 655
 656	if (conf->reshape_progress != MaxSector &&
 657	    ((r10bio->sector >= conf->reshape_progress) !=
 658	     conf->mddev->reshape_backwards)) {
 659		set_bit(R10BIO_Previous, &r10bio->state);
 660		geo = &conf->prev;
 661	} else
 662		clear_bit(R10BIO_Previous, &r10bio->state);
 663
 664	__raid10_find_phys(geo, r10bio);
 665}
 666
 667static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
 668{
 669	sector_t offset, chunk, vchunk;
 670	/* Never use conf->prev as this is only called during resync
 671	 * or recovery, so reshape isn't happening
 672	 */
 673	struct geom *geo = &conf->geo;
 674	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
 675	int far_set_size = geo->far_set_size;
 676	int last_far_set_start;
 677
 678	if (geo->raid_disks % geo->far_set_size) {
 679		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 680		last_far_set_start *= geo->far_set_size;
 681
 682		if (dev >= last_far_set_start) {
 683			far_set_size = geo->far_set_size;
 684			far_set_size += (geo->raid_disks % geo->far_set_size);
 685			far_set_start = last_far_set_start;
 686		}
 687	}
 688
 689	offset = sector & geo->chunk_mask;
 690	if (geo->far_offset) {
 691		int fc;
 692		chunk = sector >> geo->chunk_shift;
 693		fc = sector_div(chunk, geo->far_copies);
 694		dev -= fc * geo->near_copies;
 695		if (dev < far_set_start)
 696			dev += far_set_size;
 697	} else {
 698		while (sector >= geo->stride) {
 699			sector -= geo->stride;
 700			if (dev < (geo->near_copies + far_set_start))
 701				dev += far_set_size - geo->near_copies;
 702			else
 703				dev -= geo->near_copies;
 704		}
 705		chunk = sector >> geo->chunk_shift;
 706	}
 707	vchunk = chunk * geo->raid_disks + dev;
 708	sector_div(vchunk, geo->near_copies);
 709	return (vchunk << geo->chunk_shift) + offset;
 710}
 711
 712/*
 713 * This routine returns the disk from which the requested read should
 714 * be done. There is a per-array 'next expected sequential IO' sector
 715 * number - if this matches on the next IO then we use the last disk.
 716 * There is also a per-disk 'last know head position' sector that is
 717 * maintained from IRQ contexts, both the normal and the resync IO
 718 * completion handlers update this position correctly. If there is no
 719 * perfect sequential match then we pick the disk whose head is closest.
 720 *
 721 * If there are 2 mirrors in the same 2 devices, performance degrades
 722 * because position is mirror, not device based.
 723 *
 724 * The rdev for the device selected will have nr_pending incremented.
 725 */
 726
 727/*
 728 * FIXME: possibly should rethink readbalancing and do it differently
 729 * depending on near_copies / far_copies geometry.
 730 */
 731static struct md_rdev *read_balance(struct r10conf *conf,
 732				    struct r10bio *r10_bio,
 733				    int *max_sectors)
 734{
 735	const sector_t this_sector = r10_bio->sector;
 736	int disk, slot;
 737	int sectors = r10_bio->sectors;
 738	int best_good_sectors;
 739	sector_t new_distance, best_dist;
 740	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
 741	int do_balance;
 742	int best_dist_slot, best_pending_slot;
 743	bool has_nonrot_disk = false;
 744	unsigned int min_pending;
 745	struct geom *geo = &conf->geo;
 746
 747	raid10_find_phys(conf, r10_bio);
 748	rcu_read_lock();
 749	best_dist_slot = -1;
 750	min_pending = UINT_MAX;
 751	best_dist_rdev = NULL;
 752	best_pending_rdev = NULL;
 753	best_dist = MaxSector;
 754	best_good_sectors = 0;
 755	do_balance = 1;
 756	clear_bit(R10BIO_FailFast, &r10_bio->state);
 757	/*
 758	 * Check if we can balance. We can balance on the whole
 759	 * device if no resync is going on (recovery is ok), or below
 760	 * the resync window. We take the first readable disk when
 761	 * above the resync window.
 762	 */
 763	if ((conf->mddev->recovery_cp < MaxSector
 764	     && (this_sector + sectors >= conf->next_resync)) ||
 765	    (mddev_is_clustered(conf->mddev) &&
 766	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 767					    this_sector + sectors)))
 768		do_balance = 0;
 769
 770	for (slot = 0; slot < conf->copies ; slot++) {
 771		sector_t first_bad;
 772		int bad_sectors;
 773		sector_t dev_sector;
 774		unsigned int pending;
 775		bool nonrot;
 776
 777		if (r10_bio->devs[slot].bio == IO_BLOCKED)
 778			continue;
 779		disk = r10_bio->devs[slot].devnum;
 780		rdev = rcu_dereference(conf->mirrors[disk].replacement);
 781		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
 782		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 783			rdev = rcu_dereference(conf->mirrors[disk].rdev);
 784		if (rdev == NULL ||
 785		    test_bit(Faulty, &rdev->flags))
 786			continue;
 787		if (!test_bit(In_sync, &rdev->flags) &&
 788		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 789			continue;
 790
 791		dev_sector = r10_bio->devs[slot].addr;
 792		if (is_badblock(rdev, dev_sector, sectors,
 793				&first_bad, &bad_sectors)) {
 794			if (best_dist < MaxSector)
 795				/* Already have a better slot */
 796				continue;
 797			if (first_bad <= dev_sector) {
 798				/* Cannot read here.  If this is the
 799				 * 'primary' device, then we must not read
 800				 * beyond 'bad_sectors' from another device.
 801				 */
 802				bad_sectors -= (dev_sector - first_bad);
 803				if (!do_balance && sectors > bad_sectors)
 804					sectors = bad_sectors;
 805				if (best_good_sectors > sectors)
 806					best_good_sectors = sectors;
 807			} else {
 808				sector_t good_sectors =
 809					first_bad - dev_sector;
 810				if (good_sectors > best_good_sectors) {
 811					best_good_sectors = good_sectors;
 812					best_dist_slot = slot;
 813					best_dist_rdev = rdev;
 814				}
 815				if (!do_balance)
 816					/* Must read from here */
 817					break;
 818			}
 819			continue;
 820		} else
 821			best_good_sectors = sectors;
 822
 823		if (!do_balance)
 824			break;
 825
 826		nonrot = bdev_nonrot(rdev->bdev);
 827		has_nonrot_disk |= nonrot;
 828		pending = atomic_read(&rdev->nr_pending);
 829		if (min_pending > pending && nonrot) {
 830			min_pending = pending;
 831			best_pending_slot = slot;
 832			best_pending_rdev = rdev;
 833		}
 834
 835		if (best_dist_slot >= 0)
 836			/* At least 2 disks to choose from so failfast is OK */
 837			set_bit(R10BIO_FailFast, &r10_bio->state);
 838		/* This optimisation is debatable, and completely destroys
 839		 * sequential read speed for 'far copies' arrays.  So only
 840		 * keep it for 'near' arrays, and review those later.
 841		 */
 842		if (geo->near_copies > 1 && !pending)
 843			new_distance = 0;
 844
 845		/* for far > 1 always use the lowest address */
 846		else if (geo->far_copies > 1)
 847			new_distance = r10_bio->devs[slot].addr;
 848		else
 849			new_distance = abs(r10_bio->devs[slot].addr -
 850					   conf->mirrors[disk].head_position);
 851
 852		if (new_distance < best_dist) {
 853			best_dist = new_distance;
 854			best_dist_slot = slot;
 855			best_dist_rdev = rdev;
 856		}
 857	}
 858	if (slot >= conf->copies) {
 859		if (has_nonrot_disk) {
 860			slot = best_pending_slot;
 861			rdev = best_pending_rdev;
 862		} else {
 863			slot = best_dist_slot;
 864			rdev = best_dist_rdev;
 865		}
 866	}
 867
 868	if (slot >= 0) {
 869		atomic_inc(&rdev->nr_pending);
 870		r10_bio->read_slot = slot;
 871	} else
 872		rdev = NULL;
 873	rcu_read_unlock();
 874	*max_sectors = best_good_sectors;
 875
 876	return rdev;
 877}
 878
 879static void flush_pending_writes(struct r10conf *conf)
 880{
 881	/* Any writes that have been queued but are awaiting
 882	 * bitmap updates get flushed here.
 883	 */
 884	spin_lock_irq(&conf->device_lock);
 885
 886	if (conf->pending_bio_list.head) {
 887		struct blk_plug plug;
 888		struct bio *bio;
 889
 890		bio = bio_list_get(&conf->pending_bio_list);
 
 891		spin_unlock_irq(&conf->device_lock);
 892
 893		/*
 894		 * As this is called in a wait_event() loop (see freeze_array),
 895		 * current->state might be TASK_UNINTERRUPTIBLE which will
 896		 * cause a warning when we prepare to wait again.  As it is
 897		 * rare that this path is taken, it is perfectly safe to force
 898		 * us to go around the wait_event() loop again, so the warning
 899		 * is a false-positive. Silence the warning by resetting
 900		 * thread state
 901		 */
 902		__set_current_state(TASK_RUNNING);
 903
 904		blk_start_plug(&plug);
 905		/* flush any pending bitmap writes to disk
 906		 * before proceeding w/ I/O */
 907		md_bitmap_unplug(conf->mddev->bitmap);
 908		wake_up(&conf->wait_barrier);
 909
 910		while (bio) { /* submit pending writes */
 911			struct bio *next = bio->bi_next;
 912			struct md_rdev *rdev = (void*)bio->bi_bdev;
 913			bio->bi_next = NULL;
 914			bio_set_dev(bio, rdev->bdev);
 915			if (test_bit(Faulty, &rdev->flags)) {
 916				bio_io_error(bio);
 917			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
 918					    !bdev_max_discard_sectors(bio->bi_bdev)))
 919				/* Just ignore it */
 920				bio_endio(bio);
 921			else
 922				submit_bio_noacct(bio);
 923			bio = next;
 924		}
 925		blk_finish_plug(&plug);
 926	} else
 927		spin_unlock_irq(&conf->device_lock);
 928}
 929
 930/* Barriers....
 931 * Sometimes we need to suspend IO while we do something else,
 932 * either some resync/recovery, or reconfigure the array.
 933 * To do this we raise a 'barrier'.
 934 * The 'barrier' is a counter that can be raised multiple times
 935 * to count how many activities are happening which preclude
 936 * normal IO.
 937 * We can only raise the barrier if there is no pending IO.
 938 * i.e. if nr_pending == 0.
 939 * We choose only to raise the barrier if no-one is waiting for the
 940 * barrier to go down.  This means that as soon as an IO request
 941 * is ready, no other operations which require a barrier will start
 942 * until the IO request has had a chance.
 943 *
 944 * So: regular IO calls 'wait_barrier'.  When that returns there
 945 *    is no backgroup IO happening,  It must arrange to call
 946 *    allow_barrier when it has finished its IO.
 947 * backgroup IO calls must call raise_barrier.  Once that returns
 948 *    there is no normal IO happeing.  It must arrange to call
 949 *    lower_barrier when the particular background IO completes.
 950 */
 951
 952static void raise_barrier(struct r10conf *conf, int force)
 953{
 954	write_seqlock_irq(&conf->resync_lock);
 955	BUG_ON(force && !conf->barrier);
 
 956
 957	/* Wait until no block IO is waiting (unless 'force') */
 958	wait_event_barrier(conf, force || !conf->nr_waiting);
 
 959
 960	/* block any new IO from starting */
 961	WRITE_ONCE(conf->barrier, conf->barrier + 1);
 962
 963	/* Now wait for all pending IO to complete */
 964	wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
 965				 conf->barrier < RESYNC_DEPTH);
 
 966
 967	write_sequnlock_irq(&conf->resync_lock);
 968}
 969
 970static void lower_barrier(struct r10conf *conf)
 971{
 972	unsigned long flags;
 973
 974	write_seqlock_irqsave(&conf->resync_lock, flags);
 975	WRITE_ONCE(conf->barrier, conf->barrier - 1);
 976	write_sequnlock_irqrestore(&conf->resync_lock, flags);
 977	wake_up(&conf->wait_barrier);
 978}
 979
 980static bool stop_waiting_barrier(struct r10conf *conf)
 981{
 982	struct bio_list *bio_list = current->bio_list;
 983
 984	/* barrier is dropped */
 985	if (!conf->barrier)
 986		return true;
 987
 988	/*
 989	 * If there are already pending requests (preventing the barrier from
 990	 * rising completely), and the pre-process bio queue isn't empty, then
 991	 * don't wait, as we need to empty that queue to get the nr_pending
 992	 * count down.
 993	 */
 994	if (atomic_read(&conf->nr_pending) && bio_list &&
 995	    (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
 996		return true;
 997
 998	/* move on if recovery thread is blocked by us */
 999	if (conf->mddev->thread->tsk == current &&
1000	    test_bit(MD_RECOVERY_RUNNING, &conf->mddev->recovery) &&
1001	    conf->nr_queued > 0)
1002		return true;
1003
1004	return false;
1005}
1006
1007static bool wait_barrier_nolock(struct r10conf *conf)
1008{
1009	unsigned int seq = read_seqbegin(&conf->resync_lock);
1010
1011	if (READ_ONCE(conf->barrier))
1012		return false;
1013
1014	atomic_inc(&conf->nr_pending);
1015	if (!read_seqretry(&conf->resync_lock, seq))
1016		return true;
1017
1018	if (atomic_dec_and_test(&conf->nr_pending))
1019		wake_up_barrier(conf);
1020
1021	return false;
1022}
1023
1024static bool wait_barrier(struct r10conf *conf, bool nowait)
1025{
1026	bool ret = true;
1027
1028	if (wait_barrier_nolock(conf))
1029		return true;
1030
1031	write_seqlock_irq(&conf->resync_lock);
1032	if (conf->barrier) {
1033		/* Return false when nowait flag is set */
1034		if (nowait) {
1035			ret = false;
1036		} else {
1037			conf->nr_waiting++;
1038			raid10_log(conf->mddev, "wait barrier");
1039			wait_event_barrier(conf, stop_waiting_barrier(conf));
1040			conf->nr_waiting--;
1041		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1042		if (!conf->nr_waiting)
1043			wake_up(&conf->wait_barrier);
1044	}
1045	/* Only increment nr_pending when we wait */
1046	if (ret)
1047		atomic_inc(&conf->nr_pending);
1048	write_sequnlock_irq(&conf->resync_lock);
1049	return ret;
1050}
1051
1052static void allow_barrier(struct r10conf *conf)
1053{
1054	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1055			(conf->array_freeze_pending))
1056		wake_up_barrier(conf);
1057}
1058
1059static void freeze_array(struct r10conf *conf, int extra)
1060{
1061	/* stop syncio and normal IO and wait for everything to
1062	 * go quiet.
1063	 * We increment barrier and nr_waiting, and then
1064	 * wait until nr_pending match nr_queued+extra
1065	 * This is called in the context of one normal IO request
1066	 * that has failed. Thus any sync request that might be pending
1067	 * will be blocked by nr_pending, and we need to wait for
1068	 * pending IO requests to complete or be queued for re-try.
1069	 * Thus the number queued (nr_queued) plus this request (extra)
1070	 * must match the number of pending IOs (nr_pending) before
1071	 * we continue.
1072	 */
1073	write_seqlock_irq(&conf->resync_lock);
1074	conf->array_freeze_pending++;
1075	WRITE_ONCE(conf->barrier, conf->barrier + 1);
1076	conf->nr_waiting++;
1077	wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
1078			conf->nr_queued + extra, flush_pending_writes(conf));
 
 
 
1079	conf->array_freeze_pending--;
1080	write_sequnlock_irq(&conf->resync_lock);
1081}
1082
1083static void unfreeze_array(struct r10conf *conf)
1084{
1085	/* reverse the effect of the freeze */
1086	write_seqlock_irq(&conf->resync_lock);
1087	WRITE_ONCE(conf->barrier, conf->barrier - 1);
1088	conf->nr_waiting--;
1089	wake_up(&conf->wait_barrier);
1090	write_sequnlock_irq(&conf->resync_lock);
1091}
1092
1093static sector_t choose_data_offset(struct r10bio *r10_bio,
1094				   struct md_rdev *rdev)
1095{
1096	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1097	    test_bit(R10BIO_Previous, &r10_bio->state))
1098		return rdev->data_offset;
1099	else
1100		return rdev->new_data_offset;
1101}
1102
 
 
 
 
 
 
1103static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1104{
1105	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
 
1106	struct mddev *mddev = plug->cb.data;
1107	struct r10conf *conf = mddev->private;
1108	struct bio *bio;
1109
1110	if (from_schedule || current->bio_list) {
1111		spin_lock_irq(&conf->device_lock);
1112		bio_list_merge(&conf->pending_bio_list, &plug->pending);
 
1113		spin_unlock_irq(&conf->device_lock);
1114		wake_up(&conf->wait_barrier);
1115		md_wakeup_thread(mddev->thread);
1116		kfree(plug);
1117		return;
1118	}
1119
1120	/* we aren't scheduling, so we can do the write-out directly. */
1121	bio = bio_list_get(&plug->pending);
1122	md_bitmap_unplug(mddev->bitmap);
1123	wake_up(&conf->wait_barrier);
1124
1125	while (bio) { /* submit pending writes */
1126		struct bio *next = bio->bi_next;
1127		struct md_rdev *rdev = (void*)bio->bi_bdev;
1128		bio->bi_next = NULL;
1129		bio_set_dev(bio, rdev->bdev);
1130		if (test_bit(Faulty, &rdev->flags)) {
1131			bio_io_error(bio);
1132		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1133				    !bdev_max_discard_sectors(bio->bi_bdev)))
1134			/* Just ignore it */
1135			bio_endio(bio);
1136		else
1137			submit_bio_noacct(bio);
1138		bio = next;
1139	}
1140	kfree(plug);
1141}
1142
1143/*
1144 * 1. Register the new request and wait if the reconstruction thread has put
1145 * up a bar for new requests. Continue immediately if no resync is active
1146 * currently.
1147 * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1148 */
1149static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1150				 struct bio *bio, sector_t sectors)
1151{
1152	/* Bail out if REQ_NOWAIT is set for the bio */
1153	if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1154		bio_wouldblock_error(bio);
1155		return false;
1156	}
1157	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1158	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1159	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1160		allow_barrier(conf);
1161		if (bio->bi_opf & REQ_NOWAIT) {
1162			bio_wouldblock_error(bio);
1163			return false;
1164		}
1165		raid10_log(conf->mddev, "wait reshape");
 
1166		wait_event(conf->wait_barrier,
1167			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1168			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1169			   sectors);
1170		wait_barrier(conf, false);
1171	}
1172	return true;
1173}
1174
1175static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1176				struct r10bio *r10_bio)
1177{
1178	struct r10conf *conf = mddev->private;
1179	struct bio *read_bio;
1180	const enum req_op op = bio_op(bio);
1181	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1182	int max_sectors;
1183	struct md_rdev *rdev;
1184	char b[BDEVNAME_SIZE];
1185	int slot = r10_bio->read_slot;
1186	struct md_rdev *err_rdev = NULL;
1187	gfp_t gfp = GFP_NOIO;
1188
1189	if (slot >= 0 && r10_bio->devs[slot].rdev) {
1190		/*
1191		 * This is an error retry, but we cannot
1192		 * safely dereference the rdev in the r10_bio,
1193		 * we must use the one in conf.
1194		 * If it has already been disconnected (unlikely)
1195		 * we lose the device name in error messages.
1196		 */
1197		int disk;
1198		/*
1199		 * As we are blocking raid10, it is a little safer to
1200		 * use __GFP_HIGH.
1201		 */
1202		gfp = GFP_NOIO | __GFP_HIGH;
1203
1204		rcu_read_lock();
1205		disk = r10_bio->devs[slot].devnum;
1206		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1207		if (err_rdev)
1208			snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
1209		else {
1210			strcpy(b, "???");
1211			/* This never gets dereferenced */
1212			err_rdev = r10_bio->devs[slot].rdev;
1213		}
1214		rcu_read_unlock();
1215	}
1216
1217	if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1218		return;
1219	rdev = read_balance(conf, r10_bio, &max_sectors);
1220	if (!rdev) {
1221		if (err_rdev) {
1222			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1223					    mdname(mddev), b,
1224					    (unsigned long long)r10_bio->sector);
1225		}
1226		raid_end_bio_io(r10_bio);
1227		return;
1228	}
1229	if (err_rdev)
1230		pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1231				   mdname(mddev),
1232				   rdev->bdev,
1233				   (unsigned long long)r10_bio->sector);
1234	if (max_sectors < bio_sectors(bio)) {
1235		struct bio *split = bio_split(bio, max_sectors,
1236					      gfp, &conf->bio_split);
1237		bio_chain(split, bio);
1238		allow_barrier(conf);
1239		submit_bio_noacct(bio);
1240		wait_barrier(conf, false);
1241		bio = split;
1242		r10_bio->master_bio = bio;
1243		r10_bio->sectors = max_sectors;
1244	}
1245	slot = r10_bio->read_slot;
1246
1247	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1248		r10_bio->start_time = bio_start_io_acct(bio);
1249	read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1250
1251	r10_bio->devs[slot].bio = read_bio;
1252	r10_bio->devs[slot].rdev = rdev;
1253
1254	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1255		choose_data_offset(r10_bio, rdev);
 
1256	read_bio->bi_end_io = raid10_end_read_request;
1257	read_bio->bi_opf = op | do_sync;
1258	if (test_bit(FailFast, &rdev->flags) &&
1259	    test_bit(R10BIO_FailFast, &r10_bio->state))
1260	        read_bio->bi_opf |= MD_FAILFAST;
1261	read_bio->bi_private = r10_bio;
1262
1263	if (mddev->gendisk)
1264	        trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1265	                              r10_bio->sector);
1266	submit_bio_noacct(read_bio);
1267	return;
1268}
1269
1270static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1271				  struct bio *bio, bool replacement,
1272				  int n_copy)
1273{
1274	const enum req_op op = bio_op(bio);
1275	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1276	const blk_opf_t do_fua = bio->bi_opf & REQ_FUA;
1277	unsigned long flags;
1278	struct blk_plug_cb *cb;
1279	struct raid1_plug_cb *plug = NULL;
1280	struct r10conf *conf = mddev->private;
1281	struct md_rdev *rdev;
1282	int devnum = r10_bio->devs[n_copy].devnum;
1283	struct bio *mbio;
1284
1285	if (replacement) {
1286		rdev = conf->mirrors[devnum].replacement;
1287		if (rdev == NULL) {
1288			/* Replacement just got moved to main 'rdev' */
1289			smp_mb();
1290			rdev = conf->mirrors[devnum].rdev;
1291		}
1292	} else
1293		rdev = conf->mirrors[devnum].rdev;
1294
1295	mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1296	if (replacement)
1297		r10_bio->devs[n_copy].repl_bio = mbio;
1298	else
1299		r10_bio->devs[n_copy].bio = mbio;
1300
1301	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1302				   choose_data_offset(r10_bio, rdev));
 
1303	mbio->bi_end_io	= raid10_end_write_request;
1304	mbio->bi_opf = op | do_sync | do_fua;
1305	if (!replacement && test_bit(FailFast,
1306				     &conf->mirrors[devnum].rdev->flags)
1307			 && enough(conf, devnum))
1308		mbio->bi_opf |= MD_FAILFAST;
1309	mbio->bi_private = r10_bio;
1310
1311	if (conf->mddev->gendisk)
1312		trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1313				      r10_bio->sector);
1314	/* flush_pending_writes() needs access to the rdev so...*/
1315	mbio->bi_bdev = (void *)rdev;
1316
1317	atomic_inc(&r10_bio->remaining);
1318
1319	cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1320	if (cb)
1321		plug = container_of(cb, struct raid1_plug_cb, cb);
1322	else
1323		plug = NULL;
1324	if (plug) {
1325		bio_list_add(&plug->pending, mbio);
 
1326	} else {
1327		spin_lock_irqsave(&conf->device_lock, flags);
1328		bio_list_add(&conf->pending_bio_list, mbio);
 
1329		spin_unlock_irqrestore(&conf->device_lock, flags);
1330		md_wakeup_thread(mddev->thread);
1331	}
1332}
1333
1334static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1335{
1336	int i;
1337	struct r10conf *conf = mddev->private;
1338	struct md_rdev *blocked_rdev;
1339
1340retry_wait:
1341	blocked_rdev = NULL;
1342	rcu_read_lock();
1343	for (i = 0; i < conf->copies; i++) {
1344		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1345		struct md_rdev *rrdev = rcu_dereference(
1346			conf->mirrors[i].replacement);
1347		if (rdev == rrdev)
1348			rrdev = NULL;
1349		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1350			atomic_inc(&rdev->nr_pending);
1351			blocked_rdev = rdev;
1352			break;
1353		}
1354		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1355			atomic_inc(&rrdev->nr_pending);
1356			blocked_rdev = rrdev;
1357			break;
1358		}
1359
1360		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1361			sector_t first_bad;
1362			sector_t dev_sector = r10_bio->devs[i].addr;
1363			int bad_sectors;
1364			int is_bad;
1365
1366			/*
1367			 * Discard request doesn't care the write result
1368			 * so it doesn't need to wait blocked disk here.
1369			 */
1370			if (!r10_bio->sectors)
1371				continue;
1372
1373			is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1374					     &first_bad, &bad_sectors);
1375			if (is_bad < 0) {
1376				/*
1377				 * Mustn't write here until the bad block
1378				 * is acknowledged
1379				 */
1380				atomic_inc(&rdev->nr_pending);
1381				set_bit(BlockedBadBlocks, &rdev->flags);
1382				blocked_rdev = rdev;
1383				break;
1384			}
1385		}
1386	}
1387	rcu_read_unlock();
1388
1389	if (unlikely(blocked_rdev)) {
1390		/* Have to wait for this device to get unblocked, then retry */
1391		allow_barrier(conf);
1392		raid10_log(conf->mddev, "%s wait rdev %d blocked",
1393				__func__, blocked_rdev->raid_disk);
1394		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1395		wait_barrier(conf, false);
1396		goto retry_wait;
1397	}
1398}
1399
1400static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1401				 struct r10bio *r10_bio)
1402{
1403	struct r10conf *conf = mddev->private;
1404	int i;
1405	sector_t sectors;
1406	int max_sectors;
1407
1408	if ((mddev_is_clustered(mddev) &&
1409	     md_cluster_ops->area_resyncing(mddev, WRITE,
1410					    bio->bi_iter.bi_sector,
1411					    bio_end_sector(bio)))) {
1412		DEFINE_WAIT(w);
1413		/* Bail out if REQ_NOWAIT is set for the bio */
1414		if (bio->bi_opf & REQ_NOWAIT) {
1415			bio_wouldblock_error(bio);
1416			return;
1417		}
1418		for (;;) {
1419			prepare_to_wait(&conf->wait_barrier,
1420					&w, TASK_IDLE);
1421			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1422				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1423				break;
1424			schedule();
1425		}
1426		finish_wait(&conf->wait_barrier, &w);
1427	}
1428
1429	sectors = r10_bio->sectors;
1430	if (!regular_request_wait(mddev, conf, bio, sectors))
1431		return;
1432	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1433	    (mddev->reshape_backwards
1434	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1435		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1436	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1437		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1438		/* Need to update reshape_position in metadata */
1439		mddev->reshape_position = conf->reshape_progress;
1440		set_mask_bits(&mddev->sb_flags, 0,
1441			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1442		md_wakeup_thread(mddev->thread);
1443		if (bio->bi_opf & REQ_NOWAIT) {
1444			allow_barrier(conf);
1445			bio_wouldblock_error(bio);
1446			return;
1447		}
1448		raid10_log(conf->mddev, "wait reshape metadata");
1449		wait_event(mddev->sb_wait,
1450			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1451
1452		conf->reshape_safe = mddev->reshape_position;
1453	}
1454
 
 
 
 
 
 
1455	/* first select target devices under rcu_lock and
1456	 * inc refcount on their rdev.  Record them by setting
1457	 * bios[x] to bio
1458	 * If there are known/acknowledged bad blocks on any device
1459	 * on which we have seen a write error, we want to avoid
1460	 * writing to those blocks.  This potentially requires several
1461	 * writes to write around the bad blocks.  Each set of writes
1462	 * gets its own r10_bio with a set of bios attached.
1463	 */
1464
1465	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1466	raid10_find_phys(conf, r10_bio);
1467
1468	wait_blocked_dev(mddev, r10_bio);
1469
1470	rcu_read_lock();
1471	max_sectors = r10_bio->sectors;
1472
1473	for (i = 0;  i < conf->copies; i++) {
1474		int d = r10_bio->devs[i].devnum;
1475		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1476		struct md_rdev *rrdev = rcu_dereference(
1477			conf->mirrors[d].replacement);
1478		if (rdev == rrdev)
1479			rrdev = NULL;
1480		if (rdev && (test_bit(Faulty, &rdev->flags)))
1481			rdev = NULL;
1482		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1483			rrdev = NULL;
1484
1485		r10_bio->devs[i].bio = NULL;
1486		r10_bio->devs[i].repl_bio = NULL;
1487
1488		if (!rdev && !rrdev) {
1489			set_bit(R10BIO_Degraded, &r10_bio->state);
1490			continue;
1491		}
1492		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1493			sector_t first_bad;
1494			sector_t dev_sector = r10_bio->devs[i].addr;
1495			int bad_sectors;
1496			int is_bad;
1497
1498			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1499					     &first_bad, &bad_sectors);
1500			if (is_bad && first_bad <= dev_sector) {
1501				/* Cannot write here at all */
1502				bad_sectors -= (dev_sector - first_bad);
1503				if (bad_sectors < max_sectors)
1504					/* Mustn't write more than bad_sectors
1505					 * to other devices yet
1506					 */
1507					max_sectors = bad_sectors;
1508				/* We don't set R10BIO_Degraded as that
1509				 * only applies if the disk is missing,
1510				 * so it might be re-added, and we want to
1511				 * know to recover this chunk.
1512				 * In this case the device is here, and the
1513				 * fact that this chunk is not in-sync is
1514				 * recorded in the bad block log.
1515				 */
1516				continue;
1517			}
1518			if (is_bad) {
1519				int good_sectors = first_bad - dev_sector;
1520				if (good_sectors < max_sectors)
1521					max_sectors = good_sectors;
1522			}
1523		}
1524		if (rdev) {
1525			r10_bio->devs[i].bio = bio;
1526			atomic_inc(&rdev->nr_pending);
1527		}
1528		if (rrdev) {
1529			r10_bio->devs[i].repl_bio = bio;
1530			atomic_inc(&rrdev->nr_pending);
1531		}
1532	}
1533	rcu_read_unlock();
1534
1535	if (max_sectors < r10_bio->sectors)
1536		r10_bio->sectors = max_sectors;
1537
1538	if (r10_bio->sectors < bio_sectors(bio)) {
1539		struct bio *split = bio_split(bio, r10_bio->sectors,
1540					      GFP_NOIO, &conf->bio_split);
1541		bio_chain(split, bio);
1542		allow_barrier(conf);
1543		submit_bio_noacct(bio);
1544		wait_barrier(conf, false);
1545		bio = split;
1546		r10_bio->master_bio = bio;
1547	}
1548
1549	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1550		r10_bio->start_time = bio_start_io_acct(bio);
1551	atomic_set(&r10_bio->remaining, 1);
1552	md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1553
1554	for (i = 0; i < conf->copies; i++) {
1555		if (r10_bio->devs[i].bio)
1556			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1557		if (r10_bio->devs[i].repl_bio)
1558			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1559	}
1560	one_write_done(r10_bio);
1561}
1562
1563static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1564{
1565	struct r10conf *conf = mddev->private;
1566	struct r10bio *r10_bio;
1567
1568	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1569
1570	r10_bio->master_bio = bio;
1571	r10_bio->sectors = sectors;
1572
1573	r10_bio->mddev = mddev;
1574	r10_bio->sector = bio->bi_iter.bi_sector;
1575	r10_bio->state = 0;
1576	r10_bio->read_slot = -1;
1577	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1578			conf->geo.raid_disks);
1579
1580	if (bio_data_dir(bio) == READ)
1581		raid10_read_request(mddev, bio, r10_bio);
1582	else
1583		raid10_write_request(mddev, bio, r10_bio);
1584}
1585
1586static void raid_end_discard_bio(struct r10bio *r10bio)
1587{
1588	struct r10conf *conf = r10bio->mddev->private;
1589	struct r10bio *first_r10bio;
1590
1591	while (atomic_dec_and_test(&r10bio->remaining)) {
1592
1593		allow_barrier(conf);
1594
1595		if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1596			first_r10bio = (struct r10bio *)r10bio->master_bio;
1597			free_r10bio(r10bio);
1598			r10bio = first_r10bio;
1599		} else {
1600			md_write_end(r10bio->mddev);
1601			bio_endio(r10bio->master_bio);
1602			free_r10bio(r10bio);
1603			break;
1604		}
1605	}
1606}
1607
1608static void raid10_end_discard_request(struct bio *bio)
1609{
1610	struct r10bio *r10_bio = bio->bi_private;
1611	struct r10conf *conf = r10_bio->mddev->private;
1612	struct md_rdev *rdev = NULL;
1613	int dev;
1614	int slot, repl;
1615
1616	/*
1617	 * We don't care the return value of discard bio
1618	 */
1619	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1620		set_bit(R10BIO_Uptodate, &r10_bio->state);
1621
1622	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1623	if (repl)
1624		rdev = conf->mirrors[dev].replacement;
1625	if (!rdev) {
1626		/*
1627		 * raid10_remove_disk uses smp_mb to make sure rdev is set to
1628		 * replacement before setting replacement to NULL. It can read
1629		 * rdev first without barrier protect even replacment is NULL
1630		 */
1631		smp_rmb();
1632		rdev = conf->mirrors[dev].rdev;
1633	}
1634
1635	raid_end_discard_bio(r10_bio);
1636	rdev_dec_pending(rdev, conf->mddev);
1637}
1638
1639/*
1640 * There are some limitations to handle discard bio
1641 * 1st, the discard size is bigger than stripe_size*2.
1642 * 2st, if the discard bio spans reshape progress, we use the old way to
1643 * handle discard bio
1644 */
1645static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1646{
1647	struct r10conf *conf = mddev->private;
1648	struct geom *geo = &conf->geo;
1649	int far_copies = geo->far_copies;
1650	bool first_copy = true;
1651	struct r10bio *r10_bio, *first_r10bio;
1652	struct bio *split;
1653	int disk;
1654	sector_t chunk;
1655	unsigned int stripe_size;
1656	unsigned int stripe_data_disks;
1657	sector_t split_size;
1658	sector_t bio_start, bio_end;
1659	sector_t first_stripe_index, last_stripe_index;
1660	sector_t start_disk_offset;
1661	unsigned int start_disk_index;
1662	sector_t end_disk_offset;
1663	unsigned int end_disk_index;
1664	unsigned int remainder;
1665
1666	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1667		return -EAGAIN;
1668
1669	if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1670		bio_wouldblock_error(bio);
1671		return 0;
1672	}
1673	wait_barrier(conf, false);
1674
1675	/*
1676	 * Check reshape again to avoid reshape happens after checking
1677	 * MD_RECOVERY_RESHAPE and before wait_barrier
1678	 */
1679	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1680		goto out;
1681
1682	if (geo->near_copies)
1683		stripe_data_disks = geo->raid_disks / geo->near_copies +
1684					geo->raid_disks % geo->near_copies;
1685	else
1686		stripe_data_disks = geo->raid_disks;
1687
1688	stripe_size = stripe_data_disks << geo->chunk_shift;
1689
1690	bio_start = bio->bi_iter.bi_sector;
1691	bio_end = bio_end_sector(bio);
1692
1693	/*
1694	 * Maybe one discard bio is smaller than strip size or across one
1695	 * stripe and discard region is larger than one stripe size. For far
1696	 * offset layout, if the discard region is not aligned with stripe
1697	 * size, there is hole when we submit discard bio to member disk.
1698	 * For simplicity, we only handle discard bio which discard region
1699	 * is bigger than stripe_size * 2
1700	 */
1701	if (bio_sectors(bio) < stripe_size*2)
1702		goto out;
1703
1704	/*
1705	 * Keep bio aligned with strip size.
1706	 */
1707	div_u64_rem(bio_start, stripe_size, &remainder);
1708	if (remainder) {
1709		split_size = stripe_size - remainder;
1710		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1711		bio_chain(split, bio);
1712		allow_barrier(conf);
1713		/* Resend the fist split part */
1714		submit_bio_noacct(split);
1715		wait_barrier(conf, false);
1716	}
1717	div_u64_rem(bio_end, stripe_size, &remainder);
1718	if (remainder) {
1719		split_size = bio_sectors(bio) - remainder;
1720		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1721		bio_chain(split, bio);
1722		allow_barrier(conf);
1723		/* Resend the second split part */
1724		submit_bio_noacct(bio);
1725		bio = split;
1726		wait_barrier(conf, false);
1727	}
1728
1729	bio_start = bio->bi_iter.bi_sector;
1730	bio_end = bio_end_sector(bio);
1731
1732	/*
1733	 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1734	 * One stripe contains the chunks from all member disk (one chunk from
1735	 * one disk at the same HBA address). For layout detail, see 'man md 4'
1736	 */
1737	chunk = bio_start >> geo->chunk_shift;
1738	chunk *= geo->near_copies;
1739	first_stripe_index = chunk;
1740	start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1741	if (geo->far_offset)
1742		first_stripe_index *= geo->far_copies;
1743	start_disk_offset = (bio_start & geo->chunk_mask) +
1744				(first_stripe_index << geo->chunk_shift);
1745
1746	chunk = bio_end >> geo->chunk_shift;
1747	chunk *= geo->near_copies;
1748	last_stripe_index = chunk;
1749	end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1750	if (geo->far_offset)
1751		last_stripe_index *= geo->far_copies;
1752	end_disk_offset = (bio_end & geo->chunk_mask) +
1753				(last_stripe_index << geo->chunk_shift);
1754
1755retry_discard:
1756	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1757	r10_bio->mddev = mddev;
1758	r10_bio->state = 0;
1759	r10_bio->sectors = 0;
1760	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1761	wait_blocked_dev(mddev, r10_bio);
1762
1763	/*
1764	 * For far layout it needs more than one r10bio to cover all regions.
1765	 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1766	 * to record the discard bio. Other r10bio->master_bio record the first
1767	 * r10bio. The first r10bio only release after all other r10bios finish.
1768	 * The discard bio returns only first r10bio finishes
1769	 */
1770	if (first_copy) {
1771		r10_bio->master_bio = bio;
1772		set_bit(R10BIO_Discard, &r10_bio->state);
1773		first_copy = false;
1774		first_r10bio = r10_bio;
1775	} else
1776		r10_bio->master_bio = (struct bio *)first_r10bio;
1777
1778	/*
1779	 * first select target devices under rcu_lock and
1780	 * inc refcount on their rdev.  Record them by setting
1781	 * bios[x] to bio
1782	 */
1783	rcu_read_lock();
1784	for (disk = 0; disk < geo->raid_disks; disk++) {
1785		struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
1786		struct md_rdev *rrdev = rcu_dereference(
1787			conf->mirrors[disk].replacement);
1788
1789		r10_bio->devs[disk].bio = NULL;
1790		r10_bio->devs[disk].repl_bio = NULL;
1791
1792		if (rdev && (test_bit(Faulty, &rdev->flags)))
1793			rdev = NULL;
1794		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1795			rrdev = NULL;
1796		if (!rdev && !rrdev)
1797			continue;
1798
1799		if (rdev) {
1800			r10_bio->devs[disk].bio = bio;
1801			atomic_inc(&rdev->nr_pending);
1802		}
1803		if (rrdev) {
1804			r10_bio->devs[disk].repl_bio = bio;
1805			atomic_inc(&rrdev->nr_pending);
1806		}
1807	}
1808	rcu_read_unlock();
1809
1810	atomic_set(&r10_bio->remaining, 1);
1811	for (disk = 0; disk < geo->raid_disks; disk++) {
1812		sector_t dev_start, dev_end;
1813		struct bio *mbio, *rbio = NULL;
1814
1815		/*
1816		 * Now start to calculate the start and end address for each disk.
1817		 * The space between dev_start and dev_end is the discard region.
1818		 *
1819		 * For dev_start, it needs to consider three conditions:
1820		 * 1st, the disk is before start_disk, you can imagine the disk in
1821		 * the next stripe. So the dev_start is the start address of next
1822		 * stripe.
1823		 * 2st, the disk is after start_disk, it means the disk is at the
1824		 * same stripe of first disk
1825		 * 3st, the first disk itself, we can use start_disk_offset directly
1826		 */
1827		if (disk < start_disk_index)
1828			dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1829		else if (disk > start_disk_index)
1830			dev_start = first_stripe_index * mddev->chunk_sectors;
1831		else
1832			dev_start = start_disk_offset;
1833
1834		if (disk < end_disk_index)
1835			dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1836		else if (disk > end_disk_index)
1837			dev_end = last_stripe_index * mddev->chunk_sectors;
1838		else
1839			dev_end = end_disk_offset;
1840
1841		/*
1842		 * It only handles discard bio which size is >= stripe size, so
1843		 * dev_end > dev_start all the time.
1844		 * It doesn't need to use rcu lock to get rdev here. We already
1845		 * add rdev->nr_pending in the first loop.
1846		 */
1847		if (r10_bio->devs[disk].bio) {
1848			struct md_rdev *rdev = conf->mirrors[disk].rdev;
1849			mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1850					       &mddev->bio_set);
1851			mbio->bi_end_io = raid10_end_discard_request;
1852			mbio->bi_private = r10_bio;
1853			r10_bio->devs[disk].bio = mbio;
1854			r10_bio->devs[disk].devnum = disk;
1855			atomic_inc(&r10_bio->remaining);
1856			md_submit_discard_bio(mddev, rdev, mbio,
1857					dev_start + choose_data_offset(r10_bio, rdev),
1858					dev_end - dev_start);
1859			bio_endio(mbio);
1860		}
1861		if (r10_bio->devs[disk].repl_bio) {
1862			struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1863			rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1864					       &mddev->bio_set);
1865			rbio->bi_end_io = raid10_end_discard_request;
1866			rbio->bi_private = r10_bio;
1867			r10_bio->devs[disk].repl_bio = rbio;
1868			r10_bio->devs[disk].devnum = disk;
1869			atomic_inc(&r10_bio->remaining);
1870			md_submit_discard_bio(mddev, rrdev, rbio,
1871					dev_start + choose_data_offset(r10_bio, rrdev),
1872					dev_end - dev_start);
1873			bio_endio(rbio);
1874		}
1875	}
1876
1877	if (!geo->far_offset && --far_copies) {
1878		first_stripe_index += geo->stride >> geo->chunk_shift;
1879		start_disk_offset += geo->stride;
1880		last_stripe_index += geo->stride >> geo->chunk_shift;
1881		end_disk_offset += geo->stride;
1882		atomic_inc(&first_r10bio->remaining);
1883		raid_end_discard_bio(r10_bio);
1884		wait_barrier(conf, false);
1885		goto retry_discard;
1886	}
1887
1888	raid_end_discard_bio(r10_bio);
1889
1890	return 0;
1891out:
1892	allow_barrier(conf);
1893	return -EAGAIN;
1894}
1895
1896static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1897{
1898	struct r10conf *conf = mddev->private;
1899	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1900	int chunk_sects = chunk_mask + 1;
1901	int sectors = bio_sectors(bio);
1902
1903	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1904	    && md_flush_request(mddev, bio))
1905		return true;
1906
1907	if (!md_write_start(mddev, bio))
1908		return false;
1909
1910	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1911		if (!raid10_handle_discard(mddev, bio))
1912			return true;
1913
1914	/*
1915	 * If this request crosses a chunk boundary, we need to split
1916	 * it.
1917	 */
1918	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1919		     sectors > chunk_sects
1920		     && (conf->geo.near_copies < conf->geo.raid_disks
1921			 || conf->prev.near_copies <
1922			 conf->prev.raid_disks)))
1923		sectors = chunk_sects -
1924			(bio->bi_iter.bi_sector &
1925			 (chunk_sects - 1));
1926	__make_request(mddev, bio, sectors);
1927
1928	/* In case raid10d snuck in to freeze_array */
1929	wake_up_barrier(conf);
1930	return true;
1931}
1932
1933static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1934{
1935	struct r10conf *conf = mddev->private;
1936	int i;
1937
1938	if (conf->geo.near_copies < conf->geo.raid_disks)
1939		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1940	if (conf->geo.near_copies > 1)
1941		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1942	if (conf->geo.far_copies > 1) {
1943		if (conf->geo.far_offset)
1944			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1945		else
1946			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1947		if (conf->geo.far_set_size != conf->geo.raid_disks)
1948			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1949	}
1950	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1951					conf->geo.raid_disks - mddev->degraded);
1952	rcu_read_lock();
1953	for (i = 0; i < conf->geo.raid_disks; i++) {
1954		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1955		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1956	}
1957	rcu_read_unlock();
1958	seq_printf(seq, "]");
1959}
1960
1961/* check if there are enough drives for
1962 * every block to appear on atleast one.
1963 * Don't consider the device numbered 'ignore'
1964 * as we might be about to remove it.
1965 */
1966static int _enough(struct r10conf *conf, int previous, int ignore)
1967{
1968	int first = 0;
1969	int has_enough = 0;
1970	int disks, ncopies;
1971	if (previous) {
1972		disks = conf->prev.raid_disks;
1973		ncopies = conf->prev.near_copies;
1974	} else {
1975		disks = conf->geo.raid_disks;
1976		ncopies = conf->geo.near_copies;
1977	}
1978
1979	rcu_read_lock();
1980	do {
1981		int n = conf->copies;
1982		int cnt = 0;
1983		int this = first;
1984		while (n--) {
1985			struct md_rdev *rdev;
1986			if (this != ignore &&
1987			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1988			    test_bit(In_sync, &rdev->flags))
1989				cnt++;
1990			this = (this+1) % disks;
1991		}
1992		if (cnt == 0)
1993			goto out;
1994		first = (first + ncopies) % disks;
1995	} while (first != 0);
1996	has_enough = 1;
1997out:
1998	rcu_read_unlock();
1999	return has_enough;
2000}
2001
2002static int enough(struct r10conf *conf, int ignore)
2003{
2004	/* when calling 'enough', both 'prev' and 'geo' must
2005	 * be stable.
2006	 * This is ensured if ->reconfig_mutex or ->device_lock
2007	 * is held.
2008	 */
2009	return _enough(conf, 0, ignore) &&
2010		_enough(conf, 1, ignore);
2011}
2012
2013/**
2014 * raid10_error() - RAID10 error handler.
2015 * @mddev: affected md device.
2016 * @rdev: member device to fail.
2017 *
2018 * The routine acknowledges &rdev failure and determines new @mddev state.
2019 * If it failed, then:
2020 *	- &MD_BROKEN flag is set in &mddev->flags.
2021 * Otherwise, it must be degraded:
2022 *	- recovery is interrupted.
2023 *	- &mddev->degraded is bumped.
2024 *
2025 * @rdev is marked as &Faulty excluding case when array is failed and
2026 * &mddev->fail_last_dev is off.
2027 */
2028static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
2029{
 
2030	struct r10conf *conf = mddev->private;
2031	unsigned long flags;
2032
 
 
 
 
 
 
2033	spin_lock_irqsave(&conf->device_lock, flags);
2034
2035	if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
2036		set_bit(MD_BROKEN, &mddev->flags);
2037
2038		if (!mddev->fail_last_dev) {
2039			spin_unlock_irqrestore(&conf->device_lock, flags);
2040			return;
2041		}
2042	}
2043	if (test_and_clear_bit(In_sync, &rdev->flags))
2044		mddev->degraded++;
2045
 
 
2046	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2047	set_bit(Blocked, &rdev->flags);
2048	set_bit(Faulty, &rdev->flags);
2049	set_mask_bits(&mddev->sb_flags, 0,
2050		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2051	spin_unlock_irqrestore(&conf->device_lock, flags);
2052	pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
2053		"md/raid10:%s: Operation continuing on %d devices.\n",
2054		mdname(mddev), rdev->bdev,
2055		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
2056}
2057
2058static void print_conf(struct r10conf *conf)
2059{
2060	int i;
2061	struct md_rdev *rdev;
2062
2063	pr_debug("RAID10 conf printout:\n");
2064	if (!conf) {
2065		pr_debug("(!conf)\n");
2066		return;
2067	}
2068	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2069		 conf->geo.raid_disks);
2070
2071	/* This is only called with ->reconfix_mutex held, so
2072	 * rcu protection of rdev is not needed */
2073	for (i = 0; i < conf->geo.raid_disks; i++) {
 
2074		rdev = conf->mirrors[i].rdev;
2075		if (rdev)
2076			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2077				 i, !test_bit(In_sync, &rdev->flags),
2078				 !test_bit(Faulty, &rdev->flags),
2079				 rdev->bdev);
2080	}
2081}
2082
2083static void close_sync(struct r10conf *conf)
2084{
2085	wait_barrier(conf, false);
2086	allow_barrier(conf);
2087
2088	mempool_exit(&conf->r10buf_pool);
2089}
2090
2091static int raid10_spare_active(struct mddev *mddev)
2092{
2093	int i;
2094	struct r10conf *conf = mddev->private;
2095	struct raid10_info *tmp;
2096	int count = 0;
2097	unsigned long flags;
2098
2099	/*
2100	 * Find all non-in_sync disks within the RAID10 configuration
2101	 * and mark them in_sync
2102	 */
2103	for (i = 0; i < conf->geo.raid_disks; i++) {
2104		tmp = conf->mirrors + i;
2105		if (tmp->replacement
2106		    && tmp->replacement->recovery_offset == MaxSector
2107		    && !test_bit(Faulty, &tmp->replacement->flags)
2108		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2109			/* Replacement has just become active */
2110			if (!tmp->rdev
2111			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2112				count++;
2113			if (tmp->rdev) {
2114				/* Replaced device not technically faulty,
2115				 * but we need to be sure it gets removed
2116				 * and never re-added.
2117				 */
2118				set_bit(Faulty, &tmp->rdev->flags);
2119				sysfs_notify_dirent_safe(
2120					tmp->rdev->sysfs_state);
2121			}
2122			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2123		} else if (tmp->rdev
2124			   && tmp->rdev->recovery_offset == MaxSector
2125			   && !test_bit(Faulty, &tmp->rdev->flags)
2126			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2127			count++;
2128			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2129		}
2130	}
2131	spin_lock_irqsave(&conf->device_lock, flags);
2132	mddev->degraded -= count;
2133	spin_unlock_irqrestore(&conf->device_lock, flags);
2134
2135	print_conf(conf);
2136	return count;
2137}
2138
2139static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2140{
2141	struct r10conf *conf = mddev->private;
2142	int err = -EEXIST;
2143	int mirror;
2144	int first = 0;
2145	int last = conf->geo.raid_disks - 1;
2146
2147	if (mddev->recovery_cp < MaxSector)
2148		/* only hot-add to in-sync arrays, as recovery is
2149		 * very different from resync
2150		 */
2151		return -EBUSY;
2152	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2153		return -EINVAL;
2154
2155	if (md_integrity_add_rdev(rdev, mddev))
2156		return -ENXIO;
2157
2158	if (rdev->raid_disk >= 0)
2159		first = last = rdev->raid_disk;
2160
2161	if (rdev->saved_raid_disk >= first &&
2162	    rdev->saved_raid_disk < conf->geo.raid_disks &&
2163	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2164		mirror = rdev->saved_raid_disk;
2165	else
2166		mirror = first;
2167	for ( ; mirror <= last ; mirror++) {
2168		struct raid10_info *p = &conf->mirrors[mirror];
2169		if (p->recovery_disabled == mddev->recovery_disabled)
2170			continue;
2171		if (p->rdev) {
2172			if (!test_bit(WantReplacement, &p->rdev->flags) ||
2173			    p->replacement != NULL)
2174				continue;
2175			clear_bit(In_sync, &rdev->flags);
2176			set_bit(Replacement, &rdev->flags);
2177			rdev->raid_disk = mirror;
2178			err = 0;
2179			if (mddev->gendisk)
2180				disk_stack_limits(mddev->gendisk, rdev->bdev,
2181						  rdev->data_offset << 9);
2182			conf->fullsync = 1;
2183			rcu_assign_pointer(p->replacement, rdev);
2184			break;
2185		}
2186
2187		if (mddev->gendisk)
2188			disk_stack_limits(mddev->gendisk, rdev->bdev,
2189					  rdev->data_offset << 9);
2190
2191		p->head_position = 0;
2192		p->recovery_disabled = mddev->recovery_disabled - 1;
2193		rdev->raid_disk = mirror;
2194		err = 0;
2195		if (rdev->saved_raid_disk != mirror)
2196			conf->fullsync = 1;
2197		rcu_assign_pointer(p->rdev, rdev);
2198		break;
2199	}
 
 
2200
2201	print_conf(conf);
2202	return err;
2203}
2204
2205static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2206{
2207	struct r10conf *conf = mddev->private;
2208	int err = 0;
2209	int number = rdev->raid_disk;
2210	struct md_rdev **rdevp;
2211	struct raid10_info *p;
2212
2213	print_conf(conf);
2214	if (unlikely(number >= mddev->raid_disks))
2215		return 0;
2216	p = conf->mirrors + number;
2217	if (rdev == p->rdev)
2218		rdevp = &p->rdev;
2219	else if (rdev == p->replacement)
2220		rdevp = &p->replacement;
2221	else
2222		return 0;
2223
2224	if (test_bit(In_sync, &rdev->flags) ||
2225	    atomic_read(&rdev->nr_pending)) {
2226		err = -EBUSY;
2227		goto abort;
2228	}
2229	/* Only remove non-faulty devices if recovery
2230	 * is not possible.
2231	 */
2232	if (!test_bit(Faulty, &rdev->flags) &&
2233	    mddev->recovery_disabled != p->recovery_disabled &&
2234	    (!p->replacement || p->replacement == rdev) &&
2235	    number < conf->geo.raid_disks &&
2236	    enough(conf, -1)) {
2237		err = -EBUSY;
2238		goto abort;
2239	}
2240	*rdevp = NULL;
2241	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2242		synchronize_rcu();
2243		if (atomic_read(&rdev->nr_pending)) {
2244			/* lost the race, try later */
2245			err = -EBUSY;
2246			*rdevp = rdev;
2247			goto abort;
2248		}
2249	}
2250	if (p->replacement) {
2251		/* We must have just cleared 'rdev' */
2252		p->rdev = p->replacement;
2253		clear_bit(Replacement, &p->replacement->flags);
2254		smp_mb(); /* Make sure other CPUs may see both as identical
2255			   * but will never see neither -- if they are careful.
2256			   */
2257		p->replacement = NULL;
2258	}
2259
2260	clear_bit(WantReplacement, &rdev->flags);
2261	err = md_integrity_register(mddev);
2262
2263abort:
2264
2265	print_conf(conf);
2266	return err;
2267}
2268
2269static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2270{
2271	struct r10conf *conf = r10_bio->mddev->private;
2272
2273	if (!bio->bi_status)
2274		set_bit(R10BIO_Uptodate, &r10_bio->state);
2275	else
2276		/* The write handler will notice the lack of
2277		 * R10BIO_Uptodate and record any errors etc
2278		 */
2279		atomic_add(r10_bio->sectors,
2280			   &conf->mirrors[d].rdev->corrected_errors);
2281
2282	/* for reconstruct, we always reschedule after a read.
2283	 * for resync, only after all reads
2284	 */
2285	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2286	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2287	    atomic_dec_and_test(&r10_bio->remaining)) {
2288		/* we have read all the blocks,
2289		 * do the comparison in process context in raid10d
2290		 */
2291		reschedule_retry(r10_bio);
2292	}
2293}
2294
2295static void end_sync_read(struct bio *bio)
2296{
2297	struct r10bio *r10_bio = get_resync_r10bio(bio);
2298	struct r10conf *conf = r10_bio->mddev->private;
2299	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2300
2301	__end_sync_read(r10_bio, bio, d);
2302}
2303
2304static void end_reshape_read(struct bio *bio)
2305{
2306	/* reshape read bio isn't allocated from r10buf_pool */
2307	struct r10bio *r10_bio = bio->bi_private;
2308
2309	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
2310}
2311
2312static void end_sync_request(struct r10bio *r10_bio)
2313{
2314	struct mddev *mddev = r10_bio->mddev;
2315
2316	while (atomic_dec_and_test(&r10_bio->remaining)) {
2317		if (r10_bio->master_bio == NULL) {
2318			/* the primary of several recovery bios */
2319			sector_t s = r10_bio->sectors;
2320			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2321			    test_bit(R10BIO_WriteError, &r10_bio->state))
2322				reschedule_retry(r10_bio);
2323			else
2324				put_buf(r10_bio);
2325			md_done_sync(mddev, s, 1);
2326			break;
2327		} else {
2328			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2329			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2330			    test_bit(R10BIO_WriteError, &r10_bio->state))
2331				reschedule_retry(r10_bio);
2332			else
2333				put_buf(r10_bio);
2334			r10_bio = r10_bio2;
2335		}
2336	}
2337}
2338
2339static void end_sync_write(struct bio *bio)
2340{
2341	struct r10bio *r10_bio = get_resync_r10bio(bio);
2342	struct mddev *mddev = r10_bio->mddev;
2343	struct r10conf *conf = mddev->private;
2344	int d;
2345	sector_t first_bad;
2346	int bad_sectors;
2347	int slot;
2348	int repl;
2349	struct md_rdev *rdev = NULL;
2350
2351	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2352	if (repl)
2353		rdev = conf->mirrors[d].replacement;
2354	else
2355		rdev = conf->mirrors[d].rdev;
2356
2357	if (bio->bi_status) {
2358		if (repl)
2359			md_error(mddev, rdev);
2360		else {
2361			set_bit(WriteErrorSeen, &rdev->flags);
2362			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2363				set_bit(MD_RECOVERY_NEEDED,
2364					&rdev->mddev->recovery);
2365			set_bit(R10BIO_WriteError, &r10_bio->state);
2366		}
2367	} else if (is_badblock(rdev,
2368			     r10_bio->devs[slot].addr,
2369			     r10_bio->sectors,
2370			     &first_bad, &bad_sectors))
2371		set_bit(R10BIO_MadeGood, &r10_bio->state);
2372
2373	rdev_dec_pending(rdev, mddev);
2374
2375	end_sync_request(r10_bio);
2376}
2377
2378/*
2379 * Note: sync and recover and handled very differently for raid10
2380 * This code is for resync.
2381 * For resync, we read through virtual addresses and read all blocks.
2382 * If there is any error, we schedule a write.  The lowest numbered
2383 * drive is authoritative.
2384 * However requests come for physical address, so we need to map.
2385 * For every physical address there are raid_disks/copies virtual addresses,
2386 * which is always are least one, but is not necessarly an integer.
2387 * This means that a physical address can span multiple chunks, so we may
2388 * have to submit multiple io requests for a single sync request.
2389 */
2390/*
2391 * We check if all blocks are in-sync and only write to blocks that
2392 * aren't in sync
2393 */
2394static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2395{
2396	struct r10conf *conf = mddev->private;
2397	int i, first;
2398	struct bio *tbio, *fbio;
2399	int vcnt;
2400	struct page **tpages, **fpages;
2401
2402	atomic_set(&r10_bio->remaining, 1);
2403
2404	/* find the first device with a block */
2405	for (i=0; i<conf->copies; i++)
2406		if (!r10_bio->devs[i].bio->bi_status)
2407			break;
2408
2409	if (i == conf->copies)
2410		goto done;
2411
2412	first = i;
2413	fbio = r10_bio->devs[i].bio;
2414	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2415	fbio->bi_iter.bi_idx = 0;
2416	fpages = get_resync_pages(fbio)->pages;
2417
2418	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2419	/* now find blocks with errors */
2420	for (i=0 ; i < conf->copies ; i++) {
2421		int  j, d;
2422		struct md_rdev *rdev;
2423		struct resync_pages *rp;
2424
2425		tbio = r10_bio->devs[i].bio;
2426
2427		if (tbio->bi_end_io != end_sync_read)
2428			continue;
2429		if (i == first)
2430			continue;
2431
2432		tpages = get_resync_pages(tbio)->pages;
2433		d = r10_bio->devs[i].devnum;
2434		rdev = conf->mirrors[d].rdev;
2435		if (!r10_bio->devs[i].bio->bi_status) {
2436			/* We know that the bi_io_vec layout is the same for
2437			 * both 'first' and 'i', so we just compare them.
2438			 * All vec entries are PAGE_SIZE;
2439			 */
2440			int sectors = r10_bio->sectors;
2441			for (j = 0; j < vcnt; j++) {
2442				int len = PAGE_SIZE;
2443				if (sectors < (len / 512))
2444					len = sectors * 512;
2445				if (memcmp(page_address(fpages[j]),
2446					   page_address(tpages[j]),
2447					   len))
2448					break;
2449				sectors -= len/512;
2450			}
2451			if (j == vcnt)
2452				continue;
2453			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2454			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2455				/* Don't fix anything. */
2456				continue;
2457		} else if (test_bit(FailFast, &rdev->flags)) {
2458			/* Just give up on this device */
2459			md_error(rdev->mddev, rdev);
2460			continue;
2461		}
2462		/* Ok, we need to write this bio, either to correct an
2463		 * inconsistency or to correct an unreadable block.
2464		 * First we need to fixup bv_offset, bv_len and
2465		 * bi_vecs, as the read request might have corrupted these
2466		 */
2467		rp = get_resync_pages(tbio);
2468		bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2469
2470		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2471
2472		rp->raid_bio = r10_bio;
2473		tbio->bi_private = rp;
2474		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2475		tbio->bi_end_io = end_sync_write;
 
2476
2477		bio_copy_data(tbio, fbio);
2478
2479		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2480		atomic_inc(&r10_bio->remaining);
2481		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2482
2483		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2484			tbio->bi_opf |= MD_FAILFAST;
2485		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
 
2486		submit_bio_noacct(tbio);
2487	}
2488
2489	/* Now write out to any replacement devices
2490	 * that are active
2491	 */
2492	for (i = 0; i < conf->copies; i++) {
2493		int d;
2494
2495		tbio = r10_bio->devs[i].repl_bio;
2496		if (!tbio || !tbio->bi_end_io)
2497			continue;
2498		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2499		    && r10_bio->devs[i].bio != fbio)
2500			bio_copy_data(tbio, fbio);
2501		d = r10_bio->devs[i].devnum;
2502		atomic_inc(&r10_bio->remaining);
2503		md_sync_acct(conf->mirrors[d].replacement->bdev,
2504			     bio_sectors(tbio));
2505		submit_bio_noacct(tbio);
2506	}
2507
2508done:
2509	if (atomic_dec_and_test(&r10_bio->remaining)) {
2510		md_done_sync(mddev, r10_bio->sectors, 1);
2511		put_buf(r10_bio);
2512	}
2513}
2514
2515/*
2516 * Now for the recovery code.
2517 * Recovery happens across physical sectors.
2518 * We recover all non-is_sync drives by finding the virtual address of
2519 * each, and then choose a working drive that also has that virt address.
2520 * There is a separate r10_bio for each non-in_sync drive.
2521 * Only the first two slots are in use. The first for reading,
2522 * The second for writing.
2523 *
2524 */
2525static void fix_recovery_read_error(struct r10bio *r10_bio)
2526{
2527	/* We got a read error during recovery.
2528	 * We repeat the read in smaller page-sized sections.
2529	 * If a read succeeds, write it to the new device or record
2530	 * a bad block if we cannot.
2531	 * If a read fails, record a bad block on both old and
2532	 * new devices.
2533	 */
2534	struct mddev *mddev = r10_bio->mddev;
2535	struct r10conf *conf = mddev->private;
2536	struct bio *bio = r10_bio->devs[0].bio;
2537	sector_t sect = 0;
2538	int sectors = r10_bio->sectors;
2539	int idx = 0;
2540	int dr = r10_bio->devs[0].devnum;
2541	int dw = r10_bio->devs[1].devnum;
2542	struct page **pages = get_resync_pages(bio)->pages;
2543
2544	while (sectors) {
2545		int s = sectors;
2546		struct md_rdev *rdev;
2547		sector_t addr;
2548		int ok;
2549
2550		if (s > (PAGE_SIZE>>9))
2551			s = PAGE_SIZE >> 9;
2552
2553		rdev = conf->mirrors[dr].rdev;
2554		addr = r10_bio->devs[0].addr + sect,
2555		ok = sync_page_io(rdev,
2556				  addr,
2557				  s << 9,
2558				  pages[idx],
2559				  REQ_OP_READ, false);
2560		if (ok) {
2561			rdev = conf->mirrors[dw].rdev;
2562			addr = r10_bio->devs[1].addr + sect;
2563			ok = sync_page_io(rdev,
2564					  addr,
2565					  s << 9,
2566					  pages[idx],
2567					  REQ_OP_WRITE, false);
2568			if (!ok) {
2569				set_bit(WriteErrorSeen, &rdev->flags);
2570				if (!test_and_set_bit(WantReplacement,
2571						      &rdev->flags))
2572					set_bit(MD_RECOVERY_NEEDED,
2573						&rdev->mddev->recovery);
2574			}
2575		}
2576		if (!ok) {
2577			/* We don't worry if we cannot set a bad block -
2578			 * it really is bad so there is no loss in not
2579			 * recording it yet
2580			 */
2581			rdev_set_badblocks(rdev, addr, s, 0);
2582
2583			if (rdev != conf->mirrors[dw].rdev) {
2584				/* need bad block on destination too */
2585				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2586				addr = r10_bio->devs[1].addr + sect;
2587				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2588				if (!ok) {
2589					/* just abort the recovery */
2590					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2591						  mdname(mddev));
2592
2593					conf->mirrors[dw].recovery_disabled
2594						= mddev->recovery_disabled;
2595					set_bit(MD_RECOVERY_INTR,
2596						&mddev->recovery);
2597					break;
2598				}
2599			}
2600		}
2601
2602		sectors -= s;
2603		sect += s;
2604		idx++;
2605	}
2606}
2607
2608static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2609{
2610	struct r10conf *conf = mddev->private;
2611	int d;
2612	struct bio *wbio, *wbio2;
2613
2614	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2615		fix_recovery_read_error(r10_bio);
2616		end_sync_request(r10_bio);
2617		return;
2618	}
2619
2620	/*
2621	 * share the pages with the first bio
2622	 * and submit the write request
2623	 */
2624	d = r10_bio->devs[1].devnum;
2625	wbio = r10_bio->devs[1].bio;
2626	wbio2 = r10_bio->devs[1].repl_bio;
2627	/* Need to test wbio2->bi_end_io before we call
2628	 * submit_bio_noacct as if the former is NULL,
2629	 * the latter is free to free wbio2.
2630	 */
2631	if (wbio2 && !wbio2->bi_end_io)
2632		wbio2 = NULL;
2633	if (wbio->bi_end_io) {
2634		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2635		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2636		submit_bio_noacct(wbio);
2637	}
2638	if (wbio2) {
2639		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2640		md_sync_acct(conf->mirrors[d].replacement->bdev,
2641			     bio_sectors(wbio2));
2642		submit_bio_noacct(wbio2);
2643	}
2644}
2645
2646/*
2647 * Used by fix_read_error() to decay the per rdev read_errors.
2648 * We halve the read error count for every hour that has elapsed
2649 * since the last recorded read error.
2650 *
2651 */
2652static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2653{
2654	long cur_time_mon;
2655	unsigned long hours_since_last;
2656	unsigned int read_errors = atomic_read(&rdev->read_errors);
2657
2658	cur_time_mon = ktime_get_seconds();
2659
2660	if (rdev->last_read_error == 0) {
2661		/* first time we've seen a read error */
2662		rdev->last_read_error = cur_time_mon;
2663		return;
2664	}
2665
2666	hours_since_last = (long)(cur_time_mon -
2667			    rdev->last_read_error) / 3600;
2668
2669	rdev->last_read_error = cur_time_mon;
2670
2671	/*
2672	 * if hours_since_last is > the number of bits in read_errors
2673	 * just set read errors to 0. We do this to avoid
2674	 * overflowing the shift of read_errors by hours_since_last.
2675	 */
2676	if (hours_since_last >= 8 * sizeof(read_errors))
2677		atomic_set(&rdev->read_errors, 0);
2678	else
2679		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2680}
2681
2682static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2683			    int sectors, struct page *page, enum req_op op)
2684{
2685	sector_t first_bad;
2686	int bad_sectors;
2687
2688	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2689	    && (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
2690		return -1;
2691	if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
2692		/* success */
2693		return 1;
2694	if (op == REQ_OP_WRITE) {
2695		set_bit(WriteErrorSeen, &rdev->flags);
2696		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2697			set_bit(MD_RECOVERY_NEEDED,
2698				&rdev->mddev->recovery);
2699	}
2700	/* need to record an error - either for the block or the device */
2701	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2702		md_error(rdev->mddev, rdev);
2703	return 0;
2704}
2705
2706/*
2707 * This is a kernel thread which:
2708 *
2709 *	1.	Retries failed read operations on working mirrors.
2710 *	2.	Updates the raid superblock when problems encounter.
2711 *	3.	Performs writes following reads for array synchronising.
2712 */
2713
2714static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2715{
2716	int sect = 0; /* Offset from r10_bio->sector */
2717	int sectors = r10_bio->sectors;
2718	struct md_rdev *rdev;
2719	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2720	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2721
2722	/* still own a reference to this rdev, so it cannot
2723	 * have been cleared recently.
2724	 */
2725	rdev = conf->mirrors[d].rdev;
2726
2727	if (test_bit(Faulty, &rdev->flags))
2728		/* drive has already been failed, just ignore any
2729		   more fix_read_error() attempts */
2730		return;
2731
2732	check_decay_read_errors(mddev, rdev);
2733	atomic_inc(&rdev->read_errors);
2734	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2735		pr_notice("md/raid10:%s: %pg: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2736			  mdname(mddev), rdev->bdev,
 
 
 
2737			  atomic_read(&rdev->read_errors), max_read_errors);
2738		pr_notice("md/raid10:%s: %pg: Failing raid device\n",
2739			  mdname(mddev), rdev->bdev);
2740		md_error(mddev, rdev);
2741		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2742		return;
2743	}
2744
2745	while(sectors) {
2746		int s = sectors;
2747		int sl = r10_bio->read_slot;
2748		int success = 0;
2749		int start;
2750
2751		if (s > (PAGE_SIZE>>9))
2752			s = PAGE_SIZE >> 9;
2753
2754		rcu_read_lock();
2755		do {
2756			sector_t first_bad;
2757			int bad_sectors;
2758
2759			d = r10_bio->devs[sl].devnum;
2760			rdev = rcu_dereference(conf->mirrors[d].rdev);
2761			if (rdev &&
2762			    test_bit(In_sync, &rdev->flags) &&
2763			    !test_bit(Faulty, &rdev->flags) &&
2764			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2765					&first_bad, &bad_sectors) == 0) {
2766				atomic_inc(&rdev->nr_pending);
2767				rcu_read_unlock();
2768				success = sync_page_io(rdev,
2769						       r10_bio->devs[sl].addr +
2770						       sect,
2771						       s<<9,
2772						       conf->tmppage,
2773						       REQ_OP_READ, false);
2774				rdev_dec_pending(rdev, mddev);
2775				rcu_read_lock();
2776				if (success)
2777					break;
2778			}
2779			sl++;
2780			if (sl == conf->copies)
2781				sl = 0;
2782		} while (!success && sl != r10_bio->read_slot);
2783		rcu_read_unlock();
2784
2785		if (!success) {
2786			/* Cannot read from anywhere, just mark the block
2787			 * as bad on the first device to discourage future
2788			 * reads.
2789			 */
2790			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2791			rdev = conf->mirrors[dn].rdev;
2792
2793			if (!rdev_set_badblocks(
2794				    rdev,
2795				    r10_bio->devs[r10_bio->read_slot].addr
2796				    + sect,
2797				    s, 0)) {
2798				md_error(mddev, rdev);
2799				r10_bio->devs[r10_bio->read_slot].bio
2800					= IO_BLOCKED;
2801			}
2802			break;
2803		}
2804
2805		start = sl;
2806		/* write it back and re-read */
2807		rcu_read_lock();
2808		while (sl != r10_bio->read_slot) {
 
 
2809			if (sl==0)
2810				sl = conf->copies;
2811			sl--;
2812			d = r10_bio->devs[sl].devnum;
2813			rdev = rcu_dereference(conf->mirrors[d].rdev);
2814			if (!rdev ||
2815			    test_bit(Faulty, &rdev->flags) ||
2816			    !test_bit(In_sync, &rdev->flags))
2817				continue;
2818
2819			atomic_inc(&rdev->nr_pending);
2820			rcu_read_unlock();
2821			if (r10_sync_page_io(rdev,
2822					     r10_bio->devs[sl].addr +
2823					     sect,
2824					     s, conf->tmppage, REQ_OP_WRITE)
2825			    == 0) {
2826				/* Well, this device is dead */
2827				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2828					  mdname(mddev), s,
2829					  (unsigned long long)(
2830						  sect +
2831						  choose_data_offset(r10_bio,
2832								     rdev)),
2833					  rdev->bdev);
2834				pr_notice("md/raid10:%s: %pg: failing drive\n",
2835					  mdname(mddev),
2836					  rdev->bdev);
2837			}
2838			rdev_dec_pending(rdev, mddev);
2839			rcu_read_lock();
2840		}
2841		sl = start;
2842		while (sl != r10_bio->read_slot) {
 
 
2843			if (sl==0)
2844				sl = conf->copies;
2845			sl--;
2846			d = r10_bio->devs[sl].devnum;
2847			rdev = rcu_dereference(conf->mirrors[d].rdev);
2848			if (!rdev ||
2849			    test_bit(Faulty, &rdev->flags) ||
2850			    !test_bit(In_sync, &rdev->flags))
2851				continue;
2852
2853			atomic_inc(&rdev->nr_pending);
2854			rcu_read_unlock();
2855			switch (r10_sync_page_io(rdev,
2856					     r10_bio->devs[sl].addr +
2857					     sect,
2858					     s, conf->tmppage, REQ_OP_READ)) {
 
2859			case 0:
2860				/* Well, this device is dead */
2861				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2862				       mdname(mddev), s,
2863				       (unsigned long long)(
2864					       sect +
2865					       choose_data_offset(r10_bio, rdev)),
2866				       rdev->bdev);
2867				pr_notice("md/raid10:%s: %pg: failing drive\n",
2868				       mdname(mddev),
2869				       rdev->bdev);
2870				break;
2871			case 1:
2872				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2873				       mdname(mddev), s,
2874				       (unsigned long long)(
2875					       sect +
2876					       choose_data_offset(r10_bio, rdev)),
2877				       rdev->bdev);
2878				atomic_add(s, &rdev->corrected_errors);
2879			}
2880
2881			rdev_dec_pending(rdev, mddev);
2882			rcu_read_lock();
2883		}
2884		rcu_read_unlock();
2885
2886		sectors -= s;
2887		sect += s;
2888	}
2889}
2890
2891static int narrow_write_error(struct r10bio *r10_bio, int i)
2892{
2893	struct bio *bio = r10_bio->master_bio;
2894	struct mddev *mddev = r10_bio->mddev;
2895	struct r10conf *conf = mddev->private;
2896	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2897	/* bio has the data to be written to slot 'i' where
2898	 * we just recently had a write error.
2899	 * We repeatedly clone the bio and trim down to one block,
2900	 * then try the write.  Where the write fails we record
2901	 * a bad block.
2902	 * It is conceivable that the bio doesn't exactly align with
2903	 * blocks.  We must handle this.
2904	 *
2905	 * We currently own a reference to the rdev.
2906	 */
2907
2908	int block_sectors;
2909	sector_t sector;
2910	int sectors;
2911	int sect_to_write = r10_bio->sectors;
2912	int ok = 1;
2913
2914	if (rdev->badblocks.shift < 0)
2915		return 0;
2916
2917	block_sectors = roundup(1 << rdev->badblocks.shift,
2918				bdev_logical_block_size(rdev->bdev) >> 9);
2919	sector = r10_bio->sector;
2920	sectors = ((r10_bio->sector + block_sectors)
2921		   & ~(sector_t)(block_sectors - 1))
2922		- sector;
2923
2924	while (sect_to_write) {
2925		struct bio *wbio;
2926		sector_t wsector;
2927		if (sectors > sect_to_write)
2928			sectors = sect_to_write;
2929		/* Write at 'sector' for 'sectors' */
2930		wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2931				       &mddev->bio_set);
2932		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2933		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2934		wbio->bi_iter.bi_sector = wsector +
2935				   choose_data_offset(r10_bio, rdev);
2936		wbio->bi_opf = REQ_OP_WRITE;
 
2937
2938		if (submit_bio_wait(wbio) < 0)
2939			/* Failure! */
2940			ok = rdev_set_badblocks(rdev, wsector,
2941						sectors, 0)
2942				&& ok;
2943
2944		bio_put(wbio);
2945		sect_to_write -= sectors;
2946		sector += sectors;
2947		sectors = block_sectors;
2948	}
2949	return ok;
2950}
2951
2952static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2953{
2954	int slot = r10_bio->read_slot;
2955	struct bio *bio;
2956	struct r10conf *conf = mddev->private;
2957	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2958
2959	/* we got a read error. Maybe the drive is bad.  Maybe just
2960	 * the block and we can fix it.
2961	 * We freeze all other IO, and try reading the block from
2962	 * other devices.  When we find one, we re-write
2963	 * and check it that fixes the read error.
2964	 * This is all done synchronously while the array is
2965	 * frozen.
2966	 */
2967	bio = r10_bio->devs[slot].bio;
2968	bio_put(bio);
2969	r10_bio->devs[slot].bio = NULL;
2970
2971	if (mddev->ro)
2972		r10_bio->devs[slot].bio = IO_BLOCKED;
2973	else if (!test_bit(FailFast, &rdev->flags)) {
2974		freeze_array(conf, 1);
2975		fix_read_error(conf, mddev, r10_bio);
2976		unfreeze_array(conf);
2977	} else
2978		md_error(mddev, rdev);
2979
2980	rdev_dec_pending(rdev, mddev);
2981	allow_barrier(conf);
2982	r10_bio->state = 0;
2983	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2984}
2985
2986static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2987{
2988	/* Some sort of write request has finished and it
2989	 * succeeded in writing where we thought there was a
2990	 * bad block.  So forget the bad block.
2991	 * Or possibly if failed and we need to record
2992	 * a bad block.
2993	 */
2994	int m;
2995	struct md_rdev *rdev;
2996
2997	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2998	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2999		for (m = 0; m < conf->copies; m++) {
3000			int dev = r10_bio->devs[m].devnum;
3001			rdev = conf->mirrors[dev].rdev;
3002			if (r10_bio->devs[m].bio == NULL ||
3003				r10_bio->devs[m].bio->bi_end_io == NULL)
3004				continue;
3005			if (!r10_bio->devs[m].bio->bi_status) {
3006				rdev_clear_badblocks(
3007					rdev,
3008					r10_bio->devs[m].addr,
3009					r10_bio->sectors, 0);
3010			} else {
3011				if (!rdev_set_badblocks(
3012					    rdev,
3013					    r10_bio->devs[m].addr,
3014					    r10_bio->sectors, 0))
3015					md_error(conf->mddev, rdev);
3016			}
3017			rdev = conf->mirrors[dev].replacement;
3018			if (r10_bio->devs[m].repl_bio == NULL ||
3019				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
3020				continue;
3021
3022			if (!r10_bio->devs[m].repl_bio->bi_status) {
3023				rdev_clear_badblocks(
3024					rdev,
3025					r10_bio->devs[m].addr,
3026					r10_bio->sectors, 0);
3027			} else {
3028				if (!rdev_set_badblocks(
3029					    rdev,
3030					    r10_bio->devs[m].addr,
3031					    r10_bio->sectors, 0))
3032					md_error(conf->mddev, rdev);
3033			}
3034		}
3035		put_buf(r10_bio);
3036	} else {
3037		bool fail = false;
3038		for (m = 0; m < conf->copies; m++) {
3039			int dev = r10_bio->devs[m].devnum;
3040			struct bio *bio = r10_bio->devs[m].bio;
3041			rdev = conf->mirrors[dev].rdev;
3042			if (bio == IO_MADE_GOOD) {
3043				rdev_clear_badblocks(
3044					rdev,
3045					r10_bio->devs[m].addr,
3046					r10_bio->sectors, 0);
3047				rdev_dec_pending(rdev, conf->mddev);
3048			} else if (bio != NULL && bio->bi_status) {
3049				fail = true;
3050				if (!narrow_write_error(r10_bio, m)) {
3051					md_error(conf->mddev, rdev);
3052					set_bit(R10BIO_Degraded,
3053						&r10_bio->state);
3054				}
3055				rdev_dec_pending(rdev, conf->mddev);
3056			}
3057			bio = r10_bio->devs[m].repl_bio;
3058			rdev = conf->mirrors[dev].replacement;
3059			if (rdev && bio == IO_MADE_GOOD) {
3060				rdev_clear_badblocks(
3061					rdev,
3062					r10_bio->devs[m].addr,
3063					r10_bio->sectors, 0);
3064				rdev_dec_pending(rdev, conf->mddev);
3065			}
3066		}
3067		if (fail) {
3068			spin_lock_irq(&conf->device_lock);
3069			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
3070			conf->nr_queued++;
3071			spin_unlock_irq(&conf->device_lock);
3072			/*
3073			 * In case freeze_array() is waiting for condition
3074			 * nr_pending == nr_queued + extra to be true.
3075			 */
3076			wake_up(&conf->wait_barrier);
3077			md_wakeup_thread(conf->mddev->thread);
3078		} else {
3079			if (test_bit(R10BIO_WriteError,
3080				     &r10_bio->state))
3081				close_write(r10_bio);
3082			raid_end_bio_io(r10_bio);
3083		}
3084	}
3085}
3086
3087static void raid10d(struct md_thread *thread)
3088{
3089	struct mddev *mddev = thread->mddev;
3090	struct r10bio *r10_bio;
3091	unsigned long flags;
3092	struct r10conf *conf = mddev->private;
3093	struct list_head *head = &conf->retry_list;
3094	struct blk_plug plug;
3095
3096	md_check_recovery(mddev);
3097
3098	if (!list_empty_careful(&conf->bio_end_io_list) &&
3099	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3100		LIST_HEAD(tmp);
3101		spin_lock_irqsave(&conf->device_lock, flags);
3102		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3103			while (!list_empty(&conf->bio_end_io_list)) {
3104				list_move(conf->bio_end_io_list.prev, &tmp);
3105				conf->nr_queued--;
3106			}
3107		}
3108		spin_unlock_irqrestore(&conf->device_lock, flags);
3109		while (!list_empty(&tmp)) {
3110			r10_bio = list_first_entry(&tmp, struct r10bio,
3111						   retry_list);
3112			list_del(&r10_bio->retry_list);
3113			if (mddev->degraded)
3114				set_bit(R10BIO_Degraded, &r10_bio->state);
3115
3116			if (test_bit(R10BIO_WriteError,
3117				     &r10_bio->state))
3118				close_write(r10_bio);
3119			raid_end_bio_io(r10_bio);
3120		}
3121	}
3122
3123	blk_start_plug(&plug);
3124	for (;;) {
3125
3126		flush_pending_writes(conf);
3127
3128		spin_lock_irqsave(&conf->device_lock, flags);
3129		if (list_empty(head)) {
3130			spin_unlock_irqrestore(&conf->device_lock, flags);
3131			break;
3132		}
3133		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3134		list_del(head->prev);
3135		conf->nr_queued--;
3136		spin_unlock_irqrestore(&conf->device_lock, flags);
3137
3138		mddev = r10_bio->mddev;
3139		conf = mddev->private;
3140		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3141		    test_bit(R10BIO_WriteError, &r10_bio->state))
3142			handle_write_completed(conf, r10_bio);
3143		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3144			reshape_request_write(mddev, r10_bio);
3145		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3146			sync_request_write(mddev, r10_bio);
3147		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3148			recovery_request_write(mddev, r10_bio);
3149		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3150			handle_read_error(mddev, r10_bio);
3151		else
3152			WARN_ON_ONCE(1);
3153
3154		cond_resched();
3155		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3156			md_check_recovery(mddev);
3157	}
3158	blk_finish_plug(&plug);
3159}
3160
3161static int init_resync(struct r10conf *conf)
3162{
3163	int ret, buffs, i;
3164
3165	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3166	BUG_ON(mempool_initialized(&conf->r10buf_pool));
3167	conf->have_replacement = 0;
3168	for (i = 0; i < conf->geo.raid_disks; i++)
3169		if (conf->mirrors[i].replacement)
3170			conf->have_replacement = 1;
3171	ret = mempool_init(&conf->r10buf_pool, buffs,
3172			   r10buf_pool_alloc, r10buf_pool_free, conf);
3173	if (ret)
3174		return ret;
3175	conf->next_resync = 0;
3176	return 0;
3177}
3178
3179static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3180{
3181	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3182	struct rsync_pages *rp;
3183	struct bio *bio;
3184	int nalloc;
3185	int i;
3186
3187	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3188	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3189		nalloc = conf->copies; /* resync */
3190	else
3191		nalloc = 2; /* recovery */
3192
3193	for (i = 0; i < nalloc; i++) {
3194		bio = r10bio->devs[i].bio;
3195		rp = bio->bi_private;
3196		bio_reset(bio, NULL, 0);
3197		bio->bi_private = rp;
3198		bio = r10bio->devs[i].repl_bio;
3199		if (bio) {
3200			rp = bio->bi_private;
3201			bio_reset(bio, NULL, 0);
3202			bio->bi_private = rp;
3203		}
3204	}
3205	return r10bio;
3206}
3207
3208/*
3209 * Set cluster_sync_high since we need other nodes to add the
3210 * range [cluster_sync_low, cluster_sync_high] to suspend list.
3211 */
3212static void raid10_set_cluster_sync_high(struct r10conf *conf)
3213{
3214	sector_t window_size;
3215	int extra_chunk, chunks;
3216
3217	/*
3218	 * First, here we define "stripe" as a unit which across
3219	 * all member devices one time, so we get chunks by use
3220	 * raid_disks / near_copies. Otherwise, if near_copies is
3221	 * close to raid_disks, then resync window could increases
3222	 * linearly with the increase of raid_disks, which means
3223	 * we will suspend a really large IO window while it is not
3224	 * necessary. If raid_disks is not divisible by near_copies,
3225	 * an extra chunk is needed to ensure the whole "stripe" is
3226	 * covered.
3227	 */
3228
3229	chunks = conf->geo.raid_disks / conf->geo.near_copies;
3230	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3231		extra_chunk = 0;
3232	else
3233		extra_chunk = 1;
3234	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3235
3236	/*
3237	 * At least use a 32M window to align with raid1's resync window
3238	 */
3239	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3240			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3241
3242	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3243}
3244
3245/*
3246 * perform a "sync" on one "block"
3247 *
3248 * We need to make sure that no normal I/O request - particularly write
3249 * requests - conflict with active sync requests.
3250 *
3251 * This is achieved by tracking pending requests and a 'barrier' concept
3252 * that can be installed to exclude normal IO requests.
3253 *
3254 * Resync and recovery are handled very differently.
3255 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3256 *
3257 * For resync, we iterate over virtual addresses, read all copies,
3258 * and update if there are differences.  If only one copy is live,
3259 * skip it.
3260 * For recovery, we iterate over physical addresses, read a good
3261 * value for each non-in_sync drive, and over-write.
3262 *
3263 * So, for recovery we may have several outstanding complex requests for a
3264 * given address, one for each out-of-sync device.  We model this by allocating
3265 * a number of r10_bio structures, one for each out-of-sync device.
3266 * As we setup these structures, we collect all bio's together into a list
3267 * which we then process collectively to add pages, and then process again
3268 * to pass to submit_bio_noacct.
3269 *
3270 * The r10_bio structures are linked using a borrowed master_bio pointer.
3271 * This link is counted in ->remaining.  When the r10_bio that points to NULL
3272 * has its remaining count decremented to 0, the whole complex operation
3273 * is complete.
3274 *
3275 */
3276
3277static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3278			     int *skipped)
3279{
3280	struct r10conf *conf = mddev->private;
3281	struct r10bio *r10_bio;
3282	struct bio *biolist = NULL, *bio;
3283	sector_t max_sector, nr_sectors;
3284	int i;
3285	int max_sync;
3286	sector_t sync_blocks;
3287	sector_t sectors_skipped = 0;
3288	int chunks_skipped = 0;
3289	sector_t chunk_mask = conf->geo.chunk_mask;
3290	int page_idx = 0;
3291
3292	if (!mempool_initialized(&conf->r10buf_pool))
3293		if (init_resync(conf))
3294			return 0;
3295
3296	/*
3297	 * Allow skipping a full rebuild for incremental assembly
3298	 * of a clean array, like RAID1 does.
3299	 */
3300	if (mddev->bitmap == NULL &&
3301	    mddev->recovery_cp == MaxSector &&
3302	    mddev->reshape_position == MaxSector &&
3303	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3304	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3305	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3306	    conf->fullsync == 0) {
3307		*skipped = 1;
3308		return mddev->dev_sectors - sector_nr;
3309	}
3310
3311 skipped:
3312	max_sector = mddev->dev_sectors;
3313	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3314	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3315		max_sector = mddev->resync_max_sectors;
3316	if (sector_nr >= max_sector) {
3317		conf->cluster_sync_low = 0;
3318		conf->cluster_sync_high = 0;
3319
3320		/* If we aborted, we need to abort the
3321		 * sync on the 'current' bitmap chucks (there can
3322		 * be several when recovering multiple devices).
3323		 * as we may have started syncing it but not finished.
3324		 * We can find the current address in
3325		 * mddev->curr_resync, but for recovery,
3326		 * we need to convert that to several
3327		 * virtual addresses.
3328		 */
3329		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3330			end_reshape(conf);
3331			close_sync(conf);
3332			return 0;
3333		}
3334
3335		if (mddev->curr_resync < max_sector) { /* aborted */
3336			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3337				md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3338						   &sync_blocks, 1);
3339			else for (i = 0; i < conf->geo.raid_disks; i++) {
3340				sector_t sect =
3341					raid10_find_virt(conf, mddev->curr_resync, i);
3342				md_bitmap_end_sync(mddev->bitmap, sect,
3343						   &sync_blocks, 1);
3344			}
3345		} else {
3346			/* completed sync */
3347			if ((!mddev->bitmap || conf->fullsync)
3348			    && conf->have_replacement
3349			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3350				/* Completed a full sync so the replacements
3351				 * are now fully recovered.
3352				 */
3353				rcu_read_lock();
3354				for (i = 0; i < conf->geo.raid_disks; i++) {
3355					struct md_rdev *rdev =
3356						rcu_dereference(conf->mirrors[i].replacement);
3357					if (rdev)
3358						rdev->recovery_offset = MaxSector;
3359				}
3360				rcu_read_unlock();
3361			}
3362			conf->fullsync = 0;
3363		}
3364		md_bitmap_close_sync(mddev->bitmap);
3365		close_sync(conf);
3366		*skipped = 1;
3367		return sectors_skipped;
3368	}
3369
3370	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3371		return reshape_request(mddev, sector_nr, skipped);
3372
3373	if (chunks_skipped >= conf->geo.raid_disks) {
3374		/* if there has been nothing to do on any drive,
3375		 * then there is nothing to do at all..
3376		 */
3377		*skipped = 1;
3378		return (max_sector - sector_nr) + sectors_skipped;
3379	}
3380
3381	if (max_sector > mddev->resync_max)
3382		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3383
3384	/* make sure whole request will fit in a chunk - if chunks
3385	 * are meaningful
3386	 */
3387	if (conf->geo.near_copies < conf->geo.raid_disks &&
3388	    max_sector > (sector_nr | chunk_mask))
3389		max_sector = (sector_nr | chunk_mask) + 1;
3390
3391	/*
3392	 * If there is non-resync activity waiting for a turn, then let it
3393	 * though before starting on this new sync request.
3394	 */
3395	if (conf->nr_waiting)
3396		schedule_timeout_uninterruptible(1);
3397
3398	/* Again, very different code for resync and recovery.
3399	 * Both must result in an r10bio with a list of bios that
3400	 * have bi_end_io, bi_sector, bi_bdev set,
3401	 * and bi_private set to the r10bio.
3402	 * For recovery, we may actually create several r10bios
3403	 * with 2 bios in each, that correspond to the bios in the main one.
3404	 * In this case, the subordinate r10bios link back through a
3405	 * borrowed master_bio pointer, and the counter in the master
3406	 * includes a ref from each subordinate.
3407	 */
3408	/* First, we decide what to do and set ->bi_end_io
3409	 * To end_sync_read if we want to read, and
3410	 * end_sync_write if we will want to write.
3411	 */
3412
3413	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3414	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3415		/* recovery... the complicated one */
3416		int j;
3417		r10_bio = NULL;
3418
3419		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3420			int still_degraded;
3421			struct r10bio *rb2;
3422			sector_t sect;
3423			int must_sync;
3424			int any_working;
3425			int need_recover = 0;
3426			int need_replace = 0;
3427			struct raid10_info *mirror = &conf->mirrors[i];
3428			struct md_rdev *mrdev, *mreplace;
3429
3430			rcu_read_lock();
3431			mrdev = rcu_dereference(mirror->rdev);
3432			mreplace = rcu_dereference(mirror->replacement);
3433
3434			if (mrdev != NULL &&
3435			    !test_bit(Faulty, &mrdev->flags) &&
3436			    !test_bit(In_sync, &mrdev->flags))
3437				need_recover = 1;
3438			if (mreplace != NULL &&
3439			    !test_bit(Faulty, &mreplace->flags))
3440				need_replace = 1;
3441
3442			if (!need_recover && !need_replace) {
3443				rcu_read_unlock();
3444				continue;
3445			}
3446
3447			still_degraded = 0;
3448			/* want to reconstruct this device */
3449			rb2 = r10_bio;
3450			sect = raid10_find_virt(conf, sector_nr, i);
3451			if (sect >= mddev->resync_max_sectors) {
3452				/* last stripe is not complete - don't
3453				 * try to recover this sector.
3454				 */
3455				rcu_read_unlock();
3456				continue;
3457			}
3458			if (mreplace && test_bit(Faulty, &mreplace->flags))
3459				mreplace = NULL;
3460			/* Unless we are doing a full sync, or a replacement
3461			 * we only need to recover the block if it is set in
3462			 * the bitmap
3463			 */
3464			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3465							 &sync_blocks, 1);
3466			if (sync_blocks < max_sync)
3467				max_sync = sync_blocks;
3468			if (!must_sync &&
3469			    mreplace == NULL &&
3470			    !conf->fullsync) {
3471				/* yep, skip the sync_blocks here, but don't assume
3472				 * that there will never be anything to do here
3473				 */
3474				chunks_skipped = -1;
3475				rcu_read_unlock();
3476				continue;
3477			}
3478			atomic_inc(&mrdev->nr_pending);
3479			if (mreplace)
3480				atomic_inc(&mreplace->nr_pending);
3481			rcu_read_unlock();
3482
3483			r10_bio = raid10_alloc_init_r10buf(conf);
3484			r10_bio->state = 0;
3485			raise_barrier(conf, rb2 != NULL);
3486			atomic_set(&r10_bio->remaining, 0);
3487
3488			r10_bio->master_bio = (struct bio*)rb2;
3489			if (rb2)
3490				atomic_inc(&rb2->remaining);
3491			r10_bio->mddev = mddev;
3492			set_bit(R10BIO_IsRecover, &r10_bio->state);
3493			r10_bio->sector = sect;
3494
3495			raid10_find_phys(conf, r10_bio);
3496
3497			/* Need to check if the array will still be
3498			 * degraded
3499			 */
3500			rcu_read_lock();
3501			for (j = 0; j < conf->geo.raid_disks; j++) {
3502				struct md_rdev *rdev = rcu_dereference(
3503					conf->mirrors[j].rdev);
3504				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3505					still_degraded = 1;
3506					break;
3507				}
3508			}
3509
3510			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3511							 &sync_blocks, still_degraded);
3512
3513			any_working = 0;
3514			for (j=0; j<conf->copies;j++) {
3515				int k;
3516				int d = r10_bio->devs[j].devnum;
3517				sector_t from_addr, to_addr;
3518				struct md_rdev *rdev =
3519					rcu_dereference(conf->mirrors[d].rdev);
3520				sector_t sector, first_bad;
3521				int bad_sectors;
3522				if (!rdev ||
3523				    !test_bit(In_sync, &rdev->flags))
3524					continue;
3525				/* This is where we read from */
3526				any_working = 1;
3527				sector = r10_bio->devs[j].addr;
3528
3529				if (is_badblock(rdev, sector, max_sync,
3530						&first_bad, &bad_sectors)) {
3531					if (first_bad > sector)
3532						max_sync = first_bad - sector;
3533					else {
3534						bad_sectors -= (sector
3535								- first_bad);
3536						if (max_sync > bad_sectors)
3537							max_sync = bad_sectors;
3538						continue;
3539					}
3540				}
3541				bio = r10_bio->devs[0].bio;
3542				bio->bi_next = biolist;
3543				biolist = bio;
3544				bio->bi_end_io = end_sync_read;
3545				bio->bi_opf = REQ_OP_READ;
3546				if (test_bit(FailFast, &rdev->flags))
3547					bio->bi_opf |= MD_FAILFAST;
3548				from_addr = r10_bio->devs[j].addr;
3549				bio->bi_iter.bi_sector = from_addr +
3550					rdev->data_offset;
3551				bio_set_dev(bio, rdev->bdev);
3552				atomic_inc(&rdev->nr_pending);
3553				/* and we write to 'i' (if not in_sync) */
3554
3555				for (k=0; k<conf->copies; k++)
3556					if (r10_bio->devs[k].devnum == i)
3557						break;
3558				BUG_ON(k == conf->copies);
3559				to_addr = r10_bio->devs[k].addr;
3560				r10_bio->devs[0].devnum = d;
3561				r10_bio->devs[0].addr = from_addr;
3562				r10_bio->devs[1].devnum = i;
3563				r10_bio->devs[1].addr = to_addr;
3564
3565				if (need_recover) {
3566					bio = r10_bio->devs[1].bio;
3567					bio->bi_next = biolist;
3568					biolist = bio;
3569					bio->bi_end_io = end_sync_write;
3570					bio->bi_opf = REQ_OP_WRITE;
3571					bio->bi_iter.bi_sector = to_addr
3572						+ mrdev->data_offset;
3573					bio_set_dev(bio, mrdev->bdev);
3574					atomic_inc(&r10_bio->remaining);
3575				} else
3576					r10_bio->devs[1].bio->bi_end_io = NULL;
3577
3578				/* and maybe write to replacement */
3579				bio = r10_bio->devs[1].repl_bio;
3580				if (bio)
3581					bio->bi_end_io = NULL;
3582				/* Note: if need_replace, then bio
3583				 * cannot be NULL as r10buf_pool_alloc will
3584				 * have allocated it.
3585				 */
3586				if (!need_replace)
3587					break;
3588				bio->bi_next = biolist;
3589				biolist = bio;
3590				bio->bi_end_io = end_sync_write;
3591				bio->bi_opf = REQ_OP_WRITE;
3592				bio->bi_iter.bi_sector = to_addr +
3593					mreplace->data_offset;
3594				bio_set_dev(bio, mreplace->bdev);
3595				atomic_inc(&r10_bio->remaining);
3596				break;
3597			}
3598			rcu_read_unlock();
3599			if (j == conf->copies) {
3600				/* Cannot recover, so abort the recovery or
3601				 * record a bad block */
3602				if (any_working) {
3603					/* problem is that there are bad blocks
3604					 * on other device(s)
3605					 */
3606					int k;
3607					for (k = 0; k < conf->copies; k++)
3608						if (r10_bio->devs[k].devnum == i)
3609							break;
3610					if (!test_bit(In_sync,
3611						      &mrdev->flags)
3612					    && !rdev_set_badblocks(
3613						    mrdev,
3614						    r10_bio->devs[k].addr,
3615						    max_sync, 0))
3616						any_working = 0;
3617					if (mreplace &&
3618					    !rdev_set_badblocks(
3619						    mreplace,
3620						    r10_bio->devs[k].addr,
3621						    max_sync, 0))
3622						any_working = 0;
3623				}
3624				if (!any_working)  {
3625					if (!test_and_set_bit(MD_RECOVERY_INTR,
3626							      &mddev->recovery))
3627						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3628						       mdname(mddev));
3629					mirror->recovery_disabled
3630						= mddev->recovery_disabled;
3631				}
3632				put_buf(r10_bio);
3633				if (rb2)
3634					atomic_dec(&rb2->remaining);
3635				r10_bio = rb2;
3636				rdev_dec_pending(mrdev, mddev);
3637				if (mreplace)
3638					rdev_dec_pending(mreplace, mddev);
3639				break;
3640			}
3641			rdev_dec_pending(mrdev, mddev);
3642			if (mreplace)
3643				rdev_dec_pending(mreplace, mddev);
3644			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3645				/* Only want this if there is elsewhere to
3646				 * read from. 'j' is currently the first
3647				 * readable copy.
3648				 */
3649				int targets = 1;
3650				for (; j < conf->copies; j++) {
3651					int d = r10_bio->devs[j].devnum;
3652					if (conf->mirrors[d].rdev &&
3653					    test_bit(In_sync,
3654						      &conf->mirrors[d].rdev->flags))
3655						targets++;
3656				}
3657				if (targets == 1)
3658					r10_bio->devs[0].bio->bi_opf
3659						&= ~MD_FAILFAST;
3660			}
3661		}
3662		if (biolist == NULL) {
3663			while (r10_bio) {
3664				struct r10bio *rb2 = r10_bio;
3665				r10_bio = (struct r10bio*) rb2->master_bio;
3666				rb2->master_bio = NULL;
3667				put_buf(rb2);
3668			}
3669			goto giveup;
3670		}
3671	} else {
3672		/* resync. Schedule a read for every block at this virt offset */
3673		int count = 0;
3674
3675		/*
3676		 * Since curr_resync_completed could probably not update in
3677		 * time, and we will set cluster_sync_low based on it.
3678		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3679		 * safety reason, which ensures curr_resync_completed is
3680		 * updated in bitmap_cond_end_sync.
3681		 */
3682		md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3683					mddev_is_clustered(mddev) &&
3684					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3685
3686		if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3687					  &sync_blocks, mddev->degraded) &&
3688		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3689						 &mddev->recovery)) {
3690			/* We can skip this block */
3691			*skipped = 1;
3692			return sync_blocks + sectors_skipped;
3693		}
3694		if (sync_blocks < max_sync)
3695			max_sync = sync_blocks;
3696		r10_bio = raid10_alloc_init_r10buf(conf);
3697		r10_bio->state = 0;
3698
3699		r10_bio->mddev = mddev;
3700		atomic_set(&r10_bio->remaining, 0);
3701		raise_barrier(conf, 0);
3702		conf->next_resync = sector_nr;
3703
3704		r10_bio->master_bio = NULL;
3705		r10_bio->sector = sector_nr;
3706		set_bit(R10BIO_IsSync, &r10_bio->state);
3707		raid10_find_phys(conf, r10_bio);
3708		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3709
3710		for (i = 0; i < conf->copies; i++) {
3711			int d = r10_bio->devs[i].devnum;
3712			sector_t first_bad, sector;
3713			int bad_sectors;
3714			struct md_rdev *rdev;
3715
3716			if (r10_bio->devs[i].repl_bio)
3717				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3718
3719			bio = r10_bio->devs[i].bio;
3720			bio->bi_status = BLK_STS_IOERR;
3721			rcu_read_lock();
3722			rdev = rcu_dereference(conf->mirrors[d].rdev);
3723			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3724				rcu_read_unlock();
3725				continue;
3726			}
3727			sector = r10_bio->devs[i].addr;
3728			if (is_badblock(rdev, sector, max_sync,
3729					&first_bad, &bad_sectors)) {
3730				if (first_bad > sector)
3731					max_sync = first_bad - sector;
3732				else {
3733					bad_sectors -= (sector - first_bad);
3734					if (max_sync > bad_sectors)
3735						max_sync = bad_sectors;
3736					rcu_read_unlock();
3737					continue;
3738				}
3739			}
3740			atomic_inc(&rdev->nr_pending);
3741			atomic_inc(&r10_bio->remaining);
3742			bio->bi_next = biolist;
3743			biolist = bio;
3744			bio->bi_end_io = end_sync_read;
3745			bio->bi_opf = REQ_OP_READ;
3746			if (test_bit(FailFast, &rdev->flags))
3747				bio->bi_opf |= MD_FAILFAST;
3748			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3749			bio_set_dev(bio, rdev->bdev);
3750			count++;
3751
3752			rdev = rcu_dereference(conf->mirrors[d].replacement);
3753			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3754				rcu_read_unlock();
3755				continue;
3756			}
3757			atomic_inc(&rdev->nr_pending);
3758
3759			/* Need to set up for writing to the replacement */
3760			bio = r10_bio->devs[i].repl_bio;
3761			bio->bi_status = BLK_STS_IOERR;
3762
3763			sector = r10_bio->devs[i].addr;
3764			bio->bi_next = biolist;
3765			biolist = bio;
3766			bio->bi_end_io = end_sync_write;
3767			bio->bi_opf = REQ_OP_WRITE;
3768			if (test_bit(FailFast, &rdev->flags))
3769				bio->bi_opf |= MD_FAILFAST;
3770			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3771			bio_set_dev(bio, rdev->bdev);
3772			count++;
3773			rcu_read_unlock();
3774		}
3775
3776		if (count < 2) {
3777			for (i=0; i<conf->copies; i++) {
3778				int d = r10_bio->devs[i].devnum;
3779				if (r10_bio->devs[i].bio->bi_end_io)
3780					rdev_dec_pending(conf->mirrors[d].rdev,
3781							 mddev);
3782				if (r10_bio->devs[i].repl_bio &&
3783				    r10_bio->devs[i].repl_bio->bi_end_io)
3784					rdev_dec_pending(
3785						conf->mirrors[d].replacement,
3786						mddev);
3787			}
3788			put_buf(r10_bio);
3789			biolist = NULL;
3790			goto giveup;
3791		}
3792	}
3793
3794	nr_sectors = 0;
3795	if (sector_nr + max_sync < max_sector)
3796		max_sector = sector_nr + max_sync;
3797	do {
3798		struct page *page;
3799		int len = PAGE_SIZE;
3800		if (sector_nr + (len>>9) > max_sector)
3801			len = (max_sector - sector_nr) << 9;
3802		if (len == 0)
3803			break;
3804		for (bio= biolist ; bio ; bio=bio->bi_next) {
3805			struct resync_pages *rp = get_resync_pages(bio);
3806			page = resync_fetch_page(rp, page_idx);
3807			/*
3808			 * won't fail because the vec table is big enough
3809			 * to hold all these pages
3810			 */
3811			bio_add_page(bio, page, len, 0);
3812		}
3813		nr_sectors += len>>9;
3814		sector_nr += len>>9;
3815	} while (++page_idx < RESYNC_PAGES);
3816	r10_bio->sectors = nr_sectors;
3817
3818	if (mddev_is_clustered(mddev) &&
3819	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3820		/* It is resync not recovery */
3821		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3822			conf->cluster_sync_low = mddev->curr_resync_completed;
3823			raid10_set_cluster_sync_high(conf);
3824			/* Send resync message */
3825			md_cluster_ops->resync_info_update(mddev,
3826						conf->cluster_sync_low,
3827						conf->cluster_sync_high);
3828		}
3829	} else if (mddev_is_clustered(mddev)) {
3830		/* This is recovery not resync */
3831		sector_t sect_va1, sect_va2;
3832		bool broadcast_msg = false;
3833
3834		for (i = 0; i < conf->geo.raid_disks; i++) {
3835			/*
3836			 * sector_nr is a device address for recovery, so we
3837			 * need translate it to array address before compare
3838			 * with cluster_sync_high.
3839			 */
3840			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3841
3842			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3843				broadcast_msg = true;
3844				/*
3845				 * curr_resync_completed is similar as
3846				 * sector_nr, so make the translation too.
3847				 */
3848				sect_va2 = raid10_find_virt(conf,
3849					mddev->curr_resync_completed, i);
3850
3851				if (conf->cluster_sync_low == 0 ||
3852				    conf->cluster_sync_low > sect_va2)
3853					conf->cluster_sync_low = sect_va2;
3854			}
3855		}
3856		if (broadcast_msg) {
3857			raid10_set_cluster_sync_high(conf);
3858			md_cluster_ops->resync_info_update(mddev,
3859						conf->cluster_sync_low,
3860						conf->cluster_sync_high);
3861		}
3862	}
3863
3864	while (biolist) {
3865		bio = biolist;
3866		biolist = biolist->bi_next;
3867
3868		bio->bi_next = NULL;
3869		r10_bio = get_resync_r10bio(bio);
3870		r10_bio->sectors = nr_sectors;
3871
3872		if (bio->bi_end_io == end_sync_read) {
3873			md_sync_acct_bio(bio, nr_sectors);
3874			bio->bi_status = 0;
3875			submit_bio_noacct(bio);
3876		}
3877	}
3878
3879	if (sectors_skipped)
3880		/* pretend they weren't skipped, it makes
3881		 * no important difference in this case
3882		 */
3883		md_done_sync(mddev, sectors_skipped, 1);
3884
3885	return sectors_skipped + nr_sectors;
3886 giveup:
3887	/* There is nowhere to write, so all non-sync
3888	 * drives must be failed or in resync, all drives
3889	 * have a bad block, so try the next chunk...
3890	 */
3891	if (sector_nr + max_sync < max_sector)
3892		max_sector = sector_nr + max_sync;
3893
3894	sectors_skipped += (max_sector - sector_nr);
3895	chunks_skipped ++;
3896	sector_nr = max_sector;
3897	goto skipped;
3898}
3899
3900static sector_t
3901raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3902{
3903	sector_t size;
3904	struct r10conf *conf = mddev->private;
3905
3906	if (!raid_disks)
3907		raid_disks = min(conf->geo.raid_disks,
3908				 conf->prev.raid_disks);
3909	if (!sectors)
3910		sectors = conf->dev_sectors;
3911
3912	size = sectors >> conf->geo.chunk_shift;
3913	sector_div(size, conf->geo.far_copies);
3914	size = size * raid_disks;
3915	sector_div(size, conf->geo.near_copies);
3916
3917	return size << conf->geo.chunk_shift;
3918}
3919
3920static void calc_sectors(struct r10conf *conf, sector_t size)
3921{
3922	/* Calculate the number of sectors-per-device that will
3923	 * actually be used, and set conf->dev_sectors and
3924	 * conf->stride
3925	 */
3926
3927	size = size >> conf->geo.chunk_shift;
3928	sector_div(size, conf->geo.far_copies);
3929	size = size * conf->geo.raid_disks;
3930	sector_div(size, conf->geo.near_copies);
3931	/* 'size' is now the number of chunks in the array */
3932	/* calculate "used chunks per device" */
3933	size = size * conf->copies;
3934
3935	/* We need to round up when dividing by raid_disks to
3936	 * get the stride size.
3937	 */
3938	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3939
3940	conf->dev_sectors = size << conf->geo.chunk_shift;
3941
3942	if (conf->geo.far_offset)
3943		conf->geo.stride = 1 << conf->geo.chunk_shift;
3944	else {
3945		sector_div(size, conf->geo.far_copies);
3946		conf->geo.stride = size << conf->geo.chunk_shift;
3947	}
3948}
3949
3950enum geo_type {geo_new, geo_old, geo_start};
3951static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3952{
3953	int nc, fc, fo;
3954	int layout, chunk, disks;
3955	switch (new) {
3956	case geo_old:
3957		layout = mddev->layout;
3958		chunk = mddev->chunk_sectors;
3959		disks = mddev->raid_disks - mddev->delta_disks;
3960		break;
3961	case geo_new:
3962		layout = mddev->new_layout;
3963		chunk = mddev->new_chunk_sectors;
3964		disks = mddev->raid_disks;
3965		break;
3966	default: /* avoid 'may be unused' warnings */
3967	case geo_start: /* new when starting reshape - raid_disks not
3968			 * updated yet. */
3969		layout = mddev->new_layout;
3970		chunk = mddev->new_chunk_sectors;
3971		disks = mddev->raid_disks + mddev->delta_disks;
3972		break;
3973	}
3974	if (layout >> 19)
3975		return -1;
3976	if (chunk < (PAGE_SIZE >> 9) ||
3977	    !is_power_of_2(chunk))
3978		return -2;
3979	nc = layout & 255;
3980	fc = (layout >> 8) & 255;
3981	fo = layout & (1<<16);
3982	geo->raid_disks = disks;
3983	geo->near_copies = nc;
3984	geo->far_copies = fc;
3985	geo->far_offset = fo;
3986	switch (layout >> 17) {
3987	case 0:	/* original layout.  simple but not always optimal */
3988		geo->far_set_size = disks;
3989		break;
3990	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3991		 * actually using this, but leave code here just in case.*/
3992		geo->far_set_size = disks/fc;
3993		WARN(geo->far_set_size < fc,
3994		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3995		break;
3996	case 2: /* "improved" layout fixed to match documentation */
3997		geo->far_set_size = fc * nc;
3998		break;
3999	default: /* Not a valid layout */
4000		return -1;
4001	}
4002	geo->chunk_mask = chunk - 1;
4003	geo->chunk_shift = ffz(~chunk);
4004	return nc*fc;
4005}
4006
4007static struct r10conf *setup_conf(struct mddev *mddev)
4008{
4009	struct r10conf *conf = NULL;
4010	int err = -EINVAL;
4011	struct geom geo;
4012	int copies;
4013
4014	copies = setup_geo(&geo, mddev, geo_new);
4015
4016	if (copies == -2) {
4017		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
4018			mdname(mddev), PAGE_SIZE);
4019		goto out;
4020	}
4021
4022	if (copies < 2 || copies > mddev->raid_disks) {
4023		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
4024			mdname(mddev), mddev->new_layout);
4025		goto out;
4026	}
4027
4028	err = -ENOMEM;
4029	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
4030	if (!conf)
4031		goto out;
4032
4033	/* FIXME calc properly */
4034	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
4035				sizeof(struct raid10_info),
4036				GFP_KERNEL);
4037	if (!conf->mirrors)
4038		goto out;
4039
4040	conf->tmppage = alloc_page(GFP_KERNEL);
4041	if (!conf->tmppage)
4042		goto out;
4043
4044	conf->geo = geo;
4045	conf->copies = copies;
4046	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
4047			   rbio_pool_free, conf);
4048	if (err)
4049		goto out;
4050
4051	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
4052	if (err)
4053		goto out;
4054
4055	calc_sectors(conf, mddev->dev_sectors);
4056	if (mddev->reshape_position == MaxSector) {
4057		conf->prev = conf->geo;
4058		conf->reshape_progress = MaxSector;
4059	} else {
4060		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
4061			err = -EINVAL;
4062			goto out;
4063		}
4064		conf->reshape_progress = mddev->reshape_position;
4065		if (conf->prev.far_offset)
4066			conf->prev.stride = 1 << conf->prev.chunk_shift;
4067		else
4068			/* far_copies must be 1 */
4069			conf->prev.stride = conf->dev_sectors;
4070	}
4071	conf->reshape_safe = conf->reshape_progress;
4072	spin_lock_init(&conf->device_lock);
4073	INIT_LIST_HEAD(&conf->retry_list);
4074	INIT_LIST_HEAD(&conf->bio_end_io_list);
4075
4076	seqlock_init(&conf->resync_lock);
4077	init_waitqueue_head(&conf->wait_barrier);
4078	atomic_set(&conf->nr_pending, 0);
4079
4080	err = -ENOMEM;
4081	conf->thread = md_register_thread(raid10d, mddev, "raid10");
4082	if (!conf->thread)
4083		goto out;
4084
4085	conf->mddev = mddev;
4086	return conf;
4087
4088 out:
4089	if (conf) {
4090		mempool_exit(&conf->r10bio_pool);
4091		kfree(conf->mirrors);
4092		safe_put_page(conf->tmppage);
4093		bioset_exit(&conf->bio_split);
4094		kfree(conf);
4095	}
4096	return ERR_PTR(err);
4097}
4098
4099static void raid10_set_io_opt(struct r10conf *conf)
4100{
4101	int raid_disks = conf->geo.raid_disks;
4102
4103	if (!(conf->geo.raid_disks % conf->geo.near_copies))
4104		raid_disks /= conf->geo.near_copies;
4105	blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4106			 raid_disks);
4107}
4108
4109static int raid10_run(struct mddev *mddev)
4110{
4111	struct r10conf *conf;
4112	int i, disk_idx;
4113	struct raid10_info *disk;
4114	struct md_rdev *rdev;
4115	sector_t size;
4116	sector_t min_offset_diff = 0;
4117	int first = 1;
 
4118
4119	if (mddev_init_writes_pending(mddev) < 0)
4120		return -ENOMEM;
4121
4122	if (mddev->private == NULL) {
4123		conf = setup_conf(mddev);
4124		if (IS_ERR(conf))
4125			return PTR_ERR(conf);
4126		mddev->private = conf;
4127	}
4128	conf = mddev->private;
4129	if (!conf)
4130		goto out;
4131
4132	if (mddev_is_clustered(conf->mddev)) {
4133		int fc, fo;
4134
4135		fc = (mddev->layout >> 8) & 255;
4136		fo = mddev->layout & (1<<16);
4137		if (fc > 1 || fo > 0) {
4138			pr_err("only near layout is supported by clustered"
4139				" raid10\n");
4140			goto out_free_conf;
4141		}
4142	}
4143
4144	mddev->thread = conf->thread;
4145	conf->thread = NULL;
4146
4147	if (mddev->queue) {
 
 
 
4148		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
4149		blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4150		raid10_set_io_opt(conf);
4151	}
4152
4153	rdev_for_each(rdev, mddev) {
4154		long long diff;
4155
4156		disk_idx = rdev->raid_disk;
4157		if (disk_idx < 0)
4158			continue;
4159		if (disk_idx >= conf->geo.raid_disks &&
4160		    disk_idx >= conf->prev.raid_disks)
4161			continue;
4162		disk = conf->mirrors + disk_idx;
4163
4164		if (test_bit(Replacement, &rdev->flags)) {
4165			if (disk->replacement)
4166				goto out_free_conf;
4167			disk->replacement = rdev;
4168		} else {
4169			if (disk->rdev)
4170				goto out_free_conf;
4171			disk->rdev = rdev;
4172		}
4173		diff = (rdev->new_data_offset - rdev->data_offset);
4174		if (!mddev->reshape_backwards)
4175			diff = -diff;
4176		if (diff < 0)
4177			diff = 0;
4178		if (first || diff < min_offset_diff)
4179			min_offset_diff = diff;
4180
4181		if (mddev->gendisk)
4182			disk_stack_limits(mddev->gendisk, rdev->bdev,
4183					  rdev->data_offset << 9);
4184
4185		disk->head_position = 0;
 
 
 
4186		first = 0;
4187	}
4188
 
 
 
 
 
 
 
 
4189	/* need to check that every block has at least one working mirror */
4190	if (!enough(conf, -1)) {
4191		pr_err("md/raid10:%s: not enough operational mirrors.\n",
4192		       mdname(mddev));
4193		goto out_free_conf;
4194	}
4195
4196	if (conf->reshape_progress != MaxSector) {
4197		/* must ensure that shape change is supported */
4198		if (conf->geo.far_copies != 1 &&
4199		    conf->geo.far_offset == 0)
4200			goto out_free_conf;
4201		if (conf->prev.far_copies != 1 &&
4202		    conf->prev.far_offset == 0)
4203			goto out_free_conf;
4204	}
4205
4206	mddev->degraded = 0;
4207	for (i = 0;
4208	     i < conf->geo.raid_disks
4209		     || i < conf->prev.raid_disks;
4210	     i++) {
4211
4212		disk = conf->mirrors + i;
4213
4214		if (!disk->rdev && disk->replacement) {
4215			/* The replacement is all we have - use it */
4216			disk->rdev = disk->replacement;
4217			disk->replacement = NULL;
4218			clear_bit(Replacement, &disk->rdev->flags);
4219		}
4220
4221		if (!disk->rdev ||
4222		    !test_bit(In_sync, &disk->rdev->flags)) {
4223			disk->head_position = 0;
4224			mddev->degraded++;
4225			if (disk->rdev &&
4226			    disk->rdev->saved_raid_disk < 0)
4227				conf->fullsync = 1;
4228		}
4229
4230		if (disk->replacement &&
4231		    !test_bit(In_sync, &disk->replacement->flags) &&
4232		    disk->replacement->saved_raid_disk < 0) {
4233			conf->fullsync = 1;
4234		}
4235
4236		disk->recovery_disabled = mddev->recovery_disabled - 1;
4237	}
4238
4239	if (mddev->recovery_cp != MaxSector)
4240		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4241			  mdname(mddev));
4242	pr_info("md/raid10:%s: active with %d out of %d devices\n",
4243		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4244		conf->geo.raid_disks);
4245	/*
4246	 * Ok, everything is just fine now
4247	 */
4248	mddev->dev_sectors = conf->dev_sectors;
4249	size = raid10_size(mddev, 0, 0);
4250	md_set_array_sectors(mddev, size);
4251	mddev->resync_max_sectors = size;
4252	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4253
4254	if (md_integrity_register(mddev))
4255		goto out_free_conf;
4256
4257	if (conf->reshape_progress != MaxSector) {
4258		unsigned long before_length, after_length;
4259
4260		before_length = ((1 << conf->prev.chunk_shift) *
4261				 conf->prev.far_copies);
4262		after_length = ((1 << conf->geo.chunk_shift) *
4263				conf->geo.far_copies);
4264
4265		if (max(before_length, after_length) > min_offset_diff) {
4266			/* This cannot work */
4267			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4268			goto out_free_conf;
4269		}
4270		conf->offset_diff = min_offset_diff;
4271
4272		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4273		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4274		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4275		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4276		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4277							"reshape");
4278		if (!mddev->sync_thread)
4279			goto out_free_conf;
4280	}
4281
4282	return 0;
4283
4284out_free_conf:
4285	md_unregister_thread(&mddev->thread);
4286	mempool_exit(&conf->r10bio_pool);
4287	safe_put_page(conf->tmppage);
4288	kfree(conf->mirrors);
4289	kfree(conf);
4290	mddev->private = NULL;
4291out:
4292	return -EIO;
4293}
4294
4295static void raid10_free(struct mddev *mddev, void *priv)
4296{
4297	struct r10conf *conf = priv;
4298
4299	mempool_exit(&conf->r10bio_pool);
4300	safe_put_page(conf->tmppage);
4301	kfree(conf->mirrors);
4302	kfree(conf->mirrors_old);
4303	kfree(conf->mirrors_new);
4304	bioset_exit(&conf->bio_split);
4305	kfree(conf);
4306}
4307
4308static void raid10_quiesce(struct mddev *mddev, int quiesce)
4309{
4310	struct r10conf *conf = mddev->private;
4311
4312	if (quiesce)
4313		raise_barrier(conf, 0);
4314	else
4315		lower_barrier(conf);
4316}
4317
4318static int raid10_resize(struct mddev *mddev, sector_t sectors)
4319{
4320	/* Resize of 'far' arrays is not supported.
4321	 * For 'near' and 'offset' arrays we can set the
4322	 * number of sectors used to be an appropriate multiple
4323	 * of the chunk size.
4324	 * For 'offset', this is far_copies*chunksize.
4325	 * For 'near' the multiplier is the LCM of
4326	 * near_copies and raid_disks.
4327	 * So if far_copies > 1 && !far_offset, fail.
4328	 * Else find LCM(raid_disks, near_copy)*far_copies and
4329	 * multiply by chunk_size.  Then round to this number.
4330	 * This is mostly done by raid10_size()
4331	 */
4332	struct r10conf *conf = mddev->private;
4333	sector_t oldsize, size;
4334
4335	if (mddev->reshape_position != MaxSector)
4336		return -EBUSY;
4337
4338	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4339		return -EINVAL;
4340
4341	oldsize = raid10_size(mddev, 0, 0);
4342	size = raid10_size(mddev, sectors, 0);
4343	if (mddev->external_size &&
4344	    mddev->array_sectors > size)
4345		return -EINVAL;
4346	if (mddev->bitmap) {
4347		int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4348		if (ret)
4349			return ret;
4350	}
4351	md_set_array_sectors(mddev, size);
4352	if (sectors > mddev->dev_sectors &&
4353	    mddev->recovery_cp > oldsize) {
4354		mddev->recovery_cp = oldsize;
4355		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4356	}
4357	calc_sectors(conf, sectors);
4358	mddev->dev_sectors = conf->dev_sectors;
4359	mddev->resync_max_sectors = size;
4360	return 0;
4361}
4362
4363static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4364{
4365	struct md_rdev *rdev;
4366	struct r10conf *conf;
4367
4368	if (mddev->degraded > 0) {
4369		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4370			mdname(mddev));
4371		return ERR_PTR(-EINVAL);
4372	}
4373	sector_div(size, devs);
4374
4375	/* Set new parameters */
4376	mddev->new_level = 10;
4377	/* new layout: far_copies = 1, near_copies = 2 */
4378	mddev->new_layout = (1<<8) + 2;
4379	mddev->new_chunk_sectors = mddev->chunk_sectors;
4380	mddev->delta_disks = mddev->raid_disks;
4381	mddev->raid_disks *= 2;
4382	/* make sure it will be not marked as dirty */
4383	mddev->recovery_cp = MaxSector;
4384	mddev->dev_sectors = size;
4385
4386	conf = setup_conf(mddev);
4387	if (!IS_ERR(conf)) {
4388		rdev_for_each(rdev, mddev)
4389			if (rdev->raid_disk >= 0) {
4390				rdev->new_raid_disk = rdev->raid_disk * 2;
4391				rdev->sectors = size;
4392			}
4393		WRITE_ONCE(conf->barrier, 1);
4394	}
4395
4396	return conf;
4397}
4398
4399static void *raid10_takeover(struct mddev *mddev)
4400{
4401	struct r0conf *raid0_conf;
4402
4403	/* raid10 can take over:
4404	 *  raid0 - providing it has only two drives
4405	 */
4406	if (mddev->level == 0) {
4407		/* for raid0 takeover only one zone is supported */
4408		raid0_conf = mddev->private;
4409		if (raid0_conf->nr_strip_zones > 1) {
4410			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4411				mdname(mddev));
4412			return ERR_PTR(-EINVAL);
4413		}
4414		return raid10_takeover_raid0(mddev,
4415			raid0_conf->strip_zone->zone_end,
4416			raid0_conf->strip_zone->nb_dev);
4417	}
4418	return ERR_PTR(-EINVAL);
4419}
4420
4421static int raid10_check_reshape(struct mddev *mddev)
4422{
4423	/* Called when there is a request to change
4424	 * - layout (to ->new_layout)
4425	 * - chunk size (to ->new_chunk_sectors)
4426	 * - raid_disks (by delta_disks)
4427	 * or when trying to restart a reshape that was ongoing.
4428	 *
4429	 * We need to validate the request and possibly allocate
4430	 * space if that might be an issue later.
4431	 *
4432	 * Currently we reject any reshape of a 'far' mode array,
4433	 * allow chunk size to change if new is generally acceptable,
4434	 * allow raid_disks to increase, and allow
4435	 * a switch between 'near' mode and 'offset' mode.
4436	 */
4437	struct r10conf *conf = mddev->private;
4438	struct geom geo;
4439
4440	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4441		return -EINVAL;
4442
4443	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4444		/* mustn't change number of copies */
4445		return -EINVAL;
4446	if (geo.far_copies > 1 && !geo.far_offset)
4447		/* Cannot switch to 'far' mode */
4448		return -EINVAL;
4449
4450	if (mddev->array_sectors & geo.chunk_mask)
4451			/* not factor of array size */
4452			return -EINVAL;
4453
4454	if (!enough(conf, -1))
4455		return -EINVAL;
4456
4457	kfree(conf->mirrors_new);
4458	conf->mirrors_new = NULL;
4459	if (mddev->delta_disks > 0) {
4460		/* allocate new 'mirrors' list */
4461		conf->mirrors_new =
4462			kcalloc(mddev->raid_disks + mddev->delta_disks,
4463				sizeof(struct raid10_info),
4464				GFP_KERNEL);
4465		if (!conf->mirrors_new)
4466			return -ENOMEM;
4467	}
4468	return 0;
4469}
4470
4471/*
4472 * Need to check if array has failed when deciding whether to:
4473 *  - start an array
4474 *  - remove non-faulty devices
4475 *  - add a spare
4476 *  - allow a reshape
4477 * This determination is simple when no reshape is happening.
4478 * However if there is a reshape, we need to carefully check
4479 * both the before and after sections.
4480 * This is because some failed devices may only affect one
4481 * of the two sections, and some non-in_sync devices may
4482 * be insync in the section most affected by failed devices.
4483 */
4484static int calc_degraded(struct r10conf *conf)
4485{
4486	int degraded, degraded2;
4487	int i;
4488
4489	rcu_read_lock();
4490	degraded = 0;
4491	/* 'prev' section first */
4492	for (i = 0; i < conf->prev.raid_disks; i++) {
4493		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4494		if (!rdev || test_bit(Faulty, &rdev->flags))
4495			degraded++;
4496		else if (!test_bit(In_sync, &rdev->flags))
4497			/* When we can reduce the number of devices in
4498			 * an array, this might not contribute to
4499			 * 'degraded'.  It does now.
4500			 */
4501			degraded++;
4502	}
4503	rcu_read_unlock();
4504	if (conf->geo.raid_disks == conf->prev.raid_disks)
4505		return degraded;
4506	rcu_read_lock();
4507	degraded2 = 0;
4508	for (i = 0; i < conf->geo.raid_disks; i++) {
4509		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4510		if (!rdev || test_bit(Faulty, &rdev->flags))
4511			degraded2++;
4512		else if (!test_bit(In_sync, &rdev->flags)) {
4513			/* If reshape is increasing the number of devices,
4514			 * this section has already been recovered, so
4515			 * it doesn't contribute to degraded.
4516			 * else it does.
4517			 */
4518			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4519				degraded2++;
4520		}
4521	}
4522	rcu_read_unlock();
4523	if (degraded2 > degraded)
4524		return degraded2;
4525	return degraded;
4526}
4527
4528static int raid10_start_reshape(struct mddev *mddev)
4529{
4530	/* A 'reshape' has been requested. This commits
4531	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4532	 * This also checks if there are enough spares and adds them
4533	 * to the array.
4534	 * We currently require enough spares to make the final
4535	 * array non-degraded.  We also require that the difference
4536	 * between old and new data_offset - on each device - is
4537	 * enough that we never risk over-writing.
4538	 */
4539
4540	unsigned long before_length, after_length;
4541	sector_t min_offset_diff = 0;
4542	int first = 1;
4543	struct geom new;
4544	struct r10conf *conf = mddev->private;
4545	struct md_rdev *rdev;
4546	int spares = 0;
4547	int ret;
4548
4549	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4550		return -EBUSY;
4551
4552	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4553		return -EINVAL;
4554
4555	before_length = ((1 << conf->prev.chunk_shift) *
4556			 conf->prev.far_copies);
4557	after_length = ((1 << conf->geo.chunk_shift) *
4558			conf->geo.far_copies);
4559
4560	rdev_for_each(rdev, mddev) {
4561		if (!test_bit(In_sync, &rdev->flags)
4562		    && !test_bit(Faulty, &rdev->flags))
4563			spares++;
4564		if (rdev->raid_disk >= 0) {
4565			long long diff = (rdev->new_data_offset
4566					  - rdev->data_offset);
4567			if (!mddev->reshape_backwards)
4568				diff = -diff;
4569			if (diff < 0)
4570				diff = 0;
4571			if (first || diff < min_offset_diff)
4572				min_offset_diff = diff;
4573			first = 0;
4574		}
4575	}
4576
4577	if (max(before_length, after_length) > min_offset_diff)
4578		return -EINVAL;
4579
4580	if (spares < mddev->delta_disks)
4581		return -EINVAL;
4582
4583	conf->offset_diff = min_offset_diff;
4584	spin_lock_irq(&conf->device_lock);
4585	if (conf->mirrors_new) {
4586		memcpy(conf->mirrors_new, conf->mirrors,
4587		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4588		smp_mb();
4589		kfree(conf->mirrors_old);
4590		conf->mirrors_old = conf->mirrors;
4591		conf->mirrors = conf->mirrors_new;
4592		conf->mirrors_new = NULL;
4593	}
4594	setup_geo(&conf->geo, mddev, geo_start);
4595	smp_mb();
4596	if (mddev->reshape_backwards) {
4597		sector_t size = raid10_size(mddev, 0, 0);
4598		if (size < mddev->array_sectors) {
4599			spin_unlock_irq(&conf->device_lock);
4600			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4601				mdname(mddev));
4602			return -EINVAL;
4603		}
4604		mddev->resync_max_sectors = size;
4605		conf->reshape_progress = size;
4606	} else
4607		conf->reshape_progress = 0;
4608	conf->reshape_safe = conf->reshape_progress;
4609	spin_unlock_irq(&conf->device_lock);
4610
4611	if (mddev->delta_disks && mddev->bitmap) {
4612		struct mdp_superblock_1 *sb = NULL;
4613		sector_t oldsize, newsize;
4614
4615		oldsize = raid10_size(mddev, 0, 0);
4616		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4617
4618		if (!mddev_is_clustered(mddev)) {
4619			ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4620			if (ret)
4621				goto abort;
4622			else
4623				goto out;
4624		}
4625
4626		rdev_for_each(rdev, mddev) {
4627			if (rdev->raid_disk > -1 &&
4628			    !test_bit(Faulty, &rdev->flags))
4629				sb = page_address(rdev->sb_page);
4630		}
4631
4632		/*
4633		 * some node is already performing reshape, and no need to
4634		 * call md_bitmap_resize again since it should be called when
4635		 * receiving BITMAP_RESIZE msg
4636		 */
4637		if ((sb && (le32_to_cpu(sb->feature_map) &
4638			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4639			goto out;
4640
4641		ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4642		if (ret)
4643			goto abort;
4644
4645		ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4646		if (ret) {
4647			md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4648			goto abort;
4649		}
4650	}
4651out:
4652	if (mddev->delta_disks > 0) {
4653		rdev_for_each(rdev, mddev)
4654			if (rdev->raid_disk < 0 &&
4655			    !test_bit(Faulty, &rdev->flags)) {
4656				if (raid10_add_disk(mddev, rdev) == 0) {
4657					if (rdev->raid_disk >=
4658					    conf->prev.raid_disks)
4659						set_bit(In_sync, &rdev->flags);
4660					else
4661						rdev->recovery_offset = 0;
4662
4663					/* Failure here is OK */
4664					sysfs_link_rdev(mddev, rdev);
4665				}
4666			} else if (rdev->raid_disk >= conf->prev.raid_disks
4667				   && !test_bit(Faulty, &rdev->flags)) {
4668				/* This is a spare that was manually added */
4669				set_bit(In_sync, &rdev->flags);
4670			}
4671	}
4672	/* When a reshape changes the number of devices,
4673	 * ->degraded is measured against the larger of the
4674	 * pre and  post numbers.
4675	 */
4676	spin_lock_irq(&conf->device_lock);
4677	mddev->degraded = calc_degraded(conf);
4678	spin_unlock_irq(&conf->device_lock);
4679	mddev->raid_disks = conf->geo.raid_disks;
4680	mddev->reshape_position = conf->reshape_progress;
4681	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4682
4683	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4684	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4685	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4686	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4687	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4688
4689	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4690						"reshape");
4691	if (!mddev->sync_thread) {
4692		ret = -EAGAIN;
4693		goto abort;
4694	}
4695	conf->reshape_checkpoint = jiffies;
4696	md_wakeup_thread(mddev->sync_thread);
4697	md_new_event();
4698	return 0;
4699
4700abort:
4701	mddev->recovery = 0;
4702	spin_lock_irq(&conf->device_lock);
4703	conf->geo = conf->prev;
4704	mddev->raid_disks = conf->geo.raid_disks;
4705	rdev_for_each(rdev, mddev)
4706		rdev->new_data_offset = rdev->data_offset;
4707	smp_wmb();
4708	conf->reshape_progress = MaxSector;
4709	conf->reshape_safe = MaxSector;
4710	mddev->reshape_position = MaxSector;
4711	spin_unlock_irq(&conf->device_lock);
4712	return ret;
4713}
4714
4715/* Calculate the last device-address that could contain
4716 * any block from the chunk that includes the array-address 's'
4717 * and report the next address.
4718 * i.e. the address returned will be chunk-aligned and after
4719 * any data that is in the chunk containing 's'.
4720 */
4721static sector_t last_dev_address(sector_t s, struct geom *geo)
4722{
4723	s = (s | geo->chunk_mask) + 1;
4724	s >>= geo->chunk_shift;
4725	s *= geo->near_copies;
4726	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4727	s *= geo->far_copies;
4728	s <<= geo->chunk_shift;
4729	return s;
4730}
4731
4732/* Calculate the first device-address that could contain
4733 * any block from the chunk that includes the array-address 's'.
4734 * This too will be the start of a chunk
4735 */
4736static sector_t first_dev_address(sector_t s, struct geom *geo)
4737{
4738	s >>= geo->chunk_shift;
4739	s *= geo->near_copies;
4740	sector_div(s, geo->raid_disks);
4741	s *= geo->far_copies;
4742	s <<= geo->chunk_shift;
4743	return s;
4744}
4745
4746static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4747				int *skipped)
4748{
4749	/* We simply copy at most one chunk (smallest of old and new)
4750	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4751	 * or we hit a bad block or something.
4752	 * This might mean we pause for normal IO in the middle of
4753	 * a chunk, but that is not a problem as mddev->reshape_position
4754	 * can record any location.
4755	 *
4756	 * If we will want to write to a location that isn't
4757	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4758	 * we need to flush all reshape requests and update the metadata.
4759	 *
4760	 * When reshaping forwards (e.g. to more devices), we interpret
4761	 * 'safe' as the earliest block which might not have been copied
4762	 * down yet.  We divide this by previous stripe size and multiply
4763	 * by previous stripe length to get lowest device offset that we
4764	 * cannot write to yet.
4765	 * We interpret 'sector_nr' as an address that we want to write to.
4766	 * From this we use last_device_address() to find where we might
4767	 * write to, and first_device_address on the  'safe' position.
4768	 * If this 'next' write position is after the 'safe' position,
4769	 * we must update the metadata to increase the 'safe' position.
4770	 *
4771	 * When reshaping backwards, we round in the opposite direction
4772	 * and perform the reverse test:  next write position must not be
4773	 * less than current safe position.
4774	 *
4775	 * In all this the minimum difference in data offsets
4776	 * (conf->offset_diff - always positive) allows a bit of slack,
4777	 * so next can be after 'safe', but not by more than offset_diff
4778	 *
4779	 * We need to prepare all the bios here before we start any IO
4780	 * to ensure the size we choose is acceptable to all devices.
4781	 * The means one for each copy for write-out and an extra one for
4782	 * read-in.
4783	 * We store the read-in bio in ->master_bio and the others in
4784	 * ->devs[x].bio and ->devs[x].repl_bio.
4785	 */
4786	struct r10conf *conf = mddev->private;
4787	struct r10bio *r10_bio;
4788	sector_t next, safe, last;
4789	int max_sectors;
4790	int nr_sectors;
4791	int s;
4792	struct md_rdev *rdev;
4793	int need_flush = 0;
4794	struct bio *blist;
4795	struct bio *bio, *read_bio;
4796	int sectors_done = 0;
4797	struct page **pages;
4798
4799	if (sector_nr == 0) {
4800		/* If restarting in the middle, skip the initial sectors */
4801		if (mddev->reshape_backwards &&
4802		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4803			sector_nr = (raid10_size(mddev, 0, 0)
4804				     - conf->reshape_progress);
4805		} else if (!mddev->reshape_backwards &&
4806			   conf->reshape_progress > 0)
4807			sector_nr = conf->reshape_progress;
4808		if (sector_nr) {
4809			mddev->curr_resync_completed = sector_nr;
4810			sysfs_notify_dirent_safe(mddev->sysfs_completed);
4811			*skipped = 1;
4812			return sector_nr;
4813		}
4814	}
4815
4816	/* We don't use sector_nr to track where we are up to
4817	 * as that doesn't work well for ->reshape_backwards.
4818	 * So just use ->reshape_progress.
4819	 */
4820	if (mddev->reshape_backwards) {
4821		/* 'next' is the earliest device address that we might
4822		 * write to for this chunk in the new layout
4823		 */
4824		next = first_dev_address(conf->reshape_progress - 1,
4825					 &conf->geo);
4826
4827		/* 'safe' is the last device address that we might read from
4828		 * in the old layout after a restart
4829		 */
4830		safe = last_dev_address(conf->reshape_safe - 1,
4831					&conf->prev);
4832
4833		if (next + conf->offset_diff < safe)
4834			need_flush = 1;
4835
4836		last = conf->reshape_progress - 1;
4837		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4838					       & conf->prev.chunk_mask);
4839		if (sector_nr + RESYNC_SECTORS < last)
4840			sector_nr = last + 1 - RESYNC_SECTORS;
4841	} else {
4842		/* 'next' is after the last device address that we
4843		 * might write to for this chunk in the new layout
4844		 */
4845		next = last_dev_address(conf->reshape_progress, &conf->geo);
4846
4847		/* 'safe' is the earliest device address that we might
4848		 * read from in the old layout after a restart
4849		 */
4850		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4851
4852		/* Need to update metadata if 'next' might be beyond 'safe'
4853		 * as that would possibly corrupt data
4854		 */
4855		if (next > safe + conf->offset_diff)
4856			need_flush = 1;
4857
4858		sector_nr = conf->reshape_progress;
4859		last  = sector_nr | (conf->geo.chunk_mask
4860				     & conf->prev.chunk_mask);
4861
4862		if (sector_nr + RESYNC_SECTORS <= last)
4863			last = sector_nr + RESYNC_SECTORS - 1;
4864	}
4865
4866	if (need_flush ||
4867	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4868		/* Need to update reshape_position in metadata */
4869		wait_barrier(conf, false);
4870		mddev->reshape_position = conf->reshape_progress;
4871		if (mddev->reshape_backwards)
4872			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4873				- conf->reshape_progress;
4874		else
4875			mddev->curr_resync_completed = conf->reshape_progress;
4876		conf->reshape_checkpoint = jiffies;
4877		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4878		md_wakeup_thread(mddev->thread);
4879		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4880			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4881		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4882			allow_barrier(conf);
4883			return sectors_done;
4884		}
4885		conf->reshape_safe = mddev->reshape_position;
4886		allow_barrier(conf);
4887	}
4888
4889	raise_barrier(conf, 0);
4890read_more:
4891	/* Now schedule reads for blocks from sector_nr to last */
4892	r10_bio = raid10_alloc_init_r10buf(conf);
4893	r10_bio->state = 0;
4894	raise_barrier(conf, 1);
4895	atomic_set(&r10_bio->remaining, 0);
4896	r10_bio->mddev = mddev;
4897	r10_bio->sector = sector_nr;
4898	set_bit(R10BIO_IsReshape, &r10_bio->state);
4899	r10_bio->sectors = last - sector_nr + 1;
4900	rdev = read_balance(conf, r10_bio, &max_sectors);
4901	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4902
4903	if (!rdev) {
4904		/* Cannot read from here, so need to record bad blocks
4905		 * on all the target devices.
4906		 */
4907		// FIXME
4908		mempool_free(r10_bio, &conf->r10buf_pool);
4909		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4910		return sectors_done;
4911	}
4912
4913	read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4914				    GFP_KERNEL, &mddev->bio_set);
 
4915	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4916			       + rdev->data_offset);
4917	read_bio->bi_private = r10_bio;
4918	read_bio->bi_end_io = end_reshape_read;
 
4919	r10_bio->master_bio = read_bio;
4920	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4921
4922	/*
4923	 * Broadcast RESYNC message to other nodes, so all nodes would not
4924	 * write to the region to avoid conflict.
4925	*/
4926	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4927		struct mdp_superblock_1 *sb = NULL;
4928		int sb_reshape_pos = 0;
4929
4930		conf->cluster_sync_low = sector_nr;
4931		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4932		sb = page_address(rdev->sb_page);
4933		if (sb) {
4934			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4935			/*
4936			 * Set cluster_sync_low again if next address for array
4937			 * reshape is less than cluster_sync_low. Since we can't
4938			 * update cluster_sync_low until it has finished reshape.
4939			 */
4940			if (sb_reshape_pos < conf->cluster_sync_low)
4941				conf->cluster_sync_low = sb_reshape_pos;
4942		}
4943
4944		md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4945							  conf->cluster_sync_high);
4946	}
4947
4948	/* Now find the locations in the new layout */
4949	__raid10_find_phys(&conf->geo, r10_bio);
4950
4951	blist = read_bio;
4952	read_bio->bi_next = NULL;
4953
4954	rcu_read_lock();
4955	for (s = 0; s < conf->copies*2; s++) {
4956		struct bio *b;
4957		int d = r10_bio->devs[s/2].devnum;
4958		struct md_rdev *rdev2;
4959		if (s&1) {
4960			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4961			b = r10_bio->devs[s/2].repl_bio;
4962		} else {
4963			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4964			b = r10_bio->devs[s/2].bio;
4965		}
4966		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4967			continue;
4968
4969		bio_set_dev(b, rdev2->bdev);
4970		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4971			rdev2->new_data_offset;
4972		b->bi_end_io = end_reshape_write;
4973		b->bi_opf = REQ_OP_WRITE;
4974		b->bi_next = blist;
4975		blist = b;
4976	}
4977
4978	/* Now add as many pages as possible to all of these bios. */
4979
4980	nr_sectors = 0;
4981	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4982	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4983		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4984		int len = (max_sectors - s) << 9;
4985		if (len > PAGE_SIZE)
4986			len = PAGE_SIZE;
4987		for (bio = blist; bio ; bio = bio->bi_next) {
4988			/*
4989			 * won't fail because the vec table is big enough
4990			 * to hold all these pages
4991			 */
4992			bio_add_page(bio, page, len, 0);
4993		}
4994		sector_nr += len >> 9;
4995		nr_sectors += len >> 9;
4996	}
4997	rcu_read_unlock();
4998	r10_bio->sectors = nr_sectors;
4999
5000	/* Now submit the read */
5001	md_sync_acct_bio(read_bio, r10_bio->sectors);
5002	atomic_inc(&r10_bio->remaining);
5003	read_bio->bi_next = NULL;
5004	submit_bio_noacct(read_bio);
5005	sectors_done += nr_sectors;
5006	if (sector_nr <= last)
5007		goto read_more;
5008
5009	lower_barrier(conf);
5010
5011	/* Now that we have done the whole section we can
5012	 * update reshape_progress
5013	 */
5014	if (mddev->reshape_backwards)
5015		conf->reshape_progress -= sectors_done;
5016	else
5017		conf->reshape_progress += sectors_done;
5018
5019	return sectors_done;
5020}
5021
5022static void end_reshape_request(struct r10bio *r10_bio);
5023static int handle_reshape_read_error(struct mddev *mddev,
5024				     struct r10bio *r10_bio);
5025static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
5026{
5027	/* Reshape read completed.  Hopefully we have a block
5028	 * to write out.
5029	 * If we got a read error then we do sync 1-page reads from
5030	 * elsewhere until we find the data - or give up.
5031	 */
5032	struct r10conf *conf = mddev->private;
5033	int s;
5034
5035	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
5036		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
5037			/* Reshape has been aborted */
5038			md_done_sync(mddev, r10_bio->sectors, 0);
5039			return;
5040		}
5041
5042	/* We definitely have the data in the pages, schedule the
5043	 * writes.
5044	 */
5045	atomic_set(&r10_bio->remaining, 1);
5046	for (s = 0; s < conf->copies*2; s++) {
5047		struct bio *b;
5048		int d = r10_bio->devs[s/2].devnum;
5049		struct md_rdev *rdev;
5050		rcu_read_lock();
5051		if (s&1) {
5052			rdev = rcu_dereference(conf->mirrors[d].replacement);
5053			b = r10_bio->devs[s/2].repl_bio;
5054		} else {
5055			rdev = rcu_dereference(conf->mirrors[d].rdev);
5056			b = r10_bio->devs[s/2].bio;
5057		}
5058		if (!rdev || test_bit(Faulty, &rdev->flags)) {
5059			rcu_read_unlock();
5060			continue;
5061		}
5062		atomic_inc(&rdev->nr_pending);
5063		rcu_read_unlock();
5064		md_sync_acct_bio(b, r10_bio->sectors);
5065		atomic_inc(&r10_bio->remaining);
5066		b->bi_next = NULL;
5067		submit_bio_noacct(b);
5068	}
5069	end_reshape_request(r10_bio);
5070}
5071
5072static void end_reshape(struct r10conf *conf)
5073{
5074	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5075		return;
5076
5077	spin_lock_irq(&conf->device_lock);
5078	conf->prev = conf->geo;
5079	md_finish_reshape(conf->mddev);
5080	smp_wmb();
5081	conf->reshape_progress = MaxSector;
5082	conf->reshape_safe = MaxSector;
5083	spin_unlock_irq(&conf->device_lock);
5084
5085	if (conf->mddev->queue)
5086		raid10_set_io_opt(conf);
5087	conf->fullsync = 0;
5088}
5089
5090static void raid10_update_reshape_pos(struct mddev *mddev)
5091{
5092	struct r10conf *conf = mddev->private;
5093	sector_t lo, hi;
5094
5095	md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5096	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5097	    || mddev->reshape_position == MaxSector)
5098		conf->reshape_progress = mddev->reshape_position;
5099	else
5100		WARN_ON_ONCE(1);
5101}
5102
5103static int handle_reshape_read_error(struct mddev *mddev,
5104				     struct r10bio *r10_bio)
5105{
5106	/* Use sync reads to get the blocks from somewhere else */
5107	int sectors = r10_bio->sectors;
5108	struct r10conf *conf = mddev->private;
5109	struct r10bio *r10b;
5110	int slot = 0;
5111	int idx = 0;
5112	struct page **pages;
5113
5114	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5115	if (!r10b) {
5116		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5117		return -ENOMEM;
5118	}
5119
5120	/* reshape IOs share pages from .devs[0].bio */
5121	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5122
5123	r10b->sector = r10_bio->sector;
5124	__raid10_find_phys(&conf->prev, r10b);
5125
5126	while (sectors) {
5127		int s = sectors;
5128		int success = 0;
5129		int first_slot = slot;
5130
5131		if (s > (PAGE_SIZE >> 9))
5132			s = PAGE_SIZE >> 9;
5133
5134		rcu_read_lock();
5135		while (!success) {
5136			int d = r10b->devs[slot].devnum;
5137			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5138			sector_t addr;
5139			if (rdev == NULL ||
5140			    test_bit(Faulty, &rdev->flags) ||
5141			    !test_bit(In_sync, &rdev->flags))
5142				goto failed;
5143
5144			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5145			atomic_inc(&rdev->nr_pending);
5146			rcu_read_unlock();
5147			success = sync_page_io(rdev,
5148					       addr,
5149					       s << 9,
5150					       pages[idx],
5151					       REQ_OP_READ, false);
5152			rdev_dec_pending(rdev, mddev);
5153			rcu_read_lock();
5154			if (success)
5155				break;
5156		failed:
5157			slot++;
5158			if (slot >= conf->copies)
5159				slot = 0;
5160			if (slot == first_slot)
5161				break;
5162		}
5163		rcu_read_unlock();
5164		if (!success) {
5165			/* couldn't read this block, must give up */
5166			set_bit(MD_RECOVERY_INTR,
5167				&mddev->recovery);
5168			kfree(r10b);
5169			return -EIO;
5170		}
5171		sectors -= s;
5172		idx++;
5173	}
5174	kfree(r10b);
5175	return 0;
5176}
5177
5178static void end_reshape_write(struct bio *bio)
5179{
5180	struct r10bio *r10_bio = get_resync_r10bio(bio);
5181	struct mddev *mddev = r10_bio->mddev;
5182	struct r10conf *conf = mddev->private;
5183	int d;
5184	int slot;
5185	int repl;
5186	struct md_rdev *rdev = NULL;
5187
5188	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5189	if (repl)
5190		rdev = conf->mirrors[d].replacement;
5191	if (!rdev) {
5192		smp_mb();
5193		rdev = conf->mirrors[d].rdev;
5194	}
5195
5196	if (bio->bi_status) {
5197		/* FIXME should record badblock */
5198		md_error(mddev, rdev);
5199	}
5200
5201	rdev_dec_pending(rdev, mddev);
5202	end_reshape_request(r10_bio);
5203}
5204
5205static void end_reshape_request(struct r10bio *r10_bio)
5206{
5207	if (!atomic_dec_and_test(&r10_bio->remaining))
5208		return;
5209	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5210	bio_put(r10_bio->master_bio);
5211	put_buf(r10_bio);
5212}
5213
5214static void raid10_finish_reshape(struct mddev *mddev)
5215{
5216	struct r10conf *conf = mddev->private;
5217
5218	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5219		return;
5220
5221	if (mddev->delta_disks > 0) {
5222		if (mddev->recovery_cp > mddev->resync_max_sectors) {
5223			mddev->recovery_cp = mddev->resync_max_sectors;
5224			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5225		}
5226		mddev->resync_max_sectors = mddev->array_sectors;
5227	} else {
5228		int d;
5229		rcu_read_lock();
5230		for (d = conf->geo.raid_disks ;
5231		     d < conf->geo.raid_disks - mddev->delta_disks;
5232		     d++) {
5233			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5234			if (rdev)
5235				clear_bit(In_sync, &rdev->flags);
5236			rdev = rcu_dereference(conf->mirrors[d].replacement);
5237			if (rdev)
5238				clear_bit(In_sync, &rdev->flags);
5239		}
5240		rcu_read_unlock();
5241	}
5242	mddev->layout = mddev->new_layout;
5243	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5244	mddev->reshape_position = MaxSector;
5245	mddev->delta_disks = 0;
5246	mddev->reshape_backwards = 0;
5247}
5248
5249static struct md_personality raid10_personality =
5250{
5251	.name		= "raid10",
5252	.level		= 10,
5253	.owner		= THIS_MODULE,
5254	.make_request	= raid10_make_request,
5255	.run		= raid10_run,
5256	.free		= raid10_free,
5257	.status		= raid10_status,
5258	.error_handler	= raid10_error,
5259	.hot_add_disk	= raid10_add_disk,
5260	.hot_remove_disk= raid10_remove_disk,
5261	.spare_active	= raid10_spare_active,
5262	.sync_request	= raid10_sync_request,
5263	.quiesce	= raid10_quiesce,
5264	.size		= raid10_size,
5265	.resize		= raid10_resize,
5266	.takeover	= raid10_takeover,
5267	.check_reshape	= raid10_check_reshape,
5268	.start_reshape	= raid10_start_reshape,
5269	.finish_reshape	= raid10_finish_reshape,
5270	.update_reshape_pos = raid10_update_reshape_pos,
5271};
5272
5273static int __init raid_init(void)
5274{
5275	return register_md_personality(&raid10_personality);
5276}
5277
5278static void raid_exit(void)
5279{
5280	unregister_md_personality(&raid10_personality);
5281}
5282
5283module_init(raid_init);
5284module_exit(raid_exit);
5285MODULE_LICENSE("GPL");
5286MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5287MODULE_ALIAS("md-personality-9"); /* RAID10 */
5288MODULE_ALIAS("md-raid10");
5289MODULE_ALIAS("md-level-10");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * raid10.c : Multiple Devices driver for Linux
   4 *
   5 * Copyright (C) 2000-2004 Neil Brown
   6 *
   7 * RAID-10 support for md.
   8 *
   9 * Base on code in raid1.c.  See raid1.c for further copyright information.
  10 */
  11
  12#include <linux/slab.h>
  13#include <linux/delay.h>
  14#include <linux/blkdev.h>
  15#include <linux/module.h>
  16#include <linux/seq_file.h>
  17#include <linux/ratelimit.h>
  18#include <linux/kthread.h>
  19#include <linux/raid/md_p.h>
  20#include <trace/events/block.h>
  21#include "md.h"
  22#include "raid10.h"
  23#include "raid0.h"
  24#include "md-bitmap.h"
  25
  26/*
  27 * RAID10 provides a combination of RAID0 and RAID1 functionality.
  28 * The layout of data is defined by
  29 *    chunk_size
  30 *    raid_disks
  31 *    near_copies (stored in low byte of layout)
  32 *    far_copies (stored in second byte of layout)
  33 *    far_offset (stored in bit 16 of layout )
  34 *    use_far_sets (stored in bit 17 of layout )
  35 *    use_far_sets_bugfixed (stored in bit 18 of layout )
  36 *
  37 * The data to be stored is divided into chunks using chunksize.  Each device
  38 * is divided into far_copies sections.   In each section, chunks are laid out
  39 * in a style similar to raid0, but near_copies copies of each chunk is stored
  40 * (each on a different drive).  The starting device for each section is offset
  41 * near_copies from the starting device of the previous section.  Thus there
  42 * are (near_copies * far_copies) of each chunk, and each is on a different
  43 * drive.  near_copies and far_copies must be at least one, and their product
  44 * is at most raid_disks.
  45 *
  46 * If far_offset is true, then the far_copies are handled a bit differently.
  47 * The copies are still in different stripes, but instead of being very far
  48 * apart on disk, there are adjacent stripes.
  49 *
  50 * The far and offset algorithms are handled slightly differently if
  51 * 'use_far_sets' is true.  In this case, the array's devices are grouped into
  52 * sets that are (near_copies * far_copies) in size.  The far copied stripes
  53 * are still shifted by 'near_copies' devices, but this shifting stays confined
  54 * to the set rather than the entire array.  This is done to improve the number
  55 * of device combinations that can fail without causing the array to fail.
  56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
  57 * on a device):
  58 *    A B C D    A B C D E
  59 *      ...         ...
  60 *    D A B C    E A B C D
  61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
  62 *    [A B] [C D]    [A B] [C D E]
  63 *    |...| |...|    |...| | ... |
  64 *    [B A] [D C]    [B A] [E C D]
  65 */
  66
  67static void allow_barrier(struct r10conf *conf);
  68static void lower_barrier(struct r10conf *conf);
  69static int _enough(struct r10conf *conf, int previous, int ignore);
  70static int enough(struct r10conf *conf, int ignore);
  71static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
  72				int *skipped);
  73static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
  74static void end_reshape_write(struct bio *bio);
  75static void end_reshape(struct r10conf *conf);
  76
  77#define raid10_log(md, fmt, args...)				\
  78	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
  79
  80#include "raid1-10.c"
  81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  82/*
  83 * for resync bio, r10bio pointer can be retrieved from the per-bio
  84 * 'struct resync_pages'.
  85 */
  86static inline struct r10bio *get_resync_r10bio(struct bio *bio)
  87{
  88	return get_resync_pages(bio)->raid_bio;
  89}
  90
  91static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
  92{
  93	struct r10conf *conf = data;
  94	int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
  95
  96	/* allocate a r10bio with room for raid_disks entries in the
  97	 * bios array */
  98	return kzalloc(size, gfp_flags);
  99}
 100
 101#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 102/* amount of memory to reserve for resync requests */
 103#define RESYNC_WINDOW (1024*1024)
 104/* maximum number of concurrent requests, memory permitting */
 105#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
 106#define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
 107#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 108
 109/*
 110 * When performing a resync, we need to read and compare, so
 111 * we need as many pages are there are copies.
 112 * When performing a recovery, we need 2 bios, one for read,
 113 * one for write (we recover only one drive per r10buf)
 114 *
 115 */
 116static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
 117{
 118	struct r10conf *conf = data;
 119	struct r10bio *r10_bio;
 120	struct bio *bio;
 121	int j;
 122	int nalloc, nalloc_rp;
 123	struct resync_pages *rps;
 124
 125	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 126	if (!r10_bio)
 127		return NULL;
 128
 129	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
 130	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
 131		nalloc = conf->copies; /* resync */
 132	else
 133		nalloc = 2; /* recovery */
 134
 135	/* allocate once for all bios */
 136	if (!conf->have_replacement)
 137		nalloc_rp = nalloc;
 138	else
 139		nalloc_rp = nalloc * 2;
 140	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
 141	if (!rps)
 142		goto out_free_r10bio;
 143
 144	/*
 145	 * Allocate bios.
 146	 */
 147	for (j = nalloc ; j-- ; ) {
 148		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 149		if (!bio)
 150			goto out_free_bio;
 
 151		r10_bio->devs[j].bio = bio;
 152		if (!conf->have_replacement)
 153			continue;
 154		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 155		if (!bio)
 156			goto out_free_bio;
 
 157		r10_bio->devs[j].repl_bio = bio;
 158	}
 159	/*
 160	 * Allocate RESYNC_PAGES data pages and attach them
 161	 * where needed.
 162	 */
 163	for (j = 0; j < nalloc; j++) {
 164		struct bio *rbio = r10_bio->devs[j].repl_bio;
 165		struct resync_pages *rp, *rp_repl;
 166
 167		rp = &rps[j];
 168		if (rbio)
 169			rp_repl = &rps[nalloc + j];
 170
 171		bio = r10_bio->devs[j].bio;
 172
 173		if (!j || test_bit(MD_RECOVERY_SYNC,
 174				   &conf->mddev->recovery)) {
 175			if (resync_alloc_pages(rp, gfp_flags))
 176				goto out_free_pages;
 177		} else {
 178			memcpy(rp, &rps[0], sizeof(*rp));
 179			resync_get_all_pages(rp);
 180		}
 181
 182		rp->raid_bio = r10_bio;
 183		bio->bi_private = rp;
 184		if (rbio) {
 185			memcpy(rp_repl, rp, sizeof(*rp));
 186			rbio->bi_private = rp_repl;
 187		}
 188	}
 189
 190	return r10_bio;
 191
 192out_free_pages:
 193	while (--j >= 0)
 194		resync_free_pages(&rps[j]);
 195
 196	j = 0;
 197out_free_bio:
 198	for ( ; j < nalloc; j++) {
 199		if (r10_bio->devs[j].bio)
 200			bio_put(r10_bio->devs[j].bio);
 
 201		if (r10_bio->devs[j].repl_bio)
 202			bio_put(r10_bio->devs[j].repl_bio);
 
 203	}
 204	kfree(rps);
 205out_free_r10bio:
 206	rbio_pool_free(r10_bio, conf);
 207	return NULL;
 208}
 209
 210static void r10buf_pool_free(void *__r10_bio, void *data)
 211{
 212	struct r10conf *conf = data;
 213	struct r10bio *r10bio = __r10_bio;
 214	int j;
 215	struct resync_pages *rp = NULL;
 216
 217	for (j = conf->copies; j--; ) {
 218		struct bio *bio = r10bio->devs[j].bio;
 219
 220		if (bio) {
 221			rp = get_resync_pages(bio);
 222			resync_free_pages(rp);
 223			bio_put(bio);
 
 224		}
 225
 226		bio = r10bio->devs[j].repl_bio;
 227		if (bio)
 228			bio_put(bio);
 
 
 229	}
 230
 231	/* resync pages array stored in the 1st bio's .bi_private */
 232	kfree(rp);
 233
 234	rbio_pool_free(r10bio, conf);
 235}
 236
 237static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
 238{
 239	int i;
 240
 241	for (i = 0; i < conf->geo.raid_disks; i++) {
 242		struct bio **bio = & r10_bio->devs[i].bio;
 243		if (!BIO_SPECIAL(*bio))
 244			bio_put(*bio);
 245		*bio = NULL;
 246		bio = &r10_bio->devs[i].repl_bio;
 247		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
 248			bio_put(*bio);
 249		*bio = NULL;
 250	}
 251}
 252
 253static void free_r10bio(struct r10bio *r10_bio)
 254{
 255	struct r10conf *conf = r10_bio->mddev->private;
 256
 257	put_all_bios(conf, r10_bio);
 258	mempool_free(r10_bio, &conf->r10bio_pool);
 259}
 260
 261static void put_buf(struct r10bio *r10_bio)
 262{
 263	struct r10conf *conf = r10_bio->mddev->private;
 264
 265	mempool_free(r10_bio, &conf->r10buf_pool);
 266
 267	lower_barrier(conf);
 268}
 269
 
 
 
 
 
 
 270static void reschedule_retry(struct r10bio *r10_bio)
 271{
 272	unsigned long flags;
 273	struct mddev *mddev = r10_bio->mddev;
 274	struct r10conf *conf = mddev->private;
 275
 276	spin_lock_irqsave(&conf->device_lock, flags);
 277	list_add(&r10_bio->retry_list, &conf->retry_list);
 278	conf->nr_queued ++;
 279	spin_unlock_irqrestore(&conf->device_lock, flags);
 280
 281	/* wake up frozen array... */
 282	wake_up(&conf->wait_barrier);
 283
 284	md_wakeup_thread(mddev->thread);
 285}
 286
 287/*
 288 * raid_end_bio_io() is called when we have finished servicing a mirrored
 289 * operation and are ready to return a success/failure code to the buffer
 290 * cache layer.
 291 */
 292static void raid_end_bio_io(struct r10bio *r10_bio)
 293{
 294	struct bio *bio = r10_bio->master_bio;
 295	struct r10conf *conf = r10_bio->mddev->private;
 296
 297	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 298		bio->bi_status = BLK_STS_IOERR;
 299
 300	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
 301		bio_end_io_acct(bio, r10_bio->start_time);
 302	bio_endio(bio);
 303	/*
 304	 * Wake up any possible resync thread that waits for the device
 305	 * to go idle.
 306	 */
 307	allow_barrier(conf);
 308
 309	free_r10bio(r10_bio);
 310}
 311
 312/*
 313 * Update disk head position estimator based on IRQ completion info.
 314 */
 315static inline void update_head_pos(int slot, struct r10bio *r10_bio)
 316{
 317	struct r10conf *conf = r10_bio->mddev->private;
 318
 319	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 320		r10_bio->devs[slot].addr + (r10_bio->sectors);
 321}
 322
 323/*
 324 * Find the disk number which triggered given bio
 325 */
 326static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
 327			 struct bio *bio, int *slotp, int *replp)
 328{
 329	int slot;
 330	int repl = 0;
 331
 332	for (slot = 0; slot < conf->geo.raid_disks; slot++) {
 333		if (r10_bio->devs[slot].bio == bio)
 334			break;
 335		if (r10_bio->devs[slot].repl_bio == bio) {
 336			repl = 1;
 337			break;
 338		}
 339	}
 340
 341	update_head_pos(slot, r10_bio);
 342
 343	if (slotp)
 344		*slotp = slot;
 345	if (replp)
 346		*replp = repl;
 347	return r10_bio->devs[slot].devnum;
 348}
 349
 350static void raid10_end_read_request(struct bio *bio)
 351{
 352	int uptodate = !bio->bi_status;
 353	struct r10bio *r10_bio = bio->bi_private;
 354	int slot;
 355	struct md_rdev *rdev;
 356	struct r10conf *conf = r10_bio->mddev->private;
 357
 358	slot = r10_bio->read_slot;
 359	rdev = r10_bio->devs[slot].rdev;
 360	/*
 361	 * this branch is our 'one mirror IO has finished' event handler:
 362	 */
 363	update_head_pos(slot, r10_bio);
 364
 365	if (uptodate) {
 366		/*
 367		 * Set R10BIO_Uptodate in our master bio, so that
 368		 * we will return a good error code to the higher
 369		 * levels even if IO on some other mirrored buffer fails.
 370		 *
 371		 * The 'master' represents the composite IO operation to
 372		 * user-side. So if something waits for IO, then it will
 373		 * wait for the 'master' bio.
 374		 */
 375		set_bit(R10BIO_Uptodate, &r10_bio->state);
 376	} else {
 377		/* If all other devices that store this block have
 378		 * failed, we want to return the error upwards rather
 379		 * than fail the last device.  Here we redefine
 380		 * "uptodate" to mean "Don't want to retry"
 381		 */
 382		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
 383			     rdev->raid_disk))
 384			uptodate = 1;
 385	}
 386	if (uptodate) {
 387		raid_end_bio_io(r10_bio);
 388		rdev_dec_pending(rdev, conf->mddev);
 389	} else {
 390		/*
 391		 * oops, read error - keep the refcount on the rdev
 392		 */
 393		char b[BDEVNAME_SIZE];
 394		pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
 395				   mdname(conf->mddev),
 396				   bdevname(rdev->bdev, b),
 397				   (unsigned long long)r10_bio->sector);
 398		set_bit(R10BIO_ReadError, &r10_bio->state);
 399		reschedule_retry(r10_bio);
 400	}
 401}
 402
 403static void close_write(struct r10bio *r10_bio)
 404{
 405	/* clear the bitmap if all writes complete successfully */
 406	md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 407			   r10_bio->sectors,
 408			   !test_bit(R10BIO_Degraded, &r10_bio->state),
 409			   0);
 410	md_write_end(r10_bio->mddev);
 411}
 412
 413static void one_write_done(struct r10bio *r10_bio)
 414{
 415	if (atomic_dec_and_test(&r10_bio->remaining)) {
 416		if (test_bit(R10BIO_WriteError, &r10_bio->state))
 417			reschedule_retry(r10_bio);
 418		else {
 419			close_write(r10_bio);
 420			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
 421				reschedule_retry(r10_bio);
 422			else
 423				raid_end_bio_io(r10_bio);
 424		}
 425	}
 426}
 427
 428static void raid10_end_write_request(struct bio *bio)
 429{
 430	struct r10bio *r10_bio = bio->bi_private;
 431	int dev;
 432	int dec_rdev = 1;
 433	struct r10conf *conf = r10_bio->mddev->private;
 434	int slot, repl;
 435	struct md_rdev *rdev = NULL;
 436	struct bio *to_put = NULL;
 437	bool discard_error;
 438
 439	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 440
 441	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 442
 443	if (repl)
 444		rdev = conf->mirrors[dev].replacement;
 445	if (!rdev) {
 446		smp_rmb();
 447		repl = 0;
 448		rdev = conf->mirrors[dev].rdev;
 449	}
 450	/*
 451	 * this branch is our 'one mirror IO has finished' event handler:
 452	 */
 453	if (bio->bi_status && !discard_error) {
 454		if (repl)
 455			/* Never record new bad blocks to replacement,
 456			 * just fail it.
 457			 */
 458			md_error(rdev->mddev, rdev);
 459		else {
 460			set_bit(WriteErrorSeen,	&rdev->flags);
 461			if (!test_and_set_bit(WantReplacement, &rdev->flags))
 462				set_bit(MD_RECOVERY_NEEDED,
 463					&rdev->mddev->recovery);
 464
 465			dec_rdev = 0;
 466			if (test_bit(FailFast, &rdev->flags) &&
 467			    (bio->bi_opf & MD_FAILFAST)) {
 468				md_error(rdev->mddev, rdev);
 469			}
 470
 471			/*
 472			 * When the device is faulty, it is not necessary to
 473			 * handle write error.
 474			 */
 475			if (!test_bit(Faulty, &rdev->flags))
 476				set_bit(R10BIO_WriteError, &r10_bio->state);
 477			else {
 478				/* Fail the request */
 479				set_bit(R10BIO_Degraded, &r10_bio->state);
 480				r10_bio->devs[slot].bio = NULL;
 481				to_put = bio;
 482				dec_rdev = 1;
 483			}
 484		}
 485	} else {
 486		/*
 487		 * Set R10BIO_Uptodate in our master bio, so that
 488		 * we will return a good error code for to the higher
 489		 * levels even if IO on some other mirrored buffer fails.
 490		 *
 491		 * The 'master' represents the composite IO operation to
 492		 * user-side. So if something waits for IO, then it will
 493		 * wait for the 'master' bio.
 494		 */
 495		sector_t first_bad;
 496		int bad_sectors;
 497
 498		/*
 499		 * Do not set R10BIO_Uptodate if the current device is
 500		 * rebuilding or Faulty. This is because we cannot use
 501		 * such device for properly reading the data back (we could
 502		 * potentially use it, if the current write would have felt
 503		 * before rdev->recovery_offset, but for simplicity we don't
 504		 * check this here.
 505		 */
 506		if (test_bit(In_sync, &rdev->flags) &&
 507		    !test_bit(Faulty, &rdev->flags))
 508			set_bit(R10BIO_Uptodate, &r10_bio->state);
 509
 510		/* Maybe we can clear some bad blocks. */
 511		if (is_badblock(rdev,
 512				r10_bio->devs[slot].addr,
 513				r10_bio->sectors,
 514				&first_bad, &bad_sectors) && !discard_error) {
 515			bio_put(bio);
 516			if (repl)
 517				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
 518			else
 519				r10_bio->devs[slot].bio = IO_MADE_GOOD;
 520			dec_rdev = 0;
 521			set_bit(R10BIO_MadeGood, &r10_bio->state);
 522		}
 523	}
 524
 525	/*
 526	 *
 527	 * Let's see if all mirrored write operations have finished
 528	 * already.
 529	 */
 530	one_write_done(r10_bio);
 531	if (dec_rdev)
 532		rdev_dec_pending(rdev, conf->mddev);
 533	if (to_put)
 534		bio_put(to_put);
 535}
 536
 537/*
 538 * RAID10 layout manager
 539 * As well as the chunksize and raid_disks count, there are two
 540 * parameters: near_copies and far_copies.
 541 * near_copies * far_copies must be <= raid_disks.
 542 * Normally one of these will be 1.
 543 * If both are 1, we get raid0.
 544 * If near_copies == raid_disks, we get raid1.
 545 *
 546 * Chunks are laid out in raid0 style with near_copies copies of the
 547 * first chunk, followed by near_copies copies of the next chunk and
 548 * so on.
 549 * If far_copies > 1, then after 1/far_copies of the array has been assigned
 550 * as described above, we start again with a device offset of near_copies.
 551 * So we effectively have another copy of the whole array further down all
 552 * the drives, but with blocks on different drives.
 553 * With this layout, and block is never stored twice on the one device.
 554 *
 555 * raid10_find_phys finds the sector offset of a given virtual sector
 556 * on each device that it is on.
 557 *
 558 * raid10_find_virt does the reverse mapping, from a device and a
 559 * sector offset to a virtual address
 560 */
 561
 562static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
 563{
 564	int n,f;
 565	sector_t sector;
 566	sector_t chunk;
 567	sector_t stripe;
 568	int dev;
 569	int slot = 0;
 570	int last_far_set_start, last_far_set_size;
 571
 572	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 573	last_far_set_start *= geo->far_set_size;
 574
 575	last_far_set_size = geo->far_set_size;
 576	last_far_set_size += (geo->raid_disks % geo->far_set_size);
 577
 578	/* now calculate first sector/dev */
 579	chunk = r10bio->sector >> geo->chunk_shift;
 580	sector = r10bio->sector & geo->chunk_mask;
 581
 582	chunk *= geo->near_copies;
 583	stripe = chunk;
 584	dev = sector_div(stripe, geo->raid_disks);
 585	if (geo->far_offset)
 586		stripe *= geo->far_copies;
 587
 588	sector += stripe << geo->chunk_shift;
 589
 590	/* and calculate all the others */
 591	for (n = 0; n < geo->near_copies; n++) {
 592		int d = dev;
 593		int set;
 594		sector_t s = sector;
 595		r10bio->devs[slot].devnum = d;
 596		r10bio->devs[slot].addr = s;
 597		slot++;
 598
 599		for (f = 1; f < geo->far_copies; f++) {
 600			set = d / geo->far_set_size;
 601			d += geo->near_copies;
 602
 603			if ((geo->raid_disks % geo->far_set_size) &&
 604			    (d > last_far_set_start)) {
 605				d -= last_far_set_start;
 606				d %= last_far_set_size;
 607				d += last_far_set_start;
 608			} else {
 609				d %= geo->far_set_size;
 610				d += geo->far_set_size * set;
 611			}
 612			s += geo->stride;
 613			r10bio->devs[slot].devnum = d;
 614			r10bio->devs[slot].addr = s;
 615			slot++;
 616		}
 617		dev++;
 618		if (dev >= geo->raid_disks) {
 619			dev = 0;
 620			sector += (geo->chunk_mask + 1);
 621		}
 622	}
 623}
 624
 625static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
 626{
 627	struct geom *geo = &conf->geo;
 628
 629	if (conf->reshape_progress != MaxSector &&
 630	    ((r10bio->sector >= conf->reshape_progress) !=
 631	     conf->mddev->reshape_backwards)) {
 632		set_bit(R10BIO_Previous, &r10bio->state);
 633		geo = &conf->prev;
 634	} else
 635		clear_bit(R10BIO_Previous, &r10bio->state);
 636
 637	__raid10_find_phys(geo, r10bio);
 638}
 639
 640static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
 641{
 642	sector_t offset, chunk, vchunk;
 643	/* Never use conf->prev as this is only called during resync
 644	 * or recovery, so reshape isn't happening
 645	 */
 646	struct geom *geo = &conf->geo;
 647	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
 648	int far_set_size = geo->far_set_size;
 649	int last_far_set_start;
 650
 651	if (geo->raid_disks % geo->far_set_size) {
 652		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 653		last_far_set_start *= geo->far_set_size;
 654
 655		if (dev >= last_far_set_start) {
 656			far_set_size = geo->far_set_size;
 657			far_set_size += (geo->raid_disks % geo->far_set_size);
 658			far_set_start = last_far_set_start;
 659		}
 660	}
 661
 662	offset = sector & geo->chunk_mask;
 663	if (geo->far_offset) {
 664		int fc;
 665		chunk = sector >> geo->chunk_shift;
 666		fc = sector_div(chunk, geo->far_copies);
 667		dev -= fc * geo->near_copies;
 668		if (dev < far_set_start)
 669			dev += far_set_size;
 670	} else {
 671		while (sector >= geo->stride) {
 672			sector -= geo->stride;
 673			if (dev < (geo->near_copies + far_set_start))
 674				dev += far_set_size - geo->near_copies;
 675			else
 676				dev -= geo->near_copies;
 677		}
 678		chunk = sector >> geo->chunk_shift;
 679	}
 680	vchunk = chunk * geo->raid_disks + dev;
 681	sector_div(vchunk, geo->near_copies);
 682	return (vchunk << geo->chunk_shift) + offset;
 683}
 684
 685/*
 686 * This routine returns the disk from which the requested read should
 687 * be done. There is a per-array 'next expected sequential IO' sector
 688 * number - if this matches on the next IO then we use the last disk.
 689 * There is also a per-disk 'last know head position' sector that is
 690 * maintained from IRQ contexts, both the normal and the resync IO
 691 * completion handlers update this position correctly. If there is no
 692 * perfect sequential match then we pick the disk whose head is closest.
 693 *
 694 * If there are 2 mirrors in the same 2 devices, performance degrades
 695 * because position is mirror, not device based.
 696 *
 697 * The rdev for the device selected will have nr_pending incremented.
 698 */
 699
 700/*
 701 * FIXME: possibly should rethink readbalancing and do it differently
 702 * depending on near_copies / far_copies geometry.
 703 */
 704static struct md_rdev *read_balance(struct r10conf *conf,
 705				    struct r10bio *r10_bio,
 706				    int *max_sectors)
 707{
 708	const sector_t this_sector = r10_bio->sector;
 709	int disk, slot;
 710	int sectors = r10_bio->sectors;
 711	int best_good_sectors;
 712	sector_t new_distance, best_dist;
 713	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
 714	int do_balance;
 715	int best_dist_slot, best_pending_slot;
 716	bool has_nonrot_disk = false;
 717	unsigned int min_pending;
 718	struct geom *geo = &conf->geo;
 719
 720	raid10_find_phys(conf, r10_bio);
 721	rcu_read_lock();
 722	best_dist_slot = -1;
 723	min_pending = UINT_MAX;
 724	best_dist_rdev = NULL;
 725	best_pending_rdev = NULL;
 726	best_dist = MaxSector;
 727	best_good_sectors = 0;
 728	do_balance = 1;
 729	clear_bit(R10BIO_FailFast, &r10_bio->state);
 730	/*
 731	 * Check if we can balance. We can balance on the whole
 732	 * device if no resync is going on (recovery is ok), or below
 733	 * the resync window. We take the first readable disk when
 734	 * above the resync window.
 735	 */
 736	if ((conf->mddev->recovery_cp < MaxSector
 737	     && (this_sector + sectors >= conf->next_resync)) ||
 738	    (mddev_is_clustered(conf->mddev) &&
 739	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 740					    this_sector + sectors)))
 741		do_balance = 0;
 742
 743	for (slot = 0; slot < conf->copies ; slot++) {
 744		sector_t first_bad;
 745		int bad_sectors;
 746		sector_t dev_sector;
 747		unsigned int pending;
 748		bool nonrot;
 749
 750		if (r10_bio->devs[slot].bio == IO_BLOCKED)
 751			continue;
 752		disk = r10_bio->devs[slot].devnum;
 753		rdev = rcu_dereference(conf->mirrors[disk].replacement);
 754		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
 755		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 756			rdev = rcu_dereference(conf->mirrors[disk].rdev);
 757		if (rdev == NULL ||
 758		    test_bit(Faulty, &rdev->flags))
 759			continue;
 760		if (!test_bit(In_sync, &rdev->flags) &&
 761		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 762			continue;
 763
 764		dev_sector = r10_bio->devs[slot].addr;
 765		if (is_badblock(rdev, dev_sector, sectors,
 766				&first_bad, &bad_sectors)) {
 767			if (best_dist < MaxSector)
 768				/* Already have a better slot */
 769				continue;
 770			if (first_bad <= dev_sector) {
 771				/* Cannot read here.  If this is the
 772				 * 'primary' device, then we must not read
 773				 * beyond 'bad_sectors' from another device.
 774				 */
 775				bad_sectors -= (dev_sector - first_bad);
 776				if (!do_balance && sectors > bad_sectors)
 777					sectors = bad_sectors;
 778				if (best_good_sectors > sectors)
 779					best_good_sectors = sectors;
 780			} else {
 781				sector_t good_sectors =
 782					first_bad - dev_sector;
 783				if (good_sectors > best_good_sectors) {
 784					best_good_sectors = good_sectors;
 785					best_dist_slot = slot;
 786					best_dist_rdev = rdev;
 787				}
 788				if (!do_balance)
 789					/* Must read from here */
 790					break;
 791			}
 792			continue;
 793		} else
 794			best_good_sectors = sectors;
 795
 796		if (!do_balance)
 797			break;
 798
 799		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 800		has_nonrot_disk |= nonrot;
 801		pending = atomic_read(&rdev->nr_pending);
 802		if (min_pending > pending && nonrot) {
 803			min_pending = pending;
 804			best_pending_slot = slot;
 805			best_pending_rdev = rdev;
 806		}
 807
 808		if (best_dist_slot >= 0)
 809			/* At least 2 disks to choose from so failfast is OK */
 810			set_bit(R10BIO_FailFast, &r10_bio->state);
 811		/* This optimisation is debatable, and completely destroys
 812		 * sequential read speed for 'far copies' arrays.  So only
 813		 * keep it for 'near' arrays, and review those later.
 814		 */
 815		if (geo->near_copies > 1 && !pending)
 816			new_distance = 0;
 817
 818		/* for far > 1 always use the lowest address */
 819		else if (geo->far_copies > 1)
 820			new_distance = r10_bio->devs[slot].addr;
 821		else
 822			new_distance = abs(r10_bio->devs[slot].addr -
 823					   conf->mirrors[disk].head_position);
 824
 825		if (new_distance < best_dist) {
 826			best_dist = new_distance;
 827			best_dist_slot = slot;
 828			best_dist_rdev = rdev;
 829		}
 830	}
 831	if (slot >= conf->copies) {
 832		if (has_nonrot_disk) {
 833			slot = best_pending_slot;
 834			rdev = best_pending_rdev;
 835		} else {
 836			slot = best_dist_slot;
 837			rdev = best_dist_rdev;
 838		}
 839	}
 840
 841	if (slot >= 0) {
 842		atomic_inc(&rdev->nr_pending);
 843		r10_bio->read_slot = slot;
 844	} else
 845		rdev = NULL;
 846	rcu_read_unlock();
 847	*max_sectors = best_good_sectors;
 848
 849	return rdev;
 850}
 851
 852static void flush_pending_writes(struct r10conf *conf)
 853{
 854	/* Any writes that have been queued but are awaiting
 855	 * bitmap updates get flushed here.
 856	 */
 857	spin_lock_irq(&conf->device_lock);
 858
 859	if (conf->pending_bio_list.head) {
 860		struct blk_plug plug;
 861		struct bio *bio;
 862
 863		bio = bio_list_get(&conf->pending_bio_list);
 864		conf->pending_count = 0;
 865		spin_unlock_irq(&conf->device_lock);
 866
 867		/*
 868		 * As this is called in a wait_event() loop (see freeze_array),
 869		 * current->state might be TASK_UNINTERRUPTIBLE which will
 870		 * cause a warning when we prepare to wait again.  As it is
 871		 * rare that this path is taken, it is perfectly safe to force
 872		 * us to go around the wait_event() loop again, so the warning
 873		 * is a false-positive. Silence the warning by resetting
 874		 * thread state
 875		 */
 876		__set_current_state(TASK_RUNNING);
 877
 878		blk_start_plug(&plug);
 879		/* flush any pending bitmap writes to disk
 880		 * before proceeding w/ I/O */
 881		md_bitmap_unplug(conf->mddev->bitmap);
 882		wake_up(&conf->wait_barrier);
 883
 884		while (bio) { /* submit pending writes */
 885			struct bio *next = bio->bi_next;
 886			struct md_rdev *rdev = (void*)bio->bi_bdev;
 887			bio->bi_next = NULL;
 888			bio_set_dev(bio, rdev->bdev);
 889			if (test_bit(Faulty, &rdev->flags)) {
 890				bio_io_error(bio);
 891			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
 892					    !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
 893				/* Just ignore it */
 894				bio_endio(bio);
 895			else
 896				submit_bio_noacct(bio);
 897			bio = next;
 898		}
 899		blk_finish_plug(&plug);
 900	} else
 901		spin_unlock_irq(&conf->device_lock);
 902}
 903
 904/* Barriers....
 905 * Sometimes we need to suspend IO while we do something else,
 906 * either some resync/recovery, or reconfigure the array.
 907 * To do this we raise a 'barrier'.
 908 * The 'barrier' is a counter that can be raised multiple times
 909 * to count how many activities are happening which preclude
 910 * normal IO.
 911 * We can only raise the barrier if there is no pending IO.
 912 * i.e. if nr_pending == 0.
 913 * We choose only to raise the barrier if no-one is waiting for the
 914 * barrier to go down.  This means that as soon as an IO request
 915 * is ready, no other operations which require a barrier will start
 916 * until the IO request has had a chance.
 917 *
 918 * So: regular IO calls 'wait_barrier'.  When that returns there
 919 *    is no backgroup IO happening,  It must arrange to call
 920 *    allow_barrier when it has finished its IO.
 921 * backgroup IO calls must call raise_barrier.  Once that returns
 922 *    there is no normal IO happeing.  It must arrange to call
 923 *    lower_barrier when the particular background IO completes.
 924 */
 925
 926static void raise_barrier(struct r10conf *conf, int force)
 927{
 
 928	BUG_ON(force && !conf->barrier);
 929	spin_lock_irq(&conf->resync_lock);
 930
 931	/* Wait until no block IO is waiting (unless 'force') */
 932	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
 933			    conf->resync_lock);
 934
 935	/* block any new IO from starting */
 936	conf->barrier++;
 937
 938	/* Now wait for all pending IO to complete */
 939	wait_event_lock_irq(conf->wait_barrier,
 940			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
 941			    conf->resync_lock);
 942
 943	spin_unlock_irq(&conf->resync_lock);
 944}
 945
 946static void lower_barrier(struct r10conf *conf)
 947{
 948	unsigned long flags;
 949	spin_lock_irqsave(&conf->resync_lock, flags);
 950	conf->barrier--;
 951	spin_unlock_irqrestore(&conf->resync_lock, flags);
 
 952	wake_up(&conf->wait_barrier);
 953}
 954
 955static void wait_barrier(struct r10conf *conf)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 956{
 957	spin_lock_irq(&conf->resync_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 958	if (conf->barrier) {
 959		struct bio_list *bio_list = current->bio_list;
 960		conf->nr_waiting++;
 961		/* Wait for the barrier to drop.
 962		 * However if there are already pending
 963		 * requests (preventing the barrier from
 964		 * rising completely), and the
 965		 * pre-process bio queue isn't empty,
 966		 * then don't wait, as we need to empty
 967		 * that queue to get the nr_pending
 968		 * count down.
 969		 */
 970		raid10_log(conf->mddev, "wait barrier");
 971		wait_event_lock_irq(conf->wait_barrier,
 972				    !conf->barrier ||
 973				    (atomic_read(&conf->nr_pending) &&
 974				     bio_list &&
 975				     (!bio_list_empty(&bio_list[0]) ||
 976				      !bio_list_empty(&bio_list[1]))) ||
 977				     /* move on if recovery thread is
 978				      * blocked by us
 979				      */
 980				     (conf->mddev->thread->tsk == current &&
 981				      test_bit(MD_RECOVERY_RUNNING,
 982					       &conf->mddev->recovery) &&
 983				      conf->nr_queued > 0),
 984				    conf->resync_lock);
 985		conf->nr_waiting--;
 986		if (!conf->nr_waiting)
 987			wake_up(&conf->wait_barrier);
 988	}
 989	atomic_inc(&conf->nr_pending);
 990	spin_unlock_irq(&conf->resync_lock);
 
 
 
 991}
 992
 993static void allow_barrier(struct r10conf *conf)
 994{
 995	if ((atomic_dec_and_test(&conf->nr_pending)) ||
 996			(conf->array_freeze_pending))
 997		wake_up(&conf->wait_barrier);
 998}
 999
1000static void freeze_array(struct r10conf *conf, int extra)
1001{
1002	/* stop syncio and normal IO and wait for everything to
1003	 * go quiet.
1004	 * We increment barrier and nr_waiting, and then
1005	 * wait until nr_pending match nr_queued+extra
1006	 * This is called in the context of one normal IO request
1007	 * that has failed. Thus any sync request that might be pending
1008	 * will be blocked by nr_pending, and we need to wait for
1009	 * pending IO requests to complete or be queued for re-try.
1010	 * Thus the number queued (nr_queued) plus this request (extra)
1011	 * must match the number of pending IOs (nr_pending) before
1012	 * we continue.
1013	 */
1014	spin_lock_irq(&conf->resync_lock);
1015	conf->array_freeze_pending++;
1016	conf->barrier++;
1017	conf->nr_waiting++;
1018	wait_event_lock_irq_cmd(conf->wait_barrier,
1019				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1020				conf->resync_lock,
1021				flush_pending_writes(conf));
1022
1023	conf->array_freeze_pending--;
1024	spin_unlock_irq(&conf->resync_lock);
1025}
1026
1027static void unfreeze_array(struct r10conf *conf)
1028{
1029	/* reverse the effect of the freeze */
1030	spin_lock_irq(&conf->resync_lock);
1031	conf->barrier--;
1032	conf->nr_waiting--;
1033	wake_up(&conf->wait_barrier);
1034	spin_unlock_irq(&conf->resync_lock);
1035}
1036
1037static sector_t choose_data_offset(struct r10bio *r10_bio,
1038				   struct md_rdev *rdev)
1039{
1040	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1041	    test_bit(R10BIO_Previous, &r10_bio->state))
1042		return rdev->data_offset;
1043	else
1044		return rdev->new_data_offset;
1045}
1046
1047struct raid10_plug_cb {
1048	struct blk_plug_cb	cb;
1049	struct bio_list		pending;
1050	int			pending_cnt;
1051};
1052
1053static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1054{
1055	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1056						   cb);
1057	struct mddev *mddev = plug->cb.data;
1058	struct r10conf *conf = mddev->private;
1059	struct bio *bio;
1060
1061	if (from_schedule || current->bio_list) {
1062		spin_lock_irq(&conf->device_lock);
1063		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1064		conf->pending_count += plug->pending_cnt;
1065		spin_unlock_irq(&conf->device_lock);
1066		wake_up(&conf->wait_barrier);
1067		md_wakeup_thread(mddev->thread);
1068		kfree(plug);
1069		return;
1070	}
1071
1072	/* we aren't scheduling, so we can do the write-out directly. */
1073	bio = bio_list_get(&plug->pending);
1074	md_bitmap_unplug(mddev->bitmap);
1075	wake_up(&conf->wait_barrier);
1076
1077	while (bio) { /* submit pending writes */
1078		struct bio *next = bio->bi_next;
1079		struct md_rdev *rdev = (void*)bio->bi_bdev;
1080		bio->bi_next = NULL;
1081		bio_set_dev(bio, rdev->bdev);
1082		if (test_bit(Faulty, &rdev->flags)) {
1083			bio_io_error(bio);
1084		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1085				    !blk_queue_discard(bio->bi_bdev->bd_disk->queue)))
1086			/* Just ignore it */
1087			bio_endio(bio);
1088		else
1089			submit_bio_noacct(bio);
1090		bio = next;
1091	}
1092	kfree(plug);
1093}
1094
1095/*
1096 * 1. Register the new request and wait if the reconstruction thread has put
1097 * up a bar for new requests. Continue immediately if no resync is active
1098 * currently.
1099 * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1100 */
1101static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1102				 struct bio *bio, sector_t sectors)
1103{
1104	wait_barrier(conf);
 
 
 
 
1105	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1106	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1107	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
 
 
 
 
 
1108		raid10_log(conf->mddev, "wait reshape");
1109		allow_barrier(conf);
1110		wait_event(conf->wait_barrier,
1111			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1112			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1113			   sectors);
1114		wait_barrier(conf);
1115	}
 
1116}
1117
1118static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1119				struct r10bio *r10_bio)
1120{
1121	struct r10conf *conf = mddev->private;
1122	struct bio *read_bio;
1123	const int op = bio_op(bio);
1124	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1125	int max_sectors;
1126	struct md_rdev *rdev;
1127	char b[BDEVNAME_SIZE];
1128	int slot = r10_bio->read_slot;
1129	struct md_rdev *err_rdev = NULL;
1130	gfp_t gfp = GFP_NOIO;
1131
1132	if (slot >= 0 && r10_bio->devs[slot].rdev) {
1133		/*
1134		 * This is an error retry, but we cannot
1135		 * safely dereference the rdev in the r10_bio,
1136		 * we must use the one in conf.
1137		 * If it has already been disconnected (unlikely)
1138		 * we lose the device name in error messages.
1139		 */
1140		int disk;
1141		/*
1142		 * As we are blocking raid10, it is a little safer to
1143		 * use __GFP_HIGH.
1144		 */
1145		gfp = GFP_NOIO | __GFP_HIGH;
1146
1147		rcu_read_lock();
1148		disk = r10_bio->devs[slot].devnum;
1149		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1150		if (err_rdev)
1151			bdevname(err_rdev->bdev, b);
1152		else {
1153			strcpy(b, "???");
1154			/* This never gets dereferenced */
1155			err_rdev = r10_bio->devs[slot].rdev;
1156		}
1157		rcu_read_unlock();
1158	}
1159
1160	regular_request_wait(mddev, conf, bio, r10_bio->sectors);
 
1161	rdev = read_balance(conf, r10_bio, &max_sectors);
1162	if (!rdev) {
1163		if (err_rdev) {
1164			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1165					    mdname(mddev), b,
1166					    (unsigned long long)r10_bio->sector);
1167		}
1168		raid_end_bio_io(r10_bio);
1169		return;
1170	}
1171	if (err_rdev)
1172		pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1173				   mdname(mddev),
1174				   bdevname(rdev->bdev, b),
1175				   (unsigned long long)r10_bio->sector);
1176	if (max_sectors < bio_sectors(bio)) {
1177		struct bio *split = bio_split(bio, max_sectors,
1178					      gfp, &conf->bio_split);
1179		bio_chain(split, bio);
1180		allow_barrier(conf);
1181		submit_bio_noacct(bio);
1182		wait_barrier(conf);
1183		bio = split;
1184		r10_bio->master_bio = bio;
1185		r10_bio->sectors = max_sectors;
1186	}
1187	slot = r10_bio->read_slot;
1188
1189	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1190		r10_bio->start_time = bio_start_io_acct(bio);
1191	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1192
1193	r10_bio->devs[slot].bio = read_bio;
1194	r10_bio->devs[slot].rdev = rdev;
1195
1196	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1197		choose_data_offset(r10_bio, rdev);
1198	bio_set_dev(read_bio, rdev->bdev);
1199	read_bio->bi_end_io = raid10_end_read_request;
1200	bio_set_op_attrs(read_bio, op, do_sync);
1201	if (test_bit(FailFast, &rdev->flags) &&
1202	    test_bit(R10BIO_FailFast, &r10_bio->state))
1203	        read_bio->bi_opf |= MD_FAILFAST;
1204	read_bio->bi_private = r10_bio;
1205
1206	if (mddev->gendisk)
1207	        trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1208	                              r10_bio->sector);
1209	submit_bio_noacct(read_bio);
1210	return;
1211}
1212
1213static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1214				  struct bio *bio, bool replacement,
1215				  int n_copy)
1216{
1217	const int op = bio_op(bio);
1218	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1219	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1220	unsigned long flags;
1221	struct blk_plug_cb *cb;
1222	struct raid10_plug_cb *plug = NULL;
1223	struct r10conf *conf = mddev->private;
1224	struct md_rdev *rdev;
1225	int devnum = r10_bio->devs[n_copy].devnum;
1226	struct bio *mbio;
1227
1228	if (replacement) {
1229		rdev = conf->mirrors[devnum].replacement;
1230		if (rdev == NULL) {
1231			/* Replacement just got moved to main 'rdev' */
1232			smp_mb();
1233			rdev = conf->mirrors[devnum].rdev;
1234		}
1235	} else
1236		rdev = conf->mirrors[devnum].rdev;
1237
1238	mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1239	if (replacement)
1240		r10_bio->devs[n_copy].repl_bio = mbio;
1241	else
1242		r10_bio->devs[n_copy].bio = mbio;
1243
1244	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1245				   choose_data_offset(r10_bio, rdev));
1246	bio_set_dev(mbio, rdev->bdev);
1247	mbio->bi_end_io	= raid10_end_write_request;
1248	bio_set_op_attrs(mbio, op, do_sync | do_fua);
1249	if (!replacement && test_bit(FailFast,
1250				     &conf->mirrors[devnum].rdev->flags)
1251			 && enough(conf, devnum))
1252		mbio->bi_opf |= MD_FAILFAST;
1253	mbio->bi_private = r10_bio;
1254
1255	if (conf->mddev->gendisk)
1256		trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1257				      r10_bio->sector);
1258	/* flush_pending_writes() needs access to the rdev so...*/
1259	mbio->bi_bdev = (void *)rdev;
1260
1261	atomic_inc(&r10_bio->remaining);
1262
1263	cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1264	if (cb)
1265		plug = container_of(cb, struct raid10_plug_cb, cb);
1266	else
1267		plug = NULL;
1268	if (plug) {
1269		bio_list_add(&plug->pending, mbio);
1270		plug->pending_cnt++;
1271	} else {
1272		spin_lock_irqsave(&conf->device_lock, flags);
1273		bio_list_add(&conf->pending_bio_list, mbio);
1274		conf->pending_count++;
1275		spin_unlock_irqrestore(&conf->device_lock, flags);
1276		md_wakeup_thread(mddev->thread);
1277	}
1278}
1279
1280static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1281{
1282	int i;
1283	struct r10conf *conf = mddev->private;
1284	struct md_rdev *blocked_rdev;
1285
1286retry_wait:
1287	blocked_rdev = NULL;
1288	rcu_read_lock();
1289	for (i = 0; i < conf->copies; i++) {
1290		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1291		struct md_rdev *rrdev = rcu_dereference(
1292			conf->mirrors[i].replacement);
1293		if (rdev == rrdev)
1294			rrdev = NULL;
1295		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1296			atomic_inc(&rdev->nr_pending);
1297			blocked_rdev = rdev;
1298			break;
1299		}
1300		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1301			atomic_inc(&rrdev->nr_pending);
1302			blocked_rdev = rrdev;
1303			break;
1304		}
1305
1306		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1307			sector_t first_bad;
1308			sector_t dev_sector = r10_bio->devs[i].addr;
1309			int bad_sectors;
1310			int is_bad;
1311
1312			/*
1313			 * Discard request doesn't care the write result
1314			 * so it doesn't need to wait blocked disk here.
1315			 */
1316			if (!r10_bio->sectors)
1317				continue;
1318
1319			is_bad = is_badblock(rdev, dev_sector, r10_bio->sectors,
1320					     &first_bad, &bad_sectors);
1321			if (is_bad < 0) {
1322				/*
1323				 * Mustn't write here until the bad block
1324				 * is acknowledged
1325				 */
1326				atomic_inc(&rdev->nr_pending);
1327				set_bit(BlockedBadBlocks, &rdev->flags);
1328				blocked_rdev = rdev;
1329				break;
1330			}
1331		}
1332	}
1333	rcu_read_unlock();
1334
1335	if (unlikely(blocked_rdev)) {
1336		/* Have to wait for this device to get unblocked, then retry */
1337		allow_barrier(conf);
1338		raid10_log(conf->mddev, "%s wait rdev %d blocked",
1339				__func__, blocked_rdev->raid_disk);
1340		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1341		wait_barrier(conf);
1342		goto retry_wait;
1343	}
1344}
1345
1346static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1347				 struct r10bio *r10_bio)
1348{
1349	struct r10conf *conf = mddev->private;
1350	int i;
1351	sector_t sectors;
1352	int max_sectors;
1353
1354	if ((mddev_is_clustered(mddev) &&
1355	     md_cluster_ops->area_resyncing(mddev, WRITE,
1356					    bio->bi_iter.bi_sector,
1357					    bio_end_sector(bio)))) {
1358		DEFINE_WAIT(w);
 
 
 
 
 
1359		for (;;) {
1360			prepare_to_wait(&conf->wait_barrier,
1361					&w, TASK_IDLE);
1362			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1363				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1364				break;
1365			schedule();
1366		}
1367		finish_wait(&conf->wait_barrier, &w);
1368	}
1369
1370	sectors = r10_bio->sectors;
1371	regular_request_wait(mddev, conf, bio, sectors);
 
1372	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1373	    (mddev->reshape_backwards
1374	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1375		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1376	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1377		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1378		/* Need to update reshape_position in metadata */
1379		mddev->reshape_position = conf->reshape_progress;
1380		set_mask_bits(&mddev->sb_flags, 0,
1381			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1382		md_wakeup_thread(mddev->thread);
 
 
 
 
 
1383		raid10_log(conf->mddev, "wait reshape metadata");
1384		wait_event(mddev->sb_wait,
1385			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1386
1387		conf->reshape_safe = mddev->reshape_position;
1388	}
1389
1390	if (conf->pending_count >= max_queued_requests) {
1391		md_wakeup_thread(mddev->thread);
1392		raid10_log(mddev, "wait queued");
1393		wait_event(conf->wait_barrier,
1394			   conf->pending_count < max_queued_requests);
1395	}
1396	/* first select target devices under rcu_lock and
1397	 * inc refcount on their rdev.  Record them by setting
1398	 * bios[x] to bio
1399	 * If there are known/acknowledged bad blocks on any device
1400	 * on which we have seen a write error, we want to avoid
1401	 * writing to those blocks.  This potentially requires several
1402	 * writes to write around the bad blocks.  Each set of writes
1403	 * gets its own r10_bio with a set of bios attached.
1404	 */
1405
1406	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1407	raid10_find_phys(conf, r10_bio);
1408
1409	wait_blocked_dev(mddev, r10_bio);
1410
1411	rcu_read_lock();
1412	max_sectors = r10_bio->sectors;
1413
1414	for (i = 0;  i < conf->copies; i++) {
1415		int d = r10_bio->devs[i].devnum;
1416		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1417		struct md_rdev *rrdev = rcu_dereference(
1418			conf->mirrors[d].replacement);
1419		if (rdev == rrdev)
1420			rrdev = NULL;
1421		if (rdev && (test_bit(Faulty, &rdev->flags)))
1422			rdev = NULL;
1423		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1424			rrdev = NULL;
1425
1426		r10_bio->devs[i].bio = NULL;
1427		r10_bio->devs[i].repl_bio = NULL;
1428
1429		if (!rdev && !rrdev) {
1430			set_bit(R10BIO_Degraded, &r10_bio->state);
1431			continue;
1432		}
1433		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1434			sector_t first_bad;
1435			sector_t dev_sector = r10_bio->devs[i].addr;
1436			int bad_sectors;
1437			int is_bad;
1438
1439			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1440					     &first_bad, &bad_sectors);
1441			if (is_bad && first_bad <= dev_sector) {
1442				/* Cannot write here at all */
1443				bad_sectors -= (dev_sector - first_bad);
1444				if (bad_sectors < max_sectors)
1445					/* Mustn't write more than bad_sectors
1446					 * to other devices yet
1447					 */
1448					max_sectors = bad_sectors;
1449				/* We don't set R10BIO_Degraded as that
1450				 * only applies if the disk is missing,
1451				 * so it might be re-added, and we want to
1452				 * know to recover this chunk.
1453				 * In this case the device is here, and the
1454				 * fact that this chunk is not in-sync is
1455				 * recorded in the bad block log.
1456				 */
1457				continue;
1458			}
1459			if (is_bad) {
1460				int good_sectors = first_bad - dev_sector;
1461				if (good_sectors < max_sectors)
1462					max_sectors = good_sectors;
1463			}
1464		}
1465		if (rdev) {
1466			r10_bio->devs[i].bio = bio;
1467			atomic_inc(&rdev->nr_pending);
1468		}
1469		if (rrdev) {
1470			r10_bio->devs[i].repl_bio = bio;
1471			atomic_inc(&rrdev->nr_pending);
1472		}
1473	}
1474	rcu_read_unlock();
1475
1476	if (max_sectors < r10_bio->sectors)
1477		r10_bio->sectors = max_sectors;
1478
1479	if (r10_bio->sectors < bio_sectors(bio)) {
1480		struct bio *split = bio_split(bio, r10_bio->sectors,
1481					      GFP_NOIO, &conf->bio_split);
1482		bio_chain(split, bio);
1483		allow_barrier(conf);
1484		submit_bio_noacct(bio);
1485		wait_barrier(conf);
1486		bio = split;
1487		r10_bio->master_bio = bio;
1488	}
1489
1490	if (blk_queue_io_stat(bio->bi_bdev->bd_disk->queue))
1491		r10_bio->start_time = bio_start_io_acct(bio);
1492	atomic_set(&r10_bio->remaining, 1);
1493	md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1494
1495	for (i = 0; i < conf->copies; i++) {
1496		if (r10_bio->devs[i].bio)
1497			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1498		if (r10_bio->devs[i].repl_bio)
1499			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1500	}
1501	one_write_done(r10_bio);
1502}
1503
1504static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1505{
1506	struct r10conf *conf = mddev->private;
1507	struct r10bio *r10_bio;
1508
1509	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1510
1511	r10_bio->master_bio = bio;
1512	r10_bio->sectors = sectors;
1513
1514	r10_bio->mddev = mddev;
1515	r10_bio->sector = bio->bi_iter.bi_sector;
1516	r10_bio->state = 0;
1517	r10_bio->read_slot = -1;
1518	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1519			conf->geo.raid_disks);
1520
1521	if (bio_data_dir(bio) == READ)
1522		raid10_read_request(mddev, bio, r10_bio);
1523	else
1524		raid10_write_request(mddev, bio, r10_bio);
1525}
1526
1527static void raid_end_discard_bio(struct r10bio *r10bio)
1528{
1529	struct r10conf *conf = r10bio->mddev->private;
1530	struct r10bio *first_r10bio;
1531
1532	while (atomic_dec_and_test(&r10bio->remaining)) {
1533
1534		allow_barrier(conf);
1535
1536		if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1537			first_r10bio = (struct r10bio *)r10bio->master_bio;
1538			free_r10bio(r10bio);
1539			r10bio = first_r10bio;
1540		} else {
1541			md_write_end(r10bio->mddev);
1542			bio_endio(r10bio->master_bio);
1543			free_r10bio(r10bio);
1544			break;
1545		}
1546	}
1547}
1548
1549static void raid10_end_discard_request(struct bio *bio)
1550{
1551	struct r10bio *r10_bio = bio->bi_private;
1552	struct r10conf *conf = r10_bio->mddev->private;
1553	struct md_rdev *rdev = NULL;
1554	int dev;
1555	int slot, repl;
1556
1557	/*
1558	 * We don't care the return value of discard bio
1559	 */
1560	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1561		set_bit(R10BIO_Uptodate, &r10_bio->state);
1562
1563	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1564	if (repl)
1565		rdev = conf->mirrors[dev].replacement;
1566	if (!rdev) {
1567		/*
1568		 * raid10_remove_disk uses smp_mb to make sure rdev is set to
1569		 * replacement before setting replacement to NULL. It can read
1570		 * rdev first without barrier protect even replacment is NULL
1571		 */
1572		smp_rmb();
1573		rdev = conf->mirrors[dev].rdev;
1574	}
1575
1576	raid_end_discard_bio(r10_bio);
1577	rdev_dec_pending(rdev, conf->mddev);
1578}
1579
1580/*
1581 * There are some limitations to handle discard bio
1582 * 1st, the discard size is bigger than stripe_size*2.
1583 * 2st, if the discard bio spans reshape progress, we use the old way to
1584 * handle discard bio
1585 */
1586static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1587{
1588	struct r10conf *conf = mddev->private;
1589	struct geom *geo = &conf->geo;
1590	int far_copies = geo->far_copies;
1591	bool first_copy = true;
1592	struct r10bio *r10_bio, *first_r10bio;
1593	struct bio *split;
1594	int disk;
1595	sector_t chunk;
1596	unsigned int stripe_size;
1597	unsigned int stripe_data_disks;
1598	sector_t split_size;
1599	sector_t bio_start, bio_end;
1600	sector_t first_stripe_index, last_stripe_index;
1601	sector_t start_disk_offset;
1602	unsigned int start_disk_index;
1603	sector_t end_disk_offset;
1604	unsigned int end_disk_index;
1605	unsigned int remainder;
1606
1607	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1608		return -EAGAIN;
1609
1610	wait_barrier(conf);
 
 
 
 
1611
1612	/*
1613	 * Check reshape again to avoid reshape happens after checking
1614	 * MD_RECOVERY_RESHAPE and before wait_barrier
1615	 */
1616	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1617		goto out;
1618
1619	if (geo->near_copies)
1620		stripe_data_disks = geo->raid_disks / geo->near_copies +
1621					geo->raid_disks % geo->near_copies;
1622	else
1623		stripe_data_disks = geo->raid_disks;
1624
1625	stripe_size = stripe_data_disks << geo->chunk_shift;
1626
1627	bio_start = bio->bi_iter.bi_sector;
1628	bio_end = bio_end_sector(bio);
1629
1630	/*
1631	 * Maybe one discard bio is smaller than strip size or across one
1632	 * stripe and discard region is larger than one stripe size. For far
1633	 * offset layout, if the discard region is not aligned with stripe
1634	 * size, there is hole when we submit discard bio to member disk.
1635	 * For simplicity, we only handle discard bio which discard region
1636	 * is bigger than stripe_size * 2
1637	 */
1638	if (bio_sectors(bio) < stripe_size*2)
1639		goto out;
1640
1641	/*
1642	 * Keep bio aligned with strip size.
1643	 */
1644	div_u64_rem(bio_start, stripe_size, &remainder);
1645	if (remainder) {
1646		split_size = stripe_size - remainder;
1647		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1648		bio_chain(split, bio);
1649		allow_barrier(conf);
1650		/* Resend the fist split part */
1651		submit_bio_noacct(split);
1652		wait_barrier(conf);
1653	}
1654	div_u64_rem(bio_end, stripe_size, &remainder);
1655	if (remainder) {
1656		split_size = bio_sectors(bio) - remainder;
1657		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1658		bio_chain(split, bio);
1659		allow_barrier(conf);
1660		/* Resend the second split part */
1661		submit_bio_noacct(bio);
1662		bio = split;
1663		wait_barrier(conf);
1664	}
1665
1666	bio_start = bio->bi_iter.bi_sector;
1667	bio_end = bio_end_sector(bio);
1668
1669	/*
1670	 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1671	 * One stripe contains the chunks from all member disk (one chunk from
1672	 * one disk at the same HBA address). For layout detail, see 'man md 4'
1673	 */
1674	chunk = bio_start >> geo->chunk_shift;
1675	chunk *= geo->near_copies;
1676	first_stripe_index = chunk;
1677	start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1678	if (geo->far_offset)
1679		first_stripe_index *= geo->far_copies;
1680	start_disk_offset = (bio_start & geo->chunk_mask) +
1681				(first_stripe_index << geo->chunk_shift);
1682
1683	chunk = bio_end >> geo->chunk_shift;
1684	chunk *= geo->near_copies;
1685	last_stripe_index = chunk;
1686	end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1687	if (geo->far_offset)
1688		last_stripe_index *= geo->far_copies;
1689	end_disk_offset = (bio_end & geo->chunk_mask) +
1690				(last_stripe_index << geo->chunk_shift);
1691
1692retry_discard:
1693	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1694	r10_bio->mddev = mddev;
1695	r10_bio->state = 0;
1696	r10_bio->sectors = 0;
1697	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1698	wait_blocked_dev(mddev, r10_bio);
1699
1700	/*
1701	 * For far layout it needs more than one r10bio to cover all regions.
1702	 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1703	 * to record the discard bio. Other r10bio->master_bio record the first
1704	 * r10bio. The first r10bio only release after all other r10bios finish.
1705	 * The discard bio returns only first r10bio finishes
1706	 */
1707	if (first_copy) {
1708		r10_bio->master_bio = bio;
1709		set_bit(R10BIO_Discard, &r10_bio->state);
1710		first_copy = false;
1711		first_r10bio = r10_bio;
1712	} else
1713		r10_bio->master_bio = (struct bio *)first_r10bio;
1714
1715	/*
1716	 * first select target devices under rcu_lock and
1717	 * inc refcount on their rdev.  Record them by setting
1718	 * bios[x] to bio
1719	 */
1720	rcu_read_lock();
1721	for (disk = 0; disk < geo->raid_disks; disk++) {
1722		struct md_rdev *rdev = rcu_dereference(conf->mirrors[disk].rdev);
1723		struct md_rdev *rrdev = rcu_dereference(
1724			conf->mirrors[disk].replacement);
1725
1726		r10_bio->devs[disk].bio = NULL;
1727		r10_bio->devs[disk].repl_bio = NULL;
1728
1729		if (rdev && (test_bit(Faulty, &rdev->flags)))
1730			rdev = NULL;
1731		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1732			rrdev = NULL;
1733		if (!rdev && !rrdev)
1734			continue;
1735
1736		if (rdev) {
1737			r10_bio->devs[disk].bio = bio;
1738			atomic_inc(&rdev->nr_pending);
1739		}
1740		if (rrdev) {
1741			r10_bio->devs[disk].repl_bio = bio;
1742			atomic_inc(&rrdev->nr_pending);
1743		}
1744	}
1745	rcu_read_unlock();
1746
1747	atomic_set(&r10_bio->remaining, 1);
1748	for (disk = 0; disk < geo->raid_disks; disk++) {
1749		sector_t dev_start, dev_end;
1750		struct bio *mbio, *rbio = NULL;
1751
1752		/*
1753		 * Now start to calculate the start and end address for each disk.
1754		 * The space between dev_start and dev_end is the discard region.
1755		 *
1756		 * For dev_start, it needs to consider three conditions:
1757		 * 1st, the disk is before start_disk, you can imagine the disk in
1758		 * the next stripe. So the dev_start is the start address of next
1759		 * stripe.
1760		 * 2st, the disk is after start_disk, it means the disk is at the
1761		 * same stripe of first disk
1762		 * 3st, the first disk itself, we can use start_disk_offset directly
1763		 */
1764		if (disk < start_disk_index)
1765			dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1766		else if (disk > start_disk_index)
1767			dev_start = first_stripe_index * mddev->chunk_sectors;
1768		else
1769			dev_start = start_disk_offset;
1770
1771		if (disk < end_disk_index)
1772			dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1773		else if (disk > end_disk_index)
1774			dev_end = last_stripe_index * mddev->chunk_sectors;
1775		else
1776			dev_end = end_disk_offset;
1777
1778		/*
1779		 * It only handles discard bio which size is >= stripe size, so
1780		 * dev_end > dev_start all the time.
1781		 * It doesn't need to use rcu lock to get rdev here. We already
1782		 * add rdev->nr_pending in the first loop.
1783		 */
1784		if (r10_bio->devs[disk].bio) {
1785			struct md_rdev *rdev = conf->mirrors[disk].rdev;
1786			mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
 
1787			mbio->bi_end_io = raid10_end_discard_request;
1788			mbio->bi_private = r10_bio;
1789			r10_bio->devs[disk].bio = mbio;
1790			r10_bio->devs[disk].devnum = disk;
1791			atomic_inc(&r10_bio->remaining);
1792			md_submit_discard_bio(mddev, rdev, mbio,
1793					dev_start + choose_data_offset(r10_bio, rdev),
1794					dev_end - dev_start);
1795			bio_endio(mbio);
1796		}
1797		if (r10_bio->devs[disk].repl_bio) {
1798			struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1799			rbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
 
1800			rbio->bi_end_io = raid10_end_discard_request;
1801			rbio->bi_private = r10_bio;
1802			r10_bio->devs[disk].repl_bio = rbio;
1803			r10_bio->devs[disk].devnum = disk;
1804			atomic_inc(&r10_bio->remaining);
1805			md_submit_discard_bio(mddev, rrdev, rbio,
1806					dev_start + choose_data_offset(r10_bio, rrdev),
1807					dev_end - dev_start);
1808			bio_endio(rbio);
1809		}
1810	}
1811
1812	if (!geo->far_offset && --far_copies) {
1813		first_stripe_index += geo->stride >> geo->chunk_shift;
1814		start_disk_offset += geo->stride;
1815		last_stripe_index += geo->stride >> geo->chunk_shift;
1816		end_disk_offset += geo->stride;
1817		atomic_inc(&first_r10bio->remaining);
1818		raid_end_discard_bio(r10_bio);
1819		wait_barrier(conf);
1820		goto retry_discard;
1821	}
1822
1823	raid_end_discard_bio(r10_bio);
1824
1825	return 0;
1826out:
1827	allow_barrier(conf);
1828	return -EAGAIN;
1829}
1830
1831static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1832{
1833	struct r10conf *conf = mddev->private;
1834	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1835	int chunk_sects = chunk_mask + 1;
1836	int sectors = bio_sectors(bio);
1837
1838	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1839	    && md_flush_request(mddev, bio))
1840		return true;
1841
1842	if (!md_write_start(mddev, bio))
1843		return false;
1844
1845	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1846		if (!raid10_handle_discard(mddev, bio))
1847			return true;
1848
1849	/*
1850	 * If this request crosses a chunk boundary, we need to split
1851	 * it.
1852	 */
1853	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1854		     sectors > chunk_sects
1855		     && (conf->geo.near_copies < conf->geo.raid_disks
1856			 || conf->prev.near_copies <
1857			 conf->prev.raid_disks)))
1858		sectors = chunk_sects -
1859			(bio->bi_iter.bi_sector &
1860			 (chunk_sects - 1));
1861	__make_request(mddev, bio, sectors);
1862
1863	/* In case raid10d snuck in to freeze_array */
1864	wake_up(&conf->wait_barrier);
1865	return true;
1866}
1867
1868static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1869{
1870	struct r10conf *conf = mddev->private;
1871	int i;
1872
1873	if (conf->geo.near_copies < conf->geo.raid_disks)
1874		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1875	if (conf->geo.near_copies > 1)
1876		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1877	if (conf->geo.far_copies > 1) {
1878		if (conf->geo.far_offset)
1879			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1880		else
1881			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1882		if (conf->geo.far_set_size != conf->geo.raid_disks)
1883			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1884	}
1885	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1886					conf->geo.raid_disks - mddev->degraded);
1887	rcu_read_lock();
1888	for (i = 0; i < conf->geo.raid_disks; i++) {
1889		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1890		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1891	}
1892	rcu_read_unlock();
1893	seq_printf(seq, "]");
1894}
1895
1896/* check if there are enough drives for
1897 * every block to appear on atleast one.
1898 * Don't consider the device numbered 'ignore'
1899 * as we might be about to remove it.
1900 */
1901static int _enough(struct r10conf *conf, int previous, int ignore)
1902{
1903	int first = 0;
1904	int has_enough = 0;
1905	int disks, ncopies;
1906	if (previous) {
1907		disks = conf->prev.raid_disks;
1908		ncopies = conf->prev.near_copies;
1909	} else {
1910		disks = conf->geo.raid_disks;
1911		ncopies = conf->geo.near_copies;
1912	}
1913
1914	rcu_read_lock();
1915	do {
1916		int n = conf->copies;
1917		int cnt = 0;
1918		int this = first;
1919		while (n--) {
1920			struct md_rdev *rdev;
1921			if (this != ignore &&
1922			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1923			    test_bit(In_sync, &rdev->flags))
1924				cnt++;
1925			this = (this+1) % disks;
1926		}
1927		if (cnt == 0)
1928			goto out;
1929		first = (first + ncopies) % disks;
1930	} while (first != 0);
1931	has_enough = 1;
1932out:
1933	rcu_read_unlock();
1934	return has_enough;
1935}
1936
1937static int enough(struct r10conf *conf, int ignore)
1938{
1939	/* when calling 'enough', both 'prev' and 'geo' must
1940	 * be stable.
1941	 * This is ensured if ->reconfig_mutex or ->device_lock
1942	 * is held.
1943	 */
1944	return _enough(conf, 0, ignore) &&
1945		_enough(conf, 1, ignore);
1946}
1947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1948static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1949{
1950	char b[BDEVNAME_SIZE];
1951	struct r10conf *conf = mddev->private;
1952	unsigned long flags;
1953
1954	/*
1955	 * If it is not operational, then we have already marked it as dead
1956	 * else if it is the last working disks with "fail_last_dev == false",
1957	 * ignore the error, let the next level up know.
1958	 * else mark the drive as failed
1959	 */
1960	spin_lock_irqsave(&conf->device_lock, flags);
1961	if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1962	    && !enough(conf, rdev->raid_disk)) {
1963		/*
1964		 * Don't fail the drive, just return an IO error.
1965		 */
1966		spin_unlock_irqrestore(&conf->device_lock, flags);
1967		return;
 
1968	}
1969	if (test_and_clear_bit(In_sync, &rdev->flags))
1970		mddev->degraded++;
1971	/*
1972	 * If recovery is running, make sure it aborts.
1973	 */
1974	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1975	set_bit(Blocked, &rdev->flags);
1976	set_bit(Faulty, &rdev->flags);
1977	set_mask_bits(&mddev->sb_flags, 0,
1978		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1979	spin_unlock_irqrestore(&conf->device_lock, flags);
1980	pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1981		"md/raid10:%s: Operation continuing on %d devices.\n",
1982		mdname(mddev), bdevname(rdev->bdev, b),
1983		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1984}
1985
1986static void print_conf(struct r10conf *conf)
1987{
1988	int i;
1989	struct md_rdev *rdev;
1990
1991	pr_debug("RAID10 conf printout:\n");
1992	if (!conf) {
1993		pr_debug("(!conf)\n");
1994		return;
1995	}
1996	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1997		 conf->geo.raid_disks);
1998
1999	/* This is only called with ->reconfix_mutex held, so
2000	 * rcu protection of rdev is not needed */
2001	for (i = 0; i < conf->geo.raid_disks; i++) {
2002		char b[BDEVNAME_SIZE];
2003		rdev = conf->mirrors[i].rdev;
2004		if (rdev)
2005			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
2006				 i, !test_bit(In_sync, &rdev->flags),
2007				 !test_bit(Faulty, &rdev->flags),
2008				 bdevname(rdev->bdev,b));
2009	}
2010}
2011
2012static void close_sync(struct r10conf *conf)
2013{
2014	wait_barrier(conf);
2015	allow_barrier(conf);
2016
2017	mempool_exit(&conf->r10buf_pool);
2018}
2019
2020static int raid10_spare_active(struct mddev *mddev)
2021{
2022	int i;
2023	struct r10conf *conf = mddev->private;
2024	struct raid10_info *tmp;
2025	int count = 0;
2026	unsigned long flags;
2027
2028	/*
2029	 * Find all non-in_sync disks within the RAID10 configuration
2030	 * and mark them in_sync
2031	 */
2032	for (i = 0; i < conf->geo.raid_disks; i++) {
2033		tmp = conf->mirrors + i;
2034		if (tmp->replacement
2035		    && tmp->replacement->recovery_offset == MaxSector
2036		    && !test_bit(Faulty, &tmp->replacement->flags)
2037		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2038			/* Replacement has just become active */
2039			if (!tmp->rdev
2040			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2041				count++;
2042			if (tmp->rdev) {
2043				/* Replaced device not technically faulty,
2044				 * but we need to be sure it gets removed
2045				 * and never re-added.
2046				 */
2047				set_bit(Faulty, &tmp->rdev->flags);
2048				sysfs_notify_dirent_safe(
2049					tmp->rdev->sysfs_state);
2050			}
2051			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2052		} else if (tmp->rdev
2053			   && tmp->rdev->recovery_offset == MaxSector
2054			   && !test_bit(Faulty, &tmp->rdev->flags)
2055			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2056			count++;
2057			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2058		}
2059	}
2060	spin_lock_irqsave(&conf->device_lock, flags);
2061	mddev->degraded -= count;
2062	spin_unlock_irqrestore(&conf->device_lock, flags);
2063
2064	print_conf(conf);
2065	return count;
2066}
2067
2068static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2069{
2070	struct r10conf *conf = mddev->private;
2071	int err = -EEXIST;
2072	int mirror;
2073	int first = 0;
2074	int last = conf->geo.raid_disks - 1;
2075
2076	if (mddev->recovery_cp < MaxSector)
2077		/* only hot-add to in-sync arrays, as recovery is
2078		 * very different from resync
2079		 */
2080		return -EBUSY;
2081	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2082		return -EINVAL;
2083
2084	if (md_integrity_add_rdev(rdev, mddev))
2085		return -ENXIO;
2086
2087	if (rdev->raid_disk >= 0)
2088		first = last = rdev->raid_disk;
2089
2090	if (rdev->saved_raid_disk >= first &&
2091	    rdev->saved_raid_disk < conf->geo.raid_disks &&
2092	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2093		mirror = rdev->saved_raid_disk;
2094	else
2095		mirror = first;
2096	for ( ; mirror <= last ; mirror++) {
2097		struct raid10_info *p = &conf->mirrors[mirror];
2098		if (p->recovery_disabled == mddev->recovery_disabled)
2099			continue;
2100		if (p->rdev) {
2101			if (!test_bit(WantReplacement, &p->rdev->flags) ||
2102			    p->replacement != NULL)
2103				continue;
2104			clear_bit(In_sync, &rdev->flags);
2105			set_bit(Replacement, &rdev->flags);
2106			rdev->raid_disk = mirror;
2107			err = 0;
2108			if (mddev->gendisk)
2109				disk_stack_limits(mddev->gendisk, rdev->bdev,
2110						  rdev->data_offset << 9);
2111			conf->fullsync = 1;
2112			rcu_assign_pointer(p->replacement, rdev);
2113			break;
2114		}
2115
2116		if (mddev->gendisk)
2117			disk_stack_limits(mddev->gendisk, rdev->bdev,
2118					  rdev->data_offset << 9);
2119
2120		p->head_position = 0;
2121		p->recovery_disabled = mddev->recovery_disabled - 1;
2122		rdev->raid_disk = mirror;
2123		err = 0;
2124		if (rdev->saved_raid_disk != mirror)
2125			conf->fullsync = 1;
2126		rcu_assign_pointer(p->rdev, rdev);
2127		break;
2128	}
2129	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2130		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
2131
2132	print_conf(conf);
2133	return err;
2134}
2135
2136static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2137{
2138	struct r10conf *conf = mddev->private;
2139	int err = 0;
2140	int number = rdev->raid_disk;
2141	struct md_rdev **rdevp;
2142	struct raid10_info *p = conf->mirrors + number;
2143
2144	print_conf(conf);
 
 
 
2145	if (rdev == p->rdev)
2146		rdevp = &p->rdev;
2147	else if (rdev == p->replacement)
2148		rdevp = &p->replacement;
2149	else
2150		return 0;
2151
2152	if (test_bit(In_sync, &rdev->flags) ||
2153	    atomic_read(&rdev->nr_pending)) {
2154		err = -EBUSY;
2155		goto abort;
2156	}
2157	/* Only remove non-faulty devices if recovery
2158	 * is not possible.
2159	 */
2160	if (!test_bit(Faulty, &rdev->flags) &&
2161	    mddev->recovery_disabled != p->recovery_disabled &&
2162	    (!p->replacement || p->replacement == rdev) &&
2163	    number < conf->geo.raid_disks &&
2164	    enough(conf, -1)) {
2165		err = -EBUSY;
2166		goto abort;
2167	}
2168	*rdevp = NULL;
2169	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
2170		synchronize_rcu();
2171		if (atomic_read(&rdev->nr_pending)) {
2172			/* lost the race, try later */
2173			err = -EBUSY;
2174			*rdevp = rdev;
2175			goto abort;
2176		}
2177	}
2178	if (p->replacement) {
2179		/* We must have just cleared 'rdev' */
2180		p->rdev = p->replacement;
2181		clear_bit(Replacement, &p->replacement->flags);
2182		smp_mb(); /* Make sure other CPUs may see both as identical
2183			   * but will never see neither -- if they are careful.
2184			   */
2185		p->replacement = NULL;
2186	}
2187
2188	clear_bit(WantReplacement, &rdev->flags);
2189	err = md_integrity_register(mddev);
2190
2191abort:
2192
2193	print_conf(conf);
2194	return err;
2195}
2196
2197static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2198{
2199	struct r10conf *conf = r10_bio->mddev->private;
2200
2201	if (!bio->bi_status)
2202		set_bit(R10BIO_Uptodate, &r10_bio->state);
2203	else
2204		/* The write handler will notice the lack of
2205		 * R10BIO_Uptodate and record any errors etc
2206		 */
2207		atomic_add(r10_bio->sectors,
2208			   &conf->mirrors[d].rdev->corrected_errors);
2209
2210	/* for reconstruct, we always reschedule after a read.
2211	 * for resync, only after all reads
2212	 */
2213	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2214	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2215	    atomic_dec_and_test(&r10_bio->remaining)) {
2216		/* we have read all the blocks,
2217		 * do the comparison in process context in raid10d
2218		 */
2219		reschedule_retry(r10_bio);
2220	}
2221}
2222
2223static void end_sync_read(struct bio *bio)
2224{
2225	struct r10bio *r10_bio = get_resync_r10bio(bio);
2226	struct r10conf *conf = r10_bio->mddev->private;
2227	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2228
2229	__end_sync_read(r10_bio, bio, d);
2230}
2231
2232static void end_reshape_read(struct bio *bio)
2233{
2234	/* reshape read bio isn't allocated from r10buf_pool */
2235	struct r10bio *r10_bio = bio->bi_private;
2236
2237	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
2238}
2239
2240static void end_sync_request(struct r10bio *r10_bio)
2241{
2242	struct mddev *mddev = r10_bio->mddev;
2243
2244	while (atomic_dec_and_test(&r10_bio->remaining)) {
2245		if (r10_bio->master_bio == NULL) {
2246			/* the primary of several recovery bios */
2247			sector_t s = r10_bio->sectors;
2248			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2249			    test_bit(R10BIO_WriteError, &r10_bio->state))
2250				reschedule_retry(r10_bio);
2251			else
2252				put_buf(r10_bio);
2253			md_done_sync(mddev, s, 1);
2254			break;
2255		} else {
2256			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2257			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2258			    test_bit(R10BIO_WriteError, &r10_bio->state))
2259				reschedule_retry(r10_bio);
2260			else
2261				put_buf(r10_bio);
2262			r10_bio = r10_bio2;
2263		}
2264	}
2265}
2266
2267static void end_sync_write(struct bio *bio)
2268{
2269	struct r10bio *r10_bio = get_resync_r10bio(bio);
2270	struct mddev *mddev = r10_bio->mddev;
2271	struct r10conf *conf = mddev->private;
2272	int d;
2273	sector_t first_bad;
2274	int bad_sectors;
2275	int slot;
2276	int repl;
2277	struct md_rdev *rdev = NULL;
2278
2279	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2280	if (repl)
2281		rdev = conf->mirrors[d].replacement;
2282	else
2283		rdev = conf->mirrors[d].rdev;
2284
2285	if (bio->bi_status) {
2286		if (repl)
2287			md_error(mddev, rdev);
2288		else {
2289			set_bit(WriteErrorSeen, &rdev->flags);
2290			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2291				set_bit(MD_RECOVERY_NEEDED,
2292					&rdev->mddev->recovery);
2293			set_bit(R10BIO_WriteError, &r10_bio->state);
2294		}
2295	} else if (is_badblock(rdev,
2296			     r10_bio->devs[slot].addr,
2297			     r10_bio->sectors,
2298			     &first_bad, &bad_sectors))
2299		set_bit(R10BIO_MadeGood, &r10_bio->state);
2300
2301	rdev_dec_pending(rdev, mddev);
2302
2303	end_sync_request(r10_bio);
2304}
2305
2306/*
2307 * Note: sync and recover and handled very differently for raid10
2308 * This code is for resync.
2309 * For resync, we read through virtual addresses and read all blocks.
2310 * If there is any error, we schedule a write.  The lowest numbered
2311 * drive is authoritative.
2312 * However requests come for physical address, so we need to map.
2313 * For every physical address there are raid_disks/copies virtual addresses,
2314 * which is always are least one, but is not necessarly an integer.
2315 * This means that a physical address can span multiple chunks, so we may
2316 * have to submit multiple io requests for a single sync request.
2317 */
2318/*
2319 * We check if all blocks are in-sync and only write to blocks that
2320 * aren't in sync
2321 */
2322static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2323{
2324	struct r10conf *conf = mddev->private;
2325	int i, first;
2326	struct bio *tbio, *fbio;
2327	int vcnt;
2328	struct page **tpages, **fpages;
2329
2330	atomic_set(&r10_bio->remaining, 1);
2331
2332	/* find the first device with a block */
2333	for (i=0; i<conf->copies; i++)
2334		if (!r10_bio->devs[i].bio->bi_status)
2335			break;
2336
2337	if (i == conf->copies)
2338		goto done;
2339
2340	first = i;
2341	fbio = r10_bio->devs[i].bio;
2342	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2343	fbio->bi_iter.bi_idx = 0;
2344	fpages = get_resync_pages(fbio)->pages;
2345
2346	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2347	/* now find blocks with errors */
2348	for (i=0 ; i < conf->copies ; i++) {
2349		int  j, d;
2350		struct md_rdev *rdev;
2351		struct resync_pages *rp;
2352
2353		tbio = r10_bio->devs[i].bio;
2354
2355		if (tbio->bi_end_io != end_sync_read)
2356			continue;
2357		if (i == first)
2358			continue;
2359
2360		tpages = get_resync_pages(tbio)->pages;
2361		d = r10_bio->devs[i].devnum;
2362		rdev = conf->mirrors[d].rdev;
2363		if (!r10_bio->devs[i].bio->bi_status) {
2364			/* We know that the bi_io_vec layout is the same for
2365			 * both 'first' and 'i', so we just compare them.
2366			 * All vec entries are PAGE_SIZE;
2367			 */
2368			int sectors = r10_bio->sectors;
2369			for (j = 0; j < vcnt; j++) {
2370				int len = PAGE_SIZE;
2371				if (sectors < (len / 512))
2372					len = sectors * 512;
2373				if (memcmp(page_address(fpages[j]),
2374					   page_address(tpages[j]),
2375					   len))
2376					break;
2377				sectors -= len/512;
2378			}
2379			if (j == vcnt)
2380				continue;
2381			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2382			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2383				/* Don't fix anything. */
2384				continue;
2385		} else if (test_bit(FailFast, &rdev->flags)) {
2386			/* Just give up on this device */
2387			md_error(rdev->mddev, rdev);
2388			continue;
2389		}
2390		/* Ok, we need to write this bio, either to correct an
2391		 * inconsistency or to correct an unreadable block.
2392		 * First we need to fixup bv_offset, bv_len and
2393		 * bi_vecs, as the read request might have corrupted these
2394		 */
2395		rp = get_resync_pages(tbio);
2396		bio_reset(tbio);
2397
2398		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2399
2400		rp->raid_bio = r10_bio;
2401		tbio->bi_private = rp;
2402		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2403		tbio->bi_end_io = end_sync_write;
2404		bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2405
2406		bio_copy_data(tbio, fbio);
2407
2408		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2409		atomic_inc(&r10_bio->remaining);
2410		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2411
2412		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2413			tbio->bi_opf |= MD_FAILFAST;
2414		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2415		bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2416		submit_bio_noacct(tbio);
2417	}
2418
2419	/* Now write out to any replacement devices
2420	 * that are active
2421	 */
2422	for (i = 0; i < conf->copies; i++) {
2423		int d;
2424
2425		tbio = r10_bio->devs[i].repl_bio;
2426		if (!tbio || !tbio->bi_end_io)
2427			continue;
2428		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2429		    && r10_bio->devs[i].bio != fbio)
2430			bio_copy_data(tbio, fbio);
2431		d = r10_bio->devs[i].devnum;
2432		atomic_inc(&r10_bio->remaining);
2433		md_sync_acct(conf->mirrors[d].replacement->bdev,
2434			     bio_sectors(tbio));
2435		submit_bio_noacct(tbio);
2436	}
2437
2438done:
2439	if (atomic_dec_and_test(&r10_bio->remaining)) {
2440		md_done_sync(mddev, r10_bio->sectors, 1);
2441		put_buf(r10_bio);
2442	}
2443}
2444
2445/*
2446 * Now for the recovery code.
2447 * Recovery happens across physical sectors.
2448 * We recover all non-is_sync drives by finding the virtual address of
2449 * each, and then choose a working drive that also has that virt address.
2450 * There is a separate r10_bio for each non-in_sync drive.
2451 * Only the first two slots are in use. The first for reading,
2452 * The second for writing.
2453 *
2454 */
2455static void fix_recovery_read_error(struct r10bio *r10_bio)
2456{
2457	/* We got a read error during recovery.
2458	 * We repeat the read in smaller page-sized sections.
2459	 * If a read succeeds, write it to the new device or record
2460	 * a bad block if we cannot.
2461	 * If a read fails, record a bad block on both old and
2462	 * new devices.
2463	 */
2464	struct mddev *mddev = r10_bio->mddev;
2465	struct r10conf *conf = mddev->private;
2466	struct bio *bio = r10_bio->devs[0].bio;
2467	sector_t sect = 0;
2468	int sectors = r10_bio->sectors;
2469	int idx = 0;
2470	int dr = r10_bio->devs[0].devnum;
2471	int dw = r10_bio->devs[1].devnum;
2472	struct page **pages = get_resync_pages(bio)->pages;
2473
2474	while (sectors) {
2475		int s = sectors;
2476		struct md_rdev *rdev;
2477		sector_t addr;
2478		int ok;
2479
2480		if (s > (PAGE_SIZE>>9))
2481			s = PAGE_SIZE >> 9;
2482
2483		rdev = conf->mirrors[dr].rdev;
2484		addr = r10_bio->devs[0].addr + sect,
2485		ok = sync_page_io(rdev,
2486				  addr,
2487				  s << 9,
2488				  pages[idx],
2489				  REQ_OP_READ, 0, false);
2490		if (ok) {
2491			rdev = conf->mirrors[dw].rdev;
2492			addr = r10_bio->devs[1].addr + sect;
2493			ok = sync_page_io(rdev,
2494					  addr,
2495					  s << 9,
2496					  pages[idx],
2497					  REQ_OP_WRITE, 0, false);
2498			if (!ok) {
2499				set_bit(WriteErrorSeen, &rdev->flags);
2500				if (!test_and_set_bit(WantReplacement,
2501						      &rdev->flags))
2502					set_bit(MD_RECOVERY_NEEDED,
2503						&rdev->mddev->recovery);
2504			}
2505		}
2506		if (!ok) {
2507			/* We don't worry if we cannot set a bad block -
2508			 * it really is bad so there is no loss in not
2509			 * recording it yet
2510			 */
2511			rdev_set_badblocks(rdev, addr, s, 0);
2512
2513			if (rdev != conf->mirrors[dw].rdev) {
2514				/* need bad block on destination too */
2515				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2516				addr = r10_bio->devs[1].addr + sect;
2517				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2518				if (!ok) {
2519					/* just abort the recovery */
2520					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2521						  mdname(mddev));
2522
2523					conf->mirrors[dw].recovery_disabled
2524						= mddev->recovery_disabled;
2525					set_bit(MD_RECOVERY_INTR,
2526						&mddev->recovery);
2527					break;
2528				}
2529			}
2530		}
2531
2532		sectors -= s;
2533		sect += s;
2534		idx++;
2535	}
2536}
2537
2538static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2539{
2540	struct r10conf *conf = mddev->private;
2541	int d;
2542	struct bio *wbio, *wbio2;
2543
2544	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2545		fix_recovery_read_error(r10_bio);
2546		end_sync_request(r10_bio);
2547		return;
2548	}
2549
2550	/*
2551	 * share the pages with the first bio
2552	 * and submit the write request
2553	 */
2554	d = r10_bio->devs[1].devnum;
2555	wbio = r10_bio->devs[1].bio;
2556	wbio2 = r10_bio->devs[1].repl_bio;
2557	/* Need to test wbio2->bi_end_io before we call
2558	 * submit_bio_noacct as if the former is NULL,
2559	 * the latter is free to free wbio2.
2560	 */
2561	if (wbio2 && !wbio2->bi_end_io)
2562		wbio2 = NULL;
2563	if (wbio->bi_end_io) {
2564		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2565		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2566		submit_bio_noacct(wbio);
2567	}
2568	if (wbio2) {
2569		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2570		md_sync_acct(conf->mirrors[d].replacement->bdev,
2571			     bio_sectors(wbio2));
2572		submit_bio_noacct(wbio2);
2573	}
2574}
2575
2576/*
2577 * Used by fix_read_error() to decay the per rdev read_errors.
2578 * We halve the read error count for every hour that has elapsed
2579 * since the last recorded read error.
2580 *
2581 */
2582static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2583{
2584	long cur_time_mon;
2585	unsigned long hours_since_last;
2586	unsigned int read_errors = atomic_read(&rdev->read_errors);
2587
2588	cur_time_mon = ktime_get_seconds();
2589
2590	if (rdev->last_read_error == 0) {
2591		/* first time we've seen a read error */
2592		rdev->last_read_error = cur_time_mon;
2593		return;
2594	}
2595
2596	hours_since_last = (long)(cur_time_mon -
2597			    rdev->last_read_error) / 3600;
2598
2599	rdev->last_read_error = cur_time_mon;
2600
2601	/*
2602	 * if hours_since_last is > the number of bits in read_errors
2603	 * just set read errors to 0. We do this to avoid
2604	 * overflowing the shift of read_errors by hours_since_last.
2605	 */
2606	if (hours_since_last >= 8 * sizeof(read_errors))
2607		atomic_set(&rdev->read_errors, 0);
2608	else
2609		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2610}
2611
2612static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2613			    int sectors, struct page *page, int rw)
2614{
2615	sector_t first_bad;
2616	int bad_sectors;
2617
2618	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2619	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2620		return -1;
2621	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2622		/* success */
2623		return 1;
2624	if (rw == WRITE) {
2625		set_bit(WriteErrorSeen, &rdev->flags);
2626		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2627			set_bit(MD_RECOVERY_NEEDED,
2628				&rdev->mddev->recovery);
2629	}
2630	/* need to record an error - either for the block or the device */
2631	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2632		md_error(rdev->mddev, rdev);
2633	return 0;
2634}
2635
2636/*
2637 * This is a kernel thread which:
2638 *
2639 *	1.	Retries failed read operations on working mirrors.
2640 *	2.	Updates the raid superblock when problems encounter.
2641 *	3.	Performs writes following reads for array synchronising.
2642 */
2643
2644static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2645{
2646	int sect = 0; /* Offset from r10_bio->sector */
2647	int sectors = r10_bio->sectors;
2648	struct md_rdev *rdev;
2649	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2650	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2651
2652	/* still own a reference to this rdev, so it cannot
2653	 * have been cleared recently.
2654	 */
2655	rdev = conf->mirrors[d].rdev;
2656
2657	if (test_bit(Faulty, &rdev->flags))
2658		/* drive has already been failed, just ignore any
2659		   more fix_read_error() attempts */
2660		return;
2661
2662	check_decay_read_errors(mddev, rdev);
2663	atomic_inc(&rdev->read_errors);
2664	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2665		char b[BDEVNAME_SIZE];
2666		bdevname(rdev->bdev, b);
2667
2668		pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2669			  mdname(mddev), b,
2670			  atomic_read(&rdev->read_errors), max_read_errors);
2671		pr_notice("md/raid10:%s: %s: Failing raid device\n",
2672			  mdname(mddev), b);
2673		md_error(mddev, rdev);
2674		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2675		return;
2676	}
2677
2678	while(sectors) {
2679		int s = sectors;
2680		int sl = r10_bio->read_slot;
2681		int success = 0;
2682		int start;
2683
2684		if (s > (PAGE_SIZE>>9))
2685			s = PAGE_SIZE >> 9;
2686
2687		rcu_read_lock();
2688		do {
2689			sector_t first_bad;
2690			int bad_sectors;
2691
2692			d = r10_bio->devs[sl].devnum;
2693			rdev = rcu_dereference(conf->mirrors[d].rdev);
2694			if (rdev &&
2695			    test_bit(In_sync, &rdev->flags) &&
2696			    !test_bit(Faulty, &rdev->flags) &&
2697			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2698					&first_bad, &bad_sectors) == 0) {
2699				atomic_inc(&rdev->nr_pending);
2700				rcu_read_unlock();
2701				success = sync_page_io(rdev,
2702						       r10_bio->devs[sl].addr +
2703						       sect,
2704						       s<<9,
2705						       conf->tmppage,
2706						       REQ_OP_READ, 0, false);
2707				rdev_dec_pending(rdev, mddev);
2708				rcu_read_lock();
2709				if (success)
2710					break;
2711			}
2712			sl++;
2713			if (sl == conf->copies)
2714				sl = 0;
2715		} while (!success && sl != r10_bio->read_slot);
2716		rcu_read_unlock();
2717
2718		if (!success) {
2719			/* Cannot read from anywhere, just mark the block
2720			 * as bad on the first device to discourage future
2721			 * reads.
2722			 */
2723			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2724			rdev = conf->mirrors[dn].rdev;
2725
2726			if (!rdev_set_badblocks(
2727				    rdev,
2728				    r10_bio->devs[r10_bio->read_slot].addr
2729				    + sect,
2730				    s, 0)) {
2731				md_error(mddev, rdev);
2732				r10_bio->devs[r10_bio->read_slot].bio
2733					= IO_BLOCKED;
2734			}
2735			break;
2736		}
2737
2738		start = sl;
2739		/* write it back and re-read */
2740		rcu_read_lock();
2741		while (sl != r10_bio->read_slot) {
2742			char b[BDEVNAME_SIZE];
2743
2744			if (sl==0)
2745				sl = conf->copies;
2746			sl--;
2747			d = r10_bio->devs[sl].devnum;
2748			rdev = rcu_dereference(conf->mirrors[d].rdev);
2749			if (!rdev ||
2750			    test_bit(Faulty, &rdev->flags) ||
2751			    !test_bit(In_sync, &rdev->flags))
2752				continue;
2753
2754			atomic_inc(&rdev->nr_pending);
2755			rcu_read_unlock();
2756			if (r10_sync_page_io(rdev,
2757					     r10_bio->devs[sl].addr +
2758					     sect,
2759					     s, conf->tmppage, WRITE)
2760			    == 0) {
2761				/* Well, this device is dead */
2762				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2763					  mdname(mddev), s,
2764					  (unsigned long long)(
2765						  sect +
2766						  choose_data_offset(r10_bio,
2767								     rdev)),
2768					  bdevname(rdev->bdev, b));
2769				pr_notice("md/raid10:%s: %s: failing drive\n",
2770					  mdname(mddev),
2771					  bdevname(rdev->bdev, b));
2772			}
2773			rdev_dec_pending(rdev, mddev);
2774			rcu_read_lock();
2775		}
2776		sl = start;
2777		while (sl != r10_bio->read_slot) {
2778			char b[BDEVNAME_SIZE];
2779
2780			if (sl==0)
2781				sl = conf->copies;
2782			sl--;
2783			d = r10_bio->devs[sl].devnum;
2784			rdev = rcu_dereference(conf->mirrors[d].rdev);
2785			if (!rdev ||
2786			    test_bit(Faulty, &rdev->flags) ||
2787			    !test_bit(In_sync, &rdev->flags))
2788				continue;
2789
2790			atomic_inc(&rdev->nr_pending);
2791			rcu_read_unlock();
2792			switch (r10_sync_page_io(rdev,
2793					     r10_bio->devs[sl].addr +
2794					     sect,
2795					     s, conf->tmppage,
2796						 READ)) {
2797			case 0:
2798				/* Well, this device is dead */
2799				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2800				       mdname(mddev), s,
2801				       (unsigned long long)(
2802					       sect +
2803					       choose_data_offset(r10_bio, rdev)),
2804				       bdevname(rdev->bdev, b));
2805				pr_notice("md/raid10:%s: %s: failing drive\n",
2806				       mdname(mddev),
2807				       bdevname(rdev->bdev, b));
2808				break;
2809			case 1:
2810				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2811				       mdname(mddev), s,
2812				       (unsigned long long)(
2813					       sect +
2814					       choose_data_offset(r10_bio, rdev)),
2815				       bdevname(rdev->bdev, b));
2816				atomic_add(s, &rdev->corrected_errors);
2817			}
2818
2819			rdev_dec_pending(rdev, mddev);
2820			rcu_read_lock();
2821		}
2822		rcu_read_unlock();
2823
2824		sectors -= s;
2825		sect += s;
2826	}
2827}
2828
2829static int narrow_write_error(struct r10bio *r10_bio, int i)
2830{
2831	struct bio *bio = r10_bio->master_bio;
2832	struct mddev *mddev = r10_bio->mddev;
2833	struct r10conf *conf = mddev->private;
2834	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2835	/* bio has the data to be written to slot 'i' where
2836	 * we just recently had a write error.
2837	 * We repeatedly clone the bio and trim down to one block,
2838	 * then try the write.  Where the write fails we record
2839	 * a bad block.
2840	 * It is conceivable that the bio doesn't exactly align with
2841	 * blocks.  We must handle this.
2842	 *
2843	 * We currently own a reference to the rdev.
2844	 */
2845
2846	int block_sectors;
2847	sector_t sector;
2848	int sectors;
2849	int sect_to_write = r10_bio->sectors;
2850	int ok = 1;
2851
2852	if (rdev->badblocks.shift < 0)
2853		return 0;
2854
2855	block_sectors = roundup(1 << rdev->badblocks.shift,
2856				bdev_logical_block_size(rdev->bdev) >> 9);
2857	sector = r10_bio->sector;
2858	sectors = ((r10_bio->sector + block_sectors)
2859		   & ~(sector_t)(block_sectors - 1))
2860		- sector;
2861
2862	while (sect_to_write) {
2863		struct bio *wbio;
2864		sector_t wsector;
2865		if (sectors > sect_to_write)
2866			sectors = sect_to_write;
2867		/* Write at 'sector' for 'sectors' */
2868		wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
 
2869		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2870		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2871		wbio->bi_iter.bi_sector = wsector +
2872				   choose_data_offset(r10_bio, rdev);
2873		bio_set_dev(wbio, rdev->bdev);
2874		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2875
2876		if (submit_bio_wait(wbio) < 0)
2877			/* Failure! */
2878			ok = rdev_set_badblocks(rdev, wsector,
2879						sectors, 0)
2880				&& ok;
2881
2882		bio_put(wbio);
2883		sect_to_write -= sectors;
2884		sector += sectors;
2885		sectors = block_sectors;
2886	}
2887	return ok;
2888}
2889
2890static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2891{
2892	int slot = r10_bio->read_slot;
2893	struct bio *bio;
2894	struct r10conf *conf = mddev->private;
2895	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2896
2897	/* we got a read error. Maybe the drive is bad.  Maybe just
2898	 * the block and we can fix it.
2899	 * We freeze all other IO, and try reading the block from
2900	 * other devices.  When we find one, we re-write
2901	 * and check it that fixes the read error.
2902	 * This is all done synchronously while the array is
2903	 * frozen.
2904	 */
2905	bio = r10_bio->devs[slot].bio;
2906	bio_put(bio);
2907	r10_bio->devs[slot].bio = NULL;
2908
2909	if (mddev->ro)
2910		r10_bio->devs[slot].bio = IO_BLOCKED;
2911	else if (!test_bit(FailFast, &rdev->flags)) {
2912		freeze_array(conf, 1);
2913		fix_read_error(conf, mddev, r10_bio);
2914		unfreeze_array(conf);
2915	} else
2916		md_error(mddev, rdev);
2917
2918	rdev_dec_pending(rdev, mddev);
2919	allow_barrier(conf);
2920	r10_bio->state = 0;
2921	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2922}
2923
2924static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2925{
2926	/* Some sort of write request has finished and it
2927	 * succeeded in writing where we thought there was a
2928	 * bad block.  So forget the bad block.
2929	 * Or possibly if failed and we need to record
2930	 * a bad block.
2931	 */
2932	int m;
2933	struct md_rdev *rdev;
2934
2935	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2936	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2937		for (m = 0; m < conf->copies; m++) {
2938			int dev = r10_bio->devs[m].devnum;
2939			rdev = conf->mirrors[dev].rdev;
2940			if (r10_bio->devs[m].bio == NULL ||
2941				r10_bio->devs[m].bio->bi_end_io == NULL)
2942				continue;
2943			if (!r10_bio->devs[m].bio->bi_status) {
2944				rdev_clear_badblocks(
2945					rdev,
2946					r10_bio->devs[m].addr,
2947					r10_bio->sectors, 0);
2948			} else {
2949				if (!rdev_set_badblocks(
2950					    rdev,
2951					    r10_bio->devs[m].addr,
2952					    r10_bio->sectors, 0))
2953					md_error(conf->mddev, rdev);
2954			}
2955			rdev = conf->mirrors[dev].replacement;
2956			if (r10_bio->devs[m].repl_bio == NULL ||
2957				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2958				continue;
2959
2960			if (!r10_bio->devs[m].repl_bio->bi_status) {
2961				rdev_clear_badblocks(
2962					rdev,
2963					r10_bio->devs[m].addr,
2964					r10_bio->sectors, 0);
2965			} else {
2966				if (!rdev_set_badblocks(
2967					    rdev,
2968					    r10_bio->devs[m].addr,
2969					    r10_bio->sectors, 0))
2970					md_error(conf->mddev, rdev);
2971			}
2972		}
2973		put_buf(r10_bio);
2974	} else {
2975		bool fail = false;
2976		for (m = 0; m < conf->copies; m++) {
2977			int dev = r10_bio->devs[m].devnum;
2978			struct bio *bio = r10_bio->devs[m].bio;
2979			rdev = conf->mirrors[dev].rdev;
2980			if (bio == IO_MADE_GOOD) {
2981				rdev_clear_badblocks(
2982					rdev,
2983					r10_bio->devs[m].addr,
2984					r10_bio->sectors, 0);
2985				rdev_dec_pending(rdev, conf->mddev);
2986			} else if (bio != NULL && bio->bi_status) {
2987				fail = true;
2988				if (!narrow_write_error(r10_bio, m)) {
2989					md_error(conf->mddev, rdev);
2990					set_bit(R10BIO_Degraded,
2991						&r10_bio->state);
2992				}
2993				rdev_dec_pending(rdev, conf->mddev);
2994			}
2995			bio = r10_bio->devs[m].repl_bio;
2996			rdev = conf->mirrors[dev].replacement;
2997			if (rdev && bio == IO_MADE_GOOD) {
2998				rdev_clear_badblocks(
2999					rdev,
3000					r10_bio->devs[m].addr,
3001					r10_bio->sectors, 0);
3002				rdev_dec_pending(rdev, conf->mddev);
3003			}
3004		}
3005		if (fail) {
3006			spin_lock_irq(&conf->device_lock);
3007			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
3008			conf->nr_queued++;
3009			spin_unlock_irq(&conf->device_lock);
3010			/*
3011			 * In case freeze_array() is waiting for condition
3012			 * nr_pending == nr_queued + extra to be true.
3013			 */
3014			wake_up(&conf->wait_barrier);
3015			md_wakeup_thread(conf->mddev->thread);
3016		} else {
3017			if (test_bit(R10BIO_WriteError,
3018				     &r10_bio->state))
3019				close_write(r10_bio);
3020			raid_end_bio_io(r10_bio);
3021		}
3022	}
3023}
3024
3025static void raid10d(struct md_thread *thread)
3026{
3027	struct mddev *mddev = thread->mddev;
3028	struct r10bio *r10_bio;
3029	unsigned long flags;
3030	struct r10conf *conf = mddev->private;
3031	struct list_head *head = &conf->retry_list;
3032	struct blk_plug plug;
3033
3034	md_check_recovery(mddev);
3035
3036	if (!list_empty_careful(&conf->bio_end_io_list) &&
3037	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3038		LIST_HEAD(tmp);
3039		spin_lock_irqsave(&conf->device_lock, flags);
3040		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3041			while (!list_empty(&conf->bio_end_io_list)) {
3042				list_move(conf->bio_end_io_list.prev, &tmp);
3043				conf->nr_queued--;
3044			}
3045		}
3046		spin_unlock_irqrestore(&conf->device_lock, flags);
3047		while (!list_empty(&tmp)) {
3048			r10_bio = list_first_entry(&tmp, struct r10bio,
3049						   retry_list);
3050			list_del(&r10_bio->retry_list);
3051			if (mddev->degraded)
3052				set_bit(R10BIO_Degraded, &r10_bio->state);
3053
3054			if (test_bit(R10BIO_WriteError,
3055				     &r10_bio->state))
3056				close_write(r10_bio);
3057			raid_end_bio_io(r10_bio);
3058		}
3059	}
3060
3061	blk_start_plug(&plug);
3062	for (;;) {
3063
3064		flush_pending_writes(conf);
3065
3066		spin_lock_irqsave(&conf->device_lock, flags);
3067		if (list_empty(head)) {
3068			spin_unlock_irqrestore(&conf->device_lock, flags);
3069			break;
3070		}
3071		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3072		list_del(head->prev);
3073		conf->nr_queued--;
3074		spin_unlock_irqrestore(&conf->device_lock, flags);
3075
3076		mddev = r10_bio->mddev;
3077		conf = mddev->private;
3078		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3079		    test_bit(R10BIO_WriteError, &r10_bio->state))
3080			handle_write_completed(conf, r10_bio);
3081		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3082			reshape_request_write(mddev, r10_bio);
3083		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3084			sync_request_write(mddev, r10_bio);
3085		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3086			recovery_request_write(mddev, r10_bio);
3087		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3088			handle_read_error(mddev, r10_bio);
3089		else
3090			WARN_ON_ONCE(1);
3091
3092		cond_resched();
3093		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3094			md_check_recovery(mddev);
3095	}
3096	blk_finish_plug(&plug);
3097}
3098
3099static int init_resync(struct r10conf *conf)
3100{
3101	int ret, buffs, i;
3102
3103	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3104	BUG_ON(mempool_initialized(&conf->r10buf_pool));
3105	conf->have_replacement = 0;
3106	for (i = 0; i < conf->geo.raid_disks; i++)
3107		if (conf->mirrors[i].replacement)
3108			conf->have_replacement = 1;
3109	ret = mempool_init(&conf->r10buf_pool, buffs,
3110			   r10buf_pool_alloc, r10buf_pool_free, conf);
3111	if (ret)
3112		return ret;
3113	conf->next_resync = 0;
3114	return 0;
3115}
3116
3117static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3118{
3119	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3120	struct rsync_pages *rp;
3121	struct bio *bio;
3122	int nalloc;
3123	int i;
3124
3125	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3126	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3127		nalloc = conf->copies; /* resync */
3128	else
3129		nalloc = 2; /* recovery */
3130
3131	for (i = 0; i < nalloc; i++) {
3132		bio = r10bio->devs[i].bio;
3133		rp = bio->bi_private;
3134		bio_reset(bio);
3135		bio->bi_private = rp;
3136		bio = r10bio->devs[i].repl_bio;
3137		if (bio) {
3138			rp = bio->bi_private;
3139			bio_reset(bio);
3140			bio->bi_private = rp;
3141		}
3142	}
3143	return r10bio;
3144}
3145
3146/*
3147 * Set cluster_sync_high since we need other nodes to add the
3148 * range [cluster_sync_low, cluster_sync_high] to suspend list.
3149 */
3150static void raid10_set_cluster_sync_high(struct r10conf *conf)
3151{
3152	sector_t window_size;
3153	int extra_chunk, chunks;
3154
3155	/*
3156	 * First, here we define "stripe" as a unit which across
3157	 * all member devices one time, so we get chunks by use
3158	 * raid_disks / near_copies. Otherwise, if near_copies is
3159	 * close to raid_disks, then resync window could increases
3160	 * linearly with the increase of raid_disks, which means
3161	 * we will suspend a really large IO window while it is not
3162	 * necessary. If raid_disks is not divisible by near_copies,
3163	 * an extra chunk is needed to ensure the whole "stripe" is
3164	 * covered.
3165	 */
3166
3167	chunks = conf->geo.raid_disks / conf->geo.near_copies;
3168	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3169		extra_chunk = 0;
3170	else
3171		extra_chunk = 1;
3172	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3173
3174	/*
3175	 * At least use a 32M window to align with raid1's resync window
3176	 */
3177	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3178			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3179
3180	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3181}
3182
3183/*
3184 * perform a "sync" on one "block"
3185 *
3186 * We need to make sure that no normal I/O request - particularly write
3187 * requests - conflict with active sync requests.
3188 *
3189 * This is achieved by tracking pending requests and a 'barrier' concept
3190 * that can be installed to exclude normal IO requests.
3191 *
3192 * Resync and recovery are handled very differently.
3193 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3194 *
3195 * For resync, we iterate over virtual addresses, read all copies,
3196 * and update if there are differences.  If only one copy is live,
3197 * skip it.
3198 * For recovery, we iterate over physical addresses, read a good
3199 * value for each non-in_sync drive, and over-write.
3200 *
3201 * So, for recovery we may have several outstanding complex requests for a
3202 * given address, one for each out-of-sync device.  We model this by allocating
3203 * a number of r10_bio structures, one for each out-of-sync device.
3204 * As we setup these structures, we collect all bio's together into a list
3205 * which we then process collectively to add pages, and then process again
3206 * to pass to submit_bio_noacct.
3207 *
3208 * The r10_bio structures are linked using a borrowed master_bio pointer.
3209 * This link is counted in ->remaining.  When the r10_bio that points to NULL
3210 * has its remaining count decremented to 0, the whole complex operation
3211 * is complete.
3212 *
3213 */
3214
3215static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3216			     int *skipped)
3217{
3218	struct r10conf *conf = mddev->private;
3219	struct r10bio *r10_bio;
3220	struct bio *biolist = NULL, *bio;
3221	sector_t max_sector, nr_sectors;
3222	int i;
3223	int max_sync;
3224	sector_t sync_blocks;
3225	sector_t sectors_skipped = 0;
3226	int chunks_skipped = 0;
3227	sector_t chunk_mask = conf->geo.chunk_mask;
3228	int page_idx = 0;
3229
3230	if (!mempool_initialized(&conf->r10buf_pool))
3231		if (init_resync(conf))
3232			return 0;
3233
3234	/*
3235	 * Allow skipping a full rebuild for incremental assembly
3236	 * of a clean array, like RAID1 does.
3237	 */
3238	if (mddev->bitmap == NULL &&
3239	    mddev->recovery_cp == MaxSector &&
3240	    mddev->reshape_position == MaxSector &&
3241	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3242	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3243	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3244	    conf->fullsync == 0) {
3245		*skipped = 1;
3246		return mddev->dev_sectors - sector_nr;
3247	}
3248
3249 skipped:
3250	max_sector = mddev->dev_sectors;
3251	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3252	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3253		max_sector = mddev->resync_max_sectors;
3254	if (sector_nr >= max_sector) {
3255		conf->cluster_sync_low = 0;
3256		conf->cluster_sync_high = 0;
3257
3258		/* If we aborted, we need to abort the
3259		 * sync on the 'current' bitmap chucks (there can
3260		 * be several when recovering multiple devices).
3261		 * as we may have started syncing it but not finished.
3262		 * We can find the current address in
3263		 * mddev->curr_resync, but for recovery,
3264		 * we need to convert that to several
3265		 * virtual addresses.
3266		 */
3267		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3268			end_reshape(conf);
3269			close_sync(conf);
3270			return 0;
3271		}
3272
3273		if (mddev->curr_resync < max_sector) { /* aborted */
3274			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3275				md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3276						   &sync_blocks, 1);
3277			else for (i = 0; i < conf->geo.raid_disks; i++) {
3278				sector_t sect =
3279					raid10_find_virt(conf, mddev->curr_resync, i);
3280				md_bitmap_end_sync(mddev->bitmap, sect,
3281						   &sync_blocks, 1);
3282			}
3283		} else {
3284			/* completed sync */
3285			if ((!mddev->bitmap || conf->fullsync)
3286			    && conf->have_replacement
3287			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3288				/* Completed a full sync so the replacements
3289				 * are now fully recovered.
3290				 */
3291				rcu_read_lock();
3292				for (i = 0; i < conf->geo.raid_disks; i++) {
3293					struct md_rdev *rdev =
3294						rcu_dereference(conf->mirrors[i].replacement);
3295					if (rdev)
3296						rdev->recovery_offset = MaxSector;
3297				}
3298				rcu_read_unlock();
3299			}
3300			conf->fullsync = 0;
3301		}
3302		md_bitmap_close_sync(mddev->bitmap);
3303		close_sync(conf);
3304		*skipped = 1;
3305		return sectors_skipped;
3306	}
3307
3308	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3309		return reshape_request(mddev, sector_nr, skipped);
3310
3311	if (chunks_skipped >= conf->geo.raid_disks) {
3312		/* if there has been nothing to do on any drive,
3313		 * then there is nothing to do at all..
3314		 */
3315		*skipped = 1;
3316		return (max_sector - sector_nr) + sectors_skipped;
3317	}
3318
3319	if (max_sector > mddev->resync_max)
3320		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3321
3322	/* make sure whole request will fit in a chunk - if chunks
3323	 * are meaningful
3324	 */
3325	if (conf->geo.near_copies < conf->geo.raid_disks &&
3326	    max_sector > (sector_nr | chunk_mask))
3327		max_sector = (sector_nr | chunk_mask) + 1;
3328
3329	/*
3330	 * If there is non-resync activity waiting for a turn, then let it
3331	 * though before starting on this new sync request.
3332	 */
3333	if (conf->nr_waiting)
3334		schedule_timeout_uninterruptible(1);
3335
3336	/* Again, very different code for resync and recovery.
3337	 * Both must result in an r10bio with a list of bios that
3338	 * have bi_end_io, bi_sector, bi_bdev set,
3339	 * and bi_private set to the r10bio.
3340	 * For recovery, we may actually create several r10bios
3341	 * with 2 bios in each, that correspond to the bios in the main one.
3342	 * In this case, the subordinate r10bios link back through a
3343	 * borrowed master_bio pointer, and the counter in the master
3344	 * includes a ref from each subordinate.
3345	 */
3346	/* First, we decide what to do and set ->bi_end_io
3347	 * To end_sync_read if we want to read, and
3348	 * end_sync_write if we will want to write.
3349	 */
3350
3351	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3352	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3353		/* recovery... the complicated one */
3354		int j;
3355		r10_bio = NULL;
3356
3357		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3358			int still_degraded;
3359			struct r10bio *rb2;
3360			sector_t sect;
3361			int must_sync;
3362			int any_working;
3363			int need_recover = 0;
3364			int need_replace = 0;
3365			struct raid10_info *mirror = &conf->mirrors[i];
3366			struct md_rdev *mrdev, *mreplace;
3367
3368			rcu_read_lock();
3369			mrdev = rcu_dereference(mirror->rdev);
3370			mreplace = rcu_dereference(mirror->replacement);
3371
3372			if (mrdev != NULL &&
3373			    !test_bit(Faulty, &mrdev->flags) &&
3374			    !test_bit(In_sync, &mrdev->flags))
3375				need_recover = 1;
3376			if (mreplace != NULL &&
3377			    !test_bit(Faulty, &mreplace->flags))
3378				need_replace = 1;
3379
3380			if (!need_recover && !need_replace) {
3381				rcu_read_unlock();
3382				continue;
3383			}
3384
3385			still_degraded = 0;
3386			/* want to reconstruct this device */
3387			rb2 = r10_bio;
3388			sect = raid10_find_virt(conf, sector_nr, i);
3389			if (sect >= mddev->resync_max_sectors) {
3390				/* last stripe is not complete - don't
3391				 * try to recover this sector.
3392				 */
3393				rcu_read_unlock();
3394				continue;
3395			}
3396			if (mreplace && test_bit(Faulty, &mreplace->flags))
3397				mreplace = NULL;
3398			/* Unless we are doing a full sync, or a replacement
3399			 * we only need to recover the block if it is set in
3400			 * the bitmap
3401			 */
3402			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3403							 &sync_blocks, 1);
3404			if (sync_blocks < max_sync)
3405				max_sync = sync_blocks;
3406			if (!must_sync &&
3407			    mreplace == NULL &&
3408			    !conf->fullsync) {
3409				/* yep, skip the sync_blocks here, but don't assume
3410				 * that there will never be anything to do here
3411				 */
3412				chunks_skipped = -1;
3413				rcu_read_unlock();
3414				continue;
3415			}
3416			atomic_inc(&mrdev->nr_pending);
3417			if (mreplace)
3418				atomic_inc(&mreplace->nr_pending);
3419			rcu_read_unlock();
3420
3421			r10_bio = raid10_alloc_init_r10buf(conf);
3422			r10_bio->state = 0;
3423			raise_barrier(conf, rb2 != NULL);
3424			atomic_set(&r10_bio->remaining, 0);
3425
3426			r10_bio->master_bio = (struct bio*)rb2;
3427			if (rb2)
3428				atomic_inc(&rb2->remaining);
3429			r10_bio->mddev = mddev;
3430			set_bit(R10BIO_IsRecover, &r10_bio->state);
3431			r10_bio->sector = sect;
3432
3433			raid10_find_phys(conf, r10_bio);
3434
3435			/* Need to check if the array will still be
3436			 * degraded
3437			 */
3438			rcu_read_lock();
3439			for (j = 0; j < conf->geo.raid_disks; j++) {
3440				struct md_rdev *rdev = rcu_dereference(
3441					conf->mirrors[j].rdev);
3442				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3443					still_degraded = 1;
3444					break;
3445				}
3446			}
3447
3448			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3449							 &sync_blocks, still_degraded);
3450
3451			any_working = 0;
3452			for (j=0; j<conf->copies;j++) {
3453				int k;
3454				int d = r10_bio->devs[j].devnum;
3455				sector_t from_addr, to_addr;
3456				struct md_rdev *rdev =
3457					rcu_dereference(conf->mirrors[d].rdev);
3458				sector_t sector, first_bad;
3459				int bad_sectors;
3460				if (!rdev ||
3461				    !test_bit(In_sync, &rdev->flags))
3462					continue;
3463				/* This is where we read from */
3464				any_working = 1;
3465				sector = r10_bio->devs[j].addr;
3466
3467				if (is_badblock(rdev, sector, max_sync,
3468						&first_bad, &bad_sectors)) {
3469					if (first_bad > sector)
3470						max_sync = first_bad - sector;
3471					else {
3472						bad_sectors -= (sector
3473								- first_bad);
3474						if (max_sync > bad_sectors)
3475							max_sync = bad_sectors;
3476						continue;
3477					}
3478				}
3479				bio = r10_bio->devs[0].bio;
3480				bio->bi_next = biolist;
3481				biolist = bio;
3482				bio->bi_end_io = end_sync_read;
3483				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3484				if (test_bit(FailFast, &rdev->flags))
3485					bio->bi_opf |= MD_FAILFAST;
3486				from_addr = r10_bio->devs[j].addr;
3487				bio->bi_iter.bi_sector = from_addr +
3488					rdev->data_offset;
3489				bio_set_dev(bio, rdev->bdev);
3490				atomic_inc(&rdev->nr_pending);
3491				/* and we write to 'i' (if not in_sync) */
3492
3493				for (k=0; k<conf->copies; k++)
3494					if (r10_bio->devs[k].devnum == i)
3495						break;
3496				BUG_ON(k == conf->copies);
3497				to_addr = r10_bio->devs[k].addr;
3498				r10_bio->devs[0].devnum = d;
3499				r10_bio->devs[0].addr = from_addr;
3500				r10_bio->devs[1].devnum = i;
3501				r10_bio->devs[1].addr = to_addr;
3502
3503				if (need_recover) {
3504					bio = r10_bio->devs[1].bio;
3505					bio->bi_next = biolist;
3506					biolist = bio;
3507					bio->bi_end_io = end_sync_write;
3508					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3509					bio->bi_iter.bi_sector = to_addr
3510						+ mrdev->data_offset;
3511					bio_set_dev(bio, mrdev->bdev);
3512					atomic_inc(&r10_bio->remaining);
3513				} else
3514					r10_bio->devs[1].bio->bi_end_io = NULL;
3515
3516				/* and maybe write to replacement */
3517				bio = r10_bio->devs[1].repl_bio;
3518				if (bio)
3519					bio->bi_end_io = NULL;
3520				/* Note: if need_replace, then bio
3521				 * cannot be NULL as r10buf_pool_alloc will
3522				 * have allocated it.
3523				 */
3524				if (!need_replace)
3525					break;
3526				bio->bi_next = biolist;
3527				biolist = bio;
3528				bio->bi_end_io = end_sync_write;
3529				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3530				bio->bi_iter.bi_sector = to_addr +
3531					mreplace->data_offset;
3532				bio_set_dev(bio, mreplace->bdev);
3533				atomic_inc(&r10_bio->remaining);
3534				break;
3535			}
3536			rcu_read_unlock();
3537			if (j == conf->copies) {
3538				/* Cannot recover, so abort the recovery or
3539				 * record a bad block */
3540				if (any_working) {
3541					/* problem is that there are bad blocks
3542					 * on other device(s)
3543					 */
3544					int k;
3545					for (k = 0; k < conf->copies; k++)
3546						if (r10_bio->devs[k].devnum == i)
3547							break;
3548					if (!test_bit(In_sync,
3549						      &mrdev->flags)
3550					    && !rdev_set_badblocks(
3551						    mrdev,
3552						    r10_bio->devs[k].addr,
3553						    max_sync, 0))
3554						any_working = 0;
3555					if (mreplace &&
3556					    !rdev_set_badblocks(
3557						    mreplace,
3558						    r10_bio->devs[k].addr,
3559						    max_sync, 0))
3560						any_working = 0;
3561				}
3562				if (!any_working)  {
3563					if (!test_and_set_bit(MD_RECOVERY_INTR,
3564							      &mddev->recovery))
3565						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3566						       mdname(mddev));
3567					mirror->recovery_disabled
3568						= mddev->recovery_disabled;
3569				}
3570				put_buf(r10_bio);
3571				if (rb2)
3572					atomic_dec(&rb2->remaining);
3573				r10_bio = rb2;
3574				rdev_dec_pending(mrdev, mddev);
3575				if (mreplace)
3576					rdev_dec_pending(mreplace, mddev);
3577				break;
3578			}
3579			rdev_dec_pending(mrdev, mddev);
3580			if (mreplace)
3581				rdev_dec_pending(mreplace, mddev);
3582			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3583				/* Only want this if there is elsewhere to
3584				 * read from. 'j' is currently the first
3585				 * readable copy.
3586				 */
3587				int targets = 1;
3588				for (; j < conf->copies; j++) {
3589					int d = r10_bio->devs[j].devnum;
3590					if (conf->mirrors[d].rdev &&
3591					    test_bit(In_sync,
3592						      &conf->mirrors[d].rdev->flags))
3593						targets++;
3594				}
3595				if (targets == 1)
3596					r10_bio->devs[0].bio->bi_opf
3597						&= ~MD_FAILFAST;
3598			}
3599		}
3600		if (biolist == NULL) {
3601			while (r10_bio) {
3602				struct r10bio *rb2 = r10_bio;
3603				r10_bio = (struct r10bio*) rb2->master_bio;
3604				rb2->master_bio = NULL;
3605				put_buf(rb2);
3606			}
3607			goto giveup;
3608		}
3609	} else {
3610		/* resync. Schedule a read for every block at this virt offset */
3611		int count = 0;
3612
3613		/*
3614		 * Since curr_resync_completed could probably not update in
3615		 * time, and we will set cluster_sync_low based on it.
3616		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3617		 * safety reason, which ensures curr_resync_completed is
3618		 * updated in bitmap_cond_end_sync.
3619		 */
3620		md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3621					mddev_is_clustered(mddev) &&
3622					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3623
3624		if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3625					  &sync_blocks, mddev->degraded) &&
3626		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3627						 &mddev->recovery)) {
3628			/* We can skip this block */
3629			*skipped = 1;
3630			return sync_blocks + sectors_skipped;
3631		}
3632		if (sync_blocks < max_sync)
3633			max_sync = sync_blocks;
3634		r10_bio = raid10_alloc_init_r10buf(conf);
3635		r10_bio->state = 0;
3636
3637		r10_bio->mddev = mddev;
3638		atomic_set(&r10_bio->remaining, 0);
3639		raise_barrier(conf, 0);
3640		conf->next_resync = sector_nr;
3641
3642		r10_bio->master_bio = NULL;
3643		r10_bio->sector = sector_nr;
3644		set_bit(R10BIO_IsSync, &r10_bio->state);
3645		raid10_find_phys(conf, r10_bio);
3646		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3647
3648		for (i = 0; i < conf->copies; i++) {
3649			int d = r10_bio->devs[i].devnum;
3650			sector_t first_bad, sector;
3651			int bad_sectors;
3652			struct md_rdev *rdev;
3653
3654			if (r10_bio->devs[i].repl_bio)
3655				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3656
3657			bio = r10_bio->devs[i].bio;
3658			bio->bi_status = BLK_STS_IOERR;
3659			rcu_read_lock();
3660			rdev = rcu_dereference(conf->mirrors[d].rdev);
3661			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3662				rcu_read_unlock();
3663				continue;
3664			}
3665			sector = r10_bio->devs[i].addr;
3666			if (is_badblock(rdev, sector, max_sync,
3667					&first_bad, &bad_sectors)) {
3668				if (first_bad > sector)
3669					max_sync = first_bad - sector;
3670				else {
3671					bad_sectors -= (sector - first_bad);
3672					if (max_sync > bad_sectors)
3673						max_sync = bad_sectors;
3674					rcu_read_unlock();
3675					continue;
3676				}
3677			}
3678			atomic_inc(&rdev->nr_pending);
3679			atomic_inc(&r10_bio->remaining);
3680			bio->bi_next = biolist;
3681			biolist = bio;
3682			bio->bi_end_io = end_sync_read;
3683			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3684			if (test_bit(FailFast, &rdev->flags))
3685				bio->bi_opf |= MD_FAILFAST;
3686			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3687			bio_set_dev(bio, rdev->bdev);
3688			count++;
3689
3690			rdev = rcu_dereference(conf->mirrors[d].replacement);
3691			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3692				rcu_read_unlock();
3693				continue;
3694			}
3695			atomic_inc(&rdev->nr_pending);
3696
3697			/* Need to set up for writing to the replacement */
3698			bio = r10_bio->devs[i].repl_bio;
3699			bio->bi_status = BLK_STS_IOERR;
3700
3701			sector = r10_bio->devs[i].addr;
3702			bio->bi_next = biolist;
3703			biolist = bio;
3704			bio->bi_end_io = end_sync_write;
3705			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3706			if (test_bit(FailFast, &rdev->flags))
3707				bio->bi_opf |= MD_FAILFAST;
3708			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3709			bio_set_dev(bio, rdev->bdev);
3710			count++;
3711			rcu_read_unlock();
3712		}
3713
3714		if (count < 2) {
3715			for (i=0; i<conf->copies; i++) {
3716				int d = r10_bio->devs[i].devnum;
3717				if (r10_bio->devs[i].bio->bi_end_io)
3718					rdev_dec_pending(conf->mirrors[d].rdev,
3719							 mddev);
3720				if (r10_bio->devs[i].repl_bio &&
3721				    r10_bio->devs[i].repl_bio->bi_end_io)
3722					rdev_dec_pending(
3723						conf->mirrors[d].replacement,
3724						mddev);
3725			}
3726			put_buf(r10_bio);
3727			biolist = NULL;
3728			goto giveup;
3729		}
3730	}
3731
3732	nr_sectors = 0;
3733	if (sector_nr + max_sync < max_sector)
3734		max_sector = sector_nr + max_sync;
3735	do {
3736		struct page *page;
3737		int len = PAGE_SIZE;
3738		if (sector_nr + (len>>9) > max_sector)
3739			len = (max_sector - sector_nr) << 9;
3740		if (len == 0)
3741			break;
3742		for (bio= biolist ; bio ; bio=bio->bi_next) {
3743			struct resync_pages *rp = get_resync_pages(bio);
3744			page = resync_fetch_page(rp, page_idx);
3745			/*
3746			 * won't fail because the vec table is big enough
3747			 * to hold all these pages
3748			 */
3749			bio_add_page(bio, page, len, 0);
3750		}
3751		nr_sectors += len>>9;
3752		sector_nr += len>>9;
3753	} while (++page_idx < RESYNC_PAGES);
3754	r10_bio->sectors = nr_sectors;
3755
3756	if (mddev_is_clustered(mddev) &&
3757	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3758		/* It is resync not recovery */
3759		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3760			conf->cluster_sync_low = mddev->curr_resync_completed;
3761			raid10_set_cluster_sync_high(conf);
3762			/* Send resync message */
3763			md_cluster_ops->resync_info_update(mddev,
3764						conf->cluster_sync_low,
3765						conf->cluster_sync_high);
3766		}
3767	} else if (mddev_is_clustered(mddev)) {
3768		/* This is recovery not resync */
3769		sector_t sect_va1, sect_va2;
3770		bool broadcast_msg = false;
3771
3772		for (i = 0; i < conf->geo.raid_disks; i++) {
3773			/*
3774			 * sector_nr is a device address for recovery, so we
3775			 * need translate it to array address before compare
3776			 * with cluster_sync_high.
3777			 */
3778			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3779
3780			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3781				broadcast_msg = true;
3782				/*
3783				 * curr_resync_completed is similar as
3784				 * sector_nr, so make the translation too.
3785				 */
3786				sect_va2 = raid10_find_virt(conf,
3787					mddev->curr_resync_completed, i);
3788
3789				if (conf->cluster_sync_low == 0 ||
3790				    conf->cluster_sync_low > sect_va2)
3791					conf->cluster_sync_low = sect_va2;
3792			}
3793		}
3794		if (broadcast_msg) {
3795			raid10_set_cluster_sync_high(conf);
3796			md_cluster_ops->resync_info_update(mddev,
3797						conf->cluster_sync_low,
3798						conf->cluster_sync_high);
3799		}
3800	}
3801
3802	while (biolist) {
3803		bio = biolist;
3804		biolist = biolist->bi_next;
3805
3806		bio->bi_next = NULL;
3807		r10_bio = get_resync_r10bio(bio);
3808		r10_bio->sectors = nr_sectors;
3809
3810		if (bio->bi_end_io == end_sync_read) {
3811			md_sync_acct_bio(bio, nr_sectors);
3812			bio->bi_status = 0;
3813			submit_bio_noacct(bio);
3814		}
3815	}
3816
3817	if (sectors_skipped)
3818		/* pretend they weren't skipped, it makes
3819		 * no important difference in this case
3820		 */
3821		md_done_sync(mddev, sectors_skipped, 1);
3822
3823	return sectors_skipped + nr_sectors;
3824 giveup:
3825	/* There is nowhere to write, so all non-sync
3826	 * drives must be failed or in resync, all drives
3827	 * have a bad block, so try the next chunk...
3828	 */
3829	if (sector_nr + max_sync < max_sector)
3830		max_sector = sector_nr + max_sync;
3831
3832	sectors_skipped += (max_sector - sector_nr);
3833	chunks_skipped ++;
3834	sector_nr = max_sector;
3835	goto skipped;
3836}
3837
3838static sector_t
3839raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3840{
3841	sector_t size;
3842	struct r10conf *conf = mddev->private;
3843
3844	if (!raid_disks)
3845		raid_disks = min(conf->geo.raid_disks,
3846				 conf->prev.raid_disks);
3847	if (!sectors)
3848		sectors = conf->dev_sectors;
3849
3850	size = sectors >> conf->geo.chunk_shift;
3851	sector_div(size, conf->geo.far_copies);
3852	size = size * raid_disks;
3853	sector_div(size, conf->geo.near_copies);
3854
3855	return size << conf->geo.chunk_shift;
3856}
3857
3858static void calc_sectors(struct r10conf *conf, sector_t size)
3859{
3860	/* Calculate the number of sectors-per-device that will
3861	 * actually be used, and set conf->dev_sectors and
3862	 * conf->stride
3863	 */
3864
3865	size = size >> conf->geo.chunk_shift;
3866	sector_div(size, conf->geo.far_copies);
3867	size = size * conf->geo.raid_disks;
3868	sector_div(size, conf->geo.near_copies);
3869	/* 'size' is now the number of chunks in the array */
3870	/* calculate "used chunks per device" */
3871	size = size * conf->copies;
3872
3873	/* We need to round up when dividing by raid_disks to
3874	 * get the stride size.
3875	 */
3876	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3877
3878	conf->dev_sectors = size << conf->geo.chunk_shift;
3879
3880	if (conf->geo.far_offset)
3881		conf->geo.stride = 1 << conf->geo.chunk_shift;
3882	else {
3883		sector_div(size, conf->geo.far_copies);
3884		conf->geo.stride = size << conf->geo.chunk_shift;
3885	}
3886}
3887
3888enum geo_type {geo_new, geo_old, geo_start};
3889static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3890{
3891	int nc, fc, fo;
3892	int layout, chunk, disks;
3893	switch (new) {
3894	case geo_old:
3895		layout = mddev->layout;
3896		chunk = mddev->chunk_sectors;
3897		disks = mddev->raid_disks - mddev->delta_disks;
3898		break;
3899	case geo_new:
3900		layout = mddev->new_layout;
3901		chunk = mddev->new_chunk_sectors;
3902		disks = mddev->raid_disks;
3903		break;
3904	default: /* avoid 'may be unused' warnings */
3905	case geo_start: /* new when starting reshape - raid_disks not
3906			 * updated yet. */
3907		layout = mddev->new_layout;
3908		chunk = mddev->new_chunk_sectors;
3909		disks = mddev->raid_disks + mddev->delta_disks;
3910		break;
3911	}
3912	if (layout >> 19)
3913		return -1;
3914	if (chunk < (PAGE_SIZE >> 9) ||
3915	    !is_power_of_2(chunk))
3916		return -2;
3917	nc = layout & 255;
3918	fc = (layout >> 8) & 255;
3919	fo = layout & (1<<16);
3920	geo->raid_disks = disks;
3921	geo->near_copies = nc;
3922	geo->far_copies = fc;
3923	geo->far_offset = fo;
3924	switch (layout >> 17) {
3925	case 0:	/* original layout.  simple but not always optimal */
3926		geo->far_set_size = disks;
3927		break;
3928	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3929		 * actually using this, but leave code here just in case.*/
3930		geo->far_set_size = disks/fc;
3931		WARN(geo->far_set_size < fc,
3932		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3933		break;
3934	case 2: /* "improved" layout fixed to match documentation */
3935		geo->far_set_size = fc * nc;
3936		break;
3937	default: /* Not a valid layout */
3938		return -1;
3939	}
3940	geo->chunk_mask = chunk - 1;
3941	geo->chunk_shift = ffz(~chunk);
3942	return nc*fc;
3943}
3944
3945static struct r10conf *setup_conf(struct mddev *mddev)
3946{
3947	struct r10conf *conf = NULL;
3948	int err = -EINVAL;
3949	struct geom geo;
3950	int copies;
3951
3952	copies = setup_geo(&geo, mddev, geo_new);
3953
3954	if (copies == -2) {
3955		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3956			mdname(mddev), PAGE_SIZE);
3957		goto out;
3958	}
3959
3960	if (copies < 2 || copies > mddev->raid_disks) {
3961		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3962			mdname(mddev), mddev->new_layout);
3963		goto out;
3964	}
3965
3966	err = -ENOMEM;
3967	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3968	if (!conf)
3969		goto out;
3970
3971	/* FIXME calc properly */
3972	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3973				sizeof(struct raid10_info),
3974				GFP_KERNEL);
3975	if (!conf->mirrors)
3976		goto out;
3977
3978	conf->tmppage = alloc_page(GFP_KERNEL);
3979	if (!conf->tmppage)
3980		goto out;
3981
3982	conf->geo = geo;
3983	conf->copies = copies;
3984	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3985			   rbio_pool_free, conf);
3986	if (err)
3987		goto out;
3988
3989	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3990	if (err)
3991		goto out;
3992
3993	calc_sectors(conf, mddev->dev_sectors);
3994	if (mddev->reshape_position == MaxSector) {
3995		conf->prev = conf->geo;
3996		conf->reshape_progress = MaxSector;
3997	} else {
3998		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3999			err = -EINVAL;
4000			goto out;
4001		}
4002		conf->reshape_progress = mddev->reshape_position;
4003		if (conf->prev.far_offset)
4004			conf->prev.stride = 1 << conf->prev.chunk_shift;
4005		else
4006			/* far_copies must be 1 */
4007			conf->prev.stride = conf->dev_sectors;
4008	}
4009	conf->reshape_safe = conf->reshape_progress;
4010	spin_lock_init(&conf->device_lock);
4011	INIT_LIST_HEAD(&conf->retry_list);
4012	INIT_LIST_HEAD(&conf->bio_end_io_list);
4013
4014	spin_lock_init(&conf->resync_lock);
4015	init_waitqueue_head(&conf->wait_barrier);
4016	atomic_set(&conf->nr_pending, 0);
4017
4018	err = -ENOMEM;
4019	conf->thread = md_register_thread(raid10d, mddev, "raid10");
4020	if (!conf->thread)
4021		goto out;
4022
4023	conf->mddev = mddev;
4024	return conf;
4025
4026 out:
4027	if (conf) {
4028		mempool_exit(&conf->r10bio_pool);
4029		kfree(conf->mirrors);
4030		safe_put_page(conf->tmppage);
4031		bioset_exit(&conf->bio_split);
4032		kfree(conf);
4033	}
4034	return ERR_PTR(err);
4035}
4036
4037static void raid10_set_io_opt(struct r10conf *conf)
4038{
4039	int raid_disks = conf->geo.raid_disks;
4040
4041	if (!(conf->geo.raid_disks % conf->geo.near_copies))
4042		raid_disks /= conf->geo.near_copies;
4043	blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
4044			 raid_disks);
4045}
4046
4047static int raid10_run(struct mddev *mddev)
4048{
4049	struct r10conf *conf;
4050	int i, disk_idx;
4051	struct raid10_info *disk;
4052	struct md_rdev *rdev;
4053	sector_t size;
4054	sector_t min_offset_diff = 0;
4055	int first = 1;
4056	bool discard_supported = false;
4057
4058	if (mddev_init_writes_pending(mddev) < 0)
4059		return -ENOMEM;
4060
4061	if (mddev->private == NULL) {
4062		conf = setup_conf(mddev);
4063		if (IS_ERR(conf))
4064			return PTR_ERR(conf);
4065		mddev->private = conf;
4066	}
4067	conf = mddev->private;
4068	if (!conf)
4069		goto out;
4070
4071	if (mddev_is_clustered(conf->mddev)) {
4072		int fc, fo;
4073
4074		fc = (mddev->layout >> 8) & 255;
4075		fo = mddev->layout & (1<<16);
4076		if (fc > 1 || fo > 0) {
4077			pr_err("only near layout is supported by clustered"
4078				" raid10\n");
4079			goto out_free_conf;
4080		}
4081	}
4082
4083	mddev->thread = conf->thread;
4084	conf->thread = NULL;
4085
4086	if (mddev->queue) {
4087		blk_queue_max_discard_sectors(mddev->queue,
4088					      UINT_MAX);
4089		blk_queue_max_write_same_sectors(mddev->queue, 0);
4090		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
4091		blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
4092		raid10_set_io_opt(conf);
4093	}
4094
4095	rdev_for_each(rdev, mddev) {
4096		long long diff;
4097
4098		disk_idx = rdev->raid_disk;
4099		if (disk_idx < 0)
4100			continue;
4101		if (disk_idx >= conf->geo.raid_disks &&
4102		    disk_idx >= conf->prev.raid_disks)
4103			continue;
4104		disk = conf->mirrors + disk_idx;
4105
4106		if (test_bit(Replacement, &rdev->flags)) {
4107			if (disk->replacement)
4108				goto out_free_conf;
4109			disk->replacement = rdev;
4110		} else {
4111			if (disk->rdev)
4112				goto out_free_conf;
4113			disk->rdev = rdev;
4114		}
4115		diff = (rdev->new_data_offset - rdev->data_offset);
4116		if (!mddev->reshape_backwards)
4117			diff = -diff;
4118		if (diff < 0)
4119			diff = 0;
4120		if (first || diff < min_offset_diff)
4121			min_offset_diff = diff;
4122
4123		if (mddev->gendisk)
4124			disk_stack_limits(mddev->gendisk, rdev->bdev,
4125					  rdev->data_offset << 9);
4126
4127		disk->head_position = 0;
4128
4129		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
4130			discard_supported = true;
4131		first = 0;
4132	}
4133
4134	if (mddev->queue) {
4135		if (discard_supported)
4136			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
4137						mddev->queue);
4138		else
4139			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
4140						  mddev->queue);
4141	}
4142	/* need to check that every block has at least one working mirror */
4143	if (!enough(conf, -1)) {
4144		pr_err("md/raid10:%s: not enough operational mirrors.\n",
4145		       mdname(mddev));
4146		goto out_free_conf;
4147	}
4148
4149	if (conf->reshape_progress != MaxSector) {
4150		/* must ensure that shape change is supported */
4151		if (conf->geo.far_copies != 1 &&
4152		    conf->geo.far_offset == 0)
4153			goto out_free_conf;
4154		if (conf->prev.far_copies != 1 &&
4155		    conf->prev.far_offset == 0)
4156			goto out_free_conf;
4157	}
4158
4159	mddev->degraded = 0;
4160	for (i = 0;
4161	     i < conf->geo.raid_disks
4162		     || i < conf->prev.raid_disks;
4163	     i++) {
4164
4165		disk = conf->mirrors + i;
4166
4167		if (!disk->rdev && disk->replacement) {
4168			/* The replacement is all we have - use it */
4169			disk->rdev = disk->replacement;
4170			disk->replacement = NULL;
4171			clear_bit(Replacement, &disk->rdev->flags);
4172		}
4173
4174		if (!disk->rdev ||
4175		    !test_bit(In_sync, &disk->rdev->flags)) {
4176			disk->head_position = 0;
4177			mddev->degraded++;
4178			if (disk->rdev &&
4179			    disk->rdev->saved_raid_disk < 0)
4180				conf->fullsync = 1;
4181		}
4182
4183		if (disk->replacement &&
4184		    !test_bit(In_sync, &disk->replacement->flags) &&
4185		    disk->replacement->saved_raid_disk < 0) {
4186			conf->fullsync = 1;
4187		}
4188
4189		disk->recovery_disabled = mddev->recovery_disabled - 1;
4190	}
4191
4192	if (mddev->recovery_cp != MaxSector)
4193		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4194			  mdname(mddev));
4195	pr_info("md/raid10:%s: active with %d out of %d devices\n",
4196		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4197		conf->geo.raid_disks);
4198	/*
4199	 * Ok, everything is just fine now
4200	 */
4201	mddev->dev_sectors = conf->dev_sectors;
4202	size = raid10_size(mddev, 0, 0);
4203	md_set_array_sectors(mddev, size);
4204	mddev->resync_max_sectors = size;
4205	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4206
4207	if (md_integrity_register(mddev))
4208		goto out_free_conf;
4209
4210	if (conf->reshape_progress != MaxSector) {
4211		unsigned long before_length, after_length;
4212
4213		before_length = ((1 << conf->prev.chunk_shift) *
4214				 conf->prev.far_copies);
4215		after_length = ((1 << conf->geo.chunk_shift) *
4216				conf->geo.far_copies);
4217
4218		if (max(before_length, after_length) > min_offset_diff) {
4219			/* This cannot work */
4220			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4221			goto out_free_conf;
4222		}
4223		conf->offset_diff = min_offset_diff;
4224
4225		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4226		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4227		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4228		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4229		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4230							"reshape");
4231		if (!mddev->sync_thread)
4232			goto out_free_conf;
4233	}
4234
4235	return 0;
4236
4237out_free_conf:
4238	md_unregister_thread(&mddev->thread);
4239	mempool_exit(&conf->r10bio_pool);
4240	safe_put_page(conf->tmppage);
4241	kfree(conf->mirrors);
4242	kfree(conf);
4243	mddev->private = NULL;
4244out:
4245	return -EIO;
4246}
4247
4248static void raid10_free(struct mddev *mddev, void *priv)
4249{
4250	struct r10conf *conf = priv;
4251
4252	mempool_exit(&conf->r10bio_pool);
4253	safe_put_page(conf->tmppage);
4254	kfree(conf->mirrors);
4255	kfree(conf->mirrors_old);
4256	kfree(conf->mirrors_new);
4257	bioset_exit(&conf->bio_split);
4258	kfree(conf);
4259}
4260
4261static void raid10_quiesce(struct mddev *mddev, int quiesce)
4262{
4263	struct r10conf *conf = mddev->private;
4264
4265	if (quiesce)
4266		raise_barrier(conf, 0);
4267	else
4268		lower_barrier(conf);
4269}
4270
4271static int raid10_resize(struct mddev *mddev, sector_t sectors)
4272{
4273	/* Resize of 'far' arrays is not supported.
4274	 * For 'near' and 'offset' arrays we can set the
4275	 * number of sectors used to be an appropriate multiple
4276	 * of the chunk size.
4277	 * For 'offset', this is far_copies*chunksize.
4278	 * For 'near' the multiplier is the LCM of
4279	 * near_copies and raid_disks.
4280	 * So if far_copies > 1 && !far_offset, fail.
4281	 * Else find LCM(raid_disks, near_copy)*far_copies and
4282	 * multiply by chunk_size.  Then round to this number.
4283	 * This is mostly done by raid10_size()
4284	 */
4285	struct r10conf *conf = mddev->private;
4286	sector_t oldsize, size;
4287
4288	if (mddev->reshape_position != MaxSector)
4289		return -EBUSY;
4290
4291	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4292		return -EINVAL;
4293
4294	oldsize = raid10_size(mddev, 0, 0);
4295	size = raid10_size(mddev, sectors, 0);
4296	if (mddev->external_size &&
4297	    mddev->array_sectors > size)
4298		return -EINVAL;
4299	if (mddev->bitmap) {
4300		int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4301		if (ret)
4302			return ret;
4303	}
4304	md_set_array_sectors(mddev, size);
4305	if (sectors > mddev->dev_sectors &&
4306	    mddev->recovery_cp > oldsize) {
4307		mddev->recovery_cp = oldsize;
4308		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4309	}
4310	calc_sectors(conf, sectors);
4311	mddev->dev_sectors = conf->dev_sectors;
4312	mddev->resync_max_sectors = size;
4313	return 0;
4314}
4315
4316static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4317{
4318	struct md_rdev *rdev;
4319	struct r10conf *conf;
4320
4321	if (mddev->degraded > 0) {
4322		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4323			mdname(mddev));
4324		return ERR_PTR(-EINVAL);
4325	}
4326	sector_div(size, devs);
4327
4328	/* Set new parameters */
4329	mddev->new_level = 10;
4330	/* new layout: far_copies = 1, near_copies = 2 */
4331	mddev->new_layout = (1<<8) + 2;
4332	mddev->new_chunk_sectors = mddev->chunk_sectors;
4333	mddev->delta_disks = mddev->raid_disks;
4334	mddev->raid_disks *= 2;
4335	/* make sure it will be not marked as dirty */
4336	mddev->recovery_cp = MaxSector;
4337	mddev->dev_sectors = size;
4338
4339	conf = setup_conf(mddev);
4340	if (!IS_ERR(conf)) {
4341		rdev_for_each(rdev, mddev)
4342			if (rdev->raid_disk >= 0) {
4343				rdev->new_raid_disk = rdev->raid_disk * 2;
4344				rdev->sectors = size;
4345			}
4346		conf->barrier = 1;
4347	}
4348
4349	return conf;
4350}
4351
4352static void *raid10_takeover(struct mddev *mddev)
4353{
4354	struct r0conf *raid0_conf;
4355
4356	/* raid10 can take over:
4357	 *  raid0 - providing it has only two drives
4358	 */
4359	if (mddev->level == 0) {
4360		/* for raid0 takeover only one zone is supported */
4361		raid0_conf = mddev->private;
4362		if (raid0_conf->nr_strip_zones > 1) {
4363			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4364				mdname(mddev));
4365			return ERR_PTR(-EINVAL);
4366		}
4367		return raid10_takeover_raid0(mddev,
4368			raid0_conf->strip_zone->zone_end,
4369			raid0_conf->strip_zone->nb_dev);
4370	}
4371	return ERR_PTR(-EINVAL);
4372}
4373
4374static int raid10_check_reshape(struct mddev *mddev)
4375{
4376	/* Called when there is a request to change
4377	 * - layout (to ->new_layout)
4378	 * - chunk size (to ->new_chunk_sectors)
4379	 * - raid_disks (by delta_disks)
4380	 * or when trying to restart a reshape that was ongoing.
4381	 *
4382	 * We need to validate the request and possibly allocate
4383	 * space if that might be an issue later.
4384	 *
4385	 * Currently we reject any reshape of a 'far' mode array,
4386	 * allow chunk size to change if new is generally acceptable,
4387	 * allow raid_disks to increase, and allow
4388	 * a switch between 'near' mode and 'offset' mode.
4389	 */
4390	struct r10conf *conf = mddev->private;
4391	struct geom geo;
4392
4393	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4394		return -EINVAL;
4395
4396	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4397		/* mustn't change number of copies */
4398		return -EINVAL;
4399	if (geo.far_copies > 1 && !geo.far_offset)
4400		/* Cannot switch to 'far' mode */
4401		return -EINVAL;
4402
4403	if (mddev->array_sectors & geo.chunk_mask)
4404			/* not factor of array size */
4405			return -EINVAL;
4406
4407	if (!enough(conf, -1))
4408		return -EINVAL;
4409
4410	kfree(conf->mirrors_new);
4411	conf->mirrors_new = NULL;
4412	if (mddev->delta_disks > 0) {
4413		/* allocate new 'mirrors' list */
4414		conf->mirrors_new =
4415			kcalloc(mddev->raid_disks + mddev->delta_disks,
4416				sizeof(struct raid10_info),
4417				GFP_KERNEL);
4418		if (!conf->mirrors_new)
4419			return -ENOMEM;
4420	}
4421	return 0;
4422}
4423
4424/*
4425 * Need to check if array has failed when deciding whether to:
4426 *  - start an array
4427 *  - remove non-faulty devices
4428 *  - add a spare
4429 *  - allow a reshape
4430 * This determination is simple when no reshape is happening.
4431 * However if there is a reshape, we need to carefully check
4432 * both the before and after sections.
4433 * This is because some failed devices may only affect one
4434 * of the two sections, and some non-in_sync devices may
4435 * be insync in the section most affected by failed devices.
4436 */
4437static int calc_degraded(struct r10conf *conf)
4438{
4439	int degraded, degraded2;
4440	int i;
4441
4442	rcu_read_lock();
4443	degraded = 0;
4444	/* 'prev' section first */
4445	for (i = 0; i < conf->prev.raid_disks; i++) {
4446		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4447		if (!rdev || test_bit(Faulty, &rdev->flags))
4448			degraded++;
4449		else if (!test_bit(In_sync, &rdev->flags))
4450			/* When we can reduce the number of devices in
4451			 * an array, this might not contribute to
4452			 * 'degraded'.  It does now.
4453			 */
4454			degraded++;
4455	}
4456	rcu_read_unlock();
4457	if (conf->geo.raid_disks == conf->prev.raid_disks)
4458		return degraded;
4459	rcu_read_lock();
4460	degraded2 = 0;
4461	for (i = 0; i < conf->geo.raid_disks; i++) {
4462		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4463		if (!rdev || test_bit(Faulty, &rdev->flags))
4464			degraded2++;
4465		else if (!test_bit(In_sync, &rdev->flags)) {
4466			/* If reshape is increasing the number of devices,
4467			 * this section has already been recovered, so
4468			 * it doesn't contribute to degraded.
4469			 * else it does.
4470			 */
4471			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4472				degraded2++;
4473		}
4474	}
4475	rcu_read_unlock();
4476	if (degraded2 > degraded)
4477		return degraded2;
4478	return degraded;
4479}
4480
4481static int raid10_start_reshape(struct mddev *mddev)
4482{
4483	/* A 'reshape' has been requested. This commits
4484	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4485	 * This also checks if there are enough spares and adds them
4486	 * to the array.
4487	 * We currently require enough spares to make the final
4488	 * array non-degraded.  We also require that the difference
4489	 * between old and new data_offset - on each device - is
4490	 * enough that we never risk over-writing.
4491	 */
4492
4493	unsigned long before_length, after_length;
4494	sector_t min_offset_diff = 0;
4495	int first = 1;
4496	struct geom new;
4497	struct r10conf *conf = mddev->private;
4498	struct md_rdev *rdev;
4499	int spares = 0;
4500	int ret;
4501
4502	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4503		return -EBUSY;
4504
4505	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4506		return -EINVAL;
4507
4508	before_length = ((1 << conf->prev.chunk_shift) *
4509			 conf->prev.far_copies);
4510	after_length = ((1 << conf->geo.chunk_shift) *
4511			conf->geo.far_copies);
4512
4513	rdev_for_each(rdev, mddev) {
4514		if (!test_bit(In_sync, &rdev->flags)
4515		    && !test_bit(Faulty, &rdev->flags))
4516			spares++;
4517		if (rdev->raid_disk >= 0) {
4518			long long diff = (rdev->new_data_offset
4519					  - rdev->data_offset);
4520			if (!mddev->reshape_backwards)
4521				diff = -diff;
4522			if (diff < 0)
4523				diff = 0;
4524			if (first || diff < min_offset_diff)
4525				min_offset_diff = diff;
4526			first = 0;
4527		}
4528	}
4529
4530	if (max(before_length, after_length) > min_offset_diff)
4531		return -EINVAL;
4532
4533	if (spares < mddev->delta_disks)
4534		return -EINVAL;
4535
4536	conf->offset_diff = min_offset_diff;
4537	spin_lock_irq(&conf->device_lock);
4538	if (conf->mirrors_new) {
4539		memcpy(conf->mirrors_new, conf->mirrors,
4540		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4541		smp_mb();
4542		kfree(conf->mirrors_old);
4543		conf->mirrors_old = conf->mirrors;
4544		conf->mirrors = conf->mirrors_new;
4545		conf->mirrors_new = NULL;
4546	}
4547	setup_geo(&conf->geo, mddev, geo_start);
4548	smp_mb();
4549	if (mddev->reshape_backwards) {
4550		sector_t size = raid10_size(mddev, 0, 0);
4551		if (size < mddev->array_sectors) {
4552			spin_unlock_irq(&conf->device_lock);
4553			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4554				mdname(mddev));
4555			return -EINVAL;
4556		}
4557		mddev->resync_max_sectors = size;
4558		conf->reshape_progress = size;
4559	} else
4560		conf->reshape_progress = 0;
4561	conf->reshape_safe = conf->reshape_progress;
4562	spin_unlock_irq(&conf->device_lock);
4563
4564	if (mddev->delta_disks && mddev->bitmap) {
4565		struct mdp_superblock_1 *sb = NULL;
4566		sector_t oldsize, newsize;
4567
4568		oldsize = raid10_size(mddev, 0, 0);
4569		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4570
4571		if (!mddev_is_clustered(mddev)) {
4572			ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4573			if (ret)
4574				goto abort;
4575			else
4576				goto out;
4577		}
4578
4579		rdev_for_each(rdev, mddev) {
4580			if (rdev->raid_disk > -1 &&
4581			    !test_bit(Faulty, &rdev->flags))
4582				sb = page_address(rdev->sb_page);
4583		}
4584
4585		/*
4586		 * some node is already performing reshape, and no need to
4587		 * call md_bitmap_resize again since it should be called when
4588		 * receiving BITMAP_RESIZE msg
4589		 */
4590		if ((sb && (le32_to_cpu(sb->feature_map) &
4591			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4592			goto out;
4593
4594		ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4595		if (ret)
4596			goto abort;
4597
4598		ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4599		if (ret) {
4600			md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4601			goto abort;
4602		}
4603	}
4604out:
4605	if (mddev->delta_disks > 0) {
4606		rdev_for_each(rdev, mddev)
4607			if (rdev->raid_disk < 0 &&
4608			    !test_bit(Faulty, &rdev->flags)) {
4609				if (raid10_add_disk(mddev, rdev) == 0) {
4610					if (rdev->raid_disk >=
4611					    conf->prev.raid_disks)
4612						set_bit(In_sync, &rdev->flags);
4613					else
4614						rdev->recovery_offset = 0;
4615
4616					/* Failure here is OK */
4617					sysfs_link_rdev(mddev, rdev);
4618				}
4619			} else if (rdev->raid_disk >= conf->prev.raid_disks
4620				   && !test_bit(Faulty, &rdev->flags)) {
4621				/* This is a spare that was manually added */
4622				set_bit(In_sync, &rdev->flags);
4623			}
4624	}
4625	/* When a reshape changes the number of devices,
4626	 * ->degraded is measured against the larger of the
4627	 * pre and  post numbers.
4628	 */
4629	spin_lock_irq(&conf->device_lock);
4630	mddev->degraded = calc_degraded(conf);
4631	spin_unlock_irq(&conf->device_lock);
4632	mddev->raid_disks = conf->geo.raid_disks;
4633	mddev->reshape_position = conf->reshape_progress;
4634	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4635
4636	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4637	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4638	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4639	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4640	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4641
4642	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4643						"reshape");
4644	if (!mddev->sync_thread) {
4645		ret = -EAGAIN;
4646		goto abort;
4647	}
4648	conf->reshape_checkpoint = jiffies;
4649	md_wakeup_thread(mddev->sync_thread);
4650	md_new_event(mddev);
4651	return 0;
4652
4653abort:
4654	mddev->recovery = 0;
4655	spin_lock_irq(&conf->device_lock);
4656	conf->geo = conf->prev;
4657	mddev->raid_disks = conf->geo.raid_disks;
4658	rdev_for_each(rdev, mddev)
4659		rdev->new_data_offset = rdev->data_offset;
4660	smp_wmb();
4661	conf->reshape_progress = MaxSector;
4662	conf->reshape_safe = MaxSector;
4663	mddev->reshape_position = MaxSector;
4664	spin_unlock_irq(&conf->device_lock);
4665	return ret;
4666}
4667
4668/* Calculate the last device-address that could contain
4669 * any block from the chunk that includes the array-address 's'
4670 * and report the next address.
4671 * i.e. the address returned will be chunk-aligned and after
4672 * any data that is in the chunk containing 's'.
4673 */
4674static sector_t last_dev_address(sector_t s, struct geom *geo)
4675{
4676	s = (s | geo->chunk_mask) + 1;
4677	s >>= geo->chunk_shift;
4678	s *= geo->near_copies;
4679	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4680	s *= geo->far_copies;
4681	s <<= geo->chunk_shift;
4682	return s;
4683}
4684
4685/* Calculate the first device-address that could contain
4686 * any block from the chunk that includes the array-address 's'.
4687 * This too will be the start of a chunk
4688 */
4689static sector_t first_dev_address(sector_t s, struct geom *geo)
4690{
4691	s >>= geo->chunk_shift;
4692	s *= geo->near_copies;
4693	sector_div(s, geo->raid_disks);
4694	s *= geo->far_copies;
4695	s <<= geo->chunk_shift;
4696	return s;
4697}
4698
4699static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4700				int *skipped)
4701{
4702	/* We simply copy at most one chunk (smallest of old and new)
4703	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4704	 * or we hit a bad block or something.
4705	 * This might mean we pause for normal IO in the middle of
4706	 * a chunk, but that is not a problem as mddev->reshape_position
4707	 * can record any location.
4708	 *
4709	 * If we will want to write to a location that isn't
4710	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4711	 * we need to flush all reshape requests and update the metadata.
4712	 *
4713	 * When reshaping forwards (e.g. to more devices), we interpret
4714	 * 'safe' as the earliest block which might not have been copied
4715	 * down yet.  We divide this by previous stripe size and multiply
4716	 * by previous stripe length to get lowest device offset that we
4717	 * cannot write to yet.
4718	 * We interpret 'sector_nr' as an address that we want to write to.
4719	 * From this we use last_device_address() to find where we might
4720	 * write to, and first_device_address on the  'safe' position.
4721	 * If this 'next' write position is after the 'safe' position,
4722	 * we must update the metadata to increase the 'safe' position.
4723	 *
4724	 * When reshaping backwards, we round in the opposite direction
4725	 * and perform the reverse test:  next write position must not be
4726	 * less than current safe position.
4727	 *
4728	 * In all this the minimum difference in data offsets
4729	 * (conf->offset_diff - always positive) allows a bit of slack,
4730	 * so next can be after 'safe', but not by more than offset_diff
4731	 *
4732	 * We need to prepare all the bios here before we start any IO
4733	 * to ensure the size we choose is acceptable to all devices.
4734	 * The means one for each copy for write-out and an extra one for
4735	 * read-in.
4736	 * We store the read-in bio in ->master_bio and the others in
4737	 * ->devs[x].bio and ->devs[x].repl_bio.
4738	 */
4739	struct r10conf *conf = mddev->private;
4740	struct r10bio *r10_bio;
4741	sector_t next, safe, last;
4742	int max_sectors;
4743	int nr_sectors;
4744	int s;
4745	struct md_rdev *rdev;
4746	int need_flush = 0;
4747	struct bio *blist;
4748	struct bio *bio, *read_bio;
4749	int sectors_done = 0;
4750	struct page **pages;
4751
4752	if (sector_nr == 0) {
4753		/* If restarting in the middle, skip the initial sectors */
4754		if (mddev->reshape_backwards &&
4755		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4756			sector_nr = (raid10_size(mddev, 0, 0)
4757				     - conf->reshape_progress);
4758		} else if (!mddev->reshape_backwards &&
4759			   conf->reshape_progress > 0)
4760			sector_nr = conf->reshape_progress;
4761		if (sector_nr) {
4762			mddev->curr_resync_completed = sector_nr;
4763			sysfs_notify_dirent_safe(mddev->sysfs_completed);
4764			*skipped = 1;
4765			return sector_nr;
4766		}
4767	}
4768
4769	/* We don't use sector_nr to track where we are up to
4770	 * as that doesn't work well for ->reshape_backwards.
4771	 * So just use ->reshape_progress.
4772	 */
4773	if (mddev->reshape_backwards) {
4774		/* 'next' is the earliest device address that we might
4775		 * write to for this chunk in the new layout
4776		 */
4777		next = first_dev_address(conf->reshape_progress - 1,
4778					 &conf->geo);
4779
4780		/* 'safe' is the last device address that we might read from
4781		 * in the old layout after a restart
4782		 */
4783		safe = last_dev_address(conf->reshape_safe - 1,
4784					&conf->prev);
4785
4786		if (next + conf->offset_diff < safe)
4787			need_flush = 1;
4788
4789		last = conf->reshape_progress - 1;
4790		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4791					       & conf->prev.chunk_mask);
4792		if (sector_nr + RESYNC_SECTORS < last)
4793			sector_nr = last + 1 - RESYNC_SECTORS;
4794	} else {
4795		/* 'next' is after the last device address that we
4796		 * might write to for this chunk in the new layout
4797		 */
4798		next = last_dev_address(conf->reshape_progress, &conf->geo);
4799
4800		/* 'safe' is the earliest device address that we might
4801		 * read from in the old layout after a restart
4802		 */
4803		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4804
4805		/* Need to update metadata if 'next' might be beyond 'safe'
4806		 * as that would possibly corrupt data
4807		 */
4808		if (next > safe + conf->offset_diff)
4809			need_flush = 1;
4810
4811		sector_nr = conf->reshape_progress;
4812		last  = sector_nr | (conf->geo.chunk_mask
4813				     & conf->prev.chunk_mask);
4814
4815		if (sector_nr + RESYNC_SECTORS <= last)
4816			last = sector_nr + RESYNC_SECTORS - 1;
4817	}
4818
4819	if (need_flush ||
4820	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4821		/* Need to update reshape_position in metadata */
4822		wait_barrier(conf);
4823		mddev->reshape_position = conf->reshape_progress;
4824		if (mddev->reshape_backwards)
4825			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4826				- conf->reshape_progress;
4827		else
4828			mddev->curr_resync_completed = conf->reshape_progress;
4829		conf->reshape_checkpoint = jiffies;
4830		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4831		md_wakeup_thread(mddev->thread);
4832		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4833			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4834		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4835			allow_barrier(conf);
4836			return sectors_done;
4837		}
4838		conf->reshape_safe = mddev->reshape_position;
4839		allow_barrier(conf);
4840	}
4841
4842	raise_barrier(conf, 0);
4843read_more:
4844	/* Now schedule reads for blocks from sector_nr to last */
4845	r10_bio = raid10_alloc_init_r10buf(conf);
4846	r10_bio->state = 0;
4847	raise_barrier(conf, 1);
4848	atomic_set(&r10_bio->remaining, 0);
4849	r10_bio->mddev = mddev;
4850	r10_bio->sector = sector_nr;
4851	set_bit(R10BIO_IsReshape, &r10_bio->state);
4852	r10_bio->sectors = last - sector_nr + 1;
4853	rdev = read_balance(conf, r10_bio, &max_sectors);
4854	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4855
4856	if (!rdev) {
4857		/* Cannot read from here, so need to record bad blocks
4858		 * on all the target devices.
4859		 */
4860		// FIXME
4861		mempool_free(r10_bio, &conf->r10buf_pool);
4862		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4863		return sectors_done;
4864	}
4865
4866	read_bio = bio_alloc_bioset(GFP_KERNEL, RESYNC_PAGES, &mddev->bio_set);
4867
4868	bio_set_dev(read_bio, rdev->bdev);
4869	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4870			       + rdev->data_offset);
4871	read_bio->bi_private = r10_bio;
4872	read_bio->bi_end_io = end_reshape_read;
4873	bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4874	r10_bio->master_bio = read_bio;
4875	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4876
4877	/*
4878	 * Broadcast RESYNC message to other nodes, so all nodes would not
4879	 * write to the region to avoid conflict.
4880	*/
4881	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4882		struct mdp_superblock_1 *sb = NULL;
4883		int sb_reshape_pos = 0;
4884
4885		conf->cluster_sync_low = sector_nr;
4886		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4887		sb = page_address(rdev->sb_page);
4888		if (sb) {
4889			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4890			/*
4891			 * Set cluster_sync_low again if next address for array
4892			 * reshape is less than cluster_sync_low. Since we can't
4893			 * update cluster_sync_low until it has finished reshape.
4894			 */
4895			if (sb_reshape_pos < conf->cluster_sync_low)
4896				conf->cluster_sync_low = sb_reshape_pos;
4897		}
4898
4899		md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4900							  conf->cluster_sync_high);
4901	}
4902
4903	/* Now find the locations in the new layout */
4904	__raid10_find_phys(&conf->geo, r10_bio);
4905
4906	blist = read_bio;
4907	read_bio->bi_next = NULL;
4908
4909	rcu_read_lock();
4910	for (s = 0; s < conf->copies*2; s++) {
4911		struct bio *b;
4912		int d = r10_bio->devs[s/2].devnum;
4913		struct md_rdev *rdev2;
4914		if (s&1) {
4915			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4916			b = r10_bio->devs[s/2].repl_bio;
4917		} else {
4918			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4919			b = r10_bio->devs[s/2].bio;
4920		}
4921		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4922			continue;
4923
4924		bio_set_dev(b, rdev2->bdev);
4925		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4926			rdev2->new_data_offset;
4927		b->bi_end_io = end_reshape_write;
4928		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4929		b->bi_next = blist;
4930		blist = b;
4931	}
4932
4933	/* Now add as many pages as possible to all of these bios. */
4934
4935	nr_sectors = 0;
4936	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4937	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4938		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4939		int len = (max_sectors - s) << 9;
4940		if (len > PAGE_SIZE)
4941			len = PAGE_SIZE;
4942		for (bio = blist; bio ; bio = bio->bi_next) {
4943			/*
4944			 * won't fail because the vec table is big enough
4945			 * to hold all these pages
4946			 */
4947			bio_add_page(bio, page, len, 0);
4948		}
4949		sector_nr += len >> 9;
4950		nr_sectors += len >> 9;
4951	}
4952	rcu_read_unlock();
4953	r10_bio->sectors = nr_sectors;
4954
4955	/* Now submit the read */
4956	md_sync_acct_bio(read_bio, r10_bio->sectors);
4957	atomic_inc(&r10_bio->remaining);
4958	read_bio->bi_next = NULL;
4959	submit_bio_noacct(read_bio);
4960	sectors_done += nr_sectors;
4961	if (sector_nr <= last)
4962		goto read_more;
4963
4964	lower_barrier(conf);
4965
4966	/* Now that we have done the whole section we can
4967	 * update reshape_progress
4968	 */
4969	if (mddev->reshape_backwards)
4970		conf->reshape_progress -= sectors_done;
4971	else
4972		conf->reshape_progress += sectors_done;
4973
4974	return sectors_done;
4975}
4976
4977static void end_reshape_request(struct r10bio *r10_bio);
4978static int handle_reshape_read_error(struct mddev *mddev,
4979				     struct r10bio *r10_bio);
4980static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4981{
4982	/* Reshape read completed.  Hopefully we have a block
4983	 * to write out.
4984	 * If we got a read error then we do sync 1-page reads from
4985	 * elsewhere until we find the data - or give up.
4986	 */
4987	struct r10conf *conf = mddev->private;
4988	int s;
4989
4990	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4991		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4992			/* Reshape has been aborted */
4993			md_done_sync(mddev, r10_bio->sectors, 0);
4994			return;
4995		}
4996
4997	/* We definitely have the data in the pages, schedule the
4998	 * writes.
4999	 */
5000	atomic_set(&r10_bio->remaining, 1);
5001	for (s = 0; s < conf->copies*2; s++) {
5002		struct bio *b;
5003		int d = r10_bio->devs[s/2].devnum;
5004		struct md_rdev *rdev;
5005		rcu_read_lock();
5006		if (s&1) {
5007			rdev = rcu_dereference(conf->mirrors[d].replacement);
5008			b = r10_bio->devs[s/2].repl_bio;
5009		} else {
5010			rdev = rcu_dereference(conf->mirrors[d].rdev);
5011			b = r10_bio->devs[s/2].bio;
5012		}
5013		if (!rdev || test_bit(Faulty, &rdev->flags)) {
5014			rcu_read_unlock();
5015			continue;
5016		}
5017		atomic_inc(&rdev->nr_pending);
5018		rcu_read_unlock();
5019		md_sync_acct_bio(b, r10_bio->sectors);
5020		atomic_inc(&r10_bio->remaining);
5021		b->bi_next = NULL;
5022		submit_bio_noacct(b);
5023	}
5024	end_reshape_request(r10_bio);
5025}
5026
5027static void end_reshape(struct r10conf *conf)
5028{
5029	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
5030		return;
5031
5032	spin_lock_irq(&conf->device_lock);
5033	conf->prev = conf->geo;
5034	md_finish_reshape(conf->mddev);
5035	smp_wmb();
5036	conf->reshape_progress = MaxSector;
5037	conf->reshape_safe = MaxSector;
5038	spin_unlock_irq(&conf->device_lock);
5039
5040	if (conf->mddev->queue)
5041		raid10_set_io_opt(conf);
5042	conf->fullsync = 0;
5043}
5044
5045static void raid10_update_reshape_pos(struct mddev *mddev)
5046{
5047	struct r10conf *conf = mddev->private;
5048	sector_t lo, hi;
5049
5050	md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5051	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5052	    || mddev->reshape_position == MaxSector)
5053		conf->reshape_progress = mddev->reshape_position;
5054	else
5055		WARN_ON_ONCE(1);
5056}
5057
5058static int handle_reshape_read_error(struct mddev *mddev,
5059				     struct r10bio *r10_bio)
5060{
5061	/* Use sync reads to get the blocks from somewhere else */
5062	int sectors = r10_bio->sectors;
5063	struct r10conf *conf = mddev->private;
5064	struct r10bio *r10b;
5065	int slot = 0;
5066	int idx = 0;
5067	struct page **pages;
5068
5069	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5070	if (!r10b) {
5071		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5072		return -ENOMEM;
5073	}
5074
5075	/* reshape IOs share pages from .devs[0].bio */
5076	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5077
5078	r10b->sector = r10_bio->sector;
5079	__raid10_find_phys(&conf->prev, r10b);
5080
5081	while (sectors) {
5082		int s = sectors;
5083		int success = 0;
5084		int first_slot = slot;
5085
5086		if (s > (PAGE_SIZE >> 9))
5087			s = PAGE_SIZE >> 9;
5088
5089		rcu_read_lock();
5090		while (!success) {
5091			int d = r10b->devs[slot].devnum;
5092			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5093			sector_t addr;
5094			if (rdev == NULL ||
5095			    test_bit(Faulty, &rdev->flags) ||
5096			    !test_bit(In_sync, &rdev->flags))
5097				goto failed;
5098
5099			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5100			atomic_inc(&rdev->nr_pending);
5101			rcu_read_unlock();
5102			success = sync_page_io(rdev,
5103					       addr,
5104					       s << 9,
5105					       pages[idx],
5106					       REQ_OP_READ, 0, false);
5107			rdev_dec_pending(rdev, mddev);
5108			rcu_read_lock();
5109			if (success)
5110				break;
5111		failed:
5112			slot++;
5113			if (slot >= conf->copies)
5114				slot = 0;
5115			if (slot == first_slot)
5116				break;
5117		}
5118		rcu_read_unlock();
5119		if (!success) {
5120			/* couldn't read this block, must give up */
5121			set_bit(MD_RECOVERY_INTR,
5122				&mddev->recovery);
5123			kfree(r10b);
5124			return -EIO;
5125		}
5126		sectors -= s;
5127		idx++;
5128	}
5129	kfree(r10b);
5130	return 0;
5131}
5132
5133static void end_reshape_write(struct bio *bio)
5134{
5135	struct r10bio *r10_bio = get_resync_r10bio(bio);
5136	struct mddev *mddev = r10_bio->mddev;
5137	struct r10conf *conf = mddev->private;
5138	int d;
5139	int slot;
5140	int repl;
5141	struct md_rdev *rdev = NULL;
5142
5143	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5144	if (repl)
5145		rdev = conf->mirrors[d].replacement;
5146	if (!rdev) {
5147		smp_mb();
5148		rdev = conf->mirrors[d].rdev;
5149	}
5150
5151	if (bio->bi_status) {
5152		/* FIXME should record badblock */
5153		md_error(mddev, rdev);
5154	}
5155
5156	rdev_dec_pending(rdev, mddev);
5157	end_reshape_request(r10_bio);
5158}
5159
5160static void end_reshape_request(struct r10bio *r10_bio)
5161{
5162	if (!atomic_dec_and_test(&r10_bio->remaining))
5163		return;
5164	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5165	bio_put(r10_bio->master_bio);
5166	put_buf(r10_bio);
5167}
5168
5169static void raid10_finish_reshape(struct mddev *mddev)
5170{
5171	struct r10conf *conf = mddev->private;
5172
5173	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5174		return;
5175
5176	if (mddev->delta_disks > 0) {
5177		if (mddev->recovery_cp > mddev->resync_max_sectors) {
5178			mddev->recovery_cp = mddev->resync_max_sectors;
5179			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5180		}
5181		mddev->resync_max_sectors = mddev->array_sectors;
5182	} else {
5183		int d;
5184		rcu_read_lock();
5185		for (d = conf->geo.raid_disks ;
5186		     d < conf->geo.raid_disks - mddev->delta_disks;
5187		     d++) {
5188			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
5189			if (rdev)
5190				clear_bit(In_sync, &rdev->flags);
5191			rdev = rcu_dereference(conf->mirrors[d].replacement);
5192			if (rdev)
5193				clear_bit(In_sync, &rdev->flags);
5194		}
5195		rcu_read_unlock();
5196	}
5197	mddev->layout = mddev->new_layout;
5198	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5199	mddev->reshape_position = MaxSector;
5200	mddev->delta_disks = 0;
5201	mddev->reshape_backwards = 0;
5202}
5203
5204static struct md_personality raid10_personality =
5205{
5206	.name		= "raid10",
5207	.level		= 10,
5208	.owner		= THIS_MODULE,
5209	.make_request	= raid10_make_request,
5210	.run		= raid10_run,
5211	.free		= raid10_free,
5212	.status		= raid10_status,
5213	.error_handler	= raid10_error,
5214	.hot_add_disk	= raid10_add_disk,
5215	.hot_remove_disk= raid10_remove_disk,
5216	.spare_active	= raid10_spare_active,
5217	.sync_request	= raid10_sync_request,
5218	.quiesce	= raid10_quiesce,
5219	.size		= raid10_size,
5220	.resize		= raid10_resize,
5221	.takeover	= raid10_takeover,
5222	.check_reshape	= raid10_check_reshape,
5223	.start_reshape	= raid10_start_reshape,
5224	.finish_reshape	= raid10_finish_reshape,
5225	.update_reshape_pos = raid10_update_reshape_pos,
5226};
5227
5228static int __init raid_init(void)
5229{
5230	return register_md_personality(&raid10_personality);
5231}
5232
5233static void raid_exit(void)
5234{
5235	unregister_md_personality(&raid10_personality);
5236}
5237
5238module_init(raid_init);
5239module_exit(raid_exit);
5240MODULE_LICENSE("GPL");
5241MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5242MODULE_ALIAS("md-personality-9"); /* RAID10 */
5243MODULE_ALIAS("md-raid10");
5244MODULE_ALIAS("md-level-10");
5245
5246module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);