Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Basic authentication token and access key management
   3 *
   4 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
   5 * Written by David Howells (dhowells@redhat.com)
 
 
 
 
 
   6 */
   7
   8#include <linux/export.h>
   9#include <linux/init.h>
  10#include <linux/poison.h>
  11#include <linux/sched.h>
  12#include <linux/slab.h>
  13#include <linux/security.h>
  14#include <linux/workqueue.h>
  15#include <linux/random.h>
  16#include <linux/ima.h>
  17#include <linux/err.h>
  18#include "internal.h"
  19
  20struct kmem_cache *key_jar;
  21struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
  22DEFINE_SPINLOCK(key_serial_lock);
  23
  24struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
  25DEFINE_SPINLOCK(key_user_lock);
  26
  27unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
  28unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
  29unsigned int key_quota_maxkeys = 200;		/* general key count quota */
  30unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
  31
  32static LIST_HEAD(key_types_list);
  33static DECLARE_RWSEM(key_types_sem);
  34
  35/* We serialise key instantiation and link */
  36DEFINE_MUTEX(key_construction_mutex);
  37
  38#ifdef KEY_DEBUGGING
  39void __key_check(const struct key *key)
  40{
  41	printk("__key_check: key %p {%08x} should be {%08x}\n",
  42	       key, key->magic, KEY_DEBUG_MAGIC);
  43	BUG();
  44}
  45#endif
  46
  47/*
  48 * Get the key quota record for a user, allocating a new record if one doesn't
  49 * already exist.
  50 */
  51struct key_user *key_user_lookup(kuid_t uid)
  52{
  53	struct key_user *candidate = NULL, *user;
  54	struct rb_node *parent, **p;
  55
  56try_again:
  57	parent = NULL;
  58	p = &key_user_tree.rb_node;
  59	spin_lock(&key_user_lock);
  60
  61	/* search the tree for a user record with a matching UID */
  62	while (*p) {
  63		parent = *p;
  64		user = rb_entry(parent, struct key_user, node);
  65
  66		if (uid_lt(uid, user->uid))
  67			p = &(*p)->rb_left;
  68		else if (uid_gt(uid, user->uid))
  69			p = &(*p)->rb_right;
  70		else
  71			goto found;
  72	}
  73
  74	/* if we get here, we failed to find a match in the tree */
  75	if (!candidate) {
  76		/* allocate a candidate user record if we don't already have
  77		 * one */
  78		spin_unlock(&key_user_lock);
  79
  80		user = NULL;
  81		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
  82		if (unlikely(!candidate))
  83			goto out;
  84
  85		/* the allocation may have scheduled, so we need to repeat the
  86		 * search lest someone else added the record whilst we were
  87		 * asleep */
  88		goto try_again;
  89	}
  90
  91	/* if we get here, then the user record still hadn't appeared on the
  92	 * second pass - so we use the candidate record */
  93	refcount_set(&candidate->usage, 1);
  94	atomic_set(&candidate->nkeys, 0);
  95	atomic_set(&candidate->nikeys, 0);
  96	candidate->uid = uid;
  97	candidate->qnkeys = 0;
  98	candidate->qnbytes = 0;
  99	spin_lock_init(&candidate->lock);
 100	mutex_init(&candidate->cons_lock);
 101
 102	rb_link_node(&candidate->node, parent, p);
 103	rb_insert_color(&candidate->node, &key_user_tree);
 104	spin_unlock(&key_user_lock);
 105	user = candidate;
 106	goto out;
 107
 108	/* okay - we found a user record for this UID */
 109found:
 110	refcount_inc(&user->usage);
 111	spin_unlock(&key_user_lock);
 112	kfree(candidate);
 113out:
 114	return user;
 115}
 116
 117/*
 118 * Dispose of a user structure
 119 */
 120void key_user_put(struct key_user *user)
 121{
 122	if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
 123		rb_erase(&user->node, &key_user_tree);
 124		spin_unlock(&key_user_lock);
 125
 126		kfree(user);
 127	}
 128}
 129
 130/*
 131 * Allocate a serial number for a key.  These are assigned randomly to avoid
 132 * security issues through covert channel problems.
 133 */
 134static inline void key_alloc_serial(struct key *key)
 135{
 136	struct rb_node *parent, **p;
 137	struct key *xkey;
 138
 139	/* propose a random serial number and look for a hole for it in the
 140	 * serial number tree */
 141	do {
 142		get_random_bytes(&key->serial, sizeof(key->serial));
 143
 144		key->serial >>= 1; /* negative numbers are not permitted */
 145	} while (key->serial < 3);
 146
 147	spin_lock(&key_serial_lock);
 148
 149attempt_insertion:
 150	parent = NULL;
 151	p = &key_serial_tree.rb_node;
 152
 153	while (*p) {
 154		parent = *p;
 155		xkey = rb_entry(parent, struct key, serial_node);
 156
 157		if (key->serial < xkey->serial)
 158			p = &(*p)->rb_left;
 159		else if (key->serial > xkey->serial)
 160			p = &(*p)->rb_right;
 161		else
 162			goto serial_exists;
 163	}
 164
 165	/* we've found a suitable hole - arrange for this key to occupy it */
 166	rb_link_node(&key->serial_node, parent, p);
 167	rb_insert_color(&key->serial_node, &key_serial_tree);
 168
 169	spin_unlock(&key_serial_lock);
 170	return;
 171
 172	/* we found a key with the proposed serial number - walk the tree from
 173	 * that point looking for the next unused serial number */
 174serial_exists:
 175	for (;;) {
 176		key->serial++;
 177		if (key->serial < 3) {
 178			key->serial = 3;
 179			goto attempt_insertion;
 180		}
 181
 182		parent = rb_next(parent);
 183		if (!parent)
 184			goto attempt_insertion;
 185
 186		xkey = rb_entry(parent, struct key, serial_node);
 187		if (key->serial < xkey->serial)
 188			goto attempt_insertion;
 189	}
 190}
 191
 192/**
 193 * key_alloc - Allocate a key of the specified type.
 194 * @type: The type of key to allocate.
 195 * @desc: The key description to allow the key to be searched out.
 196 * @uid: The owner of the new key.
 197 * @gid: The group ID for the new key's group permissions.
 198 * @cred: The credentials specifying UID namespace.
 199 * @perm: The permissions mask of the new key.
 200 * @flags: Flags specifying quota properties.
 201 * @restrict_link: Optional link restriction for new keyrings.
 202 *
 203 * Allocate a key of the specified type with the attributes given.  The key is
 204 * returned in an uninstantiated state and the caller needs to instantiate the
 205 * key before returning.
 206 *
 207 * The restrict_link structure (if not NULL) will be freed when the
 208 * keyring is destroyed, so it must be dynamically allocated.
 209 *
 210 * The user's key count quota is updated to reflect the creation of the key and
 211 * the user's key data quota has the default for the key type reserved.  The
 212 * instantiation function should amend this as necessary.  If insufficient
 213 * quota is available, -EDQUOT will be returned.
 214 *
 215 * The LSM security modules can prevent a key being created, in which case
 216 * -EACCES will be returned.
 217 *
 218 * Returns a pointer to the new key if successful and an error code otherwise.
 219 *
 220 * Note that the caller needs to ensure the key type isn't uninstantiated.
 221 * Internally this can be done by locking key_types_sem.  Externally, this can
 222 * be done by either never unregistering the key type, or making sure
 223 * key_alloc() calls don't race with module unloading.
 224 */
 225struct key *key_alloc(struct key_type *type, const char *desc,
 226		      kuid_t uid, kgid_t gid, const struct cred *cred,
 227		      key_perm_t perm, unsigned long flags,
 228		      struct key_restriction *restrict_link)
 229{
 230	struct key_user *user = NULL;
 231	struct key *key;
 232	size_t desclen, quotalen;
 233	int ret;
 234
 235	key = ERR_PTR(-EINVAL);
 236	if (!desc || !*desc)
 237		goto error;
 238
 239	if (type->vet_description) {
 240		ret = type->vet_description(desc);
 241		if (ret < 0) {
 242			key = ERR_PTR(ret);
 243			goto error;
 244		}
 245	}
 246
 247	desclen = strlen(desc);
 248	quotalen = desclen + 1 + type->def_datalen;
 249
 250	/* get hold of the key tracking for this user */
 251	user = key_user_lookup(uid);
 252	if (!user)
 253		goto no_memory_1;
 254
 255	/* check that the user's quota permits allocation of another key and
 256	 * its description */
 257	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 258		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
 259			key_quota_root_maxkeys : key_quota_maxkeys;
 260		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
 261			key_quota_root_maxbytes : key_quota_maxbytes;
 262
 263		spin_lock(&user->lock);
 264		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
 265			if (user->qnkeys + 1 > maxkeys ||
 266			    user->qnbytes + quotalen > maxbytes ||
 267			    user->qnbytes + quotalen < user->qnbytes)
 268				goto no_quota;
 269		}
 270
 271		user->qnkeys++;
 272		user->qnbytes += quotalen;
 273		spin_unlock(&user->lock);
 274	}
 275
 276	/* allocate and initialise the key and its description */
 277	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
 278	if (!key)
 279		goto no_memory_2;
 280
 281	key->index_key.desc_len = desclen;
 282	key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
 283	if (!key->index_key.description)
 284		goto no_memory_3;
 285	key->index_key.type = type;
 286	key_set_index_key(&key->index_key);
 287
 288	refcount_set(&key->usage, 1);
 289	init_rwsem(&key->sem);
 290	lockdep_set_class(&key->sem, &type->lock_class);
 
 291	key->user = user;
 292	key->quotalen = quotalen;
 293	key->datalen = type->def_datalen;
 294	key->uid = uid;
 295	key->gid = gid;
 296	key->perm = perm;
 297	key->restrict_link = restrict_link;
 298	key->last_used_at = ktime_get_real_seconds();
 299
 300	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
 301		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
 302	if (flags & KEY_ALLOC_BUILT_IN)
 303		key->flags |= 1 << KEY_FLAG_BUILTIN;
 304	if (flags & KEY_ALLOC_UID_KEYRING)
 305		key->flags |= 1 << KEY_FLAG_UID_KEYRING;
 306	if (flags & KEY_ALLOC_SET_KEEP)
 307		key->flags |= 1 << KEY_FLAG_KEEP;
 308
 309#ifdef KEY_DEBUGGING
 310	key->magic = KEY_DEBUG_MAGIC;
 311#endif
 312
 313	/* let the security module know about the key */
 314	ret = security_key_alloc(key, cred, flags);
 315	if (ret < 0)
 316		goto security_error;
 317
 318	/* publish the key by giving it a serial number */
 319	refcount_inc(&key->domain_tag->usage);
 320	atomic_inc(&user->nkeys);
 321	key_alloc_serial(key);
 322
 323error:
 324	return key;
 325
 326security_error:
 327	kfree(key->description);
 328	kmem_cache_free(key_jar, key);
 329	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 330		spin_lock(&user->lock);
 331		user->qnkeys--;
 332		user->qnbytes -= quotalen;
 333		spin_unlock(&user->lock);
 334	}
 335	key_user_put(user);
 336	key = ERR_PTR(ret);
 337	goto error;
 338
 339no_memory_3:
 340	kmem_cache_free(key_jar, key);
 341no_memory_2:
 342	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 343		spin_lock(&user->lock);
 344		user->qnkeys--;
 345		user->qnbytes -= quotalen;
 346		spin_unlock(&user->lock);
 347	}
 348	key_user_put(user);
 349no_memory_1:
 350	key = ERR_PTR(-ENOMEM);
 351	goto error;
 352
 353no_quota:
 354	spin_unlock(&user->lock);
 355	key_user_put(user);
 356	key = ERR_PTR(-EDQUOT);
 357	goto error;
 358}
 359EXPORT_SYMBOL(key_alloc);
 360
 361/**
 362 * key_payload_reserve - Adjust data quota reservation for the key's payload
 363 * @key: The key to make the reservation for.
 364 * @datalen: The amount of data payload the caller now wants.
 365 *
 366 * Adjust the amount of the owning user's key data quota that a key reserves.
 367 * If the amount is increased, then -EDQUOT may be returned if there isn't
 368 * enough free quota available.
 369 *
 370 * If successful, 0 is returned.
 371 */
 372int key_payload_reserve(struct key *key, size_t datalen)
 373{
 374	int delta = (int)datalen - key->datalen;
 375	int ret = 0;
 376
 377	key_check(key);
 378
 379	/* contemplate the quota adjustment */
 380	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 381		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
 382			key_quota_root_maxbytes : key_quota_maxbytes;
 383
 384		spin_lock(&key->user->lock);
 385
 386		if (delta > 0 &&
 387		    (key->user->qnbytes + delta > maxbytes ||
 388		     key->user->qnbytes + delta < key->user->qnbytes)) {
 389			ret = -EDQUOT;
 390		}
 391		else {
 392			key->user->qnbytes += delta;
 393			key->quotalen += delta;
 394		}
 395		spin_unlock(&key->user->lock);
 396	}
 397
 398	/* change the recorded data length if that didn't generate an error */
 399	if (ret == 0)
 400		key->datalen = datalen;
 401
 402	return ret;
 403}
 404EXPORT_SYMBOL(key_payload_reserve);
 405
 406/*
 407 * Change the key state to being instantiated.
 408 */
 409static void mark_key_instantiated(struct key *key, int reject_error)
 410{
 411	/* Commit the payload before setting the state; barrier versus
 412	 * key_read_state().
 413	 */
 414	smp_store_release(&key->state,
 415			  (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
 416}
 417
 418/*
 419 * Instantiate a key and link it into the target keyring atomically.  Must be
 420 * called with the target keyring's semaphore writelocked.  The target key's
 421 * semaphore need not be locked as instantiation is serialised by
 422 * key_construction_mutex.
 423 */
 424static int __key_instantiate_and_link(struct key *key,
 425				      struct key_preparsed_payload *prep,
 426				      struct key *keyring,
 427				      struct key *authkey,
 428				      struct assoc_array_edit **_edit)
 429{
 430	int ret, awaken;
 431
 432	key_check(key);
 433	key_check(keyring);
 434
 435	awaken = 0;
 436	ret = -EBUSY;
 437
 438	mutex_lock(&key_construction_mutex);
 439
 440	/* can't instantiate twice */
 441	if (key->state == KEY_IS_UNINSTANTIATED) {
 442		/* instantiate the key */
 443		ret = key->type->instantiate(key, prep);
 444
 445		if (ret == 0) {
 446			/* mark the key as being instantiated */
 447			atomic_inc(&key->user->nikeys);
 448			mark_key_instantiated(key, 0);
 449			notify_key(key, NOTIFY_KEY_INSTANTIATED, 0);
 450
 451			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 452				awaken = 1;
 453
 454			/* and link it into the destination keyring */
 455			if (keyring) {
 456				if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
 457					set_bit(KEY_FLAG_KEEP, &key->flags);
 458
 459				__key_link(keyring, key, _edit);
 460			}
 461
 462			/* disable the authorisation key */
 463			if (authkey)
 464				key_invalidate(authkey);
 465
 466			if (prep->expiry != TIME64_MAX) {
 467				key->expiry = prep->expiry;
 468				key_schedule_gc(prep->expiry + key_gc_delay);
 469			}
 470		}
 471	}
 472
 473	mutex_unlock(&key_construction_mutex);
 474
 475	/* wake up anyone waiting for a key to be constructed */
 476	if (awaken)
 477		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 478
 479	return ret;
 480}
 481
 482/**
 483 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
 484 * @key: The key to instantiate.
 485 * @data: The data to use to instantiate the keyring.
 486 * @datalen: The length of @data.
 487 * @keyring: Keyring to create a link in on success (or NULL).
 488 * @authkey: The authorisation token permitting instantiation.
 489 *
 490 * Instantiate a key that's in the uninstantiated state using the provided data
 491 * and, if successful, link it in to the destination keyring if one is
 492 * supplied.
 493 *
 494 * If successful, 0 is returned, the authorisation token is revoked and anyone
 495 * waiting for the key is woken up.  If the key was already instantiated,
 496 * -EBUSY will be returned.
 497 */
 498int key_instantiate_and_link(struct key *key,
 499			     const void *data,
 500			     size_t datalen,
 501			     struct key *keyring,
 502			     struct key *authkey)
 503{
 504	struct key_preparsed_payload prep;
 505	struct assoc_array_edit *edit = NULL;
 506	int ret;
 507
 508	memset(&prep, 0, sizeof(prep));
 509	prep.orig_description = key->description;
 510	prep.data = data;
 511	prep.datalen = datalen;
 512	prep.quotalen = key->type->def_datalen;
 513	prep.expiry = TIME64_MAX;
 514	if (key->type->preparse) {
 515		ret = key->type->preparse(&prep);
 516		if (ret < 0)
 517			goto error;
 518	}
 519
 520	if (keyring) {
 521		ret = __key_link_lock(keyring, &key->index_key);
 522		if (ret < 0)
 523			goto error;
 524
 525		ret = __key_link_begin(keyring, &key->index_key, &edit);
 526		if (ret < 0)
 527			goto error_link_end;
 528
 529		if (keyring->restrict_link && keyring->restrict_link->check) {
 530			struct key_restriction *keyres = keyring->restrict_link;
 531
 532			ret = keyres->check(keyring, key->type, &prep.payload,
 533					    keyres->key);
 534			if (ret < 0)
 535				goto error_link_end;
 536		}
 537	}
 538
 539	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
 540
 541error_link_end:
 542	if (keyring)
 543		__key_link_end(keyring, &key->index_key, edit);
 544
 545error:
 546	if (key->type->preparse)
 547		key->type->free_preparse(&prep);
 548	return ret;
 549}
 550
 551EXPORT_SYMBOL(key_instantiate_and_link);
 552
 553/**
 554 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
 555 * @key: The key to instantiate.
 556 * @timeout: The timeout on the negative key.
 557 * @error: The error to return when the key is hit.
 558 * @keyring: Keyring to create a link in on success (or NULL).
 559 * @authkey: The authorisation token permitting instantiation.
 560 *
 561 * Negatively instantiate a key that's in the uninstantiated state and, if
 562 * successful, set its timeout and stored error and link it in to the
 563 * destination keyring if one is supplied.  The key and any links to the key
 564 * will be automatically garbage collected after the timeout expires.
 565 *
 566 * Negative keys are used to rate limit repeated request_key() calls by causing
 567 * them to return the stored error code (typically ENOKEY) until the negative
 568 * key expires.
 569 *
 570 * If successful, 0 is returned, the authorisation token is revoked and anyone
 571 * waiting for the key is woken up.  If the key was already instantiated,
 572 * -EBUSY will be returned.
 573 */
 574int key_reject_and_link(struct key *key,
 575			unsigned timeout,
 576			unsigned error,
 577			struct key *keyring,
 578			struct key *authkey)
 579{
 580	struct assoc_array_edit *edit = NULL;
 581	int ret, awaken, link_ret = 0;
 582
 583	key_check(key);
 584	key_check(keyring);
 585
 586	awaken = 0;
 587	ret = -EBUSY;
 588
 589	if (keyring) {
 590		if (keyring->restrict_link)
 591			return -EPERM;
 592
 593		link_ret = __key_link_lock(keyring, &key->index_key);
 594		if (link_ret == 0) {
 595			link_ret = __key_link_begin(keyring, &key->index_key, &edit);
 596			if (link_ret < 0)
 597				__key_link_end(keyring, &key->index_key, edit);
 598		}
 599	}
 600
 601	mutex_lock(&key_construction_mutex);
 602
 603	/* can't instantiate twice */
 604	if (key->state == KEY_IS_UNINSTANTIATED) {
 605		/* mark the key as being negatively instantiated */
 606		atomic_inc(&key->user->nikeys);
 607		mark_key_instantiated(key, -error);
 608		notify_key(key, NOTIFY_KEY_INSTANTIATED, -error);
 609		key->expiry = ktime_get_real_seconds() + timeout;
 610		key_schedule_gc(key->expiry + key_gc_delay);
 611
 612		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 613			awaken = 1;
 614
 615		ret = 0;
 616
 617		/* and link it into the destination keyring */
 618		if (keyring && link_ret == 0)
 619			__key_link(keyring, key, &edit);
 620
 621		/* disable the authorisation key */
 622		if (authkey)
 623			key_invalidate(authkey);
 624	}
 625
 626	mutex_unlock(&key_construction_mutex);
 627
 628	if (keyring && link_ret == 0)
 629		__key_link_end(keyring, &key->index_key, edit);
 630
 631	/* wake up anyone waiting for a key to be constructed */
 632	if (awaken)
 633		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 634
 635	return ret == 0 ? link_ret : ret;
 636}
 637EXPORT_SYMBOL(key_reject_and_link);
 638
 639/**
 640 * key_put - Discard a reference to a key.
 641 * @key: The key to discard a reference from.
 642 *
 643 * Discard a reference to a key, and when all the references are gone, we
 644 * schedule the cleanup task to come and pull it out of the tree in process
 645 * context at some later time.
 646 */
 647void key_put(struct key *key)
 648{
 649	if (key) {
 650		key_check(key);
 651
 652		if (refcount_dec_and_test(&key->usage))
 653			schedule_work(&key_gc_work);
 654	}
 655}
 656EXPORT_SYMBOL(key_put);
 657
 658/*
 659 * Find a key by its serial number.
 660 */
 661struct key *key_lookup(key_serial_t id)
 662{
 663	struct rb_node *n;
 664	struct key *key;
 665
 666	spin_lock(&key_serial_lock);
 667
 668	/* search the tree for the specified key */
 669	n = key_serial_tree.rb_node;
 670	while (n) {
 671		key = rb_entry(n, struct key, serial_node);
 672
 673		if (id < key->serial)
 674			n = n->rb_left;
 675		else if (id > key->serial)
 676			n = n->rb_right;
 677		else
 678			goto found;
 679	}
 680
 681not_found:
 682	key = ERR_PTR(-ENOKEY);
 683	goto error;
 684
 685found:
 686	/* A key is allowed to be looked up only if someone still owns a
 687	 * reference to it - otherwise it's awaiting the gc.
 688	 */
 689	if (!refcount_inc_not_zero(&key->usage))
 690		goto not_found;
 691
 692error:
 693	spin_unlock(&key_serial_lock);
 694	return key;
 695}
 696
 697/*
 698 * Find and lock the specified key type against removal.
 699 *
 700 * We return with the sem read-locked if successful.  If the type wasn't
 701 * available -ENOKEY is returned instead.
 702 */
 703struct key_type *key_type_lookup(const char *type)
 704{
 705	struct key_type *ktype;
 706
 707	down_read(&key_types_sem);
 708
 709	/* look up the key type to see if it's one of the registered kernel
 710	 * types */
 711	list_for_each_entry(ktype, &key_types_list, link) {
 712		if (strcmp(ktype->name, type) == 0)
 713			goto found_kernel_type;
 714	}
 715
 716	up_read(&key_types_sem);
 717	ktype = ERR_PTR(-ENOKEY);
 718
 719found_kernel_type:
 720	return ktype;
 721}
 722
 723void key_set_timeout(struct key *key, unsigned timeout)
 724{
 725	time64_t expiry = 0;
 726
 727	/* make the changes with the locks held to prevent races */
 728	down_write(&key->sem);
 729
 730	if (timeout > 0)
 731		expiry = ktime_get_real_seconds() + timeout;
 732
 733	key->expiry = expiry;
 734	key_schedule_gc(key->expiry + key_gc_delay);
 735
 736	up_write(&key->sem);
 737}
 738EXPORT_SYMBOL_GPL(key_set_timeout);
 739
 740/*
 741 * Unlock a key type locked by key_type_lookup().
 742 */
 743void key_type_put(struct key_type *ktype)
 744{
 745	up_read(&key_types_sem);
 746}
 747
 748/*
 749 * Attempt to update an existing key.
 750 *
 751 * The key is given to us with an incremented refcount that we need to discard
 752 * if we get an error.
 753 */
 754static inline key_ref_t __key_update(key_ref_t key_ref,
 755				     struct key_preparsed_payload *prep)
 756{
 757	struct key *key = key_ref_to_ptr(key_ref);
 758	int ret;
 759
 760	/* need write permission on the key to update it */
 761	ret = key_permission(key_ref, KEY_NEED_WRITE);
 762	if (ret < 0)
 763		goto error;
 764
 765	ret = -EEXIST;
 766	if (!key->type->update)
 767		goto error;
 768
 769	down_write(&key->sem);
 770
 771	ret = key->type->update(key, prep);
 772	if (ret == 0) {
 773		/* Updating a negative key positively instantiates it */
 774		mark_key_instantiated(key, 0);
 775		notify_key(key, NOTIFY_KEY_UPDATED, 0);
 776	}
 777
 778	up_write(&key->sem);
 779
 780	if (ret < 0)
 781		goto error;
 782out:
 783	return key_ref;
 784
 785error:
 786	key_put(key);
 787	key_ref = ERR_PTR(ret);
 788	goto out;
 789}
 790
 791/**
 792 * key_create_or_update - Update or create and instantiate a key.
 793 * @keyring_ref: A pointer to the destination keyring with possession flag.
 794 * @type: The type of key.
 795 * @description: The searchable description for the key.
 796 * @payload: The data to use to instantiate or update the key.
 797 * @plen: The length of @payload.
 798 * @perm: The permissions mask for a new key.
 799 * @flags: The quota flags for a new key.
 800 *
 801 * Search the destination keyring for a key of the same description and if one
 802 * is found, update it, otherwise create and instantiate a new one and create a
 803 * link to it from that keyring.
 804 *
 805 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
 806 * concocted.
 807 *
 808 * Returns a pointer to the new key if successful, -ENODEV if the key type
 809 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
 810 * caller isn't permitted to modify the keyring or the LSM did not permit
 811 * creation of the key.
 812 *
 813 * On success, the possession flag from the keyring ref will be tacked on to
 814 * the key ref before it is returned.
 815 */
 816key_ref_t key_create_or_update(key_ref_t keyring_ref,
 817			       const char *type,
 818			       const char *description,
 819			       const void *payload,
 820			       size_t plen,
 821			       key_perm_t perm,
 822			       unsigned long flags)
 823{
 824	struct keyring_index_key index_key = {
 825		.description	= description,
 826	};
 827	struct key_preparsed_payload prep;
 828	struct assoc_array_edit *edit = NULL;
 829	const struct cred *cred = current_cred();
 830	struct key *keyring, *key = NULL;
 831	key_ref_t key_ref;
 832	int ret;
 833	struct key_restriction *restrict_link = NULL;
 834
 835	/* look up the key type to see if it's one of the registered kernel
 836	 * types */
 837	index_key.type = key_type_lookup(type);
 838	if (IS_ERR(index_key.type)) {
 839		key_ref = ERR_PTR(-ENODEV);
 840		goto error;
 841	}
 842
 843	key_ref = ERR_PTR(-EINVAL);
 844	if (!index_key.type->instantiate ||
 845	    (!index_key.description && !index_key.type->preparse))
 846		goto error_put_type;
 847
 848	keyring = key_ref_to_ptr(keyring_ref);
 849
 850	key_check(keyring);
 851
 852	if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
 853		restrict_link = keyring->restrict_link;
 854
 855	key_ref = ERR_PTR(-ENOTDIR);
 856	if (keyring->type != &key_type_keyring)
 857		goto error_put_type;
 858
 859	memset(&prep, 0, sizeof(prep));
 860	prep.orig_description = description;
 861	prep.data = payload;
 862	prep.datalen = plen;
 863	prep.quotalen = index_key.type->def_datalen;
 864	prep.expiry = TIME64_MAX;
 865	if (index_key.type->preparse) {
 866		ret = index_key.type->preparse(&prep);
 867		if (ret < 0) {
 868			key_ref = ERR_PTR(ret);
 869			goto error_free_prep;
 870		}
 871		if (!index_key.description)
 872			index_key.description = prep.description;
 873		key_ref = ERR_PTR(-EINVAL);
 874		if (!index_key.description)
 875			goto error_free_prep;
 876	}
 877	index_key.desc_len = strlen(index_key.description);
 878	key_set_index_key(&index_key);
 879
 880	ret = __key_link_lock(keyring, &index_key);
 881	if (ret < 0) {
 882		key_ref = ERR_PTR(ret);
 883		goto error_free_prep;
 884	}
 885
 886	ret = __key_link_begin(keyring, &index_key, &edit);
 887	if (ret < 0) {
 888		key_ref = ERR_PTR(ret);
 889		goto error_link_end;
 890	}
 891
 892	if (restrict_link && restrict_link->check) {
 893		ret = restrict_link->check(keyring, index_key.type,
 894					   &prep.payload, restrict_link->key);
 895		if (ret < 0) {
 896			key_ref = ERR_PTR(ret);
 897			goto error_link_end;
 898		}
 899	}
 900
 901	/* if we're going to allocate a new key, we're going to have
 902	 * to modify the keyring */
 903	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
 904	if (ret < 0) {
 905		key_ref = ERR_PTR(ret);
 906		goto error_link_end;
 907	}
 908
 909	/* if it's possible to update this type of key, search for an existing
 910	 * key of the same type and description in the destination keyring and
 911	 * update that instead if possible
 912	 */
 913	if (index_key.type->update) {
 914		key_ref = find_key_to_update(keyring_ref, &index_key);
 915		if (key_ref)
 916			goto found_matching_key;
 917	}
 918
 919	/* if the client doesn't provide, decide on the permissions we want */
 920	if (perm == KEY_PERM_UNDEF) {
 921		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
 922		perm |= KEY_USR_VIEW;
 923
 924		if (index_key.type->read)
 925			perm |= KEY_POS_READ;
 926
 927		if (index_key.type == &key_type_keyring ||
 928		    index_key.type->update)
 929			perm |= KEY_POS_WRITE;
 930	}
 931
 932	/* allocate a new key */
 933	key = key_alloc(index_key.type, index_key.description,
 934			cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
 935	if (IS_ERR(key)) {
 936		key_ref = ERR_CAST(key);
 937		goto error_link_end;
 938	}
 939
 940	/* instantiate it and link it into the target keyring */
 941	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
 942	if (ret < 0) {
 943		key_put(key);
 944		key_ref = ERR_PTR(ret);
 945		goto error_link_end;
 946	}
 947
 948	ima_post_key_create_or_update(keyring, key, payload, plen,
 949				      flags, true);
 950
 951	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
 952
 953error_link_end:
 954	__key_link_end(keyring, &index_key, edit);
 955error_free_prep:
 956	if (index_key.type->preparse)
 957		index_key.type->free_preparse(&prep);
 958error_put_type:
 959	key_type_put(index_key.type);
 960error:
 961	return key_ref;
 962
 963 found_matching_key:
 964	/* we found a matching key, so we're going to try to update it
 965	 * - we can drop the locks first as we have the key pinned
 966	 */
 967	__key_link_end(keyring, &index_key, edit);
 968
 969	key = key_ref_to_ptr(key_ref);
 970	if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
 971		ret = wait_for_key_construction(key, true);
 972		if (ret < 0) {
 973			key_ref_put(key_ref);
 974			key_ref = ERR_PTR(ret);
 975			goto error_free_prep;
 976		}
 977	}
 978
 979	key_ref = __key_update(key_ref, &prep);
 980
 981	if (!IS_ERR(key_ref))
 982		ima_post_key_create_or_update(keyring, key,
 983					      payload, plen,
 984					      flags, false);
 985
 986	goto error_free_prep;
 987}
 988EXPORT_SYMBOL(key_create_or_update);
 989
 990/**
 991 * key_update - Update a key's contents.
 992 * @key_ref: The pointer (plus possession flag) to the key.
 993 * @payload: The data to be used to update the key.
 994 * @plen: The length of @payload.
 995 *
 996 * Attempt to update the contents of a key with the given payload data.  The
 997 * caller must be granted Write permission on the key.  Negative keys can be
 998 * instantiated by this method.
 999 *
1000 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
1001 * type does not support updating.  The key type may return other errors.
1002 */
1003int key_update(key_ref_t key_ref, const void *payload, size_t plen)
1004{
1005	struct key_preparsed_payload prep;
1006	struct key *key = key_ref_to_ptr(key_ref);
1007	int ret;
1008
1009	key_check(key);
1010
1011	/* the key must be writable */
1012	ret = key_permission(key_ref, KEY_NEED_WRITE);
1013	if (ret < 0)
1014		return ret;
1015
1016	/* attempt to update it if supported */
1017	if (!key->type->update)
1018		return -EOPNOTSUPP;
1019
1020	memset(&prep, 0, sizeof(prep));
1021	prep.data = payload;
1022	prep.datalen = plen;
1023	prep.quotalen = key->type->def_datalen;
1024	prep.expiry = TIME64_MAX;
1025	if (key->type->preparse) {
1026		ret = key->type->preparse(&prep);
1027		if (ret < 0)
1028			goto error;
1029	}
1030
1031	down_write(&key->sem);
1032
1033	ret = key->type->update(key, &prep);
1034	if (ret == 0) {
1035		/* Updating a negative key positively instantiates it */
1036		mark_key_instantiated(key, 0);
1037		notify_key(key, NOTIFY_KEY_UPDATED, 0);
1038	}
1039
1040	up_write(&key->sem);
1041
1042error:
1043	if (key->type->preparse)
1044		key->type->free_preparse(&prep);
1045	return ret;
1046}
1047EXPORT_SYMBOL(key_update);
1048
1049/**
1050 * key_revoke - Revoke a key.
1051 * @key: The key to be revoked.
1052 *
1053 * Mark a key as being revoked and ask the type to free up its resources.  The
1054 * revocation timeout is set and the key and all its links will be
1055 * automatically garbage collected after key_gc_delay amount of time if they
1056 * are not manually dealt with first.
1057 */
1058void key_revoke(struct key *key)
1059{
1060	time64_t time;
1061
1062	key_check(key);
1063
1064	/* make sure no one's trying to change or use the key when we mark it
1065	 * - we tell lockdep that we might nest because we might be revoking an
1066	 *   authorisation key whilst holding the sem on a key we've just
1067	 *   instantiated
1068	 */
1069	down_write_nested(&key->sem, 1);
1070	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags)) {
1071		notify_key(key, NOTIFY_KEY_REVOKED, 0);
1072		if (key->type->revoke)
1073			key->type->revoke(key);
1074
1075		/* set the death time to no more than the expiry time */
1076		time = ktime_get_real_seconds();
1077		if (key->revoked_at == 0 || key->revoked_at > time) {
1078			key->revoked_at = time;
1079			key_schedule_gc(key->revoked_at + key_gc_delay);
1080		}
1081	}
1082
1083	up_write(&key->sem);
1084}
1085EXPORT_SYMBOL(key_revoke);
1086
1087/**
1088 * key_invalidate - Invalidate a key.
1089 * @key: The key to be invalidated.
1090 *
1091 * Mark a key as being invalidated and have it cleaned up immediately.  The key
1092 * is ignored by all searches and other operations from this point.
1093 */
1094void key_invalidate(struct key *key)
1095{
1096	kenter("%d", key_serial(key));
1097
1098	key_check(key);
1099
1100	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1101		down_write_nested(&key->sem, 1);
1102		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1103			notify_key(key, NOTIFY_KEY_INVALIDATED, 0);
1104			key_schedule_gc_links();
1105		}
1106		up_write(&key->sem);
1107	}
1108}
1109EXPORT_SYMBOL(key_invalidate);
1110
1111/**
1112 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1113 * @key: The key to be instantiated
1114 * @prep: The preparsed data to load.
1115 *
1116 * Instantiate a key from preparsed data.  We assume we can just copy the data
1117 * in directly and clear the old pointers.
1118 *
1119 * This can be pointed to directly by the key type instantiate op pointer.
1120 */
1121int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1122{
1123	int ret;
1124
1125	pr_devel("==>%s()\n", __func__);
1126
1127	ret = key_payload_reserve(key, prep->quotalen);
1128	if (ret == 0) {
1129		rcu_assign_keypointer(key, prep->payload.data[0]);
1130		key->payload.data[1] = prep->payload.data[1];
1131		key->payload.data[2] = prep->payload.data[2];
1132		key->payload.data[3] = prep->payload.data[3];
1133		prep->payload.data[0] = NULL;
1134		prep->payload.data[1] = NULL;
1135		prep->payload.data[2] = NULL;
1136		prep->payload.data[3] = NULL;
1137	}
1138	pr_devel("<==%s() = %d\n", __func__, ret);
1139	return ret;
1140}
1141EXPORT_SYMBOL(generic_key_instantiate);
1142
1143/**
1144 * register_key_type - Register a type of key.
1145 * @ktype: The new key type.
1146 *
1147 * Register a new key type.
1148 *
1149 * Returns 0 on success or -EEXIST if a type of this name already exists.
1150 */
1151int register_key_type(struct key_type *ktype)
1152{
1153	struct key_type *p;
1154	int ret;
1155
1156	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1157
1158	ret = -EEXIST;
1159	down_write(&key_types_sem);
1160
1161	/* disallow key types with the same name */
1162	list_for_each_entry(p, &key_types_list, link) {
1163		if (strcmp(p->name, ktype->name) == 0)
1164			goto out;
1165	}
1166
1167	/* store the type */
1168	list_add(&ktype->link, &key_types_list);
1169
1170	pr_notice("Key type %s registered\n", ktype->name);
1171	ret = 0;
1172
1173out:
1174	up_write(&key_types_sem);
1175	return ret;
1176}
1177EXPORT_SYMBOL(register_key_type);
1178
1179/**
1180 * unregister_key_type - Unregister a type of key.
1181 * @ktype: The key type.
1182 *
1183 * Unregister a key type and mark all the extant keys of this type as dead.
1184 * Those keys of this type are then destroyed to get rid of their payloads and
1185 * they and their links will be garbage collected as soon as possible.
1186 */
1187void unregister_key_type(struct key_type *ktype)
1188{
1189	down_write(&key_types_sem);
1190	list_del_init(&ktype->link);
1191	downgrade_write(&key_types_sem);
1192	key_gc_keytype(ktype);
1193	pr_notice("Key type %s unregistered\n", ktype->name);
1194	up_read(&key_types_sem);
1195}
1196EXPORT_SYMBOL(unregister_key_type);
1197
1198/*
1199 * Initialise the key management state.
1200 */
1201void __init key_init(void)
1202{
1203	/* allocate a slab in which we can store keys */
1204	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1205			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1206
1207	/* add the special key types */
1208	list_add_tail(&key_type_keyring.link, &key_types_list);
1209	list_add_tail(&key_type_dead.link, &key_types_list);
1210	list_add_tail(&key_type_user.link, &key_types_list);
1211	list_add_tail(&key_type_logon.link, &key_types_list);
1212
1213	/* record the root user tracking */
1214	rb_link_node(&root_key_user.node,
1215		     NULL,
1216		     &key_user_tree.rb_node);
1217
1218	rb_insert_color(&root_key_user.node,
1219			&key_user_tree);
1220}
v4.17
 
   1/* Basic authentication token and access key management
   2 *
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/poison.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/security.h>
  18#include <linux/workqueue.h>
  19#include <linux/random.h>
 
  20#include <linux/err.h>
  21#include "internal.h"
  22
  23struct kmem_cache *key_jar;
  24struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
  25DEFINE_SPINLOCK(key_serial_lock);
  26
  27struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
  28DEFINE_SPINLOCK(key_user_lock);
  29
  30unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
  31unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
  32unsigned int key_quota_maxkeys = 200;		/* general key count quota */
  33unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
  34
  35static LIST_HEAD(key_types_list);
  36static DECLARE_RWSEM(key_types_sem);
  37
  38/* We serialise key instantiation and link */
  39DEFINE_MUTEX(key_construction_mutex);
  40
  41#ifdef KEY_DEBUGGING
  42void __key_check(const struct key *key)
  43{
  44	printk("__key_check: key %p {%08x} should be {%08x}\n",
  45	       key, key->magic, KEY_DEBUG_MAGIC);
  46	BUG();
  47}
  48#endif
  49
  50/*
  51 * Get the key quota record for a user, allocating a new record if one doesn't
  52 * already exist.
  53 */
  54struct key_user *key_user_lookup(kuid_t uid)
  55{
  56	struct key_user *candidate = NULL, *user;
  57	struct rb_node *parent, **p;
  58
  59try_again:
  60	parent = NULL;
  61	p = &key_user_tree.rb_node;
  62	spin_lock(&key_user_lock);
  63
  64	/* search the tree for a user record with a matching UID */
  65	while (*p) {
  66		parent = *p;
  67		user = rb_entry(parent, struct key_user, node);
  68
  69		if (uid_lt(uid, user->uid))
  70			p = &(*p)->rb_left;
  71		else if (uid_gt(uid, user->uid))
  72			p = &(*p)->rb_right;
  73		else
  74			goto found;
  75	}
  76
  77	/* if we get here, we failed to find a match in the tree */
  78	if (!candidate) {
  79		/* allocate a candidate user record if we don't already have
  80		 * one */
  81		spin_unlock(&key_user_lock);
  82
  83		user = NULL;
  84		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
  85		if (unlikely(!candidate))
  86			goto out;
  87
  88		/* the allocation may have scheduled, so we need to repeat the
  89		 * search lest someone else added the record whilst we were
  90		 * asleep */
  91		goto try_again;
  92	}
  93
  94	/* if we get here, then the user record still hadn't appeared on the
  95	 * second pass - so we use the candidate record */
  96	refcount_set(&candidate->usage, 1);
  97	atomic_set(&candidate->nkeys, 0);
  98	atomic_set(&candidate->nikeys, 0);
  99	candidate->uid = uid;
 100	candidate->qnkeys = 0;
 101	candidate->qnbytes = 0;
 102	spin_lock_init(&candidate->lock);
 103	mutex_init(&candidate->cons_lock);
 104
 105	rb_link_node(&candidate->node, parent, p);
 106	rb_insert_color(&candidate->node, &key_user_tree);
 107	spin_unlock(&key_user_lock);
 108	user = candidate;
 109	goto out;
 110
 111	/* okay - we found a user record for this UID */
 112found:
 113	refcount_inc(&user->usage);
 114	spin_unlock(&key_user_lock);
 115	kfree(candidate);
 116out:
 117	return user;
 118}
 119
 120/*
 121 * Dispose of a user structure
 122 */
 123void key_user_put(struct key_user *user)
 124{
 125	if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
 126		rb_erase(&user->node, &key_user_tree);
 127		spin_unlock(&key_user_lock);
 128
 129		kfree(user);
 130	}
 131}
 132
 133/*
 134 * Allocate a serial number for a key.  These are assigned randomly to avoid
 135 * security issues through covert channel problems.
 136 */
 137static inline void key_alloc_serial(struct key *key)
 138{
 139	struct rb_node *parent, **p;
 140	struct key *xkey;
 141
 142	/* propose a random serial number and look for a hole for it in the
 143	 * serial number tree */
 144	do {
 145		get_random_bytes(&key->serial, sizeof(key->serial));
 146
 147		key->serial >>= 1; /* negative numbers are not permitted */
 148	} while (key->serial < 3);
 149
 150	spin_lock(&key_serial_lock);
 151
 152attempt_insertion:
 153	parent = NULL;
 154	p = &key_serial_tree.rb_node;
 155
 156	while (*p) {
 157		parent = *p;
 158		xkey = rb_entry(parent, struct key, serial_node);
 159
 160		if (key->serial < xkey->serial)
 161			p = &(*p)->rb_left;
 162		else if (key->serial > xkey->serial)
 163			p = &(*p)->rb_right;
 164		else
 165			goto serial_exists;
 166	}
 167
 168	/* we've found a suitable hole - arrange for this key to occupy it */
 169	rb_link_node(&key->serial_node, parent, p);
 170	rb_insert_color(&key->serial_node, &key_serial_tree);
 171
 172	spin_unlock(&key_serial_lock);
 173	return;
 174
 175	/* we found a key with the proposed serial number - walk the tree from
 176	 * that point looking for the next unused serial number */
 177serial_exists:
 178	for (;;) {
 179		key->serial++;
 180		if (key->serial < 3) {
 181			key->serial = 3;
 182			goto attempt_insertion;
 183		}
 184
 185		parent = rb_next(parent);
 186		if (!parent)
 187			goto attempt_insertion;
 188
 189		xkey = rb_entry(parent, struct key, serial_node);
 190		if (key->serial < xkey->serial)
 191			goto attempt_insertion;
 192	}
 193}
 194
 195/**
 196 * key_alloc - Allocate a key of the specified type.
 197 * @type: The type of key to allocate.
 198 * @desc: The key description to allow the key to be searched out.
 199 * @uid: The owner of the new key.
 200 * @gid: The group ID for the new key's group permissions.
 201 * @cred: The credentials specifying UID namespace.
 202 * @perm: The permissions mask of the new key.
 203 * @flags: Flags specifying quota properties.
 204 * @restrict_link: Optional link restriction for new keyrings.
 205 *
 206 * Allocate a key of the specified type with the attributes given.  The key is
 207 * returned in an uninstantiated state and the caller needs to instantiate the
 208 * key before returning.
 209 *
 210 * The restrict_link structure (if not NULL) will be freed when the
 211 * keyring is destroyed, so it must be dynamically allocated.
 212 *
 213 * The user's key count quota is updated to reflect the creation of the key and
 214 * the user's key data quota has the default for the key type reserved.  The
 215 * instantiation function should amend this as necessary.  If insufficient
 216 * quota is available, -EDQUOT will be returned.
 217 *
 218 * The LSM security modules can prevent a key being created, in which case
 219 * -EACCES will be returned.
 220 *
 221 * Returns a pointer to the new key if successful and an error code otherwise.
 222 *
 223 * Note that the caller needs to ensure the key type isn't uninstantiated.
 224 * Internally this can be done by locking key_types_sem.  Externally, this can
 225 * be done by either never unregistering the key type, or making sure
 226 * key_alloc() calls don't race with module unloading.
 227 */
 228struct key *key_alloc(struct key_type *type, const char *desc,
 229		      kuid_t uid, kgid_t gid, const struct cred *cred,
 230		      key_perm_t perm, unsigned long flags,
 231		      struct key_restriction *restrict_link)
 232{
 233	struct key_user *user = NULL;
 234	struct key *key;
 235	size_t desclen, quotalen;
 236	int ret;
 237
 238	key = ERR_PTR(-EINVAL);
 239	if (!desc || !*desc)
 240		goto error;
 241
 242	if (type->vet_description) {
 243		ret = type->vet_description(desc);
 244		if (ret < 0) {
 245			key = ERR_PTR(ret);
 246			goto error;
 247		}
 248	}
 249
 250	desclen = strlen(desc);
 251	quotalen = desclen + 1 + type->def_datalen;
 252
 253	/* get hold of the key tracking for this user */
 254	user = key_user_lookup(uid);
 255	if (!user)
 256		goto no_memory_1;
 257
 258	/* check that the user's quota permits allocation of another key and
 259	 * its description */
 260	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 261		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
 262			key_quota_root_maxkeys : key_quota_maxkeys;
 263		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
 264			key_quota_root_maxbytes : key_quota_maxbytes;
 265
 266		spin_lock(&user->lock);
 267		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
 268			if (user->qnkeys + 1 >= maxkeys ||
 269			    user->qnbytes + quotalen >= maxbytes ||
 270			    user->qnbytes + quotalen < user->qnbytes)
 271				goto no_quota;
 272		}
 273
 274		user->qnkeys++;
 275		user->qnbytes += quotalen;
 276		spin_unlock(&user->lock);
 277	}
 278
 279	/* allocate and initialise the key and its description */
 280	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
 281	if (!key)
 282		goto no_memory_2;
 283
 284	key->index_key.desc_len = desclen;
 285	key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
 286	if (!key->index_key.description)
 287		goto no_memory_3;
 
 
 288
 289	refcount_set(&key->usage, 1);
 290	init_rwsem(&key->sem);
 291	lockdep_set_class(&key->sem, &type->lock_class);
 292	key->index_key.type = type;
 293	key->user = user;
 294	key->quotalen = quotalen;
 295	key->datalen = type->def_datalen;
 296	key->uid = uid;
 297	key->gid = gid;
 298	key->perm = perm;
 299	key->restrict_link = restrict_link;
 
 300
 301	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
 302		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
 303	if (flags & KEY_ALLOC_BUILT_IN)
 304		key->flags |= 1 << KEY_FLAG_BUILTIN;
 305	if (flags & KEY_ALLOC_UID_KEYRING)
 306		key->flags |= 1 << KEY_FLAG_UID_KEYRING;
 
 
 307
 308#ifdef KEY_DEBUGGING
 309	key->magic = KEY_DEBUG_MAGIC;
 310#endif
 311
 312	/* let the security module know about the key */
 313	ret = security_key_alloc(key, cred, flags);
 314	if (ret < 0)
 315		goto security_error;
 316
 317	/* publish the key by giving it a serial number */
 
 318	atomic_inc(&user->nkeys);
 319	key_alloc_serial(key);
 320
 321error:
 322	return key;
 323
 324security_error:
 325	kfree(key->description);
 326	kmem_cache_free(key_jar, key);
 327	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 328		spin_lock(&user->lock);
 329		user->qnkeys--;
 330		user->qnbytes -= quotalen;
 331		spin_unlock(&user->lock);
 332	}
 333	key_user_put(user);
 334	key = ERR_PTR(ret);
 335	goto error;
 336
 337no_memory_3:
 338	kmem_cache_free(key_jar, key);
 339no_memory_2:
 340	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 341		spin_lock(&user->lock);
 342		user->qnkeys--;
 343		user->qnbytes -= quotalen;
 344		spin_unlock(&user->lock);
 345	}
 346	key_user_put(user);
 347no_memory_1:
 348	key = ERR_PTR(-ENOMEM);
 349	goto error;
 350
 351no_quota:
 352	spin_unlock(&user->lock);
 353	key_user_put(user);
 354	key = ERR_PTR(-EDQUOT);
 355	goto error;
 356}
 357EXPORT_SYMBOL(key_alloc);
 358
 359/**
 360 * key_payload_reserve - Adjust data quota reservation for the key's payload
 361 * @key: The key to make the reservation for.
 362 * @datalen: The amount of data payload the caller now wants.
 363 *
 364 * Adjust the amount of the owning user's key data quota that a key reserves.
 365 * If the amount is increased, then -EDQUOT may be returned if there isn't
 366 * enough free quota available.
 367 *
 368 * If successful, 0 is returned.
 369 */
 370int key_payload_reserve(struct key *key, size_t datalen)
 371{
 372	int delta = (int)datalen - key->datalen;
 373	int ret = 0;
 374
 375	key_check(key);
 376
 377	/* contemplate the quota adjustment */
 378	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 379		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
 380			key_quota_root_maxbytes : key_quota_maxbytes;
 381
 382		spin_lock(&key->user->lock);
 383
 384		if (delta > 0 &&
 385		    (key->user->qnbytes + delta >= maxbytes ||
 386		     key->user->qnbytes + delta < key->user->qnbytes)) {
 387			ret = -EDQUOT;
 388		}
 389		else {
 390			key->user->qnbytes += delta;
 391			key->quotalen += delta;
 392		}
 393		spin_unlock(&key->user->lock);
 394	}
 395
 396	/* change the recorded data length if that didn't generate an error */
 397	if (ret == 0)
 398		key->datalen = datalen;
 399
 400	return ret;
 401}
 402EXPORT_SYMBOL(key_payload_reserve);
 403
 404/*
 405 * Change the key state to being instantiated.
 406 */
 407static void mark_key_instantiated(struct key *key, int reject_error)
 408{
 409	/* Commit the payload before setting the state; barrier versus
 410	 * key_read_state().
 411	 */
 412	smp_store_release(&key->state,
 413			  (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
 414}
 415
 416/*
 417 * Instantiate a key and link it into the target keyring atomically.  Must be
 418 * called with the target keyring's semaphore writelocked.  The target key's
 419 * semaphore need not be locked as instantiation is serialised by
 420 * key_construction_mutex.
 421 */
 422static int __key_instantiate_and_link(struct key *key,
 423				      struct key_preparsed_payload *prep,
 424				      struct key *keyring,
 425				      struct key *authkey,
 426				      struct assoc_array_edit **_edit)
 427{
 428	int ret, awaken;
 429
 430	key_check(key);
 431	key_check(keyring);
 432
 433	awaken = 0;
 434	ret = -EBUSY;
 435
 436	mutex_lock(&key_construction_mutex);
 437
 438	/* can't instantiate twice */
 439	if (key->state == KEY_IS_UNINSTANTIATED) {
 440		/* instantiate the key */
 441		ret = key->type->instantiate(key, prep);
 442
 443		if (ret == 0) {
 444			/* mark the key as being instantiated */
 445			atomic_inc(&key->user->nikeys);
 446			mark_key_instantiated(key, 0);
 
 447
 448			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 449				awaken = 1;
 450
 451			/* and link it into the destination keyring */
 452			if (keyring) {
 453				if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
 454					set_bit(KEY_FLAG_KEEP, &key->flags);
 455
 456				__key_link(key, _edit);
 457			}
 458
 459			/* disable the authorisation key */
 460			if (authkey)
 461				key_revoke(authkey);
 462
 463			if (prep->expiry != TIME64_MAX) {
 464				key->expiry = prep->expiry;
 465				key_schedule_gc(prep->expiry + key_gc_delay);
 466			}
 467		}
 468	}
 469
 470	mutex_unlock(&key_construction_mutex);
 471
 472	/* wake up anyone waiting for a key to be constructed */
 473	if (awaken)
 474		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 475
 476	return ret;
 477}
 478
 479/**
 480 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
 481 * @key: The key to instantiate.
 482 * @data: The data to use to instantiate the keyring.
 483 * @datalen: The length of @data.
 484 * @keyring: Keyring to create a link in on success (or NULL).
 485 * @authkey: The authorisation token permitting instantiation.
 486 *
 487 * Instantiate a key that's in the uninstantiated state using the provided data
 488 * and, if successful, link it in to the destination keyring if one is
 489 * supplied.
 490 *
 491 * If successful, 0 is returned, the authorisation token is revoked and anyone
 492 * waiting for the key is woken up.  If the key was already instantiated,
 493 * -EBUSY will be returned.
 494 */
 495int key_instantiate_and_link(struct key *key,
 496			     const void *data,
 497			     size_t datalen,
 498			     struct key *keyring,
 499			     struct key *authkey)
 500{
 501	struct key_preparsed_payload prep;
 502	struct assoc_array_edit *edit;
 503	int ret;
 504
 505	memset(&prep, 0, sizeof(prep));
 
 506	prep.data = data;
 507	prep.datalen = datalen;
 508	prep.quotalen = key->type->def_datalen;
 509	prep.expiry = TIME64_MAX;
 510	if (key->type->preparse) {
 511		ret = key->type->preparse(&prep);
 512		if (ret < 0)
 513			goto error;
 514	}
 515
 516	if (keyring) {
 
 
 
 
 517		ret = __key_link_begin(keyring, &key->index_key, &edit);
 518		if (ret < 0)
 519			goto error;
 520
 521		if (keyring->restrict_link && keyring->restrict_link->check) {
 522			struct key_restriction *keyres = keyring->restrict_link;
 523
 524			ret = keyres->check(keyring, key->type, &prep.payload,
 525					    keyres->key);
 526			if (ret < 0)
 527				goto error_link_end;
 528		}
 529	}
 530
 531	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
 532
 533error_link_end:
 534	if (keyring)
 535		__key_link_end(keyring, &key->index_key, edit);
 536
 537error:
 538	if (key->type->preparse)
 539		key->type->free_preparse(&prep);
 540	return ret;
 541}
 542
 543EXPORT_SYMBOL(key_instantiate_and_link);
 544
 545/**
 546 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
 547 * @key: The key to instantiate.
 548 * @timeout: The timeout on the negative key.
 549 * @error: The error to return when the key is hit.
 550 * @keyring: Keyring to create a link in on success (or NULL).
 551 * @authkey: The authorisation token permitting instantiation.
 552 *
 553 * Negatively instantiate a key that's in the uninstantiated state and, if
 554 * successful, set its timeout and stored error and link it in to the
 555 * destination keyring if one is supplied.  The key and any links to the key
 556 * will be automatically garbage collected after the timeout expires.
 557 *
 558 * Negative keys are used to rate limit repeated request_key() calls by causing
 559 * them to return the stored error code (typically ENOKEY) until the negative
 560 * key expires.
 561 *
 562 * If successful, 0 is returned, the authorisation token is revoked and anyone
 563 * waiting for the key is woken up.  If the key was already instantiated,
 564 * -EBUSY will be returned.
 565 */
 566int key_reject_and_link(struct key *key,
 567			unsigned timeout,
 568			unsigned error,
 569			struct key *keyring,
 570			struct key *authkey)
 571{
 572	struct assoc_array_edit *edit;
 573	int ret, awaken, link_ret = 0;
 574
 575	key_check(key);
 576	key_check(keyring);
 577
 578	awaken = 0;
 579	ret = -EBUSY;
 580
 581	if (keyring) {
 582		if (keyring->restrict_link)
 583			return -EPERM;
 584
 585		link_ret = __key_link_begin(keyring, &key->index_key, &edit);
 
 
 
 
 
 586	}
 587
 588	mutex_lock(&key_construction_mutex);
 589
 590	/* can't instantiate twice */
 591	if (key->state == KEY_IS_UNINSTANTIATED) {
 592		/* mark the key as being negatively instantiated */
 593		atomic_inc(&key->user->nikeys);
 594		mark_key_instantiated(key, -error);
 
 595		key->expiry = ktime_get_real_seconds() + timeout;
 596		key_schedule_gc(key->expiry + key_gc_delay);
 597
 598		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 599			awaken = 1;
 600
 601		ret = 0;
 602
 603		/* and link it into the destination keyring */
 604		if (keyring && link_ret == 0)
 605			__key_link(key, &edit);
 606
 607		/* disable the authorisation key */
 608		if (authkey)
 609			key_revoke(authkey);
 610	}
 611
 612	mutex_unlock(&key_construction_mutex);
 613
 614	if (keyring && link_ret == 0)
 615		__key_link_end(keyring, &key->index_key, edit);
 616
 617	/* wake up anyone waiting for a key to be constructed */
 618	if (awaken)
 619		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 620
 621	return ret == 0 ? link_ret : ret;
 622}
 623EXPORT_SYMBOL(key_reject_and_link);
 624
 625/**
 626 * key_put - Discard a reference to a key.
 627 * @key: The key to discard a reference from.
 628 *
 629 * Discard a reference to a key, and when all the references are gone, we
 630 * schedule the cleanup task to come and pull it out of the tree in process
 631 * context at some later time.
 632 */
 633void key_put(struct key *key)
 634{
 635	if (key) {
 636		key_check(key);
 637
 638		if (refcount_dec_and_test(&key->usage))
 639			schedule_work(&key_gc_work);
 640	}
 641}
 642EXPORT_SYMBOL(key_put);
 643
 644/*
 645 * Find a key by its serial number.
 646 */
 647struct key *key_lookup(key_serial_t id)
 648{
 649	struct rb_node *n;
 650	struct key *key;
 651
 652	spin_lock(&key_serial_lock);
 653
 654	/* search the tree for the specified key */
 655	n = key_serial_tree.rb_node;
 656	while (n) {
 657		key = rb_entry(n, struct key, serial_node);
 658
 659		if (id < key->serial)
 660			n = n->rb_left;
 661		else if (id > key->serial)
 662			n = n->rb_right;
 663		else
 664			goto found;
 665	}
 666
 667not_found:
 668	key = ERR_PTR(-ENOKEY);
 669	goto error;
 670
 671found:
 672	/* A key is allowed to be looked up only if someone still owns a
 673	 * reference to it - otherwise it's awaiting the gc.
 674	 */
 675	if (!refcount_inc_not_zero(&key->usage))
 676		goto not_found;
 677
 678error:
 679	spin_unlock(&key_serial_lock);
 680	return key;
 681}
 682
 683/*
 684 * Find and lock the specified key type against removal.
 685 *
 686 * We return with the sem read-locked if successful.  If the type wasn't
 687 * available -ENOKEY is returned instead.
 688 */
 689struct key_type *key_type_lookup(const char *type)
 690{
 691	struct key_type *ktype;
 692
 693	down_read(&key_types_sem);
 694
 695	/* look up the key type to see if it's one of the registered kernel
 696	 * types */
 697	list_for_each_entry(ktype, &key_types_list, link) {
 698		if (strcmp(ktype->name, type) == 0)
 699			goto found_kernel_type;
 700	}
 701
 702	up_read(&key_types_sem);
 703	ktype = ERR_PTR(-ENOKEY);
 704
 705found_kernel_type:
 706	return ktype;
 707}
 708
 709void key_set_timeout(struct key *key, unsigned timeout)
 710{
 711	time64_t expiry = 0;
 712
 713	/* make the changes with the locks held to prevent races */
 714	down_write(&key->sem);
 715
 716	if (timeout > 0)
 717		expiry = ktime_get_real_seconds() + timeout;
 718
 719	key->expiry = expiry;
 720	key_schedule_gc(key->expiry + key_gc_delay);
 721
 722	up_write(&key->sem);
 723}
 724EXPORT_SYMBOL_GPL(key_set_timeout);
 725
 726/*
 727 * Unlock a key type locked by key_type_lookup().
 728 */
 729void key_type_put(struct key_type *ktype)
 730{
 731	up_read(&key_types_sem);
 732}
 733
 734/*
 735 * Attempt to update an existing key.
 736 *
 737 * The key is given to us with an incremented refcount that we need to discard
 738 * if we get an error.
 739 */
 740static inline key_ref_t __key_update(key_ref_t key_ref,
 741				     struct key_preparsed_payload *prep)
 742{
 743	struct key *key = key_ref_to_ptr(key_ref);
 744	int ret;
 745
 746	/* need write permission on the key to update it */
 747	ret = key_permission(key_ref, KEY_NEED_WRITE);
 748	if (ret < 0)
 749		goto error;
 750
 751	ret = -EEXIST;
 752	if (!key->type->update)
 753		goto error;
 754
 755	down_write(&key->sem);
 756
 757	ret = key->type->update(key, prep);
 758	if (ret == 0)
 759		/* Updating a negative key positively instantiates it */
 760		mark_key_instantiated(key, 0);
 
 
 761
 762	up_write(&key->sem);
 763
 764	if (ret < 0)
 765		goto error;
 766out:
 767	return key_ref;
 768
 769error:
 770	key_put(key);
 771	key_ref = ERR_PTR(ret);
 772	goto out;
 773}
 774
 775/**
 776 * key_create_or_update - Update or create and instantiate a key.
 777 * @keyring_ref: A pointer to the destination keyring with possession flag.
 778 * @type: The type of key.
 779 * @description: The searchable description for the key.
 780 * @payload: The data to use to instantiate or update the key.
 781 * @plen: The length of @payload.
 782 * @perm: The permissions mask for a new key.
 783 * @flags: The quota flags for a new key.
 784 *
 785 * Search the destination keyring for a key of the same description and if one
 786 * is found, update it, otherwise create and instantiate a new one and create a
 787 * link to it from that keyring.
 788 *
 789 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
 790 * concocted.
 791 *
 792 * Returns a pointer to the new key if successful, -ENODEV if the key type
 793 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
 794 * caller isn't permitted to modify the keyring or the LSM did not permit
 795 * creation of the key.
 796 *
 797 * On success, the possession flag from the keyring ref will be tacked on to
 798 * the key ref before it is returned.
 799 */
 800key_ref_t key_create_or_update(key_ref_t keyring_ref,
 801			       const char *type,
 802			       const char *description,
 803			       const void *payload,
 804			       size_t plen,
 805			       key_perm_t perm,
 806			       unsigned long flags)
 807{
 808	struct keyring_index_key index_key = {
 809		.description	= description,
 810	};
 811	struct key_preparsed_payload prep;
 812	struct assoc_array_edit *edit;
 813	const struct cred *cred = current_cred();
 814	struct key *keyring, *key = NULL;
 815	key_ref_t key_ref;
 816	int ret;
 817	struct key_restriction *restrict_link = NULL;
 818
 819	/* look up the key type to see if it's one of the registered kernel
 820	 * types */
 821	index_key.type = key_type_lookup(type);
 822	if (IS_ERR(index_key.type)) {
 823		key_ref = ERR_PTR(-ENODEV);
 824		goto error;
 825	}
 826
 827	key_ref = ERR_PTR(-EINVAL);
 828	if (!index_key.type->instantiate ||
 829	    (!index_key.description && !index_key.type->preparse))
 830		goto error_put_type;
 831
 832	keyring = key_ref_to_ptr(keyring_ref);
 833
 834	key_check(keyring);
 835
 836	if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
 837		restrict_link = keyring->restrict_link;
 838
 839	key_ref = ERR_PTR(-ENOTDIR);
 840	if (keyring->type != &key_type_keyring)
 841		goto error_put_type;
 842
 843	memset(&prep, 0, sizeof(prep));
 
 844	prep.data = payload;
 845	prep.datalen = plen;
 846	prep.quotalen = index_key.type->def_datalen;
 847	prep.expiry = TIME64_MAX;
 848	if (index_key.type->preparse) {
 849		ret = index_key.type->preparse(&prep);
 850		if (ret < 0) {
 851			key_ref = ERR_PTR(ret);
 852			goto error_free_prep;
 853		}
 854		if (!index_key.description)
 855			index_key.description = prep.description;
 856		key_ref = ERR_PTR(-EINVAL);
 857		if (!index_key.description)
 858			goto error_free_prep;
 859	}
 860	index_key.desc_len = strlen(index_key.description);
 
 
 
 
 
 
 
 861
 862	ret = __key_link_begin(keyring, &index_key, &edit);
 863	if (ret < 0) {
 864		key_ref = ERR_PTR(ret);
 865		goto error_free_prep;
 866	}
 867
 868	if (restrict_link && restrict_link->check) {
 869		ret = restrict_link->check(keyring, index_key.type,
 870					   &prep.payload, restrict_link->key);
 871		if (ret < 0) {
 872			key_ref = ERR_PTR(ret);
 873			goto error_link_end;
 874		}
 875	}
 876
 877	/* if we're going to allocate a new key, we're going to have
 878	 * to modify the keyring */
 879	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
 880	if (ret < 0) {
 881		key_ref = ERR_PTR(ret);
 882		goto error_link_end;
 883	}
 884
 885	/* if it's possible to update this type of key, search for an existing
 886	 * key of the same type and description in the destination keyring and
 887	 * update that instead if possible
 888	 */
 889	if (index_key.type->update) {
 890		key_ref = find_key_to_update(keyring_ref, &index_key);
 891		if (key_ref)
 892			goto found_matching_key;
 893	}
 894
 895	/* if the client doesn't provide, decide on the permissions we want */
 896	if (perm == KEY_PERM_UNDEF) {
 897		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
 898		perm |= KEY_USR_VIEW;
 899
 900		if (index_key.type->read)
 901			perm |= KEY_POS_READ;
 902
 903		if (index_key.type == &key_type_keyring ||
 904		    index_key.type->update)
 905			perm |= KEY_POS_WRITE;
 906	}
 907
 908	/* allocate a new key */
 909	key = key_alloc(index_key.type, index_key.description,
 910			cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
 911	if (IS_ERR(key)) {
 912		key_ref = ERR_CAST(key);
 913		goto error_link_end;
 914	}
 915
 916	/* instantiate it and link it into the target keyring */
 917	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
 918	if (ret < 0) {
 919		key_put(key);
 920		key_ref = ERR_PTR(ret);
 921		goto error_link_end;
 922	}
 923
 
 
 
 924	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
 925
 926error_link_end:
 927	__key_link_end(keyring, &index_key, edit);
 928error_free_prep:
 929	if (index_key.type->preparse)
 930		index_key.type->free_preparse(&prep);
 931error_put_type:
 932	key_type_put(index_key.type);
 933error:
 934	return key_ref;
 935
 936 found_matching_key:
 937	/* we found a matching key, so we're going to try to update it
 938	 * - we can drop the locks first as we have the key pinned
 939	 */
 940	__key_link_end(keyring, &index_key, edit);
 941
 942	key = key_ref_to_ptr(key_ref);
 943	if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
 944		ret = wait_for_key_construction(key, true);
 945		if (ret < 0) {
 946			key_ref_put(key_ref);
 947			key_ref = ERR_PTR(ret);
 948			goto error_free_prep;
 949		}
 950	}
 951
 952	key_ref = __key_update(key_ref, &prep);
 
 
 
 
 
 
 953	goto error_free_prep;
 954}
 955EXPORT_SYMBOL(key_create_or_update);
 956
 957/**
 958 * key_update - Update a key's contents.
 959 * @key_ref: The pointer (plus possession flag) to the key.
 960 * @payload: The data to be used to update the key.
 961 * @plen: The length of @payload.
 962 *
 963 * Attempt to update the contents of a key with the given payload data.  The
 964 * caller must be granted Write permission on the key.  Negative keys can be
 965 * instantiated by this method.
 966 *
 967 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
 968 * type does not support updating.  The key type may return other errors.
 969 */
 970int key_update(key_ref_t key_ref, const void *payload, size_t plen)
 971{
 972	struct key_preparsed_payload prep;
 973	struct key *key = key_ref_to_ptr(key_ref);
 974	int ret;
 975
 976	key_check(key);
 977
 978	/* the key must be writable */
 979	ret = key_permission(key_ref, KEY_NEED_WRITE);
 980	if (ret < 0)
 981		return ret;
 982
 983	/* attempt to update it if supported */
 984	if (!key->type->update)
 985		return -EOPNOTSUPP;
 986
 987	memset(&prep, 0, sizeof(prep));
 988	prep.data = payload;
 989	prep.datalen = plen;
 990	prep.quotalen = key->type->def_datalen;
 991	prep.expiry = TIME64_MAX;
 992	if (key->type->preparse) {
 993		ret = key->type->preparse(&prep);
 994		if (ret < 0)
 995			goto error;
 996	}
 997
 998	down_write(&key->sem);
 999
1000	ret = key->type->update(key, &prep);
1001	if (ret == 0)
1002		/* Updating a negative key positively instantiates it */
1003		mark_key_instantiated(key, 0);
 
 
1004
1005	up_write(&key->sem);
1006
1007error:
1008	if (key->type->preparse)
1009		key->type->free_preparse(&prep);
1010	return ret;
1011}
1012EXPORT_SYMBOL(key_update);
1013
1014/**
1015 * key_revoke - Revoke a key.
1016 * @key: The key to be revoked.
1017 *
1018 * Mark a key as being revoked and ask the type to free up its resources.  The
1019 * revocation timeout is set and the key and all its links will be
1020 * automatically garbage collected after key_gc_delay amount of time if they
1021 * are not manually dealt with first.
1022 */
1023void key_revoke(struct key *key)
1024{
1025	time64_t time;
1026
1027	key_check(key);
1028
1029	/* make sure no one's trying to change or use the key when we mark it
1030	 * - we tell lockdep that we might nest because we might be revoking an
1031	 *   authorisation key whilst holding the sem on a key we've just
1032	 *   instantiated
1033	 */
1034	down_write_nested(&key->sem, 1);
1035	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1036	    key->type->revoke)
1037		key->type->revoke(key);
1038
1039	/* set the death time to no more than the expiry time */
1040	time = ktime_get_real_seconds();
1041	if (key->revoked_at == 0 || key->revoked_at > time) {
1042		key->revoked_at = time;
1043		key_schedule_gc(key->revoked_at + key_gc_delay);
 
 
1044	}
1045
1046	up_write(&key->sem);
1047}
1048EXPORT_SYMBOL(key_revoke);
1049
1050/**
1051 * key_invalidate - Invalidate a key.
1052 * @key: The key to be invalidated.
1053 *
1054 * Mark a key as being invalidated and have it cleaned up immediately.  The key
1055 * is ignored by all searches and other operations from this point.
1056 */
1057void key_invalidate(struct key *key)
1058{
1059	kenter("%d", key_serial(key));
1060
1061	key_check(key);
1062
1063	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1064		down_write_nested(&key->sem, 1);
1065		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
 
1066			key_schedule_gc_links();
 
1067		up_write(&key->sem);
1068	}
1069}
1070EXPORT_SYMBOL(key_invalidate);
1071
1072/**
1073 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1074 * @key: The key to be instantiated
1075 * @prep: The preparsed data to load.
1076 *
1077 * Instantiate a key from preparsed data.  We assume we can just copy the data
1078 * in directly and clear the old pointers.
1079 *
1080 * This can be pointed to directly by the key type instantiate op pointer.
1081 */
1082int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1083{
1084	int ret;
1085
1086	pr_devel("==>%s()\n", __func__);
1087
1088	ret = key_payload_reserve(key, prep->quotalen);
1089	if (ret == 0) {
1090		rcu_assign_keypointer(key, prep->payload.data[0]);
1091		key->payload.data[1] = prep->payload.data[1];
1092		key->payload.data[2] = prep->payload.data[2];
1093		key->payload.data[3] = prep->payload.data[3];
1094		prep->payload.data[0] = NULL;
1095		prep->payload.data[1] = NULL;
1096		prep->payload.data[2] = NULL;
1097		prep->payload.data[3] = NULL;
1098	}
1099	pr_devel("<==%s() = %d\n", __func__, ret);
1100	return ret;
1101}
1102EXPORT_SYMBOL(generic_key_instantiate);
1103
1104/**
1105 * register_key_type - Register a type of key.
1106 * @ktype: The new key type.
1107 *
1108 * Register a new key type.
1109 *
1110 * Returns 0 on success or -EEXIST if a type of this name already exists.
1111 */
1112int register_key_type(struct key_type *ktype)
1113{
1114	struct key_type *p;
1115	int ret;
1116
1117	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1118
1119	ret = -EEXIST;
1120	down_write(&key_types_sem);
1121
1122	/* disallow key types with the same name */
1123	list_for_each_entry(p, &key_types_list, link) {
1124		if (strcmp(p->name, ktype->name) == 0)
1125			goto out;
1126	}
1127
1128	/* store the type */
1129	list_add(&ktype->link, &key_types_list);
1130
1131	pr_notice("Key type %s registered\n", ktype->name);
1132	ret = 0;
1133
1134out:
1135	up_write(&key_types_sem);
1136	return ret;
1137}
1138EXPORT_SYMBOL(register_key_type);
1139
1140/**
1141 * unregister_key_type - Unregister a type of key.
1142 * @ktype: The key type.
1143 *
1144 * Unregister a key type and mark all the extant keys of this type as dead.
1145 * Those keys of this type are then destroyed to get rid of their payloads and
1146 * they and their links will be garbage collected as soon as possible.
1147 */
1148void unregister_key_type(struct key_type *ktype)
1149{
1150	down_write(&key_types_sem);
1151	list_del_init(&ktype->link);
1152	downgrade_write(&key_types_sem);
1153	key_gc_keytype(ktype);
1154	pr_notice("Key type %s unregistered\n", ktype->name);
1155	up_read(&key_types_sem);
1156}
1157EXPORT_SYMBOL(unregister_key_type);
1158
1159/*
1160 * Initialise the key management state.
1161 */
1162void __init key_init(void)
1163{
1164	/* allocate a slab in which we can store keys */
1165	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1166			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1167
1168	/* add the special key types */
1169	list_add_tail(&key_type_keyring.link, &key_types_list);
1170	list_add_tail(&key_type_dead.link, &key_types_list);
1171	list_add_tail(&key_type_user.link, &key_types_list);
1172	list_add_tail(&key_type_logon.link, &key_types_list);
1173
1174	/* record the root user tracking */
1175	rb_link_node(&root_key_user.node,
1176		     NULL,
1177		     &key_user_tree.rb_node);
1178
1179	rb_insert_color(&root_key_user.node,
1180			&key_user_tree);
1181}