Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* Basic authentication token and access key management
3 *
4 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8#include <linux/export.h>
9#include <linux/init.h>
10#include <linux/poison.h>
11#include <linux/sched.h>
12#include <linux/slab.h>
13#include <linux/security.h>
14#include <linux/workqueue.h>
15#include <linux/random.h>
16#include <linux/ima.h>
17#include <linux/err.h>
18#include "internal.h"
19
20struct kmem_cache *key_jar;
21struct rb_root key_serial_tree; /* tree of keys indexed by serial */
22DEFINE_SPINLOCK(key_serial_lock);
23
24struct rb_root key_user_tree; /* tree of quota records indexed by UID */
25DEFINE_SPINLOCK(key_user_lock);
26
27unsigned int key_quota_root_maxkeys = 1000000; /* root's key count quota */
28unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
29unsigned int key_quota_maxkeys = 200; /* general key count quota */
30unsigned int key_quota_maxbytes = 20000; /* general key space quota */
31
32static LIST_HEAD(key_types_list);
33static DECLARE_RWSEM(key_types_sem);
34
35/* We serialise key instantiation and link */
36DEFINE_MUTEX(key_construction_mutex);
37
38#ifdef KEY_DEBUGGING
39void __key_check(const struct key *key)
40{
41 printk("__key_check: key %p {%08x} should be {%08x}\n",
42 key, key->magic, KEY_DEBUG_MAGIC);
43 BUG();
44}
45#endif
46
47/*
48 * Get the key quota record for a user, allocating a new record if one doesn't
49 * already exist.
50 */
51struct key_user *key_user_lookup(kuid_t uid)
52{
53 struct key_user *candidate = NULL, *user;
54 struct rb_node *parent, **p;
55
56try_again:
57 parent = NULL;
58 p = &key_user_tree.rb_node;
59 spin_lock(&key_user_lock);
60
61 /* search the tree for a user record with a matching UID */
62 while (*p) {
63 parent = *p;
64 user = rb_entry(parent, struct key_user, node);
65
66 if (uid_lt(uid, user->uid))
67 p = &(*p)->rb_left;
68 else if (uid_gt(uid, user->uid))
69 p = &(*p)->rb_right;
70 else
71 goto found;
72 }
73
74 /* if we get here, we failed to find a match in the tree */
75 if (!candidate) {
76 /* allocate a candidate user record if we don't already have
77 * one */
78 spin_unlock(&key_user_lock);
79
80 user = NULL;
81 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
82 if (unlikely(!candidate))
83 goto out;
84
85 /* the allocation may have scheduled, so we need to repeat the
86 * search lest someone else added the record whilst we were
87 * asleep */
88 goto try_again;
89 }
90
91 /* if we get here, then the user record still hadn't appeared on the
92 * second pass - so we use the candidate record */
93 refcount_set(&candidate->usage, 1);
94 atomic_set(&candidate->nkeys, 0);
95 atomic_set(&candidate->nikeys, 0);
96 candidate->uid = uid;
97 candidate->qnkeys = 0;
98 candidate->qnbytes = 0;
99 spin_lock_init(&candidate->lock);
100 mutex_init(&candidate->cons_lock);
101
102 rb_link_node(&candidate->node, parent, p);
103 rb_insert_color(&candidate->node, &key_user_tree);
104 spin_unlock(&key_user_lock);
105 user = candidate;
106 goto out;
107
108 /* okay - we found a user record for this UID */
109found:
110 refcount_inc(&user->usage);
111 spin_unlock(&key_user_lock);
112 kfree(candidate);
113out:
114 return user;
115}
116
117/*
118 * Dispose of a user structure
119 */
120void key_user_put(struct key_user *user)
121{
122 if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
123 rb_erase(&user->node, &key_user_tree);
124 spin_unlock(&key_user_lock);
125
126 kfree(user);
127 }
128}
129
130/*
131 * Allocate a serial number for a key. These are assigned randomly to avoid
132 * security issues through covert channel problems.
133 */
134static inline void key_alloc_serial(struct key *key)
135{
136 struct rb_node *parent, **p;
137 struct key *xkey;
138
139 /* propose a random serial number and look for a hole for it in the
140 * serial number tree */
141 do {
142 get_random_bytes(&key->serial, sizeof(key->serial));
143
144 key->serial >>= 1; /* negative numbers are not permitted */
145 } while (key->serial < 3);
146
147 spin_lock(&key_serial_lock);
148
149attempt_insertion:
150 parent = NULL;
151 p = &key_serial_tree.rb_node;
152
153 while (*p) {
154 parent = *p;
155 xkey = rb_entry(parent, struct key, serial_node);
156
157 if (key->serial < xkey->serial)
158 p = &(*p)->rb_left;
159 else if (key->serial > xkey->serial)
160 p = &(*p)->rb_right;
161 else
162 goto serial_exists;
163 }
164
165 /* we've found a suitable hole - arrange for this key to occupy it */
166 rb_link_node(&key->serial_node, parent, p);
167 rb_insert_color(&key->serial_node, &key_serial_tree);
168
169 spin_unlock(&key_serial_lock);
170 return;
171
172 /* we found a key with the proposed serial number - walk the tree from
173 * that point looking for the next unused serial number */
174serial_exists:
175 for (;;) {
176 key->serial++;
177 if (key->serial < 3) {
178 key->serial = 3;
179 goto attempt_insertion;
180 }
181
182 parent = rb_next(parent);
183 if (!parent)
184 goto attempt_insertion;
185
186 xkey = rb_entry(parent, struct key, serial_node);
187 if (key->serial < xkey->serial)
188 goto attempt_insertion;
189 }
190}
191
192/**
193 * key_alloc - Allocate a key of the specified type.
194 * @type: The type of key to allocate.
195 * @desc: The key description to allow the key to be searched out.
196 * @uid: The owner of the new key.
197 * @gid: The group ID for the new key's group permissions.
198 * @cred: The credentials specifying UID namespace.
199 * @perm: The permissions mask of the new key.
200 * @flags: Flags specifying quota properties.
201 * @restrict_link: Optional link restriction for new keyrings.
202 *
203 * Allocate a key of the specified type with the attributes given. The key is
204 * returned in an uninstantiated state and the caller needs to instantiate the
205 * key before returning.
206 *
207 * The restrict_link structure (if not NULL) will be freed when the
208 * keyring is destroyed, so it must be dynamically allocated.
209 *
210 * The user's key count quota is updated to reflect the creation of the key and
211 * the user's key data quota has the default for the key type reserved. The
212 * instantiation function should amend this as necessary. If insufficient
213 * quota is available, -EDQUOT will be returned.
214 *
215 * The LSM security modules can prevent a key being created, in which case
216 * -EACCES will be returned.
217 *
218 * Returns a pointer to the new key if successful and an error code otherwise.
219 *
220 * Note that the caller needs to ensure the key type isn't uninstantiated.
221 * Internally this can be done by locking key_types_sem. Externally, this can
222 * be done by either never unregistering the key type, or making sure
223 * key_alloc() calls don't race with module unloading.
224 */
225struct key *key_alloc(struct key_type *type, const char *desc,
226 kuid_t uid, kgid_t gid, const struct cred *cred,
227 key_perm_t perm, unsigned long flags,
228 struct key_restriction *restrict_link)
229{
230 struct key_user *user = NULL;
231 struct key *key;
232 size_t desclen, quotalen;
233 int ret;
234
235 key = ERR_PTR(-EINVAL);
236 if (!desc || !*desc)
237 goto error;
238
239 if (type->vet_description) {
240 ret = type->vet_description(desc);
241 if (ret < 0) {
242 key = ERR_PTR(ret);
243 goto error;
244 }
245 }
246
247 desclen = strlen(desc);
248 quotalen = desclen + 1 + type->def_datalen;
249
250 /* get hold of the key tracking for this user */
251 user = key_user_lookup(uid);
252 if (!user)
253 goto no_memory_1;
254
255 /* check that the user's quota permits allocation of another key and
256 * its description */
257 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
258 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
259 key_quota_root_maxkeys : key_quota_maxkeys;
260 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
261 key_quota_root_maxbytes : key_quota_maxbytes;
262
263 spin_lock(&user->lock);
264 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
265 if (user->qnkeys + 1 > maxkeys ||
266 user->qnbytes + quotalen > maxbytes ||
267 user->qnbytes + quotalen < user->qnbytes)
268 goto no_quota;
269 }
270
271 user->qnkeys++;
272 user->qnbytes += quotalen;
273 spin_unlock(&user->lock);
274 }
275
276 /* allocate and initialise the key and its description */
277 key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
278 if (!key)
279 goto no_memory_2;
280
281 key->index_key.desc_len = desclen;
282 key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
283 if (!key->index_key.description)
284 goto no_memory_3;
285 key->index_key.type = type;
286 key_set_index_key(&key->index_key);
287
288 refcount_set(&key->usage, 1);
289 init_rwsem(&key->sem);
290 lockdep_set_class(&key->sem, &type->lock_class);
291 key->user = user;
292 key->quotalen = quotalen;
293 key->datalen = type->def_datalen;
294 key->uid = uid;
295 key->gid = gid;
296 key->perm = perm;
297 key->restrict_link = restrict_link;
298 key->last_used_at = ktime_get_real_seconds();
299
300 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
301 key->flags |= 1 << KEY_FLAG_IN_QUOTA;
302 if (flags & KEY_ALLOC_BUILT_IN)
303 key->flags |= 1 << KEY_FLAG_BUILTIN;
304 if (flags & KEY_ALLOC_UID_KEYRING)
305 key->flags |= 1 << KEY_FLAG_UID_KEYRING;
306 if (flags & KEY_ALLOC_SET_KEEP)
307 key->flags |= 1 << KEY_FLAG_KEEP;
308
309#ifdef KEY_DEBUGGING
310 key->magic = KEY_DEBUG_MAGIC;
311#endif
312
313 /* let the security module know about the key */
314 ret = security_key_alloc(key, cred, flags);
315 if (ret < 0)
316 goto security_error;
317
318 /* publish the key by giving it a serial number */
319 refcount_inc(&key->domain_tag->usage);
320 atomic_inc(&user->nkeys);
321 key_alloc_serial(key);
322
323error:
324 return key;
325
326security_error:
327 kfree(key->description);
328 kmem_cache_free(key_jar, key);
329 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
330 spin_lock(&user->lock);
331 user->qnkeys--;
332 user->qnbytes -= quotalen;
333 spin_unlock(&user->lock);
334 }
335 key_user_put(user);
336 key = ERR_PTR(ret);
337 goto error;
338
339no_memory_3:
340 kmem_cache_free(key_jar, key);
341no_memory_2:
342 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
343 spin_lock(&user->lock);
344 user->qnkeys--;
345 user->qnbytes -= quotalen;
346 spin_unlock(&user->lock);
347 }
348 key_user_put(user);
349no_memory_1:
350 key = ERR_PTR(-ENOMEM);
351 goto error;
352
353no_quota:
354 spin_unlock(&user->lock);
355 key_user_put(user);
356 key = ERR_PTR(-EDQUOT);
357 goto error;
358}
359EXPORT_SYMBOL(key_alloc);
360
361/**
362 * key_payload_reserve - Adjust data quota reservation for the key's payload
363 * @key: The key to make the reservation for.
364 * @datalen: The amount of data payload the caller now wants.
365 *
366 * Adjust the amount of the owning user's key data quota that a key reserves.
367 * If the amount is increased, then -EDQUOT may be returned if there isn't
368 * enough free quota available.
369 *
370 * If successful, 0 is returned.
371 */
372int key_payload_reserve(struct key *key, size_t datalen)
373{
374 int delta = (int)datalen - key->datalen;
375 int ret = 0;
376
377 key_check(key);
378
379 /* contemplate the quota adjustment */
380 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
381 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
382 key_quota_root_maxbytes : key_quota_maxbytes;
383
384 spin_lock(&key->user->lock);
385
386 if (delta > 0 &&
387 (key->user->qnbytes + delta > maxbytes ||
388 key->user->qnbytes + delta < key->user->qnbytes)) {
389 ret = -EDQUOT;
390 }
391 else {
392 key->user->qnbytes += delta;
393 key->quotalen += delta;
394 }
395 spin_unlock(&key->user->lock);
396 }
397
398 /* change the recorded data length if that didn't generate an error */
399 if (ret == 0)
400 key->datalen = datalen;
401
402 return ret;
403}
404EXPORT_SYMBOL(key_payload_reserve);
405
406/*
407 * Change the key state to being instantiated.
408 */
409static void mark_key_instantiated(struct key *key, int reject_error)
410{
411 /* Commit the payload before setting the state; barrier versus
412 * key_read_state().
413 */
414 smp_store_release(&key->state,
415 (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
416}
417
418/*
419 * Instantiate a key and link it into the target keyring atomically. Must be
420 * called with the target keyring's semaphore writelocked. The target key's
421 * semaphore need not be locked as instantiation is serialised by
422 * key_construction_mutex.
423 */
424static int __key_instantiate_and_link(struct key *key,
425 struct key_preparsed_payload *prep,
426 struct key *keyring,
427 struct key *authkey,
428 struct assoc_array_edit **_edit)
429{
430 int ret, awaken;
431
432 key_check(key);
433 key_check(keyring);
434
435 awaken = 0;
436 ret = -EBUSY;
437
438 mutex_lock(&key_construction_mutex);
439
440 /* can't instantiate twice */
441 if (key->state == KEY_IS_UNINSTANTIATED) {
442 /* instantiate the key */
443 ret = key->type->instantiate(key, prep);
444
445 if (ret == 0) {
446 /* mark the key as being instantiated */
447 atomic_inc(&key->user->nikeys);
448 mark_key_instantiated(key, 0);
449 notify_key(key, NOTIFY_KEY_INSTANTIATED, 0);
450
451 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
452 awaken = 1;
453
454 /* and link it into the destination keyring */
455 if (keyring) {
456 if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
457 set_bit(KEY_FLAG_KEEP, &key->flags);
458
459 __key_link(keyring, key, _edit);
460 }
461
462 /* disable the authorisation key */
463 if (authkey)
464 key_invalidate(authkey);
465
466 if (prep->expiry != TIME64_MAX) {
467 key->expiry = prep->expiry;
468 key_schedule_gc(prep->expiry + key_gc_delay);
469 }
470 }
471 }
472
473 mutex_unlock(&key_construction_mutex);
474
475 /* wake up anyone waiting for a key to be constructed */
476 if (awaken)
477 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
478
479 return ret;
480}
481
482/**
483 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
484 * @key: The key to instantiate.
485 * @data: The data to use to instantiate the keyring.
486 * @datalen: The length of @data.
487 * @keyring: Keyring to create a link in on success (or NULL).
488 * @authkey: The authorisation token permitting instantiation.
489 *
490 * Instantiate a key that's in the uninstantiated state using the provided data
491 * and, if successful, link it in to the destination keyring if one is
492 * supplied.
493 *
494 * If successful, 0 is returned, the authorisation token is revoked and anyone
495 * waiting for the key is woken up. If the key was already instantiated,
496 * -EBUSY will be returned.
497 */
498int key_instantiate_and_link(struct key *key,
499 const void *data,
500 size_t datalen,
501 struct key *keyring,
502 struct key *authkey)
503{
504 struct key_preparsed_payload prep;
505 struct assoc_array_edit *edit = NULL;
506 int ret;
507
508 memset(&prep, 0, sizeof(prep));
509 prep.orig_description = key->description;
510 prep.data = data;
511 prep.datalen = datalen;
512 prep.quotalen = key->type->def_datalen;
513 prep.expiry = TIME64_MAX;
514 if (key->type->preparse) {
515 ret = key->type->preparse(&prep);
516 if (ret < 0)
517 goto error;
518 }
519
520 if (keyring) {
521 ret = __key_link_lock(keyring, &key->index_key);
522 if (ret < 0)
523 goto error;
524
525 ret = __key_link_begin(keyring, &key->index_key, &edit);
526 if (ret < 0)
527 goto error_link_end;
528
529 if (keyring->restrict_link && keyring->restrict_link->check) {
530 struct key_restriction *keyres = keyring->restrict_link;
531
532 ret = keyres->check(keyring, key->type, &prep.payload,
533 keyres->key);
534 if (ret < 0)
535 goto error_link_end;
536 }
537 }
538
539 ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
540
541error_link_end:
542 if (keyring)
543 __key_link_end(keyring, &key->index_key, edit);
544
545error:
546 if (key->type->preparse)
547 key->type->free_preparse(&prep);
548 return ret;
549}
550
551EXPORT_SYMBOL(key_instantiate_and_link);
552
553/**
554 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
555 * @key: The key to instantiate.
556 * @timeout: The timeout on the negative key.
557 * @error: The error to return when the key is hit.
558 * @keyring: Keyring to create a link in on success (or NULL).
559 * @authkey: The authorisation token permitting instantiation.
560 *
561 * Negatively instantiate a key that's in the uninstantiated state and, if
562 * successful, set its timeout and stored error and link it in to the
563 * destination keyring if one is supplied. The key and any links to the key
564 * will be automatically garbage collected after the timeout expires.
565 *
566 * Negative keys are used to rate limit repeated request_key() calls by causing
567 * them to return the stored error code (typically ENOKEY) until the negative
568 * key expires.
569 *
570 * If successful, 0 is returned, the authorisation token is revoked and anyone
571 * waiting for the key is woken up. If the key was already instantiated,
572 * -EBUSY will be returned.
573 */
574int key_reject_and_link(struct key *key,
575 unsigned timeout,
576 unsigned error,
577 struct key *keyring,
578 struct key *authkey)
579{
580 struct assoc_array_edit *edit = NULL;
581 int ret, awaken, link_ret = 0;
582
583 key_check(key);
584 key_check(keyring);
585
586 awaken = 0;
587 ret = -EBUSY;
588
589 if (keyring) {
590 if (keyring->restrict_link)
591 return -EPERM;
592
593 link_ret = __key_link_lock(keyring, &key->index_key);
594 if (link_ret == 0) {
595 link_ret = __key_link_begin(keyring, &key->index_key, &edit);
596 if (link_ret < 0)
597 __key_link_end(keyring, &key->index_key, edit);
598 }
599 }
600
601 mutex_lock(&key_construction_mutex);
602
603 /* can't instantiate twice */
604 if (key->state == KEY_IS_UNINSTANTIATED) {
605 /* mark the key as being negatively instantiated */
606 atomic_inc(&key->user->nikeys);
607 mark_key_instantiated(key, -error);
608 notify_key(key, NOTIFY_KEY_INSTANTIATED, -error);
609 key->expiry = ktime_get_real_seconds() + timeout;
610 key_schedule_gc(key->expiry + key_gc_delay);
611
612 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
613 awaken = 1;
614
615 ret = 0;
616
617 /* and link it into the destination keyring */
618 if (keyring && link_ret == 0)
619 __key_link(keyring, key, &edit);
620
621 /* disable the authorisation key */
622 if (authkey)
623 key_invalidate(authkey);
624 }
625
626 mutex_unlock(&key_construction_mutex);
627
628 if (keyring && link_ret == 0)
629 __key_link_end(keyring, &key->index_key, edit);
630
631 /* wake up anyone waiting for a key to be constructed */
632 if (awaken)
633 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
634
635 return ret == 0 ? link_ret : ret;
636}
637EXPORT_SYMBOL(key_reject_and_link);
638
639/**
640 * key_put - Discard a reference to a key.
641 * @key: The key to discard a reference from.
642 *
643 * Discard a reference to a key, and when all the references are gone, we
644 * schedule the cleanup task to come and pull it out of the tree in process
645 * context at some later time.
646 */
647void key_put(struct key *key)
648{
649 if (key) {
650 key_check(key);
651
652 if (refcount_dec_and_test(&key->usage))
653 schedule_work(&key_gc_work);
654 }
655}
656EXPORT_SYMBOL(key_put);
657
658/*
659 * Find a key by its serial number.
660 */
661struct key *key_lookup(key_serial_t id)
662{
663 struct rb_node *n;
664 struct key *key;
665
666 spin_lock(&key_serial_lock);
667
668 /* search the tree for the specified key */
669 n = key_serial_tree.rb_node;
670 while (n) {
671 key = rb_entry(n, struct key, serial_node);
672
673 if (id < key->serial)
674 n = n->rb_left;
675 else if (id > key->serial)
676 n = n->rb_right;
677 else
678 goto found;
679 }
680
681not_found:
682 key = ERR_PTR(-ENOKEY);
683 goto error;
684
685found:
686 /* A key is allowed to be looked up only if someone still owns a
687 * reference to it - otherwise it's awaiting the gc.
688 */
689 if (!refcount_inc_not_zero(&key->usage))
690 goto not_found;
691
692error:
693 spin_unlock(&key_serial_lock);
694 return key;
695}
696
697/*
698 * Find and lock the specified key type against removal.
699 *
700 * We return with the sem read-locked if successful. If the type wasn't
701 * available -ENOKEY is returned instead.
702 */
703struct key_type *key_type_lookup(const char *type)
704{
705 struct key_type *ktype;
706
707 down_read(&key_types_sem);
708
709 /* look up the key type to see if it's one of the registered kernel
710 * types */
711 list_for_each_entry(ktype, &key_types_list, link) {
712 if (strcmp(ktype->name, type) == 0)
713 goto found_kernel_type;
714 }
715
716 up_read(&key_types_sem);
717 ktype = ERR_PTR(-ENOKEY);
718
719found_kernel_type:
720 return ktype;
721}
722
723void key_set_timeout(struct key *key, unsigned timeout)
724{
725 time64_t expiry = 0;
726
727 /* make the changes with the locks held to prevent races */
728 down_write(&key->sem);
729
730 if (timeout > 0)
731 expiry = ktime_get_real_seconds() + timeout;
732
733 key->expiry = expiry;
734 key_schedule_gc(key->expiry + key_gc_delay);
735
736 up_write(&key->sem);
737}
738EXPORT_SYMBOL_GPL(key_set_timeout);
739
740/*
741 * Unlock a key type locked by key_type_lookup().
742 */
743void key_type_put(struct key_type *ktype)
744{
745 up_read(&key_types_sem);
746}
747
748/*
749 * Attempt to update an existing key.
750 *
751 * The key is given to us with an incremented refcount that we need to discard
752 * if we get an error.
753 */
754static inline key_ref_t __key_update(key_ref_t key_ref,
755 struct key_preparsed_payload *prep)
756{
757 struct key *key = key_ref_to_ptr(key_ref);
758 int ret;
759
760 /* need write permission on the key to update it */
761 ret = key_permission(key_ref, KEY_NEED_WRITE);
762 if (ret < 0)
763 goto error;
764
765 ret = -EEXIST;
766 if (!key->type->update)
767 goto error;
768
769 down_write(&key->sem);
770
771 ret = key->type->update(key, prep);
772 if (ret == 0) {
773 /* Updating a negative key positively instantiates it */
774 mark_key_instantiated(key, 0);
775 notify_key(key, NOTIFY_KEY_UPDATED, 0);
776 }
777
778 up_write(&key->sem);
779
780 if (ret < 0)
781 goto error;
782out:
783 return key_ref;
784
785error:
786 key_put(key);
787 key_ref = ERR_PTR(ret);
788 goto out;
789}
790
791/**
792 * key_create_or_update - Update or create and instantiate a key.
793 * @keyring_ref: A pointer to the destination keyring with possession flag.
794 * @type: The type of key.
795 * @description: The searchable description for the key.
796 * @payload: The data to use to instantiate or update the key.
797 * @plen: The length of @payload.
798 * @perm: The permissions mask for a new key.
799 * @flags: The quota flags for a new key.
800 *
801 * Search the destination keyring for a key of the same description and if one
802 * is found, update it, otherwise create and instantiate a new one and create a
803 * link to it from that keyring.
804 *
805 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
806 * concocted.
807 *
808 * Returns a pointer to the new key if successful, -ENODEV if the key type
809 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
810 * caller isn't permitted to modify the keyring or the LSM did not permit
811 * creation of the key.
812 *
813 * On success, the possession flag from the keyring ref will be tacked on to
814 * the key ref before it is returned.
815 */
816key_ref_t key_create_or_update(key_ref_t keyring_ref,
817 const char *type,
818 const char *description,
819 const void *payload,
820 size_t plen,
821 key_perm_t perm,
822 unsigned long flags)
823{
824 struct keyring_index_key index_key = {
825 .description = description,
826 };
827 struct key_preparsed_payload prep;
828 struct assoc_array_edit *edit = NULL;
829 const struct cred *cred = current_cred();
830 struct key *keyring, *key = NULL;
831 key_ref_t key_ref;
832 int ret;
833 struct key_restriction *restrict_link = NULL;
834
835 /* look up the key type to see if it's one of the registered kernel
836 * types */
837 index_key.type = key_type_lookup(type);
838 if (IS_ERR(index_key.type)) {
839 key_ref = ERR_PTR(-ENODEV);
840 goto error;
841 }
842
843 key_ref = ERR_PTR(-EINVAL);
844 if (!index_key.type->instantiate ||
845 (!index_key.description && !index_key.type->preparse))
846 goto error_put_type;
847
848 keyring = key_ref_to_ptr(keyring_ref);
849
850 key_check(keyring);
851
852 if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
853 restrict_link = keyring->restrict_link;
854
855 key_ref = ERR_PTR(-ENOTDIR);
856 if (keyring->type != &key_type_keyring)
857 goto error_put_type;
858
859 memset(&prep, 0, sizeof(prep));
860 prep.orig_description = description;
861 prep.data = payload;
862 prep.datalen = plen;
863 prep.quotalen = index_key.type->def_datalen;
864 prep.expiry = TIME64_MAX;
865 if (index_key.type->preparse) {
866 ret = index_key.type->preparse(&prep);
867 if (ret < 0) {
868 key_ref = ERR_PTR(ret);
869 goto error_free_prep;
870 }
871 if (!index_key.description)
872 index_key.description = prep.description;
873 key_ref = ERR_PTR(-EINVAL);
874 if (!index_key.description)
875 goto error_free_prep;
876 }
877 index_key.desc_len = strlen(index_key.description);
878 key_set_index_key(&index_key);
879
880 ret = __key_link_lock(keyring, &index_key);
881 if (ret < 0) {
882 key_ref = ERR_PTR(ret);
883 goto error_free_prep;
884 }
885
886 ret = __key_link_begin(keyring, &index_key, &edit);
887 if (ret < 0) {
888 key_ref = ERR_PTR(ret);
889 goto error_link_end;
890 }
891
892 if (restrict_link && restrict_link->check) {
893 ret = restrict_link->check(keyring, index_key.type,
894 &prep.payload, restrict_link->key);
895 if (ret < 0) {
896 key_ref = ERR_PTR(ret);
897 goto error_link_end;
898 }
899 }
900
901 /* if we're going to allocate a new key, we're going to have
902 * to modify the keyring */
903 ret = key_permission(keyring_ref, KEY_NEED_WRITE);
904 if (ret < 0) {
905 key_ref = ERR_PTR(ret);
906 goto error_link_end;
907 }
908
909 /* if it's possible to update this type of key, search for an existing
910 * key of the same type and description in the destination keyring and
911 * update that instead if possible
912 */
913 if (index_key.type->update) {
914 key_ref = find_key_to_update(keyring_ref, &index_key);
915 if (key_ref)
916 goto found_matching_key;
917 }
918
919 /* if the client doesn't provide, decide on the permissions we want */
920 if (perm == KEY_PERM_UNDEF) {
921 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
922 perm |= KEY_USR_VIEW;
923
924 if (index_key.type->read)
925 perm |= KEY_POS_READ;
926
927 if (index_key.type == &key_type_keyring ||
928 index_key.type->update)
929 perm |= KEY_POS_WRITE;
930 }
931
932 /* allocate a new key */
933 key = key_alloc(index_key.type, index_key.description,
934 cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
935 if (IS_ERR(key)) {
936 key_ref = ERR_CAST(key);
937 goto error_link_end;
938 }
939
940 /* instantiate it and link it into the target keyring */
941 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
942 if (ret < 0) {
943 key_put(key);
944 key_ref = ERR_PTR(ret);
945 goto error_link_end;
946 }
947
948 ima_post_key_create_or_update(keyring, key, payload, plen,
949 flags, true);
950
951 key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
952
953error_link_end:
954 __key_link_end(keyring, &index_key, edit);
955error_free_prep:
956 if (index_key.type->preparse)
957 index_key.type->free_preparse(&prep);
958error_put_type:
959 key_type_put(index_key.type);
960error:
961 return key_ref;
962
963 found_matching_key:
964 /* we found a matching key, so we're going to try to update it
965 * - we can drop the locks first as we have the key pinned
966 */
967 __key_link_end(keyring, &index_key, edit);
968
969 key = key_ref_to_ptr(key_ref);
970 if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
971 ret = wait_for_key_construction(key, true);
972 if (ret < 0) {
973 key_ref_put(key_ref);
974 key_ref = ERR_PTR(ret);
975 goto error_free_prep;
976 }
977 }
978
979 key_ref = __key_update(key_ref, &prep);
980
981 if (!IS_ERR(key_ref))
982 ima_post_key_create_or_update(keyring, key,
983 payload, plen,
984 flags, false);
985
986 goto error_free_prep;
987}
988EXPORT_SYMBOL(key_create_or_update);
989
990/**
991 * key_update - Update a key's contents.
992 * @key_ref: The pointer (plus possession flag) to the key.
993 * @payload: The data to be used to update the key.
994 * @plen: The length of @payload.
995 *
996 * Attempt to update the contents of a key with the given payload data. The
997 * caller must be granted Write permission on the key. Negative keys can be
998 * instantiated by this method.
999 *
1000 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
1001 * type does not support updating. The key type may return other errors.
1002 */
1003int key_update(key_ref_t key_ref, const void *payload, size_t plen)
1004{
1005 struct key_preparsed_payload prep;
1006 struct key *key = key_ref_to_ptr(key_ref);
1007 int ret;
1008
1009 key_check(key);
1010
1011 /* the key must be writable */
1012 ret = key_permission(key_ref, KEY_NEED_WRITE);
1013 if (ret < 0)
1014 return ret;
1015
1016 /* attempt to update it if supported */
1017 if (!key->type->update)
1018 return -EOPNOTSUPP;
1019
1020 memset(&prep, 0, sizeof(prep));
1021 prep.data = payload;
1022 prep.datalen = plen;
1023 prep.quotalen = key->type->def_datalen;
1024 prep.expiry = TIME64_MAX;
1025 if (key->type->preparse) {
1026 ret = key->type->preparse(&prep);
1027 if (ret < 0)
1028 goto error;
1029 }
1030
1031 down_write(&key->sem);
1032
1033 ret = key->type->update(key, &prep);
1034 if (ret == 0) {
1035 /* Updating a negative key positively instantiates it */
1036 mark_key_instantiated(key, 0);
1037 notify_key(key, NOTIFY_KEY_UPDATED, 0);
1038 }
1039
1040 up_write(&key->sem);
1041
1042error:
1043 if (key->type->preparse)
1044 key->type->free_preparse(&prep);
1045 return ret;
1046}
1047EXPORT_SYMBOL(key_update);
1048
1049/**
1050 * key_revoke - Revoke a key.
1051 * @key: The key to be revoked.
1052 *
1053 * Mark a key as being revoked and ask the type to free up its resources. The
1054 * revocation timeout is set and the key and all its links will be
1055 * automatically garbage collected after key_gc_delay amount of time if they
1056 * are not manually dealt with first.
1057 */
1058void key_revoke(struct key *key)
1059{
1060 time64_t time;
1061
1062 key_check(key);
1063
1064 /* make sure no one's trying to change or use the key when we mark it
1065 * - we tell lockdep that we might nest because we might be revoking an
1066 * authorisation key whilst holding the sem on a key we've just
1067 * instantiated
1068 */
1069 down_write_nested(&key->sem, 1);
1070 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags)) {
1071 notify_key(key, NOTIFY_KEY_REVOKED, 0);
1072 if (key->type->revoke)
1073 key->type->revoke(key);
1074
1075 /* set the death time to no more than the expiry time */
1076 time = ktime_get_real_seconds();
1077 if (key->revoked_at == 0 || key->revoked_at > time) {
1078 key->revoked_at = time;
1079 key_schedule_gc(key->revoked_at + key_gc_delay);
1080 }
1081 }
1082
1083 up_write(&key->sem);
1084}
1085EXPORT_SYMBOL(key_revoke);
1086
1087/**
1088 * key_invalidate - Invalidate a key.
1089 * @key: The key to be invalidated.
1090 *
1091 * Mark a key as being invalidated and have it cleaned up immediately. The key
1092 * is ignored by all searches and other operations from this point.
1093 */
1094void key_invalidate(struct key *key)
1095{
1096 kenter("%d", key_serial(key));
1097
1098 key_check(key);
1099
1100 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1101 down_write_nested(&key->sem, 1);
1102 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1103 notify_key(key, NOTIFY_KEY_INVALIDATED, 0);
1104 key_schedule_gc_links();
1105 }
1106 up_write(&key->sem);
1107 }
1108}
1109EXPORT_SYMBOL(key_invalidate);
1110
1111/**
1112 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1113 * @key: The key to be instantiated
1114 * @prep: The preparsed data to load.
1115 *
1116 * Instantiate a key from preparsed data. We assume we can just copy the data
1117 * in directly and clear the old pointers.
1118 *
1119 * This can be pointed to directly by the key type instantiate op pointer.
1120 */
1121int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1122{
1123 int ret;
1124
1125 pr_devel("==>%s()\n", __func__);
1126
1127 ret = key_payload_reserve(key, prep->quotalen);
1128 if (ret == 0) {
1129 rcu_assign_keypointer(key, prep->payload.data[0]);
1130 key->payload.data[1] = prep->payload.data[1];
1131 key->payload.data[2] = prep->payload.data[2];
1132 key->payload.data[3] = prep->payload.data[3];
1133 prep->payload.data[0] = NULL;
1134 prep->payload.data[1] = NULL;
1135 prep->payload.data[2] = NULL;
1136 prep->payload.data[3] = NULL;
1137 }
1138 pr_devel("<==%s() = %d\n", __func__, ret);
1139 return ret;
1140}
1141EXPORT_SYMBOL(generic_key_instantiate);
1142
1143/**
1144 * register_key_type - Register a type of key.
1145 * @ktype: The new key type.
1146 *
1147 * Register a new key type.
1148 *
1149 * Returns 0 on success or -EEXIST if a type of this name already exists.
1150 */
1151int register_key_type(struct key_type *ktype)
1152{
1153 struct key_type *p;
1154 int ret;
1155
1156 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1157
1158 ret = -EEXIST;
1159 down_write(&key_types_sem);
1160
1161 /* disallow key types with the same name */
1162 list_for_each_entry(p, &key_types_list, link) {
1163 if (strcmp(p->name, ktype->name) == 0)
1164 goto out;
1165 }
1166
1167 /* store the type */
1168 list_add(&ktype->link, &key_types_list);
1169
1170 pr_notice("Key type %s registered\n", ktype->name);
1171 ret = 0;
1172
1173out:
1174 up_write(&key_types_sem);
1175 return ret;
1176}
1177EXPORT_SYMBOL(register_key_type);
1178
1179/**
1180 * unregister_key_type - Unregister a type of key.
1181 * @ktype: The key type.
1182 *
1183 * Unregister a key type and mark all the extant keys of this type as dead.
1184 * Those keys of this type are then destroyed to get rid of their payloads and
1185 * they and their links will be garbage collected as soon as possible.
1186 */
1187void unregister_key_type(struct key_type *ktype)
1188{
1189 down_write(&key_types_sem);
1190 list_del_init(&ktype->link);
1191 downgrade_write(&key_types_sem);
1192 key_gc_keytype(ktype);
1193 pr_notice("Key type %s unregistered\n", ktype->name);
1194 up_read(&key_types_sem);
1195}
1196EXPORT_SYMBOL(unregister_key_type);
1197
1198/*
1199 * Initialise the key management state.
1200 */
1201void __init key_init(void)
1202{
1203 /* allocate a slab in which we can store keys */
1204 key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1205 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1206
1207 /* add the special key types */
1208 list_add_tail(&key_type_keyring.link, &key_types_list);
1209 list_add_tail(&key_type_dead.link, &key_types_list);
1210 list_add_tail(&key_type_user.link, &key_types_list);
1211 list_add_tail(&key_type_logon.link, &key_types_list);
1212
1213 /* record the root user tracking */
1214 rb_link_node(&root_key_user.node,
1215 NULL,
1216 &key_user_tree.rb_node);
1217
1218 rb_insert_color(&root_key_user.node,
1219 &key_user_tree);
1220}
1/* Basic authentication token and access key management
2 *
3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/poison.h>
15#include <linux/sched.h>
16#include <linux/slab.h>
17#include <linux/security.h>
18#include <linux/workqueue.h>
19#include <linux/random.h>
20#include <linux/err.h>
21#include "internal.h"
22
23struct kmem_cache *key_jar;
24struct rb_root key_serial_tree; /* tree of keys indexed by serial */
25DEFINE_SPINLOCK(key_serial_lock);
26
27struct rb_root key_user_tree; /* tree of quota records indexed by UID */
28DEFINE_SPINLOCK(key_user_lock);
29
30unsigned int key_quota_root_maxkeys = 1000000; /* root's key count quota */
31unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
32unsigned int key_quota_maxkeys = 200; /* general key count quota */
33unsigned int key_quota_maxbytes = 20000; /* general key space quota */
34
35static LIST_HEAD(key_types_list);
36static DECLARE_RWSEM(key_types_sem);
37
38/* We serialise key instantiation and link */
39DEFINE_MUTEX(key_construction_mutex);
40
41#ifdef KEY_DEBUGGING
42void __key_check(const struct key *key)
43{
44 printk("__key_check: key %p {%08x} should be {%08x}\n",
45 key, key->magic, KEY_DEBUG_MAGIC);
46 BUG();
47}
48#endif
49
50/*
51 * Get the key quota record for a user, allocating a new record if one doesn't
52 * already exist.
53 */
54struct key_user *key_user_lookup(kuid_t uid)
55{
56 struct key_user *candidate = NULL, *user;
57 struct rb_node *parent, **p;
58
59try_again:
60 parent = NULL;
61 p = &key_user_tree.rb_node;
62 spin_lock(&key_user_lock);
63
64 /* search the tree for a user record with a matching UID */
65 while (*p) {
66 parent = *p;
67 user = rb_entry(parent, struct key_user, node);
68
69 if (uid_lt(uid, user->uid))
70 p = &(*p)->rb_left;
71 else if (uid_gt(uid, user->uid))
72 p = &(*p)->rb_right;
73 else
74 goto found;
75 }
76
77 /* if we get here, we failed to find a match in the tree */
78 if (!candidate) {
79 /* allocate a candidate user record if we don't already have
80 * one */
81 spin_unlock(&key_user_lock);
82
83 user = NULL;
84 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
85 if (unlikely(!candidate))
86 goto out;
87
88 /* the allocation may have scheduled, so we need to repeat the
89 * search lest someone else added the record whilst we were
90 * asleep */
91 goto try_again;
92 }
93
94 /* if we get here, then the user record still hadn't appeared on the
95 * second pass - so we use the candidate record */
96 refcount_set(&candidate->usage, 1);
97 atomic_set(&candidate->nkeys, 0);
98 atomic_set(&candidate->nikeys, 0);
99 candidate->uid = uid;
100 candidate->qnkeys = 0;
101 candidate->qnbytes = 0;
102 spin_lock_init(&candidate->lock);
103 mutex_init(&candidate->cons_lock);
104
105 rb_link_node(&candidate->node, parent, p);
106 rb_insert_color(&candidate->node, &key_user_tree);
107 spin_unlock(&key_user_lock);
108 user = candidate;
109 goto out;
110
111 /* okay - we found a user record for this UID */
112found:
113 refcount_inc(&user->usage);
114 spin_unlock(&key_user_lock);
115 kfree(candidate);
116out:
117 return user;
118}
119
120/*
121 * Dispose of a user structure
122 */
123void key_user_put(struct key_user *user)
124{
125 if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
126 rb_erase(&user->node, &key_user_tree);
127 spin_unlock(&key_user_lock);
128
129 kfree(user);
130 }
131}
132
133/*
134 * Allocate a serial number for a key. These are assigned randomly to avoid
135 * security issues through covert channel problems.
136 */
137static inline void key_alloc_serial(struct key *key)
138{
139 struct rb_node *parent, **p;
140 struct key *xkey;
141
142 /* propose a random serial number and look for a hole for it in the
143 * serial number tree */
144 do {
145 get_random_bytes(&key->serial, sizeof(key->serial));
146
147 key->serial >>= 1; /* negative numbers are not permitted */
148 } while (key->serial < 3);
149
150 spin_lock(&key_serial_lock);
151
152attempt_insertion:
153 parent = NULL;
154 p = &key_serial_tree.rb_node;
155
156 while (*p) {
157 parent = *p;
158 xkey = rb_entry(parent, struct key, serial_node);
159
160 if (key->serial < xkey->serial)
161 p = &(*p)->rb_left;
162 else if (key->serial > xkey->serial)
163 p = &(*p)->rb_right;
164 else
165 goto serial_exists;
166 }
167
168 /* we've found a suitable hole - arrange for this key to occupy it */
169 rb_link_node(&key->serial_node, parent, p);
170 rb_insert_color(&key->serial_node, &key_serial_tree);
171
172 spin_unlock(&key_serial_lock);
173 return;
174
175 /* we found a key with the proposed serial number - walk the tree from
176 * that point looking for the next unused serial number */
177serial_exists:
178 for (;;) {
179 key->serial++;
180 if (key->serial < 3) {
181 key->serial = 3;
182 goto attempt_insertion;
183 }
184
185 parent = rb_next(parent);
186 if (!parent)
187 goto attempt_insertion;
188
189 xkey = rb_entry(parent, struct key, serial_node);
190 if (key->serial < xkey->serial)
191 goto attempt_insertion;
192 }
193}
194
195/**
196 * key_alloc - Allocate a key of the specified type.
197 * @type: The type of key to allocate.
198 * @desc: The key description to allow the key to be searched out.
199 * @uid: The owner of the new key.
200 * @gid: The group ID for the new key's group permissions.
201 * @cred: The credentials specifying UID namespace.
202 * @perm: The permissions mask of the new key.
203 * @flags: Flags specifying quota properties.
204 * @restrict_link: Optional link restriction for new keyrings.
205 *
206 * Allocate a key of the specified type with the attributes given. The key is
207 * returned in an uninstantiated state and the caller needs to instantiate the
208 * key before returning.
209 *
210 * The restrict_link structure (if not NULL) will be freed when the
211 * keyring is destroyed, so it must be dynamically allocated.
212 *
213 * The user's key count quota is updated to reflect the creation of the key and
214 * the user's key data quota has the default for the key type reserved. The
215 * instantiation function should amend this as necessary. If insufficient
216 * quota is available, -EDQUOT will be returned.
217 *
218 * The LSM security modules can prevent a key being created, in which case
219 * -EACCES will be returned.
220 *
221 * Returns a pointer to the new key if successful and an error code otherwise.
222 *
223 * Note that the caller needs to ensure the key type isn't uninstantiated.
224 * Internally this can be done by locking key_types_sem. Externally, this can
225 * be done by either never unregistering the key type, or making sure
226 * key_alloc() calls don't race with module unloading.
227 */
228struct key *key_alloc(struct key_type *type, const char *desc,
229 kuid_t uid, kgid_t gid, const struct cred *cred,
230 key_perm_t perm, unsigned long flags,
231 struct key_restriction *restrict_link)
232{
233 struct key_user *user = NULL;
234 struct key *key;
235 size_t desclen, quotalen;
236 int ret;
237
238 key = ERR_PTR(-EINVAL);
239 if (!desc || !*desc)
240 goto error;
241
242 if (type->vet_description) {
243 ret = type->vet_description(desc);
244 if (ret < 0) {
245 key = ERR_PTR(ret);
246 goto error;
247 }
248 }
249
250 desclen = strlen(desc);
251 quotalen = desclen + 1 + type->def_datalen;
252
253 /* get hold of the key tracking for this user */
254 user = key_user_lookup(uid);
255 if (!user)
256 goto no_memory_1;
257
258 /* check that the user's quota permits allocation of another key and
259 * its description */
260 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
261 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
262 key_quota_root_maxkeys : key_quota_maxkeys;
263 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
264 key_quota_root_maxbytes : key_quota_maxbytes;
265
266 spin_lock(&user->lock);
267 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
268 if (user->qnkeys + 1 >= maxkeys ||
269 user->qnbytes + quotalen >= maxbytes ||
270 user->qnbytes + quotalen < user->qnbytes)
271 goto no_quota;
272 }
273
274 user->qnkeys++;
275 user->qnbytes += quotalen;
276 spin_unlock(&user->lock);
277 }
278
279 /* allocate and initialise the key and its description */
280 key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
281 if (!key)
282 goto no_memory_2;
283
284 key->index_key.desc_len = desclen;
285 key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
286 if (!key->index_key.description)
287 goto no_memory_3;
288
289 refcount_set(&key->usage, 1);
290 init_rwsem(&key->sem);
291 lockdep_set_class(&key->sem, &type->lock_class);
292 key->index_key.type = type;
293 key->user = user;
294 key->quotalen = quotalen;
295 key->datalen = type->def_datalen;
296 key->uid = uid;
297 key->gid = gid;
298 key->perm = perm;
299 key->restrict_link = restrict_link;
300
301 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
302 key->flags |= 1 << KEY_FLAG_IN_QUOTA;
303 if (flags & KEY_ALLOC_BUILT_IN)
304 key->flags |= 1 << KEY_FLAG_BUILTIN;
305 if (flags & KEY_ALLOC_UID_KEYRING)
306 key->flags |= 1 << KEY_FLAG_UID_KEYRING;
307
308#ifdef KEY_DEBUGGING
309 key->magic = KEY_DEBUG_MAGIC;
310#endif
311
312 /* let the security module know about the key */
313 ret = security_key_alloc(key, cred, flags);
314 if (ret < 0)
315 goto security_error;
316
317 /* publish the key by giving it a serial number */
318 atomic_inc(&user->nkeys);
319 key_alloc_serial(key);
320
321error:
322 return key;
323
324security_error:
325 kfree(key->description);
326 kmem_cache_free(key_jar, key);
327 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
328 spin_lock(&user->lock);
329 user->qnkeys--;
330 user->qnbytes -= quotalen;
331 spin_unlock(&user->lock);
332 }
333 key_user_put(user);
334 key = ERR_PTR(ret);
335 goto error;
336
337no_memory_3:
338 kmem_cache_free(key_jar, key);
339no_memory_2:
340 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
341 spin_lock(&user->lock);
342 user->qnkeys--;
343 user->qnbytes -= quotalen;
344 spin_unlock(&user->lock);
345 }
346 key_user_put(user);
347no_memory_1:
348 key = ERR_PTR(-ENOMEM);
349 goto error;
350
351no_quota:
352 spin_unlock(&user->lock);
353 key_user_put(user);
354 key = ERR_PTR(-EDQUOT);
355 goto error;
356}
357EXPORT_SYMBOL(key_alloc);
358
359/**
360 * key_payload_reserve - Adjust data quota reservation for the key's payload
361 * @key: The key to make the reservation for.
362 * @datalen: The amount of data payload the caller now wants.
363 *
364 * Adjust the amount of the owning user's key data quota that a key reserves.
365 * If the amount is increased, then -EDQUOT may be returned if there isn't
366 * enough free quota available.
367 *
368 * If successful, 0 is returned.
369 */
370int key_payload_reserve(struct key *key, size_t datalen)
371{
372 int delta = (int)datalen - key->datalen;
373 int ret = 0;
374
375 key_check(key);
376
377 /* contemplate the quota adjustment */
378 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
379 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
380 key_quota_root_maxbytes : key_quota_maxbytes;
381
382 spin_lock(&key->user->lock);
383
384 if (delta > 0 &&
385 (key->user->qnbytes + delta >= maxbytes ||
386 key->user->qnbytes + delta < key->user->qnbytes)) {
387 ret = -EDQUOT;
388 }
389 else {
390 key->user->qnbytes += delta;
391 key->quotalen += delta;
392 }
393 spin_unlock(&key->user->lock);
394 }
395
396 /* change the recorded data length if that didn't generate an error */
397 if (ret == 0)
398 key->datalen = datalen;
399
400 return ret;
401}
402EXPORT_SYMBOL(key_payload_reserve);
403
404/*
405 * Change the key state to being instantiated.
406 */
407static void mark_key_instantiated(struct key *key, int reject_error)
408{
409 /* Commit the payload before setting the state; barrier versus
410 * key_read_state().
411 */
412 smp_store_release(&key->state,
413 (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
414}
415
416/*
417 * Instantiate a key and link it into the target keyring atomically. Must be
418 * called with the target keyring's semaphore writelocked. The target key's
419 * semaphore need not be locked as instantiation is serialised by
420 * key_construction_mutex.
421 */
422static int __key_instantiate_and_link(struct key *key,
423 struct key_preparsed_payload *prep,
424 struct key *keyring,
425 struct key *authkey,
426 struct assoc_array_edit **_edit)
427{
428 int ret, awaken;
429
430 key_check(key);
431 key_check(keyring);
432
433 awaken = 0;
434 ret = -EBUSY;
435
436 mutex_lock(&key_construction_mutex);
437
438 /* can't instantiate twice */
439 if (key->state == KEY_IS_UNINSTANTIATED) {
440 /* instantiate the key */
441 ret = key->type->instantiate(key, prep);
442
443 if (ret == 0) {
444 /* mark the key as being instantiated */
445 atomic_inc(&key->user->nikeys);
446 mark_key_instantiated(key, 0);
447
448 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
449 awaken = 1;
450
451 /* and link it into the destination keyring */
452 if (keyring) {
453 if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
454 set_bit(KEY_FLAG_KEEP, &key->flags);
455
456 __key_link(key, _edit);
457 }
458
459 /* disable the authorisation key */
460 if (authkey)
461 key_revoke(authkey);
462
463 if (prep->expiry != TIME64_MAX) {
464 key->expiry = prep->expiry;
465 key_schedule_gc(prep->expiry + key_gc_delay);
466 }
467 }
468 }
469
470 mutex_unlock(&key_construction_mutex);
471
472 /* wake up anyone waiting for a key to be constructed */
473 if (awaken)
474 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
475
476 return ret;
477}
478
479/**
480 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
481 * @key: The key to instantiate.
482 * @data: The data to use to instantiate the keyring.
483 * @datalen: The length of @data.
484 * @keyring: Keyring to create a link in on success (or NULL).
485 * @authkey: The authorisation token permitting instantiation.
486 *
487 * Instantiate a key that's in the uninstantiated state using the provided data
488 * and, if successful, link it in to the destination keyring if one is
489 * supplied.
490 *
491 * If successful, 0 is returned, the authorisation token is revoked and anyone
492 * waiting for the key is woken up. If the key was already instantiated,
493 * -EBUSY will be returned.
494 */
495int key_instantiate_and_link(struct key *key,
496 const void *data,
497 size_t datalen,
498 struct key *keyring,
499 struct key *authkey)
500{
501 struct key_preparsed_payload prep;
502 struct assoc_array_edit *edit;
503 int ret;
504
505 memset(&prep, 0, sizeof(prep));
506 prep.data = data;
507 prep.datalen = datalen;
508 prep.quotalen = key->type->def_datalen;
509 prep.expiry = TIME64_MAX;
510 if (key->type->preparse) {
511 ret = key->type->preparse(&prep);
512 if (ret < 0)
513 goto error;
514 }
515
516 if (keyring) {
517 ret = __key_link_begin(keyring, &key->index_key, &edit);
518 if (ret < 0)
519 goto error;
520
521 if (keyring->restrict_link && keyring->restrict_link->check) {
522 struct key_restriction *keyres = keyring->restrict_link;
523
524 ret = keyres->check(keyring, key->type, &prep.payload,
525 keyres->key);
526 if (ret < 0)
527 goto error_link_end;
528 }
529 }
530
531 ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
532
533error_link_end:
534 if (keyring)
535 __key_link_end(keyring, &key->index_key, edit);
536
537error:
538 if (key->type->preparse)
539 key->type->free_preparse(&prep);
540 return ret;
541}
542
543EXPORT_SYMBOL(key_instantiate_and_link);
544
545/**
546 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
547 * @key: The key to instantiate.
548 * @timeout: The timeout on the negative key.
549 * @error: The error to return when the key is hit.
550 * @keyring: Keyring to create a link in on success (or NULL).
551 * @authkey: The authorisation token permitting instantiation.
552 *
553 * Negatively instantiate a key that's in the uninstantiated state and, if
554 * successful, set its timeout and stored error and link it in to the
555 * destination keyring if one is supplied. The key and any links to the key
556 * will be automatically garbage collected after the timeout expires.
557 *
558 * Negative keys are used to rate limit repeated request_key() calls by causing
559 * them to return the stored error code (typically ENOKEY) until the negative
560 * key expires.
561 *
562 * If successful, 0 is returned, the authorisation token is revoked and anyone
563 * waiting for the key is woken up. If the key was already instantiated,
564 * -EBUSY will be returned.
565 */
566int key_reject_and_link(struct key *key,
567 unsigned timeout,
568 unsigned error,
569 struct key *keyring,
570 struct key *authkey)
571{
572 struct assoc_array_edit *edit;
573 int ret, awaken, link_ret = 0;
574
575 key_check(key);
576 key_check(keyring);
577
578 awaken = 0;
579 ret = -EBUSY;
580
581 if (keyring) {
582 if (keyring->restrict_link)
583 return -EPERM;
584
585 link_ret = __key_link_begin(keyring, &key->index_key, &edit);
586 }
587
588 mutex_lock(&key_construction_mutex);
589
590 /* can't instantiate twice */
591 if (key->state == KEY_IS_UNINSTANTIATED) {
592 /* mark the key as being negatively instantiated */
593 atomic_inc(&key->user->nikeys);
594 mark_key_instantiated(key, -error);
595 key->expiry = ktime_get_real_seconds() + timeout;
596 key_schedule_gc(key->expiry + key_gc_delay);
597
598 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
599 awaken = 1;
600
601 ret = 0;
602
603 /* and link it into the destination keyring */
604 if (keyring && link_ret == 0)
605 __key_link(key, &edit);
606
607 /* disable the authorisation key */
608 if (authkey)
609 key_revoke(authkey);
610 }
611
612 mutex_unlock(&key_construction_mutex);
613
614 if (keyring && link_ret == 0)
615 __key_link_end(keyring, &key->index_key, edit);
616
617 /* wake up anyone waiting for a key to be constructed */
618 if (awaken)
619 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
620
621 return ret == 0 ? link_ret : ret;
622}
623EXPORT_SYMBOL(key_reject_and_link);
624
625/**
626 * key_put - Discard a reference to a key.
627 * @key: The key to discard a reference from.
628 *
629 * Discard a reference to a key, and when all the references are gone, we
630 * schedule the cleanup task to come and pull it out of the tree in process
631 * context at some later time.
632 */
633void key_put(struct key *key)
634{
635 if (key) {
636 key_check(key);
637
638 if (refcount_dec_and_test(&key->usage))
639 schedule_work(&key_gc_work);
640 }
641}
642EXPORT_SYMBOL(key_put);
643
644/*
645 * Find a key by its serial number.
646 */
647struct key *key_lookup(key_serial_t id)
648{
649 struct rb_node *n;
650 struct key *key;
651
652 spin_lock(&key_serial_lock);
653
654 /* search the tree for the specified key */
655 n = key_serial_tree.rb_node;
656 while (n) {
657 key = rb_entry(n, struct key, serial_node);
658
659 if (id < key->serial)
660 n = n->rb_left;
661 else if (id > key->serial)
662 n = n->rb_right;
663 else
664 goto found;
665 }
666
667not_found:
668 key = ERR_PTR(-ENOKEY);
669 goto error;
670
671found:
672 /* A key is allowed to be looked up only if someone still owns a
673 * reference to it - otherwise it's awaiting the gc.
674 */
675 if (!refcount_inc_not_zero(&key->usage))
676 goto not_found;
677
678error:
679 spin_unlock(&key_serial_lock);
680 return key;
681}
682
683/*
684 * Find and lock the specified key type against removal.
685 *
686 * We return with the sem read-locked if successful. If the type wasn't
687 * available -ENOKEY is returned instead.
688 */
689struct key_type *key_type_lookup(const char *type)
690{
691 struct key_type *ktype;
692
693 down_read(&key_types_sem);
694
695 /* look up the key type to see if it's one of the registered kernel
696 * types */
697 list_for_each_entry(ktype, &key_types_list, link) {
698 if (strcmp(ktype->name, type) == 0)
699 goto found_kernel_type;
700 }
701
702 up_read(&key_types_sem);
703 ktype = ERR_PTR(-ENOKEY);
704
705found_kernel_type:
706 return ktype;
707}
708
709void key_set_timeout(struct key *key, unsigned timeout)
710{
711 time64_t expiry = 0;
712
713 /* make the changes with the locks held to prevent races */
714 down_write(&key->sem);
715
716 if (timeout > 0)
717 expiry = ktime_get_real_seconds() + timeout;
718
719 key->expiry = expiry;
720 key_schedule_gc(key->expiry + key_gc_delay);
721
722 up_write(&key->sem);
723}
724EXPORT_SYMBOL_GPL(key_set_timeout);
725
726/*
727 * Unlock a key type locked by key_type_lookup().
728 */
729void key_type_put(struct key_type *ktype)
730{
731 up_read(&key_types_sem);
732}
733
734/*
735 * Attempt to update an existing key.
736 *
737 * The key is given to us with an incremented refcount that we need to discard
738 * if we get an error.
739 */
740static inline key_ref_t __key_update(key_ref_t key_ref,
741 struct key_preparsed_payload *prep)
742{
743 struct key *key = key_ref_to_ptr(key_ref);
744 int ret;
745
746 /* need write permission on the key to update it */
747 ret = key_permission(key_ref, KEY_NEED_WRITE);
748 if (ret < 0)
749 goto error;
750
751 ret = -EEXIST;
752 if (!key->type->update)
753 goto error;
754
755 down_write(&key->sem);
756
757 ret = key->type->update(key, prep);
758 if (ret == 0)
759 /* Updating a negative key positively instantiates it */
760 mark_key_instantiated(key, 0);
761
762 up_write(&key->sem);
763
764 if (ret < 0)
765 goto error;
766out:
767 return key_ref;
768
769error:
770 key_put(key);
771 key_ref = ERR_PTR(ret);
772 goto out;
773}
774
775/**
776 * key_create_or_update - Update or create and instantiate a key.
777 * @keyring_ref: A pointer to the destination keyring with possession flag.
778 * @type: The type of key.
779 * @description: The searchable description for the key.
780 * @payload: The data to use to instantiate or update the key.
781 * @plen: The length of @payload.
782 * @perm: The permissions mask for a new key.
783 * @flags: The quota flags for a new key.
784 *
785 * Search the destination keyring for a key of the same description and if one
786 * is found, update it, otherwise create and instantiate a new one and create a
787 * link to it from that keyring.
788 *
789 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
790 * concocted.
791 *
792 * Returns a pointer to the new key if successful, -ENODEV if the key type
793 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
794 * caller isn't permitted to modify the keyring or the LSM did not permit
795 * creation of the key.
796 *
797 * On success, the possession flag from the keyring ref will be tacked on to
798 * the key ref before it is returned.
799 */
800key_ref_t key_create_or_update(key_ref_t keyring_ref,
801 const char *type,
802 const char *description,
803 const void *payload,
804 size_t plen,
805 key_perm_t perm,
806 unsigned long flags)
807{
808 struct keyring_index_key index_key = {
809 .description = description,
810 };
811 struct key_preparsed_payload prep;
812 struct assoc_array_edit *edit;
813 const struct cred *cred = current_cred();
814 struct key *keyring, *key = NULL;
815 key_ref_t key_ref;
816 int ret;
817 struct key_restriction *restrict_link = NULL;
818
819 /* look up the key type to see if it's one of the registered kernel
820 * types */
821 index_key.type = key_type_lookup(type);
822 if (IS_ERR(index_key.type)) {
823 key_ref = ERR_PTR(-ENODEV);
824 goto error;
825 }
826
827 key_ref = ERR_PTR(-EINVAL);
828 if (!index_key.type->instantiate ||
829 (!index_key.description && !index_key.type->preparse))
830 goto error_put_type;
831
832 keyring = key_ref_to_ptr(keyring_ref);
833
834 key_check(keyring);
835
836 if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
837 restrict_link = keyring->restrict_link;
838
839 key_ref = ERR_PTR(-ENOTDIR);
840 if (keyring->type != &key_type_keyring)
841 goto error_put_type;
842
843 memset(&prep, 0, sizeof(prep));
844 prep.data = payload;
845 prep.datalen = plen;
846 prep.quotalen = index_key.type->def_datalen;
847 prep.expiry = TIME64_MAX;
848 if (index_key.type->preparse) {
849 ret = index_key.type->preparse(&prep);
850 if (ret < 0) {
851 key_ref = ERR_PTR(ret);
852 goto error_free_prep;
853 }
854 if (!index_key.description)
855 index_key.description = prep.description;
856 key_ref = ERR_PTR(-EINVAL);
857 if (!index_key.description)
858 goto error_free_prep;
859 }
860 index_key.desc_len = strlen(index_key.description);
861
862 ret = __key_link_begin(keyring, &index_key, &edit);
863 if (ret < 0) {
864 key_ref = ERR_PTR(ret);
865 goto error_free_prep;
866 }
867
868 if (restrict_link && restrict_link->check) {
869 ret = restrict_link->check(keyring, index_key.type,
870 &prep.payload, restrict_link->key);
871 if (ret < 0) {
872 key_ref = ERR_PTR(ret);
873 goto error_link_end;
874 }
875 }
876
877 /* if we're going to allocate a new key, we're going to have
878 * to modify the keyring */
879 ret = key_permission(keyring_ref, KEY_NEED_WRITE);
880 if (ret < 0) {
881 key_ref = ERR_PTR(ret);
882 goto error_link_end;
883 }
884
885 /* if it's possible to update this type of key, search for an existing
886 * key of the same type and description in the destination keyring and
887 * update that instead if possible
888 */
889 if (index_key.type->update) {
890 key_ref = find_key_to_update(keyring_ref, &index_key);
891 if (key_ref)
892 goto found_matching_key;
893 }
894
895 /* if the client doesn't provide, decide on the permissions we want */
896 if (perm == KEY_PERM_UNDEF) {
897 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
898 perm |= KEY_USR_VIEW;
899
900 if (index_key.type->read)
901 perm |= KEY_POS_READ;
902
903 if (index_key.type == &key_type_keyring ||
904 index_key.type->update)
905 perm |= KEY_POS_WRITE;
906 }
907
908 /* allocate a new key */
909 key = key_alloc(index_key.type, index_key.description,
910 cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
911 if (IS_ERR(key)) {
912 key_ref = ERR_CAST(key);
913 goto error_link_end;
914 }
915
916 /* instantiate it and link it into the target keyring */
917 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
918 if (ret < 0) {
919 key_put(key);
920 key_ref = ERR_PTR(ret);
921 goto error_link_end;
922 }
923
924 key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
925
926error_link_end:
927 __key_link_end(keyring, &index_key, edit);
928error_free_prep:
929 if (index_key.type->preparse)
930 index_key.type->free_preparse(&prep);
931error_put_type:
932 key_type_put(index_key.type);
933error:
934 return key_ref;
935
936 found_matching_key:
937 /* we found a matching key, so we're going to try to update it
938 * - we can drop the locks first as we have the key pinned
939 */
940 __key_link_end(keyring, &index_key, edit);
941
942 key = key_ref_to_ptr(key_ref);
943 if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
944 ret = wait_for_key_construction(key, true);
945 if (ret < 0) {
946 key_ref_put(key_ref);
947 key_ref = ERR_PTR(ret);
948 goto error_free_prep;
949 }
950 }
951
952 key_ref = __key_update(key_ref, &prep);
953 goto error_free_prep;
954}
955EXPORT_SYMBOL(key_create_or_update);
956
957/**
958 * key_update - Update a key's contents.
959 * @key_ref: The pointer (plus possession flag) to the key.
960 * @payload: The data to be used to update the key.
961 * @plen: The length of @payload.
962 *
963 * Attempt to update the contents of a key with the given payload data. The
964 * caller must be granted Write permission on the key. Negative keys can be
965 * instantiated by this method.
966 *
967 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
968 * type does not support updating. The key type may return other errors.
969 */
970int key_update(key_ref_t key_ref, const void *payload, size_t plen)
971{
972 struct key_preparsed_payload prep;
973 struct key *key = key_ref_to_ptr(key_ref);
974 int ret;
975
976 key_check(key);
977
978 /* the key must be writable */
979 ret = key_permission(key_ref, KEY_NEED_WRITE);
980 if (ret < 0)
981 return ret;
982
983 /* attempt to update it if supported */
984 if (!key->type->update)
985 return -EOPNOTSUPP;
986
987 memset(&prep, 0, sizeof(prep));
988 prep.data = payload;
989 prep.datalen = plen;
990 prep.quotalen = key->type->def_datalen;
991 prep.expiry = TIME64_MAX;
992 if (key->type->preparse) {
993 ret = key->type->preparse(&prep);
994 if (ret < 0)
995 goto error;
996 }
997
998 down_write(&key->sem);
999
1000 ret = key->type->update(key, &prep);
1001 if (ret == 0)
1002 /* Updating a negative key positively instantiates it */
1003 mark_key_instantiated(key, 0);
1004
1005 up_write(&key->sem);
1006
1007error:
1008 if (key->type->preparse)
1009 key->type->free_preparse(&prep);
1010 return ret;
1011}
1012EXPORT_SYMBOL(key_update);
1013
1014/**
1015 * key_revoke - Revoke a key.
1016 * @key: The key to be revoked.
1017 *
1018 * Mark a key as being revoked and ask the type to free up its resources. The
1019 * revocation timeout is set and the key and all its links will be
1020 * automatically garbage collected after key_gc_delay amount of time if they
1021 * are not manually dealt with first.
1022 */
1023void key_revoke(struct key *key)
1024{
1025 time64_t time;
1026
1027 key_check(key);
1028
1029 /* make sure no one's trying to change or use the key when we mark it
1030 * - we tell lockdep that we might nest because we might be revoking an
1031 * authorisation key whilst holding the sem on a key we've just
1032 * instantiated
1033 */
1034 down_write_nested(&key->sem, 1);
1035 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1036 key->type->revoke)
1037 key->type->revoke(key);
1038
1039 /* set the death time to no more than the expiry time */
1040 time = ktime_get_real_seconds();
1041 if (key->revoked_at == 0 || key->revoked_at > time) {
1042 key->revoked_at = time;
1043 key_schedule_gc(key->revoked_at + key_gc_delay);
1044 }
1045
1046 up_write(&key->sem);
1047}
1048EXPORT_SYMBOL(key_revoke);
1049
1050/**
1051 * key_invalidate - Invalidate a key.
1052 * @key: The key to be invalidated.
1053 *
1054 * Mark a key as being invalidated and have it cleaned up immediately. The key
1055 * is ignored by all searches and other operations from this point.
1056 */
1057void key_invalidate(struct key *key)
1058{
1059 kenter("%d", key_serial(key));
1060
1061 key_check(key);
1062
1063 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1064 down_write_nested(&key->sem, 1);
1065 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1066 key_schedule_gc_links();
1067 up_write(&key->sem);
1068 }
1069}
1070EXPORT_SYMBOL(key_invalidate);
1071
1072/**
1073 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1074 * @key: The key to be instantiated
1075 * @prep: The preparsed data to load.
1076 *
1077 * Instantiate a key from preparsed data. We assume we can just copy the data
1078 * in directly and clear the old pointers.
1079 *
1080 * This can be pointed to directly by the key type instantiate op pointer.
1081 */
1082int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1083{
1084 int ret;
1085
1086 pr_devel("==>%s()\n", __func__);
1087
1088 ret = key_payload_reserve(key, prep->quotalen);
1089 if (ret == 0) {
1090 rcu_assign_keypointer(key, prep->payload.data[0]);
1091 key->payload.data[1] = prep->payload.data[1];
1092 key->payload.data[2] = prep->payload.data[2];
1093 key->payload.data[3] = prep->payload.data[3];
1094 prep->payload.data[0] = NULL;
1095 prep->payload.data[1] = NULL;
1096 prep->payload.data[2] = NULL;
1097 prep->payload.data[3] = NULL;
1098 }
1099 pr_devel("<==%s() = %d\n", __func__, ret);
1100 return ret;
1101}
1102EXPORT_SYMBOL(generic_key_instantiate);
1103
1104/**
1105 * register_key_type - Register a type of key.
1106 * @ktype: The new key type.
1107 *
1108 * Register a new key type.
1109 *
1110 * Returns 0 on success or -EEXIST if a type of this name already exists.
1111 */
1112int register_key_type(struct key_type *ktype)
1113{
1114 struct key_type *p;
1115 int ret;
1116
1117 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1118
1119 ret = -EEXIST;
1120 down_write(&key_types_sem);
1121
1122 /* disallow key types with the same name */
1123 list_for_each_entry(p, &key_types_list, link) {
1124 if (strcmp(p->name, ktype->name) == 0)
1125 goto out;
1126 }
1127
1128 /* store the type */
1129 list_add(&ktype->link, &key_types_list);
1130
1131 pr_notice("Key type %s registered\n", ktype->name);
1132 ret = 0;
1133
1134out:
1135 up_write(&key_types_sem);
1136 return ret;
1137}
1138EXPORT_SYMBOL(register_key_type);
1139
1140/**
1141 * unregister_key_type - Unregister a type of key.
1142 * @ktype: The key type.
1143 *
1144 * Unregister a key type and mark all the extant keys of this type as dead.
1145 * Those keys of this type are then destroyed to get rid of their payloads and
1146 * they and their links will be garbage collected as soon as possible.
1147 */
1148void unregister_key_type(struct key_type *ktype)
1149{
1150 down_write(&key_types_sem);
1151 list_del_init(&ktype->link);
1152 downgrade_write(&key_types_sem);
1153 key_gc_keytype(ktype);
1154 pr_notice("Key type %s unregistered\n", ktype->name);
1155 up_read(&key_types_sem);
1156}
1157EXPORT_SYMBOL(unregister_key_type);
1158
1159/*
1160 * Initialise the key management state.
1161 */
1162void __init key_init(void)
1163{
1164 /* allocate a slab in which we can store keys */
1165 key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1166 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1167
1168 /* add the special key types */
1169 list_add_tail(&key_type_keyring.link, &key_types_list);
1170 list_add_tail(&key_type_dead.link, &key_types_list);
1171 list_add_tail(&key_type_user.link, &key_types_list);
1172 list_add_tail(&key_type_logon.link, &key_types_list);
1173
1174 /* record the root user tracking */
1175 rb_link_node(&root_key_user.node,
1176 NULL,
1177 &key_user_tree.rb_node);
1178
1179 rb_insert_color(&root_key_user.node,
1180 &key_user_tree);
1181}