Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v6.2
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 *  Copyright (C) 1991,1992  Linus Torvalds
   4 *
   5 * entry_32.S contains the system-call and low-level fault and trap handling routines.
   6 *
   7 * Stack layout while running C code:
   8 *	ptrace needs to have all registers on the stack.
   9 *	If the order here is changed, it needs to be
  10 *	updated in fork.c:copy_process(), signal.c:do_signal(),
  11 *	ptrace.c and ptrace.h
  12 *
  13 *	 0(%esp) - %ebx
  14 *	 4(%esp) - %ecx
  15 *	 8(%esp) - %edx
  16 *	 C(%esp) - %esi
  17 *	10(%esp) - %edi
  18 *	14(%esp) - %ebp
  19 *	18(%esp) - %eax
  20 *	1C(%esp) - %ds
  21 *	20(%esp) - %es
  22 *	24(%esp) - %fs
  23 *	28(%esp) - unused -- was %gs on old stackprotector kernels
  24 *	2C(%esp) - orig_eax
  25 *	30(%esp) - %eip
  26 *	34(%esp) - %cs
  27 *	38(%esp) - %eflags
  28 *	3C(%esp) - %oldesp
  29 *	40(%esp) - %oldss
  30 */
  31
  32#include <linux/linkage.h>
  33#include <linux/err.h>
  34#include <asm/thread_info.h>
  35#include <asm/irqflags.h>
  36#include <asm/errno.h>
  37#include <asm/segment.h>
  38#include <asm/smp.h>
  39#include <asm/percpu.h>
  40#include <asm/processor-flags.h>
  41#include <asm/irq_vectors.h>
  42#include <asm/cpufeatures.h>
  43#include <asm/alternative.h>
  44#include <asm/asm.h>
  45#include <asm/smap.h>
  46#include <asm/frame.h>
  47#include <asm/trapnr.h>
  48#include <asm/nospec-branch.h>
  49
  50#include "calling.h"
  51
  52	.section .entry.text, "ax"
  53
  54#define PTI_SWITCH_MASK         (1 << PAGE_SHIFT)
  55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  56/* Unconditionally switch to user cr3 */
  57.macro SWITCH_TO_USER_CR3 scratch_reg:req
  58	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
  59
  60	movl	%cr3, \scratch_reg
  61	orl	$PTI_SWITCH_MASK, \scratch_reg
  62	movl	\scratch_reg, %cr3
  63.Lend_\@:
  64.endm
  65
  66.macro BUG_IF_WRONG_CR3 no_user_check=0
  67#ifdef CONFIG_DEBUG_ENTRY
  68	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
  69	.if \no_user_check == 0
  70	/* coming from usermode? */
  71	testl	$USER_SEGMENT_RPL_MASK, PT_CS(%esp)
  72	jz	.Lend_\@
  73	.endif
  74	/* On user-cr3? */
  75	movl	%cr3, %eax
  76	testl	$PTI_SWITCH_MASK, %eax
  77	jnz	.Lend_\@
  78	/* From userspace with kernel cr3 - BUG */
  79	ud2
  80.Lend_\@:
  81#endif
  82.endm
  83
  84/*
  85 * Switch to kernel cr3 if not already loaded and return current cr3 in
  86 * \scratch_reg
  87 */
  88.macro SWITCH_TO_KERNEL_CR3 scratch_reg:req
  89	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
  90	movl	%cr3, \scratch_reg
  91	/* Test if we are already on kernel CR3 */
  92	testl	$PTI_SWITCH_MASK, \scratch_reg
  93	jz	.Lend_\@
  94	andl	$(~PTI_SWITCH_MASK), \scratch_reg
  95	movl	\scratch_reg, %cr3
  96	/* Return original CR3 in \scratch_reg */
  97	orl	$PTI_SWITCH_MASK, \scratch_reg
  98.Lend_\@:
  99.endm
 100
 101#define CS_FROM_ENTRY_STACK	(1 << 31)
 102#define CS_FROM_USER_CR3	(1 << 30)
 103#define CS_FROM_KERNEL		(1 << 29)
 104#define CS_FROM_ESPFIX		(1 << 28)
 105
 106.macro FIXUP_FRAME
 107	/*
 108	 * The high bits of the CS dword (__csh) are used for CS_FROM_*.
 109	 * Clear them in case hardware didn't do this for us.
 110	 */
 111	andl	$0x0000ffff, 4*4(%esp)
 112
 113#ifdef CONFIG_VM86
 114	testl	$X86_EFLAGS_VM, 5*4(%esp)
 115	jnz	.Lfrom_usermode_no_fixup_\@
 116#endif
 117	testl	$USER_SEGMENT_RPL_MASK, 4*4(%esp)
 118	jnz	.Lfrom_usermode_no_fixup_\@
 119
 120	orl	$CS_FROM_KERNEL, 4*4(%esp)
 121
 122	/*
 123	 * When we're here from kernel mode; the (exception) stack looks like:
 124	 *
 125	 *  6*4(%esp) - <previous context>
 126	 *  5*4(%esp) - flags
 127	 *  4*4(%esp) - cs
 128	 *  3*4(%esp) - ip
 129	 *  2*4(%esp) - orig_eax
 130	 *  1*4(%esp) - gs / function
 131	 *  0*4(%esp) - fs
 132	 *
 133	 * Lets build a 5 entry IRET frame after that, such that struct pt_regs
 134	 * is complete and in particular regs->sp is correct. This gives us
 135	 * the original 6 entries as gap:
 136	 *
 137	 * 14*4(%esp) - <previous context>
 138	 * 13*4(%esp) - gap / flags
 139	 * 12*4(%esp) - gap / cs
 140	 * 11*4(%esp) - gap / ip
 141	 * 10*4(%esp) - gap / orig_eax
 142	 *  9*4(%esp) - gap / gs / function
 143	 *  8*4(%esp) - gap / fs
 144	 *  7*4(%esp) - ss
 145	 *  6*4(%esp) - sp
 146	 *  5*4(%esp) - flags
 147	 *  4*4(%esp) - cs
 148	 *  3*4(%esp) - ip
 149	 *  2*4(%esp) - orig_eax
 150	 *  1*4(%esp) - gs / function
 151	 *  0*4(%esp) - fs
 152	 */
 153
 154	pushl	%ss		# ss
 155	pushl	%esp		# sp (points at ss)
 156	addl	$7*4, (%esp)	# point sp back at the previous context
 157	pushl	7*4(%esp)	# flags
 158	pushl	7*4(%esp)	# cs
 159	pushl	7*4(%esp)	# ip
 160	pushl	7*4(%esp)	# orig_eax
 161	pushl	7*4(%esp)	# gs / function
 162	pushl	7*4(%esp)	# fs
 163.Lfrom_usermode_no_fixup_\@:
 164.endm
 165
 166.macro IRET_FRAME
 167	/*
 168	 * We're called with %ds, %es, %fs, and %gs from the interrupted
 169	 * frame, so we shouldn't use them.  Also, we may be in ESPFIX
 170	 * mode and therefore have a nonzero SS base and an offset ESP,
 171	 * so any attempt to access the stack needs to use SS.  (except for
 172	 * accesses through %esp, which automatically use SS.)
 173	 */
 174	testl $CS_FROM_KERNEL, 1*4(%esp)
 175	jz .Lfinished_frame_\@
 176
 177	/*
 178	 * Reconstruct the 3 entry IRET frame right after the (modified)
 179	 * regs->sp without lowering %esp in between, such that an NMI in the
 180	 * middle doesn't scribble our stack.
 181	 */
 182	pushl	%eax
 183	pushl	%ecx
 184	movl	5*4(%esp), %eax		# (modified) regs->sp
 185
 186	movl	4*4(%esp), %ecx		# flags
 187	movl	%ecx, %ss:-1*4(%eax)
 188
 189	movl	3*4(%esp), %ecx		# cs
 190	andl	$0x0000ffff, %ecx
 191	movl	%ecx, %ss:-2*4(%eax)
 192
 193	movl	2*4(%esp), %ecx		# ip
 194	movl	%ecx, %ss:-3*4(%eax)
 195
 196	movl	1*4(%esp), %ecx		# eax
 197	movl	%ecx, %ss:-4*4(%eax)
 198
 199	popl	%ecx
 200	lea	-4*4(%eax), %esp
 201	popl	%eax
 202.Lfinished_frame_\@:
 203.endm
 204
 205.macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0 skip_gs=0 unwind_espfix=0
 206	cld
 207.if \skip_gs == 0
 208	pushl	$0
 209.endif
 210	pushl	%fs
 211
 212	pushl	%eax
 213	movl	$(__KERNEL_PERCPU), %eax
 214	movl	%eax, %fs
 215.if \unwind_espfix > 0
 216	UNWIND_ESPFIX_STACK
 217.endif
 218	popl	%eax
 219
 220	FIXUP_FRAME
 221	pushl	%es
 222	pushl	%ds
 223	pushl	\pt_regs_ax
 224	pushl	%ebp
 225	pushl	%edi
 226	pushl	%esi
 227	pushl	%edx
 228	pushl	%ecx
 229	pushl	%ebx
 230	movl	$(__USER_DS), %edx
 231	movl	%edx, %ds
 232	movl	%edx, %es
 
 
 
 233	/* Switch to kernel stack if necessary */
 234.if \switch_stacks > 0
 235	SWITCH_TO_KERNEL_STACK
 236.endif
 237.endm
 238
 239.macro SAVE_ALL_NMI cr3_reg:req unwind_espfix=0
 240	SAVE_ALL unwind_espfix=\unwind_espfix
 241
 242	BUG_IF_WRONG_CR3
 243
 244	/*
 245	 * Now switch the CR3 when PTI is enabled.
 246	 *
 247	 * We can enter with either user or kernel cr3, the code will
 248	 * store the old cr3 in \cr3_reg and switches to the kernel cr3
 249	 * if necessary.
 250	 */
 251	SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg
 252
 253.Lend_\@:
 254.endm
 255
 256.macro RESTORE_INT_REGS
 257	popl	%ebx
 258	popl	%ecx
 259	popl	%edx
 260	popl	%esi
 261	popl	%edi
 262	popl	%ebp
 263	popl	%eax
 264.endm
 265
 266.macro RESTORE_REGS pop=0
 267	RESTORE_INT_REGS
 2681:	popl	%ds
 2692:	popl	%es
 2703:	popl	%fs
 2714:	addl	$(4 + \pop), %esp	/* pop the unused "gs" slot */
 272	IRET_FRAME
 273
 274	/*
 275	 * There is no _ASM_EXTABLE_TYPE_REG() for ASM, however since this is
 276	 * ASM the registers are known and we can trivially hard-code them.
 277	 */
 278	_ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_POP_ZERO|EX_REG_DS)
 279	_ASM_EXTABLE_TYPE(2b, 3b, EX_TYPE_POP_ZERO|EX_REG_ES)
 280	_ASM_EXTABLE_TYPE(3b, 4b, EX_TYPE_POP_ZERO|EX_REG_FS)
 
 
 
 
 281.endm
 282
 283.macro RESTORE_ALL_NMI cr3_reg:req pop=0
 284	/*
 285	 * Now switch the CR3 when PTI is enabled.
 286	 *
 287	 * We enter with kernel cr3 and switch the cr3 to the value
 288	 * stored on \cr3_reg, which is either a user or a kernel cr3.
 289	 */
 290	ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI
 291
 292	testl	$PTI_SWITCH_MASK, \cr3_reg
 293	jz	.Lswitched_\@
 294
 295	/* User cr3 in \cr3_reg - write it to hardware cr3 */
 296	movl	\cr3_reg, %cr3
 297
 298.Lswitched_\@:
 299
 300	BUG_IF_WRONG_CR3
 301
 302	RESTORE_REGS pop=\pop
 303.endm
 304
 305.macro CHECK_AND_APPLY_ESPFIX
 306#ifdef CONFIG_X86_ESPFIX32
 307#define GDT_ESPFIX_OFFSET (GDT_ENTRY_ESPFIX_SS * 8)
 308#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + GDT_ESPFIX_OFFSET
 309
 310	ALTERNATIVE	"jmp .Lend_\@", "", X86_BUG_ESPFIX
 311
 312	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS, SS and CS
 313	/*
 314	 * Warning: PT_OLDSS(%esp) contains the wrong/random values if we
 315	 * are returning to the kernel.
 316	 * See comments in process.c:copy_thread() for details.
 317	 */
 318	movb	PT_OLDSS(%esp), %ah
 319	movb	PT_CS(%esp), %al
 320	andl	$(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
 321	cmpl	$((SEGMENT_LDT << 8) | USER_RPL), %eax
 322	jne	.Lend_\@	# returning to user-space with LDT SS
 323
 324	/*
 325	 * Setup and switch to ESPFIX stack
 326	 *
 327	 * We're returning to userspace with a 16 bit stack. The CPU will not
 328	 * restore the high word of ESP for us on executing iret... This is an
 329	 * "official" bug of all the x86-compatible CPUs, which we can work
 330	 * around to make dosemu and wine happy. We do this by preloading the
 331	 * high word of ESP with the high word of the userspace ESP while
 332	 * compensating for the offset by changing to the ESPFIX segment with
 333	 * a base address that matches for the difference.
 334	 */
 335	mov	%esp, %edx			/* load kernel esp */
 336	mov	PT_OLDESP(%esp), %eax		/* load userspace esp */
 337	mov	%dx, %ax			/* eax: new kernel esp */
 338	sub	%eax, %edx			/* offset (low word is 0) */
 339	shr	$16, %edx
 340	mov	%dl, GDT_ESPFIX_SS + 4		/* bits 16..23 */
 341	mov	%dh, GDT_ESPFIX_SS + 7		/* bits 24..31 */
 342	pushl	$__ESPFIX_SS
 343	pushl	%eax				/* new kernel esp */
 344	/*
 345	 * Disable interrupts, but do not irqtrace this section: we
 346	 * will soon execute iret and the tracer was already set to
 347	 * the irqstate after the IRET:
 348	 */
 349	cli
 350	lss	(%esp), %esp			/* switch to espfix segment */
 351.Lend_\@:
 352#endif /* CONFIG_X86_ESPFIX32 */
 353.endm
 354
 355/*
 356 * Called with pt_regs fully populated and kernel segments loaded,
 357 * so we can access PER_CPU and use the integer registers.
 358 *
 359 * We need to be very careful here with the %esp switch, because an NMI
 360 * can happen everywhere. If the NMI handler finds itself on the
 361 * entry-stack, it will overwrite the task-stack and everything we
 362 * copied there. So allocate the stack-frame on the task-stack and
 363 * switch to it before we do any copying.
 364 */
 365
 366.macro SWITCH_TO_KERNEL_STACK
 367
 368	BUG_IF_WRONG_CR3
 369
 370	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
 371
 372	/*
 373	 * %eax now contains the entry cr3 and we carry it forward in
 374	 * that register for the time this macro runs
 375	 */
 376
 377	/* Are we on the entry stack? Bail out if not! */
 378	movl	PER_CPU_VAR(cpu_entry_area), %ecx
 379	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
 380	subl	%esp, %ecx	/* ecx = (end of entry_stack) - esp */
 381	cmpl	$SIZEOF_entry_stack, %ecx
 382	jae	.Lend_\@
 383
 384	/* Load stack pointer into %esi and %edi */
 385	movl	%esp, %esi
 386	movl	%esi, %edi
 387
 388	/* Move %edi to the top of the entry stack */
 389	andl	$(MASK_entry_stack), %edi
 390	addl	$(SIZEOF_entry_stack), %edi
 391
 392	/* Load top of task-stack into %edi */
 393	movl	TSS_entry2task_stack(%edi), %edi
 394
 395	/* Special case - entry from kernel mode via entry stack */
 396#ifdef CONFIG_VM86
 397	movl	PT_EFLAGS(%esp), %ecx		# mix EFLAGS and CS
 398	movb	PT_CS(%esp), %cl
 399	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx
 400#else
 401	movl	PT_CS(%esp), %ecx
 402	andl	$SEGMENT_RPL_MASK, %ecx
 403#endif
 404	cmpl	$USER_RPL, %ecx
 405	jb	.Lentry_from_kernel_\@
 406
 407	/* Bytes to copy */
 408	movl	$PTREGS_SIZE, %ecx
 409
 410#ifdef CONFIG_VM86
 411	testl	$X86_EFLAGS_VM, PT_EFLAGS(%esi)
 412	jz	.Lcopy_pt_regs_\@
 413
 414	/*
 415	 * Stack-frame contains 4 additional segment registers when
 416	 * coming from VM86 mode
 417	 */
 418	addl	$(4 * 4), %ecx
 419
 420#endif
 421.Lcopy_pt_regs_\@:
 422
 423	/* Allocate frame on task-stack */
 424	subl	%ecx, %edi
 425
 426	/* Switch to task-stack */
 427	movl	%edi, %esp
 428
 429	/*
 430	 * We are now on the task-stack and can safely copy over the
 431	 * stack-frame
 432	 */
 433	shrl	$2, %ecx
 434	cld
 435	rep movsl
 436
 437	jmp .Lend_\@
 438
 439.Lentry_from_kernel_\@:
 440
 441	/*
 442	 * This handles the case when we enter the kernel from
 443	 * kernel-mode and %esp points to the entry-stack. When this
 444	 * happens we need to switch to the task-stack to run C code,
 445	 * but switch back to the entry-stack again when we approach
 446	 * iret and return to the interrupted code-path. This usually
 447	 * happens when we hit an exception while restoring user-space
 448	 * segment registers on the way back to user-space or when the
 449	 * sysenter handler runs with eflags.tf set.
 450	 *
 451	 * When we switch to the task-stack here, we can't trust the
 452	 * contents of the entry-stack anymore, as the exception handler
 453	 * might be scheduled out or moved to another CPU. Therefore we
 454	 * copy the complete entry-stack to the task-stack and set a
 455	 * marker in the iret-frame (bit 31 of the CS dword) to detect
 456	 * what we've done on the iret path.
 457	 *
 458	 * On the iret path we copy everything back and switch to the
 459	 * entry-stack, so that the interrupted kernel code-path
 460	 * continues on the same stack it was interrupted with.
 461	 *
 462	 * Be aware that an NMI can happen anytime in this code.
 463	 *
 464	 * %esi: Entry-Stack pointer (same as %esp)
 465	 * %edi: Top of the task stack
 466	 * %eax: CR3 on kernel entry
 467	 */
 468
 469	/* Calculate number of bytes on the entry stack in %ecx */
 470	movl	%esi, %ecx
 471
 472	/* %ecx to the top of entry-stack */
 473	andl	$(MASK_entry_stack), %ecx
 474	addl	$(SIZEOF_entry_stack), %ecx
 475
 476	/* Number of bytes on the entry stack to %ecx */
 477	sub	%esi, %ecx
 478
 479	/* Mark stackframe as coming from entry stack */
 480	orl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)
 481
 482	/*
 483	 * Test the cr3 used to enter the kernel and add a marker
 484	 * so that we can switch back to it before iret.
 485	 */
 486	testl	$PTI_SWITCH_MASK, %eax
 487	jz	.Lcopy_pt_regs_\@
 488	orl	$CS_FROM_USER_CR3, PT_CS(%esp)
 489
 490	/*
 491	 * %esi and %edi are unchanged, %ecx contains the number of
 492	 * bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate
 493	 * the stack-frame on task-stack and copy everything over
 494	 */
 495	jmp .Lcopy_pt_regs_\@
 496
 497.Lend_\@:
 498.endm
 499
 500/*
 501 * Switch back from the kernel stack to the entry stack.
 502 *
 503 * The %esp register must point to pt_regs on the task stack. It will
 504 * first calculate the size of the stack-frame to copy, depending on
 505 * whether we return to VM86 mode or not. With that it uses 'rep movsl'
 506 * to copy the contents of the stack over to the entry stack.
 507 *
 508 * We must be very careful here, as we can't trust the contents of the
 509 * task-stack once we switched to the entry-stack. When an NMI happens
 510 * while on the entry-stack, the NMI handler will switch back to the top
 511 * of the task stack, overwriting our stack-frame we are about to copy.
 512 * Therefore we switch the stack only after everything is copied over.
 513 */
 514.macro SWITCH_TO_ENTRY_STACK
 515
 516	/* Bytes to copy */
 517	movl	$PTREGS_SIZE, %ecx
 518
 519#ifdef CONFIG_VM86
 520	testl	$(X86_EFLAGS_VM), PT_EFLAGS(%esp)
 521	jz	.Lcopy_pt_regs_\@
 522
 523	/* Additional 4 registers to copy when returning to VM86 mode */
 524	addl    $(4 * 4), %ecx
 525
 526.Lcopy_pt_regs_\@:
 527#endif
 528
 529	/* Initialize source and destination for movsl */
 530	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
 531	subl	%ecx, %edi
 532	movl	%esp, %esi
 533
 534	/* Save future stack pointer in %ebx */
 535	movl	%edi, %ebx
 536
 537	/* Copy over the stack-frame */
 538	shrl	$2, %ecx
 539	cld
 540	rep movsl
 541
 542	/*
 543	 * Switch to entry-stack - needs to happen after everything is
 544	 * copied because the NMI handler will overwrite the task-stack
 545	 * when on entry-stack
 546	 */
 547	movl	%ebx, %esp
 548
 549.Lend_\@:
 550.endm
 551
 552/*
 553 * This macro handles the case when we return to kernel-mode on the iret
 554 * path and have to switch back to the entry stack and/or user-cr3
 555 *
 556 * See the comments below the .Lentry_from_kernel_\@ label in the
 557 * SWITCH_TO_KERNEL_STACK macro for more details.
 558 */
 559.macro PARANOID_EXIT_TO_KERNEL_MODE
 560
 561	/*
 562	 * Test if we entered the kernel with the entry-stack. Most
 563	 * likely we did not, because this code only runs on the
 564	 * return-to-kernel path.
 565	 */
 566	testl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)
 567	jz	.Lend_\@
 568
 569	/* Unlikely slow-path */
 570
 571	/* Clear marker from stack-frame */
 572	andl	$(~CS_FROM_ENTRY_STACK), PT_CS(%esp)
 573
 574	/* Copy the remaining task-stack contents to entry-stack */
 575	movl	%esp, %esi
 576	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
 577
 578	/* Bytes on the task-stack to ecx */
 579	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx
 580	subl	%esi, %ecx
 581
 582	/* Allocate stack-frame on entry-stack */
 583	subl	%ecx, %edi
 584
 585	/*
 586	 * Save future stack-pointer, we must not switch until the
 587	 * copy is done, otherwise the NMI handler could destroy the
 588	 * contents of the task-stack we are about to copy.
 589	 */
 590	movl	%edi, %ebx
 591
 592	/* Do the copy */
 593	shrl	$2, %ecx
 594	cld
 595	rep movsl
 596
 597	/* Safe to switch to entry-stack now */
 598	movl	%ebx, %esp
 599
 600	/*
 601	 * We came from entry-stack and need to check if we also need to
 602	 * switch back to user cr3.
 603	 */
 604	testl	$CS_FROM_USER_CR3, PT_CS(%esp)
 605	jz	.Lend_\@
 606
 607	/* Clear marker from stack-frame */
 608	andl	$(~CS_FROM_USER_CR3), PT_CS(%esp)
 609
 610	SWITCH_TO_USER_CR3 scratch_reg=%eax
 611
 612.Lend_\@:
 613.endm
 614
 615/**
 616 * idtentry - Macro to generate entry stubs for simple IDT entries
 617 * @vector:		Vector number
 618 * @asmsym:		ASM symbol for the entry point
 619 * @cfunc:		C function to be called
 620 * @has_error_code:	Hardware pushed error code on stack
 621 */
 622.macro idtentry vector asmsym cfunc has_error_code:req
 623SYM_CODE_START(\asmsym)
 624	ASM_CLAC
 625	cld
 626
 627	.if \has_error_code == 0
 628		pushl	$0		/* Clear the error code */
 629	.endif
 630
 631	/* Push the C-function address into the GS slot */
 632	pushl	$\cfunc
 633	/* Invoke the common exception entry */
 634	jmp	handle_exception
 635SYM_CODE_END(\asmsym)
 636.endm
 637
 638.macro idtentry_irq vector cfunc
 639	.p2align CONFIG_X86_L1_CACHE_SHIFT
 640SYM_CODE_START_LOCAL(asm_\cfunc)
 641	ASM_CLAC
 642	SAVE_ALL switch_stacks=1
 643	ENCODE_FRAME_POINTER
 644	movl	%esp, %eax
 645	movl	PT_ORIG_EAX(%esp), %edx		/* get the vector from stack */
 646	movl	$-1, PT_ORIG_EAX(%esp)		/* no syscall to restart */
 647	call	\cfunc
 648	jmp	handle_exception_return
 649SYM_CODE_END(asm_\cfunc)
 650.endm
 651
 652.macro idtentry_sysvec vector cfunc
 653	idtentry \vector asm_\cfunc \cfunc has_error_code=0
 654.endm
 655
 656/*
 657 * Include the defines which emit the idt entries which are shared
 658 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
 659 * so the stacktrace boundary checks work.
 660 */
 661	.align 16
 662	.globl __irqentry_text_start
 663__irqentry_text_start:
 664
 665#include <asm/idtentry.h>
 666
 667	.align 16
 668	.globl __irqentry_text_end
 669__irqentry_text_end:
 670
 671/*
 672 * %eax: prev task
 673 * %edx: next task
 674 */
 675.pushsection .text, "ax"
 676SYM_CODE_START(__switch_to_asm)
 677	/*
 678	 * Save callee-saved registers
 679	 * This must match the order in struct inactive_task_frame
 680	 */
 681	pushl	%ebp
 682	pushl	%ebx
 683	pushl	%edi
 684	pushl	%esi
 685	/*
 686	 * Flags are saved to prevent AC leakage. This could go
 687	 * away if objtool would have 32bit support to verify
 688	 * the STAC/CLAC correctness.
 689	 */
 690	pushfl
 691
 692	/* switch stack */
 693	movl	%esp, TASK_threadsp(%eax)
 694	movl	TASK_threadsp(%edx), %esp
 695
 696#ifdef CONFIG_STACKPROTECTOR
 697	movl	TASK_stack_canary(%edx), %ebx
 698	movl	%ebx, PER_CPU_VAR(__stack_chk_guard)
 699#endif
 700
 
 701	/*
 702	 * When switching from a shallower to a deeper call stack
 703	 * the RSB may either underflow or use entries populated
 704	 * with userspace addresses. On CPUs where those concerns
 705	 * exist, overwrite the RSB with entries which capture
 706	 * speculative execution to prevent attack.
 707	 */
 708	FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
 
 709
 710	/* Restore flags or the incoming task to restore AC state. */
 711	popfl
 712	/* restore callee-saved registers */
 713	popl	%esi
 714	popl	%edi
 715	popl	%ebx
 716	popl	%ebp
 717
 718	jmp	__switch_to
 719SYM_CODE_END(__switch_to_asm)
 720.popsection
 721
 722/*
 723 * The unwinder expects the last frame on the stack to always be at the same
 724 * offset from the end of the page, which allows it to validate the stack.
 725 * Calling schedule_tail() directly would break that convention because its an
 726 * asmlinkage function so its argument has to be pushed on the stack.  This
 727 * wrapper creates a proper "end of stack" frame header before the call.
 728 */
 729.pushsection .text, "ax"
 730SYM_FUNC_START(schedule_tail_wrapper)
 731	FRAME_BEGIN
 732
 733	pushl	%eax
 734	call	schedule_tail
 735	popl	%eax
 736
 737	FRAME_END
 738	RET
 739SYM_FUNC_END(schedule_tail_wrapper)
 740.popsection
 741
 742/*
 743 * A newly forked process directly context switches into this address.
 744 *
 745 * eax: prev task we switched from
 746 * ebx: kernel thread func (NULL for user thread)
 747 * edi: kernel thread arg
 748 */
 749.pushsection .text, "ax"
 750SYM_CODE_START(ret_from_fork)
 751	call	schedule_tail_wrapper
 752
 753	testl	%ebx, %ebx
 754	jnz	1f		/* kernel threads are uncommon */
 755
 7562:
 757	/* When we fork, we trace the syscall return in the child, too. */
 758	movl    %esp, %eax
 759	call    syscall_exit_to_user_mode
 760	jmp     .Lsyscall_32_done
 761
 762	/* kernel thread */
 7631:	movl	%edi, %eax
 764	CALL_NOSPEC ebx
 765	/*
 766	 * A kernel thread is allowed to return here after successfully
 767	 * calling kernel_execve().  Exit to userspace to complete the execve()
 768	 * syscall.
 769	 */
 770	movl	$0, PT_EAX(%esp)
 771	jmp	2b
 772SYM_CODE_END(ret_from_fork)
 773.popsection
 774
 775SYM_ENTRY(__begin_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
 776/*
 777 * All code from here through __end_SYSENTER_singlestep_region is subject
 778 * to being single-stepped if a user program sets TF and executes SYSENTER.
 779 * There is absolutely nothing that we can do to prevent this from happening
 780 * (thanks Intel!).  To keep our handling of this situation as simple as
 781 * possible, we handle TF just like AC and NT, except that our #DB handler
 782 * will ignore all of the single-step traps generated in this range.
 783 */
 784
 785/*
 786 * 32-bit SYSENTER entry.
 787 *
 788 * 32-bit system calls through the vDSO's __kernel_vsyscall enter here
 789 * if X86_FEATURE_SEP is available.  This is the preferred system call
 790 * entry on 32-bit systems.
 791 *
 792 * The SYSENTER instruction, in principle, should *only* occur in the
 793 * vDSO.  In practice, a small number of Android devices were shipped
 794 * with a copy of Bionic that inlined a SYSENTER instruction.  This
 795 * never happened in any of Google's Bionic versions -- it only happened
 796 * in a narrow range of Intel-provided versions.
 797 *
 798 * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
 799 * IF and VM in RFLAGS are cleared (IOW: interrupts are off).
 800 * SYSENTER does not save anything on the stack,
 801 * and does not save old EIP (!!!), ESP, or EFLAGS.
 802 *
 803 * To avoid losing track of EFLAGS.VM (and thus potentially corrupting
 804 * user and/or vm86 state), we explicitly disable the SYSENTER
 805 * instruction in vm86 mode by reprogramming the MSRs.
 806 *
 807 * Arguments:
 808 * eax  system call number
 809 * ebx  arg1
 810 * ecx  arg2
 811 * edx  arg3
 812 * esi  arg4
 813 * edi  arg5
 814 * ebp  user stack
 815 * 0(%ebp) arg6
 816 */
 817SYM_FUNC_START(entry_SYSENTER_32)
 818	/*
 819	 * On entry-stack with all userspace-regs live - save and
 820	 * restore eflags and %eax to use it as scratch-reg for the cr3
 821	 * switch.
 822	 */
 823	pushfl
 824	pushl	%eax
 825	BUG_IF_WRONG_CR3 no_user_check=1
 826	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
 827	popl	%eax
 828	popfl
 829
 830	/* Stack empty again, switch to task stack */
 831	movl	TSS_entry2task_stack(%esp), %esp
 832
 833.Lsysenter_past_esp:
 834	pushl	$__USER_DS		/* pt_regs->ss */
 835	pushl	$0			/* pt_regs->sp (placeholder) */
 836	pushfl				/* pt_regs->flags (except IF = 0) */
 837	pushl	$__USER_CS		/* pt_regs->cs */
 838	pushl	$0			/* pt_regs->ip = 0 (placeholder) */
 839	pushl	%eax			/* pt_regs->orig_ax */
 840	SAVE_ALL pt_regs_ax=$-ENOSYS	/* save rest, stack already switched */
 841
 842	/*
 843	 * SYSENTER doesn't filter flags, so we need to clear NT, AC
 844	 * and TF ourselves.  To save a few cycles, we can check whether
 845	 * either was set instead of doing an unconditional popfq.
 846	 * This needs to happen before enabling interrupts so that
 847	 * we don't get preempted with NT set.
 848	 *
 849	 * If TF is set, we will single-step all the way to here -- do_debug
 850	 * will ignore all the traps.  (Yes, this is slow, but so is
 851	 * single-stepping in general.  This allows us to avoid having
 852	 * a more complicated code to handle the case where a user program
 853	 * forces us to single-step through the SYSENTER entry code.)
 854	 *
 855	 * NB.: .Lsysenter_fix_flags is a label with the code under it moved
 856	 * out-of-line as an optimization: NT is unlikely to be set in the
 857	 * majority of the cases and instead of polluting the I$ unnecessarily,
 858	 * we're keeping that code behind a branch which will predict as
 859	 * not-taken and therefore its instructions won't be fetched.
 860	 */
 861	testl	$X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
 862	jnz	.Lsysenter_fix_flags
 863.Lsysenter_flags_fixed:
 864
 865	movl	%esp, %eax
 866	call	do_SYSENTER_32
 867	testl	%eax, %eax
 868	jz	.Lsyscall_32_done
 869
 870	STACKLEAK_ERASE
 871
 872	/* Opportunistic SYSEXIT */
 873
 874	/*
 875	 * Setup entry stack - we keep the pointer in %eax and do the
 876	 * switch after almost all user-state is restored.
 877	 */
 878
 879	/* Load entry stack pointer and allocate frame for eflags/eax */
 880	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax
 881	subl	$(2*4), %eax
 882
 883	/* Copy eflags and eax to entry stack */
 884	movl	PT_EFLAGS(%esp), %edi
 885	movl	PT_EAX(%esp), %esi
 886	movl	%edi, (%eax)
 887	movl	%esi, 4(%eax)
 888
 889	/* Restore user registers and segments */
 890	movl	PT_EIP(%esp), %edx	/* pt_regs->ip */
 891	movl	PT_OLDESP(%esp), %ecx	/* pt_regs->sp */
 8921:	mov	PT_FS(%esp), %fs
 
 893
 894	popl	%ebx			/* pt_regs->bx */
 895	addl	$2*4, %esp		/* skip pt_regs->cx and pt_regs->dx */
 896	popl	%esi			/* pt_regs->si */
 897	popl	%edi			/* pt_regs->di */
 898	popl	%ebp			/* pt_regs->bp */
 899
 900	/* Switch to entry stack */
 901	movl	%eax, %esp
 902
 903	/* Now ready to switch the cr3 */
 904	SWITCH_TO_USER_CR3 scratch_reg=%eax
 905
 906	/*
 907	 * Restore all flags except IF. (We restore IF separately because
 908	 * STI gives a one-instruction window in which we won't be interrupted,
 909	 * whereas POPF does not.)
 910	 */
 911	btrl	$X86_EFLAGS_IF_BIT, (%esp)
 912	BUG_IF_WRONG_CR3 no_user_check=1
 913	popfl
 914	popl	%eax
 915
 916	/*
 917	 * Return back to the vDSO, which will pop ecx and edx.
 918	 * Don't bother with DS and ES (they already contain __USER_DS).
 919	 */
 920	sti
 921	sysexit
 922
 9232:	movl    $0, PT_FS(%esp)
 924	jmp     1b
 
 
 925	_ASM_EXTABLE(1b, 2b)
 
 926
 927.Lsysenter_fix_flags:
 928	pushl	$X86_EFLAGS_FIXED
 929	popfl
 930	jmp	.Lsysenter_flags_fixed
 931SYM_ENTRY(__end_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
 932SYM_FUNC_END(entry_SYSENTER_32)
 933
 934/*
 935 * 32-bit legacy system call entry.
 936 *
 937 * 32-bit x86 Linux system calls traditionally used the INT $0x80
 938 * instruction.  INT $0x80 lands here.
 939 *
 940 * This entry point can be used by any 32-bit perform system calls.
 941 * Instances of INT $0x80 can be found inline in various programs and
 942 * libraries.  It is also used by the vDSO's __kernel_vsyscall
 943 * fallback for hardware that doesn't support a faster entry method.
 944 * Restarted 32-bit system calls also fall back to INT $0x80
 945 * regardless of what instruction was originally used to do the system
 946 * call.  (64-bit programs can use INT $0x80 as well, but they can
 947 * only run on 64-bit kernels and therefore land in
 948 * entry_INT80_compat.)
 949 *
 950 * This is considered a slow path.  It is not used by most libc
 951 * implementations on modern hardware except during process startup.
 952 *
 953 * Arguments:
 954 * eax  system call number
 955 * ebx  arg1
 956 * ecx  arg2
 957 * edx  arg3
 958 * esi  arg4
 959 * edi  arg5
 960 * ebp  arg6
 961 */
 962SYM_FUNC_START(entry_INT80_32)
 963	ASM_CLAC
 964	pushl	%eax			/* pt_regs->orig_ax */
 965
 966	SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1	/* save rest */
 967
 968	movl	%esp, %eax
 969	call	do_int80_syscall_32
 970.Lsyscall_32_done:
 971	STACKLEAK_ERASE
 972
 973restore_all_switch_stack:
 974	SWITCH_TO_ENTRY_STACK
 975	CHECK_AND_APPLY_ESPFIX
 976
 977	/* Switch back to user CR3 */
 978	SWITCH_TO_USER_CR3 scratch_reg=%eax
 979
 980	BUG_IF_WRONG_CR3
 981
 982	/* Restore user state */
 983	RESTORE_REGS pop=4			# skip orig_eax/error_code
 984.Lirq_return:
 985	/*
 986	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
 987	 * when returning from IPI handler and when returning from
 988	 * scheduler to user-space.
 989	 */
 990	iret
 991
 992.Lasm_iret_error:
 
 993	pushl	$0				# no error code
 994	pushl	$iret_error
 995
 996#ifdef CONFIG_DEBUG_ENTRY
 997	/*
 998	 * The stack-frame here is the one that iret faulted on, so its a
 999	 * return-to-user frame. We are on kernel-cr3 because we come here from
1000	 * the fixup code. This confuses the CR3 checker, so switch to user-cr3
1001	 * as the checker expects it.
1002	 */
1003	pushl	%eax
1004	SWITCH_TO_USER_CR3 scratch_reg=%eax
1005	popl	%eax
1006#endif
1007
1008	jmp	handle_exception
1009
1010	_ASM_EXTABLE(.Lirq_return, .Lasm_iret_error)
 
1011SYM_FUNC_END(entry_INT80_32)
1012
1013.macro FIXUP_ESPFIX_STACK
1014/*
1015 * Switch back for ESPFIX stack to the normal zerobased stack
1016 *
1017 * We can't call C functions using the ESPFIX stack. This code reads
1018 * the high word of the segment base from the GDT and swiches to the
1019 * normal stack and adjusts ESP with the matching offset.
1020 *
1021 * We might be on user CR3 here, so percpu data is not mapped and we can't
1022 * access the GDT through the percpu segment.  Instead, use SGDT to find
1023 * the cpu_entry_area alias of the GDT.
1024 */
1025#ifdef CONFIG_X86_ESPFIX32
1026	/* fixup the stack */
1027	pushl	%ecx
1028	subl	$2*4, %esp
1029	sgdt	(%esp)
1030	movl	2(%esp), %ecx				/* GDT address */
1031	/*
1032	 * Careful: ECX is a linear pointer, so we need to force base
1033	 * zero.  %cs is the only known-linear segment we have right now.
1034	 */
1035	mov	%cs:GDT_ESPFIX_OFFSET + 4(%ecx), %al	/* bits 16..23 */
1036	mov	%cs:GDT_ESPFIX_OFFSET + 7(%ecx), %ah	/* bits 24..31 */
1037	shl	$16, %eax
1038	addl	$2*4, %esp
1039	popl	%ecx
1040	addl	%esp, %eax			/* the adjusted stack pointer */
1041	pushl	$__KERNEL_DS
1042	pushl	%eax
1043	lss	(%esp), %esp			/* switch to the normal stack segment */
1044#endif
1045.endm
1046
1047.macro UNWIND_ESPFIX_STACK
1048	/* It's safe to clobber %eax, all other regs need to be preserved */
1049#ifdef CONFIG_X86_ESPFIX32
1050	movl	%ss, %eax
1051	/* see if on espfix stack */
1052	cmpw	$__ESPFIX_SS, %ax
1053	jne	.Lno_fixup_\@
1054	/* switch to normal stack */
1055	FIXUP_ESPFIX_STACK
1056.Lno_fixup_\@:
1057#endif
1058.endm
1059
1060SYM_CODE_START_LOCAL_NOALIGN(handle_exception)
1061	/* the function address is in %gs's slot on the stack */
1062	SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1
1063	ENCODE_FRAME_POINTER
1064
 
 
1065	movl	PT_GS(%esp), %edi		# get the function address
 
 
1066
1067	/* fixup orig %eax */
1068	movl	PT_ORIG_EAX(%esp), %edx		# get the error code
1069	movl	$-1, PT_ORIG_EAX(%esp)		# no syscall to restart
1070
1071	movl	%esp, %eax			# pt_regs pointer
1072	CALL_NOSPEC edi
1073
1074handle_exception_return:
1075#ifdef CONFIG_VM86
1076	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS and CS
1077	movb	PT_CS(%esp), %al
1078	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
1079#else
1080	/*
1081	 * We can be coming here from child spawned by kernel_thread().
1082	 */
1083	movl	PT_CS(%esp), %eax
1084	andl	$SEGMENT_RPL_MASK, %eax
1085#endif
1086	cmpl	$USER_RPL, %eax			# returning to v8086 or userspace ?
1087	jnb	ret_to_user
1088
1089	PARANOID_EXIT_TO_KERNEL_MODE
1090	BUG_IF_WRONG_CR3
1091	RESTORE_REGS 4
1092	jmp	.Lirq_return
1093
1094ret_to_user:
1095	movl	%esp, %eax
1096	jmp	restore_all_switch_stack
1097SYM_CODE_END(handle_exception)
1098
1099SYM_CODE_START(asm_exc_double_fault)
11001:
1101	/*
1102	 * This is a task gate handler, not an interrupt gate handler.
1103	 * The error code is on the stack, but the stack is otherwise
1104	 * empty.  Interrupts are off.  Our state is sane with the following
1105	 * exceptions:
1106	 *
1107	 *  - CR0.TS is set.  "TS" literally means "task switched".
1108	 *  - EFLAGS.NT is set because we're a "nested task".
1109	 *  - The doublefault TSS has back_link set and has been marked busy.
1110	 *  - TR points to the doublefault TSS and the normal TSS is busy.
1111	 *  - CR3 is the normal kernel PGD.  This would be delightful, except
1112	 *    that the CPU didn't bother to save the old CR3 anywhere.  This
1113	 *    would make it very awkward to return back to the context we came
1114	 *    from.
1115	 *
1116	 * The rest of EFLAGS is sanitized for us, so we don't need to
1117	 * worry about AC or DF.
1118	 *
1119	 * Don't even bother popping the error code.  It's always zero,
1120	 * and ignoring it makes us a bit more robust against buggy
1121	 * hypervisor task gate implementations.
1122	 *
1123	 * We will manually undo the task switch instead of doing a
1124	 * task-switching IRET.
1125	 */
1126
1127	clts				/* clear CR0.TS */
1128	pushl	$X86_EFLAGS_FIXED
1129	popfl				/* clear EFLAGS.NT */
1130
1131	call	doublefault_shim
1132
1133	/* We don't support returning, so we have no IRET here. */
11341:
1135	hlt
1136	jmp 1b
1137SYM_CODE_END(asm_exc_double_fault)
1138
1139/*
1140 * NMI is doubly nasty.  It can happen on the first instruction of
1141 * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
1142 * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
1143 * switched stacks.  We handle both conditions by simply checking whether we
1144 * interrupted kernel code running on the SYSENTER stack.
1145 */
1146SYM_CODE_START(asm_exc_nmi)
1147	ASM_CLAC
1148
1149#ifdef CONFIG_X86_ESPFIX32
1150	/*
1151	 * ESPFIX_SS is only ever set on the return to user path
1152	 * after we've switched to the entry stack.
1153	 */
1154	pushl	%eax
1155	movl	%ss, %eax
1156	cmpw	$__ESPFIX_SS, %ax
1157	popl	%eax
1158	je	.Lnmi_espfix_stack
1159#endif
1160
1161	pushl	%eax				# pt_regs->orig_ax
1162	SAVE_ALL_NMI cr3_reg=%edi
1163	ENCODE_FRAME_POINTER
1164	xorl	%edx, %edx			# zero error code
1165	movl	%esp, %eax			# pt_regs pointer
1166
1167	/* Are we currently on the SYSENTER stack? */
1168	movl	PER_CPU_VAR(cpu_entry_area), %ecx
1169	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
1170	subl	%eax, %ecx	/* ecx = (end of entry_stack) - esp */
1171	cmpl	$SIZEOF_entry_stack, %ecx
1172	jb	.Lnmi_from_sysenter_stack
1173
1174	/* Not on SYSENTER stack. */
1175	call	exc_nmi
1176	jmp	.Lnmi_return
1177
1178.Lnmi_from_sysenter_stack:
1179	/*
1180	 * We're on the SYSENTER stack.  Switch off.  No one (not even debug)
1181	 * is using the thread stack right now, so it's safe for us to use it.
1182	 */
1183	movl	%esp, %ebx
1184	movl	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %esp
1185	call	exc_nmi
1186	movl	%ebx, %esp
1187
1188.Lnmi_return:
1189#ifdef CONFIG_X86_ESPFIX32
1190	testl	$CS_FROM_ESPFIX, PT_CS(%esp)
1191	jnz	.Lnmi_from_espfix
1192#endif
1193
1194	CHECK_AND_APPLY_ESPFIX
1195	RESTORE_ALL_NMI cr3_reg=%edi pop=4
1196	jmp	.Lirq_return
1197
1198#ifdef CONFIG_X86_ESPFIX32
1199.Lnmi_espfix_stack:
1200	/*
1201	 * Create the pointer to LSS back
1202	 */
1203	pushl	%ss
1204	pushl	%esp
1205	addl	$4, (%esp)
1206
1207	/* Copy the (short) IRET frame */
1208	pushl	4*4(%esp)	# flags
1209	pushl	4*4(%esp)	# cs
1210	pushl	4*4(%esp)	# ip
1211
1212	pushl	%eax		# orig_ax
1213
1214	SAVE_ALL_NMI cr3_reg=%edi unwind_espfix=1
1215	ENCODE_FRAME_POINTER
1216
1217	/* clear CS_FROM_KERNEL, set CS_FROM_ESPFIX */
1218	xorl	$(CS_FROM_ESPFIX | CS_FROM_KERNEL), PT_CS(%esp)
1219
1220	xorl	%edx, %edx			# zero error code
1221	movl	%esp, %eax			# pt_regs pointer
1222	jmp	.Lnmi_from_sysenter_stack
1223
1224.Lnmi_from_espfix:
1225	RESTORE_ALL_NMI cr3_reg=%edi
1226	/*
1227	 * Because we cleared CS_FROM_KERNEL, IRET_FRAME 'forgot' to
1228	 * fix up the gap and long frame:
1229	 *
1230	 *  3 - original frame	(exception)
1231	 *  2 - ESPFIX block	(above)
1232	 *  6 - gap		(FIXUP_FRAME)
1233	 *  5 - long frame	(FIXUP_FRAME)
1234	 *  1 - orig_ax
1235	 */
1236	lss	(1+5+6)*4(%esp), %esp			# back to espfix stack
1237	jmp	.Lirq_return
1238#endif
1239SYM_CODE_END(asm_exc_nmi)
1240
1241.pushsection .text, "ax"
1242SYM_CODE_START(rewind_stack_and_make_dead)
1243	/* Prevent any naive code from trying to unwind to our caller. */
1244	xorl	%ebp, %ebp
1245
1246	movl	PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %esi
1247	leal	-TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp
1248
1249	call	make_task_dead
12501:	jmp 1b
1251SYM_CODE_END(rewind_stack_and_make_dead)
1252.popsection
v5.9
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 *  Copyright (C) 1991,1992  Linus Torvalds
   4 *
   5 * entry_32.S contains the system-call and low-level fault and trap handling routines.
   6 *
   7 * Stack layout while running C code:
   8 *	ptrace needs to have all registers on the stack.
   9 *	If the order here is changed, it needs to be
  10 *	updated in fork.c:copy_process(), signal.c:do_signal(),
  11 *	ptrace.c and ptrace.h
  12 *
  13 *	 0(%esp) - %ebx
  14 *	 4(%esp) - %ecx
  15 *	 8(%esp) - %edx
  16 *	 C(%esp) - %esi
  17 *	10(%esp) - %edi
  18 *	14(%esp) - %ebp
  19 *	18(%esp) - %eax
  20 *	1C(%esp) - %ds
  21 *	20(%esp) - %es
  22 *	24(%esp) - %fs
  23 *	28(%esp) - %gs		saved iff !CONFIG_X86_32_LAZY_GS
  24 *	2C(%esp) - orig_eax
  25 *	30(%esp) - %eip
  26 *	34(%esp) - %cs
  27 *	38(%esp) - %eflags
  28 *	3C(%esp) - %oldesp
  29 *	40(%esp) - %oldss
  30 */
  31
  32#include <linux/linkage.h>
  33#include <linux/err.h>
  34#include <asm/thread_info.h>
  35#include <asm/irqflags.h>
  36#include <asm/errno.h>
  37#include <asm/segment.h>
  38#include <asm/smp.h>
  39#include <asm/percpu.h>
  40#include <asm/processor-flags.h>
  41#include <asm/irq_vectors.h>
  42#include <asm/cpufeatures.h>
  43#include <asm/alternative-asm.h>
  44#include <asm/asm.h>
  45#include <asm/smap.h>
  46#include <asm/frame.h>
  47#include <asm/trapnr.h>
  48#include <asm/nospec-branch.h>
  49
  50#include "calling.h"
  51
  52	.section .entry.text, "ax"
  53
  54#define PTI_SWITCH_MASK         (1 << PAGE_SHIFT)
  55
  56/*
  57 * User gs save/restore
  58 *
  59 * %gs is used for userland TLS and kernel only uses it for stack
  60 * canary which is required to be at %gs:20 by gcc.  Read the comment
  61 * at the top of stackprotector.h for more info.
  62 *
  63 * Local labels 98 and 99 are used.
  64 */
  65#ifdef CONFIG_X86_32_LAZY_GS
  66
  67 /* unfortunately push/pop can't be no-op */
  68.macro PUSH_GS
  69	pushl	$0
  70.endm
  71.macro POP_GS pop=0
  72	addl	$(4 + \pop), %esp
  73.endm
  74.macro POP_GS_EX
  75.endm
  76
  77 /* all the rest are no-op */
  78.macro PTGS_TO_GS
  79.endm
  80.macro PTGS_TO_GS_EX
  81.endm
  82.macro GS_TO_REG reg
  83.endm
  84.macro REG_TO_PTGS reg
  85.endm
  86.macro SET_KERNEL_GS reg
  87.endm
  88
  89#else	/* CONFIG_X86_32_LAZY_GS */
  90
  91.macro PUSH_GS
  92	pushl	%gs
  93.endm
  94
  95.macro POP_GS pop=0
  9698:	popl	%gs
  97  .if \pop <> 0
  98	add	$\pop, %esp
  99  .endif
 100.endm
 101.macro POP_GS_EX
 102.pushsection .fixup, "ax"
 10399:	movl	$0, (%esp)
 104	jmp	98b
 105.popsection
 106	_ASM_EXTABLE(98b, 99b)
 107.endm
 108
 109.macro PTGS_TO_GS
 11098:	mov	PT_GS(%esp), %gs
 111.endm
 112.macro PTGS_TO_GS_EX
 113.pushsection .fixup, "ax"
 11499:	movl	$0, PT_GS(%esp)
 115	jmp	98b
 116.popsection
 117	_ASM_EXTABLE(98b, 99b)
 118.endm
 119
 120.macro GS_TO_REG reg
 121	movl	%gs, \reg
 122.endm
 123.macro REG_TO_PTGS reg
 124	movl	\reg, PT_GS(%esp)
 125.endm
 126.macro SET_KERNEL_GS reg
 127	movl	$(__KERNEL_STACK_CANARY), \reg
 128	movl	\reg, %gs
 129.endm
 130
 131#endif /* CONFIG_X86_32_LAZY_GS */
 132
 133/* Unconditionally switch to user cr3 */
 134.macro SWITCH_TO_USER_CR3 scratch_reg:req
 135	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
 136
 137	movl	%cr3, \scratch_reg
 138	orl	$PTI_SWITCH_MASK, \scratch_reg
 139	movl	\scratch_reg, %cr3
 140.Lend_\@:
 141.endm
 142
 143.macro BUG_IF_WRONG_CR3 no_user_check=0
 144#ifdef CONFIG_DEBUG_ENTRY
 145	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
 146	.if \no_user_check == 0
 147	/* coming from usermode? */
 148	testl	$USER_SEGMENT_RPL_MASK, PT_CS(%esp)
 149	jz	.Lend_\@
 150	.endif
 151	/* On user-cr3? */
 152	movl	%cr3, %eax
 153	testl	$PTI_SWITCH_MASK, %eax
 154	jnz	.Lend_\@
 155	/* From userspace with kernel cr3 - BUG */
 156	ud2
 157.Lend_\@:
 158#endif
 159.endm
 160
 161/*
 162 * Switch to kernel cr3 if not already loaded and return current cr3 in
 163 * \scratch_reg
 164 */
 165.macro SWITCH_TO_KERNEL_CR3 scratch_reg:req
 166	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
 167	movl	%cr3, \scratch_reg
 168	/* Test if we are already on kernel CR3 */
 169	testl	$PTI_SWITCH_MASK, \scratch_reg
 170	jz	.Lend_\@
 171	andl	$(~PTI_SWITCH_MASK), \scratch_reg
 172	movl	\scratch_reg, %cr3
 173	/* Return original CR3 in \scratch_reg */
 174	orl	$PTI_SWITCH_MASK, \scratch_reg
 175.Lend_\@:
 176.endm
 177
 178#define CS_FROM_ENTRY_STACK	(1 << 31)
 179#define CS_FROM_USER_CR3	(1 << 30)
 180#define CS_FROM_KERNEL		(1 << 29)
 181#define CS_FROM_ESPFIX		(1 << 28)
 182
 183.macro FIXUP_FRAME
 184	/*
 185	 * The high bits of the CS dword (__csh) are used for CS_FROM_*.
 186	 * Clear them in case hardware didn't do this for us.
 187	 */
 188	andl	$0x0000ffff, 4*4(%esp)
 189
 190#ifdef CONFIG_VM86
 191	testl	$X86_EFLAGS_VM, 5*4(%esp)
 192	jnz	.Lfrom_usermode_no_fixup_\@
 193#endif
 194	testl	$USER_SEGMENT_RPL_MASK, 4*4(%esp)
 195	jnz	.Lfrom_usermode_no_fixup_\@
 196
 197	orl	$CS_FROM_KERNEL, 4*4(%esp)
 198
 199	/*
 200	 * When we're here from kernel mode; the (exception) stack looks like:
 201	 *
 202	 *  6*4(%esp) - <previous context>
 203	 *  5*4(%esp) - flags
 204	 *  4*4(%esp) - cs
 205	 *  3*4(%esp) - ip
 206	 *  2*4(%esp) - orig_eax
 207	 *  1*4(%esp) - gs / function
 208	 *  0*4(%esp) - fs
 209	 *
 210	 * Lets build a 5 entry IRET frame after that, such that struct pt_regs
 211	 * is complete and in particular regs->sp is correct. This gives us
 212	 * the original 6 enties as gap:
 213	 *
 214	 * 14*4(%esp) - <previous context>
 215	 * 13*4(%esp) - gap / flags
 216	 * 12*4(%esp) - gap / cs
 217	 * 11*4(%esp) - gap / ip
 218	 * 10*4(%esp) - gap / orig_eax
 219	 *  9*4(%esp) - gap / gs / function
 220	 *  8*4(%esp) - gap / fs
 221	 *  7*4(%esp) - ss
 222	 *  6*4(%esp) - sp
 223	 *  5*4(%esp) - flags
 224	 *  4*4(%esp) - cs
 225	 *  3*4(%esp) - ip
 226	 *  2*4(%esp) - orig_eax
 227	 *  1*4(%esp) - gs / function
 228	 *  0*4(%esp) - fs
 229	 */
 230
 231	pushl	%ss		# ss
 232	pushl	%esp		# sp (points at ss)
 233	addl	$7*4, (%esp)	# point sp back at the previous context
 234	pushl	7*4(%esp)	# flags
 235	pushl	7*4(%esp)	# cs
 236	pushl	7*4(%esp)	# ip
 237	pushl	7*4(%esp)	# orig_eax
 238	pushl	7*4(%esp)	# gs / function
 239	pushl	7*4(%esp)	# fs
 240.Lfrom_usermode_no_fixup_\@:
 241.endm
 242
 243.macro IRET_FRAME
 244	/*
 245	 * We're called with %ds, %es, %fs, and %gs from the interrupted
 246	 * frame, so we shouldn't use them.  Also, we may be in ESPFIX
 247	 * mode and therefore have a nonzero SS base and an offset ESP,
 248	 * so any attempt to access the stack needs to use SS.  (except for
 249	 * accesses through %esp, which automatically use SS.)
 250	 */
 251	testl $CS_FROM_KERNEL, 1*4(%esp)
 252	jz .Lfinished_frame_\@
 253
 254	/*
 255	 * Reconstruct the 3 entry IRET frame right after the (modified)
 256	 * regs->sp without lowering %esp in between, such that an NMI in the
 257	 * middle doesn't scribble our stack.
 258	 */
 259	pushl	%eax
 260	pushl	%ecx
 261	movl	5*4(%esp), %eax		# (modified) regs->sp
 262
 263	movl	4*4(%esp), %ecx		# flags
 264	movl	%ecx, %ss:-1*4(%eax)
 265
 266	movl	3*4(%esp), %ecx		# cs
 267	andl	$0x0000ffff, %ecx
 268	movl	%ecx, %ss:-2*4(%eax)
 269
 270	movl	2*4(%esp), %ecx		# ip
 271	movl	%ecx, %ss:-3*4(%eax)
 272
 273	movl	1*4(%esp), %ecx		# eax
 274	movl	%ecx, %ss:-4*4(%eax)
 275
 276	popl	%ecx
 277	lea	-4*4(%eax), %esp
 278	popl	%eax
 279.Lfinished_frame_\@:
 280.endm
 281
 282.macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0 skip_gs=0 unwind_espfix=0
 283	cld
 284.if \skip_gs == 0
 285	PUSH_GS
 286.endif
 287	pushl	%fs
 288
 289	pushl	%eax
 290	movl	$(__KERNEL_PERCPU), %eax
 291	movl	%eax, %fs
 292.if \unwind_espfix > 0
 293	UNWIND_ESPFIX_STACK
 294.endif
 295	popl	%eax
 296
 297	FIXUP_FRAME
 298	pushl	%es
 299	pushl	%ds
 300	pushl	\pt_regs_ax
 301	pushl	%ebp
 302	pushl	%edi
 303	pushl	%esi
 304	pushl	%edx
 305	pushl	%ecx
 306	pushl	%ebx
 307	movl	$(__USER_DS), %edx
 308	movl	%edx, %ds
 309	movl	%edx, %es
 310.if \skip_gs == 0
 311	SET_KERNEL_GS %edx
 312.endif
 313	/* Switch to kernel stack if necessary */
 314.if \switch_stacks > 0
 315	SWITCH_TO_KERNEL_STACK
 316.endif
 317.endm
 318
 319.macro SAVE_ALL_NMI cr3_reg:req unwind_espfix=0
 320	SAVE_ALL unwind_espfix=\unwind_espfix
 321
 322	BUG_IF_WRONG_CR3
 323
 324	/*
 325	 * Now switch the CR3 when PTI is enabled.
 326	 *
 327	 * We can enter with either user or kernel cr3, the code will
 328	 * store the old cr3 in \cr3_reg and switches to the kernel cr3
 329	 * if necessary.
 330	 */
 331	SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg
 332
 333.Lend_\@:
 334.endm
 335
 336.macro RESTORE_INT_REGS
 337	popl	%ebx
 338	popl	%ecx
 339	popl	%edx
 340	popl	%esi
 341	popl	%edi
 342	popl	%ebp
 343	popl	%eax
 344.endm
 345
 346.macro RESTORE_REGS pop=0
 347	RESTORE_INT_REGS
 3481:	popl	%ds
 3492:	popl	%es
 3503:	popl	%fs
 351	POP_GS \pop
 352	IRET_FRAME
 353.pushsection .fixup, "ax"
 3544:	movl	$0, (%esp)
 355	jmp	1b
 3565:	movl	$0, (%esp)
 357	jmp	2b
 3586:	movl	$0, (%esp)
 359	jmp	3b
 360.popsection
 361	_ASM_EXTABLE(1b, 4b)
 362	_ASM_EXTABLE(2b, 5b)
 363	_ASM_EXTABLE(3b, 6b)
 364	POP_GS_EX
 365.endm
 366
 367.macro RESTORE_ALL_NMI cr3_reg:req pop=0
 368	/*
 369	 * Now switch the CR3 when PTI is enabled.
 370	 *
 371	 * We enter with kernel cr3 and switch the cr3 to the value
 372	 * stored on \cr3_reg, which is either a user or a kernel cr3.
 373	 */
 374	ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI
 375
 376	testl	$PTI_SWITCH_MASK, \cr3_reg
 377	jz	.Lswitched_\@
 378
 379	/* User cr3 in \cr3_reg - write it to hardware cr3 */
 380	movl	\cr3_reg, %cr3
 381
 382.Lswitched_\@:
 383
 384	BUG_IF_WRONG_CR3
 385
 386	RESTORE_REGS pop=\pop
 387.endm
 388
 389.macro CHECK_AND_APPLY_ESPFIX
 390#ifdef CONFIG_X86_ESPFIX32
 391#define GDT_ESPFIX_OFFSET (GDT_ENTRY_ESPFIX_SS * 8)
 392#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + GDT_ESPFIX_OFFSET
 393
 394	ALTERNATIVE	"jmp .Lend_\@", "", X86_BUG_ESPFIX
 395
 396	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS, SS and CS
 397	/*
 398	 * Warning: PT_OLDSS(%esp) contains the wrong/random values if we
 399	 * are returning to the kernel.
 400	 * See comments in process.c:copy_thread() for details.
 401	 */
 402	movb	PT_OLDSS(%esp), %ah
 403	movb	PT_CS(%esp), %al
 404	andl	$(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
 405	cmpl	$((SEGMENT_LDT << 8) | USER_RPL), %eax
 406	jne	.Lend_\@	# returning to user-space with LDT SS
 407
 408	/*
 409	 * Setup and switch to ESPFIX stack
 410	 *
 411	 * We're returning to userspace with a 16 bit stack. The CPU will not
 412	 * restore the high word of ESP for us on executing iret... This is an
 413	 * "official" bug of all the x86-compatible CPUs, which we can work
 414	 * around to make dosemu and wine happy. We do this by preloading the
 415	 * high word of ESP with the high word of the userspace ESP while
 416	 * compensating for the offset by changing to the ESPFIX segment with
 417	 * a base address that matches for the difference.
 418	 */
 419	mov	%esp, %edx			/* load kernel esp */
 420	mov	PT_OLDESP(%esp), %eax		/* load userspace esp */
 421	mov	%dx, %ax			/* eax: new kernel esp */
 422	sub	%eax, %edx			/* offset (low word is 0) */
 423	shr	$16, %edx
 424	mov	%dl, GDT_ESPFIX_SS + 4		/* bits 16..23 */
 425	mov	%dh, GDT_ESPFIX_SS + 7		/* bits 24..31 */
 426	pushl	$__ESPFIX_SS
 427	pushl	%eax				/* new kernel esp */
 428	/*
 429	 * Disable interrupts, but do not irqtrace this section: we
 430	 * will soon execute iret and the tracer was already set to
 431	 * the irqstate after the IRET:
 432	 */
 433	DISABLE_INTERRUPTS(CLBR_ANY)
 434	lss	(%esp), %esp			/* switch to espfix segment */
 435.Lend_\@:
 436#endif /* CONFIG_X86_ESPFIX32 */
 437.endm
 438
 439/*
 440 * Called with pt_regs fully populated and kernel segments loaded,
 441 * so we can access PER_CPU and use the integer registers.
 442 *
 443 * We need to be very careful here with the %esp switch, because an NMI
 444 * can happen everywhere. If the NMI handler finds itself on the
 445 * entry-stack, it will overwrite the task-stack and everything we
 446 * copied there. So allocate the stack-frame on the task-stack and
 447 * switch to it before we do any copying.
 448 */
 449
 450.macro SWITCH_TO_KERNEL_STACK
 451
 452	BUG_IF_WRONG_CR3
 453
 454	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
 455
 456	/*
 457	 * %eax now contains the entry cr3 and we carry it forward in
 458	 * that register for the time this macro runs
 459	 */
 460
 461	/* Are we on the entry stack? Bail out if not! */
 462	movl	PER_CPU_VAR(cpu_entry_area), %ecx
 463	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
 464	subl	%esp, %ecx	/* ecx = (end of entry_stack) - esp */
 465	cmpl	$SIZEOF_entry_stack, %ecx
 466	jae	.Lend_\@
 467
 468	/* Load stack pointer into %esi and %edi */
 469	movl	%esp, %esi
 470	movl	%esi, %edi
 471
 472	/* Move %edi to the top of the entry stack */
 473	andl	$(MASK_entry_stack), %edi
 474	addl	$(SIZEOF_entry_stack), %edi
 475
 476	/* Load top of task-stack into %edi */
 477	movl	TSS_entry2task_stack(%edi), %edi
 478
 479	/* Special case - entry from kernel mode via entry stack */
 480#ifdef CONFIG_VM86
 481	movl	PT_EFLAGS(%esp), %ecx		# mix EFLAGS and CS
 482	movb	PT_CS(%esp), %cl
 483	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx
 484#else
 485	movl	PT_CS(%esp), %ecx
 486	andl	$SEGMENT_RPL_MASK, %ecx
 487#endif
 488	cmpl	$USER_RPL, %ecx
 489	jb	.Lentry_from_kernel_\@
 490
 491	/* Bytes to copy */
 492	movl	$PTREGS_SIZE, %ecx
 493
 494#ifdef CONFIG_VM86
 495	testl	$X86_EFLAGS_VM, PT_EFLAGS(%esi)
 496	jz	.Lcopy_pt_regs_\@
 497
 498	/*
 499	 * Stack-frame contains 4 additional segment registers when
 500	 * coming from VM86 mode
 501	 */
 502	addl	$(4 * 4), %ecx
 503
 504#endif
 505.Lcopy_pt_regs_\@:
 506
 507	/* Allocate frame on task-stack */
 508	subl	%ecx, %edi
 509
 510	/* Switch to task-stack */
 511	movl	%edi, %esp
 512
 513	/*
 514	 * We are now on the task-stack and can safely copy over the
 515	 * stack-frame
 516	 */
 517	shrl	$2, %ecx
 518	cld
 519	rep movsl
 520
 521	jmp .Lend_\@
 522
 523.Lentry_from_kernel_\@:
 524
 525	/*
 526	 * This handles the case when we enter the kernel from
 527	 * kernel-mode and %esp points to the entry-stack. When this
 528	 * happens we need to switch to the task-stack to run C code,
 529	 * but switch back to the entry-stack again when we approach
 530	 * iret and return to the interrupted code-path. This usually
 531	 * happens when we hit an exception while restoring user-space
 532	 * segment registers on the way back to user-space or when the
 533	 * sysenter handler runs with eflags.tf set.
 534	 *
 535	 * When we switch to the task-stack here, we can't trust the
 536	 * contents of the entry-stack anymore, as the exception handler
 537	 * might be scheduled out or moved to another CPU. Therefore we
 538	 * copy the complete entry-stack to the task-stack and set a
 539	 * marker in the iret-frame (bit 31 of the CS dword) to detect
 540	 * what we've done on the iret path.
 541	 *
 542	 * On the iret path we copy everything back and switch to the
 543	 * entry-stack, so that the interrupted kernel code-path
 544	 * continues on the same stack it was interrupted with.
 545	 *
 546	 * Be aware that an NMI can happen anytime in this code.
 547	 *
 548	 * %esi: Entry-Stack pointer (same as %esp)
 549	 * %edi: Top of the task stack
 550	 * %eax: CR3 on kernel entry
 551	 */
 552
 553	/* Calculate number of bytes on the entry stack in %ecx */
 554	movl	%esi, %ecx
 555
 556	/* %ecx to the top of entry-stack */
 557	andl	$(MASK_entry_stack), %ecx
 558	addl	$(SIZEOF_entry_stack), %ecx
 559
 560	/* Number of bytes on the entry stack to %ecx */
 561	sub	%esi, %ecx
 562
 563	/* Mark stackframe as coming from entry stack */
 564	orl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)
 565
 566	/*
 567	 * Test the cr3 used to enter the kernel and add a marker
 568	 * so that we can switch back to it before iret.
 569	 */
 570	testl	$PTI_SWITCH_MASK, %eax
 571	jz	.Lcopy_pt_regs_\@
 572	orl	$CS_FROM_USER_CR3, PT_CS(%esp)
 573
 574	/*
 575	 * %esi and %edi are unchanged, %ecx contains the number of
 576	 * bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate
 577	 * the stack-frame on task-stack and copy everything over
 578	 */
 579	jmp .Lcopy_pt_regs_\@
 580
 581.Lend_\@:
 582.endm
 583
 584/*
 585 * Switch back from the kernel stack to the entry stack.
 586 *
 587 * The %esp register must point to pt_regs on the task stack. It will
 588 * first calculate the size of the stack-frame to copy, depending on
 589 * whether we return to VM86 mode or not. With that it uses 'rep movsl'
 590 * to copy the contents of the stack over to the entry stack.
 591 *
 592 * We must be very careful here, as we can't trust the contents of the
 593 * task-stack once we switched to the entry-stack. When an NMI happens
 594 * while on the entry-stack, the NMI handler will switch back to the top
 595 * of the task stack, overwriting our stack-frame we are about to copy.
 596 * Therefore we switch the stack only after everything is copied over.
 597 */
 598.macro SWITCH_TO_ENTRY_STACK
 599
 600	/* Bytes to copy */
 601	movl	$PTREGS_SIZE, %ecx
 602
 603#ifdef CONFIG_VM86
 604	testl	$(X86_EFLAGS_VM), PT_EFLAGS(%esp)
 605	jz	.Lcopy_pt_regs_\@
 606
 607	/* Additional 4 registers to copy when returning to VM86 mode */
 608	addl    $(4 * 4), %ecx
 609
 610.Lcopy_pt_regs_\@:
 611#endif
 612
 613	/* Initialize source and destination for movsl */
 614	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
 615	subl	%ecx, %edi
 616	movl	%esp, %esi
 617
 618	/* Save future stack pointer in %ebx */
 619	movl	%edi, %ebx
 620
 621	/* Copy over the stack-frame */
 622	shrl	$2, %ecx
 623	cld
 624	rep movsl
 625
 626	/*
 627	 * Switch to entry-stack - needs to happen after everything is
 628	 * copied because the NMI handler will overwrite the task-stack
 629	 * when on entry-stack
 630	 */
 631	movl	%ebx, %esp
 632
 633.Lend_\@:
 634.endm
 635
 636/*
 637 * This macro handles the case when we return to kernel-mode on the iret
 638 * path and have to switch back to the entry stack and/or user-cr3
 639 *
 640 * See the comments below the .Lentry_from_kernel_\@ label in the
 641 * SWITCH_TO_KERNEL_STACK macro for more details.
 642 */
 643.macro PARANOID_EXIT_TO_KERNEL_MODE
 644
 645	/*
 646	 * Test if we entered the kernel with the entry-stack. Most
 647	 * likely we did not, because this code only runs on the
 648	 * return-to-kernel path.
 649	 */
 650	testl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)
 651	jz	.Lend_\@
 652
 653	/* Unlikely slow-path */
 654
 655	/* Clear marker from stack-frame */
 656	andl	$(~CS_FROM_ENTRY_STACK), PT_CS(%esp)
 657
 658	/* Copy the remaining task-stack contents to entry-stack */
 659	movl	%esp, %esi
 660	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
 661
 662	/* Bytes on the task-stack to ecx */
 663	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx
 664	subl	%esi, %ecx
 665
 666	/* Allocate stack-frame on entry-stack */
 667	subl	%ecx, %edi
 668
 669	/*
 670	 * Save future stack-pointer, we must not switch until the
 671	 * copy is done, otherwise the NMI handler could destroy the
 672	 * contents of the task-stack we are about to copy.
 673	 */
 674	movl	%edi, %ebx
 675
 676	/* Do the copy */
 677	shrl	$2, %ecx
 678	cld
 679	rep movsl
 680
 681	/* Safe to switch to entry-stack now */
 682	movl	%ebx, %esp
 683
 684	/*
 685	 * We came from entry-stack and need to check if we also need to
 686	 * switch back to user cr3.
 687	 */
 688	testl	$CS_FROM_USER_CR3, PT_CS(%esp)
 689	jz	.Lend_\@
 690
 691	/* Clear marker from stack-frame */
 692	andl	$(~CS_FROM_USER_CR3), PT_CS(%esp)
 693
 694	SWITCH_TO_USER_CR3 scratch_reg=%eax
 695
 696.Lend_\@:
 697.endm
 698
 699/**
 700 * idtentry - Macro to generate entry stubs for simple IDT entries
 701 * @vector:		Vector number
 702 * @asmsym:		ASM symbol for the entry point
 703 * @cfunc:		C function to be called
 704 * @has_error_code:	Hardware pushed error code on stack
 705 */
 706.macro idtentry vector asmsym cfunc has_error_code:req
 707SYM_CODE_START(\asmsym)
 708	ASM_CLAC
 709	cld
 710
 711	.if \has_error_code == 0
 712		pushl	$0		/* Clear the error code */
 713	.endif
 714
 715	/* Push the C-function address into the GS slot */
 716	pushl	$\cfunc
 717	/* Invoke the common exception entry */
 718	jmp	handle_exception
 719SYM_CODE_END(\asmsym)
 720.endm
 721
 722.macro idtentry_irq vector cfunc
 723	.p2align CONFIG_X86_L1_CACHE_SHIFT
 724SYM_CODE_START_LOCAL(asm_\cfunc)
 725	ASM_CLAC
 726	SAVE_ALL switch_stacks=1
 727	ENCODE_FRAME_POINTER
 728	movl	%esp, %eax
 729	movl	PT_ORIG_EAX(%esp), %edx		/* get the vector from stack */
 730	movl	$-1, PT_ORIG_EAX(%esp)		/* no syscall to restart */
 731	call	\cfunc
 732	jmp	handle_exception_return
 733SYM_CODE_END(asm_\cfunc)
 734.endm
 735
 736.macro idtentry_sysvec vector cfunc
 737	idtentry \vector asm_\cfunc \cfunc has_error_code=0
 738.endm
 739
 740/*
 741 * Include the defines which emit the idt entries which are shared
 742 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
 743 * so the stacktrace boundary checks work.
 744 */
 745	.align 16
 746	.globl __irqentry_text_start
 747__irqentry_text_start:
 748
 749#include <asm/idtentry.h>
 750
 751	.align 16
 752	.globl __irqentry_text_end
 753__irqentry_text_end:
 754
 755/*
 756 * %eax: prev task
 757 * %edx: next task
 758 */
 759.pushsection .text, "ax"
 760SYM_CODE_START(__switch_to_asm)
 761	/*
 762	 * Save callee-saved registers
 763	 * This must match the order in struct inactive_task_frame
 764	 */
 765	pushl	%ebp
 766	pushl	%ebx
 767	pushl	%edi
 768	pushl	%esi
 769	/*
 770	 * Flags are saved to prevent AC leakage. This could go
 771	 * away if objtool would have 32bit support to verify
 772	 * the STAC/CLAC correctness.
 773	 */
 774	pushfl
 775
 776	/* switch stack */
 777	movl	%esp, TASK_threadsp(%eax)
 778	movl	TASK_threadsp(%edx), %esp
 779
 780#ifdef CONFIG_STACKPROTECTOR
 781	movl	TASK_stack_canary(%edx), %ebx
 782	movl	%ebx, PER_CPU_VAR(stack_canary)+stack_canary_offset
 783#endif
 784
 785#ifdef CONFIG_RETPOLINE
 786	/*
 787	 * When switching from a shallower to a deeper call stack
 788	 * the RSB may either underflow or use entries populated
 789	 * with userspace addresses. On CPUs where those concerns
 790	 * exist, overwrite the RSB with entries which capture
 791	 * speculative execution to prevent attack.
 792	 */
 793	FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
 794#endif
 795
 796	/* Restore flags or the incoming task to restore AC state. */
 797	popfl
 798	/* restore callee-saved registers */
 799	popl	%esi
 800	popl	%edi
 801	popl	%ebx
 802	popl	%ebp
 803
 804	jmp	__switch_to
 805SYM_CODE_END(__switch_to_asm)
 806.popsection
 807
 808/*
 809 * The unwinder expects the last frame on the stack to always be at the same
 810 * offset from the end of the page, which allows it to validate the stack.
 811 * Calling schedule_tail() directly would break that convention because its an
 812 * asmlinkage function so its argument has to be pushed on the stack.  This
 813 * wrapper creates a proper "end of stack" frame header before the call.
 814 */
 815.pushsection .text, "ax"
 816SYM_FUNC_START(schedule_tail_wrapper)
 817	FRAME_BEGIN
 818
 819	pushl	%eax
 820	call	schedule_tail
 821	popl	%eax
 822
 823	FRAME_END
 824	ret
 825SYM_FUNC_END(schedule_tail_wrapper)
 826.popsection
 827
 828/*
 829 * A newly forked process directly context switches into this address.
 830 *
 831 * eax: prev task we switched from
 832 * ebx: kernel thread func (NULL for user thread)
 833 * edi: kernel thread arg
 834 */
 835.pushsection .text, "ax"
 836SYM_CODE_START(ret_from_fork)
 837	call	schedule_tail_wrapper
 838
 839	testl	%ebx, %ebx
 840	jnz	1f		/* kernel threads are uncommon */
 841
 8422:
 843	/* When we fork, we trace the syscall return in the child, too. */
 844	movl    %esp, %eax
 845	call    syscall_exit_to_user_mode
 846	jmp     .Lsyscall_32_done
 847
 848	/* kernel thread */
 8491:	movl	%edi, %eax
 850	CALL_NOSPEC ebx
 851	/*
 852	 * A kernel thread is allowed to return here after successfully
 853	 * calling kernel_execve().  Exit to userspace to complete the execve()
 854	 * syscall.
 855	 */
 856	movl	$0, PT_EAX(%esp)
 857	jmp	2b
 858SYM_CODE_END(ret_from_fork)
 859.popsection
 860
 861SYM_ENTRY(__begin_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
 862/*
 863 * All code from here through __end_SYSENTER_singlestep_region is subject
 864 * to being single-stepped if a user program sets TF and executes SYSENTER.
 865 * There is absolutely nothing that we can do to prevent this from happening
 866 * (thanks Intel!).  To keep our handling of this situation as simple as
 867 * possible, we handle TF just like AC and NT, except that our #DB handler
 868 * will ignore all of the single-step traps generated in this range.
 869 */
 870
 871/*
 872 * 32-bit SYSENTER entry.
 873 *
 874 * 32-bit system calls through the vDSO's __kernel_vsyscall enter here
 875 * if X86_FEATURE_SEP is available.  This is the preferred system call
 876 * entry on 32-bit systems.
 877 *
 878 * The SYSENTER instruction, in principle, should *only* occur in the
 879 * vDSO.  In practice, a small number of Android devices were shipped
 880 * with a copy of Bionic that inlined a SYSENTER instruction.  This
 881 * never happened in any of Google's Bionic versions -- it only happened
 882 * in a narrow range of Intel-provided versions.
 883 *
 884 * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
 885 * IF and VM in RFLAGS are cleared (IOW: interrupts are off).
 886 * SYSENTER does not save anything on the stack,
 887 * and does not save old EIP (!!!), ESP, or EFLAGS.
 888 *
 889 * To avoid losing track of EFLAGS.VM (and thus potentially corrupting
 890 * user and/or vm86 state), we explicitly disable the SYSENTER
 891 * instruction in vm86 mode by reprogramming the MSRs.
 892 *
 893 * Arguments:
 894 * eax  system call number
 895 * ebx  arg1
 896 * ecx  arg2
 897 * edx  arg3
 898 * esi  arg4
 899 * edi  arg5
 900 * ebp  user stack
 901 * 0(%ebp) arg6
 902 */
 903SYM_FUNC_START(entry_SYSENTER_32)
 904	/*
 905	 * On entry-stack with all userspace-regs live - save and
 906	 * restore eflags and %eax to use it as scratch-reg for the cr3
 907	 * switch.
 908	 */
 909	pushfl
 910	pushl	%eax
 911	BUG_IF_WRONG_CR3 no_user_check=1
 912	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
 913	popl	%eax
 914	popfl
 915
 916	/* Stack empty again, switch to task stack */
 917	movl	TSS_entry2task_stack(%esp), %esp
 918
 919.Lsysenter_past_esp:
 920	pushl	$__USER_DS		/* pt_regs->ss */
 921	pushl	$0			/* pt_regs->sp (placeholder) */
 922	pushfl				/* pt_regs->flags (except IF = 0) */
 923	pushl	$__USER_CS		/* pt_regs->cs */
 924	pushl	$0			/* pt_regs->ip = 0 (placeholder) */
 925	pushl	%eax			/* pt_regs->orig_ax */
 926	SAVE_ALL pt_regs_ax=$-ENOSYS	/* save rest, stack already switched */
 927
 928	/*
 929	 * SYSENTER doesn't filter flags, so we need to clear NT, AC
 930	 * and TF ourselves.  To save a few cycles, we can check whether
 931	 * either was set instead of doing an unconditional popfq.
 932	 * This needs to happen before enabling interrupts so that
 933	 * we don't get preempted with NT set.
 934	 *
 935	 * If TF is set, we will single-step all the way to here -- do_debug
 936	 * will ignore all the traps.  (Yes, this is slow, but so is
 937	 * single-stepping in general.  This allows us to avoid having
 938	 * a more complicated code to handle the case where a user program
 939	 * forces us to single-step through the SYSENTER entry code.)
 940	 *
 941	 * NB.: .Lsysenter_fix_flags is a label with the code under it moved
 942	 * out-of-line as an optimization: NT is unlikely to be set in the
 943	 * majority of the cases and instead of polluting the I$ unnecessarily,
 944	 * we're keeping that code behind a branch which will predict as
 945	 * not-taken and therefore its instructions won't be fetched.
 946	 */
 947	testl	$X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
 948	jnz	.Lsysenter_fix_flags
 949.Lsysenter_flags_fixed:
 950
 951	movl	%esp, %eax
 952	call	do_SYSENTER_32
 953	testl	%eax, %eax
 954	jz	.Lsyscall_32_done
 955
 956	STACKLEAK_ERASE
 957
 958	/* Opportunistic SYSEXIT */
 959
 960	/*
 961	 * Setup entry stack - we keep the pointer in %eax and do the
 962	 * switch after almost all user-state is restored.
 963	 */
 964
 965	/* Load entry stack pointer and allocate frame for eflags/eax */
 966	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax
 967	subl	$(2*4), %eax
 968
 969	/* Copy eflags and eax to entry stack */
 970	movl	PT_EFLAGS(%esp), %edi
 971	movl	PT_EAX(%esp), %esi
 972	movl	%edi, (%eax)
 973	movl	%esi, 4(%eax)
 974
 975	/* Restore user registers and segments */
 976	movl	PT_EIP(%esp), %edx	/* pt_regs->ip */
 977	movl	PT_OLDESP(%esp), %ecx	/* pt_regs->sp */
 9781:	mov	PT_FS(%esp), %fs
 979	PTGS_TO_GS
 980
 981	popl	%ebx			/* pt_regs->bx */
 982	addl	$2*4, %esp		/* skip pt_regs->cx and pt_regs->dx */
 983	popl	%esi			/* pt_regs->si */
 984	popl	%edi			/* pt_regs->di */
 985	popl	%ebp			/* pt_regs->bp */
 986
 987	/* Switch to entry stack */
 988	movl	%eax, %esp
 989
 990	/* Now ready to switch the cr3 */
 991	SWITCH_TO_USER_CR3 scratch_reg=%eax
 992
 993	/*
 994	 * Restore all flags except IF. (We restore IF separately because
 995	 * STI gives a one-instruction window in which we won't be interrupted,
 996	 * whereas POPF does not.)
 997	 */
 998	btrl	$X86_EFLAGS_IF_BIT, (%esp)
 999	BUG_IF_WRONG_CR3 no_user_check=1
1000	popfl
1001	popl	%eax
1002
1003	/*
1004	 * Return back to the vDSO, which will pop ecx and edx.
1005	 * Don't bother with DS and ES (they already contain __USER_DS).
1006	 */
1007	sti
1008	sysexit
1009
1010.pushsection .fixup, "ax"
10112:	movl	$0, PT_FS(%esp)
1012	jmp	1b
1013.popsection
1014	_ASM_EXTABLE(1b, 2b)
1015	PTGS_TO_GS_EX
1016
1017.Lsysenter_fix_flags:
1018	pushl	$X86_EFLAGS_FIXED
1019	popfl
1020	jmp	.Lsysenter_flags_fixed
1021SYM_ENTRY(__end_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
1022SYM_FUNC_END(entry_SYSENTER_32)
1023
1024/*
1025 * 32-bit legacy system call entry.
1026 *
1027 * 32-bit x86 Linux system calls traditionally used the INT $0x80
1028 * instruction.  INT $0x80 lands here.
1029 *
1030 * This entry point can be used by any 32-bit perform system calls.
1031 * Instances of INT $0x80 can be found inline in various programs and
1032 * libraries.  It is also used by the vDSO's __kernel_vsyscall
1033 * fallback for hardware that doesn't support a faster entry method.
1034 * Restarted 32-bit system calls also fall back to INT $0x80
1035 * regardless of what instruction was originally used to do the system
1036 * call.  (64-bit programs can use INT $0x80 as well, but they can
1037 * only run on 64-bit kernels and therefore land in
1038 * entry_INT80_compat.)
1039 *
1040 * This is considered a slow path.  It is not used by most libc
1041 * implementations on modern hardware except during process startup.
1042 *
1043 * Arguments:
1044 * eax  system call number
1045 * ebx  arg1
1046 * ecx  arg2
1047 * edx  arg3
1048 * esi  arg4
1049 * edi  arg5
1050 * ebp  arg6
1051 */
1052SYM_FUNC_START(entry_INT80_32)
1053	ASM_CLAC
1054	pushl	%eax			/* pt_regs->orig_ax */
1055
1056	SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1	/* save rest */
1057
1058	movl	%esp, %eax
1059	call	do_int80_syscall_32
1060.Lsyscall_32_done:
1061	STACKLEAK_ERASE
1062
1063restore_all_switch_stack:
1064	SWITCH_TO_ENTRY_STACK
1065	CHECK_AND_APPLY_ESPFIX
1066
1067	/* Switch back to user CR3 */
1068	SWITCH_TO_USER_CR3 scratch_reg=%eax
1069
1070	BUG_IF_WRONG_CR3
1071
1072	/* Restore user state */
1073	RESTORE_REGS pop=4			# skip orig_eax/error_code
1074.Lirq_return:
1075	/*
1076	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
1077	 * when returning from IPI handler and when returning from
1078	 * scheduler to user-space.
1079	 */
1080	INTERRUPT_RETURN
1081
1082.section .fixup, "ax"
1083SYM_CODE_START(asm_iret_error)
1084	pushl	$0				# no error code
1085	pushl	$iret_error
1086
1087#ifdef CONFIG_DEBUG_ENTRY
1088	/*
1089	 * The stack-frame here is the one that iret faulted on, so its a
1090	 * return-to-user frame. We are on kernel-cr3 because we come here from
1091	 * the fixup code. This confuses the CR3 checker, so switch to user-cr3
1092	 * as the checker expects it.
1093	 */
1094	pushl	%eax
1095	SWITCH_TO_USER_CR3 scratch_reg=%eax
1096	popl	%eax
1097#endif
1098
1099	jmp	handle_exception
1100SYM_CODE_END(asm_iret_error)
1101.previous
1102	_ASM_EXTABLE(.Lirq_return, asm_iret_error)
1103SYM_FUNC_END(entry_INT80_32)
1104
1105.macro FIXUP_ESPFIX_STACK
1106/*
1107 * Switch back for ESPFIX stack to the normal zerobased stack
1108 *
1109 * We can't call C functions using the ESPFIX stack. This code reads
1110 * the high word of the segment base from the GDT and swiches to the
1111 * normal stack and adjusts ESP with the matching offset.
1112 *
1113 * We might be on user CR3 here, so percpu data is not mapped and we can't
1114 * access the GDT through the percpu segment.  Instead, use SGDT to find
1115 * the cpu_entry_area alias of the GDT.
1116 */
1117#ifdef CONFIG_X86_ESPFIX32
1118	/* fixup the stack */
1119	pushl	%ecx
1120	subl	$2*4, %esp
1121	sgdt	(%esp)
1122	movl	2(%esp), %ecx				/* GDT address */
1123	/*
1124	 * Careful: ECX is a linear pointer, so we need to force base
1125	 * zero.  %cs is the only known-linear segment we have right now.
1126	 */
1127	mov	%cs:GDT_ESPFIX_OFFSET + 4(%ecx), %al	/* bits 16..23 */
1128	mov	%cs:GDT_ESPFIX_OFFSET + 7(%ecx), %ah	/* bits 24..31 */
1129	shl	$16, %eax
1130	addl	$2*4, %esp
1131	popl	%ecx
1132	addl	%esp, %eax			/* the adjusted stack pointer */
1133	pushl	$__KERNEL_DS
1134	pushl	%eax
1135	lss	(%esp), %esp			/* switch to the normal stack segment */
1136#endif
1137.endm
1138
1139.macro UNWIND_ESPFIX_STACK
1140	/* It's safe to clobber %eax, all other regs need to be preserved */
1141#ifdef CONFIG_X86_ESPFIX32
1142	movl	%ss, %eax
1143	/* see if on espfix stack */
1144	cmpw	$__ESPFIX_SS, %ax
1145	jne	.Lno_fixup_\@
1146	/* switch to normal stack */
1147	FIXUP_ESPFIX_STACK
1148.Lno_fixup_\@:
1149#endif
1150.endm
1151
1152SYM_CODE_START_LOCAL_NOALIGN(handle_exception)
1153	/* the function address is in %gs's slot on the stack */
1154	SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1
1155	ENCODE_FRAME_POINTER
1156
1157	/* fixup %gs */
1158	GS_TO_REG %ecx
1159	movl	PT_GS(%esp), %edi		# get the function address
1160	REG_TO_PTGS %ecx
1161	SET_KERNEL_GS %ecx
1162
1163	/* fixup orig %eax */
1164	movl	PT_ORIG_EAX(%esp), %edx		# get the error code
1165	movl	$-1, PT_ORIG_EAX(%esp)		# no syscall to restart
1166
1167	movl	%esp, %eax			# pt_regs pointer
1168	CALL_NOSPEC edi
1169
1170handle_exception_return:
1171#ifdef CONFIG_VM86
1172	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS and CS
1173	movb	PT_CS(%esp), %al
1174	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
1175#else
1176	/*
1177	 * We can be coming here from child spawned by kernel_thread().
1178	 */
1179	movl	PT_CS(%esp), %eax
1180	andl	$SEGMENT_RPL_MASK, %eax
1181#endif
1182	cmpl	$USER_RPL, %eax			# returning to v8086 or userspace ?
1183	jnb	ret_to_user
1184
1185	PARANOID_EXIT_TO_KERNEL_MODE
1186	BUG_IF_WRONG_CR3
1187	RESTORE_REGS 4
1188	jmp	.Lirq_return
1189
1190ret_to_user:
1191	movl	%esp, %eax
1192	jmp	restore_all_switch_stack
1193SYM_CODE_END(handle_exception)
1194
1195SYM_CODE_START(asm_exc_double_fault)
11961:
1197	/*
1198	 * This is a task gate handler, not an interrupt gate handler.
1199	 * The error code is on the stack, but the stack is otherwise
1200	 * empty.  Interrupts are off.  Our state is sane with the following
1201	 * exceptions:
1202	 *
1203	 *  - CR0.TS is set.  "TS" literally means "task switched".
1204	 *  - EFLAGS.NT is set because we're a "nested task".
1205	 *  - The doublefault TSS has back_link set and has been marked busy.
1206	 *  - TR points to the doublefault TSS and the normal TSS is busy.
1207	 *  - CR3 is the normal kernel PGD.  This would be delightful, except
1208	 *    that the CPU didn't bother to save the old CR3 anywhere.  This
1209	 *    would make it very awkward to return back to the context we came
1210	 *    from.
1211	 *
1212	 * The rest of EFLAGS is sanitized for us, so we don't need to
1213	 * worry about AC or DF.
1214	 *
1215	 * Don't even bother popping the error code.  It's always zero,
1216	 * and ignoring it makes us a bit more robust against buggy
1217	 * hypervisor task gate implementations.
1218	 *
1219	 * We will manually undo the task switch instead of doing a
1220	 * task-switching IRET.
1221	 */
1222
1223	clts				/* clear CR0.TS */
1224	pushl	$X86_EFLAGS_FIXED
1225	popfl				/* clear EFLAGS.NT */
1226
1227	call	doublefault_shim
1228
1229	/* We don't support returning, so we have no IRET here. */
12301:
1231	hlt
1232	jmp 1b
1233SYM_CODE_END(asm_exc_double_fault)
1234
1235/*
1236 * NMI is doubly nasty.  It can happen on the first instruction of
1237 * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
1238 * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
1239 * switched stacks.  We handle both conditions by simply checking whether we
1240 * interrupted kernel code running on the SYSENTER stack.
1241 */
1242SYM_CODE_START(asm_exc_nmi)
1243	ASM_CLAC
1244
1245#ifdef CONFIG_X86_ESPFIX32
1246	/*
1247	 * ESPFIX_SS is only ever set on the return to user path
1248	 * after we've switched to the entry stack.
1249	 */
1250	pushl	%eax
1251	movl	%ss, %eax
1252	cmpw	$__ESPFIX_SS, %ax
1253	popl	%eax
1254	je	.Lnmi_espfix_stack
1255#endif
1256
1257	pushl	%eax				# pt_regs->orig_ax
1258	SAVE_ALL_NMI cr3_reg=%edi
1259	ENCODE_FRAME_POINTER
1260	xorl	%edx, %edx			# zero error code
1261	movl	%esp, %eax			# pt_regs pointer
1262
1263	/* Are we currently on the SYSENTER stack? */
1264	movl	PER_CPU_VAR(cpu_entry_area), %ecx
1265	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
1266	subl	%eax, %ecx	/* ecx = (end of entry_stack) - esp */
1267	cmpl	$SIZEOF_entry_stack, %ecx
1268	jb	.Lnmi_from_sysenter_stack
1269
1270	/* Not on SYSENTER stack. */
1271	call	exc_nmi
1272	jmp	.Lnmi_return
1273
1274.Lnmi_from_sysenter_stack:
1275	/*
1276	 * We're on the SYSENTER stack.  Switch off.  No one (not even debug)
1277	 * is using the thread stack right now, so it's safe for us to use it.
1278	 */
1279	movl	%esp, %ebx
1280	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esp
1281	call	exc_nmi
1282	movl	%ebx, %esp
1283
1284.Lnmi_return:
1285#ifdef CONFIG_X86_ESPFIX32
1286	testl	$CS_FROM_ESPFIX, PT_CS(%esp)
1287	jnz	.Lnmi_from_espfix
1288#endif
1289
1290	CHECK_AND_APPLY_ESPFIX
1291	RESTORE_ALL_NMI cr3_reg=%edi pop=4
1292	jmp	.Lirq_return
1293
1294#ifdef CONFIG_X86_ESPFIX32
1295.Lnmi_espfix_stack:
1296	/*
1297	 * Create the pointer to LSS back
1298	 */
1299	pushl	%ss
1300	pushl	%esp
1301	addl	$4, (%esp)
1302
1303	/* Copy the (short) IRET frame */
1304	pushl	4*4(%esp)	# flags
1305	pushl	4*4(%esp)	# cs
1306	pushl	4*4(%esp)	# ip
1307
1308	pushl	%eax		# orig_ax
1309
1310	SAVE_ALL_NMI cr3_reg=%edi unwind_espfix=1
1311	ENCODE_FRAME_POINTER
1312
1313	/* clear CS_FROM_KERNEL, set CS_FROM_ESPFIX */
1314	xorl	$(CS_FROM_ESPFIX | CS_FROM_KERNEL), PT_CS(%esp)
1315
1316	xorl	%edx, %edx			# zero error code
1317	movl	%esp, %eax			# pt_regs pointer
1318	jmp	.Lnmi_from_sysenter_stack
1319
1320.Lnmi_from_espfix:
1321	RESTORE_ALL_NMI cr3_reg=%edi
1322	/*
1323	 * Because we cleared CS_FROM_KERNEL, IRET_FRAME 'forgot' to
1324	 * fix up the gap and long frame:
1325	 *
1326	 *  3 - original frame	(exception)
1327	 *  2 - ESPFIX block	(above)
1328	 *  6 - gap		(FIXUP_FRAME)
1329	 *  5 - long frame	(FIXUP_FRAME)
1330	 *  1 - orig_ax
1331	 */
1332	lss	(1+5+6)*4(%esp), %esp			# back to espfix stack
1333	jmp	.Lirq_return
1334#endif
1335SYM_CODE_END(asm_exc_nmi)
1336
1337.pushsection .text, "ax"
1338SYM_CODE_START(rewind_stack_do_exit)
1339	/* Prevent any naive code from trying to unwind to our caller. */
1340	xorl	%ebp, %ebp
1341
1342	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esi
1343	leal	-TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp
1344
1345	call	do_exit
13461:	jmp 1b
1347SYM_CODE_END(rewind_stack_do_exit)
1348.popsection