Linux Audio

Check our new training course

Loading...
v6.2
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 *  Copyright (C) 1991,1992  Linus Torvalds
   4 *
   5 * entry_32.S contains the system-call and low-level fault and trap handling routines.
   6 *
   7 * Stack layout while running C code:
   8 *	ptrace needs to have all registers on the stack.
   9 *	If the order here is changed, it needs to be
  10 *	updated in fork.c:copy_process(), signal.c:do_signal(),
  11 *	ptrace.c and ptrace.h
  12 *
  13 *	 0(%esp) - %ebx
  14 *	 4(%esp) - %ecx
  15 *	 8(%esp) - %edx
  16 *	 C(%esp) - %esi
  17 *	10(%esp) - %edi
  18 *	14(%esp) - %ebp
  19 *	18(%esp) - %eax
  20 *	1C(%esp) - %ds
  21 *	20(%esp) - %es
  22 *	24(%esp) - %fs
  23 *	28(%esp) - unused -- was %gs on old stackprotector kernels
  24 *	2C(%esp) - orig_eax
  25 *	30(%esp) - %eip
  26 *	34(%esp) - %cs
  27 *	38(%esp) - %eflags
  28 *	3C(%esp) - %oldesp
  29 *	40(%esp) - %oldss
  30 */
  31
  32#include <linux/linkage.h>
  33#include <linux/err.h>
  34#include <asm/thread_info.h>
  35#include <asm/irqflags.h>
  36#include <asm/errno.h>
  37#include <asm/segment.h>
  38#include <asm/smp.h>
  39#include <asm/percpu.h>
  40#include <asm/processor-flags.h>
  41#include <asm/irq_vectors.h>
  42#include <asm/cpufeatures.h>
  43#include <asm/alternative.h>
  44#include <asm/asm.h>
  45#include <asm/smap.h>
  46#include <asm/frame.h>
  47#include <asm/trapnr.h>
  48#include <asm/nospec-branch.h>
  49
  50#include "calling.h"
  51
  52	.section .entry.text, "ax"
  53
  54#define PTI_SWITCH_MASK         (1 << PAGE_SHIFT)
  55
  56/* Unconditionally switch to user cr3 */
  57.macro SWITCH_TO_USER_CR3 scratch_reg:req
  58	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
  59
  60	movl	%cr3, \scratch_reg
  61	orl	$PTI_SWITCH_MASK, \scratch_reg
  62	movl	\scratch_reg, %cr3
  63.Lend_\@:
  64.endm
  65
  66.macro BUG_IF_WRONG_CR3 no_user_check=0
  67#ifdef CONFIG_DEBUG_ENTRY
  68	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
  69	.if \no_user_check == 0
  70	/* coming from usermode? */
  71	testl	$USER_SEGMENT_RPL_MASK, PT_CS(%esp)
  72	jz	.Lend_\@
  73	.endif
  74	/* On user-cr3? */
  75	movl	%cr3, %eax
  76	testl	$PTI_SWITCH_MASK, %eax
  77	jnz	.Lend_\@
  78	/* From userspace with kernel cr3 - BUG */
  79	ud2
  80.Lend_\@:
  81#endif
  82.endm
  83
  84/*
  85 * Switch to kernel cr3 if not already loaded and return current cr3 in
  86 * \scratch_reg
 
 
 
 
 
 
 
 
  87 */
  88.macro SWITCH_TO_KERNEL_CR3 scratch_reg:req
  89	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
  90	movl	%cr3, \scratch_reg
  91	/* Test if we are already on kernel CR3 */
  92	testl	$PTI_SWITCH_MASK, \scratch_reg
  93	jz	.Lend_\@
  94	andl	$(~PTI_SWITCH_MASK), \scratch_reg
  95	movl	\scratch_reg, %cr3
  96	/* Return original CR3 in \scratch_reg */
  97	orl	$PTI_SWITCH_MASK, \scratch_reg
  98.Lend_\@:
  99.endm
 100
 101#define CS_FROM_ENTRY_STACK	(1 << 31)
 102#define CS_FROM_USER_CR3	(1 << 30)
 103#define CS_FROM_KERNEL		(1 << 29)
 104#define CS_FROM_ESPFIX		(1 << 28)
 105
 106.macro FIXUP_FRAME
 107	/*
 108	 * The high bits of the CS dword (__csh) are used for CS_FROM_*.
 109	 * Clear them in case hardware didn't do this for us.
 110	 */
 111	andl	$0x0000ffff, 4*4(%esp)
 112
 113#ifdef CONFIG_VM86
 114	testl	$X86_EFLAGS_VM, 5*4(%esp)
 115	jnz	.Lfrom_usermode_no_fixup_\@
 116#endif
 117	testl	$USER_SEGMENT_RPL_MASK, 4*4(%esp)
 118	jnz	.Lfrom_usermode_no_fixup_\@
 119
 120	orl	$CS_FROM_KERNEL, 4*4(%esp)
 
 
 
 
 
 
 
 121
 122	/*
 123	 * When we're here from kernel mode; the (exception) stack looks like:
 124	 *
 125	 *  6*4(%esp) - <previous context>
 126	 *  5*4(%esp) - flags
 127	 *  4*4(%esp) - cs
 128	 *  3*4(%esp) - ip
 129	 *  2*4(%esp) - orig_eax
 130	 *  1*4(%esp) - gs / function
 131	 *  0*4(%esp) - fs
 132	 *
 133	 * Lets build a 5 entry IRET frame after that, such that struct pt_regs
 134	 * is complete and in particular regs->sp is correct. This gives us
 135	 * the original 6 entries as gap:
 136	 *
 137	 * 14*4(%esp) - <previous context>
 138	 * 13*4(%esp) - gap / flags
 139	 * 12*4(%esp) - gap / cs
 140	 * 11*4(%esp) - gap / ip
 141	 * 10*4(%esp) - gap / orig_eax
 142	 *  9*4(%esp) - gap / gs / function
 143	 *  8*4(%esp) - gap / fs
 144	 *  7*4(%esp) - ss
 145	 *  6*4(%esp) - sp
 146	 *  5*4(%esp) - flags
 147	 *  4*4(%esp) - cs
 148	 *  3*4(%esp) - ip
 149	 *  2*4(%esp) - orig_eax
 150	 *  1*4(%esp) - gs / function
 151	 *  0*4(%esp) - fs
 152	 */
 153
 154	pushl	%ss		# ss
 155	pushl	%esp		# sp (points at ss)
 156	addl	$7*4, (%esp)	# point sp back at the previous context
 157	pushl	7*4(%esp)	# flags
 158	pushl	7*4(%esp)	# cs
 159	pushl	7*4(%esp)	# ip
 160	pushl	7*4(%esp)	# orig_eax
 161	pushl	7*4(%esp)	# gs / function
 162	pushl	7*4(%esp)	# fs
 163.Lfrom_usermode_no_fixup_\@:
 164.endm
 165
 166.macro IRET_FRAME
 167	/*
 168	 * We're called with %ds, %es, %fs, and %gs from the interrupted
 169	 * frame, so we shouldn't use them.  Also, we may be in ESPFIX
 170	 * mode and therefore have a nonzero SS base and an offset ESP,
 171	 * so any attempt to access the stack needs to use SS.  (except for
 172	 * accesses through %esp, which automatically use SS.)
 173	 */
 174	testl $CS_FROM_KERNEL, 1*4(%esp)
 175	jz .Lfinished_frame_\@
 176
 177	/*
 178	 * Reconstruct the 3 entry IRET frame right after the (modified)
 179	 * regs->sp without lowering %esp in between, such that an NMI in the
 180	 * middle doesn't scribble our stack.
 181	 */
 182	pushl	%eax
 183	pushl	%ecx
 184	movl	5*4(%esp), %eax		# (modified) regs->sp
 185
 186	movl	4*4(%esp), %ecx		# flags
 187	movl	%ecx, %ss:-1*4(%eax)
 188
 189	movl	3*4(%esp), %ecx		# cs
 190	andl	$0x0000ffff, %ecx
 191	movl	%ecx, %ss:-2*4(%eax)
 192
 193	movl	2*4(%esp), %ecx		# ip
 194	movl	%ecx, %ss:-3*4(%eax)
 
 
 
 
 
 
 
 
 
 
 
 195
 196	movl	1*4(%esp), %ecx		# eax
 197	movl	%ecx, %ss:-4*4(%eax)
 
 
 
 
 
 
 
 
 198
 199	popl	%ecx
 200	lea	-4*4(%eax), %esp
 201	popl	%eax
 202.Lfinished_frame_\@:
 
 203.endm
 
 
 
 
 
 
 204
 205.macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0 skip_gs=0 unwind_espfix=0
 206	cld
 207.if \skip_gs == 0
 208	pushl	$0
 209.endif
 210	pushl	%fs
 211
 212	pushl	%eax
 213	movl	$(__KERNEL_PERCPU), %eax
 214	movl	%eax, %fs
 215.if \unwind_espfix > 0
 216	UNWIND_ESPFIX_STACK
 217.endif
 218	popl	%eax
 219
 220	FIXUP_FRAME
 221	pushl	%es
 222	pushl	%ds
 223	pushl	\pt_regs_ax
 224	pushl	%ebp
 225	pushl	%edi
 226	pushl	%esi
 227	pushl	%edx
 228	pushl	%ecx
 229	pushl	%ebx
 230	movl	$(__USER_DS), %edx
 231	movl	%edx, %ds
 232	movl	%edx, %es
 233	/* Switch to kernel stack if necessary */
 234.if \switch_stacks > 0
 235	SWITCH_TO_KERNEL_STACK
 236.endif
 237.endm
 238
 239.macro SAVE_ALL_NMI cr3_reg:req unwind_espfix=0
 240	SAVE_ALL unwind_espfix=\unwind_espfix
 241
 242	BUG_IF_WRONG_CR3
 243
 244	/*
 245	 * Now switch the CR3 when PTI is enabled.
 246	 *
 247	 * We can enter with either user or kernel cr3, the code will
 248	 * store the old cr3 in \cr3_reg and switches to the kernel cr3
 249	 * if necessary.
 250	 */
 251	SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg
 252
 253.Lend_\@:
 254.endm
 255
 256.macro RESTORE_INT_REGS
 257	popl	%ebx
 258	popl	%ecx
 259	popl	%edx
 260	popl	%esi
 261	popl	%edi
 262	popl	%ebp
 263	popl	%eax
 264.endm
 265
 266.macro RESTORE_REGS pop=0
 267	RESTORE_INT_REGS
 2681:	popl	%ds
 2692:	popl	%es
 2703:	popl	%fs
 2714:	addl	$(4 + \pop), %esp	/* pop the unused "gs" slot */
 272	IRET_FRAME
 273
 274	/*
 275	 * There is no _ASM_EXTABLE_TYPE_REG() for ASM, however since this is
 276	 * ASM the registers are known and we can trivially hard-code them.
 277	 */
 278	_ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_POP_ZERO|EX_REG_DS)
 279	_ASM_EXTABLE_TYPE(2b, 3b, EX_TYPE_POP_ZERO|EX_REG_ES)
 280	_ASM_EXTABLE_TYPE(3b, 4b, EX_TYPE_POP_ZERO|EX_REG_FS)
 281.endm
 282
 283.macro RESTORE_ALL_NMI cr3_reg:req pop=0
 284	/*
 285	 * Now switch the CR3 when PTI is enabled.
 286	 *
 287	 * We enter with kernel cr3 and switch the cr3 to the value
 288	 * stored on \cr3_reg, which is either a user or a kernel cr3.
 289	 */
 290	ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI
 291
 292	testl	$PTI_SWITCH_MASK, \cr3_reg
 293	jz	.Lswitched_\@
 294
 295	/* User cr3 in \cr3_reg - write it to hardware cr3 */
 296	movl	\cr3_reg, %cr3
 297
 298.Lswitched_\@:
 299
 300	BUG_IF_WRONG_CR3
 301
 302	RESTORE_REGS pop=\pop
 303.endm
 304
 305.macro CHECK_AND_APPLY_ESPFIX
 306#ifdef CONFIG_X86_ESPFIX32
 307#define GDT_ESPFIX_OFFSET (GDT_ENTRY_ESPFIX_SS * 8)
 308#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + GDT_ESPFIX_OFFSET
 309
 310	ALTERNATIVE	"jmp .Lend_\@", "", X86_BUG_ESPFIX
 311
 312	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS, SS and CS
 313	/*
 314	 * Warning: PT_OLDSS(%esp) contains the wrong/random values if we
 315	 * are returning to the kernel.
 316	 * See comments in process.c:copy_thread() for details.
 317	 */
 318	movb	PT_OLDSS(%esp), %ah
 319	movb	PT_CS(%esp), %al
 320	andl	$(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
 321	cmpl	$((SEGMENT_LDT << 8) | USER_RPL), %eax
 322	jne	.Lend_\@	# returning to user-space with LDT SS
 323
 324	/*
 325	 * Setup and switch to ESPFIX stack
 326	 *
 327	 * We're returning to userspace with a 16 bit stack. The CPU will not
 328	 * restore the high word of ESP for us on executing iret... This is an
 329	 * "official" bug of all the x86-compatible CPUs, which we can work
 330	 * around to make dosemu and wine happy. We do this by preloading the
 331	 * high word of ESP with the high word of the userspace ESP while
 332	 * compensating for the offset by changing to the ESPFIX segment with
 333	 * a base address that matches for the difference.
 334	 */
 335	mov	%esp, %edx			/* load kernel esp */
 336	mov	PT_OLDESP(%esp), %eax		/* load userspace esp */
 337	mov	%dx, %ax			/* eax: new kernel esp */
 338	sub	%eax, %edx			/* offset (low word is 0) */
 339	shr	$16, %edx
 340	mov	%dl, GDT_ESPFIX_SS + 4		/* bits 16..23 */
 341	mov	%dh, GDT_ESPFIX_SS + 7		/* bits 24..31 */
 342	pushl	$__ESPFIX_SS
 343	pushl	%eax				/* new kernel esp */
 344	/*
 345	 * Disable interrupts, but do not irqtrace this section: we
 346	 * will soon execute iret and the tracer was already set to
 347	 * the irqstate after the IRET:
 348	 */
 349	cli
 350	lss	(%esp), %esp			/* switch to espfix segment */
 351.Lend_\@:
 352#endif /* CONFIG_X86_ESPFIX32 */
 353.endm
 354
 355/*
 356 * Called with pt_regs fully populated and kernel segments loaded,
 357 * so we can access PER_CPU and use the integer registers.
 358 *
 359 * We need to be very careful here with the %esp switch, because an NMI
 360 * can happen everywhere. If the NMI handler finds itself on the
 361 * entry-stack, it will overwrite the task-stack and everything we
 362 * copied there. So allocate the stack-frame on the task-stack and
 363 * switch to it before we do any copying.
 364 */
 365
 366.macro SWITCH_TO_KERNEL_STACK
 367
 368	BUG_IF_WRONG_CR3
 369
 370	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
 371
 372	/*
 373	 * %eax now contains the entry cr3 and we carry it forward in
 374	 * that register for the time this macro runs
 375	 */
 376
 377	/* Are we on the entry stack? Bail out if not! */
 378	movl	PER_CPU_VAR(cpu_entry_area), %ecx
 379	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
 380	subl	%esp, %ecx	/* ecx = (end of entry_stack) - esp */
 381	cmpl	$SIZEOF_entry_stack, %ecx
 382	jae	.Lend_\@
 383
 384	/* Load stack pointer into %esi and %edi */
 385	movl	%esp, %esi
 386	movl	%esi, %edi
 387
 388	/* Move %edi to the top of the entry stack */
 389	andl	$(MASK_entry_stack), %edi
 390	addl	$(SIZEOF_entry_stack), %edi
 391
 392	/* Load top of task-stack into %edi */
 393	movl	TSS_entry2task_stack(%edi), %edi
 394
 395	/* Special case - entry from kernel mode via entry stack */
 396#ifdef CONFIG_VM86
 397	movl	PT_EFLAGS(%esp), %ecx		# mix EFLAGS and CS
 398	movb	PT_CS(%esp), %cl
 399	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx
 400#else
 401	movl	PT_CS(%esp), %ecx
 402	andl	$SEGMENT_RPL_MASK, %ecx
 403#endif
 404	cmpl	$USER_RPL, %ecx
 405	jb	.Lentry_from_kernel_\@
 406
 407	/* Bytes to copy */
 408	movl	$PTREGS_SIZE, %ecx
 409
 410#ifdef CONFIG_VM86
 411	testl	$X86_EFLAGS_VM, PT_EFLAGS(%esi)
 412	jz	.Lcopy_pt_regs_\@
 413
 414	/*
 415	 * Stack-frame contains 4 additional segment registers when
 416	 * coming from VM86 mode
 417	 */
 418	addl	$(4 * 4), %ecx
 419
 420#endif
 421.Lcopy_pt_regs_\@:
 422
 423	/* Allocate frame on task-stack */
 424	subl	%ecx, %edi
 425
 426	/* Switch to task-stack */
 427	movl	%edi, %esp
 428
 429	/*
 430	 * We are now on the task-stack and can safely copy over the
 431	 * stack-frame
 432	 */
 433	shrl	$2, %ecx
 434	cld
 435	rep movsl
 436
 437	jmp .Lend_\@
 438
 439.Lentry_from_kernel_\@:
 440
 441	/*
 442	 * This handles the case when we enter the kernel from
 443	 * kernel-mode and %esp points to the entry-stack. When this
 444	 * happens we need to switch to the task-stack to run C code,
 445	 * but switch back to the entry-stack again when we approach
 446	 * iret and return to the interrupted code-path. This usually
 447	 * happens when we hit an exception while restoring user-space
 448	 * segment registers on the way back to user-space or when the
 449	 * sysenter handler runs with eflags.tf set.
 450	 *
 451	 * When we switch to the task-stack here, we can't trust the
 452	 * contents of the entry-stack anymore, as the exception handler
 453	 * might be scheduled out or moved to another CPU. Therefore we
 454	 * copy the complete entry-stack to the task-stack and set a
 455	 * marker in the iret-frame (bit 31 of the CS dword) to detect
 456	 * what we've done on the iret path.
 457	 *
 458	 * On the iret path we copy everything back and switch to the
 459	 * entry-stack, so that the interrupted kernel code-path
 460	 * continues on the same stack it was interrupted with.
 461	 *
 462	 * Be aware that an NMI can happen anytime in this code.
 463	 *
 464	 * %esi: Entry-Stack pointer (same as %esp)
 465	 * %edi: Top of the task stack
 466	 * %eax: CR3 on kernel entry
 467	 */
 468
 469	/* Calculate number of bytes on the entry stack in %ecx */
 470	movl	%esi, %ecx
 471
 472	/* %ecx to the top of entry-stack */
 473	andl	$(MASK_entry_stack), %ecx
 474	addl	$(SIZEOF_entry_stack), %ecx
 475
 476	/* Number of bytes on the entry stack to %ecx */
 477	sub	%esi, %ecx
 478
 479	/* Mark stackframe as coming from entry stack */
 480	orl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)
 481
 482	/*
 483	 * Test the cr3 used to enter the kernel and add a marker
 484	 * so that we can switch back to it before iret.
 485	 */
 486	testl	$PTI_SWITCH_MASK, %eax
 487	jz	.Lcopy_pt_regs_\@
 488	orl	$CS_FROM_USER_CR3, PT_CS(%esp)
 489
 490	/*
 491	 * %esi and %edi are unchanged, %ecx contains the number of
 492	 * bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate
 493	 * the stack-frame on task-stack and copy everything over
 494	 */
 495	jmp .Lcopy_pt_regs_\@
 496
 497.Lend_\@:
 498.endm
 499
 500/*
 501 * Switch back from the kernel stack to the entry stack.
 502 *
 503 * The %esp register must point to pt_regs on the task stack. It will
 504 * first calculate the size of the stack-frame to copy, depending on
 505 * whether we return to VM86 mode or not. With that it uses 'rep movsl'
 506 * to copy the contents of the stack over to the entry stack.
 507 *
 508 * We must be very careful here, as we can't trust the contents of the
 509 * task-stack once we switched to the entry-stack. When an NMI happens
 510 * while on the entry-stack, the NMI handler will switch back to the top
 511 * of the task stack, overwriting our stack-frame we are about to copy.
 512 * Therefore we switch the stack only after everything is copied over.
 513 */
 514.macro SWITCH_TO_ENTRY_STACK
 515
 516	/* Bytes to copy */
 517	movl	$PTREGS_SIZE, %ecx
 518
 519#ifdef CONFIG_VM86
 520	testl	$(X86_EFLAGS_VM), PT_EFLAGS(%esp)
 521	jz	.Lcopy_pt_regs_\@
 522
 523	/* Additional 4 registers to copy when returning to VM86 mode */
 524	addl    $(4 * 4), %ecx
 525
 526.Lcopy_pt_regs_\@:
 527#endif
 528
 529	/* Initialize source and destination for movsl */
 530	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
 531	subl	%ecx, %edi
 532	movl	%esp, %esi
 533
 534	/* Save future stack pointer in %ebx */
 535	movl	%edi, %ebx
 536
 537	/* Copy over the stack-frame */
 538	shrl	$2, %ecx
 539	cld
 540	rep movsl
 541
 542	/*
 543	 * Switch to entry-stack - needs to happen after everything is
 544	 * copied because the NMI handler will overwrite the task-stack
 545	 * when on entry-stack
 546	 */
 547	movl	%ebx, %esp
 548
 549.Lend_\@:
 550.endm
 551
 552/*
 553 * This macro handles the case when we return to kernel-mode on the iret
 554 * path and have to switch back to the entry stack and/or user-cr3
 555 *
 556 * See the comments below the .Lentry_from_kernel_\@ label in the
 557 * SWITCH_TO_KERNEL_STACK macro for more details.
 558 */
 559.macro PARANOID_EXIT_TO_KERNEL_MODE
 560
 561	/*
 562	 * Test if we entered the kernel with the entry-stack. Most
 563	 * likely we did not, because this code only runs on the
 564	 * return-to-kernel path.
 565	 */
 566	testl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)
 567	jz	.Lend_\@
 568
 569	/* Unlikely slow-path */
 570
 571	/* Clear marker from stack-frame */
 572	andl	$(~CS_FROM_ENTRY_STACK), PT_CS(%esp)
 573
 574	/* Copy the remaining task-stack contents to entry-stack */
 575	movl	%esp, %esi
 576	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
 577
 578	/* Bytes on the task-stack to ecx */
 579	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx
 580	subl	%esi, %ecx
 581
 582	/* Allocate stack-frame on entry-stack */
 583	subl	%ecx, %edi
 584
 585	/*
 586	 * Save future stack-pointer, we must not switch until the
 587	 * copy is done, otherwise the NMI handler could destroy the
 588	 * contents of the task-stack we are about to copy.
 589	 */
 590	movl	%edi, %ebx
 591
 592	/* Do the copy */
 593	shrl	$2, %ecx
 594	cld
 595	rep movsl
 596
 597	/* Safe to switch to entry-stack now */
 598	movl	%ebx, %esp
 599
 600	/*
 601	 * We came from entry-stack and need to check if we also need to
 602	 * switch back to user cr3.
 603	 */
 604	testl	$CS_FROM_USER_CR3, PT_CS(%esp)
 605	jz	.Lend_\@
 606
 607	/* Clear marker from stack-frame */
 608	andl	$(~CS_FROM_USER_CR3), PT_CS(%esp)
 609
 610	SWITCH_TO_USER_CR3 scratch_reg=%eax
 611
 612.Lend_\@:
 613.endm
 614
 615/**
 616 * idtentry - Macro to generate entry stubs for simple IDT entries
 617 * @vector:		Vector number
 618 * @asmsym:		ASM symbol for the entry point
 619 * @cfunc:		C function to be called
 620 * @has_error_code:	Hardware pushed error code on stack
 621 */
 622.macro idtentry vector asmsym cfunc has_error_code:req
 623SYM_CODE_START(\asmsym)
 624	ASM_CLAC
 625	cld
 626
 627	.if \has_error_code == 0
 628		pushl	$0		/* Clear the error code */
 629	.endif
 630
 631	/* Push the C-function address into the GS slot */
 632	pushl	$\cfunc
 633	/* Invoke the common exception entry */
 634	jmp	handle_exception
 635SYM_CODE_END(\asmsym)
 636.endm
 637
 638.macro idtentry_irq vector cfunc
 639	.p2align CONFIG_X86_L1_CACHE_SHIFT
 640SYM_CODE_START_LOCAL(asm_\cfunc)
 641	ASM_CLAC
 642	SAVE_ALL switch_stacks=1
 643	ENCODE_FRAME_POINTER
 644	movl	%esp, %eax
 645	movl	PT_ORIG_EAX(%esp), %edx		/* get the vector from stack */
 646	movl	$-1, PT_ORIG_EAX(%esp)		/* no syscall to restart */
 647	call	\cfunc
 648	jmp	handle_exception_return
 649SYM_CODE_END(asm_\cfunc)
 650.endm
 651
 652.macro idtentry_sysvec vector cfunc
 653	idtentry \vector asm_\cfunc \cfunc has_error_code=0
 654.endm
 655
 656/*
 657 * Include the defines which emit the idt entries which are shared
 658 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
 659 * so the stacktrace boundary checks work.
 660 */
 661	.align 16
 662	.globl __irqentry_text_start
 663__irqentry_text_start:
 664
 665#include <asm/idtentry.h>
 666
 667	.align 16
 668	.globl __irqentry_text_end
 669__irqentry_text_end:
 670
 671/*
 672 * %eax: prev task
 673 * %edx: next task
 674 */
 675.pushsection .text, "ax"
 676SYM_CODE_START(__switch_to_asm)
 677	/*
 678	 * Save callee-saved registers
 679	 * This must match the order in struct inactive_task_frame
 680	 */
 681	pushl	%ebp
 682	pushl	%ebx
 683	pushl	%edi
 684	pushl	%esi
 685	/*
 686	 * Flags are saved to prevent AC leakage. This could go
 687	 * away if objtool would have 32bit support to verify
 688	 * the STAC/CLAC correctness.
 689	 */
 690	pushfl
 691
 692	/* switch stack */
 693	movl	%esp, TASK_threadsp(%eax)
 694	movl	TASK_threadsp(%edx), %esp
 695
 696#ifdef CONFIG_STACKPROTECTOR
 697	movl	TASK_stack_canary(%edx), %ebx
 698	movl	%ebx, PER_CPU_VAR(__stack_chk_guard)
 699#endif
 700
 
 701	/*
 702	 * When switching from a shallower to a deeper call stack
 703	 * the RSB may either underflow or use entries populated
 704	 * with userspace addresses. On CPUs where those concerns
 705	 * exist, overwrite the RSB with entries which capture
 706	 * speculative execution to prevent attack.
 707	 */
 708	FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
 
 709
 710	/* Restore flags or the incoming task to restore AC state. */
 711	popfl
 712	/* restore callee-saved registers */
 713	popl	%esi
 714	popl	%edi
 715	popl	%ebx
 716	popl	%ebp
 717
 718	jmp	__switch_to
 719SYM_CODE_END(__switch_to_asm)
 720.popsection
 721
 722/*
 723 * The unwinder expects the last frame on the stack to always be at the same
 724 * offset from the end of the page, which allows it to validate the stack.
 725 * Calling schedule_tail() directly would break that convention because its an
 726 * asmlinkage function so its argument has to be pushed on the stack.  This
 727 * wrapper creates a proper "end of stack" frame header before the call.
 728 */
 729.pushsection .text, "ax"
 730SYM_FUNC_START(schedule_tail_wrapper)
 731	FRAME_BEGIN
 732
 733	pushl	%eax
 734	call	schedule_tail
 735	popl	%eax
 736
 737	FRAME_END
 738	RET
 739SYM_FUNC_END(schedule_tail_wrapper)
 740.popsection
 741
 742/*
 743 * A newly forked process directly context switches into this address.
 744 *
 745 * eax: prev task we switched from
 746 * ebx: kernel thread func (NULL for user thread)
 747 * edi: kernel thread arg
 748 */
 749.pushsection .text, "ax"
 750SYM_CODE_START(ret_from_fork)
 751	call	schedule_tail_wrapper
 752
 753	testl	%ebx, %ebx
 754	jnz	1f		/* kernel threads are uncommon */
 755
 7562:
 757	/* When we fork, we trace the syscall return in the child, too. */
 758	movl    %esp, %eax
 759	call    syscall_exit_to_user_mode
 760	jmp     .Lsyscall_32_done
 761
 762	/* kernel thread */
 7631:	movl	%edi, %eax
 764	CALL_NOSPEC ebx
 765	/*
 766	 * A kernel thread is allowed to return here after successfully
 767	 * calling kernel_execve().  Exit to userspace to complete the execve()
 768	 * syscall.
 769	 */
 770	movl	$0, PT_EAX(%esp)
 771	jmp	2b
 772SYM_CODE_END(ret_from_fork)
 773.popsection
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 774
 775SYM_ENTRY(__begin_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
 776/*
 777 * All code from here through __end_SYSENTER_singlestep_region is subject
 778 * to being single-stepped if a user program sets TF and executes SYSENTER.
 779 * There is absolutely nothing that we can do to prevent this from happening
 780 * (thanks Intel!).  To keep our handling of this situation as simple as
 781 * possible, we handle TF just like AC and NT, except that our #DB handler
 782 * will ignore all of the single-step traps generated in this range.
 783 */
 784
 
 
 
 
 
 
 
 
 
 
 785/*
 786 * 32-bit SYSENTER entry.
 787 *
 788 * 32-bit system calls through the vDSO's __kernel_vsyscall enter here
 789 * if X86_FEATURE_SEP is available.  This is the preferred system call
 790 * entry on 32-bit systems.
 791 *
 792 * The SYSENTER instruction, in principle, should *only* occur in the
 793 * vDSO.  In practice, a small number of Android devices were shipped
 794 * with a copy of Bionic that inlined a SYSENTER instruction.  This
 795 * never happened in any of Google's Bionic versions -- it only happened
 796 * in a narrow range of Intel-provided versions.
 797 *
 798 * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
 799 * IF and VM in RFLAGS are cleared (IOW: interrupts are off).
 800 * SYSENTER does not save anything on the stack,
 801 * and does not save old EIP (!!!), ESP, or EFLAGS.
 802 *
 803 * To avoid losing track of EFLAGS.VM (and thus potentially corrupting
 804 * user and/or vm86 state), we explicitly disable the SYSENTER
 805 * instruction in vm86 mode by reprogramming the MSRs.
 806 *
 807 * Arguments:
 808 * eax  system call number
 809 * ebx  arg1
 810 * ecx  arg2
 811 * edx  arg3
 812 * esi  arg4
 813 * edi  arg5
 814 * ebp  user stack
 815 * 0(%ebp) arg6
 816 */
 817SYM_FUNC_START(entry_SYSENTER_32)
 818	/*
 819	 * On entry-stack with all userspace-regs live - save and
 820	 * restore eflags and %eax to use it as scratch-reg for the cr3
 821	 * switch.
 822	 */
 823	pushfl
 824	pushl	%eax
 825	BUG_IF_WRONG_CR3 no_user_check=1
 826	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
 827	popl	%eax
 828	popfl
 829
 830	/* Stack empty again, switch to task stack */
 831	movl	TSS_entry2task_stack(%esp), %esp
 832
 833.Lsysenter_past_esp:
 834	pushl	$__USER_DS		/* pt_regs->ss */
 835	pushl	$0			/* pt_regs->sp (placeholder) */
 836	pushfl				/* pt_regs->flags (except IF = 0) */
 
 837	pushl	$__USER_CS		/* pt_regs->cs */
 838	pushl	$0			/* pt_regs->ip = 0 (placeholder) */
 839	pushl	%eax			/* pt_regs->orig_ax */
 840	SAVE_ALL pt_regs_ax=$-ENOSYS	/* save rest, stack already switched */
 841
 842	/*
 843	 * SYSENTER doesn't filter flags, so we need to clear NT, AC
 844	 * and TF ourselves.  To save a few cycles, we can check whether
 845	 * either was set instead of doing an unconditional popfq.
 846	 * This needs to happen before enabling interrupts so that
 847	 * we don't get preempted with NT set.
 848	 *
 849	 * If TF is set, we will single-step all the way to here -- do_debug
 850	 * will ignore all the traps.  (Yes, this is slow, but so is
 851	 * single-stepping in general.  This allows us to avoid having
 852	 * a more complicated code to handle the case where a user program
 853	 * forces us to single-step through the SYSENTER entry code.)
 854	 *
 855	 * NB.: .Lsysenter_fix_flags is a label with the code under it moved
 856	 * out-of-line as an optimization: NT is unlikely to be set in the
 857	 * majority of the cases and instead of polluting the I$ unnecessarily,
 858	 * we're keeping that code behind a branch which will predict as
 859	 * not-taken and therefore its instructions won't be fetched.
 860	 */
 861	testl	$X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
 862	jnz	.Lsysenter_fix_flags
 863.Lsysenter_flags_fixed:
 864
 865	movl	%esp, %eax
 866	call	do_SYSENTER_32
 867	testl	%eax, %eax
 868	jz	.Lsyscall_32_done
 869
 870	STACKLEAK_ERASE
 871
 872	/* Opportunistic SYSEXIT */
 873
 874	/*
 875	 * Setup entry stack - we keep the pointer in %eax and do the
 876	 * switch after almost all user-state is restored.
 877	 */
 
 878
 879	/* Load entry stack pointer and allocate frame for eflags/eax */
 880	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax
 881	subl	$(2*4), %eax
 882
 883	/* Copy eflags and eax to entry stack */
 884	movl	PT_EFLAGS(%esp), %edi
 885	movl	PT_EAX(%esp), %esi
 886	movl	%edi, (%eax)
 887	movl	%esi, 4(%eax)
 888
 889	/* Restore user registers and segments */
 
 890	movl	PT_EIP(%esp), %edx	/* pt_regs->ip */
 891	movl	PT_OLDESP(%esp), %ecx	/* pt_regs->sp */
 8921:	mov	PT_FS(%esp), %fs
 893
 894	popl	%ebx			/* pt_regs->bx */
 895	addl	$2*4, %esp		/* skip pt_regs->cx and pt_regs->dx */
 896	popl	%esi			/* pt_regs->si */
 897	popl	%edi			/* pt_regs->di */
 898	popl	%ebp			/* pt_regs->bp */
 899
 900	/* Switch to entry stack */
 901	movl	%eax, %esp
 902
 903	/* Now ready to switch the cr3 */
 904	SWITCH_TO_USER_CR3 scratch_reg=%eax
 905
 906	/*
 907	 * Restore all flags except IF. (We restore IF separately because
 908	 * STI gives a one-instruction window in which we won't be interrupted,
 909	 * whereas POPF does not.)
 910	 */
 911	btrl	$X86_EFLAGS_IF_BIT, (%esp)
 912	BUG_IF_WRONG_CR3 no_user_check=1
 913	popfl
 914	popl	%eax
 915
 916	/*
 917	 * Return back to the vDSO, which will pop ecx and edx.
 918	 * Don't bother with DS and ES (they already contain __USER_DS).
 919	 */
 920	sti
 921	sysexit
 922
 9232:	movl    $0, PT_FS(%esp)
 924	jmp     1b
 
 
 925	_ASM_EXTABLE(1b, 2b)
 
 926
 927.Lsysenter_fix_flags:
 928	pushl	$X86_EFLAGS_FIXED
 929	popfl
 930	jmp	.Lsysenter_flags_fixed
 931SYM_ENTRY(__end_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
 932SYM_FUNC_END(entry_SYSENTER_32)
 933
 934/*
 935 * 32-bit legacy system call entry.
 936 *
 937 * 32-bit x86 Linux system calls traditionally used the INT $0x80
 938 * instruction.  INT $0x80 lands here.
 939 *
 940 * This entry point can be used by any 32-bit perform system calls.
 941 * Instances of INT $0x80 can be found inline in various programs and
 942 * libraries.  It is also used by the vDSO's __kernel_vsyscall
 943 * fallback for hardware that doesn't support a faster entry method.
 944 * Restarted 32-bit system calls also fall back to INT $0x80
 945 * regardless of what instruction was originally used to do the system
 946 * call.  (64-bit programs can use INT $0x80 as well, but they can
 947 * only run on 64-bit kernels and therefore land in
 948 * entry_INT80_compat.)
 949 *
 950 * This is considered a slow path.  It is not used by most libc
 951 * implementations on modern hardware except during process startup.
 952 *
 953 * Arguments:
 954 * eax  system call number
 955 * ebx  arg1
 956 * ecx  arg2
 957 * edx  arg3
 958 * esi  arg4
 959 * edi  arg5
 960 * ebp  arg6
 961 */
 962SYM_FUNC_START(entry_INT80_32)
 963	ASM_CLAC
 964	pushl	%eax			/* pt_regs->orig_ax */
 
 965
 966	SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1	/* save rest */
 
 
 
 
 967
 968	movl	%esp, %eax
 969	call	do_int80_syscall_32
 970.Lsyscall_32_done:
 971	STACKLEAK_ERASE
 972
 973restore_all_switch_stack:
 974	SWITCH_TO_ENTRY_STACK
 975	CHECK_AND_APPLY_ESPFIX
 976
 977	/* Switch back to user CR3 */
 978	SWITCH_TO_USER_CR3 scratch_reg=%eax
 979
 980	BUG_IF_WRONG_CR3
 
 981
 982	/* Restore user state */
 983	RESTORE_REGS pop=4			# skip orig_eax/error_code
 
 
 
 
 
 
 
 
 
 
 
 
 984.Lirq_return:
 985	/*
 986	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
 987	 * when returning from IPI handler and when returning from
 988	 * scheduler to user-space.
 989	 */
 990	iret
 991
 992.Lasm_iret_error:
 
 993	pushl	$0				# no error code
 994	pushl	$iret_error
 
 
 
 995
 996#ifdef CONFIG_DEBUG_ENTRY
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 997	/*
 998	 * The stack-frame here is the one that iret faulted on, so its a
 999	 * return-to-user frame. We are on kernel-cr3 because we come here from
1000	 * the fixup code. This confuses the CR3 checker, so switch to user-cr3
1001	 * as the checker expects it.
1002	 */
1003	pushl	%eax
1004	SWITCH_TO_USER_CR3 scratch_reg=%eax
1005	popl	%eax
1006#endif
1007
1008	jmp	handle_exception
1009
1010	_ASM_EXTABLE(.Lirq_return, .Lasm_iret_error)
1011SYM_FUNC_END(entry_INT80_32)
1012
1013.macro FIXUP_ESPFIX_STACK
1014/*
1015 * Switch back for ESPFIX stack to the normal zerobased stack
1016 *
1017 * We can't call C functions using the ESPFIX stack. This code reads
1018 * the high word of the segment base from the GDT and swiches to the
1019 * normal stack and adjusts ESP with the matching offset.
1020 *
1021 * We might be on user CR3 here, so percpu data is not mapped and we can't
1022 * access the GDT through the percpu segment.  Instead, use SGDT to find
1023 * the cpu_entry_area alias of the GDT.
1024 */
1025#ifdef CONFIG_X86_ESPFIX32
1026	/* fixup the stack */
1027	pushl	%ecx
1028	subl	$2*4, %esp
1029	sgdt	(%esp)
1030	movl	2(%esp), %ecx				/* GDT address */
1031	/*
1032	 * Careful: ECX is a linear pointer, so we need to force base
1033	 * zero.  %cs is the only known-linear segment we have right now.
1034	 */
1035	mov	%cs:GDT_ESPFIX_OFFSET + 4(%ecx), %al	/* bits 16..23 */
1036	mov	%cs:GDT_ESPFIX_OFFSET + 7(%ecx), %ah	/* bits 24..31 */
1037	shl	$16, %eax
1038	addl	$2*4, %esp
1039	popl	%ecx
1040	addl	%esp, %eax			/* the adjusted stack pointer */
1041	pushl	$__KERNEL_DS
1042	pushl	%eax
1043	lss	(%esp), %esp			/* switch to the normal stack segment */
1044#endif
1045.endm
1046
1047.macro UNWIND_ESPFIX_STACK
1048	/* It's safe to clobber %eax, all other regs need to be preserved */
1049#ifdef CONFIG_X86_ESPFIX32
1050	movl	%ss, %eax
1051	/* see if on espfix stack */
1052	cmpw	$__ESPFIX_SS, %ax
1053	jne	.Lno_fixup_\@
 
 
 
1054	/* switch to normal stack */
1055	FIXUP_ESPFIX_STACK
1056.Lno_fixup_\@:
1057#endif
1058.endm
1059
1060SYM_CODE_START_LOCAL_NOALIGN(handle_exception)
1061	/* the function address is in %gs's slot on the stack */
1062	SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1063	ENCODE_FRAME_POINTER
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1064
1065	movl	PT_GS(%esp), %edi		# get the function address
 
1066
1067	/* fixup orig %eax */
1068	movl	PT_ORIG_EAX(%esp), %edx		# get the error code
1069	movl	$-1, PT_ORIG_EAX(%esp)		# no syscall to restart
1070
1071	movl	%esp, %eax			# pt_regs pointer
1072	CALL_NOSPEC edi
 
 
 
 
1073
1074handle_exception_return:
1075#ifdef CONFIG_VM86
1076	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS and CS
1077	movb	PT_CS(%esp), %al
1078	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
 
 
 
1079#else
1080	/*
1081	 * We can be coming here from child spawned by kernel_thread().
1082	 */
1083	movl	PT_CS(%esp), %eax
1084	andl	$SEGMENT_RPL_MASK, %eax
1085#endif
1086	cmpl	$USER_RPL, %eax			# returning to v8086 or userspace ?
1087	jnb	ret_to_user
1088
1089	PARANOID_EXIT_TO_KERNEL_MODE
1090	BUG_IF_WRONG_CR3
1091	RESTORE_REGS 4
1092	jmp	.Lirq_return
 
 
1093
1094ret_to_user:
1095	movl	%esp, %eax
1096	jmp	restore_all_switch_stack
1097SYM_CODE_END(handle_exception)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1098
1099SYM_CODE_START(asm_exc_double_fault)
11001:
1101	/*
1102	 * This is a task gate handler, not an interrupt gate handler.
1103	 * The error code is on the stack, but the stack is otherwise
1104	 * empty.  Interrupts are off.  Our state is sane with the following
1105	 * exceptions:
1106	 *
1107	 *  - CR0.TS is set.  "TS" literally means "task switched".
1108	 *  - EFLAGS.NT is set because we're a "nested task".
1109	 *  - The doublefault TSS has back_link set and has been marked busy.
1110	 *  - TR points to the doublefault TSS and the normal TSS is busy.
1111	 *  - CR3 is the normal kernel PGD.  This would be delightful, except
1112	 *    that the CPU didn't bother to save the old CR3 anywhere.  This
1113	 *    would make it very awkward to return back to the context we came
1114	 *    from.
1115	 *
1116	 * The rest of EFLAGS is sanitized for us, so we don't need to
1117	 * worry about AC or DF.
1118	 *
1119	 * Don't even bother popping the error code.  It's always zero,
1120	 * and ignoring it makes us a bit more robust against buggy
1121	 * hypervisor task gate implementations.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122	 *
1123	 * We will manually undo the task switch instead of doing a
1124	 * task-switching IRET.
1125	 */
 
 
 
 
 
 
1126
1127	clts				/* clear CR0.TS */
1128	pushl	$X86_EFLAGS_FIXED
1129	popfl				/* clear EFLAGS.NT */
 
 
 
1130
1131	call	doublefault_shim
 
 
1132
1133	/* We don't support returning, so we have no IRET here. */
11341:
1135	hlt
1136	jmp 1b
1137SYM_CODE_END(asm_exc_double_fault)
 
 
 
 
1138
1139/*
1140 * NMI is doubly nasty.  It can happen on the first instruction of
1141 * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
1142 * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
1143 * switched stacks.  We handle both conditions by simply checking whether we
1144 * interrupted kernel code running on the SYSENTER stack.
1145 */
1146SYM_CODE_START(asm_exc_nmi)
1147	ASM_CLAC
1148
1149#ifdef CONFIG_X86_ESPFIX32
1150	/*
1151	 * ESPFIX_SS is only ever set on the return to user path
1152	 * after we've switched to the entry stack.
1153	 */
1154	pushl	%eax
1155	movl	%ss, %eax
1156	cmpw	$__ESPFIX_SS, %ax
1157	popl	%eax
1158	je	.Lnmi_espfix_stack
1159#endif
1160
1161	pushl	%eax				# pt_regs->orig_ax
1162	SAVE_ALL_NMI cr3_reg=%edi
1163	ENCODE_FRAME_POINTER
1164	xorl	%edx, %edx			# zero error code
1165	movl	%esp, %eax			# pt_regs pointer
1166
1167	/* Are we currently on the SYSENTER stack? */
1168	movl	PER_CPU_VAR(cpu_entry_area), %ecx
1169	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
1170	subl	%eax, %ecx	/* ecx = (end of entry_stack) - esp */
1171	cmpl	$SIZEOF_entry_stack, %ecx
1172	jb	.Lnmi_from_sysenter_stack
1173
1174	/* Not on SYSENTER stack. */
1175	call	exc_nmi
1176	jmp	.Lnmi_return
1177
1178.Lnmi_from_sysenter_stack:
1179	/*
1180	 * We're on the SYSENTER stack.  Switch off.  No one (not even debug)
1181	 * is using the thread stack right now, so it's safe for us to use it.
1182	 */
1183	movl	%esp, %ebx
1184	movl	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %esp
1185	call	exc_nmi
1186	movl	%ebx, %esp
1187
1188.Lnmi_return:
1189#ifdef CONFIG_X86_ESPFIX32
1190	testl	$CS_FROM_ESPFIX, PT_CS(%esp)
1191	jnz	.Lnmi_from_espfix
1192#endif
1193
1194	CHECK_AND_APPLY_ESPFIX
1195	RESTORE_ALL_NMI cr3_reg=%edi pop=4
1196	jmp	.Lirq_return
1197
1198#ifdef CONFIG_X86_ESPFIX32
1199.Lnmi_espfix_stack:
1200	/*
1201	 * Create the pointer to LSS back
1202	 */
1203	pushl	%ss
1204	pushl	%esp
1205	addl	$4, (%esp)
1206
1207	/* Copy the (short) IRET frame */
1208	pushl	4*4(%esp)	# flags
1209	pushl	4*4(%esp)	# cs
1210	pushl	4*4(%esp)	# ip
1211
1212	pushl	%eax		# orig_ax
1213
1214	SAVE_ALL_NMI cr3_reg=%edi unwind_espfix=1
1215	ENCODE_FRAME_POINTER
 
 
 
 
 
 
 
 
1216
1217	/* clear CS_FROM_KERNEL, set CS_FROM_ESPFIX */
1218	xorl	$(CS_FROM_ESPFIX | CS_FROM_KERNEL), PT_CS(%esp)
1219
 
 
 
1220	xorl	%edx, %edx			# zero error code
1221	movl	%esp, %eax			# pt_regs pointer
1222	jmp	.Lnmi_from_sysenter_stack
 
 
 
 
 
 
 
1223
1224.Lnmi_from_espfix:
1225	RESTORE_ALL_NMI cr3_reg=%edi
1226	/*
1227	 * Because we cleared CS_FROM_KERNEL, IRET_FRAME 'forgot' to
1228	 * fix up the gap and long frame:
1229	 *
1230	 *  3 - original frame	(exception)
1231	 *  2 - ESPFIX block	(above)
1232	 *  6 - gap		(FIXUP_FRAME)
1233	 *  5 - long frame	(FIXUP_FRAME)
1234	 *  1 - orig_ax
1235	 */
1236	lss	(1+5+6)*4(%esp), %esp			# back to espfix stack
1237	jmp	.Lirq_return
1238#endif
1239SYM_CODE_END(asm_exc_nmi)
1240
1241.pushsection .text, "ax"
1242SYM_CODE_START(rewind_stack_and_make_dead)
1243	/* Prevent any naive code from trying to unwind to our caller. */
1244	xorl	%ebp, %ebp
1245
1246	movl	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %esi
1247	leal	-TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp
1248
1249	call	make_task_dead
12501:	jmp 1b
1251SYM_CODE_END(rewind_stack_and_make_dead)
1252.popsection
v4.17
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 *  Copyright (C) 1991,1992  Linus Torvalds
   4 *
   5 * entry_32.S contains the system-call and low-level fault and trap handling routines.
   6 *
   7 * Stack layout while running C code:
   8 *	ptrace needs to have all registers on the stack.
   9 *	If the order here is changed, it needs to be
  10 *	updated in fork.c:copy_process(), signal.c:do_signal(),
  11 *	ptrace.c and ptrace.h
  12 *
  13 *	 0(%esp) - %ebx
  14 *	 4(%esp) - %ecx
  15 *	 8(%esp) - %edx
  16 *	 C(%esp) - %esi
  17 *	10(%esp) - %edi
  18 *	14(%esp) - %ebp
  19 *	18(%esp) - %eax
  20 *	1C(%esp) - %ds
  21 *	20(%esp) - %es
  22 *	24(%esp) - %fs
  23 *	28(%esp) - %gs		saved iff !CONFIG_X86_32_LAZY_GS
  24 *	2C(%esp) - orig_eax
  25 *	30(%esp) - %eip
  26 *	34(%esp) - %cs
  27 *	38(%esp) - %eflags
  28 *	3C(%esp) - %oldesp
  29 *	40(%esp) - %oldss
  30 */
  31
  32#include <linux/linkage.h>
  33#include <linux/err.h>
  34#include <asm/thread_info.h>
  35#include <asm/irqflags.h>
  36#include <asm/errno.h>
  37#include <asm/segment.h>
  38#include <asm/smp.h>
  39#include <asm/percpu.h>
  40#include <asm/processor-flags.h>
  41#include <asm/irq_vectors.h>
  42#include <asm/cpufeatures.h>
  43#include <asm/alternative-asm.h>
  44#include <asm/asm.h>
  45#include <asm/smap.h>
  46#include <asm/frame.h>
 
  47#include <asm/nospec-branch.h>
  48
 
 
  49	.section .entry.text, "ax"
  50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  51/*
  52 * We use macros for low-level operations which need to be overridden
  53 * for paravirtualization.  The following will never clobber any registers:
  54 *   INTERRUPT_RETURN (aka. "iret")
  55 *   GET_CR0_INTO_EAX (aka. "movl %cr0, %eax")
  56 *   ENABLE_INTERRUPTS_SYSEXIT (aka "sti; sysexit").
  57 *
  58 * For DISABLE_INTERRUPTS/ENABLE_INTERRUPTS (aka "cli"/"sti"), you must
  59 * specify what registers can be overwritten (CLBR_NONE, CLBR_EAX/EDX/ECX/ANY).
  60 * Allowing a register to be clobbered can shrink the paravirt replacement
  61 * enough to patch inline, increasing performance.
  62 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63
  64#ifdef CONFIG_PREEMPT
  65# define preempt_stop(clobbers)	DISABLE_INTERRUPTS(clobbers); TRACE_IRQS_OFF
  66#else
  67# define preempt_stop(clobbers)
  68# define resume_kernel		restore_all
 
 
 
 
 
  69#endif
 
 
  70
  71.macro TRACE_IRQS_IRET
  72#ifdef CONFIG_TRACE_IRQFLAGS
  73	testl	$X86_EFLAGS_IF, PT_EFLAGS(%esp)     # interrupts off?
  74	jz	1f
  75	TRACE_IRQS_ON
  761:
  77#endif
  78.endm
  79
  80/*
  81 * User gs save/restore
  82 *
  83 * %gs is used for userland TLS and kernel only uses it for stack
  84 * canary which is required to be at %gs:20 by gcc.  Read the comment
  85 * at the top of stackprotector.h for more info.
  86 *
  87 * Local labels 98 and 99 are used.
  88 */
  89#ifdef CONFIG_X86_32_LAZY_GS
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  90
  91 /* unfortunately push/pop can't be no-op */
  92.macro PUSH_GS
  93	pushl	$0
  94.endm
  95.macro POP_GS pop=0
  96	addl	$(4 + \pop), %esp
  97.endm
  98.macro POP_GS_EX
 
 
  99.endm
 100
 101 /* all the rest are no-op */
 102.macro PTGS_TO_GS
 103.endm
 104.macro PTGS_TO_GS_EX
 105.endm
 106.macro GS_TO_REG reg
 107.endm
 108.macro REG_TO_PTGS reg
 109.endm
 110.macro SET_KERNEL_GS reg
 111.endm
 
 
 
 
 
 
 
 
 112
 113#else	/* CONFIG_X86_32_LAZY_GS */
 
 114
 115.macro PUSH_GS
 116	pushl	%gs
 117.endm
 118
 119.macro POP_GS pop=0
 12098:	popl	%gs
 121  .if \pop <> 0
 122	add	$\pop, %esp
 123  .endif
 124.endm
 125.macro POP_GS_EX
 126.pushsection .fixup, "ax"
 12799:	movl	$0, (%esp)
 128	jmp	98b
 129.popsection
 130	_ASM_EXTABLE(98b, 99b)
 131.endm
 132
 133.macro PTGS_TO_GS
 13498:	mov	PT_GS(%esp), %gs
 135.endm
 136.macro PTGS_TO_GS_EX
 137.pushsection .fixup, "ax"
 13899:	movl	$0, PT_GS(%esp)
 139	jmp	98b
 140.popsection
 141	_ASM_EXTABLE(98b, 99b)
 142.endm
 143
 144.macro GS_TO_REG reg
 145	movl	%gs, \reg
 146.endm
 147.macro REG_TO_PTGS reg
 148	movl	\reg, PT_GS(%esp)
 149.endm
 150.macro SET_KERNEL_GS reg
 151	movl	$(__KERNEL_STACK_CANARY), \reg
 152	movl	\reg, %gs
 153.endm
 154
 155#endif /* CONFIG_X86_32_LAZY_GS */
 156
 157.macro SAVE_ALL pt_regs_ax=%eax
 158	cld
 159	PUSH_GS
 
 
 160	pushl	%fs
 
 
 
 
 
 
 
 
 
 
 161	pushl	%es
 162	pushl	%ds
 163	pushl	\pt_regs_ax
 164	pushl	%ebp
 165	pushl	%edi
 166	pushl	%esi
 167	pushl	%edx
 168	pushl	%ecx
 169	pushl	%ebx
 170	movl	$(__USER_DS), %edx
 171	movl	%edx, %ds
 172	movl	%edx, %es
 173	movl	$(__KERNEL_PERCPU), %edx
 174	movl	%edx, %fs
 175	SET_KERNEL_GS %edx
 
 176.endm
 177
 178/*
 179 * This is a sneaky trick to help the unwinder find pt_regs on the stack.  The
 180 * frame pointer is replaced with an encoded pointer to pt_regs.  The encoding
 181 * is just clearing the MSB, which makes it an invalid stack address and is also
 182 * a signal to the unwinder that it's a pt_regs pointer in disguise.
 183 *
 184 * NOTE: This macro must be used *after* SAVE_ALL because it corrupts the
 185 * original rbp.
 186 */
 187.macro ENCODE_FRAME_POINTER
 188#ifdef CONFIG_FRAME_POINTER
 189	mov %esp, %ebp
 190	andl $0x7fffffff, %ebp
 191#endif
 
 192.endm
 193
 194.macro RESTORE_INT_REGS
 195	popl	%ebx
 196	popl	%ecx
 197	popl	%edx
 198	popl	%esi
 199	popl	%edi
 200	popl	%ebp
 201	popl	%eax
 202.endm
 203
 204.macro RESTORE_REGS pop=0
 205	RESTORE_INT_REGS
 2061:	popl	%ds
 2072:	popl	%es
 2083:	popl	%fs
 209	POP_GS \pop
 210.pushsection .fixup, "ax"
 2114:	movl	$0, (%esp)
 212	jmp	1b
 2135:	movl	$0, (%esp)
 214	jmp	2b
 2156:	movl	$0, (%esp)
 216	jmp	3b
 217.popsection
 218	_ASM_EXTABLE(1b, 4b)
 219	_ASM_EXTABLE(2b, 5b)
 220	_ASM_EXTABLE(3b, 6b)
 221	POP_GS_EX
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 222.endm
 223
 224/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 225 * %eax: prev task
 226 * %edx: next task
 227 */
 228ENTRY(__switch_to_asm)
 
 229	/*
 230	 * Save callee-saved registers
 231	 * This must match the order in struct inactive_task_frame
 232	 */
 233	pushl	%ebp
 234	pushl	%ebx
 235	pushl	%edi
 236	pushl	%esi
 
 
 
 
 
 
 237
 238	/* switch stack */
 239	movl	%esp, TASK_threadsp(%eax)
 240	movl	TASK_threadsp(%edx), %esp
 241
 242#ifdef CONFIG_CC_STACKPROTECTOR
 243	movl	TASK_stack_canary(%edx), %ebx
 244	movl	%ebx, PER_CPU_VAR(stack_canary)+stack_canary_offset
 245#endif
 246
 247#ifdef CONFIG_RETPOLINE
 248	/*
 249	 * When switching from a shallower to a deeper call stack
 250	 * the RSB may either underflow or use entries populated
 251	 * with userspace addresses. On CPUs where those concerns
 252	 * exist, overwrite the RSB with entries which capture
 253	 * speculative execution to prevent attack.
 254	 */
 255	FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
 256#endif
 257
 
 
 258	/* restore callee-saved registers */
 259	popl	%esi
 260	popl	%edi
 261	popl	%ebx
 262	popl	%ebp
 263
 264	jmp	__switch_to
 265END(__switch_to_asm)
 
 266
 267/*
 268 * The unwinder expects the last frame on the stack to always be at the same
 269 * offset from the end of the page, which allows it to validate the stack.
 270 * Calling schedule_tail() directly would break that convention because its an
 271 * asmlinkage function so its argument has to be pushed on the stack.  This
 272 * wrapper creates a proper "end of stack" frame header before the call.
 273 */
 274ENTRY(schedule_tail_wrapper)
 
 275	FRAME_BEGIN
 276
 277	pushl	%eax
 278	call	schedule_tail
 279	popl	%eax
 280
 281	FRAME_END
 282	ret
 283ENDPROC(schedule_tail_wrapper)
 
 
 284/*
 285 * A newly forked process directly context switches into this address.
 286 *
 287 * eax: prev task we switched from
 288 * ebx: kernel thread func (NULL for user thread)
 289 * edi: kernel thread arg
 290 */
 291ENTRY(ret_from_fork)
 
 292	call	schedule_tail_wrapper
 293
 294	testl	%ebx, %ebx
 295	jnz	1f		/* kernel threads are uncommon */
 296
 2972:
 298	/* When we fork, we trace the syscall return in the child, too. */
 299	movl    %esp, %eax
 300	call    syscall_return_slowpath
 301	jmp     restore_all
 302
 303	/* kernel thread */
 3041:	movl	%edi, %eax
 305	CALL_NOSPEC %ebx
 306	/*
 307	 * A kernel thread is allowed to return here after successfully
 308	 * calling do_execve().  Exit to userspace to complete the execve()
 309	 * syscall.
 310	 */
 311	movl	$0, PT_EAX(%esp)
 312	jmp	2b
 313END(ret_from_fork)
 314
 315/*
 316 * Return to user mode is not as complex as all this looks,
 317 * but we want the default path for a system call return to
 318 * go as quickly as possible which is why some of this is
 319 * less clear than it otherwise should be.
 320 */
 321
 322	# userspace resumption stub bypassing syscall exit tracing
 323	ALIGN
 324ret_from_exception:
 325	preempt_stop(CLBR_ANY)
 326ret_from_intr:
 327#ifdef CONFIG_VM86
 328	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS and CS
 329	movb	PT_CS(%esp), %al
 330	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
 331#else
 332	/*
 333	 * We can be coming here from child spawned by kernel_thread().
 334	 */
 335	movl	PT_CS(%esp), %eax
 336	andl	$SEGMENT_RPL_MASK, %eax
 337#endif
 338	cmpl	$USER_RPL, %eax
 339	jb	resume_kernel			# not returning to v8086 or userspace
 340
 341ENTRY(resume_userspace)
 342	DISABLE_INTERRUPTS(CLBR_ANY)
 343	TRACE_IRQS_OFF
 344	movl	%esp, %eax
 345	call	prepare_exit_to_usermode
 346	jmp	restore_all
 347END(ret_from_exception)
 348
 349#ifdef CONFIG_PREEMPT
 350ENTRY(resume_kernel)
 351	DISABLE_INTERRUPTS(CLBR_ANY)
 352.Lneed_resched:
 353	cmpl	$0, PER_CPU_VAR(__preempt_count)
 354	jnz	restore_all
 355	testl	$X86_EFLAGS_IF, PT_EFLAGS(%esp)	# interrupts off (exception path) ?
 356	jz	restore_all
 357	call	preempt_schedule_irq
 358	jmp	.Lneed_resched
 359END(resume_kernel)
 360#endif
 361
 362GLOBAL(__begin_SYSENTER_singlestep_region)
 363/*
 364 * All code from here through __end_SYSENTER_singlestep_region is subject
 365 * to being single-stepped if a user program sets TF and executes SYSENTER.
 366 * There is absolutely nothing that we can do to prevent this from happening
 367 * (thanks Intel!).  To keep our handling of this situation as simple as
 368 * possible, we handle TF just like AC and NT, except that our #DB handler
 369 * will ignore all of the single-step traps generated in this range.
 370 */
 371
 372#ifdef CONFIG_XEN
 373/*
 374 * Xen doesn't set %esp to be precisely what the normal SYSENTER
 375 * entry point expects, so fix it up before using the normal path.
 376 */
 377ENTRY(xen_sysenter_target)
 378	addl	$5*4, %esp			/* remove xen-provided frame */
 379	jmp	.Lsysenter_past_esp
 380#endif
 381
 382/*
 383 * 32-bit SYSENTER entry.
 384 *
 385 * 32-bit system calls through the vDSO's __kernel_vsyscall enter here
 386 * if X86_FEATURE_SEP is available.  This is the preferred system call
 387 * entry on 32-bit systems.
 388 *
 389 * The SYSENTER instruction, in principle, should *only* occur in the
 390 * vDSO.  In practice, a small number of Android devices were shipped
 391 * with a copy of Bionic that inlined a SYSENTER instruction.  This
 392 * never happened in any of Google's Bionic versions -- it only happened
 393 * in a narrow range of Intel-provided versions.
 394 *
 395 * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
 396 * IF and VM in RFLAGS are cleared (IOW: interrupts are off).
 397 * SYSENTER does not save anything on the stack,
 398 * and does not save old EIP (!!!), ESP, or EFLAGS.
 399 *
 400 * To avoid losing track of EFLAGS.VM (and thus potentially corrupting
 401 * user and/or vm86 state), we explicitly disable the SYSENTER
 402 * instruction in vm86 mode by reprogramming the MSRs.
 403 *
 404 * Arguments:
 405 * eax  system call number
 406 * ebx  arg1
 407 * ecx  arg2
 408 * edx  arg3
 409 * esi  arg4
 410 * edi  arg5
 411 * ebp  user stack
 412 * 0(%ebp) arg6
 413 */
 414ENTRY(entry_SYSENTER_32)
 415	movl	TSS_sysenter_sp0(%esp), %esp
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 416.Lsysenter_past_esp:
 417	pushl	$__USER_DS		/* pt_regs->ss */
 418	pushl	%ebp			/* pt_regs->sp (stashed in bp) */
 419	pushfl				/* pt_regs->flags (except IF = 0) */
 420	orl	$X86_EFLAGS_IF, (%esp)	/* Fix IF */
 421	pushl	$__USER_CS		/* pt_regs->cs */
 422	pushl	$0			/* pt_regs->ip = 0 (placeholder) */
 423	pushl	%eax			/* pt_regs->orig_ax */
 424	SAVE_ALL pt_regs_ax=$-ENOSYS	/* save rest */
 425
 426	/*
 427	 * SYSENTER doesn't filter flags, so we need to clear NT, AC
 428	 * and TF ourselves.  To save a few cycles, we can check whether
 429	 * either was set instead of doing an unconditional popfq.
 430	 * This needs to happen before enabling interrupts so that
 431	 * we don't get preempted with NT set.
 432	 *
 433	 * If TF is set, we will single-step all the way to here -- do_debug
 434	 * will ignore all the traps.  (Yes, this is slow, but so is
 435	 * single-stepping in general.  This allows us to avoid having
 436	 * a more complicated code to handle the case where a user program
 437	 * forces us to single-step through the SYSENTER entry code.)
 438	 *
 439	 * NB.: .Lsysenter_fix_flags is a label with the code under it moved
 440	 * out-of-line as an optimization: NT is unlikely to be set in the
 441	 * majority of the cases and instead of polluting the I$ unnecessarily,
 442	 * we're keeping that code behind a branch which will predict as
 443	 * not-taken and therefore its instructions won't be fetched.
 444	 */
 445	testl	$X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
 446	jnz	.Lsysenter_fix_flags
 447.Lsysenter_flags_fixed:
 448
 
 
 
 
 
 
 
 
 
 449	/*
 450	 * User mode is traced as though IRQs are on, and SYSENTER
 451	 * turned them off.
 452	 */
 453	TRACE_IRQS_OFF
 454
 455	movl	%esp, %eax
 456	call	do_fast_syscall_32
 457	/* XEN PV guests always use IRET path */
 458	ALTERNATIVE "testl %eax, %eax; jz .Lsyscall_32_done", \
 459		    "jmp .Lsyscall_32_done", X86_FEATURE_XENPV
 
 
 
 
 460
 461/* Opportunistic SYSEXIT */
 462	TRACE_IRQS_ON			/* User mode traces as IRQs on. */
 463	movl	PT_EIP(%esp), %edx	/* pt_regs->ip */
 464	movl	PT_OLDESP(%esp), %ecx	/* pt_regs->sp */
 4651:	mov	PT_FS(%esp), %fs
 466	PTGS_TO_GS
 467	popl	%ebx			/* pt_regs->bx */
 468	addl	$2*4, %esp		/* skip pt_regs->cx and pt_regs->dx */
 469	popl	%esi			/* pt_regs->si */
 470	popl	%edi			/* pt_regs->di */
 471	popl	%ebp			/* pt_regs->bp */
 472	popl	%eax			/* pt_regs->ax */
 
 
 
 
 
 473
 474	/*
 475	 * Restore all flags except IF. (We restore IF separately because
 476	 * STI gives a one-instruction window in which we won't be interrupted,
 477	 * whereas POPF does not.)
 478	 */
 479	addl	$PT_EFLAGS-PT_DS, %esp	/* point esp at pt_regs->flags */
 480	btr	$X86_EFLAGS_IF_BIT, (%esp)
 481	popfl
 
 482
 483	/*
 484	 * Return back to the vDSO, which will pop ecx and edx.
 485	 * Don't bother with DS and ES (they already contain __USER_DS).
 486	 */
 487	sti
 488	sysexit
 489
 490.pushsection .fixup, "ax"
 4912:	movl	$0, PT_FS(%esp)
 492	jmp	1b
 493.popsection
 494	_ASM_EXTABLE(1b, 2b)
 495	PTGS_TO_GS_EX
 496
 497.Lsysenter_fix_flags:
 498	pushl	$X86_EFLAGS_FIXED
 499	popfl
 500	jmp	.Lsysenter_flags_fixed
 501GLOBAL(__end_SYSENTER_singlestep_region)
 502ENDPROC(entry_SYSENTER_32)
 503
 504/*
 505 * 32-bit legacy system call entry.
 506 *
 507 * 32-bit x86 Linux system calls traditionally used the INT $0x80
 508 * instruction.  INT $0x80 lands here.
 509 *
 510 * This entry point can be used by any 32-bit perform system calls.
 511 * Instances of INT $0x80 can be found inline in various programs and
 512 * libraries.  It is also used by the vDSO's __kernel_vsyscall
 513 * fallback for hardware that doesn't support a faster entry method.
 514 * Restarted 32-bit system calls also fall back to INT $0x80
 515 * regardless of what instruction was originally used to do the system
 516 * call.  (64-bit programs can use INT $0x80 as well, but they can
 517 * only run on 64-bit kernels and therefore land in
 518 * entry_INT80_compat.)
 519 *
 520 * This is considered a slow path.  It is not used by most libc
 521 * implementations on modern hardware except during process startup.
 522 *
 523 * Arguments:
 524 * eax  system call number
 525 * ebx  arg1
 526 * ecx  arg2
 527 * edx  arg3
 528 * esi  arg4
 529 * edi  arg5
 530 * ebp  arg6
 531 */
 532ENTRY(entry_INT80_32)
 533	ASM_CLAC
 534	pushl	%eax			/* pt_regs->orig_ax */
 535	SAVE_ALL pt_regs_ax=$-ENOSYS	/* save rest */
 536
 537	/*
 538	 * User mode is traced as though IRQs are on, and the interrupt gate
 539	 * turned them off.
 540	 */
 541	TRACE_IRQS_OFF
 542
 543	movl	%esp, %eax
 544	call	do_int80_syscall_32
 545.Lsyscall_32_done:
 
 
 
 
 
 546
 547restore_all:
 548	TRACE_IRQS_IRET
 549.Lrestore_all_notrace:
 550#ifdef CONFIG_X86_ESPFIX32
 551	ALTERNATIVE	"jmp .Lrestore_nocheck", "", X86_BUG_ESPFIX
 552
 553	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS, SS and CS
 554	/*
 555	 * Warning: PT_OLDSS(%esp) contains the wrong/random values if we
 556	 * are returning to the kernel.
 557	 * See comments in process.c:copy_thread() for details.
 558	 */
 559	movb	PT_OLDSS(%esp), %ah
 560	movb	PT_CS(%esp), %al
 561	andl	$(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
 562	cmpl	$((SEGMENT_LDT << 8) | USER_RPL), %eax
 563	je .Lldt_ss				# returning to user-space with LDT SS
 564#endif
 565.Lrestore_nocheck:
 566	RESTORE_REGS 4				# skip orig_eax/error_code
 567.Lirq_return:
 568	/*
 569	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
 570	 * when returning from IPI handler and when returning from
 571	 * scheduler to user-space.
 572	 */
 573	INTERRUPT_RETURN
 574
 575.section .fixup, "ax"
 576ENTRY(iret_exc	)
 577	pushl	$0				# no error code
 578	pushl	$do_iret_error
 579	jmp	common_exception
 580.previous
 581	_ASM_EXTABLE(.Lirq_return, iret_exc)
 582
 583#ifdef CONFIG_X86_ESPFIX32
 584.Lldt_ss:
 585/*
 586 * Setup and switch to ESPFIX stack
 587 *
 588 * We're returning to userspace with a 16 bit stack. The CPU will not
 589 * restore the high word of ESP for us on executing iret... This is an
 590 * "official" bug of all the x86-compatible CPUs, which we can work
 591 * around to make dosemu and wine happy. We do this by preloading the
 592 * high word of ESP with the high word of the userspace ESP while
 593 * compensating for the offset by changing to the ESPFIX segment with
 594 * a base address that matches for the difference.
 595 */
 596#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + (GDT_ENTRY_ESPFIX_SS * 8)
 597	mov	%esp, %edx			/* load kernel esp */
 598	mov	PT_OLDESP(%esp), %eax		/* load userspace esp */
 599	mov	%dx, %ax			/* eax: new kernel esp */
 600	sub	%eax, %edx			/* offset (low word is 0) */
 601	shr	$16, %edx
 602	mov	%dl, GDT_ESPFIX_SS + 4		/* bits 16..23 */
 603	mov	%dh, GDT_ESPFIX_SS + 7		/* bits 24..31 */
 604	pushl	$__ESPFIX_SS
 605	pushl	%eax				/* new kernel esp */
 606	/*
 607	 * Disable interrupts, but do not irqtrace this section: we
 608	 * will soon execute iret and the tracer was already set to
 609	 * the irqstate after the IRET:
 
 610	 */
 611	DISABLE_INTERRUPTS(CLBR_ANY)
 612	lss	(%esp), %esp			/* switch to espfix segment */
 613	jmp	.Lrestore_nocheck
 614#endif
 615ENDPROC(entry_INT80_32)
 
 
 
 
 616
 617.macro FIXUP_ESPFIX_STACK
 618/*
 619 * Switch back for ESPFIX stack to the normal zerobased stack
 620 *
 621 * We can't call C functions using the ESPFIX stack. This code reads
 622 * the high word of the segment base from the GDT and swiches to the
 623 * normal stack and adjusts ESP with the matching offset.
 
 
 
 
 624 */
 625#ifdef CONFIG_X86_ESPFIX32
 626	/* fixup the stack */
 627	mov	GDT_ESPFIX_SS + 4, %al /* bits 16..23 */
 628	mov	GDT_ESPFIX_SS + 7, %ah /* bits 24..31 */
 
 
 
 
 
 
 
 
 629	shl	$16, %eax
 
 
 630	addl	%esp, %eax			/* the adjusted stack pointer */
 631	pushl	$__KERNEL_DS
 632	pushl	%eax
 633	lss	(%esp), %esp			/* switch to the normal stack segment */
 634#endif
 635.endm
 
 636.macro UNWIND_ESPFIX_STACK
 
 637#ifdef CONFIG_X86_ESPFIX32
 638	movl	%ss, %eax
 639	/* see if on espfix stack */
 640	cmpw	$__ESPFIX_SS, %ax
 641	jne	27f
 642	movl	$__KERNEL_DS, %eax
 643	movl	%eax, %ds
 644	movl	%eax, %es
 645	/* switch to normal stack */
 646	FIXUP_ESPFIX_STACK
 64727:
 648#endif
 649.endm
 650
 651/*
 652 * Build the entry stubs with some assembler magic.
 653 * We pack 1 stub into every 8-byte block.
 654 */
 655	.align 8
 656ENTRY(irq_entries_start)
 657    vector=FIRST_EXTERNAL_VECTOR
 658    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
 659	pushl	$(~vector+0x80)			/* Note: always in signed byte range */
 660    vector=vector+1
 661	jmp	common_interrupt
 662	.align	8
 663    .endr
 664END(irq_entries_start)
 665
 666/*
 667 * the CPU automatically disables interrupts when executing an IRQ vector,
 668 * so IRQ-flags tracing has to follow that:
 669 */
 670	.p2align CONFIG_X86_L1_CACHE_SHIFT
 671common_interrupt:
 672	ASM_CLAC
 673	addl	$-0x80, (%esp)			/* Adjust vector into the [-256, -1] range */
 674	SAVE_ALL
 675	ENCODE_FRAME_POINTER
 676	TRACE_IRQS_OFF
 677	movl	%esp, %eax
 678	call	do_IRQ
 679	jmp	ret_from_intr
 680ENDPROC(common_interrupt)
 681
 682#define BUILD_INTERRUPT3(name, nr, fn)	\
 683ENTRY(name)				\
 684	ASM_CLAC;			\
 685	pushl	$~(nr);			\
 686	SAVE_ALL;			\
 687	ENCODE_FRAME_POINTER;		\
 688	TRACE_IRQS_OFF			\
 689	movl	%esp, %eax;		\
 690	call	fn;			\
 691	jmp	ret_from_intr;		\
 692ENDPROC(name)
 693
 694#define BUILD_INTERRUPT(name, nr)		\
 695	BUILD_INTERRUPT3(name, nr, smp_##name);	\
 696
 697/* The include is where all of the SMP etc. interrupts come from */
 698#include <asm/entry_arch.h>
 
 699
 700ENTRY(coprocessor_error)
 701	ASM_CLAC
 702	pushl	$0
 703	pushl	$do_coprocessor_error
 704	jmp	common_exception
 705END(coprocessor_error)
 706
 707ENTRY(simd_coprocessor_error)
 708	ASM_CLAC
 709	pushl	$0
 710#ifdef CONFIG_X86_INVD_BUG
 711	/* AMD 486 bug: invd from userspace calls exception 19 instead of #GP */
 712	ALTERNATIVE "pushl	$do_general_protection",	\
 713		    "pushl	$do_simd_coprocessor_error",	\
 714		    X86_FEATURE_XMM
 715#else
 716	pushl	$do_simd_coprocessor_error
 
 
 
 
 717#endif
 718	jmp	common_exception
 719END(simd_coprocessor_error)
 720
 721ENTRY(device_not_available)
 722	ASM_CLAC
 723	pushl	$-1				# mark this as an int
 724	pushl	$do_device_not_available
 725	jmp	common_exception
 726END(device_not_available)
 727
 728#ifdef CONFIG_PARAVIRT
 729ENTRY(native_iret)
 730	iret
 731	_ASM_EXTABLE(native_iret, iret_exc)
 732END(native_iret)
 733#endif
 734
 735ENTRY(overflow)
 736	ASM_CLAC
 737	pushl	$0
 738	pushl	$do_overflow
 739	jmp	common_exception
 740END(overflow)
 741
 742ENTRY(bounds)
 743	ASM_CLAC
 744	pushl	$0
 745	pushl	$do_bounds
 746	jmp	common_exception
 747END(bounds)
 748
 749ENTRY(invalid_op)
 750	ASM_CLAC
 751	pushl	$0
 752	pushl	$do_invalid_op
 753	jmp	common_exception
 754END(invalid_op)
 755
 756ENTRY(coprocessor_segment_overrun)
 757	ASM_CLAC
 758	pushl	$0
 759	pushl	$do_coprocessor_segment_overrun
 760	jmp	common_exception
 761END(coprocessor_segment_overrun)
 762
 763ENTRY(invalid_TSS)
 764	ASM_CLAC
 765	pushl	$do_invalid_TSS
 766	jmp	common_exception
 767END(invalid_TSS)
 768
 769ENTRY(segment_not_present)
 770	ASM_CLAC
 771	pushl	$do_segment_not_present
 772	jmp	common_exception
 773END(segment_not_present)
 774
 775ENTRY(stack_segment)
 776	ASM_CLAC
 777	pushl	$do_stack_segment
 778	jmp	common_exception
 779END(stack_segment)
 780
 781ENTRY(alignment_check)
 782	ASM_CLAC
 783	pushl	$do_alignment_check
 784	jmp	common_exception
 785END(alignment_check)
 786
 787ENTRY(divide_error)
 788	ASM_CLAC
 789	pushl	$0				# no error code
 790	pushl	$do_divide_error
 791	jmp	common_exception
 792END(divide_error)
 793
 794#ifdef CONFIG_X86_MCE
 795ENTRY(machine_check)
 796	ASM_CLAC
 797	pushl	$0
 798	pushl	machine_check_vector
 799	jmp	common_exception
 800END(machine_check)
 801#endif
 802
 803ENTRY(spurious_interrupt_bug)
 804	ASM_CLAC
 805	pushl	$0
 806	pushl	$do_spurious_interrupt_bug
 807	jmp	common_exception
 808END(spurious_interrupt_bug)
 809
 810#ifdef CONFIG_XEN
 811ENTRY(xen_hypervisor_callback)
 812	pushl	$-1				/* orig_ax = -1 => not a system call */
 813	SAVE_ALL
 814	ENCODE_FRAME_POINTER
 815	TRACE_IRQS_OFF
 816
 
 
 817	/*
 818	 * Check to see if we got the event in the critical
 819	 * region in xen_iret_direct, after we've reenabled
 820	 * events and checked for pending events.  This simulates
 821	 * iret instruction's behaviour where it delivers a
 822	 * pending interrupt when enabling interrupts:
 823	 */
 824	movl	PT_EIP(%esp), %eax
 825	cmpl	$xen_iret_start_crit, %eax
 826	jb	1f
 827	cmpl	$xen_iret_end_crit, %eax
 828	jae	1f
 829
 830	jmp	xen_iret_crit_fixup
 831
 832ENTRY(xen_do_upcall)
 8331:	mov	%esp, %eax
 834	call	xen_evtchn_do_upcall
 835#ifndef CONFIG_PREEMPT
 836	call	xen_maybe_preempt_hcall
 837#endif
 838	jmp	ret_from_intr
 839ENDPROC(xen_hypervisor_callback)
 840
 841/*
 842 * Hypervisor uses this for application faults while it executes.
 843 * We get here for two reasons:
 844 *  1. Fault while reloading DS, ES, FS or GS
 845 *  2. Fault while executing IRET
 846 * Category 1 we fix up by reattempting the load, and zeroing the segment
 847 * register if the load fails.
 848 * Category 2 we fix up by jumping to do_iret_error. We cannot use the
 849 * normal Linux return path in this case because if we use the IRET hypercall
 850 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 851 * We distinguish between categories by maintaining a status value in EAX.
 852 */
 853ENTRY(xen_failsafe_callback)
 854	pushl	%eax
 855	movl	$1, %eax
 8561:	mov	4(%esp), %ds
 8572:	mov	8(%esp), %es
 8583:	mov	12(%esp), %fs
 8594:	mov	16(%esp), %gs
 860	/* EAX == 0 => Category 1 (Bad segment)
 861	   EAX != 0 => Category 2 (Bad IRET) */
 862	testl	%eax, %eax
 863	popl	%eax
 864	lea	16(%esp), %esp
 865	jz	5f
 866	jmp	iret_exc
 8675:	pushl	$-1				/* orig_ax = -1 => not a system call */
 868	SAVE_ALL
 869	ENCODE_FRAME_POINTER
 870	jmp	ret_from_exception
 871
 872.section .fixup, "ax"
 8736:	xorl	%eax, %eax
 874	movl	%eax, 4(%esp)
 875	jmp	1b
 8767:	xorl	%eax, %eax
 877	movl	%eax, 8(%esp)
 878	jmp	2b
 8798:	xorl	%eax, %eax
 880	movl	%eax, 12(%esp)
 881	jmp	3b
 8829:	xorl	%eax, %eax
 883	movl	%eax, 16(%esp)
 884	jmp	4b
 885.previous
 886	_ASM_EXTABLE(1b, 6b)
 887	_ASM_EXTABLE(2b, 7b)
 888	_ASM_EXTABLE(3b, 8b)
 889	_ASM_EXTABLE(4b, 9b)
 890ENDPROC(xen_failsafe_callback)
 891
 892BUILD_INTERRUPT3(xen_hvm_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
 893		 xen_evtchn_do_upcall)
 894
 895#endif /* CONFIG_XEN */
 896
 897#if IS_ENABLED(CONFIG_HYPERV)
 898
 899BUILD_INTERRUPT3(hyperv_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
 900		 hyperv_vector_handler)
 901
 902BUILD_INTERRUPT3(hyperv_reenlightenment_vector, HYPERV_REENLIGHTENMENT_VECTOR,
 903		 hyperv_reenlightenment_intr)
 904
 905BUILD_INTERRUPT3(hv_stimer0_callback_vector, HYPERV_STIMER0_VECTOR,
 906		 hv_stimer0_vector_handler)
 907
 908#endif /* CONFIG_HYPERV */
 909
 910ENTRY(page_fault)
 911	ASM_CLAC
 912	pushl	$do_page_fault
 913	ALIGN
 914	jmp common_exception
 915END(page_fault)
 916
 917common_exception:
 918	/* the function address is in %gs's slot on the stack */
 919	pushl	%fs
 920	pushl	%es
 921	pushl	%ds
 922	pushl	%eax
 923	pushl	%ebp
 924	pushl	%edi
 925	pushl	%esi
 926	pushl	%edx
 927	pushl	%ecx
 928	pushl	%ebx
 929	ENCODE_FRAME_POINTER
 930	cld
 931	movl	$(__KERNEL_PERCPU), %ecx
 932	movl	%ecx, %fs
 933	UNWIND_ESPFIX_STACK
 934	GS_TO_REG %ecx
 935	movl	PT_GS(%esp), %edi		# get the function address
 936	movl	PT_ORIG_EAX(%esp), %edx		# get the error code
 937	movl	$-1, PT_ORIG_EAX(%esp)		# no syscall to restart
 938	REG_TO_PTGS %ecx
 939	SET_KERNEL_GS %ecx
 940	movl	$(__USER_DS), %ecx
 941	movl	%ecx, %ds
 942	movl	%ecx, %es
 943	TRACE_IRQS_OFF
 944	movl	%esp, %eax			# pt_regs pointer
 945	CALL_NOSPEC %edi
 946	jmp	ret_from_exception
 947END(common_exception)
 948
 949ENTRY(debug)
 950	/*
 951	 * #DB can happen at the first instruction of
 952	 * entry_SYSENTER_32 or in Xen's SYSENTER prologue.  If this
 953	 * happens, then we will be running on a very small stack.  We
 954	 * need to detect this condition and switch to the thread
 955	 * stack before calling any C code at all.
 956	 *
 957	 * If you edit this code, keep in mind that NMIs can happen in here.
 
 958	 */
 959	ASM_CLAC
 960	pushl	$-1				# mark this as an int
 961	SAVE_ALL
 962	ENCODE_FRAME_POINTER
 963	xorl	%edx, %edx			# error code 0
 964	movl	%esp, %eax			# pt_regs pointer
 965
 966	/* Are we currently on the SYSENTER stack? */
 967	movl	PER_CPU_VAR(cpu_entry_area), %ecx
 968	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
 969	subl	%eax, %ecx	/* ecx = (end of entry_stack) - esp */
 970	cmpl	$SIZEOF_entry_stack, %ecx
 971	jb	.Ldebug_from_sysenter_stack
 972
 973	TRACE_IRQS_OFF
 974	call	do_debug
 975	jmp	ret_from_exception
 976
 977.Ldebug_from_sysenter_stack:
 978	/* We're on the SYSENTER stack.  Switch off. */
 979	movl	%esp, %ebx
 980	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esp
 981	TRACE_IRQS_OFF
 982	call	do_debug
 983	movl	%ebx, %esp
 984	jmp	ret_from_exception
 985END(debug)
 986
 987/*
 988 * NMI is doubly nasty.  It can happen on the first instruction of
 989 * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
 990 * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
 991 * switched stacks.  We handle both conditions by simply checking whether we
 992 * interrupted kernel code running on the SYSENTER stack.
 993 */
 994ENTRY(nmi)
 995	ASM_CLAC
 
 996#ifdef CONFIG_X86_ESPFIX32
 
 
 
 
 997	pushl	%eax
 998	movl	%ss, %eax
 999	cmpw	$__ESPFIX_SS, %ax
1000	popl	%eax
1001	je	.Lnmi_espfix_stack
1002#endif
1003
1004	pushl	%eax				# pt_regs->orig_ax
1005	SAVE_ALL
1006	ENCODE_FRAME_POINTER
1007	xorl	%edx, %edx			# zero error code
1008	movl	%esp, %eax			# pt_regs pointer
1009
1010	/* Are we currently on the SYSENTER stack? */
1011	movl	PER_CPU_VAR(cpu_entry_area), %ecx
1012	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
1013	subl	%eax, %ecx	/* ecx = (end of entry_stack) - esp */
1014	cmpl	$SIZEOF_entry_stack, %ecx
1015	jb	.Lnmi_from_sysenter_stack
1016
1017	/* Not on SYSENTER stack. */
1018	call	do_nmi
1019	jmp	.Lrestore_all_notrace
1020
1021.Lnmi_from_sysenter_stack:
1022	/*
1023	 * We're on the SYSENTER stack.  Switch off.  No one (not even debug)
1024	 * is using the thread stack right now, so it's safe for us to use it.
1025	 */
1026	movl	%esp, %ebx
1027	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esp
1028	call	do_nmi
1029	movl	%ebx, %esp
1030	jmp	.Lrestore_all_notrace
 
 
 
 
 
 
 
 
 
1031
1032#ifdef CONFIG_X86_ESPFIX32
1033.Lnmi_espfix_stack:
1034	/*
1035	 * create the pointer to lss back
1036	 */
1037	pushl	%ss
1038	pushl	%esp
1039	addl	$4, (%esp)
1040	/* copy the iret frame of 12 bytes */
1041	.rept 3
1042	pushl	16(%esp)
1043	.endr
1044	pushl	%eax
1045	SAVE_ALL
 
 
 
1046	ENCODE_FRAME_POINTER
1047	FIXUP_ESPFIX_STACK			# %eax == %esp
1048	xorl	%edx, %edx			# zero error code
1049	call	do_nmi
1050	RESTORE_REGS
1051	lss	12+4(%esp), %esp		# back to espfix stack
1052	jmp	.Lirq_return
1053#endif
1054END(nmi)
1055
1056ENTRY(int3)
1057	ASM_CLAC
1058	pushl	$-1				# mark this as an int
1059	SAVE_ALL
1060	ENCODE_FRAME_POINTER
1061	TRACE_IRQS_OFF
1062	xorl	%edx, %edx			# zero error code
1063	movl	%esp, %eax			# pt_regs pointer
1064	call	do_int3
1065	jmp	ret_from_exception
1066END(int3)
1067
1068ENTRY(general_protection)
1069	pushl	$do_general_protection
1070	jmp	common_exception
1071END(general_protection)
1072
1073#ifdef CONFIG_KVM_GUEST
1074ENTRY(async_page_fault)
1075	ASM_CLAC
1076	pushl	$do_async_page_fault
1077	jmp	common_exception
1078END(async_page_fault)
 
 
 
 
 
 
 
 
1079#endif
 
1080
1081ENTRY(rewind_stack_do_exit)
 
1082	/* Prevent any naive code from trying to unwind to our caller. */
1083	xorl	%ebp, %ebp
1084
1085	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esi
1086	leal	-TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp
1087
1088	call	do_exit
10891:	jmp 1b
1090END(rewind_stack_do_exit)