Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Basic authentication token and access key management
   3 *
   4 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
   5 * Written by David Howells (dhowells@redhat.com)
 
 
 
 
 
   6 */
   7
   8#include <linux/export.h>
   9#include <linux/init.h>
  10#include <linux/poison.h>
  11#include <linux/sched.h>
  12#include <linux/slab.h>
  13#include <linux/security.h>
  14#include <linux/workqueue.h>
  15#include <linux/random.h>
  16#include <linux/ima.h>
  17#include <linux/err.h>
 
  18#include "internal.h"
  19
  20struct kmem_cache *key_jar;
  21struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
  22DEFINE_SPINLOCK(key_serial_lock);
  23
  24struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
  25DEFINE_SPINLOCK(key_user_lock);
  26
  27unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
  28unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
  29unsigned int key_quota_maxkeys = 200;		/* general key count quota */
  30unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
  31
  32static LIST_HEAD(key_types_list);
  33static DECLARE_RWSEM(key_types_sem);
  34
  35/* We serialise key instantiation and link */
  36DEFINE_MUTEX(key_construction_mutex);
  37
  38#ifdef KEY_DEBUGGING
  39void __key_check(const struct key *key)
  40{
  41	printk("__key_check: key %p {%08x} should be {%08x}\n",
  42	       key, key->magic, KEY_DEBUG_MAGIC);
  43	BUG();
  44}
  45#endif
  46
  47/*
  48 * Get the key quota record for a user, allocating a new record if one doesn't
  49 * already exist.
  50 */
  51struct key_user *key_user_lookup(kuid_t uid)
  52{
  53	struct key_user *candidate = NULL, *user;
  54	struct rb_node *parent, **p;
 
  55
  56try_again:
  57	parent = NULL;
  58	p = &key_user_tree.rb_node;
  59	spin_lock(&key_user_lock);
  60
  61	/* search the tree for a user record with a matching UID */
  62	while (*p) {
  63		parent = *p;
  64		user = rb_entry(parent, struct key_user, node);
  65
  66		if (uid_lt(uid, user->uid))
  67			p = &(*p)->rb_left;
  68		else if (uid_gt(uid, user->uid))
 
 
 
 
  69			p = &(*p)->rb_right;
  70		else
  71			goto found;
  72	}
  73
  74	/* if we get here, we failed to find a match in the tree */
  75	if (!candidate) {
  76		/* allocate a candidate user record if we don't already have
  77		 * one */
  78		spin_unlock(&key_user_lock);
  79
  80		user = NULL;
  81		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
  82		if (unlikely(!candidate))
  83			goto out;
  84
  85		/* the allocation may have scheduled, so we need to repeat the
  86		 * search lest someone else added the record whilst we were
  87		 * asleep */
  88		goto try_again;
  89	}
  90
  91	/* if we get here, then the user record still hadn't appeared on the
  92	 * second pass - so we use the candidate record */
  93	refcount_set(&candidate->usage, 1);
  94	atomic_set(&candidate->nkeys, 0);
  95	atomic_set(&candidate->nikeys, 0);
  96	candidate->uid = uid;
 
  97	candidate->qnkeys = 0;
  98	candidate->qnbytes = 0;
  99	spin_lock_init(&candidate->lock);
 100	mutex_init(&candidate->cons_lock);
 101
 102	rb_link_node(&candidate->node, parent, p);
 103	rb_insert_color(&candidate->node, &key_user_tree);
 104	spin_unlock(&key_user_lock);
 105	user = candidate;
 106	goto out;
 107
 108	/* okay - we found a user record for this UID */
 109found:
 110	refcount_inc(&user->usage);
 111	spin_unlock(&key_user_lock);
 112	kfree(candidate);
 113out:
 114	return user;
 115}
 116
 117/*
 118 * Dispose of a user structure
 119 */
 120void key_user_put(struct key_user *user)
 121{
 122	if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
 123		rb_erase(&user->node, &key_user_tree);
 124		spin_unlock(&key_user_lock);
 
 125
 126		kfree(user);
 127	}
 128}
 129
 130/*
 131 * Allocate a serial number for a key.  These are assigned randomly to avoid
 132 * security issues through covert channel problems.
 133 */
 134static inline void key_alloc_serial(struct key *key)
 135{
 136	struct rb_node *parent, **p;
 137	struct key *xkey;
 138
 139	/* propose a random serial number and look for a hole for it in the
 140	 * serial number tree */
 141	do {
 142		get_random_bytes(&key->serial, sizeof(key->serial));
 143
 144		key->serial >>= 1; /* negative numbers are not permitted */
 145	} while (key->serial < 3);
 146
 147	spin_lock(&key_serial_lock);
 148
 149attempt_insertion:
 150	parent = NULL;
 151	p = &key_serial_tree.rb_node;
 152
 153	while (*p) {
 154		parent = *p;
 155		xkey = rb_entry(parent, struct key, serial_node);
 156
 157		if (key->serial < xkey->serial)
 158			p = &(*p)->rb_left;
 159		else if (key->serial > xkey->serial)
 160			p = &(*p)->rb_right;
 161		else
 162			goto serial_exists;
 163	}
 164
 165	/* we've found a suitable hole - arrange for this key to occupy it */
 166	rb_link_node(&key->serial_node, parent, p);
 167	rb_insert_color(&key->serial_node, &key_serial_tree);
 168
 169	spin_unlock(&key_serial_lock);
 170	return;
 171
 172	/* we found a key with the proposed serial number - walk the tree from
 173	 * that point looking for the next unused serial number */
 174serial_exists:
 175	for (;;) {
 176		key->serial++;
 177		if (key->serial < 3) {
 178			key->serial = 3;
 179			goto attempt_insertion;
 180		}
 181
 182		parent = rb_next(parent);
 183		if (!parent)
 184			goto attempt_insertion;
 185
 186		xkey = rb_entry(parent, struct key, serial_node);
 187		if (key->serial < xkey->serial)
 188			goto attempt_insertion;
 189	}
 190}
 191
 192/**
 193 * key_alloc - Allocate a key of the specified type.
 194 * @type: The type of key to allocate.
 195 * @desc: The key description to allow the key to be searched out.
 196 * @uid: The owner of the new key.
 197 * @gid: The group ID for the new key's group permissions.
 198 * @cred: The credentials specifying UID namespace.
 199 * @perm: The permissions mask of the new key.
 200 * @flags: Flags specifying quota properties.
 201 * @restrict_link: Optional link restriction for new keyrings.
 202 *
 203 * Allocate a key of the specified type with the attributes given.  The key is
 204 * returned in an uninstantiated state and the caller needs to instantiate the
 205 * key before returning.
 206 *
 207 * The restrict_link structure (if not NULL) will be freed when the
 208 * keyring is destroyed, so it must be dynamically allocated.
 209 *
 210 * The user's key count quota is updated to reflect the creation of the key and
 211 * the user's key data quota has the default for the key type reserved.  The
 212 * instantiation function should amend this as necessary.  If insufficient
 213 * quota is available, -EDQUOT will be returned.
 214 *
 215 * The LSM security modules can prevent a key being created, in which case
 216 * -EACCES will be returned.
 217 *
 218 * Returns a pointer to the new key if successful and an error code otherwise.
 219 *
 220 * Note that the caller needs to ensure the key type isn't uninstantiated.
 221 * Internally this can be done by locking key_types_sem.  Externally, this can
 222 * be done by either never unregistering the key type, or making sure
 223 * key_alloc() calls don't race with module unloading.
 224 */
 225struct key *key_alloc(struct key_type *type, const char *desc,
 226		      kuid_t uid, kgid_t gid, const struct cred *cred,
 227		      key_perm_t perm, unsigned long flags,
 228		      struct key_restriction *restrict_link)
 229{
 230	struct key_user *user = NULL;
 231	struct key *key;
 232	size_t desclen, quotalen;
 233	int ret;
 234
 235	key = ERR_PTR(-EINVAL);
 236	if (!desc || !*desc)
 237		goto error;
 238
 239	if (type->vet_description) {
 240		ret = type->vet_description(desc);
 241		if (ret < 0) {
 242			key = ERR_PTR(ret);
 243			goto error;
 244		}
 245	}
 246
 247	desclen = strlen(desc);
 248	quotalen = desclen + 1 + type->def_datalen;
 249
 250	/* get hold of the key tracking for this user */
 251	user = key_user_lookup(uid);
 252	if (!user)
 253		goto no_memory_1;
 254
 255	/* check that the user's quota permits allocation of another key and
 256	 * its description */
 257	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 258		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
 259			key_quota_root_maxkeys : key_quota_maxkeys;
 260		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
 261			key_quota_root_maxbytes : key_quota_maxbytes;
 262
 263		spin_lock(&user->lock);
 264		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
 265			if (user->qnkeys + 1 > maxkeys ||
 266			    user->qnbytes + quotalen > maxbytes ||
 267			    user->qnbytes + quotalen < user->qnbytes)
 268				goto no_quota;
 269		}
 270
 271		user->qnkeys++;
 272		user->qnbytes += quotalen;
 273		spin_unlock(&user->lock);
 274	}
 275
 276	/* allocate and initialise the key and its description */
 277	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
 278	if (!key)
 279		goto no_memory_2;
 280
 281	key->index_key.desc_len = desclen;
 282	key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
 283	if (!key->index_key.description)
 284		goto no_memory_3;
 285	key->index_key.type = type;
 286	key_set_index_key(&key->index_key);
 287
 288	refcount_set(&key->usage, 1);
 289	init_rwsem(&key->sem);
 290	lockdep_set_class(&key->sem, &type->lock_class);
 
 291	key->user = user;
 292	key->quotalen = quotalen;
 293	key->datalen = type->def_datalen;
 294	key->uid = uid;
 295	key->gid = gid;
 296	key->perm = perm;
 297	key->restrict_link = restrict_link;
 298	key->last_used_at = ktime_get_real_seconds();
 
 
 299
 300	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
 301		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
 302	if (flags & KEY_ALLOC_BUILT_IN)
 303		key->flags |= 1 << KEY_FLAG_BUILTIN;
 304	if (flags & KEY_ALLOC_UID_KEYRING)
 305		key->flags |= 1 << KEY_FLAG_UID_KEYRING;
 306	if (flags & KEY_ALLOC_SET_KEEP)
 307		key->flags |= 1 << KEY_FLAG_KEEP;
 308
 309#ifdef KEY_DEBUGGING
 310	key->magic = KEY_DEBUG_MAGIC;
 311#endif
 312
 313	/* let the security module know about the key */
 314	ret = security_key_alloc(key, cred, flags);
 315	if (ret < 0)
 316		goto security_error;
 317
 318	/* publish the key by giving it a serial number */
 319	refcount_inc(&key->domain_tag->usage);
 320	atomic_inc(&user->nkeys);
 321	key_alloc_serial(key);
 322
 323error:
 324	return key;
 325
 326security_error:
 327	kfree(key->description);
 328	kmem_cache_free(key_jar, key);
 329	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 330		spin_lock(&user->lock);
 331		user->qnkeys--;
 332		user->qnbytes -= quotalen;
 333		spin_unlock(&user->lock);
 334	}
 335	key_user_put(user);
 336	key = ERR_PTR(ret);
 337	goto error;
 338
 339no_memory_3:
 340	kmem_cache_free(key_jar, key);
 341no_memory_2:
 342	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 343		spin_lock(&user->lock);
 344		user->qnkeys--;
 345		user->qnbytes -= quotalen;
 346		spin_unlock(&user->lock);
 347	}
 348	key_user_put(user);
 349no_memory_1:
 350	key = ERR_PTR(-ENOMEM);
 351	goto error;
 352
 353no_quota:
 354	spin_unlock(&user->lock);
 355	key_user_put(user);
 356	key = ERR_PTR(-EDQUOT);
 357	goto error;
 358}
 359EXPORT_SYMBOL(key_alloc);
 360
 361/**
 362 * key_payload_reserve - Adjust data quota reservation for the key's payload
 363 * @key: The key to make the reservation for.
 364 * @datalen: The amount of data payload the caller now wants.
 365 *
 366 * Adjust the amount of the owning user's key data quota that a key reserves.
 367 * If the amount is increased, then -EDQUOT may be returned if there isn't
 368 * enough free quota available.
 369 *
 370 * If successful, 0 is returned.
 371 */
 372int key_payload_reserve(struct key *key, size_t datalen)
 373{
 374	int delta = (int)datalen - key->datalen;
 375	int ret = 0;
 376
 377	key_check(key);
 378
 379	/* contemplate the quota adjustment */
 380	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 381		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
 382			key_quota_root_maxbytes : key_quota_maxbytes;
 383
 384		spin_lock(&key->user->lock);
 385
 386		if (delta > 0 &&
 387		    (key->user->qnbytes + delta > maxbytes ||
 388		     key->user->qnbytes + delta < key->user->qnbytes)) {
 389			ret = -EDQUOT;
 390		}
 391		else {
 392			key->user->qnbytes += delta;
 393			key->quotalen += delta;
 394		}
 395		spin_unlock(&key->user->lock);
 396	}
 397
 398	/* change the recorded data length if that didn't generate an error */
 399	if (ret == 0)
 400		key->datalen = datalen;
 401
 402	return ret;
 403}
 404EXPORT_SYMBOL(key_payload_reserve);
 405
 406/*
 407 * Change the key state to being instantiated.
 408 */
 409static void mark_key_instantiated(struct key *key, int reject_error)
 410{
 411	/* Commit the payload before setting the state; barrier versus
 412	 * key_read_state().
 413	 */
 414	smp_store_release(&key->state,
 415			  (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
 416}
 417
 418/*
 419 * Instantiate a key and link it into the target keyring atomically.  Must be
 420 * called with the target keyring's semaphore writelocked.  The target key's
 421 * semaphore need not be locked as instantiation is serialised by
 422 * key_construction_mutex.
 423 */
 424static int __key_instantiate_and_link(struct key *key,
 425				      struct key_preparsed_payload *prep,
 
 426				      struct key *keyring,
 427				      struct key *authkey,
 428				      struct assoc_array_edit **_edit)
 429{
 430	int ret, awaken;
 431
 432	key_check(key);
 433	key_check(keyring);
 434
 435	awaken = 0;
 436	ret = -EBUSY;
 437
 438	mutex_lock(&key_construction_mutex);
 439
 440	/* can't instantiate twice */
 441	if (key->state == KEY_IS_UNINSTANTIATED) {
 442		/* instantiate the key */
 443		ret = key->type->instantiate(key, prep);
 444
 445		if (ret == 0) {
 446			/* mark the key as being instantiated */
 447			atomic_inc(&key->user->nikeys);
 448			mark_key_instantiated(key, 0);
 449			notify_key(key, NOTIFY_KEY_INSTANTIATED, 0);
 450
 451			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 452				awaken = 1;
 453
 454			/* and link it into the destination keyring */
 455			if (keyring) {
 456				if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
 457					set_bit(KEY_FLAG_KEEP, &key->flags);
 458
 459				__key_link(keyring, key, _edit);
 460			}
 461
 462			/* disable the authorisation key */
 463			if (authkey)
 464				key_invalidate(authkey);
 465
 466			if (prep->expiry != TIME64_MAX) {
 467				key->expiry = prep->expiry;
 468				key_schedule_gc(prep->expiry + key_gc_delay);
 469			}
 470		}
 471	}
 472
 473	mutex_unlock(&key_construction_mutex);
 474
 475	/* wake up anyone waiting for a key to be constructed */
 476	if (awaken)
 477		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 478
 479	return ret;
 480}
 481
 482/**
 483 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
 484 * @key: The key to instantiate.
 485 * @data: The data to use to instantiate the keyring.
 486 * @datalen: The length of @data.
 487 * @keyring: Keyring to create a link in on success (or NULL).
 488 * @authkey: The authorisation token permitting instantiation.
 489 *
 490 * Instantiate a key that's in the uninstantiated state using the provided data
 491 * and, if successful, link it in to the destination keyring if one is
 492 * supplied.
 493 *
 494 * If successful, 0 is returned, the authorisation token is revoked and anyone
 495 * waiting for the key is woken up.  If the key was already instantiated,
 496 * -EBUSY will be returned.
 497 */
 498int key_instantiate_and_link(struct key *key,
 499			     const void *data,
 500			     size_t datalen,
 501			     struct key *keyring,
 502			     struct key *authkey)
 503{
 504	struct key_preparsed_payload prep;
 505	struct assoc_array_edit *edit = NULL;
 506	int ret;
 507
 508	memset(&prep, 0, sizeof(prep));
 509	prep.orig_description = key->description;
 510	prep.data = data;
 511	prep.datalen = datalen;
 512	prep.quotalen = key->type->def_datalen;
 513	prep.expiry = TIME64_MAX;
 514	if (key->type->preparse) {
 515		ret = key->type->preparse(&prep);
 516		if (ret < 0)
 517			goto error;
 518	}
 519
 520	if (keyring) {
 521		ret = __key_link_lock(keyring, &key->index_key);
 522		if (ret < 0)
 523			goto error;
 524
 525		ret = __key_link_begin(keyring, &key->index_key, &edit);
 526		if (ret < 0)
 527			goto error_link_end;
 528
 529		if (keyring->restrict_link && keyring->restrict_link->check) {
 530			struct key_restriction *keyres = keyring->restrict_link;
 531
 532			ret = keyres->check(keyring, key->type, &prep.payload,
 533					    keyres->key);
 534			if (ret < 0)
 535				goto error_link_end;
 536		}
 537	}
 538
 539	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
 
 540
 541error_link_end:
 542	if (keyring)
 543		__key_link_end(keyring, &key->index_key, edit);
 544
 545error:
 546	if (key->type->preparse)
 547		key->type->free_preparse(&prep);
 548	return ret;
 549}
 550
 551EXPORT_SYMBOL(key_instantiate_and_link);
 552
 553/**
 554 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
 555 * @key: The key to instantiate.
 556 * @timeout: The timeout on the negative key.
 557 * @error: The error to return when the key is hit.
 558 * @keyring: Keyring to create a link in on success (or NULL).
 559 * @authkey: The authorisation token permitting instantiation.
 560 *
 561 * Negatively instantiate a key that's in the uninstantiated state and, if
 562 * successful, set its timeout and stored error and link it in to the
 563 * destination keyring if one is supplied.  The key and any links to the key
 564 * will be automatically garbage collected after the timeout expires.
 565 *
 566 * Negative keys are used to rate limit repeated request_key() calls by causing
 567 * them to return the stored error code (typically ENOKEY) until the negative
 568 * key expires.
 569 *
 570 * If successful, 0 is returned, the authorisation token is revoked and anyone
 571 * waiting for the key is woken up.  If the key was already instantiated,
 572 * -EBUSY will be returned.
 573 */
 574int key_reject_and_link(struct key *key,
 575			unsigned timeout,
 576			unsigned error,
 577			struct key *keyring,
 578			struct key *authkey)
 579{
 580	struct assoc_array_edit *edit = NULL;
 
 581	int ret, awaken, link_ret = 0;
 582
 583	key_check(key);
 584	key_check(keyring);
 585
 586	awaken = 0;
 587	ret = -EBUSY;
 588
 589	if (keyring) {
 590		if (keyring->restrict_link)
 591			return -EPERM;
 592
 593		link_ret = __key_link_lock(keyring, &key->index_key);
 594		if (link_ret == 0) {
 595			link_ret = __key_link_begin(keyring, &key->index_key, &edit);
 596			if (link_ret < 0)
 597				__key_link_end(keyring, &key->index_key, edit);
 598		}
 599	}
 600
 601	mutex_lock(&key_construction_mutex);
 602
 603	/* can't instantiate twice */
 604	if (key->state == KEY_IS_UNINSTANTIATED) {
 605		/* mark the key as being negatively instantiated */
 606		atomic_inc(&key->user->nikeys);
 607		mark_key_instantiated(key, -error);
 608		notify_key(key, NOTIFY_KEY_INSTANTIATED, -error);
 609		key->expiry = ktime_get_real_seconds() + timeout;
 
 
 610		key_schedule_gc(key->expiry + key_gc_delay);
 611
 612		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 613			awaken = 1;
 614
 615		ret = 0;
 616
 617		/* and link it into the destination keyring */
 618		if (keyring && link_ret == 0)
 619			__key_link(keyring, key, &edit);
 620
 621		/* disable the authorisation key */
 622		if (authkey)
 623			key_invalidate(authkey);
 624	}
 625
 626	mutex_unlock(&key_construction_mutex);
 627
 628	if (keyring && link_ret == 0)
 629		__key_link_end(keyring, &key->index_key, edit);
 630
 631	/* wake up anyone waiting for a key to be constructed */
 632	if (awaken)
 633		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 634
 635	return ret == 0 ? link_ret : ret;
 636}
 637EXPORT_SYMBOL(key_reject_and_link);
 638
 639/**
 640 * key_put - Discard a reference to a key.
 641 * @key: The key to discard a reference from.
 642 *
 643 * Discard a reference to a key, and when all the references are gone, we
 644 * schedule the cleanup task to come and pull it out of the tree in process
 645 * context at some later time.
 646 */
 647void key_put(struct key *key)
 648{
 649	if (key) {
 650		key_check(key);
 651
 652		if (refcount_dec_and_test(&key->usage))
 653			schedule_work(&key_gc_work);
 654	}
 655}
 656EXPORT_SYMBOL(key_put);
 657
 658/*
 659 * Find a key by its serial number.
 660 */
 661struct key *key_lookup(key_serial_t id)
 662{
 663	struct rb_node *n;
 664	struct key *key;
 665
 666	spin_lock(&key_serial_lock);
 667
 668	/* search the tree for the specified key */
 669	n = key_serial_tree.rb_node;
 670	while (n) {
 671		key = rb_entry(n, struct key, serial_node);
 672
 673		if (id < key->serial)
 674			n = n->rb_left;
 675		else if (id > key->serial)
 676			n = n->rb_right;
 677		else
 678			goto found;
 679	}
 680
 681not_found:
 682	key = ERR_PTR(-ENOKEY);
 683	goto error;
 684
 685found:
 686	/* A key is allowed to be looked up only if someone still owns a
 687	 * reference to it - otherwise it's awaiting the gc.
 688	 */
 689	if (!refcount_inc_not_zero(&key->usage))
 690		goto not_found;
 691
 
 
 
 
 
 692error:
 693	spin_unlock(&key_serial_lock);
 694	return key;
 695}
 696
 697/*
 698 * Find and lock the specified key type against removal.
 699 *
 700 * We return with the sem read-locked if successful.  If the type wasn't
 701 * available -ENOKEY is returned instead.
 702 */
 703struct key_type *key_type_lookup(const char *type)
 704{
 705	struct key_type *ktype;
 706
 707	down_read(&key_types_sem);
 708
 709	/* look up the key type to see if it's one of the registered kernel
 710	 * types */
 711	list_for_each_entry(ktype, &key_types_list, link) {
 712		if (strcmp(ktype->name, type) == 0)
 713			goto found_kernel_type;
 714	}
 715
 716	up_read(&key_types_sem);
 717	ktype = ERR_PTR(-ENOKEY);
 718
 719found_kernel_type:
 720	return ktype;
 721}
 722
 723void key_set_timeout(struct key *key, unsigned timeout)
 724{
 725	time64_t expiry = 0;
 
 726
 727	/* make the changes with the locks held to prevent races */
 728	down_write(&key->sem);
 729
 730	if (timeout > 0)
 731		expiry = ktime_get_real_seconds() + timeout;
 
 
 732
 733	key->expiry = expiry;
 734	key_schedule_gc(key->expiry + key_gc_delay);
 735
 736	up_write(&key->sem);
 737}
 738EXPORT_SYMBOL_GPL(key_set_timeout);
 739
 740/*
 741 * Unlock a key type locked by key_type_lookup().
 742 */
 743void key_type_put(struct key_type *ktype)
 744{
 745	up_read(&key_types_sem);
 746}
 747
 748/*
 749 * Attempt to update an existing key.
 750 *
 751 * The key is given to us with an incremented refcount that we need to discard
 752 * if we get an error.
 753 */
 754static inline key_ref_t __key_update(key_ref_t key_ref,
 755				     struct key_preparsed_payload *prep)
 756{
 757	struct key *key = key_ref_to_ptr(key_ref);
 758	int ret;
 759
 760	/* need write permission on the key to update it */
 761	ret = key_permission(key_ref, KEY_NEED_WRITE);
 762	if (ret < 0)
 763		goto error;
 764
 765	ret = -EEXIST;
 766	if (!key->type->update)
 767		goto error;
 768
 769	down_write(&key->sem);
 770
 771	ret = key->type->update(key, prep);
 772	if (ret == 0) {
 773		/* Updating a negative key positively instantiates it */
 774		mark_key_instantiated(key, 0);
 775		notify_key(key, NOTIFY_KEY_UPDATED, 0);
 776	}
 777
 778	up_write(&key->sem);
 779
 780	if (ret < 0)
 781		goto error;
 782out:
 783	return key_ref;
 784
 785error:
 786	key_put(key);
 787	key_ref = ERR_PTR(ret);
 788	goto out;
 789}
 790
 791/**
 792 * key_create_or_update - Update or create and instantiate a key.
 793 * @keyring_ref: A pointer to the destination keyring with possession flag.
 794 * @type: The type of key.
 795 * @description: The searchable description for the key.
 796 * @payload: The data to use to instantiate or update the key.
 797 * @plen: The length of @payload.
 798 * @perm: The permissions mask for a new key.
 799 * @flags: The quota flags for a new key.
 800 *
 801 * Search the destination keyring for a key of the same description and if one
 802 * is found, update it, otherwise create and instantiate a new one and create a
 803 * link to it from that keyring.
 804 *
 805 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
 806 * concocted.
 807 *
 808 * Returns a pointer to the new key if successful, -ENODEV if the key type
 809 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
 810 * caller isn't permitted to modify the keyring or the LSM did not permit
 811 * creation of the key.
 812 *
 813 * On success, the possession flag from the keyring ref will be tacked on to
 814 * the key ref before it is returned.
 815 */
 816key_ref_t key_create_or_update(key_ref_t keyring_ref,
 817			       const char *type,
 818			       const char *description,
 819			       const void *payload,
 820			       size_t plen,
 821			       key_perm_t perm,
 822			       unsigned long flags)
 823{
 824	struct keyring_index_key index_key = {
 825		.description	= description,
 826	};
 827	struct key_preparsed_payload prep;
 828	struct assoc_array_edit *edit = NULL;
 829	const struct cred *cred = current_cred();
 
 830	struct key *keyring, *key = NULL;
 831	key_ref_t key_ref;
 832	int ret;
 833	struct key_restriction *restrict_link = NULL;
 834
 835	/* look up the key type to see if it's one of the registered kernel
 836	 * types */
 837	index_key.type = key_type_lookup(type);
 838	if (IS_ERR(index_key.type)) {
 839		key_ref = ERR_PTR(-ENODEV);
 840		goto error;
 841	}
 842
 843	key_ref = ERR_PTR(-EINVAL);
 844	if (!index_key.type->instantiate ||
 845	    (!index_key.description && !index_key.type->preparse))
 846		goto error_put_type;
 847
 848	keyring = key_ref_to_ptr(keyring_ref);
 849
 850	key_check(keyring);
 851
 852	if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
 853		restrict_link = keyring->restrict_link;
 854
 855	key_ref = ERR_PTR(-ENOTDIR);
 856	if (keyring->type != &key_type_keyring)
 857		goto error_put_type;
 858
 859	memset(&prep, 0, sizeof(prep));
 860	prep.orig_description = description;
 861	prep.data = payload;
 862	prep.datalen = plen;
 863	prep.quotalen = index_key.type->def_datalen;
 864	prep.expiry = TIME64_MAX;
 865	if (index_key.type->preparse) {
 866		ret = index_key.type->preparse(&prep);
 867		if (ret < 0) {
 868			key_ref = ERR_PTR(ret);
 869			goto error_free_prep;
 870		}
 871		if (!index_key.description)
 872			index_key.description = prep.description;
 873		key_ref = ERR_PTR(-EINVAL);
 874		if (!index_key.description)
 875			goto error_free_prep;
 876	}
 877	index_key.desc_len = strlen(index_key.description);
 878	key_set_index_key(&index_key);
 879
 880	ret = __key_link_lock(keyring, &index_key);
 881	if (ret < 0) {
 882		key_ref = ERR_PTR(ret);
 883		goto error_free_prep;
 884	}
 885
 886	ret = __key_link_begin(keyring, &index_key, &edit);
 887	if (ret < 0) {
 888		key_ref = ERR_PTR(ret);
 889		goto error_link_end;
 890	}
 891
 892	if (restrict_link && restrict_link->check) {
 893		ret = restrict_link->check(keyring, index_key.type,
 894					   &prep.payload, restrict_link->key);
 895		if (ret < 0) {
 896			key_ref = ERR_PTR(ret);
 897			goto error_link_end;
 898		}
 899	}
 900
 901	/* if we're going to allocate a new key, we're going to have
 902	 * to modify the keyring */
 903	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
 904	if (ret < 0) {
 905		key_ref = ERR_PTR(ret);
 906		goto error_link_end;
 907	}
 908
 909	/* if it's possible to update this type of key, search for an existing
 910	 * key of the same type and description in the destination keyring and
 911	 * update that instead if possible
 912	 */
 913	if (index_key.type->update) {
 914		key_ref = find_key_to_update(keyring_ref, &index_key);
 915		if (key_ref)
 
 916			goto found_matching_key;
 917	}
 918
 919	/* if the client doesn't provide, decide on the permissions we want */
 920	if (perm == KEY_PERM_UNDEF) {
 921		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
 922		perm |= KEY_USR_VIEW;
 923
 924		if (index_key.type->read)
 925			perm |= KEY_POS_READ;
 926
 927		if (index_key.type == &key_type_keyring ||
 928		    index_key.type->update)
 929			perm |= KEY_POS_WRITE;
 930	}
 931
 932	/* allocate a new key */
 933	key = key_alloc(index_key.type, index_key.description,
 934			cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
 935	if (IS_ERR(key)) {
 936		key_ref = ERR_CAST(key);
 937		goto error_link_end;
 938	}
 939
 940	/* instantiate it and link it into the target keyring */
 941	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
 
 942	if (ret < 0) {
 943		key_put(key);
 944		key_ref = ERR_PTR(ret);
 945		goto error_link_end;
 946	}
 947
 948	ima_post_key_create_or_update(keyring, key, payload, plen,
 949				      flags, true);
 950
 951	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
 952
 953error_link_end:
 954	__key_link_end(keyring, &index_key, edit);
 955error_free_prep:
 956	if (index_key.type->preparse)
 957		index_key.type->free_preparse(&prep);
 958error_put_type:
 959	key_type_put(index_key.type);
 960error:
 961	return key_ref;
 962
 963 found_matching_key:
 964	/* we found a matching key, so we're going to try to update it
 965	 * - we can drop the locks first as we have the key pinned
 966	 */
 967	__key_link_end(keyring, &index_key, edit);
 968
 969	key = key_ref_to_ptr(key_ref);
 970	if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
 971		ret = wait_for_key_construction(key, true);
 972		if (ret < 0) {
 973			key_ref_put(key_ref);
 974			key_ref = ERR_PTR(ret);
 975			goto error_free_prep;
 976		}
 977	}
 978
 979	key_ref = __key_update(key_ref, &prep);
 980
 981	if (!IS_ERR(key_ref))
 982		ima_post_key_create_or_update(keyring, key,
 983					      payload, plen,
 984					      flags, false);
 985
 986	goto error_free_prep;
 987}
 988EXPORT_SYMBOL(key_create_or_update);
 989
 990/**
 991 * key_update - Update a key's contents.
 992 * @key_ref: The pointer (plus possession flag) to the key.
 993 * @payload: The data to be used to update the key.
 994 * @plen: The length of @payload.
 995 *
 996 * Attempt to update the contents of a key with the given payload data.  The
 997 * caller must be granted Write permission on the key.  Negative keys can be
 998 * instantiated by this method.
 999 *
1000 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
1001 * type does not support updating.  The key type may return other errors.
1002 */
1003int key_update(key_ref_t key_ref, const void *payload, size_t plen)
1004{
1005	struct key_preparsed_payload prep;
1006	struct key *key = key_ref_to_ptr(key_ref);
1007	int ret;
1008
1009	key_check(key);
1010
1011	/* the key must be writable */
1012	ret = key_permission(key_ref, KEY_NEED_WRITE);
1013	if (ret < 0)
1014		return ret;
1015
1016	/* attempt to update it if supported */
1017	if (!key->type->update)
1018		return -EOPNOTSUPP;
1019
1020	memset(&prep, 0, sizeof(prep));
1021	prep.data = payload;
1022	prep.datalen = plen;
1023	prep.quotalen = key->type->def_datalen;
1024	prep.expiry = TIME64_MAX;
1025	if (key->type->preparse) {
1026		ret = key->type->preparse(&prep);
1027		if (ret < 0)
1028			goto error;
1029	}
1030
1031	down_write(&key->sem);
1032
1033	ret = key->type->update(key, &prep);
1034	if (ret == 0) {
1035		/* Updating a negative key positively instantiates it */
1036		mark_key_instantiated(key, 0);
1037		notify_key(key, NOTIFY_KEY_UPDATED, 0);
1038	}
1039
1040	up_write(&key->sem);
1041
1042error:
1043	if (key->type->preparse)
1044		key->type->free_preparse(&prep);
1045	return ret;
1046}
1047EXPORT_SYMBOL(key_update);
1048
1049/**
1050 * key_revoke - Revoke a key.
1051 * @key: The key to be revoked.
1052 *
1053 * Mark a key as being revoked and ask the type to free up its resources.  The
1054 * revocation timeout is set and the key and all its links will be
1055 * automatically garbage collected after key_gc_delay amount of time if they
1056 * are not manually dealt with first.
1057 */
1058void key_revoke(struct key *key)
1059{
1060	time64_t time;
 
1061
1062	key_check(key);
1063
1064	/* make sure no one's trying to change or use the key when we mark it
1065	 * - we tell lockdep that we might nest because we might be revoking an
1066	 *   authorisation key whilst holding the sem on a key we've just
1067	 *   instantiated
1068	 */
1069	down_write_nested(&key->sem, 1);
1070	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags)) {
1071		notify_key(key, NOTIFY_KEY_REVOKED, 0);
1072		if (key->type->revoke)
1073			key->type->revoke(key);
1074
1075		/* set the death time to no more than the expiry time */
1076		time = ktime_get_real_seconds();
1077		if (key->revoked_at == 0 || key->revoked_at > time) {
1078			key->revoked_at = time;
1079			key_schedule_gc(key->revoked_at + key_gc_delay);
1080		}
1081	}
1082
1083	up_write(&key->sem);
1084}
1085EXPORT_SYMBOL(key_revoke);
1086
1087/**
1088 * key_invalidate - Invalidate a key.
1089 * @key: The key to be invalidated.
1090 *
1091 * Mark a key as being invalidated and have it cleaned up immediately.  The key
1092 * is ignored by all searches and other operations from this point.
1093 */
1094void key_invalidate(struct key *key)
1095{
1096	kenter("%d", key_serial(key));
1097
1098	key_check(key);
1099
1100	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1101		down_write_nested(&key->sem, 1);
1102		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1103			notify_key(key, NOTIFY_KEY_INVALIDATED, 0);
1104			key_schedule_gc_links();
1105		}
1106		up_write(&key->sem);
1107	}
1108}
1109EXPORT_SYMBOL(key_invalidate);
1110
1111/**
1112 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1113 * @key: The key to be instantiated
1114 * @prep: The preparsed data to load.
1115 *
1116 * Instantiate a key from preparsed data.  We assume we can just copy the data
1117 * in directly and clear the old pointers.
1118 *
1119 * This can be pointed to directly by the key type instantiate op pointer.
1120 */
1121int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1122{
1123	int ret;
1124
1125	pr_devel("==>%s()\n", __func__);
1126
1127	ret = key_payload_reserve(key, prep->quotalen);
1128	if (ret == 0) {
1129		rcu_assign_keypointer(key, prep->payload.data[0]);
1130		key->payload.data[1] = prep->payload.data[1];
1131		key->payload.data[2] = prep->payload.data[2];
1132		key->payload.data[3] = prep->payload.data[3];
1133		prep->payload.data[0] = NULL;
1134		prep->payload.data[1] = NULL;
1135		prep->payload.data[2] = NULL;
1136		prep->payload.data[3] = NULL;
1137	}
1138	pr_devel("<==%s() = %d\n", __func__, ret);
1139	return ret;
1140}
1141EXPORT_SYMBOL(generic_key_instantiate);
1142
1143/**
1144 * register_key_type - Register a type of key.
1145 * @ktype: The new key type.
1146 *
1147 * Register a new key type.
1148 *
1149 * Returns 0 on success or -EEXIST if a type of this name already exists.
1150 */
1151int register_key_type(struct key_type *ktype)
1152{
1153	struct key_type *p;
1154	int ret;
1155
1156	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1157
1158	ret = -EEXIST;
1159	down_write(&key_types_sem);
1160
1161	/* disallow key types with the same name */
1162	list_for_each_entry(p, &key_types_list, link) {
1163		if (strcmp(p->name, ktype->name) == 0)
1164			goto out;
1165	}
1166
1167	/* store the type */
1168	list_add(&ktype->link, &key_types_list);
1169
1170	pr_notice("Key type %s registered\n", ktype->name);
1171	ret = 0;
1172
1173out:
1174	up_write(&key_types_sem);
1175	return ret;
1176}
1177EXPORT_SYMBOL(register_key_type);
1178
1179/**
1180 * unregister_key_type - Unregister a type of key.
1181 * @ktype: The key type.
1182 *
1183 * Unregister a key type and mark all the extant keys of this type as dead.
1184 * Those keys of this type are then destroyed to get rid of their payloads and
1185 * they and their links will be garbage collected as soon as possible.
1186 */
1187void unregister_key_type(struct key_type *ktype)
1188{
1189	down_write(&key_types_sem);
1190	list_del_init(&ktype->link);
1191	downgrade_write(&key_types_sem);
1192	key_gc_keytype(ktype);
1193	pr_notice("Key type %s unregistered\n", ktype->name);
1194	up_read(&key_types_sem);
1195}
1196EXPORT_SYMBOL(unregister_key_type);
1197
1198/*
1199 * Initialise the key management state.
1200 */
1201void __init key_init(void)
1202{
1203	/* allocate a slab in which we can store keys */
1204	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1205			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1206
1207	/* add the special key types */
1208	list_add_tail(&key_type_keyring.link, &key_types_list);
1209	list_add_tail(&key_type_dead.link, &key_types_list);
1210	list_add_tail(&key_type_user.link, &key_types_list);
1211	list_add_tail(&key_type_logon.link, &key_types_list);
1212
1213	/* record the root user tracking */
1214	rb_link_node(&root_key_user.node,
1215		     NULL,
1216		     &key_user_tree.rb_node);
1217
1218	rb_insert_color(&root_key_user.node,
1219			&key_user_tree);
1220}
v3.5.6
 
   1/* Basic authentication token and access key management
   2 *
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/poison.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/security.h>
  18#include <linux/workqueue.h>
  19#include <linux/random.h>
 
  20#include <linux/err.h>
  21#include <linux/user_namespace.h>
  22#include "internal.h"
  23
  24struct kmem_cache *key_jar;
  25struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
  26DEFINE_SPINLOCK(key_serial_lock);
  27
  28struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
  29DEFINE_SPINLOCK(key_user_lock);
  30
  31unsigned int key_quota_root_maxkeys = 200;	/* root's key count quota */
  32unsigned int key_quota_root_maxbytes = 20000;	/* root's key space quota */
  33unsigned int key_quota_maxkeys = 200;		/* general key count quota */
  34unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
  35
  36static LIST_HEAD(key_types_list);
  37static DECLARE_RWSEM(key_types_sem);
  38
  39/* We serialise key instantiation and link */
  40DEFINE_MUTEX(key_construction_mutex);
  41
  42#ifdef KEY_DEBUGGING
  43void __key_check(const struct key *key)
  44{
  45	printk("__key_check: key %p {%08x} should be {%08x}\n",
  46	       key, key->magic, KEY_DEBUG_MAGIC);
  47	BUG();
  48}
  49#endif
  50
  51/*
  52 * Get the key quota record for a user, allocating a new record if one doesn't
  53 * already exist.
  54 */
  55struct key_user *key_user_lookup(uid_t uid, struct user_namespace *user_ns)
  56{
  57	struct key_user *candidate = NULL, *user;
  58	struct rb_node *parent = NULL;
  59	struct rb_node **p;
  60
  61try_again:
 
  62	p = &key_user_tree.rb_node;
  63	spin_lock(&key_user_lock);
  64
  65	/* search the tree for a user record with a matching UID */
  66	while (*p) {
  67		parent = *p;
  68		user = rb_entry(parent, struct key_user, node);
  69
  70		if (uid < user->uid)
  71			p = &(*p)->rb_left;
  72		else if (uid > user->uid)
  73			p = &(*p)->rb_right;
  74		else if (user_ns < user->user_ns)
  75			p = &(*p)->rb_left;
  76		else if (user_ns > user->user_ns)
  77			p = &(*p)->rb_right;
  78		else
  79			goto found;
  80	}
  81
  82	/* if we get here, we failed to find a match in the tree */
  83	if (!candidate) {
  84		/* allocate a candidate user record if we don't already have
  85		 * one */
  86		spin_unlock(&key_user_lock);
  87
  88		user = NULL;
  89		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
  90		if (unlikely(!candidate))
  91			goto out;
  92
  93		/* the allocation may have scheduled, so we need to repeat the
  94		 * search lest someone else added the record whilst we were
  95		 * asleep */
  96		goto try_again;
  97	}
  98
  99	/* if we get here, then the user record still hadn't appeared on the
 100	 * second pass - so we use the candidate record */
 101	atomic_set(&candidate->usage, 1);
 102	atomic_set(&candidate->nkeys, 0);
 103	atomic_set(&candidate->nikeys, 0);
 104	candidate->uid = uid;
 105	candidate->user_ns = get_user_ns(user_ns);
 106	candidate->qnkeys = 0;
 107	candidate->qnbytes = 0;
 108	spin_lock_init(&candidate->lock);
 109	mutex_init(&candidate->cons_lock);
 110
 111	rb_link_node(&candidate->node, parent, p);
 112	rb_insert_color(&candidate->node, &key_user_tree);
 113	spin_unlock(&key_user_lock);
 114	user = candidate;
 115	goto out;
 116
 117	/* okay - we found a user record for this UID */
 118found:
 119	atomic_inc(&user->usage);
 120	spin_unlock(&key_user_lock);
 121	kfree(candidate);
 122out:
 123	return user;
 124}
 125
 126/*
 127 * Dispose of a user structure
 128 */
 129void key_user_put(struct key_user *user)
 130{
 131	if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
 132		rb_erase(&user->node, &key_user_tree);
 133		spin_unlock(&key_user_lock);
 134		put_user_ns(user->user_ns);
 135
 136		kfree(user);
 137	}
 138}
 139
 140/*
 141 * Allocate a serial number for a key.  These are assigned randomly to avoid
 142 * security issues through covert channel problems.
 143 */
 144static inline void key_alloc_serial(struct key *key)
 145{
 146	struct rb_node *parent, **p;
 147	struct key *xkey;
 148
 149	/* propose a random serial number and look for a hole for it in the
 150	 * serial number tree */
 151	do {
 152		get_random_bytes(&key->serial, sizeof(key->serial));
 153
 154		key->serial >>= 1; /* negative numbers are not permitted */
 155	} while (key->serial < 3);
 156
 157	spin_lock(&key_serial_lock);
 158
 159attempt_insertion:
 160	parent = NULL;
 161	p = &key_serial_tree.rb_node;
 162
 163	while (*p) {
 164		parent = *p;
 165		xkey = rb_entry(parent, struct key, serial_node);
 166
 167		if (key->serial < xkey->serial)
 168			p = &(*p)->rb_left;
 169		else if (key->serial > xkey->serial)
 170			p = &(*p)->rb_right;
 171		else
 172			goto serial_exists;
 173	}
 174
 175	/* we've found a suitable hole - arrange for this key to occupy it */
 176	rb_link_node(&key->serial_node, parent, p);
 177	rb_insert_color(&key->serial_node, &key_serial_tree);
 178
 179	spin_unlock(&key_serial_lock);
 180	return;
 181
 182	/* we found a key with the proposed serial number - walk the tree from
 183	 * that point looking for the next unused serial number */
 184serial_exists:
 185	for (;;) {
 186		key->serial++;
 187		if (key->serial < 3) {
 188			key->serial = 3;
 189			goto attempt_insertion;
 190		}
 191
 192		parent = rb_next(parent);
 193		if (!parent)
 194			goto attempt_insertion;
 195
 196		xkey = rb_entry(parent, struct key, serial_node);
 197		if (key->serial < xkey->serial)
 198			goto attempt_insertion;
 199	}
 200}
 201
 202/**
 203 * key_alloc - Allocate a key of the specified type.
 204 * @type: The type of key to allocate.
 205 * @desc: The key description to allow the key to be searched out.
 206 * @uid: The owner of the new key.
 207 * @gid: The group ID for the new key's group permissions.
 208 * @cred: The credentials specifying UID namespace.
 209 * @perm: The permissions mask of the new key.
 210 * @flags: Flags specifying quota properties.
 
 211 *
 212 * Allocate a key of the specified type with the attributes given.  The key is
 213 * returned in an uninstantiated state and the caller needs to instantiate the
 214 * key before returning.
 215 *
 
 
 
 216 * The user's key count quota is updated to reflect the creation of the key and
 217 * the user's key data quota has the default for the key type reserved.  The
 218 * instantiation function should amend this as necessary.  If insufficient
 219 * quota is available, -EDQUOT will be returned.
 220 *
 221 * The LSM security modules can prevent a key being created, in which case
 222 * -EACCES will be returned.
 223 *
 224 * Returns a pointer to the new key if successful and an error code otherwise.
 225 *
 226 * Note that the caller needs to ensure the key type isn't uninstantiated.
 227 * Internally this can be done by locking key_types_sem.  Externally, this can
 228 * be done by either never unregistering the key type, or making sure
 229 * key_alloc() calls don't race with module unloading.
 230 */
 231struct key *key_alloc(struct key_type *type, const char *desc,
 232		      uid_t uid, gid_t gid, const struct cred *cred,
 233		      key_perm_t perm, unsigned long flags)
 
 234{
 235	struct key_user *user = NULL;
 236	struct key *key;
 237	size_t desclen, quotalen;
 238	int ret;
 239
 240	key = ERR_PTR(-EINVAL);
 241	if (!desc || !*desc)
 242		goto error;
 243
 244	if (type->vet_description) {
 245		ret = type->vet_description(desc);
 246		if (ret < 0) {
 247			key = ERR_PTR(ret);
 248			goto error;
 249		}
 250	}
 251
 252	desclen = strlen(desc) + 1;
 253	quotalen = desclen + type->def_datalen;
 254
 255	/* get hold of the key tracking for this user */
 256	user = key_user_lookup(uid, cred->user_ns);
 257	if (!user)
 258		goto no_memory_1;
 259
 260	/* check that the user's quota permits allocation of another key and
 261	 * its description */
 262	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 263		unsigned maxkeys = (uid == 0) ?
 264			key_quota_root_maxkeys : key_quota_maxkeys;
 265		unsigned maxbytes = (uid == 0) ?
 266			key_quota_root_maxbytes : key_quota_maxbytes;
 267
 268		spin_lock(&user->lock);
 269		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
 270			if (user->qnkeys + 1 >= maxkeys ||
 271			    user->qnbytes + quotalen >= maxbytes ||
 272			    user->qnbytes + quotalen < user->qnbytes)
 273				goto no_quota;
 274		}
 275
 276		user->qnkeys++;
 277		user->qnbytes += quotalen;
 278		spin_unlock(&user->lock);
 279	}
 280
 281	/* allocate and initialise the key and its description */
 282	key = kmem_cache_alloc(key_jar, GFP_KERNEL);
 283	if (!key)
 284		goto no_memory_2;
 285
 286	if (desc) {
 287		key->description = kmemdup(desc, desclen, GFP_KERNEL);
 288		if (!key->description)
 289			goto no_memory_3;
 290	}
 
 291
 292	atomic_set(&key->usage, 1);
 293	init_rwsem(&key->sem);
 294	lockdep_set_class(&key->sem, &type->lock_class);
 295	key->type = type;
 296	key->user = user;
 297	key->quotalen = quotalen;
 298	key->datalen = type->def_datalen;
 299	key->uid = uid;
 300	key->gid = gid;
 301	key->perm = perm;
 302	key->flags = 0;
 303	key->expiry = 0;
 304	key->payload.data = NULL;
 305	key->security = NULL;
 306
 307	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
 308		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
 309
 310	memset(&key->type_data, 0, sizeof(key->type_data));
 
 
 
 
 311
 312#ifdef KEY_DEBUGGING
 313	key->magic = KEY_DEBUG_MAGIC;
 314#endif
 315
 316	/* let the security module know about the key */
 317	ret = security_key_alloc(key, cred, flags);
 318	if (ret < 0)
 319		goto security_error;
 320
 321	/* publish the key by giving it a serial number */
 
 322	atomic_inc(&user->nkeys);
 323	key_alloc_serial(key);
 324
 325error:
 326	return key;
 327
 328security_error:
 329	kfree(key->description);
 330	kmem_cache_free(key_jar, key);
 331	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 332		spin_lock(&user->lock);
 333		user->qnkeys--;
 334		user->qnbytes -= quotalen;
 335		spin_unlock(&user->lock);
 336	}
 337	key_user_put(user);
 338	key = ERR_PTR(ret);
 339	goto error;
 340
 341no_memory_3:
 342	kmem_cache_free(key_jar, key);
 343no_memory_2:
 344	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
 345		spin_lock(&user->lock);
 346		user->qnkeys--;
 347		user->qnbytes -= quotalen;
 348		spin_unlock(&user->lock);
 349	}
 350	key_user_put(user);
 351no_memory_1:
 352	key = ERR_PTR(-ENOMEM);
 353	goto error;
 354
 355no_quota:
 356	spin_unlock(&user->lock);
 357	key_user_put(user);
 358	key = ERR_PTR(-EDQUOT);
 359	goto error;
 360}
 361EXPORT_SYMBOL(key_alloc);
 362
 363/**
 364 * key_payload_reserve - Adjust data quota reservation for the key's payload
 365 * @key: The key to make the reservation for.
 366 * @datalen: The amount of data payload the caller now wants.
 367 *
 368 * Adjust the amount of the owning user's key data quota that a key reserves.
 369 * If the amount is increased, then -EDQUOT may be returned if there isn't
 370 * enough free quota available.
 371 *
 372 * If successful, 0 is returned.
 373 */
 374int key_payload_reserve(struct key *key, size_t datalen)
 375{
 376	int delta = (int)datalen - key->datalen;
 377	int ret = 0;
 378
 379	key_check(key);
 380
 381	/* contemplate the quota adjustment */
 382	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 383		unsigned maxbytes = (key->user->uid == 0) ?
 384			key_quota_root_maxbytes : key_quota_maxbytes;
 385
 386		spin_lock(&key->user->lock);
 387
 388		if (delta > 0 &&
 389		    (key->user->qnbytes + delta >= maxbytes ||
 390		     key->user->qnbytes + delta < key->user->qnbytes)) {
 391			ret = -EDQUOT;
 392		}
 393		else {
 394			key->user->qnbytes += delta;
 395			key->quotalen += delta;
 396		}
 397		spin_unlock(&key->user->lock);
 398	}
 399
 400	/* change the recorded data length if that didn't generate an error */
 401	if (ret == 0)
 402		key->datalen = datalen;
 403
 404	return ret;
 405}
 406EXPORT_SYMBOL(key_payload_reserve);
 407
 408/*
 
 
 
 
 
 
 
 
 
 
 
 
 409 * Instantiate a key and link it into the target keyring atomically.  Must be
 410 * called with the target keyring's semaphore writelocked.  The target key's
 411 * semaphore need not be locked as instantiation is serialised by
 412 * key_construction_mutex.
 413 */
 414static int __key_instantiate_and_link(struct key *key,
 415				      const void *data,
 416				      size_t datalen,
 417				      struct key *keyring,
 418				      struct key *authkey,
 419				      unsigned long *_prealloc)
 420{
 421	int ret, awaken;
 422
 423	key_check(key);
 424	key_check(keyring);
 425
 426	awaken = 0;
 427	ret = -EBUSY;
 428
 429	mutex_lock(&key_construction_mutex);
 430
 431	/* can't instantiate twice */
 432	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 433		/* instantiate the key */
 434		ret = key->type->instantiate(key, data, datalen);
 435
 436		if (ret == 0) {
 437			/* mark the key as being instantiated */
 438			atomic_inc(&key->user->nikeys);
 439			set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 
 440
 441			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 442				awaken = 1;
 443
 444			/* and link it into the destination keyring */
 445			if (keyring)
 446				__key_link(keyring, key, _prealloc);
 
 
 
 
 447
 448			/* disable the authorisation key */
 449			if (authkey)
 450				key_revoke(authkey);
 
 
 
 
 
 451		}
 452	}
 453
 454	mutex_unlock(&key_construction_mutex);
 455
 456	/* wake up anyone waiting for a key to be constructed */
 457	if (awaken)
 458		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 459
 460	return ret;
 461}
 462
 463/**
 464 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
 465 * @key: The key to instantiate.
 466 * @data: The data to use to instantiate the keyring.
 467 * @datalen: The length of @data.
 468 * @keyring: Keyring to create a link in on success (or NULL).
 469 * @authkey: The authorisation token permitting instantiation.
 470 *
 471 * Instantiate a key that's in the uninstantiated state using the provided data
 472 * and, if successful, link it in to the destination keyring if one is
 473 * supplied.
 474 *
 475 * If successful, 0 is returned, the authorisation token is revoked and anyone
 476 * waiting for the key is woken up.  If the key was already instantiated,
 477 * -EBUSY will be returned.
 478 */
 479int key_instantiate_and_link(struct key *key,
 480			     const void *data,
 481			     size_t datalen,
 482			     struct key *keyring,
 483			     struct key *authkey)
 484{
 485	unsigned long prealloc;
 
 486	int ret;
 487
 
 
 
 
 
 
 
 
 
 
 
 
 488	if (keyring) {
 489		ret = __key_link_begin(keyring, key->type, key->description,
 490				       &prealloc);
 
 
 
 491		if (ret < 0)
 492			return ret;
 
 
 
 
 
 
 
 
 
 493	}
 494
 495	ret = __key_instantiate_and_link(key, data, datalen, keyring, authkey,
 496					 &prealloc);
 497
 
 498	if (keyring)
 499		__key_link_end(keyring, key->type, prealloc);
 500
 
 
 
 501	return ret;
 502}
 503
 504EXPORT_SYMBOL(key_instantiate_and_link);
 505
 506/**
 507 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
 508 * @key: The key to instantiate.
 509 * @timeout: The timeout on the negative key.
 510 * @error: The error to return when the key is hit.
 511 * @keyring: Keyring to create a link in on success (or NULL).
 512 * @authkey: The authorisation token permitting instantiation.
 513 *
 514 * Negatively instantiate a key that's in the uninstantiated state and, if
 515 * successful, set its timeout and stored error and link it in to the
 516 * destination keyring if one is supplied.  The key and any links to the key
 517 * will be automatically garbage collected after the timeout expires.
 518 *
 519 * Negative keys are used to rate limit repeated request_key() calls by causing
 520 * them to return the stored error code (typically ENOKEY) until the negative
 521 * key expires.
 522 *
 523 * If successful, 0 is returned, the authorisation token is revoked and anyone
 524 * waiting for the key is woken up.  If the key was already instantiated,
 525 * -EBUSY will be returned.
 526 */
 527int key_reject_and_link(struct key *key,
 528			unsigned timeout,
 529			unsigned error,
 530			struct key *keyring,
 531			struct key *authkey)
 532{
 533	unsigned long prealloc;
 534	struct timespec now;
 535	int ret, awaken, link_ret = 0;
 536
 537	key_check(key);
 538	key_check(keyring);
 539
 540	awaken = 0;
 541	ret = -EBUSY;
 542
 543	if (keyring)
 544		link_ret = __key_link_begin(keyring, key->type,
 545					    key->description, &prealloc);
 
 
 
 
 
 
 
 
 546
 547	mutex_lock(&key_construction_mutex);
 548
 549	/* can't instantiate twice */
 550	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
 551		/* mark the key as being negatively instantiated */
 552		atomic_inc(&key->user->nikeys);
 553		set_bit(KEY_FLAG_NEGATIVE, &key->flags);
 554		set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
 555		key->type_data.reject_error = -error;
 556		now = current_kernel_time();
 557		key->expiry = now.tv_sec + timeout;
 558		key_schedule_gc(key->expiry + key_gc_delay);
 559
 560		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
 561			awaken = 1;
 562
 563		ret = 0;
 564
 565		/* and link it into the destination keyring */
 566		if (keyring && link_ret == 0)
 567			__key_link(keyring, key, &prealloc);
 568
 569		/* disable the authorisation key */
 570		if (authkey)
 571			key_revoke(authkey);
 572	}
 573
 574	mutex_unlock(&key_construction_mutex);
 575
 576	if (keyring)
 577		__key_link_end(keyring, key->type, prealloc);
 578
 579	/* wake up anyone waiting for a key to be constructed */
 580	if (awaken)
 581		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
 582
 583	return ret == 0 ? link_ret : ret;
 584}
 585EXPORT_SYMBOL(key_reject_and_link);
 586
 587/**
 588 * key_put - Discard a reference to a key.
 589 * @key: The key to discard a reference from.
 590 *
 591 * Discard a reference to a key, and when all the references are gone, we
 592 * schedule the cleanup task to come and pull it out of the tree in process
 593 * context at some later time.
 594 */
 595void key_put(struct key *key)
 596{
 597	if (key) {
 598		key_check(key);
 599
 600		if (atomic_dec_and_test(&key->usage))
 601			queue_work(system_nrt_wq, &key_gc_work);
 602	}
 603}
 604EXPORT_SYMBOL(key_put);
 605
 606/*
 607 * Find a key by its serial number.
 608 */
 609struct key *key_lookup(key_serial_t id)
 610{
 611	struct rb_node *n;
 612	struct key *key;
 613
 614	spin_lock(&key_serial_lock);
 615
 616	/* search the tree for the specified key */
 617	n = key_serial_tree.rb_node;
 618	while (n) {
 619		key = rb_entry(n, struct key, serial_node);
 620
 621		if (id < key->serial)
 622			n = n->rb_left;
 623		else if (id > key->serial)
 624			n = n->rb_right;
 625		else
 626			goto found;
 627	}
 628
 629not_found:
 630	key = ERR_PTR(-ENOKEY);
 631	goto error;
 632
 633found:
 634	/* pretend it doesn't exist if it is awaiting deletion */
 635	if (atomic_read(&key->usage) == 0)
 
 
 636		goto not_found;
 637
 638	/* this races with key_put(), but that doesn't matter since key_put()
 639	 * doesn't actually change the key
 640	 */
 641	atomic_inc(&key->usage);
 642
 643error:
 644	spin_unlock(&key_serial_lock);
 645	return key;
 646}
 647
 648/*
 649 * Find and lock the specified key type against removal.
 650 *
 651 * We return with the sem read-locked if successful.  If the type wasn't
 652 * available -ENOKEY is returned instead.
 653 */
 654struct key_type *key_type_lookup(const char *type)
 655{
 656	struct key_type *ktype;
 657
 658	down_read(&key_types_sem);
 659
 660	/* look up the key type to see if it's one of the registered kernel
 661	 * types */
 662	list_for_each_entry(ktype, &key_types_list, link) {
 663		if (strcmp(ktype->name, type) == 0)
 664			goto found_kernel_type;
 665	}
 666
 667	up_read(&key_types_sem);
 668	ktype = ERR_PTR(-ENOKEY);
 669
 670found_kernel_type:
 671	return ktype;
 672}
 673
 674void key_set_timeout(struct key *key, unsigned timeout)
 675{
 676	struct timespec now;
 677	time_t expiry = 0;
 678
 679	/* make the changes with the locks held to prevent races */
 680	down_write(&key->sem);
 681
 682	if (timeout > 0) {
 683		now = current_kernel_time();
 684		expiry = now.tv_sec + timeout;
 685	}
 686
 687	key->expiry = expiry;
 688	key_schedule_gc(key->expiry + key_gc_delay);
 689
 690	up_write(&key->sem);
 691}
 692EXPORT_SYMBOL_GPL(key_set_timeout);
 693
 694/*
 695 * Unlock a key type locked by key_type_lookup().
 696 */
 697void key_type_put(struct key_type *ktype)
 698{
 699	up_read(&key_types_sem);
 700}
 701
 702/*
 703 * Attempt to update an existing key.
 704 *
 705 * The key is given to us with an incremented refcount that we need to discard
 706 * if we get an error.
 707 */
 708static inline key_ref_t __key_update(key_ref_t key_ref,
 709				     const void *payload, size_t plen)
 710{
 711	struct key *key = key_ref_to_ptr(key_ref);
 712	int ret;
 713
 714	/* need write permission on the key to update it */
 715	ret = key_permission(key_ref, KEY_WRITE);
 716	if (ret < 0)
 717		goto error;
 718
 719	ret = -EEXIST;
 720	if (!key->type->update)
 721		goto error;
 722
 723	down_write(&key->sem);
 724
 725	ret = key->type->update(key, payload, plen);
 726	if (ret == 0)
 727		/* updating a negative key instantiates it */
 728		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 
 
 729
 730	up_write(&key->sem);
 731
 732	if (ret < 0)
 733		goto error;
 734out:
 735	return key_ref;
 736
 737error:
 738	key_put(key);
 739	key_ref = ERR_PTR(ret);
 740	goto out;
 741}
 742
 743/**
 744 * key_create_or_update - Update or create and instantiate a key.
 745 * @keyring_ref: A pointer to the destination keyring with possession flag.
 746 * @type: The type of key.
 747 * @description: The searchable description for the key.
 748 * @payload: The data to use to instantiate or update the key.
 749 * @plen: The length of @payload.
 750 * @perm: The permissions mask for a new key.
 751 * @flags: The quota flags for a new key.
 752 *
 753 * Search the destination keyring for a key of the same description and if one
 754 * is found, update it, otherwise create and instantiate a new one and create a
 755 * link to it from that keyring.
 756 *
 757 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
 758 * concocted.
 759 *
 760 * Returns a pointer to the new key if successful, -ENODEV if the key type
 761 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
 762 * caller isn't permitted to modify the keyring or the LSM did not permit
 763 * creation of the key.
 764 *
 765 * On success, the possession flag from the keyring ref will be tacked on to
 766 * the key ref before it is returned.
 767 */
 768key_ref_t key_create_or_update(key_ref_t keyring_ref,
 769			       const char *type,
 770			       const char *description,
 771			       const void *payload,
 772			       size_t plen,
 773			       key_perm_t perm,
 774			       unsigned long flags)
 775{
 776	unsigned long prealloc;
 
 
 
 
 777	const struct cred *cred = current_cred();
 778	struct key_type *ktype;
 779	struct key *keyring, *key = NULL;
 780	key_ref_t key_ref;
 781	int ret;
 
 782
 783	/* look up the key type to see if it's one of the registered kernel
 784	 * types */
 785	ktype = key_type_lookup(type);
 786	if (IS_ERR(ktype)) {
 787		key_ref = ERR_PTR(-ENODEV);
 788		goto error;
 789	}
 790
 791	key_ref = ERR_PTR(-EINVAL);
 792	if (!ktype->match || !ktype->instantiate)
 793		goto error_2;
 
 794
 795	keyring = key_ref_to_ptr(keyring_ref);
 796
 797	key_check(keyring);
 798
 
 
 
 799	key_ref = ERR_PTR(-ENOTDIR);
 800	if (keyring->type != &key_type_keyring)
 801		goto error_2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802
 803	ret = __key_link_begin(keyring, ktype, description, &prealloc);
 804	if (ret < 0)
 805		goto error_2;
 
 
 
 
 
 806
 807	/* if we're going to allocate a new key, we're going to have
 808	 * to modify the keyring */
 809	ret = key_permission(keyring_ref, KEY_WRITE);
 810	if (ret < 0) {
 811		key_ref = ERR_PTR(ret);
 812		goto error_3;
 813	}
 814
 815	/* if it's possible to update this type of key, search for an existing
 816	 * key of the same type and description in the destination keyring and
 817	 * update that instead if possible
 818	 */
 819	if (ktype->update) {
 820		key_ref = __keyring_search_one(keyring_ref, ktype, description,
 821					       0);
 822		if (!IS_ERR(key_ref))
 823			goto found_matching_key;
 824	}
 825
 826	/* if the client doesn't provide, decide on the permissions we want */
 827	if (perm == KEY_PERM_UNDEF) {
 828		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
 829		perm |= KEY_USR_VIEW | KEY_USR_SEARCH | KEY_USR_LINK | KEY_USR_SETATTR;
 830
 831		if (ktype->read)
 832			perm |= KEY_POS_READ | KEY_USR_READ;
 833
 834		if (ktype == &key_type_keyring || ktype->update)
 835			perm |= KEY_USR_WRITE;
 
 836	}
 837
 838	/* allocate a new key */
 839	key = key_alloc(ktype, description, cred->fsuid, cred->fsgid, cred,
 840			perm, flags);
 841	if (IS_ERR(key)) {
 842		key_ref = ERR_CAST(key);
 843		goto error_3;
 844	}
 845
 846	/* instantiate it and link it into the target keyring */
 847	ret = __key_instantiate_and_link(key, payload, plen, keyring, NULL,
 848					 &prealloc);
 849	if (ret < 0) {
 850		key_put(key);
 851		key_ref = ERR_PTR(ret);
 852		goto error_3;
 853	}
 854
 
 
 
 855	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
 856
 857 error_3:
 858	__key_link_end(keyring, ktype, prealloc);
 859 error_2:
 860	key_type_put(ktype);
 861 error:
 
 
 
 862	return key_ref;
 863
 864 found_matching_key:
 865	/* we found a matching key, so we're going to try to update it
 866	 * - we can drop the locks first as we have the key pinned
 867	 */
 868	__key_link_end(keyring, ktype, prealloc);
 869	key_type_put(ktype);
 
 
 
 
 
 
 
 
 
 
 
 870
 871	key_ref = __key_update(key_ref, payload, plen);
 872	goto error;
 
 
 
 
 873}
 874EXPORT_SYMBOL(key_create_or_update);
 875
 876/**
 877 * key_update - Update a key's contents.
 878 * @key_ref: The pointer (plus possession flag) to the key.
 879 * @payload: The data to be used to update the key.
 880 * @plen: The length of @payload.
 881 *
 882 * Attempt to update the contents of a key with the given payload data.  The
 883 * caller must be granted Write permission on the key.  Negative keys can be
 884 * instantiated by this method.
 885 *
 886 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
 887 * type does not support updating.  The key type may return other errors.
 888 */
 889int key_update(key_ref_t key_ref, const void *payload, size_t plen)
 890{
 
 891	struct key *key = key_ref_to_ptr(key_ref);
 892	int ret;
 893
 894	key_check(key);
 895
 896	/* the key must be writable */
 897	ret = key_permission(key_ref, KEY_WRITE);
 898	if (ret < 0)
 899		goto error;
 900
 901	/* attempt to update it if supported */
 902	ret = -EOPNOTSUPP;
 903	if (key->type->update) {
 904		down_write(&key->sem);
 905
 906		ret = key->type->update(key, payload, plen);
 907		if (ret == 0)
 908			/* updating a negative key instantiates it */
 909			clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
 
 
 
 
 
 910
 911		up_write(&key->sem);
 
 
 
 
 
 
 912	}
 913
 914 error:
 
 
 
 
 915	return ret;
 916}
 917EXPORT_SYMBOL(key_update);
 918
 919/**
 920 * key_revoke - Revoke a key.
 921 * @key: The key to be revoked.
 922 *
 923 * Mark a key as being revoked and ask the type to free up its resources.  The
 924 * revocation timeout is set and the key and all its links will be
 925 * automatically garbage collected after key_gc_delay amount of time if they
 926 * are not manually dealt with first.
 927 */
 928void key_revoke(struct key *key)
 929{
 930	struct timespec now;
 931	time_t time;
 932
 933	key_check(key);
 934
 935	/* make sure no one's trying to change or use the key when we mark it
 936	 * - we tell lockdep that we might nest because we might be revoking an
 937	 *   authorisation key whilst holding the sem on a key we've just
 938	 *   instantiated
 939	 */
 940	down_write_nested(&key->sem, 1);
 941	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
 942	    key->type->revoke)
 943		key->type->revoke(key);
 944
 945	/* set the death time to no more than the expiry time */
 946	now = current_kernel_time();
 947	time = now.tv_sec;
 948	if (key->revoked_at == 0 || key->revoked_at > time) {
 949		key->revoked_at = time;
 950		key_schedule_gc(key->revoked_at + key_gc_delay);
 
 951	}
 952
 953	up_write(&key->sem);
 954}
 955EXPORT_SYMBOL(key_revoke);
 956
 957/**
 958 * key_invalidate - Invalidate a key.
 959 * @key: The key to be invalidated.
 960 *
 961 * Mark a key as being invalidated and have it cleaned up immediately.  The key
 962 * is ignored by all searches and other operations from this point.
 963 */
 964void key_invalidate(struct key *key)
 965{
 966	kenter("%d", key_serial(key));
 967
 968	key_check(key);
 969
 970	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
 971		down_write_nested(&key->sem, 1);
 972		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
 
 973			key_schedule_gc_links();
 
 974		up_write(&key->sem);
 975	}
 976}
 977EXPORT_SYMBOL(key_invalidate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 978
 979/**
 980 * register_key_type - Register a type of key.
 981 * @ktype: The new key type.
 982 *
 983 * Register a new key type.
 984 *
 985 * Returns 0 on success or -EEXIST if a type of this name already exists.
 986 */
 987int register_key_type(struct key_type *ktype)
 988{
 989	struct key_type *p;
 990	int ret;
 991
 992	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
 993
 994	ret = -EEXIST;
 995	down_write(&key_types_sem);
 996
 997	/* disallow key types with the same name */
 998	list_for_each_entry(p, &key_types_list, link) {
 999		if (strcmp(p->name, ktype->name) == 0)
1000			goto out;
1001	}
1002
1003	/* store the type */
1004	list_add(&ktype->link, &key_types_list);
1005
1006	pr_notice("Key type %s registered\n", ktype->name);
1007	ret = 0;
1008
1009out:
1010	up_write(&key_types_sem);
1011	return ret;
1012}
1013EXPORT_SYMBOL(register_key_type);
1014
1015/**
1016 * unregister_key_type - Unregister a type of key.
1017 * @ktype: The key type.
1018 *
1019 * Unregister a key type and mark all the extant keys of this type as dead.
1020 * Those keys of this type are then destroyed to get rid of their payloads and
1021 * they and their links will be garbage collected as soon as possible.
1022 */
1023void unregister_key_type(struct key_type *ktype)
1024{
1025	down_write(&key_types_sem);
1026	list_del_init(&ktype->link);
1027	downgrade_write(&key_types_sem);
1028	key_gc_keytype(ktype);
1029	pr_notice("Key type %s unregistered\n", ktype->name);
1030	up_read(&key_types_sem);
1031}
1032EXPORT_SYMBOL(unregister_key_type);
1033
1034/*
1035 * Initialise the key management state.
1036 */
1037void __init key_init(void)
1038{
1039	/* allocate a slab in which we can store keys */
1040	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1041			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1042
1043	/* add the special key types */
1044	list_add_tail(&key_type_keyring.link, &key_types_list);
1045	list_add_tail(&key_type_dead.link, &key_types_list);
1046	list_add_tail(&key_type_user.link, &key_types_list);
1047	list_add_tail(&key_type_logon.link, &key_types_list);
1048
1049	/* record the root user tracking */
1050	rb_link_node(&root_key_user.node,
1051		     NULL,
1052		     &key_user_tree.rb_node);
1053
1054	rb_insert_color(&root_key_user.node,
1055			&key_user_tree);
1056}