Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH Timer Support - CMT
   4 *
   5 *  Copyright (C) 2008 Magnus Damm
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/clk.h>
   9#include <linux/clockchips.h>
  10#include <linux/clocksource.h>
  11#include <linux/delay.h>
  12#include <linux/err.h>
  13#include <linux/init.h>
  14#include <linux/interrupt.h>
  15#include <linux/io.h>
  16#include <linux/iopoll.h>
  17#include <linux/ioport.h>
  18#include <linux/irq.h>
  19#include <linux/module.h>
  20#include <linux/of.h>
  21#include <linux/of_device.h>
  22#include <linux/platform_device.h>
  23#include <linux/pm_domain.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/sh_timer.h>
  26#include <linux/slab.h>
  27#include <linux/spinlock.h>
  28
  29#ifdef CONFIG_SUPERH
  30#include <asm/platform_early.h>
  31#endif
  32
  33struct sh_cmt_device;
  34
  35/*
  36 * The CMT comes in 5 different identified flavours, depending not only on the
  37 * SoC but also on the particular instance. The following table lists the main
  38 * characteristics of those flavours.
  39 *
  40 *			16B	32B	32B-F	48B	R-Car Gen2
  41 * -----------------------------------------------------------------------------
  42 * Channels		2	1/4	1	6	2/8
  43 * Control Width	16	16	16	16	32
  44 * Counter Width	16	32	32	32/48	32/48
  45 * Shared Start/Stop	Y	Y	Y	Y	N
  46 *
  47 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
  48 * located in the channel registers block. All other versions have a shared
  49 * start/stop register located in the global space.
  50 *
  51 * Channels are indexed from 0 to N-1 in the documentation. The channel index
  52 * infers the start/stop bit position in the control register and the channel
  53 * registers block address. Some CMT instances have a subset of channels
  54 * available, in which case the index in the documentation doesn't match the
  55 * "real" index as implemented in hardware. This is for instance the case with
  56 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
  57 * in the documentation but using start/stop bit 5 and having its registers
  58 * block at 0x60.
  59 *
  60 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
  61 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
  62 */
  63
  64enum sh_cmt_model {
  65	SH_CMT_16BIT,
  66	SH_CMT_32BIT,
  67	SH_CMT_48BIT,
  68	SH_CMT0_RCAR_GEN2,
  69	SH_CMT1_RCAR_GEN2,
  70};
  71
  72struct sh_cmt_info {
  73	enum sh_cmt_model model;
  74
  75	unsigned int channels_mask;
  76
  77	unsigned long width; /* 16 or 32 bit version of hardware block */
  78	u32 overflow_bit;
  79	u32 clear_bits;
  80
  81	/* callbacks for CMSTR and CMCSR access */
  82	u32 (*read_control)(void __iomem *base, unsigned long offs);
  83	void (*write_control)(void __iomem *base, unsigned long offs,
  84			      u32 value);
  85
  86	/* callbacks for CMCNT and CMCOR access */
  87	u32 (*read_count)(void __iomem *base, unsigned long offs);
  88	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
 
  89};
  90
  91struct sh_cmt_channel {
  92	struct sh_cmt_device *cmt;
  93
  94	unsigned int index;	/* Index in the documentation */
  95	unsigned int hwidx;	/* Real hardware index */
  96
  97	void __iomem *iostart;
  98	void __iomem *ioctrl;
  99
 100	unsigned int timer_bit;
 101	unsigned long flags;
 102	u32 match_value;
 103	u32 next_match_value;
 104	u32 max_match_value;
 105	raw_spinlock_t lock;
 106	struct clock_event_device ced;
 107	struct clocksource cs;
 108	u64 total_cycles;
 109	bool cs_enabled;
 110};
 111
 112struct sh_cmt_device {
 113	struct platform_device *pdev;
 114
 115	const struct sh_cmt_info *info;
 116
 117	void __iomem *mapbase;
 118	struct clk *clk;
 119	unsigned long rate;
 120	unsigned int reg_delay;
 121
 122	raw_spinlock_t lock; /* Protect the shared start/stop register */
 123
 124	struct sh_cmt_channel *channels;
 125	unsigned int num_channels;
 126	unsigned int hw_channels;
 127
 128	bool has_clockevent;
 129	bool has_clocksource;
 130};
 131
 132#define SH_CMT16_CMCSR_CMF		(1 << 7)
 133#define SH_CMT16_CMCSR_CMIE		(1 << 6)
 134#define SH_CMT16_CMCSR_CKS8		(0 << 0)
 135#define SH_CMT16_CMCSR_CKS32		(1 << 0)
 136#define SH_CMT16_CMCSR_CKS128		(2 << 0)
 137#define SH_CMT16_CMCSR_CKS512		(3 << 0)
 138#define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
 139
 140#define SH_CMT32_CMCSR_CMF		(1 << 15)
 141#define SH_CMT32_CMCSR_OVF		(1 << 14)
 142#define SH_CMT32_CMCSR_WRFLG		(1 << 13)
 143#define SH_CMT32_CMCSR_STTF		(1 << 12)
 144#define SH_CMT32_CMCSR_STPF		(1 << 11)
 145#define SH_CMT32_CMCSR_SSIE		(1 << 10)
 146#define SH_CMT32_CMCSR_CMS		(1 << 9)
 147#define SH_CMT32_CMCSR_CMM		(1 << 8)
 148#define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
 149#define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
 150#define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
 151#define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
 152#define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
 153#define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
 154#define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
 155#define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
 156#define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
 157#define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
 158#define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
 159
 160static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
 161{
 162	return ioread16(base + (offs << 1));
 163}
 164
 165static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
 166{
 167	return ioread32(base + (offs << 2));
 168}
 169
 170static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
 
 171{
 172	iowrite16(value, base + (offs << 1));
 173}
 174
 175static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
 
 176{
 177	iowrite32(value, base + (offs << 2));
 178}
 179
 180static const struct sh_cmt_info sh_cmt_info[] = {
 181	[SH_CMT_16BIT] = {
 182		.model = SH_CMT_16BIT,
 183		.width = 16,
 184		.overflow_bit = SH_CMT16_CMCSR_CMF,
 185		.clear_bits = ~SH_CMT16_CMCSR_CMF,
 186		.read_control = sh_cmt_read16,
 187		.write_control = sh_cmt_write16,
 188		.read_count = sh_cmt_read16,
 189		.write_count = sh_cmt_write16,
 190	},
 191	[SH_CMT_32BIT] = {
 192		.model = SH_CMT_32BIT,
 193		.width = 32,
 194		.overflow_bit = SH_CMT32_CMCSR_CMF,
 195		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 196		.read_control = sh_cmt_read16,
 197		.write_control = sh_cmt_write16,
 198		.read_count = sh_cmt_read32,
 199		.write_count = sh_cmt_write32,
 200	},
 201	[SH_CMT_48BIT] = {
 202		.model = SH_CMT_48BIT,
 203		.channels_mask = 0x3f,
 204		.width = 32,
 205		.overflow_bit = SH_CMT32_CMCSR_CMF,
 206		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 207		.read_control = sh_cmt_read32,
 208		.write_control = sh_cmt_write32,
 209		.read_count = sh_cmt_read32,
 210		.write_count = sh_cmt_write32,
 211	},
 212	[SH_CMT0_RCAR_GEN2] = {
 213		.model = SH_CMT0_RCAR_GEN2,
 214		.channels_mask = 0x60,
 215		.width = 32,
 216		.overflow_bit = SH_CMT32_CMCSR_CMF,
 217		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 218		.read_control = sh_cmt_read32,
 219		.write_control = sh_cmt_write32,
 220		.read_count = sh_cmt_read32,
 221		.write_count = sh_cmt_write32,
 222	},
 223	[SH_CMT1_RCAR_GEN2] = {
 224		.model = SH_CMT1_RCAR_GEN2,
 225		.channels_mask = 0xff,
 226		.width = 32,
 227		.overflow_bit = SH_CMT32_CMCSR_CMF,
 228		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 229		.read_control = sh_cmt_read32,
 230		.write_control = sh_cmt_write32,
 231		.read_count = sh_cmt_read32,
 232		.write_count = sh_cmt_write32,
 233	},
 234};
 235
 236#define CMCSR 0 /* channel register */
 237#define CMCNT 1 /* channel register */
 238#define CMCOR 2 /* channel register */
 239
 240#define CMCLKE	0x1000	/* CLK Enable Register (R-Car Gen2) */
 241
 242static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
 243{
 244	if (ch->iostart)
 245		return ch->cmt->info->read_control(ch->iostart, 0);
 246	else
 247		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
 248}
 249
 250static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
 
 251{
 252	u32 old_value = sh_cmt_read_cmstr(ch);
 253
 254	if (value != old_value) {
 255		if (ch->iostart) {
 256			ch->cmt->info->write_control(ch->iostart, 0, value);
 257			udelay(ch->cmt->reg_delay);
 258		} else {
 259			ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
 260			udelay(ch->cmt->reg_delay);
 261		}
 262	}
 263}
 264
 265static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
 266{
 267	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
 268}
 269
 270static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
 
 271{
 272	u32 old_value = sh_cmt_read_cmcsr(ch);
 273
 274	if (value != old_value) {
 275		ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
 276		udelay(ch->cmt->reg_delay);
 277	}
 278}
 279
 280static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
 281{
 282	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
 283}
 284
 285static inline int sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
 
 286{
 287	/* Tests showed that we need to wait 3 clocks here */
 288	unsigned int cmcnt_delay = DIV_ROUND_UP(3 * ch->cmt->reg_delay, 2);
 289	u32 reg;
 290
 291	if (ch->cmt->info->model > SH_CMT_16BIT) {
 292		int ret = read_poll_timeout_atomic(sh_cmt_read_cmcsr, reg,
 293						   !(reg & SH_CMT32_CMCSR_WRFLG),
 294						   1, cmcnt_delay, false, ch);
 295		if (ret < 0)
 296			return ret;
 297	}
 298
 299	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
 300	udelay(cmcnt_delay);
 301	return 0;
 302}
 303
 304static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
 
 305{
 306	u32 old_value = ch->cmt->info->read_count(ch->ioctrl, CMCOR);
 307
 308	if (value != old_value) {
 309		ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
 310		udelay(ch->cmt->reg_delay);
 311	}
 312}
 313
 314static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
 
 315{
 316	u32 v1, v2, v3;
 317	u32 o1, o2;
 318
 319	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 320
 321	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
 322	do {
 323		o2 = o1;
 324		v1 = sh_cmt_read_cmcnt(ch);
 325		v2 = sh_cmt_read_cmcnt(ch);
 326		v3 = sh_cmt_read_cmcnt(ch);
 327		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 328	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
 329			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
 330
 331	*has_wrapped = o1;
 332	return v2;
 333}
 334
 335static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
 336{
 337	unsigned long flags;
 338	u32 value;
 339
 340	/* start stop register shared by multiple timer channels */
 341	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
 342	value = sh_cmt_read_cmstr(ch);
 343
 344	if (start)
 345		value |= 1 << ch->timer_bit;
 346	else
 347		value &= ~(1 << ch->timer_bit);
 348
 349	sh_cmt_write_cmstr(ch, value);
 350	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
 351}
 352
 353static int sh_cmt_enable(struct sh_cmt_channel *ch)
 354{
 355	int ret;
 356
 
 357	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
 358
 359	/* enable clock */
 360	ret = clk_enable(ch->cmt->clk);
 361	if (ret) {
 362		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
 363			ch->index);
 364		goto err0;
 365	}
 366
 367	/* make sure channel is disabled */
 368	sh_cmt_start_stop_ch(ch, 0);
 369
 370	/* configure channel, periodic mode and maximum timeout */
 371	if (ch->cmt->info->width == 16) {
 372		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
 373				   SH_CMT16_CMCSR_CKS512);
 374	} else {
 375		u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
 376			      SH_CMT32_CMCSR_CMTOUT_IE : 0;
 377		sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
 378				   SH_CMT32_CMCSR_CMR_IRQ |
 379				   SH_CMT32_CMCSR_CKS_RCLK8);
 380	}
 381
 382	sh_cmt_write_cmcor(ch, 0xffffffff);
 383	ret = sh_cmt_write_cmcnt(ch, 0);
 384
 385	if (ret || sh_cmt_read_cmcnt(ch)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 386		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
 387			ch->index);
 388		ret = -ETIMEDOUT;
 389		goto err1;
 390	}
 391
 392	/* enable channel */
 393	sh_cmt_start_stop_ch(ch, 1);
 394	return 0;
 395 err1:
 396	/* stop clock */
 397	clk_disable(ch->cmt->clk);
 398
 399 err0:
 400	return ret;
 401}
 402
 403static void sh_cmt_disable(struct sh_cmt_channel *ch)
 404{
 405	/* disable channel */
 406	sh_cmt_start_stop_ch(ch, 0);
 407
 408	/* disable interrupts in CMT block */
 409	sh_cmt_write_cmcsr(ch, 0);
 410
 411	/* stop clock */
 412	clk_disable(ch->cmt->clk);
 413
 414	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
 
 415}
 416
 417/* private flags */
 418#define FLAG_CLOCKEVENT (1 << 0)
 419#define FLAG_CLOCKSOURCE (1 << 1)
 420#define FLAG_REPROGRAM (1 << 2)
 421#define FLAG_SKIPEVENT (1 << 3)
 422#define FLAG_IRQCONTEXT (1 << 4)
 423
 424static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
 425					      int absolute)
 426{
 427	u32 value = ch->next_match_value;
 428	u32 new_match;
 429	u32 delay = 0;
 430	u32 now = 0;
 431	u32 has_wrapped;
 432
 433	now = sh_cmt_get_counter(ch, &has_wrapped);
 434	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
 435
 436	if (has_wrapped) {
 437		/* we're competing with the interrupt handler.
 438		 *  -> let the interrupt handler reprogram the timer.
 439		 *  -> interrupt number two handles the event.
 440		 */
 441		ch->flags |= FLAG_SKIPEVENT;
 442		return;
 443	}
 444
 445	if (absolute)
 446		now = 0;
 447
 448	do {
 449		/* reprogram the timer hardware,
 450		 * but don't save the new match value yet.
 451		 */
 452		new_match = now + value + delay;
 453		if (new_match > ch->max_match_value)
 454			new_match = ch->max_match_value;
 455
 456		sh_cmt_write_cmcor(ch, new_match);
 457
 458		now = sh_cmt_get_counter(ch, &has_wrapped);
 459		if (has_wrapped && (new_match > ch->match_value)) {
 460			/* we are changing to a greater match value,
 461			 * so this wrap must be caused by the counter
 462			 * matching the old value.
 463			 * -> first interrupt reprograms the timer.
 464			 * -> interrupt number two handles the event.
 465			 */
 466			ch->flags |= FLAG_SKIPEVENT;
 467			break;
 468		}
 469
 470		if (has_wrapped) {
 471			/* we are changing to a smaller match value,
 472			 * so the wrap must be caused by the counter
 473			 * matching the new value.
 474			 * -> save programmed match value.
 475			 * -> let isr handle the event.
 476			 */
 477			ch->match_value = new_match;
 478			break;
 479		}
 480
 481		/* be safe: verify hardware settings */
 482		if (now < new_match) {
 483			/* timer value is below match value, all good.
 484			 * this makes sure we won't miss any match events.
 485			 * -> save programmed match value.
 486			 * -> let isr handle the event.
 487			 */
 488			ch->match_value = new_match;
 489			break;
 490		}
 491
 492		/* the counter has reached a value greater
 493		 * than our new match value. and since the
 494		 * has_wrapped flag isn't set we must have
 495		 * programmed a too close event.
 496		 * -> increase delay and retry.
 497		 */
 498		if (delay)
 499			delay <<= 1;
 500		else
 501			delay = 1;
 502
 503		if (!delay)
 504			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
 505				 ch->index);
 506
 507	} while (delay);
 508}
 509
 510static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 511{
 512	if (delta > ch->max_match_value)
 513		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
 514			 ch->index);
 515
 516	ch->next_match_value = delta;
 517	sh_cmt_clock_event_program_verify(ch, 0);
 518}
 519
 520static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 521{
 522	unsigned long flags;
 523
 524	raw_spin_lock_irqsave(&ch->lock, flags);
 525	__sh_cmt_set_next(ch, delta);
 526	raw_spin_unlock_irqrestore(&ch->lock, flags);
 527}
 528
 529static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
 530{
 531	struct sh_cmt_channel *ch = dev_id;
 532
 533	/* clear flags */
 534	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
 535			   ch->cmt->info->clear_bits);
 536
 537	/* update clock source counter to begin with if enabled
 538	 * the wrap flag should be cleared by the timer specific
 539	 * isr before we end up here.
 540	 */
 541	if (ch->flags & FLAG_CLOCKSOURCE)
 542		ch->total_cycles += ch->match_value + 1;
 543
 544	if (!(ch->flags & FLAG_REPROGRAM))
 545		ch->next_match_value = ch->max_match_value;
 546
 547	ch->flags |= FLAG_IRQCONTEXT;
 548
 549	if (ch->flags & FLAG_CLOCKEVENT) {
 550		if (!(ch->flags & FLAG_SKIPEVENT)) {
 551			if (clockevent_state_oneshot(&ch->ced)) {
 552				ch->next_match_value = ch->max_match_value;
 553				ch->flags |= FLAG_REPROGRAM;
 554			}
 555
 556			ch->ced.event_handler(&ch->ced);
 557		}
 558	}
 559
 560	ch->flags &= ~FLAG_SKIPEVENT;
 561
 562	if (ch->flags & FLAG_REPROGRAM) {
 563		ch->flags &= ~FLAG_REPROGRAM;
 564		sh_cmt_clock_event_program_verify(ch, 1);
 565
 566		if (ch->flags & FLAG_CLOCKEVENT)
 567			if ((clockevent_state_shutdown(&ch->ced))
 568			    || (ch->match_value == ch->next_match_value))
 569				ch->flags &= ~FLAG_REPROGRAM;
 570	}
 571
 572	ch->flags &= ~FLAG_IRQCONTEXT;
 573
 574	return IRQ_HANDLED;
 575}
 576
 577static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
 578{
 579	int ret = 0;
 580	unsigned long flags;
 581
 582	if (flag & FLAG_CLOCKSOURCE)
 583		pm_runtime_get_sync(&ch->cmt->pdev->dev);
 584
 585	raw_spin_lock_irqsave(&ch->lock, flags);
 586
 587	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
 588		if (flag & FLAG_CLOCKEVENT)
 589			pm_runtime_get_sync(&ch->cmt->pdev->dev);
 590		ret = sh_cmt_enable(ch);
 591	}
 592
 593	if (ret)
 594		goto out;
 595	ch->flags |= flag;
 596
 597	/* setup timeout if no clockevent */
 598	if (ch->cmt->num_channels == 1 &&
 599	    flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
 600		__sh_cmt_set_next(ch, ch->max_match_value);
 601 out:
 602	raw_spin_unlock_irqrestore(&ch->lock, flags);
 603
 604	return ret;
 605}
 606
 607static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
 608{
 609	unsigned long flags;
 610	unsigned long f;
 611
 612	raw_spin_lock_irqsave(&ch->lock, flags);
 613
 614	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
 615	ch->flags &= ~flag;
 616
 617	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
 618		sh_cmt_disable(ch);
 619		if (flag & FLAG_CLOCKEVENT)
 620			pm_runtime_put(&ch->cmt->pdev->dev);
 621	}
 622
 623	/* adjust the timeout to maximum if only clocksource left */
 624	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
 625		__sh_cmt_set_next(ch, ch->max_match_value);
 626
 627	raw_spin_unlock_irqrestore(&ch->lock, flags);
 628
 629	if (flag & FLAG_CLOCKSOURCE)
 630		pm_runtime_put(&ch->cmt->pdev->dev);
 631}
 632
 633static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
 634{
 635	return container_of(cs, struct sh_cmt_channel, cs);
 636}
 637
 638static u64 sh_cmt_clocksource_read(struct clocksource *cs)
 639{
 640	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 641	u32 has_wrapped;
 642
 643	if (ch->cmt->num_channels == 1) {
 644		unsigned long flags;
 645		u64 value;
 646		u32 raw;
 647
 648		raw_spin_lock_irqsave(&ch->lock, flags);
 649		value = ch->total_cycles;
 650		raw = sh_cmt_get_counter(ch, &has_wrapped);
 651
 652		if (unlikely(has_wrapped))
 653			raw += ch->match_value + 1;
 654		raw_spin_unlock_irqrestore(&ch->lock, flags);
 655
 656		return value + raw;
 657	}
 
 658
 659	return sh_cmt_get_counter(ch, &has_wrapped);
 660}
 661
 662static int sh_cmt_clocksource_enable(struct clocksource *cs)
 663{
 664	int ret;
 665	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 666
 667	WARN_ON(ch->cs_enabled);
 668
 669	ch->total_cycles = 0;
 670
 671	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 672	if (!ret)
 673		ch->cs_enabled = true;
 674
 675	return ret;
 676}
 677
 678static void sh_cmt_clocksource_disable(struct clocksource *cs)
 679{
 680	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 681
 682	WARN_ON(!ch->cs_enabled);
 683
 684	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 685	ch->cs_enabled = false;
 686}
 687
 688static void sh_cmt_clocksource_suspend(struct clocksource *cs)
 689{
 690	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 691
 692	if (!ch->cs_enabled)
 693		return;
 694
 695	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 696	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
 697}
 698
 699static void sh_cmt_clocksource_resume(struct clocksource *cs)
 700{
 701	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 702
 703	if (!ch->cs_enabled)
 704		return;
 705
 706	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
 707	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 708}
 709
 710static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
 711				       const char *name)
 712{
 713	struct clocksource *cs = &ch->cs;
 714
 715	cs->name = name;
 716	cs->rating = 125;
 717	cs->read = sh_cmt_clocksource_read;
 718	cs->enable = sh_cmt_clocksource_enable;
 719	cs->disable = sh_cmt_clocksource_disable;
 720	cs->suspend = sh_cmt_clocksource_suspend;
 721	cs->resume = sh_cmt_clocksource_resume;
 722	cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
 723	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
 724
 725	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
 726		 ch->index);
 727
 728	clocksource_register_hz(cs, ch->cmt->rate);
 729	return 0;
 730}
 731
 732static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
 733{
 734	return container_of(ced, struct sh_cmt_channel, ced);
 735}
 736
 737static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
 738{
 739	sh_cmt_start(ch, FLAG_CLOCKEVENT);
 740
 741	if (periodic)
 742		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
 743	else
 744		sh_cmt_set_next(ch, ch->max_match_value);
 745}
 746
 747static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
 748{
 749	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 750
 751	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 752	return 0;
 753}
 754
 755static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
 756					int periodic)
 757{
 758	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 759
 760	/* deal with old setting first */
 761	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
 762		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 763
 764	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
 765		 ch->index, periodic ? "periodic" : "oneshot");
 766	sh_cmt_clock_event_start(ch, periodic);
 767	return 0;
 768}
 769
 770static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
 771{
 772	return sh_cmt_clock_event_set_state(ced, 0);
 773}
 774
 775static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
 776{
 777	return sh_cmt_clock_event_set_state(ced, 1);
 778}
 779
 780static int sh_cmt_clock_event_next(unsigned long delta,
 781				   struct clock_event_device *ced)
 782{
 783	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 784
 785	BUG_ON(!clockevent_state_oneshot(ced));
 786	if (likely(ch->flags & FLAG_IRQCONTEXT))
 787		ch->next_match_value = delta - 1;
 788	else
 789		sh_cmt_set_next(ch, delta - 1);
 790
 791	return 0;
 792}
 793
 794static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
 795{
 796	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 797
 798	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
 799	clk_unprepare(ch->cmt->clk);
 800}
 801
 802static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
 803{
 804	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 805
 806	clk_prepare(ch->cmt->clk);
 807	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
 808}
 809
 810static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
 811				      const char *name)
 812{
 813	struct clock_event_device *ced = &ch->ced;
 814	int irq;
 815	int ret;
 816
 817	irq = platform_get_irq(ch->cmt->pdev, ch->index);
 818	if (irq < 0)
 
 
 819		return irq;
 
 820
 821	ret = request_irq(irq, sh_cmt_interrupt,
 822			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
 823			  dev_name(&ch->cmt->pdev->dev), ch);
 824	if (ret) {
 825		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
 826			ch->index, irq);
 827		return ret;
 828	}
 829
 830	ced->name = name;
 831	ced->features = CLOCK_EVT_FEAT_PERIODIC;
 832	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
 833	ced->rating = 125;
 834	ced->cpumask = cpu_possible_mask;
 835	ced->set_next_event = sh_cmt_clock_event_next;
 836	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
 837	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
 838	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
 839	ced->suspend = sh_cmt_clock_event_suspend;
 840	ced->resume = sh_cmt_clock_event_resume;
 841
 842	/* TODO: calculate good shift from rate and counter bit width */
 843	ced->shift = 32;
 844	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
 845	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
 846	ced->max_delta_ticks = ch->max_match_value;
 847	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
 848	ced->min_delta_ticks = 0x1f;
 849
 850	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
 851		 ch->index);
 852	clockevents_register_device(ced);
 853
 854	return 0;
 855}
 856
 857static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
 858			   bool clockevent, bool clocksource)
 859{
 860	int ret;
 861
 862	if (clockevent) {
 863		ch->cmt->has_clockevent = true;
 864		ret = sh_cmt_register_clockevent(ch, name);
 865		if (ret < 0)
 866			return ret;
 867	}
 868
 869	if (clocksource) {
 870		ch->cmt->has_clocksource = true;
 871		sh_cmt_register_clocksource(ch, name);
 872	}
 873
 874	return 0;
 875}
 876
 877static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
 878				unsigned int hwidx, bool clockevent,
 879				bool clocksource, struct sh_cmt_device *cmt)
 880{
 881	u32 value;
 882	int ret;
 883
 884	/* Skip unused channels. */
 885	if (!clockevent && !clocksource)
 886		return 0;
 887
 888	ch->cmt = cmt;
 889	ch->index = index;
 890	ch->hwidx = hwidx;
 891	ch->timer_bit = hwidx;
 892
 893	/*
 894	 * Compute the address of the channel control register block. For the
 895	 * timers with a per-channel start/stop register, compute its address
 896	 * as well.
 897	 */
 898	switch (cmt->info->model) {
 899	case SH_CMT_16BIT:
 900		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
 901		break;
 902	case SH_CMT_32BIT:
 903	case SH_CMT_48BIT:
 904		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
 905		break;
 906	case SH_CMT0_RCAR_GEN2:
 907	case SH_CMT1_RCAR_GEN2:
 908		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
 909		ch->ioctrl = ch->iostart + 0x10;
 910		ch->timer_bit = 0;
 911
 912		/* Enable the clock supply to the channel */
 913		value = ioread32(cmt->mapbase + CMCLKE);
 914		value |= BIT(hwidx);
 915		iowrite32(value, cmt->mapbase + CMCLKE);
 916		break;
 917	}
 918
 919	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
 920		ch->max_match_value = ~0;
 921	else
 922		ch->max_match_value = (1 << cmt->info->width) - 1;
 923
 924	ch->match_value = ch->max_match_value;
 925	raw_spin_lock_init(&ch->lock);
 926
 927	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
 928			      clockevent, clocksource);
 929	if (ret) {
 930		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
 931			ch->index);
 932		return ret;
 933	}
 934	ch->cs_enabled = false;
 935
 936	return 0;
 937}
 938
 939static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
 940{
 941	struct resource *mem;
 942
 943	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
 944	if (!mem) {
 945		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
 946		return -ENXIO;
 947	}
 948
 949	cmt->mapbase = ioremap(mem->start, resource_size(mem));
 950	if (cmt->mapbase == NULL) {
 951		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
 952		return -ENXIO;
 953	}
 954
 955	return 0;
 956}
 957
 958static const struct platform_device_id sh_cmt_id_table[] = {
 959	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
 960	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
 961	{ }
 962};
 963MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
 964
 965static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
 966	{
 967		/* deprecated, preserved for backward compatibility */
 968		.compatible = "renesas,cmt-48",
 969		.data = &sh_cmt_info[SH_CMT_48BIT]
 970	},
 971	{
 972		/* deprecated, preserved for backward compatibility */
 973		.compatible = "renesas,cmt-48-gen2",
 974		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 975	},
 976	{
 977		.compatible = "renesas,r8a7740-cmt1",
 978		.data = &sh_cmt_info[SH_CMT_48BIT]
 979	},
 980	{
 981		.compatible = "renesas,sh73a0-cmt1",
 982		.data = &sh_cmt_info[SH_CMT_48BIT]
 983	},
 984	{
 985		.compatible = "renesas,rcar-gen2-cmt0",
 986		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 987	},
 988	{
 989		.compatible = "renesas,rcar-gen2-cmt1",
 990		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
 991	},
 992	{
 993		.compatible = "renesas,rcar-gen3-cmt0",
 994		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 995	},
 996	{
 997		.compatible = "renesas,rcar-gen3-cmt1",
 998		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
 999	},
1000	{
1001		.compatible = "renesas,rcar-gen4-cmt0",
1002		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1003	},
1004	{
1005		.compatible = "renesas,rcar-gen4-cmt1",
1006		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1007	},
1008	{ }
1009};
1010MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
1011
1012static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
1013{
1014	unsigned int mask, i;
1015	unsigned long rate;
1016	int ret;
1017
1018	cmt->pdev = pdev;
1019	raw_spin_lock_init(&cmt->lock);
1020
1021	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
1022		cmt->info = of_device_get_match_data(&pdev->dev);
1023		cmt->hw_channels = cmt->info->channels_mask;
1024	} else if (pdev->dev.platform_data) {
1025		struct sh_timer_config *cfg = pdev->dev.platform_data;
1026		const struct platform_device_id *id = pdev->id_entry;
1027
1028		cmt->info = (const struct sh_cmt_info *)id->driver_data;
1029		cmt->hw_channels = cfg->channels_mask;
1030	} else {
1031		dev_err(&cmt->pdev->dev, "missing platform data\n");
1032		return -ENXIO;
1033	}
1034
1035	/* Get hold of clock. */
1036	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1037	if (IS_ERR(cmt->clk)) {
1038		dev_err(&cmt->pdev->dev, "cannot get clock\n");
1039		return PTR_ERR(cmt->clk);
1040	}
1041
1042	ret = clk_prepare(cmt->clk);
1043	if (ret < 0)
1044		goto err_clk_put;
1045
1046	/* Determine clock rate. */
1047	ret = clk_enable(cmt->clk);
1048	if (ret < 0)
1049		goto err_clk_unprepare;
1050
1051	rate = clk_get_rate(cmt->clk);
1052	if (!rate) {
1053		ret = -EINVAL;
1054		goto err_clk_disable;
1055	}
1056
1057	/* We shall wait 2 input clks after register writes */
1058	if (cmt->info->model >= SH_CMT_48BIT)
1059		cmt->reg_delay = DIV_ROUND_UP(2UL * USEC_PER_SEC, rate);
1060	cmt->rate = rate / (cmt->info->width == 16 ? 512 : 8);
1061
1062	/* Map the memory resource(s). */
1063	ret = sh_cmt_map_memory(cmt);
1064	if (ret < 0)
1065		goto err_clk_disable;
1066
1067	/* Allocate and setup the channels. */
1068	cmt->num_channels = hweight8(cmt->hw_channels);
1069	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1070				GFP_KERNEL);
1071	if (cmt->channels == NULL) {
1072		ret = -ENOMEM;
1073		goto err_unmap;
1074	}
1075
1076	/*
1077	 * Use the first channel as a clock event device and the second channel
1078	 * as a clock source. If only one channel is available use it for both.
1079	 */
1080	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1081		unsigned int hwidx = ffs(mask) - 1;
1082		bool clocksource = i == 1 || cmt->num_channels == 1;
1083		bool clockevent = i == 0;
1084
1085		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1086					   clockevent, clocksource, cmt);
1087		if (ret < 0)
1088			goto err_unmap;
1089
1090		mask &= ~(1 << hwidx);
1091	}
1092
1093	clk_disable(cmt->clk);
1094
1095	platform_set_drvdata(pdev, cmt);
1096
1097	return 0;
1098
1099err_unmap:
1100	kfree(cmt->channels);
1101	iounmap(cmt->mapbase);
1102err_clk_disable:
1103	clk_disable(cmt->clk);
1104err_clk_unprepare:
1105	clk_unprepare(cmt->clk);
1106err_clk_put:
1107	clk_put(cmt->clk);
1108	return ret;
1109}
1110
1111static int sh_cmt_probe(struct platform_device *pdev)
1112{
1113	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1114	int ret;
1115
1116	if (!is_sh_early_platform_device(pdev)) {
1117		pm_runtime_set_active(&pdev->dev);
1118		pm_runtime_enable(&pdev->dev);
1119	}
1120
1121	if (cmt) {
1122		dev_info(&pdev->dev, "kept as earlytimer\n");
1123		goto out;
1124	}
1125
1126	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1127	if (cmt == NULL)
1128		return -ENOMEM;
1129
1130	ret = sh_cmt_setup(cmt, pdev);
1131	if (ret) {
1132		kfree(cmt);
1133		pm_runtime_idle(&pdev->dev);
1134		return ret;
1135	}
1136	if (is_sh_early_platform_device(pdev))
1137		return 0;
1138
1139 out:
1140	if (cmt->has_clockevent || cmt->has_clocksource)
1141		pm_runtime_irq_safe(&pdev->dev);
1142	else
1143		pm_runtime_idle(&pdev->dev);
1144
1145	return 0;
1146}
1147
1148static int sh_cmt_remove(struct platform_device *pdev)
1149{
1150	return -EBUSY; /* cannot unregister clockevent and clocksource */
1151}
1152
1153static struct platform_driver sh_cmt_device_driver = {
1154	.probe		= sh_cmt_probe,
1155	.remove		= sh_cmt_remove,
1156	.driver		= {
1157		.name	= "sh_cmt",
1158		.of_match_table = of_match_ptr(sh_cmt_of_table),
1159	},
1160	.id_table	= sh_cmt_id_table,
1161};
1162
1163static int __init sh_cmt_init(void)
1164{
1165	return platform_driver_register(&sh_cmt_device_driver);
1166}
1167
1168static void __exit sh_cmt_exit(void)
1169{
1170	platform_driver_unregister(&sh_cmt_device_driver);
1171}
1172
1173#ifdef CONFIG_SUPERH
1174sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1175#endif
1176
1177subsys_initcall(sh_cmt_init);
1178module_exit(sh_cmt_exit);
1179
1180MODULE_AUTHOR("Magnus Damm");
1181MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1182MODULE_LICENSE("GPL v2");
v4.17
 
   1/*
   2 * SuperH Timer Support - CMT
   3 *
   4 *  Copyright (C) 2008 Magnus Damm
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 */
  15
  16#include <linux/clk.h>
  17#include <linux/clockchips.h>
  18#include <linux/clocksource.h>
  19#include <linux/delay.h>
  20#include <linux/err.h>
  21#include <linux/init.h>
  22#include <linux/interrupt.h>
  23#include <linux/io.h>
 
  24#include <linux/ioport.h>
  25#include <linux/irq.h>
  26#include <linux/module.h>
  27#include <linux/of.h>
  28#include <linux/of_device.h>
  29#include <linux/platform_device.h>
  30#include <linux/pm_domain.h>
  31#include <linux/pm_runtime.h>
  32#include <linux/sh_timer.h>
  33#include <linux/slab.h>
  34#include <linux/spinlock.h>
  35
 
 
 
 
  36struct sh_cmt_device;
  37
  38/*
  39 * The CMT comes in 5 different identified flavours, depending not only on the
  40 * SoC but also on the particular instance. The following table lists the main
  41 * characteristics of those flavours.
  42 *
  43 *			16B	32B	32B-F	48B	R-Car Gen2
  44 * -----------------------------------------------------------------------------
  45 * Channels		2	1/4	1	6	2/8
  46 * Control Width	16	16	16	16	32
  47 * Counter Width	16	32	32	32/48	32/48
  48 * Shared Start/Stop	Y	Y	Y	Y	N
  49 *
  50 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
  51 * located in the channel registers block. All other versions have a shared
  52 * start/stop register located in the global space.
  53 *
  54 * Channels are indexed from 0 to N-1 in the documentation. The channel index
  55 * infers the start/stop bit position in the control register and the channel
  56 * registers block address. Some CMT instances have a subset of channels
  57 * available, in which case the index in the documentation doesn't match the
  58 * "real" index as implemented in hardware. This is for instance the case with
  59 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
  60 * in the documentation but using start/stop bit 5 and having its registers
  61 * block at 0x60.
  62 *
  63 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
  64 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
  65 */
  66
  67enum sh_cmt_model {
  68	SH_CMT_16BIT,
  69	SH_CMT_32BIT,
  70	SH_CMT_48BIT,
  71	SH_CMT0_RCAR_GEN2,
  72	SH_CMT1_RCAR_GEN2,
  73};
  74
  75struct sh_cmt_info {
  76	enum sh_cmt_model model;
  77
  78	unsigned int channels_mask;
  79
  80	unsigned long width; /* 16 or 32 bit version of hardware block */
  81	unsigned long overflow_bit;
  82	unsigned long clear_bits;
  83
  84	/* callbacks for CMSTR and CMCSR access */
  85	unsigned long (*read_control)(void __iomem *base, unsigned long offs);
  86	void (*write_control)(void __iomem *base, unsigned long offs,
  87			      unsigned long value);
  88
  89	/* callbacks for CMCNT and CMCOR access */
  90	unsigned long (*read_count)(void __iomem *base, unsigned long offs);
  91	void (*write_count)(void __iomem *base, unsigned long offs,
  92			    unsigned long value);
  93};
  94
  95struct sh_cmt_channel {
  96	struct sh_cmt_device *cmt;
  97
  98	unsigned int index;	/* Index in the documentation */
  99	unsigned int hwidx;	/* Real hardware index */
 100
 101	void __iomem *iostart;
 102	void __iomem *ioctrl;
 103
 104	unsigned int timer_bit;
 105	unsigned long flags;
 106	unsigned long match_value;
 107	unsigned long next_match_value;
 108	unsigned long max_match_value;
 109	raw_spinlock_t lock;
 110	struct clock_event_device ced;
 111	struct clocksource cs;
 112	unsigned long total_cycles;
 113	bool cs_enabled;
 114};
 115
 116struct sh_cmt_device {
 117	struct platform_device *pdev;
 118
 119	const struct sh_cmt_info *info;
 120
 121	void __iomem *mapbase;
 122	struct clk *clk;
 123	unsigned long rate;
 
 124
 125	raw_spinlock_t lock; /* Protect the shared start/stop register */
 126
 127	struct sh_cmt_channel *channels;
 128	unsigned int num_channels;
 129	unsigned int hw_channels;
 130
 131	bool has_clockevent;
 132	bool has_clocksource;
 133};
 134
 135#define SH_CMT16_CMCSR_CMF		(1 << 7)
 136#define SH_CMT16_CMCSR_CMIE		(1 << 6)
 137#define SH_CMT16_CMCSR_CKS8		(0 << 0)
 138#define SH_CMT16_CMCSR_CKS32		(1 << 0)
 139#define SH_CMT16_CMCSR_CKS128		(2 << 0)
 140#define SH_CMT16_CMCSR_CKS512		(3 << 0)
 141#define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
 142
 143#define SH_CMT32_CMCSR_CMF		(1 << 15)
 144#define SH_CMT32_CMCSR_OVF		(1 << 14)
 145#define SH_CMT32_CMCSR_WRFLG		(1 << 13)
 146#define SH_CMT32_CMCSR_STTF		(1 << 12)
 147#define SH_CMT32_CMCSR_STPF		(1 << 11)
 148#define SH_CMT32_CMCSR_SSIE		(1 << 10)
 149#define SH_CMT32_CMCSR_CMS		(1 << 9)
 150#define SH_CMT32_CMCSR_CMM		(1 << 8)
 151#define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
 152#define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
 153#define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
 154#define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
 155#define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
 156#define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
 157#define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
 158#define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
 159#define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
 160#define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
 161#define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
 162
 163static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
 164{
 165	return ioread16(base + (offs << 1));
 166}
 167
 168static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
 169{
 170	return ioread32(base + (offs << 2));
 171}
 172
 173static void sh_cmt_write16(void __iomem *base, unsigned long offs,
 174			   unsigned long value)
 175{
 176	iowrite16(value, base + (offs << 1));
 177}
 178
 179static void sh_cmt_write32(void __iomem *base, unsigned long offs,
 180			   unsigned long value)
 181{
 182	iowrite32(value, base + (offs << 2));
 183}
 184
 185static const struct sh_cmt_info sh_cmt_info[] = {
 186	[SH_CMT_16BIT] = {
 187		.model = SH_CMT_16BIT,
 188		.width = 16,
 189		.overflow_bit = SH_CMT16_CMCSR_CMF,
 190		.clear_bits = ~SH_CMT16_CMCSR_CMF,
 191		.read_control = sh_cmt_read16,
 192		.write_control = sh_cmt_write16,
 193		.read_count = sh_cmt_read16,
 194		.write_count = sh_cmt_write16,
 195	},
 196	[SH_CMT_32BIT] = {
 197		.model = SH_CMT_32BIT,
 198		.width = 32,
 199		.overflow_bit = SH_CMT32_CMCSR_CMF,
 200		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 201		.read_control = sh_cmt_read16,
 202		.write_control = sh_cmt_write16,
 203		.read_count = sh_cmt_read32,
 204		.write_count = sh_cmt_write32,
 205	},
 206	[SH_CMT_48BIT] = {
 207		.model = SH_CMT_48BIT,
 208		.channels_mask = 0x3f,
 209		.width = 32,
 210		.overflow_bit = SH_CMT32_CMCSR_CMF,
 211		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 212		.read_control = sh_cmt_read32,
 213		.write_control = sh_cmt_write32,
 214		.read_count = sh_cmt_read32,
 215		.write_count = sh_cmt_write32,
 216	},
 217	[SH_CMT0_RCAR_GEN2] = {
 218		.model = SH_CMT0_RCAR_GEN2,
 219		.channels_mask = 0x60,
 220		.width = 32,
 221		.overflow_bit = SH_CMT32_CMCSR_CMF,
 222		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 223		.read_control = sh_cmt_read32,
 224		.write_control = sh_cmt_write32,
 225		.read_count = sh_cmt_read32,
 226		.write_count = sh_cmt_write32,
 227	},
 228	[SH_CMT1_RCAR_GEN2] = {
 229		.model = SH_CMT1_RCAR_GEN2,
 230		.channels_mask = 0xff,
 231		.width = 32,
 232		.overflow_bit = SH_CMT32_CMCSR_CMF,
 233		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 234		.read_control = sh_cmt_read32,
 235		.write_control = sh_cmt_write32,
 236		.read_count = sh_cmt_read32,
 237		.write_count = sh_cmt_write32,
 238	},
 239};
 240
 241#define CMCSR 0 /* channel register */
 242#define CMCNT 1 /* channel register */
 243#define CMCOR 2 /* channel register */
 244
 245static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
 
 
 246{
 247	if (ch->iostart)
 248		return ch->cmt->info->read_control(ch->iostart, 0);
 249	else
 250		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
 251}
 252
 253static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch,
 254				      unsigned long value)
 255{
 256	if (ch->iostart)
 257		ch->cmt->info->write_control(ch->iostart, 0, value);
 258	else
 259		ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
 
 
 
 
 
 
 
 260}
 261
 262static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
 263{
 264	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
 265}
 266
 267static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch,
 268				      unsigned long value)
 269{
 270	ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
 
 
 
 
 
 271}
 272
 273static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
 274{
 275	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
 276}
 277
 278static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch,
 279				      unsigned long value)
 280{
 
 
 
 
 
 
 
 
 
 
 
 
 281	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
 
 
 282}
 283
 284static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch,
 285				      unsigned long value)
 286{
 287	ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
 
 
 
 
 
 288}
 289
 290static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch,
 291					int *has_wrapped)
 292{
 293	unsigned long v1, v2, v3;
 294	int o1, o2;
 295
 296	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 297
 298	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
 299	do {
 300		o2 = o1;
 301		v1 = sh_cmt_read_cmcnt(ch);
 302		v2 = sh_cmt_read_cmcnt(ch);
 303		v3 = sh_cmt_read_cmcnt(ch);
 304		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 305	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
 306			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
 307
 308	*has_wrapped = o1;
 309	return v2;
 310}
 311
 312static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
 313{
 314	unsigned long flags, value;
 
 315
 316	/* start stop register shared by multiple timer channels */
 317	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
 318	value = sh_cmt_read_cmstr(ch);
 319
 320	if (start)
 321		value |= 1 << ch->timer_bit;
 322	else
 323		value &= ~(1 << ch->timer_bit);
 324
 325	sh_cmt_write_cmstr(ch, value);
 326	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
 327}
 328
 329static int sh_cmt_enable(struct sh_cmt_channel *ch)
 330{
 331	int k, ret;
 332
 333	pm_runtime_get_sync(&ch->cmt->pdev->dev);
 334	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
 335
 336	/* enable clock */
 337	ret = clk_enable(ch->cmt->clk);
 338	if (ret) {
 339		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
 340			ch->index);
 341		goto err0;
 342	}
 343
 344	/* make sure channel is disabled */
 345	sh_cmt_start_stop_ch(ch, 0);
 346
 347	/* configure channel, periodic mode and maximum timeout */
 348	if (ch->cmt->info->width == 16) {
 349		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
 350				   SH_CMT16_CMCSR_CKS512);
 351	} else {
 352		sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
 353				   SH_CMT32_CMCSR_CMTOUT_IE |
 
 354				   SH_CMT32_CMCSR_CMR_IRQ |
 355				   SH_CMT32_CMCSR_CKS_RCLK8);
 356	}
 357
 358	sh_cmt_write_cmcor(ch, 0xffffffff);
 359	sh_cmt_write_cmcnt(ch, 0);
 360
 361	/*
 362	 * According to the sh73a0 user's manual, as CMCNT can be operated
 363	 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
 364	 * modifying CMCNT register; two RCLK cycles are necessary before
 365	 * this register is either read or any modification of the value
 366	 * it holds is reflected in the LSI's actual operation.
 367	 *
 368	 * While at it, we're supposed to clear out the CMCNT as of this
 369	 * moment, so make sure it's processed properly here.  This will
 370	 * take RCLKx2 at maximum.
 371	 */
 372	for (k = 0; k < 100; k++) {
 373		if (!sh_cmt_read_cmcnt(ch))
 374			break;
 375		udelay(1);
 376	}
 377
 378	if (sh_cmt_read_cmcnt(ch)) {
 379		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
 380			ch->index);
 381		ret = -ETIMEDOUT;
 382		goto err1;
 383	}
 384
 385	/* enable channel */
 386	sh_cmt_start_stop_ch(ch, 1);
 387	return 0;
 388 err1:
 389	/* stop clock */
 390	clk_disable(ch->cmt->clk);
 391
 392 err0:
 393	return ret;
 394}
 395
 396static void sh_cmt_disable(struct sh_cmt_channel *ch)
 397{
 398	/* disable channel */
 399	sh_cmt_start_stop_ch(ch, 0);
 400
 401	/* disable interrupts in CMT block */
 402	sh_cmt_write_cmcsr(ch, 0);
 403
 404	/* stop clock */
 405	clk_disable(ch->cmt->clk);
 406
 407	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
 408	pm_runtime_put(&ch->cmt->pdev->dev);
 409}
 410
 411/* private flags */
 412#define FLAG_CLOCKEVENT (1 << 0)
 413#define FLAG_CLOCKSOURCE (1 << 1)
 414#define FLAG_REPROGRAM (1 << 2)
 415#define FLAG_SKIPEVENT (1 << 3)
 416#define FLAG_IRQCONTEXT (1 << 4)
 417
 418static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
 419					      int absolute)
 420{
 421	unsigned long new_match;
 422	unsigned long value = ch->next_match_value;
 423	unsigned long delay = 0;
 424	unsigned long now = 0;
 425	int has_wrapped;
 426
 427	now = sh_cmt_get_counter(ch, &has_wrapped);
 428	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
 429
 430	if (has_wrapped) {
 431		/* we're competing with the interrupt handler.
 432		 *  -> let the interrupt handler reprogram the timer.
 433		 *  -> interrupt number two handles the event.
 434		 */
 435		ch->flags |= FLAG_SKIPEVENT;
 436		return;
 437	}
 438
 439	if (absolute)
 440		now = 0;
 441
 442	do {
 443		/* reprogram the timer hardware,
 444		 * but don't save the new match value yet.
 445		 */
 446		new_match = now + value + delay;
 447		if (new_match > ch->max_match_value)
 448			new_match = ch->max_match_value;
 449
 450		sh_cmt_write_cmcor(ch, new_match);
 451
 452		now = sh_cmt_get_counter(ch, &has_wrapped);
 453		if (has_wrapped && (new_match > ch->match_value)) {
 454			/* we are changing to a greater match value,
 455			 * so this wrap must be caused by the counter
 456			 * matching the old value.
 457			 * -> first interrupt reprograms the timer.
 458			 * -> interrupt number two handles the event.
 459			 */
 460			ch->flags |= FLAG_SKIPEVENT;
 461			break;
 462		}
 463
 464		if (has_wrapped) {
 465			/* we are changing to a smaller match value,
 466			 * so the wrap must be caused by the counter
 467			 * matching the new value.
 468			 * -> save programmed match value.
 469			 * -> let isr handle the event.
 470			 */
 471			ch->match_value = new_match;
 472			break;
 473		}
 474
 475		/* be safe: verify hardware settings */
 476		if (now < new_match) {
 477			/* timer value is below match value, all good.
 478			 * this makes sure we won't miss any match events.
 479			 * -> save programmed match value.
 480			 * -> let isr handle the event.
 481			 */
 482			ch->match_value = new_match;
 483			break;
 484		}
 485
 486		/* the counter has reached a value greater
 487		 * than our new match value. and since the
 488		 * has_wrapped flag isn't set we must have
 489		 * programmed a too close event.
 490		 * -> increase delay and retry.
 491		 */
 492		if (delay)
 493			delay <<= 1;
 494		else
 495			delay = 1;
 496
 497		if (!delay)
 498			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
 499				 ch->index);
 500
 501	} while (delay);
 502}
 503
 504static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 505{
 506	if (delta > ch->max_match_value)
 507		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
 508			 ch->index);
 509
 510	ch->next_match_value = delta;
 511	sh_cmt_clock_event_program_verify(ch, 0);
 512}
 513
 514static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 515{
 516	unsigned long flags;
 517
 518	raw_spin_lock_irqsave(&ch->lock, flags);
 519	__sh_cmt_set_next(ch, delta);
 520	raw_spin_unlock_irqrestore(&ch->lock, flags);
 521}
 522
 523static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
 524{
 525	struct sh_cmt_channel *ch = dev_id;
 526
 527	/* clear flags */
 528	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
 529			   ch->cmt->info->clear_bits);
 530
 531	/* update clock source counter to begin with if enabled
 532	 * the wrap flag should be cleared by the timer specific
 533	 * isr before we end up here.
 534	 */
 535	if (ch->flags & FLAG_CLOCKSOURCE)
 536		ch->total_cycles += ch->match_value + 1;
 537
 538	if (!(ch->flags & FLAG_REPROGRAM))
 539		ch->next_match_value = ch->max_match_value;
 540
 541	ch->flags |= FLAG_IRQCONTEXT;
 542
 543	if (ch->flags & FLAG_CLOCKEVENT) {
 544		if (!(ch->flags & FLAG_SKIPEVENT)) {
 545			if (clockevent_state_oneshot(&ch->ced)) {
 546				ch->next_match_value = ch->max_match_value;
 547				ch->flags |= FLAG_REPROGRAM;
 548			}
 549
 550			ch->ced.event_handler(&ch->ced);
 551		}
 552	}
 553
 554	ch->flags &= ~FLAG_SKIPEVENT;
 555
 556	if (ch->flags & FLAG_REPROGRAM) {
 557		ch->flags &= ~FLAG_REPROGRAM;
 558		sh_cmt_clock_event_program_verify(ch, 1);
 559
 560		if (ch->flags & FLAG_CLOCKEVENT)
 561			if ((clockevent_state_shutdown(&ch->ced))
 562			    || (ch->match_value == ch->next_match_value))
 563				ch->flags &= ~FLAG_REPROGRAM;
 564	}
 565
 566	ch->flags &= ~FLAG_IRQCONTEXT;
 567
 568	return IRQ_HANDLED;
 569}
 570
 571static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
 572{
 573	int ret = 0;
 574	unsigned long flags;
 575
 
 
 
 576	raw_spin_lock_irqsave(&ch->lock, flags);
 577
 578	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
 
 
 579		ret = sh_cmt_enable(ch);
 
 580
 581	if (ret)
 582		goto out;
 583	ch->flags |= flag;
 584
 585	/* setup timeout if no clockevent */
 586	if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
 
 587		__sh_cmt_set_next(ch, ch->max_match_value);
 588 out:
 589	raw_spin_unlock_irqrestore(&ch->lock, flags);
 590
 591	return ret;
 592}
 593
 594static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
 595{
 596	unsigned long flags;
 597	unsigned long f;
 598
 599	raw_spin_lock_irqsave(&ch->lock, flags);
 600
 601	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
 602	ch->flags &= ~flag;
 603
 604	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
 605		sh_cmt_disable(ch);
 
 
 
 606
 607	/* adjust the timeout to maximum if only clocksource left */
 608	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
 609		__sh_cmt_set_next(ch, ch->max_match_value);
 610
 611	raw_spin_unlock_irqrestore(&ch->lock, flags);
 
 
 
 612}
 613
 614static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
 615{
 616	return container_of(cs, struct sh_cmt_channel, cs);
 617}
 618
 619static u64 sh_cmt_clocksource_read(struct clocksource *cs)
 620{
 621	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 622	unsigned long flags, raw;
 623	unsigned long value;
 624	int has_wrapped;
 
 
 
 625
 626	raw_spin_lock_irqsave(&ch->lock, flags);
 627	value = ch->total_cycles;
 628	raw = sh_cmt_get_counter(ch, &has_wrapped);
 
 
 
 
 629
 630	if (unlikely(has_wrapped))
 631		raw += ch->match_value + 1;
 632	raw_spin_unlock_irqrestore(&ch->lock, flags);
 633
 634	return value + raw;
 635}
 636
 637static int sh_cmt_clocksource_enable(struct clocksource *cs)
 638{
 639	int ret;
 640	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 641
 642	WARN_ON(ch->cs_enabled);
 643
 644	ch->total_cycles = 0;
 645
 646	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 647	if (!ret)
 648		ch->cs_enabled = true;
 649
 650	return ret;
 651}
 652
 653static void sh_cmt_clocksource_disable(struct clocksource *cs)
 654{
 655	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 656
 657	WARN_ON(!ch->cs_enabled);
 658
 659	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 660	ch->cs_enabled = false;
 661}
 662
 663static void sh_cmt_clocksource_suspend(struct clocksource *cs)
 664{
 665	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 666
 667	if (!ch->cs_enabled)
 668		return;
 669
 670	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 671	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
 672}
 673
 674static void sh_cmt_clocksource_resume(struct clocksource *cs)
 675{
 676	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 677
 678	if (!ch->cs_enabled)
 679		return;
 680
 681	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
 682	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 683}
 684
 685static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
 686				       const char *name)
 687{
 688	struct clocksource *cs = &ch->cs;
 689
 690	cs->name = name;
 691	cs->rating = 125;
 692	cs->read = sh_cmt_clocksource_read;
 693	cs->enable = sh_cmt_clocksource_enable;
 694	cs->disable = sh_cmt_clocksource_disable;
 695	cs->suspend = sh_cmt_clocksource_suspend;
 696	cs->resume = sh_cmt_clocksource_resume;
 697	cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
 698	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
 699
 700	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
 701		 ch->index);
 702
 703	clocksource_register_hz(cs, ch->cmt->rate);
 704	return 0;
 705}
 706
 707static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
 708{
 709	return container_of(ced, struct sh_cmt_channel, ced);
 710}
 711
 712static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
 713{
 714	sh_cmt_start(ch, FLAG_CLOCKEVENT);
 715
 716	if (periodic)
 717		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
 718	else
 719		sh_cmt_set_next(ch, ch->max_match_value);
 720}
 721
 722static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
 723{
 724	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 725
 726	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 727	return 0;
 728}
 729
 730static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
 731					int periodic)
 732{
 733	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 734
 735	/* deal with old setting first */
 736	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
 737		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 738
 739	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
 740		 ch->index, periodic ? "periodic" : "oneshot");
 741	sh_cmt_clock_event_start(ch, periodic);
 742	return 0;
 743}
 744
 745static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
 746{
 747	return sh_cmt_clock_event_set_state(ced, 0);
 748}
 749
 750static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
 751{
 752	return sh_cmt_clock_event_set_state(ced, 1);
 753}
 754
 755static int sh_cmt_clock_event_next(unsigned long delta,
 756				   struct clock_event_device *ced)
 757{
 758	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 759
 760	BUG_ON(!clockevent_state_oneshot(ced));
 761	if (likely(ch->flags & FLAG_IRQCONTEXT))
 762		ch->next_match_value = delta - 1;
 763	else
 764		sh_cmt_set_next(ch, delta - 1);
 765
 766	return 0;
 767}
 768
 769static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
 770{
 771	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 772
 773	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
 774	clk_unprepare(ch->cmt->clk);
 775}
 776
 777static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
 778{
 779	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 780
 781	clk_prepare(ch->cmt->clk);
 782	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
 783}
 784
 785static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
 786				      const char *name)
 787{
 788	struct clock_event_device *ced = &ch->ced;
 789	int irq;
 790	int ret;
 791
 792	irq = platform_get_irq(ch->cmt->pdev, ch->index);
 793	if (irq < 0) {
 794		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
 795			ch->index);
 796		return irq;
 797	}
 798
 799	ret = request_irq(irq, sh_cmt_interrupt,
 800			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
 801			  dev_name(&ch->cmt->pdev->dev), ch);
 802	if (ret) {
 803		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
 804			ch->index, irq);
 805		return ret;
 806	}
 807
 808	ced->name = name;
 809	ced->features = CLOCK_EVT_FEAT_PERIODIC;
 810	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
 811	ced->rating = 125;
 812	ced->cpumask = cpu_possible_mask;
 813	ced->set_next_event = sh_cmt_clock_event_next;
 814	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
 815	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
 816	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
 817	ced->suspend = sh_cmt_clock_event_suspend;
 818	ced->resume = sh_cmt_clock_event_resume;
 819
 820	/* TODO: calculate good shift from rate and counter bit width */
 821	ced->shift = 32;
 822	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
 823	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
 824	ced->max_delta_ticks = ch->max_match_value;
 825	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
 826	ced->min_delta_ticks = 0x1f;
 827
 828	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
 829		 ch->index);
 830	clockevents_register_device(ced);
 831
 832	return 0;
 833}
 834
 835static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
 836			   bool clockevent, bool clocksource)
 837{
 838	int ret;
 839
 840	if (clockevent) {
 841		ch->cmt->has_clockevent = true;
 842		ret = sh_cmt_register_clockevent(ch, name);
 843		if (ret < 0)
 844			return ret;
 845	}
 846
 847	if (clocksource) {
 848		ch->cmt->has_clocksource = true;
 849		sh_cmt_register_clocksource(ch, name);
 850	}
 851
 852	return 0;
 853}
 854
 855static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
 856				unsigned int hwidx, bool clockevent,
 857				bool clocksource, struct sh_cmt_device *cmt)
 858{
 
 859	int ret;
 860
 861	/* Skip unused channels. */
 862	if (!clockevent && !clocksource)
 863		return 0;
 864
 865	ch->cmt = cmt;
 866	ch->index = index;
 867	ch->hwidx = hwidx;
 868	ch->timer_bit = hwidx;
 869
 870	/*
 871	 * Compute the address of the channel control register block. For the
 872	 * timers with a per-channel start/stop register, compute its address
 873	 * as well.
 874	 */
 875	switch (cmt->info->model) {
 876	case SH_CMT_16BIT:
 877		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
 878		break;
 879	case SH_CMT_32BIT:
 880	case SH_CMT_48BIT:
 881		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
 882		break;
 883	case SH_CMT0_RCAR_GEN2:
 884	case SH_CMT1_RCAR_GEN2:
 885		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
 886		ch->ioctrl = ch->iostart + 0x10;
 887		ch->timer_bit = 0;
 
 
 
 
 
 888		break;
 889	}
 890
 891	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
 892		ch->max_match_value = ~0;
 893	else
 894		ch->max_match_value = (1 << cmt->info->width) - 1;
 895
 896	ch->match_value = ch->max_match_value;
 897	raw_spin_lock_init(&ch->lock);
 898
 899	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
 900			      clockevent, clocksource);
 901	if (ret) {
 902		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
 903			ch->index);
 904		return ret;
 905	}
 906	ch->cs_enabled = false;
 907
 908	return 0;
 909}
 910
 911static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
 912{
 913	struct resource *mem;
 914
 915	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
 916	if (!mem) {
 917		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
 918		return -ENXIO;
 919	}
 920
 921	cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
 922	if (cmt->mapbase == NULL) {
 923		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
 924		return -ENXIO;
 925	}
 926
 927	return 0;
 928}
 929
 930static const struct platform_device_id sh_cmt_id_table[] = {
 931	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
 932	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
 933	{ }
 934};
 935MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
 936
 937static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
 938	{ .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] },
 
 
 
 
 939	{
 940		/* deprecated, preserved for backward compatibility */
 941		.compatible = "renesas,cmt-48-gen2",
 942		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 943	},
 944	{ .compatible = "renesas,rcar-gen2-cmt0", .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2] },
 945	{ .compatible = "renesas,rcar-gen2-cmt1", .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2] },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 946	{ }
 947};
 948MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
 949
 950static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
 951{
 952	unsigned int mask;
 953	unsigned int i;
 954	int ret;
 955
 956	cmt->pdev = pdev;
 957	raw_spin_lock_init(&cmt->lock);
 958
 959	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
 960		cmt->info = of_device_get_match_data(&pdev->dev);
 961		cmt->hw_channels = cmt->info->channels_mask;
 962	} else if (pdev->dev.platform_data) {
 963		struct sh_timer_config *cfg = pdev->dev.platform_data;
 964		const struct platform_device_id *id = pdev->id_entry;
 965
 966		cmt->info = (const struct sh_cmt_info *)id->driver_data;
 967		cmt->hw_channels = cfg->channels_mask;
 968	} else {
 969		dev_err(&cmt->pdev->dev, "missing platform data\n");
 970		return -ENXIO;
 971	}
 972
 973	/* Get hold of clock. */
 974	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
 975	if (IS_ERR(cmt->clk)) {
 976		dev_err(&cmt->pdev->dev, "cannot get clock\n");
 977		return PTR_ERR(cmt->clk);
 978	}
 979
 980	ret = clk_prepare(cmt->clk);
 981	if (ret < 0)
 982		goto err_clk_put;
 983
 984	/* Determine clock rate. */
 985	ret = clk_enable(cmt->clk);
 986	if (ret < 0)
 987		goto err_clk_unprepare;
 988
 989	if (cmt->info->width == 16)
 990		cmt->rate = clk_get_rate(cmt->clk) / 512;
 991	else
 992		cmt->rate = clk_get_rate(cmt->clk) / 8;
 
 993
 994	clk_disable(cmt->clk);
 
 
 
 995
 996	/* Map the memory resource(s). */
 997	ret = sh_cmt_map_memory(cmt);
 998	if (ret < 0)
 999		goto err_clk_unprepare;
1000
1001	/* Allocate and setup the channels. */
1002	cmt->num_channels = hweight8(cmt->hw_channels);
1003	cmt->channels = kzalloc(cmt->num_channels * sizeof(*cmt->channels),
1004				GFP_KERNEL);
1005	if (cmt->channels == NULL) {
1006		ret = -ENOMEM;
1007		goto err_unmap;
1008	}
1009
1010	/*
1011	 * Use the first channel as a clock event device and the second channel
1012	 * as a clock source. If only one channel is available use it for both.
1013	 */
1014	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1015		unsigned int hwidx = ffs(mask) - 1;
1016		bool clocksource = i == 1 || cmt->num_channels == 1;
1017		bool clockevent = i == 0;
1018
1019		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1020					   clockevent, clocksource, cmt);
1021		if (ret < 0)
1022			goto err_unmap;
1023
1024		mask &= ~(1 << hwidx);
1025	}
1026
 
 
1027	platform_set_drvdata(pdev, cmt);
1028
1029	return 0;
1030
1031err_unmap:
1032	kfree(cmt->channels);
1033	iounmap(cmt->mapbase);
 
 
1034err_clk_unprepare:
1035	clk_unprepare(cmt->clk);
1036err_clk_put:
1037	clk_put(cmt->clk);
1038	return ret;
1039}
1040
1041static int sh_cmt_probe(struct platform_device *pdev)
1042{
1043	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1044	int ret;
1045
1046	if (!is_early_platform_device(pdev)) {
1047		pm_runtime_set_active(&pdev->dev);
1048		pm_runtime_enable(&pdev->dev);
1049	}
1050
1051	if (cmt) {
1052		dev_info(&pdev->dev, "kept as earlytimer\n");
1053		goto out;
1054	}
1055
1056	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1057	if (cmt == NULL)
1058		return -ENOMEM;
1059
1060	ret = sh_cmt_setup(cmt, pdev);
1061	if (ret) {
1062		kfree(cmt);
1063		pm_runtime_idle(&pdev->dev);
1064		return ret;
1065	}
1066	if (is_early_platform_device(pdev))
1067		return 0;
1068
1069 out:
1070	if (cmt->has_clockevent || cmt->has_clocksource)
1071		pm_runtime_irq_safe(&pdev->dev);
1072	else
1073		pm_runtime_idle(&pdev->dev);
1074
1075	return 0;
1076}
1077
1078static int sh_cmt_remove(struct platform_device *pdev)
1079{
1080	return -EBUSY; /* cannot unregister clockevent and clocksource */
1081}
1082
1083static struct platform_driver sh_cmt_device_driver = {
1084	.probe		= sh_cmt_probe,
1085	.remove		= sh_cmt_remove,
1086	.driver		= {
1087		.name	= "sh_cmt",
1088		.of_match_table = of_match_ptr(sh_cmt_of_table),
1089	},
1090	.id_table	= sh_cmt_id_table,
1091};
1092
1093static int __init sh_cmt_init(void)
1094{
1095	return platform_driver_register(&sh_cmt_device_driver);
1096}
1097
1098static void __exit sh_cmt_exit(void)
1099{
1100	platform_driver_unregister(&sh_cmt_device_driver);
1101}
1102
1103early_platform_init("earlytimer", &sh_cmt_device_driver);
 
 
 
1104subsys_initcall(sh_cmt_init);
1105module_exit(sh_cmt_exit);
1106
1107MODULE_AUTHOR("Magnus Damm");
1108MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1109MODULE_LICENSE("GPL v2");