Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *		Florian La Roche, <flla@stud.uni-sb.de>
  14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19 *		Jorge Cwik, <jorge@laser.satlink.net>
  20 */
  21
  22/*
  23 * Changes:
  24 *		Pedro Roque	:	Fast Retransmit/Recovery.
  25 *					Two receive queues.
  26 *					Retransmit queue handled by TCP.
  27 *					Better retransmit timer handling.
  28 *					New congestion avoidance.
  29 *					Header prediction.
  30 *					Variable renaming.
  31 *
  32 *		Eric		:	Fast Retransmit.
  33 *		Randy Scott	:	MSS option defines.
  34 *		Eric Schenk	:	Fixes to slow start algorithm.
  35 *		Eric Schenk	:	Yet another double ACK bug.
  36 *		Eric Schenk	:	Delayed ACK bug fixes.
  37 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
  38 *		David S. Miller	:	Don't allow zero congestion window.
  39 *		Eric Schenk	:	Fix retransmitter so that it sends
  40 *					next packet on ack of previous packet.
  41 *		Andi Kleen	:	Moved open_request checking here
  42 *					and process RSTs for open_requests.
  43 *		Andi Kleen	:	Better prune_queue, and other fixes.
  44 *		Andrey Savochkin:	Fix RTT measurements in the presence of
  45 *					timestamps.
  46 *		Andrey Savochkin:	Check sequence numbers correctly when
  47 *					removing SACKs due to in sequence incoming
  48 *					data segments.
  49 *		Andi Kleen:		Make sure we never ack data there is not
  50 *					enough room for. Also make this condition
  51 *					a fatal error if it might still happen.
  52 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
  53 *					connections with MSS<min(MTU,ann. MSS)
  54 *					work without delayed acks.
  55 *		Andi Kleen:		Process packets with PSH set in the
  56 *					fast path.
  57 *		J Hadi Salim:		ECN support
  58 *	 	Andrei Gurtov,
  59 *		Pasi Sarolahti,
  60 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
  61 *					engine. Lots of bugs are found.
  62 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
  63 */
  64
  65#define pr_fmt(fmt) "TCP: " fmt
  66
  67#include <linux/mm.h>
  68#include <linux/slab.h>
  69#include <linux/module.h>
  70#include <linux/sysctl.h>
  71#include <linux/kernel.h>
  72#include <linux/prefetch.h>
  73#include <net/dst.h>
  74#include <net/tcp.h>
  75#include <net/inet_common.h>
  76#include <linux/ipsec.h>
  77#include <asm/unaligned.h>
  78#include <linux/errqueue.h>
  79#include <trace/events/tcp.h>
  80#include <linux/jump_label_ratelimit.h>
  81#include <net/busy_poll.h>
  82#include <net/mptcp.h>
  83
  84int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  85
  86#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
  87#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
  88#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
  89#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
  90#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
  91#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
  92#define FLAG_ECE		0x40 /* ECE in this ACK				*/
  93#define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
  94#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
  95#define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
  96#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  97#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
  98#define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
  99#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
 100#define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
 101#define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
 102#define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
 103#define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
 104
 105#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
 106#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
 107#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
 108#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
 109
 110#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
 111#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
 112
 113#define REXMIT_NONE	0 /* no loss recovery to do */
 114#define REXMIT_LOST	1 /* retransmit packets marked lost */
 115#define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
 116
 117#if IS_ENABLED(CONFIG_TLS_DEVICE)
 118static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
 119
 120void clean_acked_data_enable(struct inet_connection_sock *icsk,
 121			     void (*cad)(struct sock *sk, u32 ack_seq))
 122{
 123	icsk->icsk_clean_acked = cad;
 124	static_branch_deferred_inc(&clean_acked_data_enabled);
 125}
 126EXPORT_SYMBOL_GPL(clean_acked_data_enable);
 127
 128void clean_acked_data_disable(struct inet_connection_sock *icsk)
 129{
 130	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
 131	icsk->icsk_clean_acked = NULL;
 132}
 133EXPORT_SYMBOL_GPL(clean_acked_data_disable);
 134
 135void clean_acked_data_flush(void)
 136{
 137	static_key_deferred_flush(&clean_acked_data_enabled);
 138}
 139EXPORT_SYMBOL_GPL(clean_acked_data_flush);
 140#endif
 141
 142#ifdef CONFIG_CGROUP_BPF
 143static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
 144{
 145	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
 146		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
 147				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
 148	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
 149						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
 150	struct bpf_sock_ops_kern sock_ops;
 151
 152	if (likely(!unknown_opt && !parse_all_opt))
 153		return;
 154
 155	/* The skb will be handled in the
 156	 * bpf_skops_established() or
 157	 * bpf_skops_write_hdr_opt().
 158	 */
 159	switch (sk->sk_state) {
 160	case TCP_SYN_RECV:
 161	case TCP_SYN_SENT:
 162	case TCP_LISTEN:
 163		return;
 164	}
 165
 166	sock_owned_by_me(sk);
 167
 168	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
 169	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
 170	sock_ops.is_fullsock = 1;
 171	sock_ops.sk = sk;
 172	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
 173
 174	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
 175}
 176
 177static void bpf_skops_established(struct sock *sk, int bpf_op,
 178				  struct sk_buff *skb)
 179{
 180	struct bpf_sock_ops_kern sock_ops;
 181
 182	sock_owned_by_me(sk);
 183
 184	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
 185	sock_ops.op = bpf_op;
 186	sock_ops.is_fullsock = 1;
 187	sock_ops.sk = sk;
 188	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
 189	if (skb)
 190		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
 191
 192	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
 193}
 194#else
 195static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
 196{
 197}
 198
 199static void bpf_skops_established(struct sock *sk, int bpf_op,
 200				  struct sk_buff *skb)
 201{
 202}
 203#endif
 204
 205static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
 206			     unsigned int len)
 207{
 208	static bool __once __read_mostly;
 209
 210	if (!__once) {
 211		struct net_device *dev;
 212
 213		__once = true;
 214
 215		rcu_read_lock();
 216		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
 217		if (!dev || len >= dev->mtu)
 218			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
 219				dev ? dev->name : "Unknown driver");
 220		rcu_read_unlock();
 221	}
 222}
 223
 224/* Adapt the MSS value used to make delayed ack decision to the
 225 * real world.
 226 */
 227static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
 228{
 229	struct inet_connection_sock *icsk = inet_csk(sk);
 230	const unsigned int lss = icsk->icsk_ack.last_seg_size;
 231	unsigned int len;
 232
 233	icsk->icsk_ack.last_seg_size = 0;
 234
 235	/* skb->len may jitter because of SACKs, even if peer
 236	 * sends good full-sized frames.
 237	 */
 238	len = skb_shinfo(skb)->gso_size ? : skb->len;
 239	if (len >= icsk->icsk_ack.rcv_mss) {
 240		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
 241					       tcp_sk(sk)->advmss);
 242		/* Account for possibly-removed options */
 243		if (unlikely(len > icsk->icsk_ack.rcv_mss +
 244				   MAX_TCP_OPTION_SPACE))
 245			tcp_gro_dev_warn(sk, skb, len);
 246	} else {
 247		/* Otherwise, we make more careful check taking into account,
 248		 * that SACKs block is variable.
 249		 *
 250		 * "len" is invariant segment length, including TCP header.
 251		 */
 252		len += skb->data - skb_transport_header(skb);
 253		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
 254		    /* If PSH is not set, packet should be
 255		     * full sized, provided peer TCP is not badly broken.
 256		     * This observation (if it is correct 8)) allows
 257		     * to handle super-low mtu links fairly.
 258		     */
 259		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
 260		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
 261			/* Subtract also invariant (if peer is RFC compliant),
 262			 * tcp header plus fixed timestamp option length.
 263			 * Resulting "len" is MSS free of SACK jitter.
 264			 */
 265			len -= tcp_sk(sk)->tcp_header_len;
 266			icsk->icsk_ack.last_seg_size = len;
 267			if (len == lss) {
 268				icsk->icsk_ack.rcv_mss = len;
 269				return;
 270			}
 271		}
 272		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
 273			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
 274		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
 275	}
 276}
 277
 278static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
 279{
 280	struct inet_connection_sock *icsk = inet_csk(sk);
 281	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
 282
 283	if (quickacks == 0)
 284		quickacks = 2;
 285	quickacks = min(quickacks, max_quickacks);
 286	if (quickacks > icsk->icsk_ack.quick)
 287		icsk->icsk_ack.quick = quickacks;
 288}
 289
 290void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
 291{
 292	struct inet_connection_sock *icsk = inet_csk(sk);
 293
 294	tcp_incr_quickack(sk, max_quickacks);
 295	inet_csk_exit_pingpong_mode(sk);
 296	icsk->icsk_ack.ato = TCP_ATO_MIN;
 297}
 298EXPORT_SYMBOL(tcp_enter_quickack_mode);
 299
 300/* Send ACKs quickly, if "quick" count is not exhausted
 301 * and the session is not interactive.
 302 */
 303
 304static bool tcp_in_quickack_mode(struct sock *sk)
 305{
 306	const struct inet_connection_sock *icsk = inet_csk(sk);
 307	const struct dst_entry *dst = __sk_dst_get(sk);
 308
 309	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
 310		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
 311}
 312
 313static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
 314{
 315	if (tp->ecn_flags & TCP_ECN_OK)
 316		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
 317}
 318
 319static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
 320{
 321	if (tcp_hdr(skb)->cwr) {
 322		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 323
 324		/* If the sender is telling us it has entered CWR, then its
 325		 * cwnd may be very low (even just 1 packet), so we should ACK
 326		 * immediately.
 327		 */
 328		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
 329			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
 330	}
 331}
 332
 333static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
 334{
 335	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
 336}
 337
 338static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
 339{
 340	struct tcp_sock *tp = tcp_sk(sk);
 341
 342	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
 343	case INET_ECN_NOT_ECT:
 344		/* Funny extension: if ECT is not set on a segment,
 345		 * and we already seen ECT on a previous segment,
 346		 * it is probably a retransmit.
 347		 */
 348		if (tp->ecn_flags & TCP_ECN_SEEN)
 349			tcp_enter_quickack_mode(sk, 2);
 350		break;
 351	case INET_ECN_CE:
 352		if (tcp_ca_needs_ecn(sk))
 353			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
 354
 355		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
 356			/* Better not delay acks, sender can have a very low cwnd */
 357			tcp_enter_quickack_mode(sk, 2);
 358			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
 359		}
 360		tp->ecn_flags |= TCP_ECN_SEEN;
 361		break;
 362	default:
 363		if (tcp_ca_needs_ecn(sk))
 364			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
 365		tp->ecn_flags |= TCP_ECN_SEEN;
 366		break;
 367	}
 368}
 369
 370static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
 371{
 372	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
 373		__tcp_ecn_check_ce(sk, skb);
 374}
 375
 376static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
 377{
 378	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
 379		tp->ecn_flags &= ~TCP_ECN_OK;
 380}
 381
 382static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
 383{
 384	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
 385		tp->ecn_flags &= ~TCP_ECN_OK;
 386}
 387
 388static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
 389{
 390	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
 391		return true;
 392	return false;
 393}
 394
 395/* Buffer size and advertised window tuning.
 396 *
 397 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
 398 */
 399
 400static void tcp_sndbuf_expand(struct sock *sk)
 401{
 402	const struct tcp_sock *tp = tcp_sk(sk);
 403	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
 404	int sndmem, per_mss;
 405	u32 nr_segs;
 406
 407	/* Worst case is non GSO/TSO : each frame consumes one skb
 408	 * and skb->head is kmalloced using power of two area of memory
 409	 */
 410	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
 411		  MAX_TCP_HEADER +
 412		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 413
 414	per_mss = roundup_pow_of_two(per_mss) +
 415		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
 416
 417	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
 418	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
 419
 420	/* Fast Recovery (RFC 5681 3.2) :
 421	 * Cubic needs 1.7 factor, rounded to 2 to include
 422	 * extra cushion (application might react slowly to EPOLLOUT)
 423	 */
 424	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
 425	sndmem *= nr_segs * per_mss;
 426
 427	if (sk->sk_sndbuf < sndmem)
 428		WRITE_ONCE(sk->sk_sndbuf,
 429			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
 430}
 431
 432/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
 433 *
 434 * All tcp_full_space() is split to two parts: "network" buffer, allocated
 435 * forward and advertised in receiver window (tp->rcv_wnd) and
 436 * "application buffer", required to isolate scheduling/application
 437 * latencies from network.
 438 * window_clamp is maximal advertised window. It can be less than
 439 * tcp_full_space(), in this case tcp_full_space() - window_clamp
 440 * is reserved for "application" buffer. The less window_clamp is
 441 * the smoother our behaviour from viewpoint of network, but the lower
 442 * throughput and the higher sensitivity of the connection to losses. 8)
 443 *
 444 * rcv_ssthresh is more strict window_clamp used at "slow start"
 445 * phase to predict further behaviour of this connection.
 446 * It is used for two goals:
 447 * - to enforce header prediction at sender, even when application
 448 *   requires some significant "application buffer". It is check #1.
 449 * - to prevent pruning of receive queue because of misprediction
 450 *   of receiver window. Check #2.
 451 *
 452 * The scheme does not work when sender sends good segments opening
 453 * window and then starts to feed us spaghetti. But it should work
 454 * in common situations. Otherwise, we have to rely on queue collapsing.
 455 */
 456
 457/* Slow part of check#2. */
 458static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
 459			     unsigned int skbtruesize)
 460{
 461	struct tcp_sock *tp = tcp_sk(sk);
 462	/* Optimize this! */
 463	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
 464	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
 465
 466	while (tp->rcv_ssthresh <= window) {
 467		if (truesize <= skb->len)
 468			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
 469
 470		truesize >>= 1;
 471		window >>= 1;
 472	}
 473	return 0;
 474}
 475
 476/* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
 477 * can play nice with us, as sk_buff and skb->head might be either
 478 * freed or shared with up to MAX_SKB_FRAGS segments.
 479 * Only give a boost to drivers using page frag(s) to hold the frame(s),
 480 * and if no payload was pulled in skb->head before reaching us.
 481 */
 482static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
 483{
 484	u32 truesize = skb->truesize;
 485
 486	if (adjust && !skb_headlen(skb)) {
 487		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
 488		/* paranoid check, some drivers might be buggy */
 489		if (unlikely((int)truesize < (int)skb->len))
 490			truesize = skb->truesize;
 491	}
 492	return truesize;
 493}
 494
 495static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
 496			    bool adjust)
 497{
 498	struct tcp_sock *tp = tcp_sk(sk);
 499	int room;
 500
 501	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
 502
 503	if (room <= 0)
 504		return;
 505
 506	/* Check #1 */
 507	if (!tcp_under_memory_pressure(sk)) {
 508		unsigned int truesize = truesize_adjust(adjust, skb);
 
 509		int incr;
 510
 511		/* Check #2. Increase window, if skb with such overhead
 512		 * will fit to rcvbuf in future.
 513		 */
 514		if (tcp_win_from_space(sk, truesize) <= skb->len)
 515			incr = 2 * tp->advmss;
 516		else
 517			incr = __tcp_grow_window(sk, skb, truesize);
 518
 519		if (incr) {
 520			incr = max_t(int, incr, 2 * skb->len);
 521			tp->rcv_ssthresh += min(room, incr);
 
 522			inet_csk(sk)->icsk_ack.quick |= 1;
 523		}
 524	} else {
 525		/* Under pressure:
 526		 * Adjust rcv_ssthresh according to reserved mem
 527		 */
 528		tcp_adjust_rcv_ssthresh(sk);
 529	}
 530}
 531
 532/* 3. Try to fixup all. It is made immediately after connection enters
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 533 *    established state.
 534 */
 535static void tcp_init_buffer_space(struct sock *sk)
 536{
 537	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
 538	struct tcp_sock *tp = tcp_sk(sk);
 539	int maxwin;
 540
 
 
 541	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
 542		tcp_sndbuf_expand(sk);
 543
 
 544	tcp_mstamp_refresh(tp);
 545	tp->rcvq_space.time = tp->tcp_mstamp;
 546	tp->rcvq_space.seq = tp->copied_seq;
 547
 548	maxwin = tcp_full_space(sk);
 549
 550	if (tp->window_clamp >= maxwin) {
 551		tp->window_clamp = maxwin;
 552
 553		if (tcp_app_win && maxwin > 4 * tp->advmss)
 554			tp->window_clamp = max(maxwin -
 555					       (maxwin >> tcp_app_win),
 556					       4 * tp->advmss);
 557	}
 558
 559	/* Force reservation of one segment. */
 560	if (tcp_app_win &&
 561	    tp->window_clamp > 2 * tp->advmss &&
 562	    tp->window_clamp + tp->advmss > maxwin)
 563		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
 564
 565	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
 566	tp->snd_cwnd_stamp = tcp_jiffies32;
 567	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
 568				    (u32)TCP_INIT_CWND * tp->advmss);
 569}
 570
 571/* 4. Recalculate window clamp after socket hit its memory bounds. */
 572static void tcp_clamp_window(struct sock *sk)
 573{
 574	struct tcp_sock *tp = tcp_sk(sk);
 575	struct inet_connection_sock *icsk = inet_csk(sk);
 576	struct net *net = sock_net(sk);
 577	int rmem2;
 578
 579	icsk->icsk_ack.quick = 0;
 580	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
 581
 582	if (sk->sk_rcvbuf < rmem2 &&
 583	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
 584	    !tcp_under_memory_pressure(sk) &&
 585	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
 586		WRITE_ONCE(sk->sk_rcvbuf,
 587			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
 588	}
 589	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
 590		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
 591}
 592
 593/* Initialize RCV_MSS value.
 594 * RCV_MSS is an our guess about MSS used by the peer.
 595 * We haven't any direct information about the MSS.
 596 * It's better to underestimate the RCV_MSS rather than overestimate.
 597 * Overestimations make us ACKing less frequently than needed.
 598 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
 599 */
 600void tcp_initialize_rcv_mss(struct sock *sk)
 601{
 602	const struct tcp_sock *tp = tcp_sk(sk);
 603	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
 604
 605	hint = min(hint, tp->rcv_wnd / 2);
 606	hint = min(hint, TCP_MSS_DEFAULT);
 607	hint = max(hint, TCP_MIN_MSS);
 608
 609	inet_csk(sk)->icsk_ack.rcv_mss = hint;
 610}
 611EXPORT_SYMBOL(tcp_initialize_rcv_mss);
 612
 613/* Receiver "autotuning" code.
 614 *
 615 * The algorithm for RTT estimation w/o timestamps is based on
 616 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
 617 * <https://public.lanl.gov/radiant/pubs.html#DRS>
 618 *
 619 * More detail on this code can be found at
 620 * <http://staff.psc.edu/jheffner/>,
 621 * though this reference is out of date.  A new paper
 622 * is pending.
 623 */
 624static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
 625{
 626	u32 new_sample = tp->rcv_rtt_est.rtt_us;
 627	long m = sample;
 628
 629	if (new_sample != 0) {
 630		/* If we sample in larger samples in the non-timestamp
 631		 * case, we could grossly overestimate the RTT especially
 632		 * with chatty applications or bulk transfer apps which
 633		 * are stalled on filesystem I/O.
 634		 *
 635		 * Also, since we are only going for a minimum in the
 636		 * non-timestamp case, we do not smooth things out
 637		 * else with timestamps disabled convergence takes too
 638		 * long.
 639		 */
 640		if (!win_dep) {
 641			m -= (new_sample >> 3);
 642			new_sample += m;
 643		} else {
 644			m <<= 3;
 645			if (m < new_sample)
 646				new_sample = m;
 647		}
 648	} else {
 649		/* No previous measure. */
 650		new_sample = m << 3;
 651	}
 652
 653	tp->rcv_rtt_est.rtt_us = new_sample;
 654}
 655
 656static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
 657{
 658	u32 delta_us;
 659
 660	if (tp->rcv_rtt_est.time == 0)
 661		goto new_measure;
 662	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
 663		return;
 664	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
 665	if (!delta_us)
 666		delta_us = 1;
 667	tcp_rcv_rtt_update(tp, delta_us, 1);
 668
 669new_measure:
 670	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
 671	tp->rcv_rtt_est.time = tp->tcp_mstamp;
 672}
 673
 674static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
 675					  const struct sk_buff *skb)
 676{
 677	struct tcp_sock *tp = tcp_sk(sk);
 678
 679	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
 680		return;
 681	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
 682
 683	if (TCP_SKB_CB(skb)->end_seq -
 684	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
 685		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
 686		u32 delta_us;
 687
 688		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
 689			if (!delta)
 690				delta = 1;
 691			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
 692			tcp_rcv_rtt_update(tp, delta_us, 0);
 693		}
 694	}
 695}
 696
 697/*
 698 * This function should be called every time data is copied to user space.
 699 * It calculates the appropriate TCP receive buffer space.
 700 */
 701void tcp_rcv_space_adjust(struct sock *sk)
 702{
 703	struct tcp_sock *tp = tcp_sk(sk);
 704	u32 copied;
 705	int time;
 706
 707	trace_tcp_rcv_space_adjust(sk);
 708
 709	tcp_mstamp_refresh(tp);
 710	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
 711	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
 712		return;
 713
 714	/* Number of bytes copied to user in last RTT */
 715	copied = tp->copied_seq - tp->rcvq_space.seq;
 716	if (copied <= tp->rcvq_space.space)
 717		goto new_measure;
 718
 719	/* A bit of theory :
 720	 * copied = bytes received in previous RTT, our base window
 721	 * To cope with packet losses, we need a 2x factor
 722	 * To cope with slow start, and sender growing its cwin by 100 %
 723	 * every RTT, we need a 4x factor, because the ACK we are sending
 724	 * now is for the next RTT, not the current one :
 725	 * <prev RTT . ><current RTT .. ><next RTT .... >
 726	 */
 727
 728	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
 729	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
 730		int rcvmem, rcvbuf;
 731		u64 rcvwin, grow;
 732
 733		/* minimal window to cope with packet losses, assuming
 734		 * steady state. Add some cushion because of small variations.
 735		 */
 736		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
 737
 738		/* Accommodate for sender rate increase (eg. slow start) */
 739		grow = rcvwin * (copied - tp->rcvq_space.space);
 740		do_div(grow, tp->rcvq_space.space);
 741		rcvwin += (grow << 1);
 742
 743		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
 744		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
 745			rcvmem += 128;
 746
 747		do_div(rcvwin, tp->advmss);
 748		rcvbuf = min_t(u64, rcvwin * rcvmem,
 749			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
 750		if (rcvbuf > sk->sk_rcvbuf) {
 751			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
 752
 753			/* Make the window clamp follow along.  */
 754			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
 755		}
 756	}
 757	tp->rcvq_space.space = copied;
 758
 759new_measure:
 760	tp->rcvq_space.seq = tp->copied_seq;
 761	tp->rcvq_space.time = tp->tcp_mstamp;
 762}
 763
 764/* There is something which you must keep in mind when you analyze the
 765 * behavior of the tp->ato delayed ack timeout interval.  When a
 766 * connection starts up, we want to ack as quickly as possible.  The
 767 * problem is that "good" TCP's do slow start at the beginning of data
 768 * transmission.  The means that until we send the first few ACK's the
 769 * sender will sit on his end and only queue most of his data, because
 770 * he can only send snd_cwnd unacked packets at any given time.  For
 771 * each ACK we send, he increments snd_cwnd and transmits more of his
 772 * queue.  -DaveM
 773 */
 774static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
 775{
 776	struct tcp_sock *tp = tcp_sk(sk);
 777	struct inet_connection_sock *icsk = inet_csk(sk);
 778	u32 now;
 779
 780	inet_csk_schedule_ack(sk);
 781
 782	tcp_measure_rcv_mss(sk, skb);
 783
 784	tcp_rcv_rtt_measure(tp);
 785
 786	now = tcp_jiffies32;
 787
 788	if (!icsk->icsk_ack.ato) {
 789		/* The _first_ data packet received, initialize
 790		 * delayed ACK engine.
 791		 */
 792		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
 793		icsk->icsk_ack.ato = TCP_ATO_MIN;
 794	} else {
 795		int m = now - icsk->icsk_ack.lrcvtime;
 796
 797		if (m <= TCP_ATO_MIN / 2) {
 798			/* The fastest case is the first. */
 799			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
 800		} else if (m < icsk->icsk_ack.ato) {
 801			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
 802			if (icsk->icsk_ack.ato > icsk->icsk_rto)
 803				icsk->icsk_ack.ato = icsk->icsk_rto;
 804		} else if (m > icsk->icsk_rto) {
 805			/* Too long gap. Apparently sender failed to
 806			 * restart window, so that we send ACKs quickly.
 807			 */
 808			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
 
 809		}
 810	}
 811	icsk->icsk_ack.lrcvtime = now;
 812
 813	tcp_ecn_check_ce(sk, skb);
 814
 815	if (skb->len >= 128)
 816		tcp_grow_window(sk, skb, true);
 817}
 818
 819/* Called to compute a smoothed rtt estimate. The data fed to this
 820 * routine either comes from timestamps, or from segments that were
 821 * known _not_ to have been retransmitted [see Karn/Partridge
 822 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
 823 * piece by Van Jacobson.
 824 * NOTE: the next three routines used to be one big routine.
 825 * To save cycles in the RFC 1323 implementation it was better to break
 826 * it up into three procedures. -- erics
 827 */
 828static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
 829{
 830	struct tcp_sock *tp = tcp_sk(sk);
 831	long m = mrtt_us; /* RTT */
 832	u32 srtt = tp->srtt_us;
 833
 834	/*	The following amusing code comes from Jacobson's
 835	 *	article in SIGCOMM '88.  Note that rtt and mdev
 836	 *	are scaled versions of rtt and mean deviation.
 837	 *	This is designed to be as fast as possible
 838	 *	m stands for "measurement".
 839	 *
 840	 *	On a 1990 paper the rto value is changed to:
 841	 *	RTO = rtt + 4 * mdev
 842	 *
 843	 * Funny. This algorithm seems to be very broken.
 844	 * These formulae increase RTO, when it should be decreased, increase
 845	 * too slowly, when it should be increased quickly, decrease too quickly
 846	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
 847	 * does not matter how to _calculate_ it. Seems, it was trap
 848	 * that VJ failed to avoid. 8)
 849	 */
 850	if (srtt != 0) {
 851		m -= (srtt >> 3);	/* m is now error in rtt est */
 852		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
 853		if (m < 0) {
 854			m = -m;		/* m is now abs(error) */
 855			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 856			/* This is similar to one of Eifel findings.
 857			 * Eifel blocks mdev updates when rtt decreases.
 858			 * This solution is a bit different: we use finer gain
 859			 * for mdev in this case (alpha*beta).
 860			 * Like Eifel it also prevents growth of rto,
 861			 * but also it limits too fast rto decreases,
 862			 * happening in pure Eifel.
 863			 */
 864			if (m > 0)
 865				m >>= 3;
 866		} else {
 867			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 868		}
 869		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
 870		if (tp->mdev_us > tp->mdev_max_us) {
 871			tp->mdev_max_us = tp->mdev_us;
 872			if (tp->mdev_max_us > tp->rttvar_us)
 873				tp->rttvar_us = tp->mdev_max_us;
 874		}
 875		if (after(tp->snd_una, tp->rtt_seq)) {
 876			if (tp->mdev_max_us < tp->rttvar_us)
 877				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
 878			tp->rtt_seq = tp->snd_nxt;
 879			tp->mdev_max_us = tcp_rto_min_us(sk);
 880
 881			tcp_bpf_rtt(sk);
 882		}
 883	} else {
 884		/* no previous measure. */
 885		srtt = m << 3;		/* take the measured time to be rtt */
 886		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
 887		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
 888		tp->mdev_max_us = tp->rttvar_us;
 889		tp->rtt_seq = tp->snd_nxt;
 890
 891		tcp_bpf_rtt(sk);
 892	}
 893	tp->srtt_us = max(1U, srtt);
 894}
 895
 896static void tcp_update_pacing_rate(struct sock *sk)
 897{
 898	const struct tcp_sock *tp = tcp_sk(sk);
 899	u64 rate;
 900
 901	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
 902	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
 903
 904	/* current rate is (cwnd * mss) / srtt
 905	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
 906	 * In Congestion Avoidance phase, set it to 120 % the current rate.
 907	 *
 908	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
 909	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
 910	 *	 end of slow start and should slow down.
 911	 */
 912	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
 913		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
 914	else
 915		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
 916
 917	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
 918
 919	if (likely(tp->srtt_us))
 920		do_div(rate, tp->srtt_us);
 921
 922	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
 923	 * without any lock. We want to make sure compiler wont store
 924	 * intermediate values in this location.
 925	 */
 926	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
 927					     sk->sk_max_pacing_rate));
 928}
 929
 930/* Calculate rto without backoff.  This is the second half of Van Jacobson's
 931 * routine referred to above.
 932 */
 933static void tcp_set_rto(struct sock *sk)
 934{
 935	const struct tcp_sock *tp = tcp_sk(sk);
 936	/* Old crap is replaced with new one. 8)
 937	 *
 938	 * More seriously:
 939	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
 940	 *    It cannot be less due to utterly erratic ACK generation made
 941	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
 942	 *    to do with delayed acks, because at cwnd>2 true delack timeout
 943	 *    is invisible. Actually, Linux-2.4 also generates erratic
 944	 *    ACKs in some circumstances.
 945	 */
 946	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
 947
 948	/* 2. Fixups made earlier cannot be right.
 949	 *    If we do not estimate RTO correctly without them,
 950	 *    all the algo is pure shit and should be replaced
 951	 *    with correct one. It is exactly, which we pretend to do.
 952	 */
 953
 954	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
 955	 * guarantees that rto is higher.
 956	 */
 957	tcp_bound_rto(sk);
 958}
 959
 960__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
 961{
 962	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
 963
 964	if (!cwnd)
 965		cwnd = TCP_INIT_CWND;
 966	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
 967}
 968
 969struct tcp_sacktag_state {
 970	/* Timestamps for earliest and latest never-retransmitted segment
 971	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
 972	 * but congestion control should still get an accurate delay signal.
 973	 */
 974	u64	first_sackt;
 975	u64	last_sackt;
 976	u32	reord;
 977	u32	sack_delivered;
 978	int	flag;
 979	unsigned int mss_now;
 980	struct rate_sample *rate;
 981};
 982
 983/* Take a notice that peer is sending D-SACKs. Skip update of data delivery
 984 * and spurious retransmission information if this DSACK is unlikely caused by
 985 * sender's action:
 986 * - DSACKed sequence range is larger than maximum receiver's window.
 987 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
 988 */
 989static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
 990			  u32 end_seq, struct tcp_sacktag_state *state)
 991{
 992	u32 seq_len, dup_segs = 1;
 993
 994	if (!before(start_seq, end_seq))
 995		return 0;
 996
 997	seq_len = end_seq - start_seq;
 998	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
 999	if (seq_len > tp->max_window)
1000		return 0;
1001	if (seq_len > tp->mss_cache)
1002		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1003	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1004		state->flag |= FLAG_DSACK_TLP;
1005
1006	tp->dsack_dups += dup_segs;
1007	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1008	if (tp->dsack_dups > tp->total_retrans)
1009		return 0;
1010
1011	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1012	/* We increase the RACK ordering window in rounds where we receive
1013	 * DSACKs that may have been due to reordering causing RACK to trigger
1014	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1015	 * without having seen reordering, or that match TLP probes (TLP
1016	 * is timer-driven, not triggered by RACK).
1017	 */
1018	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1019		tp->rack.dsack_seen = 1;
1020
1021	state->flag |= FLAG_DSACKING_ACK;
1022	/* A spurious retransmission is delivered */
1023	state->sack_delivered += dup_segs;
1024
1025	return dup_segs;
1026}
1027
1028/* It's reordering when higher sequence was delivered (i.e. sacked) before
1029 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1030 * distance is approximated in full-mss packet distance ("reordering").
1031 */
1032static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1033				      const int ts)
1034{
1035	struct tcp_sock *tp = tcp_sk(sk);
1036	const u32 mss = tp->mss_cache;
1037	u32 fack, metric;
1038
1039	fack = tcp_highest_sack_seq(tp);
1040	if (!before(low_seq, fack))
1041		return;
1042
1043	metric = fack - low_seq;
1044	if ((metric > tp->reordering * mss) && mss) {
1045#if FASTRETRANS_DEBUG > 1
1046		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1047			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1048			 tp->reordering,
1049			 0,
1050			 tp->sacked_out,
1051			 tp->undo_marker ? tp->undo_retrans : 0);
1052#endif
1053		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1054				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1055	}
1056
 
1057	/* This exciting event is worth to be remembered. 8) */
1058	tp->reord_seen++;
1059	NET_INC_STATS(sock_net(sk),
1060		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1061}
1062
1063 /* This must be called before lost_out or retrans_out are updated
1064  * on a new loss, because we want to know if all skbs previously
1065  * known to be lost have already been retransmitted, indicating
1066  * that this newly lost skb is our next skb to retransmit.
1067  */
1068static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1069{
1070	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1071	    (tp->retransmit_skb_hint &&
1072	     before(TCP_SKB_CB(skb)->seq,
1073		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1074		tp->retransmit_skb_hint = skb;
1075}
1076
1077/* Sum the number of packets on the wire we have marked as lost, and
1078 * notify the congestion control module that the given skb was marked lost.
 
 
 
 
1079 */
1080static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1081{
1082	tp->lost += tcp_skb_pcount(skb);
 
 
 
 
1083}
1084
1085void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1086{
1087	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1088	struct tcp_sock *tp = tcp_sk(sk);
1089
1090	if (sacked & TCPCB_SACKED_ACKED)
1091		return;
1092
1093	tcp_verify_retransmit_hint(tp, skb);
1094	if (sacked & TCPCB_LOST) {
1095		if (sacked & TCPCB_SACKED_RETRANS) {
1096			/* Account for retransmits that are lost again */
1097			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1098			tp->retrans_out -= tcp_skb_pcount(skb);
1099			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1100				      tcp_skb_pcount(skb));
1101			tcp_notify_skb_loss_event(tp, skb);
1102		}
1103	} else {
1104		tp->lost_out += tcp_skb_pcount(skb);
 
1105		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1106		tcp_notify_skb_loss_event(tp, skb);
1107	}
1108}
1109
1110/* Updates the delivered and delivered_ce counts */
1111static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1112				bool ece_ack)
1113{
1114	tp->delivered += delivered;
1115	if (ece_ack)
1116		tp->delivered_ce += delivered;
 
 
 
 
1117}
1118
1119/* This procedure tags the retransmission queue when SACKs arrive.
1120 *
1121 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1122 * Packets in queue with these bits set are counted in variables
1123 * sacked_out, retrans_out and lost_out, correspondingly.
1124 *
1125 * Valid combinations are:
1126 * Tag  InFlight	Description
1127 * 0	1		- orig segment is in flight.
1128 * S	0		- nothing flies, orig reached receiver.
1129 * L	0		- nothing flies, orig lost by net.
1130 * R	2		- both orig and retransmit are in flight.
1131 * L|R	1		- orig is lost, retransmit is in flight.
1132 * S|R  1		- orig reached receiver, retrans is still in flight.
1133 * (L|S|R is logically valid, it could occur when L|R is sacked,
1134 *  but it is equivalent to plain S and code short-curcuits it to S.
1135 *  L|S is logically invalid, it would mean -1 packet in flight 8))
1136 *
1137 * These 6 states form finite state machine, controlled by the following events:
1138 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1139 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1140 * 3. Loss detection event of two flavors:
1141 *	A. Scoreboard estimator decided the packet is lost.
1142 *	   A'. Reno "three dupacks" marks head of queue lost.
1143 *	B. SACK arrives sacking SND.NXT at the moment, when the
1144 *	   segment was retransmitted.
1145 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1146 *
1147 * It is pleasant to note, that state diagram turns out to be commutative,
1148 * so that we are allowed not to be bothered by order of our actions,
1149 * when multiple events arrive simultaneously. (see the function below).
1150 *
1151 * Reordering detection.
1152 * --------------------
1153 * Reordering metric is maximal distance, which a packet can be displaced
1154 * in packet stream. With SACKs we can estimate it:
1155 *
1156 * 1. SACK fills old hole and the corresponding segment was not
1157 *    ever retransmitted -> reordering. Alas, we cannot use it
1158 *    when segment was retransmitted.
1159 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1160 *    for retransmitted and already SACKed segment -> reordering..
1161 * Both of these heuristics are not used in Loss state, when we cannot
1162 * account for retransmits accurately.
1163 *
1164 * SACK block validation.
1165 * ----------------------
1166 *
1167 * SACK block range validation checks that the received SACK block fits to
1168 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1169 * Note that SND.UNA is not included to the range though being valid because
1170 * it means that the receiver is rather inconsistent with itself reporting
1171 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1172 * perfectly valid, however, in light of RFC2018 which explicitly states
1173 * that "SACK block MUST reflect the newest segment.  Even if the newest
1174 * segment is going to be discarded ...", not that it looks very clever
1175 * in case of head skb. Due to potentional receiver driven attacks, we
1176 * choose to avoid immediate execution of a walk in write queue due to
1177 * reneging and defer head skb's loss recovery to standard loss recovery
1178 * procedure that will eventually trigger (nothing forbids us doing this).
1179 *
1180 * Implements also blockage to start_seq wrap-around. Problem lies in the
1181 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1182 * there's no guarantee that it will be before snd_nxt (n). The problem
1183 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1184 * wrap (s_w):
1185 *
1186 *         <- outs wnd ->                          <- wrapzone ->
1187 *         u     e      n                         u_w   e_w  s n_w
1188 *         |     |      |                          |     |   |  |
1189 * |<------------+------+----- TCP seqno space --------------+---------->|
1190 * ...-- <2^31 ->|                                           |<--------...
1191 * ...---- >2^31 ------>|                                    |<--------...
1192 *
1193 * Current code wouldn't be vulnerable but it's better still to discard such
1194 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1195 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1196 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1197 * equal to the ideal case (infinite seqno space without wrap caused issues).
1198 *
1199 * With D-SACK the lower bound is extended to cover sequence space below
1200 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1201 * again, D-SACK block must not to go across snd_una (for the same reason as
1202 * for the normal SACK blocks, explained above). But there all simplicity
1203 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1204 * fully below undo_marker they do not affect behavior in anyway and can
1205 * therefore be safely ignored. In rare cases (which are more or less
1206 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1207 * fragmentation and packet reordering past skb's retransmission. To consider
1208 * them correctly, the acceptable range must be extended even more though
1209 * the exact amount is rather hard to quantify. However, tp->max_window can
1210 * be used as an exaggerated estimate.
1211 */
1212static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1213				   u32 start_seq, u32 end_seq)
1214{
1215	/* Too far in future, or reversed (interpretation is ambiguous) */
1216	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1217		return false;
1218
1219	/* Nasty start_seq wrap-around check (see comments above) */
1220	if (!before(start_seq, tp->snd_nxt))
1221		return false;
1222
1223	/* In outstanding window? ...This is valid exit for D-SACKs too.
1224	 * start_seq == snd_una is non-sensical (see comments above)
1225	 */
1226	if (after(start_seq, tp->snd_una))
1227		return true;
1228
1229	if (!is_dsack || !tp->undo_marker)
1230		return false;
1231
1232	/* ...Then it's D-SACK, and must reside below snd_una completely */
1233	if (after(end_seq, tp->snd_una))
1234		return false;
1235
1236	if (!before(start_seq, tp->undo_marker))
1237		return true;
1238
1239	/* Too old */
1240	if (!after(end_seq, tp->undo_marker))
1241		return false;
1242
1243	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1244	 *   start_seq < undo_marker and end_seq >= undo_marker.
1245	 */
1246	return !before(start_seq, end_seq - tp->max_window);
1247}
1248
1249static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1250			    struct tcp_sack_block_wire *sp, int num_sacks,
1251			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1252{
1253	struct tcp_sock *tp = tcp_sk(sk);
1254	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1255	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1256	u32 dup_segs;
1257
1258	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
 
 
1259		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1260	} else if (num_sacks > 1) {
1261		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1262		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1263
1264		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1265			return false;
1266		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1267	} else {
1268		return false;
1269	}
1270
1271	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1272	if (!dup_segs) {	/* Skip dubious DSACK */
1273		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1274		return false;
1275	}
1276
1277	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1278
1279	/* D-SACK for already forgotten data... Do dumb counting. */
1280	if (tp->undo_marker && tp->undo_retrans > 0 &&
1281	    !after(end_seq_0, prior_snd_una) &&
1282	    after(end_seq_0, tp->undo_marker))
1283		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1284
1285	return true;
1286}
1287
 
 
 
 
 
 
 
 
 
 
 
 
 
1288/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1289 * the incoming SACK may not exactly match but we can find smaller MSS
1290 * aligned portion of it that matches. Therefore we might need to fragment
1291 * which may fail and creates some hassle (caller must handle error case
1292 * returns).
1293 *
1294 * FIXME: this could be merged to shift decision code
1295 */
1296static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1297				  u32 start_seq, u32 end_seq)
1298{
1299	int err;
1300	bool in_sack;
1301	unsigned int pkt_len;
1302	unsigned int mss;
1303
1304	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1305		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1306
1307	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1308	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1309		mss = tcp_skb_mss(skb);
1310		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1311
1312		if (!in_sack) {
1313			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1314			if (pkt_len < mss)
1315				pkt_len = mss;
1316		} else {
1317			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1318			if (pkt_len < mss)
1319				return -EINVAL;
1320		}
1321
1322		/* Round if necessary so that SACKs cover only full MSSes
1323		 * and/or the remaining small portion (if present)
1324		 */
1325		if (pkt_len > mss) {
1326			unsigned int new_len = (pkt_len / mss) * mss;
1327			if (!in_sack && new_len < pkt_len)
1328				new_len += mss;
1329			pkt_len = new_len;
1330		}
1331
1332		if (pkt_len >= skb->len && !in_sack)
1333			return 0;
1334
1335		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1336				   pkt_len, mss, GFP_ATOMIC);
1337		if (err < 0)
1338			return err;
1339	}
1340
1341	return in_sack;
1342}
1343
1344/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1345static u8 tcp_sacktag_one(struct sock *sk,
1346			  struct tcp_sacktag_state *state, u8 sacked,
1347			  u32 start_seq, u32 end_seq,
1348			  int dup_sack, int pcount,
1349			  u64 xmit_time)
1350{
1351	struct tcp_sock *tp = tcp_sk(sk);
1352
1353	/* Account D-SACK for retransmitted packet. */
1354	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1355		if (tp->undo_marker && tp->undo_retrans > 0 &&
1356		    after(end_seq, tp->undo_marker))
1357			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1358		if ((sacked & TCPCB_SACKED_ACKED) &&
1359		    before(start_seq, state->reord))
1360				state->reord = start_seq;
1361	}
1362
1363	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1364	if (!after(end_seq, tp->snd_una))
1365		return sacked;
1366
1367	if (!(sacked & TCPCB_SACKED_ACKED)) {
1368		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1369
1370		if (sacked & TCPCB_SACKED_RETRANS) {
1371			/* If the segment is not tagged as lost,
1372			 * we do not clear RETRANS, believing
1373			 * that retransmission is still in flight.
1374			 */
1375			if (sacked & TCPCB_LOST) {
1376				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1377				tp->lost_out -= pcount;
1378				tp->retrans_out -= pcount;
1379			}
1380		} else {
1381			if (!(sacked & TCPCB_RETRANS)) {
1382				/* New sack for not retransmitted frame,
1383				 * which was in hole. It is reordering.
1384				 */
1385				if (before(start_seq,
1386					   tcp_highest_sack_seq(tp)) &&
1387				    before(start_seq, state->reord))
1388					state->reord = start_seq;
1389
1390				if (!after(end_seq, tp->high_seq))
1391					state->flag |= FLAG_ORIG_SACK_ACKED;
1392				if (state->first_sackt == 0)
1393					state->first_sackt = xmit_time;
1394				state->last_sackt = xmit_time;
1395			}
1396
1397			if (sacked & TCPCB_LOST) {
1398				sacked &= ~TCPCB_LOST;
1399				tp->lost_out -= pcount;
1400			}
1401		}
1402
1403		sacked |= TCPCB_SACKED_ACKED;
1404		state->flag |= FLAG_DATA_SACKED;
1405		tp->sacked_out += pcount;
1406		/* Out-of-order packets delivered */
1407		state->sack_delivered += pcount;
1408
1409		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1410		if (tp->lost_skb_hint &&
1411		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1412			tp->lost_cnt_hint += pcount;
1413	}
1414
1415	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1416	 * frames and clear it. undo_retrans is decreased above, L|R frames
1417	 * are accounted above as well.
1418	 */
1419	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1420		sacked &= ~TCPCB_SACKED_RETRANS;
1421		tp->retrans_out -= pcount;
1422	}
1423
1424	return sacked;
1425}
1426
1427/* Shift newly-SACKed bytes from this skb to the immediately previous
1428 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1429 */
1430static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1431			    struct sk_buff *skb,
1432			    struct tcp_sacktag_state *state,
1433			    unsigned int pcount, int shifted, int mss,
1434			    bool dup_sack)
1435{
1436	struct tcp_sock *tp = tcp_sk(sk);
1437	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1438	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1439
1440	BUG_ON(!pcount);
1441
1442	/* Adjust counters and hints for the newly sacked sequence
1443	 * range but discard the return value since prev is already
1444	 * marked. We must tag the range first because the seq
1445	 * advancement below implicitly advances
1446	 * tcp_highest_sack_seq() when skb is highest_sack.
1447	 */
1448	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1449			start_seq, end_seq, dup_sack, pcount,
1450			tcp_skb_timestamp_us(skb));
1451	tcp_rate_skb_delivered(sk, skb, state->rate);
1452
1453	if (skb == tp->lost_skb_hint)
1454		tp->lost_cnt_hint += pcount;
1455
1456	TCP_SKB_CB(prev)->end_seq += shifted;
1457	TCP_SKB_CB(skb)->seq += shifted;
1458
1459	tcp_skb_pcount_add(prev, pcount);
1460	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1461	tcp_skb_pcount_add(skb, -pcount);
1462
1463	/* When we're adding to gso_segs == 1, gso_size will be zero,
1464	 * in theory this shouldn't be necessary but as long as DSACK
1465	 * code can come after this skb later on it's better to keep
1466	 * setting gso_size to something.
1467	 */
1468	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1469		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1470
1471	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1472	if (tcp_skb_pcount(skb) <= 1)
1473		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1474
1475	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1476	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1477
1478	if (skb->len > 0) {
1479		BUG_ON(!tcp_skb_pcount(skb));
1480		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1481		return false;
1482	}
1483
1484	/* Whole SKB was eaten :-) */
1485
1486	if (skb == tp->retransmit_skb_hint)
1487		tp->retransmit_skb_hint = prev;
1488	if (skb == tp->lost_skb_hint) {
1489		tp->lost_skb_hint = prev;
1490		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1491	}
1492
1493	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1494	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1495	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1496		TCP_SKB_CB(prev)->end_seq++;
1497
1498	if (skb == tcp_highest_sack(sk))
1499		tcp_advance_highest_sack(sk, skb);
1500
1501	tcp_skb_collapse_tstamp(prev, skb);
1502	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1503		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1504
1505	tcp_rtx_queue_unlink_and_free(skb, sk);
1506
1507	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1508
1509	return true;
1510}
1511
1512/* I wish gso_size would have a bit more sane initialization than
1513 * something-or-zero which complicates things
1514 */
1515static int tcp_skb_seglen(const struct sk_buff *skb)
1516{
1517	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1518}
1519
1520/* Shifting pages past head area doesn't work */
1521static int skb_can_shift(const struct sk_buff *skb)
1522{
1523	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1524}
1525
1526int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1527		  int pcount, int shiftlen)
1528{
1529	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1530	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1531	 * to make sure not storing more than 65535 * 8 bytes per skb,
1532	 * even if current MSS is bigger.
1533	 */
1534	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1535		return 0;
1536	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1537		return 0;
1538	return skb_shift(to, from, shiftlen);
1539}
1540
1541/* Try collapsing SACK blocks spanning across multiple skbs to a single
1542 * skb.
1543 */
1544static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1545					  struct tcp_sacktag_state *state,
1546					  u32 start_seq, u32 end_seq,
1547					  bool dup_sack)
1548{
1549	struct tcp_sock *tp = tcp_sk(sk);
1550	struct sk_buff *prev;
1551	int mss;
1552	int pcount = 0;
1553	int len;
1554	int in_sack;
1555
1556	/* Normally R but no L won't result in plain S */
1557	if (!dup_sack &&
1558	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1559		goto fallback;
1560	if (!skb_can_shift(skb))
1561		goto fallback;
1562	/* This frame is about to be dropped (was ACKed). */
1563	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1564		goto fallback;
1565
1566	/* Can only happen with delayed DSACK + discard craziness */
1567	prev = skb_rb_prev(skb);
1568	if (!prev)
1569		goto fallback;
1570
1571	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1572		goto fallback;
1573
1574	if (!tcp_skb_can_collapse(prev, skb))
1575		goto fallback;
1576
1577	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1578		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1579
1580	if (in_sack) {
1581		len = skb->len;
1582		pcount = tcp_skb_pcount(skb);
1583		mss = tcp_skb_seglen(skb);
1584
1585		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1586		 * drop this restriction as unnecessary
1587		 */
1588		if (mss != tcp_skb_seglen(prev))
1589			goto fallback;
1590	} else {
1591		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1592			goto noop;
1593		/* CHECKME: This is non-MSS split case only?, this will
1594		 * cause skipped skbs due to advancing loop btw, original
1595		 * has that feature too
1596		 */
1597		if (tcp_skb_pcount(skb) <= 1)
1598			goto noop;
1599
1600		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1601		if (!in_sack) {
1602			/* TODO: head merge to next could be attempted here
1603			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1604			 * though it might not be worth of the additional hassle
1605			 *
1606			 * ...we can probably just fallback to what was done
1607			 * previously. We could try merging non-SACKed ones
1608			 * as well but it probably isn't going to buy off
1609			 * because later SACKs might again split them, and
1610			 * it would make skb timestamp tracking considerably
1611			 * harder problem.
1612			 */
1613			goto fallback;
1614		}
1615
1616		len = end_seq - TCP_SKB_CB(skb)->seq;
1617		BUG_ON(len < 0);
1618		BUG_ON(len > skb->len);
1619
1620		/* MSS boundaries should be honoured or else pcount will
1621		 * severely break even though it makes things bit trickier.
1622		 * Optimize common case to avoid most of the divides
1623		 */
1624		mss = tcp_skb_mss(skb);
1625
1626		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1627		 * drop this restriction as unnecessary
1628		 */
1629		if (mss != tcp_skb_seglen(prev))
1630			goto fallback;
1631
1632		if (len == mss) {
1633			pcount = 1;
1634		} else if (len < mss) {
1635			goto noop;
1636		} else {
1637			pcount = len / mss;
1638			len = pcount * mss;
1639		}
1640	}
1641
1642	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1643	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1644		goto fallback;
1645
1646	if (!tcp_skb_shift(prev, skb, pcount, len))
1647		goto fallback;
1648	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1649		goto out;
1650
1651	/* Hole filled allows collapsing with the next as well, this is very
1652	 * useful when hole on every nth skb pattern happens
1653	 */
1654	skb = skb_rb_next(prev);
1655	if (!skb)
1656		goto out;
1657
1658	if (!skb_can_shift(skb) ||
1659	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1660	    (mss != tcp_skb_seglen(skb)))
1661		goto out;
1662
1663	if (!tcp_skb_can_collapse(prev, skb))
1664		goto out;
1665	len = skb->len;
1666	pcount = tcp_skb_pcount(skb);
1667	if (tcp_skb_shift(prev, skb, pcount, len))
1668		tcp_shifted_skb(sk, prev, skb, state, pcount,
1669				len, mss, 0);
 
1670
1671out:
1672	return prev;
1673
1674noop:
1675	return skb;
1676
1677fallback:
1678	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1679	return NULL;
1680}
1681
1682static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1683					struct tcp_sack_block *next_dup,
1684					struct tcp_sacktag_state *state,
1685					u32 start_seq, u32 end_seq,
1686					bool dup_sack_in)
1687{
1688	struct tcp_sock *tp = tcp_sk(sk);
1689	struct sk_buff *tmp;
1690
1691	skb_rbtree_walk_from(skb) {
1692		int in_sack = 0;
1693		bool dup_sack = dup_sack_in;
1694
1695		/* queue is in-order => we can short-circuit the walk early */
1696		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1697			break;
1698
1699		if (next_dup  &&
1700		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1701			in_sack = tcp_match_skb_to_sack(sk, skb,
1702							next_dup->start_seq,
1703							next_dup->end_seq);
1704			if (in_sack > 0)
1705				dup_sack = true;
1706		}
1707
1708		/* skb reference here is a bit tricky to get right, since
1709		 * shifting can eat and free both this skb and the next,
1710		 * so not even _safe variant of the loop is enough.
1711		 */
1712		if (in_sack <= 0) {
1713			tmp = tcp_shift_skb_data(sk, skb, state,
1714						 start_seq, end_seq, dup_sack);
1715			if (tmp) {
1716				if (tmp != skb) {
1717					skb = tmp;
1718					continue;
1719				}
1720
1721				in_sack = 0;
1722			} else {
1723				in_sack = tcp_match_skb_to_sack(sk, skb,
1724								start_seq,
1725								end_seq);
1726			}
1727		}
1728
1729		if (unlikely(in_sack < 0))
1730			break;
1731
1732		if (in_sack) {
1733			TCP_SKB_CB(skb)->sacked =
1734				tcp_sacktag_one(sk,
1735						state,
1736						TCP_SKB_CB(skb)->sacked,
1737						TCP_SKB_CB(skb)->seq,
1738						TCP_SKB_CB(skb)->end_seq,
1739						dup_sack,
1740						tcp_skb_pcount(skb),
1741						tcp_skb_timestamp_us(skb));
1742			tcp_rate_skb_delivered(sk, skb, state->rate);
1743			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1744				list_del_init(&skb->tcp_tsorted_anchor);
1745
1746			if (!before(TCP_SKB_CB(skb)->seq,
1747				    tcp_highest_sack_seq(tp)))
1748				tcp_advance_highest_sack(sk, skb);
1749		}
1750	}
1751	return skb;
1752}
1753
1754static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
 
 
1755{
1756	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1757	struct sk_buff *skb;
1758
1759	while (*p) {
1760		parent = *p;
1761		skb = rb_to_skb(parent);
1762		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1763			p = &parent->rb_left;
1764			continue;
1765		}
1766		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1767			p = &parent->rb_right;
1768			continue;
1769		}
1770		return skb;
1771	}
1772	return NULL;
1773}
1774
1775static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
 
1776					u32 skip_to_seq)
1777{
1778	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1779		return skb;
1780
1781	return tcp_sacktag_bsearch(sk, skip_to_seq);
1782}
1783
1784static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1785						struct sock *sk,
1786						struct tcp_sack_block *next_dup,
1787						struct tcp_sacktag_state *state,
1788						u32 skip_to_seq)
1789{
1790	if (!next_dup)
1791		return skb;
1792
1793	if (before(next_dup->start_seq, skip_to_seq)) {
1794		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1795		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1796				       next_dup->start_seq, next_dup->end_seq,
1797				       1);
1798	}
1799
1800	return skb;
1801}
1802
1803static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1804{
1805	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1806}
1807
1808static int
1809tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1810			u32 prior_snd_una, struct tcp_sacktag_state *state)
1811{
1812	struct tcp_sock *tp = tcp_sk(sk);
1813	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1814				    TCP_SKB_CB(ack_skb)->sacked);
1815	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1816	struct tcp_sack_block sp[TCP_NUM_SACKS];
1817	struct tcp_sack_block *cache;
1818	struct sk_buff *skb;
1819	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1820	int used_sacks;
1821	bool found_dup_sack = false;
1822	int i, j;
1823	int first_sack_index;
1824
1825	state->flag = 0;
1826	state->reord = tp->snd_nxt;
1827
1828	if (!tp->sacked_out)
1829		tcp_highest_sack_reset(sk);
1830
1831	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1832					 num_sacks, prior_snd_una, state);
 
 
 
 
1833
1834	/* Eliminate too old ACKs, but take into
1835	 * account more or less fresh ones, they can
1836	 * contain valid SACK info.
1837	 */
1838	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1839		return 0;
1840
1841	if (!tp->packets_out)
1842		goto out;
1843
1844	used_sacks = 0;
1845	first_sack_index = 0;
1846	for (i = 0; i < num_sacks; i++) {
1847		bool dup_sack = !i && found_dup_sack;
1848
1849		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1850		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1851
1852		if (!tcp_is_sackblock_valid(tp, dup_sack,
1853					    sp[used_sacks].start_seq,
1854					    sp[used_sacks].end_seq)) {
1855			int mib_idx;
1856
1857			if (dup_sack) {
1858				if (!tp->undo_marker)
1859					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1860				else
1861					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1862			} else {
1863				/* Don't count olds caused by ACK reordering */
1864				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1865				    !after(sp[used_sacks].end_seq, tp->snd_una))
1866					continue;
1867				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1868			}
1869
1870			NET_INC_STATS(sock_net(sk), mib_idx);
1871			if (i == 0)
1872				first_sack_index = -1;
1873			continue;
1874		}
1875
1876		/* Ignore very old stuff early */
1877		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1878			if (i == 0)
1879				first_sack_index = -1;
1880			continue;
1881		}
1882
1883		used_sacks++;
1884	}
1885
1886	/* order SACK blocks to allow in order walk of the retrans queue */
1887	for (i = used_sacks - 1; i > 0; i--) {
1888		for (j = 0; j < i; j++) {
1889			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1890				swap(sp[j], sp[j + 1]);
1891
1892				/* Track where the first SACK block goes to */
1893				if (j == first_sack_index)
1894					first_sack_index = j + 1;
1895			}
1896		}
1897	}
1898
1899	state->mss_now = tcp_current_mss(sk);
1900	skb = NULL;
1901	i = 0;
1902
1903	if (!tp->sacked_out) {
1904		/* It's already past, so skip checking against it */
1905		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1906	} else {
1907		cache = tp->recv_sack_cache;
1908		/* Skip empty blocks in at head of the cache */
1909		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1910		       !cache->end_seq)
1911			cache++;
1912	}
1913
1914	while (i < used_sacks) {
1915		u32 start_seq = sp[i].start_seq;
1916		u32 end_seq = sp[i].end_seq;
1917		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1918		struct tcp_sack_block *next_dup = NULL;
1919
1920		if (found_dup_sack && ((i + 1) == first_sack_index))
1921			next_dup = &sp[i + 1];
1922
1923		/* Skip too early cached blocks */
1924		while (tcp_sack_cache_ok(tp, cache) &&
1925		       !before(start_seq, cache->end_seq))
1926			cache++;
1927
1928		/* Can skip some work by looking recv_sack_cache? */
1929		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1930		    after(end_seq, cache->start_seq)) {
1931
1932			/* Head todo? */
1933			if (before(start_seq, cache->start_seq)) {
1934				skb = tcp_sacktag_skip(skb, sk, start_seq);
 
1935				skb = tcp_sacktag_walk(skb, sk, next_dup,
1936						       state,
1937						       start_seq,
1938						       cache->start_seq,
1939						       dup_sack);
1940			}
1941
1942			/* Rest of the block already fully processed? */
1943			if (!after(end_seq, cache->end_seq))
1944				goto advance_sp;
1945
1946			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1947						       state,
1948						       cache->end_seq);
1949
1950			/* ...tail remains todo... */
1951			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1952				/* ...but better entrypoint exists! */
1953				skb = tcp_highest_sack(sk);
1954				if (!skb)
1955					break;
1956				cache++;
1957				goto walk;
1958			}
1959
1960			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1961			/* Check overlap against next cached too (past this one already) */
1962			cache++;
1963			continue;
1964		}
1965
1966		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1967			skb = tcp_highest_sack(sk);
1968			if (!skb)
1969				break;
1970		}
1971		skb = tcp_sacktag_skip(skb, sk, start_seq);
1972
1973walk:
1974		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1975				       start_seq, end_seq, dup_sack);
1976
1977advance_sp:
1978		i++;
1979	}
1980
1981	/* Clear the head of the cache sack blocks so we can skip it next time */
1982	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1983		tp->recv_sack_cache[i].start_seq = 0;
1984		tp->recv_sack_cache[i].end_seq = 0;
1985	}
1986	for (j = 0; j < used_sacks; j++)
1987		tp->recv_sack_cache[i++] = sp[j];
1988
1989	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1990		tcp_check_sack_reordering(sk, state->reord, 0);
1991
1992	tcp_verify_left_out(tp);
1993out:
1994
1995#if FASTRETRANS_DEBUG > 0
1996	WARN_ON((int)tp->sacked_out < 0);
1997	WARN_ON((int)tp->lost_out < 0);
1998	WARN_ON((int)tp->retrans_out < 0);
1999	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2000#endif
2001	return state->flag;
2002}
2003
2004/* Limits sacked_out so that sum with lost_out isn't ever larger than
2005 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2006 */
2007static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2008{
2009	u32 holes;
2010
2011	holes = max(tp->lost_out, 1U);
2012	holes = min(holes, tp->packets_out);
2013
2014	if ((tp->sacked_out + holes) > tp->packets_out) {
2015		tp->sacked_out = tp->packets_out - holes;
2016		return true;
2017	}
2018	return false;
2019}
2020
2021/* If we receive more dupacks than we expected counting segments
2022 * in assumption of absent reordering, interpret this as reordering.
2023 * The only another reason could be bug in receiver TCP.
2024 */
2025static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2026{
2027	struct tcp_sock *tp = tcp_sk(sk);
2028
2029	if (!tcp_limit_reno_sacked(tp))
2030		return;
2031
2032	tp->reordering = min_t(u32, tp->packets_out + addend,
2033			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2034	tp->reord_seen++;
2035	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2036}
2037
2038/* Emulate SACKs for SACKless connection: account for a new dupack. */
2039
2040static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2041{
2042	if (num_dupack) {
2043		struct tcp_sock *tp = tcp_sk(sk);
2044		u32 prior_sacked = tp->sacked_out;
2045		s32 delivered;
2046
2047		tp->sacked_out += num_dupack;
2048		tcp_check_reno_reordering(sk, 0);
2049		delivered = tp->sacked_out - prior_sacked;
2050		if (delivered > 0)
2051			tcp_count_delivered(tp, delivered, ece_ack);
2052		tcp_verify_left_out(tp);
2053	}
2054}
2055
2056/* Account for ACK, ACKing some data in Reno Recovery phase. */
2057
2058static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2059{
2060	struct tcp_sock *tp = tcp_sk(sk);
2061
2062	if (acked > 0) {
2063		/* One ACK acked hole. The rest eat duplicate ACKs. */
2064		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2065				    ece_ack);
2066		if (acked - 1 >= tp->sacked_out)
2067			tp->sacked_out = 0;
2068		else
2069			tp->sacked_out -= acked - 1;
2070	}
2071	tcp_check_reno_reordering(sk, acked);
2072	tcp_verify_left_out(tp);
2073}
2074
2075static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2076{
2077	tp->sacked_out = 0;
2078}
2079
2080void tcp_clear_retrans(struct tcp_sock *tp)
2081{
2082	tp->retrans_out = 0;
2083	tp->lost_out = 0;
2084	tp->undo_marker = 0;
2085	tp->undo_retrans = -1;
2086	tp->sacked_out = 0;
2087}
2088
2089static inline void tcp_init_undo(struct tcp_sock *tp)
2090{
2091	tp->undo_marker = tp->snd_una;
2092	/* Retransmission still in flight may cause DSACKs later. */
2093	tp->undo_retrans = tp->retrans_out ? : -1;
2094}
2095
2096static bool tcp_is_rack(const struct sock *sk)
2097{
2098	return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2099		TCP_RACK_LOSS_DETECTION;
2100}
2101
2102/* If we detect SACK reneging, forget all SACK information
2103 * and reset tags completely, otherwise preserve SACKs. If receiver
2104 * dropped its ofo queue, we will know this due to reneging detection.
2105 */
2106static void tcp_timeout_mark_lost(struct sock *sk)
2107{
2108	struct tcp_sock *tp = tcp_sk(sk);
2109	struct sk_buff *skb, *head;
2110	bool is_reneg;			/* is receiver reneging on SACKs? */
2111
2112	head = tcp_rtx_queue_head(sk);
2113	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2114	if (is_reneg) {
2115		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2116		tp->sacked_out = 0;
2117		/* Mark SACK reneging until we recover from this loss event. */
2118		tp->is_sack_reneg = 1;
2119	} else if (tcp_is_reno(tp)) {
2120		tcp_reset_reno_sack(tp);
2121	}
2122
2123	skb = head;
2124	skb_rbtree_walk_from(skb) {
2125		if (is_reneg)
2126			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2127		else if (tcp_is_rack(sk) && skb != head &&
2128			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2129			continue; /* Don't mark recently sent ones lost yet */
2130		tcp_mark_skb_lost(sk, skb);
2131	}
2132	tcp_verify_left_out(tp);
2133	tcp_clear_all_retrans_hints(tp);
2134}
2135
2136/* Enter Loss state. */
2137void tcp_enter_loss(struct sock *sk)
2138{
2139	const struct inet_connection_sock *icsk = inet_csk(sk);
2140	struct tcp_sock *tp = tcp_sk(sk);
2141	struct net *net = sock_net(sk);
 
2142	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2143	u8 reordering;
2144
2145	tcp_timeout_mark_lost(sk);
2146
2147	/* Reduce ssthresh if it has not yet been made inside this window. */
2148	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2149	    !after(tp->high_seq, tp->snd_una) ||
2150	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2151		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2152		tp->prior_cwnd = tcp_snd_cwnd(tp);
2153		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2154		tcp_ca_event(sk, CA_EVENT_LOSS);
2155		tcp_init_undo(tp);
2156	}
2157	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2158	tp->snd_cwnd_cnt   = 0;
2159	tp->snd_cwnd_stamp = tcp_jiffies32;
2160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2161	/* Timeout in disordered state after receiving substantial DUPACKs
2162	 * suggests that the degree of reordering is over-estimated.
2163	 */
2164	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2165	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2166	    tp->sacked_out >= reordering)
2167		tp->reordering = min_t(unsigned int, tp->reordering,
2168				       reordering);
2169
2170	tcp_set_ca_state(sk, TCP_CA_Loss);
2171	tp->high_seq = tp->snd_nxt;
2172	tcp_ecn_queue_cwr(tp);
2173
2174	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2175	 * loss recovery is underway except recurring timeout(s) on
2176	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2177	 */
2178	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2179		   (new_recovery || icsk->icsk_retransmits) &&
2180		   !inet_csk(sk)->icsk_mtup.probe_size;
2181}
2182
2183/* If ACK arrived pointing to a remembered SACK, it means that our
2184 * remembered SACKs do not reflect real state of receiver i.e.
2185 * receiver _host_ is heavily congested (or buggy).
2186 *
2187 * To avoid big spurious retransmission bursts due to transient SACK
2188 * scoreboard oddities that look like reneging, we give the receiver a
2189 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2190 * restore sanity to the SACK scoreboard. If the apparent reneging
2191 * persists until this RTO then we'll clear the SACK scoreboard.
2192 */
2193static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2194{
2195	if (flag & FLAG_SACK_RENEGING &&
2196	    flag & FLAG_SND_UNA_ADVANCED) {
2197		struct tcp_sock *tp = tcp_sk(sk);
2198		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2199					  msecs_to_jiffies(10));
2200
2201		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2202					  delay, TCP_RTO_MAX);
2203		return true;
2204	}
2205	return false;
2206}
2207
2208/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2209 * counter when SACK is enabled (without SACK, sacked_out is used for
2210 * that purpose).
2211 *
2212 * With reordering, holes may still be in flight, so RFC3517 recovery
2213 * uses pure sacked_out (total number of SACKed segments) even though
2214 * it violates the RFC that uses duplicate ACKs, often these are equal
2215 * but when e.g. out-of-window ACKs or packet duplication occurs,
2216 * they differ. Since neither occurs due to loss, TCP should really
2217 * ignore them.
2218 */
2219static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2220{
2221	return tp->sacked_out + 1;
2222}
2223
2224/* Linux NewReno/SACK/ECN state machine.
2225 * --------------------------------------
2226 *
2227 * "Open"	Normal state, no dubious events, fast path.
2228 * "Disorder"   In all the respects it is "Open",
2229 *		but requires a bit more attention. It is entered when
2230 *		we see some SACKs or dupacks. It is split of "Open"
2231 *		mainly to move some processing from fast path to slow one.
2232 * "CWR"	CWND was reduced due to some Congestion Notification event.
2233 *		It can be ECN, ICMP source quench, local device congestion.
2234 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2235 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2236 *
2237 * tcp_fastretrans_alert() is entered:
2238 * - each incoming ACK, if state is not "Open"
2239 * - when arrived ACK is unusual, namely:
2240 *	* SACK
2241 *	* Duplicate ACK.
2242 *	* ECN ECE.
2243 *
2244 * Counting packets in flight is pretty simple.
2245 *
2246 *	in_flight = packets_out - left_out + retrans_out
2247 *
2248 *	packets_out is SND.NXT-SND.UNA counted in packets.
2249 *
2250 *	retrans_out is number of retransmitted segments.
2251 *
2252 *	left_out is number of segments left network, but not ACKed yet.
2253 *
2254 *		left_out = sacked_out + lost_out
2255 *
2256 *     sacked_out: Packets, which arrived to receiver out of order
2257 *		   and hence not ACKed. With SACKs this number is simply
2258 *		   amount of SACKed data. Even without SACKs
2259 *		   it is easy to give pretty reliable estimate of this number,
2260 *		   counting duplicate ACKs.
2261 *
2262 *       lost_out: Packets lost by network. TCP has no explicit
2263 *		   "loss notification" feedback from network (for now).
2264 *		   It means that this number can be only _guessed_.
2265 *		   Actually, it is the heuristics to predict lossage that
2266 *		   distinguishes different algorithms.
2267 *
2268 *	F.e. after RTO, when all the queue is considered as lost,
2269 *	lost_out = packets_out and in_flight = retrans_out.
2270 *
2271 *		Essentially, we have now a few algorithms detecting
2272 *		lost packets.
2273 *
2274 *		If the receiver supports SACK:
2275 *
2276 *		RFC6675/3517: It is the conventional algorithm. A packet is
2277 *		considered lost if the number of higher sequence packets
2278 *		SACKed is greater than or equal the DUPACK thoreshold
2279 *		(reordering). This is implemented in tcp_mark_head_lost and
2280 *		tcp_update_scoreboard.
2281 *
2282 *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2283 *		(2017-) that checks timing instead of counting DUPACKs.
2284 *		Essentially a packet is considered lost if it's not S/ACKed
2285 *		after RTT + reordering_window, where both metrics are
2286 *		dynamically measured and adjusted. This is implemented in
2287 *		tcp_rack_mark_lost.
2288 *
2289 *		If the receiver does not support SACK:
2290 *
2291 *		NewReno (RFC6582): in Recovery we assume that one segment
2292 *		is lost (classic Reno). While we are in Recovery and
2293 *		a partial ACK arrives, we assume that one more packet
2294 *		is lost (NewReno). This heuristics are the same in NewReno
2295 *		and SACK.
2296 *
2297 * Really tricky (and requiring careful tuning) part of algorithm
2298 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2299 * The first determines the moment _when_ we should reduce CWND and,
2300 * hence, slow down forward transmission. In fact, it determines the moment
2301 * when we decide that hole is caused by loss, rather than by a reorder.
2302 *
2303 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2304 * holes, caused by lost packets.
2305 *
2306 * And the most logically complicated part of algorithm is undo
2307 * heuristics. We detect false retransmits due to both too early
2308 * fast retransmit (reordering) and underestimated RTO, analyzing
2309 * timestamps and D-SACKs. When we detect that some segments were
2310 * retransmitted by mistake and CWND reduction was wrong, we undo
2311 * window reduction and abort recovery phase. This logic is hidden
2312 * inside several functions named tcp_try_undo_<something>.
2313 */
2314
2315/* This function decides, when we should leave Disordered state
2316 * and enter Recovery phase, reducing congestion window.
2317 *
2318 * Main question: may we further continue forward transmission
2319 * with the same cwnd?
2320 */
2321static bool tcp_time_to_recover(struct sock *sk, int flag)
2322{
2323	struct tcp_sock *tp = tcp_sk(sk);
2324
2325	/* Trick#1: The loss is proven. */
2326	if (tp->lost_out)
2327		return true;
2328
2329	/* Not-A-Trick#2 : Classic rule... */
2330	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2331		return true;
2332
2333	return false;
2334}
2335
2336/* Detect loss in event "A" above by marking head of queue up as lost.
2337 * For RFC3517 SACK, a segment is considered lost if it
 
2338 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2339 * the maximum SACKed segments to pass before reaching this limit.
2340 */
2341static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2342{
2343	struct tcp_sock *tp = tcp_sk(sk);
2344	struct sk_buff *skb;
2345	int cnt;
 
2346	/* Use SACK to deduce losses of new sequences sent during recovery */
2347	const u32 loss_high = tp->snd_nxt;
2348
2349	WARN_ON(packets > tp->packets_out);
2350	skb = tp->lost_skb_hint;
2351	if (skb) {
2352		/* Head already handled? */
2353		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2354			return;
2355		cnt = tp->lost_cnt_hint;
2356	} else {
2357		skb = tcp_rtx_queue_head(sk);
2358		cnt = 0;
2359	}
2360
2361	skb_rbtree_walk_from(skb) {
2362		/* TODO: do this better */
2363		/* this is not the most efficient way to do this... */
2364		tp->lost_skb_hint = skb;
2365		tp->lost_cnt_hint = cnt;
2366
2367		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2368			break;
2369
2370		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
 
 
2371			cnt += tcp_skb_pcount(skb);
2372
2373		if (cnt > packets)
2374			break;
 
 
 
2375
2376		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2377			tcp_mark_skb_lost(sk, skb);
 
 
 
 
 
 
 
 
 
2378
2379		if (mark_head)
2380			break;
2381	}
2382	tcp_verify_left_out(tp);
2383}
2384
2385/* Account newly detected lost packet(s) */
2386
2387static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2388{
2389	struct tcp_sock *tp = tcp_sk(sk);
2390
2391	if (tcp_is_sack(tp)) {
 
 
2392		int sacked_upto = tp->sacked_out - tp->reordering;
2393		if (sacked_upto >= 0)
2394			tcp_mark_head_lost(sk, sacked_upto, 0);
2395		else if (fast_rexmit)
2396			tcp_mark_head_lost(sk, 1, 1);
2397	}
2398}
2399
2400static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2401{
2402	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2403	       before(tp->rx_opt.rcv_tsecr, when);
2404}
2405
2406/* skb is spurious retransmitted if the returned timestamp echo
2407 * reply is prior to the skb transmission time
2408 */
2409static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2410				     const struct sk_buff *skb)
2411{
2412	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2413	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2414}
2415
2416/* Nothing was retransmitted or returned timestamp is less
2417 * than timestamp of the first retransmission.
2418 */
2419static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2420{
2421	return tp->retrans_stamp &&
2422	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2423}
2424
2425/* Undo procedures. */
2426
2427/* We can clear retrans_stamp when there are no retransmissions in the
2428 * window. It would seem that it is trivially available for us in
2429 * tp->retrans_out, however, that kind of assumptions doesn't consider
2430 * what will happen if errors occur when sending retransmission for the
2431 * second time. ...It could the that such segment has only
2432 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2433 * the head skb is enough except for some reneging corner cases that
2434 * are not worth the effort.
2435 *
2436 * Main reason for all this complexity is the fact that connection dying
2437 * time now depends on the validity of the retrans_stamp, in particular,
2438 * that successive retransmissions of a segment must not advance
2439 * retrans_stamp under any conditions.
2440 */
2441static bool tcp_any_retrans_done(const struct sock *sk)
2442{
2443	const struct tcp_sock *tp = tcp_sk(sk);
2444	struct sk_buff *skb;
2445
2446	if (tp->retrans_out)
2447		return true;
2448
2449	skb = tcp_rtx_queue_head(sk);
2450	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2451		return true;
2452
2453	return false;
2454}
2455
2456static void DBGUNDO(struct sock *sk, const char *msg)
2457{
2458#if FASTRETRANS_DEBUG > 1
2459	struct tcp_sock *tp = tcp_sk(sk);
2460	struct inet_sock *inet = inet_sk(sk);
2461
2462	if (sk->sk_family == AF_INET) {
2463		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2464			 msg,
2465			 &inet->inet_daddr, ntohs(inet->inet_dport),
2466			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2467			 tp->snd_ssthresh, tp->prior_ssthresh,
2468			 tp->packets_out);
2469	}
2470#if IS_ENABLED(CONFIG_IPV6)
2471	else if (sk->sk_family == AF_INET6) {
2472		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2473			 msg,
2474			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2475			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2476			 tp->snd_ssthresh, tp->prior_ssthresh,
2477			 tp->packets_out);
2478	}
2479#endif
2480#endif
2481}
2482
2483static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2484{
2485	struct tcp_sock *tp = tcp_sk(sk);
2486
2487	if (unmark_loss) {
2488		struct sk_buff *skb;
2489
2490		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2491			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2492		}
2493		tp->lost_out = 0;
2494		tcp_clear_all_retrans_hints(tp);
2495	}
2496
2497	if (tp->prior_ssthresh) {
2498		const struct inet_connection_sock *icsk = inet_csk(sk);
2499
2500		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2501
2502		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2503			tp->snd_ssthresh = tp->prior_ssthresh;
2504			tcp_ecn_withdraw_cwr(tp);
2505		}
2506	}
2507	tp->snd_cwnd_stamp = tcp_jiffies32;
2508	tp->undo_marker = 0;
2509	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2510}
2511
2512static inline bool tcp_may_undo(const struct tcp_sock *tp)
2513{
2514	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2515}
2516
2517static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2518{
2519	struct tcp_sock *tp = tcp_sk(sk);
2520
2521	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2522		/* Hold old state until something *above* high_seq
2523		 * is ACKed. For Reno it is MUST to prevent false
2524		 * fast retransmits (RFC2582). SACK TCP is safe. */
2525		if (!tcp_any_retrans_done(sk))
2526			tp->retrans_stamp = 0;
2527		return true;
2528	}
2529	return false;
2530}
2531
2532/* People celebrate: "We love our President!" */
2533static bool tcp_try_undo_recovery(struct sock *sk)
2534{
2535	struct tcp_sock *tp = tcp_sk(sk);
2536
2537	if (tcp_may_undo(tp)) {
2538		int mib_idx;
2539
2540		/* Happy end! We did not retransmit anything
2541		 * or our original transmission succeeded.
2542		 */
2543		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2544		tcp_undo_cwnd_reduction(sk, false);
2545		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2546			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2547		else
2548			mib_idx = LINUX_MIB_TCPFULLUNDO;
2549
2550		NET_INC_STATS(sock_net(sk), mib_idx);
2551	} else if (tp->rack.reo_wnd_persist) {
2552		tp->rack.reo_wnd_persist--;
2553	}
2554	if (tcp_is_non_sack_preventing_reopen(sk))
 
 
 
 
 
2555		return true;
 
2556	tcp_set_ca_state(sk, TCP_CA_Open);
2557	tp->is_sack_reneg = 0;
2558	return false;
2559}
2560
2561/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2562static bool tcp_try_undo_dsack(struct sock *sk)
2563{
2564	struct tcp_sock *tp = tcp_sk(sk);
2565
2566	if (tp->undo_marker && !tp->undo_retrans) {
2567		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2568					       tp->rack.reo_wnd_persist + 1);
2569		DBGUNDO(sk, "D-SACK");
2570		tcp_undo_cwnd_reduction(sk, false);
2571		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2572		return true;
2573	}
2574	return false;
2575}
2576
2577/* Undo during loss recovery after partial ACK or using F-RTO. */
2578static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2579{
2580	struct tcp_sock *tp = tcp_sk(sk);
2581
2582	if (frto_undo || tcp_may_undo(tp)) {
2583		tcp_undo_cwnd_reduction(sk, true);
2584
2585		DBGUNDO(sk, "partial loss");
2586		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2587		if (frto_undo)
2588			NET_INC_STATS(sock_net(sk),
2589					LINUX_MIB_TCPSPURIOUSRTOS);
2590		inet_csk(sk)->icsk_retransmits = 0;
2591		if (tcp_is_non_sack_preventing_reopen(sk))
2592			return true;
2593		if (frto_undo || tcp_is_sack(tp)) {
2594			tcp_set_ca_state(sk, TCP_CA_Open);
2595			tp->is_sack_reneg = 0;
2596		}
2597		return true;
2598	}
2599	return false;
2600}
2601
2602/* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2603 * It computes the number of packets to send (sndcnt) based on packets newly
2604 * delivered:
2605 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2606 *	cwnd reductions across a full RTT.
2607 *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2608 *      But when SND_UNA is acked without further losses,
2609 *      slow starts cwnd up to ssthresh to speed up the recovery.
2610 */
2611static void tcp_init_cwnd_reduction(struct sock *sk)
2612{
2613	struct tcp_sock *tp = tcp_sk(sk);
2614
2615	tp->high_seq = tp->snd_nxt;
2616	tp->tlp_high_seq = 0;
2617	tp->snd_cwnd_cnt = 0;
2618	tp->prior_cwnd = tcp_snd_cwnd(tp);
2619	tp->prr_delivered = 0;
2620	tp->prr_out = 0;
2621	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2622	tcp_ecn_queue_cwr(tp);
2623}
2624
2625void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2626{
2627	struct tcp_sock *tp = tcp_sk(sk);
2628	int sndcnt = 0;
2629	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2630
2631	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2632		return;
2633
2634	tp->prr_delivered += newly_acked_sacked;
2635	if (delta < 0) {
2636		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2637			       tp->prior_cwnd - 1;
2638		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
 
 
 
 
 
2639	} else {
2640		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2641			       newly_acked_sacked);
2642		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2643			sndcnt++;
2644		sndcnt = min(delta, sndcnt);
2645	}
2646	/* Force a fast retransmit upon entering fast recovery */
2647	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2648	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2649}
2650
2651static inline void tcp_end_cwnd_reduction(struct sock *sk)
2652{
2653	struct tcp_sock *tp = tcp_sk(sk);
2654
2655	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2656		return;
2657
2658	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2659	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2660	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2661		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2662		tp->snd_cwnd_stamp = tcp_jiffies32;
2663	}
2664	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2665}
2666
2667/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2668void tcp_enter_cwr(struct sock *sk)
2669{
2670	struct tcp_sock *tp = tcp_sk(sk);
2671
2672	tp->prior_ssthresh = 0;
2673	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2674		tp->undo_marker = 0;
2675		tcp_init_cwnd_reduction(sk);
2676		tcp_set_ca_state(sk, TCP_CA_CWR);
2677	}
2678}
2679EXPORT_SYMBOL(tcp_enter_cwr);
2680
2681static void tcp_try_keep_open(struct sock *sk)
2682{
2683	struct tcp_sock *tp = tcp_sk(sk);
2684	int state = TCP_CA_Open;
2685
2686	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2687		state = TCP_CA_Disorder;
2688
2689	if (inet_csk(sk)->icsk_ca_state != state) {
2690		tcp_set_ca_state(sk, state);
2691		tp->high_seq = tp->snd_nxt;
2692	}
2693}
2694
2695static void tcp_try_to_open(struct sock *sk, int flag)
2696{
2697	struct tcp_sock *tp = tcp_sk(sk);
2698
2699	tcp_verify_left_out(tp);
2700
2701	if (!tcp_any_retrans_done(sk))
2702		tp->retrans_stamp = 0;
2703
2704	if (flag & FLAG_ECE)
2705		tcp_enter_cwr(sk);
2706
2707	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2708		tcp_try_keep_open(sk);
2709	}
2710}
2711
2712static void tcp_mtup_probe_failed(struct sock *sk)
2713{
2714	struct inet_connection_sock *icsk = inet_csk(sk);
2715
2716	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2717	icsk->icsk_mtup.probe_size = 0;
2718	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2719}
2720
2721static void tcp_mtup_probe_success(struct sock *sk)
2722{
2723	struct tcp_sock *tp = tcp_sk(sk);
2724	struct inet_connection_sock *icsk = inet_csk(sk);
2725	u64 val;
2726
 
2727	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2728
2729	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2730	do_div(val, icsk->icsk_mtup.probe_size);
2731	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2732	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2733
2734	tp->snd_cwnd_cnt = 0;
2735	tp->snd_cwnd_stamp = tcp_jiffies32;
2736	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2737
2738	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2739	icsk->icsk_mtup.probe_size = 0;
2740	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2741	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2742}
2743
2744/* Do a simple retransmit without using the backoff mechanisms in
2745 * tcp_timer. This is used for path mtu discovery.
2746 * The socket is already locked here.
2747 */
2748void tcp_simple_retransmit(struct sock *sk)
2749{
2750	const struct inet_connection_sock *icsk = inet_csk(sk);
2751	struct tcp_sock *tp = tcp_sk(sk);
2752	struct sk_buff *skb;
2753	int mss;
2754
2755	/* A fastopen SYN request is stored as two separate packets within
2756	 * the retransmit queue, this is done by tcp_send_syn_data().
2757	 * As a result simply checking the MSS of the frames in the queue
2758	 * will not work for the SYN packet.
2759	 *
2760	 * Us being here is an indication of a path MTU issue so we can
2761	 * assume that the fastopen SYN was lost and just mark all the
2762	 * frames in the retransmit queue as lost. We will use an MSS of
2763	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2764	 */
2765	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2766		mss = -1;
2767	else
2768		mss = tcp_current_mss(sk);
2769
2770	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2771		if (tcp_skb_seglen(skb) > mss)
2772			tcp_mark_skb_lost(sk, skb);
 
 
 
 
 
 
2773	}
2774
2775	tcp_clear_retrans_hints_partial(tp);
2776
2777	if (!tp->lost_out)
2778		return;
2779
2780	if (tcp_is_reno(tp))
2781		tcp_limit_reno_sacked(tp);
2782
2783	tcp_verify_left_out(tp);
2784
2785	/* Don't muck with the congestion window here.
2786	 * Reason is that we do not increase amount of _data_
2787	 * in network, but units changed and effective
2788	 * cwnd/ssthresh really reduced now.
2789	 */
2790	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2791		tp->high_seq = tp->snd_nxt;
2792		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2793		tp->prior_ssthresh = 0;
2794		tp->undo_marker = 0;
2795		tcp_set_ca_state(sk, TCP_CA_Loss);
2796	}
2797	tcp_xmit_retransmit_queue(sk);
2798}
2799EXPORT_SYMBOL(tcp_simple_retransmit);
2800
2801void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2802{
2803	struct tcp_sock *tp = tcp_sk(sk);
2804	int mib_idx;
2805
2806	if (tcp_is_reno(tp))
2807		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2808	else
2809		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2810
2811	NET_INC_STATS(sock_net(sk), mib_idx);
2812
2813	tp->prior_ssthresh = 0;
2814	tcp_init_undo(tp);
2815
2816	if (!tcp_in_cwnd_reduction(sk)) {
2817		if (!ece_ack)
2818			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2819		tcp_init_cwnd_reduction(sk);
2820	}
2821	tcp_set_ca_state(sk, TCP_CA_Recovery);
2822}
2823
2824/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2825 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2826 */
2827static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2828			     int *rexmit)
2829{
2830	struct tcp_sock *tp = tcp_sk(sk);
2831	bool recovered = !before(tp->snd_una, tp->high_seq);
2832
2833	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2834	    tcp_try_undo_loss(sk, false))
2835		return;
2836
2837	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2838		/* Step 3.b. A timeout is spurious if not all data are
2839		 * lost, i.e., never-retransmitted data are (s)acked.
2840		 */
2841		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2842		    tcp_try_undo_loss(sk, true))
2843			return;
2844
2845		if (after(tp->snd_nxt, tp->high_seq)) {
2846			if (flag & FLAG_DATA_SACKED || num_dupack)
2847				tp->frto = 0; /* Step 3.a. loss was real */
2848		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2849			tp->high_seq = tp->snd_nxt;
2850			/* Step 2.b. Try send new data (but deferred until cwnd
2851			 * is updated in tcp_ack()). Otherwise fall back to
2852			 * the conventional recovery.
2853			 */
2854			if (!tcp_write_queue_empty(sk) &&
2855			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2856				*rexmit = REXMIT_NEW;
2857				return;
2858			}
2859			tp->frto = 0;
2860		}
2861	}
2862
2863	if (recovered) {
2864		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2865		tcp_try_undo_recovery(sk);
2866		return;
2867	}
2868	if (tcp_is_reno(tp)) {
2869		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2870		 * delivered. Lower inflight to clock out (re)tranmissions.
2871		 */
2872		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2873			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2874		else if (flag & FLAG_SND_UNA_ADVANCED)
2875			tcp_reset_reno_sack(tp);
2876	}
2877	*rexmit = REXMIT_LOST;
2878}
2879
2880static bool tcp_force_fast_retransmit(struct sock *sk)
2881{
2882	struct tcp_sock *tp = tcp_sk(sk);
2883
2884	return after(tcp_highest_sack_seq(tp),
2885		     tp->snd_una + tp->reordering * tp->mss_cache);
2886}
2887
2888/* Undo during fast recovery after partial ACK. */
2889static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2890				 bool *do_lost)
2891{
2892	struct tcp_sock *tp = tcp_sk(sk);
2893
2894	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2895		/* Plain luck! Hole if filled with delayed
2896		 * packet, rather than with a retransmit. Check reordering.
2897		 */
2898		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2899
2900		/* We are getting evidence that the reordering degree is higher
2901		 * than we realized. If there are no retransmits out then we
2902		 * can undo. Otherwise we clock out new packets but do not
2903		 * mark more packets lost or retransmit more.
2904		 */
2905		if (tp->retrans_out)
2906			return true;
2907
2908		if (!tcp_any_retrans_done(sk))
2909			tp->retrans_stamp = 0;
2910
2911		DBGUNDO(sk, "partial recovery");
2912		tcp_undo_cwnd_reduction(sk, true);
2913		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2914		tcp_try_keep_open(sk);
2915	} else {
2916		/* Partial ACK arrived. Force fast retransmit. */
2917		*do_lost = tcp_force_fast_retransmit(sk);
2918	}
2919	return false;
2920}
2921
2922static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2923{
2924	struct tcp_sock *tp = tcp_sk(sk);
2925
2926	if (tcp_rtx_queue_empty(sk))
2927		return;
2928
2929	if (unlikely(tcp_is_reno(tp))) {
2930		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2931	} else if (tcp_is_rack(sk)) {
2932		u32 prior_retrans = tp->retrans_out;
2933
2934		if (tcp_rack_mark_lost(sk))
2935			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2936		if (prior_retrans > tp->retrans_out)
2937			*ack_flag |= FLAG_LOST_RETRANS;
2938	}
2939}
2940
 
 
 
 
 
 
 
 
2941/* Process an event, which can update packets-in-flight not trivially.
2942 * Main goal of this function is to calculate new estimate for left_out,
2943 * taking into account both packets sitting in receiver's buffer and
2944 * packets lost by network.
2945 *
2946 * Besides that it updates the congestion state when packet loss or ECN
2947 * is detected. But it does not reduce the cwnd, it is done by the
2948 * congestion control later.
2949 *
2950 * It does _not_ decide what to send, it is made in function
2951 * tcp_xmit_retransmit_queue().
2952 */
2953static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2954				  int num_dupack, int *ack_flag, int *rexmit)
2955{
2956	struct inet_connection_sock *icsk = inet_csk(sk);
2957	struct tcp_sock *tp = tcp_sk(sk);
2958	int fast_rexmit = 0, flag = *ack_flag;
2959	bool ece_ack = flag & FLAG_ECE;
2960	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2961				      tcp_force_fast_retransmit(sk));
2962
2963	if (!tp->packets_out && tp->sacked_out)
2964		tp->sacked_out = 0;
2965
2966	/* Now state machine starts.
2967	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2968	if (ece_ack)
2969		tp->prior_ssthresh = 0;
2970
2971	/* B. In all the states check for reneging SACKs. */
2972	if (tcp_check_sack_reneging(sk, flag))
2973		return;
2974
2975	/* C. Check consistency of the current state. */
2976	tcp_verify_left_out(tp);
2977
2978	/* D. Check state exit conditions. State can be terminated
2979	 *    when high_seq is ACKed. */
2980	if (icsk->icsk_ca_state == TCP_CA_Open) {
2981		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
2982		tp->retrans_stamp = 0;
2983	} else if (!before(tp->snd_una, tp->high_seq)) {
2984		switch (icsk->icsk_ca_state) {
2985		case TCP_CA_CWR:
2986			/* CWR is to be held something *above* high_seq
2987			 * is ACKed for CWR bit to reach receiver. */
2988			if (tp->snd_una != tp->high_seq) {
2989				tcp_end_cwnd_reduction(sk);
2990				tcp_set_ca_state(sk, TCP_CA_Open);
2991			}
2992			break;
2993
2994		case TCP_CA_Recovery:
2995			if (tcp_is_reno(tp))
2996				tcp_reset_reno_sack(tp);
2997			if (tcp_try_undo_recovery(sk))
2998				return;
2999			tcp_end_cwnd_reduction(sk);
3000			break;
3001		}
3002	}
3003
3004	/* E. Process state. */
3005	switch (icsk->icsk_ca_state) {
3006	case TCP_CA_Recovery:
3007		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3008			if (tcp_is_reno(tp))
3009				tcp_add_reno_sack(sk, num_dupack, ece_ack);
3010		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3011			return;
3012
3013		if (tcp_try_undo_dsack(sk))
3014			tcp_try_keep_open(sk);
3015
3016		tcp_identify_packet_loss(sk, ack_flag);
3017		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3018			if (!tcp_time_to_recover(sk, flag))
3019				return;
3020			/* Undo reverts the recovery state. If loss is evident,
3021			 * starts a new recovery (e.g. reordering then loss);
3022			 */
3023			tcp_enter_recovery(sk, ece_ack);
 
 
 
3024		}
 
3025		break;
3026	case TCP_CA_Loss:
3027		tcp_process_loss(sk, flag, num_dupack, rexmit);
3028		tcp_identify_packet_loss(sk, ack_flag);
3029		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3030		      (*ack_flag & FLAG_LOST_RETRANS)))
3031			return;
3032		/* Change state if cwnd is undone or retransmits are lost */
3033		fallthrough;
3034	default:
3035		if (tcp_is_reno(tp)) {
3036			if (flag & FLAG_SND_UNA_ADVANCED)
3037				tcp_reset_reno_sack(tp);
3038			tcp_add_reno_sack(sk, num_dupack, ece_ack);
 
3039		}
3040
3041		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3042			tcp_try_undo_dsack(sk);
3043
3044		tcp_identify_packet_loss(sk, ack_flag);
3045		if (!tcp_time_to_recover(sk, flag)) {
3046			tcp_try_to_open(sk, flag);
3047			return;
3048		}
3049
3050		/* MTU probe failure: don't reduce cwnd */
3051		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3052		    icsk->icsk_mtup.probe_size &&
3053		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3054			tcp_mtup_probe_failed(sk);
3055			/* Restores the reduction we did in tcp_mtup_probe() */
3056			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3057			tcp_simple_retransmit(sk);
3058			return;
3059		}
3060
3061		/* Otherwise enter Recovery state */
3062		tcp_enter_recovery(sk, ece_ack);
3063		fast_rexmit = 1;
3064	}
3065
3066	if (!tcp_is_rack(sk) && do_lost)
3067		tcp_update_scoreboard(sk, fast_rexmit);
3068	*rexmit = REXMIT_LOST;
3069}
3070
3071static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3072{
3073	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3074	struct tcp_sock *tp = tcp_sk(sk);
3075
3076	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3077		/* If the remote keeps returning delayed ACKs, eventually
3078		 * the min filter would pick it up and overestimate the
3079		 * prop. delay when it expires. Skip suspected delayed ACKs.
3080		 */
3081		return;
3082	}
3083	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3084			   rtt_us ? : jiffies_to_usecs(1));
3085}
3086
3087static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3088			       long seq_rtt_us, long sack_rtt_us,
3089			       long ca_rtt_us, struct rate_sample *rs)
3090{
3091	const struct tcp_sock *tp = tcp_sk(sk);
3092
3093	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3094	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3095	 * Karn's algorithm forbids taking RTT if some retransmitted data
3096	 * is acked (RFC6298).
3097	 */
3098	if (seq_rtt_us < 0)
3099		seq_rtt_us = sack_rtt_us;
3100
3101	/* RTTM Rule: A TSecr value received in a segment is used to
3102	 * update the averaged RTT measurement only if the segment
3103	 * acknowledges some new data, i.e., only if it advances the
3104	 * left edge of the send window.
3105	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3106	 */
3107	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3108	    flag & FLAG_ACKED) {
3109		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
 
3110
3111		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3112			if (!delta)
3113				delta = 1;
3114			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3115			ca_rtt_us = seq_rtt_us;
3116		}
3117	}
3118	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3119	if (seq_rtt_us < 0)
3120		return false;
3121
3122	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3123	 * always taken together with ACK, SACK, or TS-opts. Any negative
3124	 * values will be skipped with the seq_rtt_us < 0 check above.
3125	 */
3126	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3127	tcp_rtt_estimator(sk, seq_rtt_us);
3128	tcp_set_rto(sk);
3129
3130	/* RFC6298: only reset backoff on valid RTT measurement. */
3131	inet_csk(sk)->icsk_backoff = 0;
3132	return true;
3133}
3134
3135/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3136void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3137{
3138	struct rate_sample rs;
3139	long rtt_us = -1L;
3140
3141	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3142		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3143
3144	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3145}
3146
3147
3148static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3149{
3150	const struct inet_connection_sock *icsk = inet_csk(sk);
3151
3152	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3153	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3154}
3155
3156/* Restart timer after forward progress on connection.
3157 * RFC2988 recommends to restart timer to now+rto.
3158 */
3159void tcp_rearm_rto(struct sock *sk)
3160{
3161	const struct inet_connection_sock *icsk = inet_csk(sk);
3162	struct tcp_sock *tp = tcp_sk(sk);
3163
3164	/* If the retrans timer is currently being used by Fast Open
3165	 * for SYN-ACK retrans purpose, stay put.
3166	 */
3167	if (rcu_access_pointer(tp->fastopen_rsk))
3168		return;
3169
3170	if (!tp->packets_out) {
3171		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3172	} else {
3173		u32 rto = inet_csk(sk)->icsk_rto;
3174		/* Offset the time elapsed after installing regular RTO */
3175		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3176		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3177			s64 delta_us = tcp_rto_delta_us(sk);
3178			/* delta_us may not be positive if the socket is locked
3179			 * when the retrans timer fires and is rescheduled.
3180			 */
3181			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3182		}
3183		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3184				     TCP_RTO_MAX);
3185	}
3186}
3187
3188/* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3189static void tcp_set_xmit_timer(struct sock *sk)
3190{
3191	if (!tcp_schedule_loss_probe(sk, true))
3192		tcp_rearm_rto(sk);
3193}
3194
3195/* If we get here, the whole TSO packet has not been acked. */
3196static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3197{
3198	struct tcp_sock *tp = tcp_sk(sk);
3199	u32 packets_acked;
3200
3201	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3202
3203	packets_acked = tcp_skb_pcount(skb);
3204	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3205		return 0;
3206	packets_acked -= tcp_skb_pcount(skb);
3207
3208	if (packets_acked) {
3209		BUG_ON(tcp_skb_pcount(skb) == 0);
3210		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3211	}
3212
3213	return packets_acked;
3214}
3215
3216static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3217			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3218{
3219	const struct skb_shared_info *shinfo;
3220
3221	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3222	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3223		return;
3224
3225	shinfo = skb_shinfo(skb);
3226	if (!before(shinfo->tskey, prior_snd_una) &&
3227	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3228		tcp_skb_tsorted_save(skb) {
3229			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3230		} tcp_skb_tsorted_restore(skb);
3231	}
3232}
3233
3234/* Remove acknowledged frames from the retransmission queue. If our packet
3235 * is before the ack sequence we can discard it as it's confirmed to have
3236 * arrived at the other end.
3237 */
3238static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3239			       u32 prior_fack, u32 prior_snd_una,
3240			       struct tcp_sacktag_state *sack, bool ece_ack)
3241{
3242	const struct inet_connection_sock *icsk = inet_csk(sk);
3243	u64 first_ackt, last_ackt;
3244	struct tcp_sock *tp = tcp_sk(sk);
3245	u32 prior_sacked = tp->sacked_out;
3246	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3247	struct sk_buff *skb, *next;
3248	bool fully_acked = true;
3249	long sack_rtt_us = -1L;
3250	long seq_rtt_us = -1L;
3251	long ca_rtt_us = -1L;
3252	u32 pkts_acked = 0;
 
3253	bool rtt_update;
3254	int flag = 0;
3255
3256	first_ackt = 0;
3257
3258	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3259		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3260		const u32 start_seq = scb->seq;
3261		u8 sacked = scb->sacked;
3262		u32 acked_pcount;
3263
 
 
3264		/* Determine how many packets and what bytes were acked, tso and else */
3265		if (after(scb->end_seq, tp->snd_una)) {
3266			if (tcp_skb_pcount(skb) == 1 ||
3267			    !after(tp->snd_una, scb->seq))
3268				break;
3269
3270			acked_pcount = tcp_tso_acked(sk, skb);
3271			if (!acked_pcount)
3272				break;
3273			fully_acked = false;
3274		} else {
3275			acked_pcount = tcp_skb_pcount(skb);
3276		}
3277
3278		if (unlikely(sacked & TCPCB_RETRANS)) {
3279			if (sacked & TCPCB_SACKED_RETRANS)
3280				tp->retrans_out -= acked_pcount;
3281			flag |= FLAG_RETRANS_DATA_ACKED;
3282		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3283			last_ackt = tcp_skb_timestamp_us(skb);
3284			WARN_ON_ONCE(last_ackt == 0);
3285			if (!first_ackt)
3286				first_ackt = last_ackt;
3287
 
3288			if (before(start_seq, reord))
3289				reord = start_seq;
3290			if (!after(scb->end_seq, tp->high_seq))
3291				flag |= FLAG_ORIG_SACK_ACKED;
3292		}
3293
3294		if (sacked & TCPCB_SACKED_ACKED) {
3295			tp->sacked_out -= acked_pcount;
3296		} else if (tcp_is_sack(tp)) {
3297			tcp_count_delivered(tp, acked_pcount, ece_ack);
3298			if (!tcp_skb_spurious_retrans(tp, skb))
3299				tcp_rack_advance(tp, sacked, scb->end_seq,
3300						 tcp_skb_timestamp_us(skb));
3301		}
3302		if (sacked & TCPCB_LOST)
3303			tp->lost_out -= acked_pcount;
3304
3305		tp->packets_out -= acked_pcount;
3306		pkts_acked += acked_pcount;
3307		tcp_rate_skb_delivered(sk, skb, sack->rate);
3308
3309		/* Initial outgoing SYN's get put onto the write_queue
3310		 * just like anything else we transmit.  It is not
3311		 * true data, and if we misinform our callers that
3312		 * this ACK acks real data, we will erroneously exit
3313		 * connection startup slow start one packet too
3314		 * quickly.  This is severely frowned upon behavior.
3315		 */
3316		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3317			flag |= FLAG_DATA_ACKED;
3318		} else {
3319			flag |= FLAG_SYN_ACKED;
3320			tp->retrans_stamp = 0;
3321		}
3322
3323		if (!fully_acked)
3324			break;
3325
3326		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3327
3328		next = skb_rb_next(skb);
3329		if (unlikely(skb == tp->retransmit_skb_hint))
3330			tp->retransmit_skb_hint = NULL;
3331		if (unlikely(skb == tp->lost_skb_hint))
3332			tp->lost_skb_hint = NULL;
3333		tcp_highest_sack_replace(sk, skb, next);
3334		tcp_rtx_queue_unlink_and_free(skb, sk);
3335	}
3336
3337	if (!skb)
3338		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3339
3340	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3341		tp->snd_up = tp->snd_una;
3342
3343	if (skb) {
3344		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3345		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3346			flag |= FLAG_SACK_RENEGING;
3347	}
3348
3349	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3350		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3351		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3352
3353		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3354		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3355		    sack->rate->prior_delivered + 1 == tp->delivered &&
3356		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3357			/* Conservatively mark a delayed ACK. It's typically
3358			 * from a lone runt packet over the round trip to
3359			 * a receiver w/o out-of-order or CE events.
3360			 */
3361			flag |= FLAG_ACK_MAYBE_DELAYED;
3362		}
3363	}
3364	if (sack->first_sackt) {
3365		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3366		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3367	}
3368	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3369					ca_rtt_us, sack->rate);
3370
3371	if (flag & FLAG_ACKED) {
3372		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3373		if (unlikely(icsk->icsk_mtup.probe_size &&
3374			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3375			tcp_mtup_probe_success(sk);
3376		}
3377
3378		if (tcp_is_reno(tp)) {
3379			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3380
3381			/* If any of the cumulatively ACKed segments was
3382			 * retransmitted, non-SACK case cannot confirm that
3383			 * progress was due to original transmission due to
3384			 * lack of TCPCB_SACKED_ACKED bits even if some of
3385			 * the packets may have been never retransmitted.
3386			 */
3387			if (flag & FLAG_RETRANS_DATA_ACKED)
3388				flag &= ~FLAG_ORIG_SACK_ACKED;
3389		} else {
3390			int delta;
3391
3392			/* Non-retransmitted hole got filled? That's reordering */
3393			if (before(reord, prior_fack))
3394				tcp_check_sack_reordering(sk, reord, 0);
3395
3396			delta = prior_sacked - tp->sacked_out;
3397			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3398		}
3399	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3400		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3401						    tcp_skb_timestamp_us(skb))) {
3402		/* Do not re-arm RTO if the sack RTT is measured from data sent
3403		 * after when the head was last (re)transmitted. Otherwise the
3404		 * timeout may continue to extend in loss recovery.
3405		 */
3406		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3407	}
3408
3409	if (icsk->icsk_ca_ops->pkts_acked) {
3410		struct ack_sample sample = { .pkts_acked = pkts_acked,
3411					     .rtt_us = sack->rate->rtt_us };
 
3412
3413		sample.in_flight = tp->mss_cache *
3414			(tp->delivered - sack->rate->prior_delivered);
3415		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3416	}
3417
3418#if FASTRETRANS_DEBUG > 0
3419	WARN_ON((int)tp->sacked_out < 0);
3420	WARN_ON((int)tp->lost_out < 0);
3421	WARN_ON((int)tp->retrans_out < 0);
3422	if (!tp->packets_out && tcp_is_sack(tp)) {
3423		icsk = inet_csk(sk);
3424		if (tp->lost_out) {
3425			pr_debug("Leak l=%u %d\n",
3426				 tp->lost_out, icsk->icsk_ca_state);
3427			tp->lost_out = 0;
3428		}
3429		if (tp->sacked_out) {
3430			pr_debug("Leak s=%u %d\n",
3431				 tp->sacked_out, icsk->icsk_ca_state);
3432			tp->sacked_out = 0;
3433		}
3434		if (tp->retrans_out) {
3435			pr_debug("Leak r=%u %d\n",
3436				 tp->retrans_out, icsk->icsk_ca_state);
3437			tp->retrans_out = 0;
3438		}
3439	}
3440#endif
3441	return flag;
3442}
3443
3444static void tcp_ack_probe(struct sock *sk)
3445{
3446	struct inet_connection_sock *icsk = inet_csk(sk);
3447	struct sk_buff *head = tcp_send_head(sk);
3448	const struct tcp_sock *tp = tcp_sk(sk);
3449
3450	/* Was it a usable window open? */
3451	if (!head)
3452		return;
3453	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3454		icsk->icsk_backoff = 0;
3455		icsk->icsk_probes_tstamp = 0;
3456		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3457		/* Socket must be waked up by subsequent tcp_data_snd_check().
3458		 * This function is not for random using!
3459		 */
3460	} else {
3461		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3462
3463		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3464		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3465	}
3466}
3467
3468static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3469{
3470	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3471		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3472}
3473
3474/* Decide wheather to run the increase function of congestion control. */
3475static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3476{
3477	/* If reordering is high then always grow cwnd whenever data is
3478	 * delivered regardless of its ordering. Otherwise stay conservative
3479	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3480	 * new SACK or ECE mark may first advance cwnd here and later reduce
3481	 * cwnd in tcp_fastretrans_alert() based on more states.
3482	 */
3483	if (tcp_sk(sk)->reordering >
3484	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3485		return flag & FLAG_FORWARD_PROGRESS;
3486
3487	return flag & FLAG_DATA_ACKED;
3488}
3489
3490/* The "ultimate" congestion control function that aims to replace the rigid
3491 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3492 * It's called toward the end of processing an ACK with precise rate
3493 * information. All transmission or retransmission are delayed afterwards.
3494 */
3495static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3496			     int flag, const struct rate_sample *rs)
3497{
3498	const struct inet_connection_sock *icsk = inet_csk(sk);
3499
3500	if (icsk->icsk_ca_ops->cong_control) {
3501		icsk->icsk_ca_ops->cong_control(sk, rs);
3502		return;
3503	}
3504
3505	if (tcp_in_cwnd_reduction(sk)) {
3506		/* Reduce cwnd if state mandates */
3507		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3508	} else if (tcp_may_raise_cwnd(sk, flag)) {
3509		/* Advance cwnd if state allows */
3510		tcp_cong_avoid(sk, ack, acked_sacked);
3511	}
3512	tcp_update_pacing_rate(sk);
3513}
3514
3515/* Check that window update is acceptable.
3516 * The function assumes that snd_una<=ack<=snd_next.
3517 */
3518static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3519					const u32 ack, const u32 ack_seq,
3520					const u32 nwin)
3521{
3522	return	after(ack, tp->snd_una) ||
3523		after(ack_seq, tp->snd_wl1) ||
3524		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3525}
3526
3527/* If we update tp->snd_una, also update tp->bytes_acked */
3528static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3529{
3530	u32 delta = ack - tp->snd_una;
3531
3532	sock_owned_by_me((struct sock *)tp);
3533	tp->bytes_acked += delta;
3534	tp->snd_una = ack;
3535}
3536
3537/* If we update tp->rcv_nxt, also update tp->bytes_received */
3538static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3539{
3540	u32 delta = seq - tp->rcv_nxt;
3541
3542	sock_owned_by_me((struct sock *)tp);
3543	tp->bytes_received += delta;
3544	WRITE_ONCE(tp->rcv_nxt, seq);
3545}
3546
3547/* Update our send window.
3548 *
3549 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3550 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3551 */
3552static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3553				 u32 ack_seq)
3554{
3555	struct tcp_sock *tp = tcp_sk(sk);
3556	int flag = 0;
3557	u32 nwin = ntohs(tcp_hdr(skb)->window);
3558
3559	if (likely(!tcp_hdr(skb)->syn))
3560		nwin <<= tp->rx_opt.snd_wscale;
3561
3562	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3563		flag |= FLAG_WIN_UPDATE;
3564		tcp_update_wl(tp, ack_seq);
3565
3566		if (tp->snd_wnd != nwin) {
3567			tp->snd_wnd = nwin;
3568
3569			/* Note, it is the only place, where
3570			 * fast path is recovered for sending TCP.
3571			 */
3572			tp->pred_flags = 0;
3573			tcp_fast_path_check(sk);
3574
3575			if (!tcp_write_queue_empty(sk))
3576				tcp_slow_start_after_idle_check(sk);
3577
3578			if (nwin > tp->max_window) {
3579				tp->max_window = nwin;
3580				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3581			}
3582		}
3583	}
3584
3585	tcp_snd_una_update(tp, ack);
3586
3587	return flag;
3588}
3589
3590static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3591				   u32 *last_oow_ack_time)
3592{
3593	if (*last_oow_ack_time) {
3594		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3595
3596		if (0 <= elapsed &&
3597		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3598			NET_INC_STATS(net, mib_idx);
3599			return true;	/* rate-limited: don't send yet! */
3600		}
3601	}
3602
3603	*last_oow_ack_time = tcp_jiffies32;
3604
3605	return false;	/* not rate-limited: go ahead, send dupack now! */
3606}
3607
3608/* Return true if we're currently rate-limiting out-of-window ACKs and
3609 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3610 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3611 * attacks that send repeated SYNs or ACKs for the same connection. To
3612 * do this, we do not send a duplicate SYNACK or ACK if the remote
3613 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3614 */
3615bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3616			  int mib_idx, u32 *last_oow_ack_time)
3617{
3618	/* Data packets without SYNs are not likely part of an ACK loop. */
3619	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3620	    !tcp_hdr(skb)->syn)
3621		return false;
3622
3623	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3624}
3625
3626/* RFC 5961 7 [ACK Throttling] */
3627static void tcp_send_challenge_ack(struct sock *sk)
3628{
 
 
 
3629	struct tcp_sock *tp = tcp_sk(sk);
3630	struct net *net = sock_net(sk);
3631	u32 count, now, ack_limit;
3632
3633	/* First check our per-socket dupack rate limit. */
3634	if (__tcp_oow_rate_limited(net,
3635				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3636				   &tp->last_oow_ack_time))
3637		return;
3638
3639	ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3640	if (ack_limit == INT_MAX)
3641		goto send_ack;
3642
3643	/* Then check host-wide RFC 5961 rate limit. */
3644	now = jiffies / HZ;
3645	if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
 
3646		u32 half = (ack_limit + 1) >> 1;
3647
3648		WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3649		WRITE_ONCE(net->ipv4.tcp_challenge_count,
3650			   get_random_u32_inclusive(half, ack_limit + half - 1));
3651	}
3652	count = READ_ONCE(net->ipv4.tcp_challenge_count);
3653	if (count > 0) {
3654		WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3655send_ack:
3656		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3657		tcp_send_ack(sk);
3658	}
3659}
3660
3661static void tcp_store_ts_recent(struct tcp_sock *tp)
3662{
3663	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3664	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3665}
3666
3667static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3668{
3669	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3670		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3671		 * extra check below makes sure this can only happen
3672		 * for pure ACK frames.  -DaveM
3673		 *
3674		 * Not only, also it occurs for expired timestamps.
3675		 */
3676
3677		if (tcp_paws_check(&tp->rx_opt, 0))
3678			tcp_store_ts_recent(tp);
3679	}
3680}
3681
3682/* This routine deals with acks during a TLP episode and ends an episode by
3683 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
 
 
3684 */
3685static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3686{
3687	struct tcp_sock *tp = tcp_sk(sk);
3688
3689	if (before(ack, tp->tlp_high_seq))
3690		return;
3691
3692	if (!tp->tlp_retrans) {
3693		/* TLP of new data has been acknowledged */
3694		tp->tlp_high_seq = 0;
3695	} else if (flag & FLAG_DSACK_TLP) {
3696		/* This DSACK means original and TLP probe arrived; no loss */
3697		tp->tlp_high_seq = 0;
3698	} else if (after(ack, tp->tlp_high_seq)) {
3699		/* ACK advances: there was a loss, so reduce cwnd. Reset
3700		 * tlp_high_seq in tcp_init_cwnd_reduction()
3701		 */
3702		tcp_init_cwnd_reduction(sk);
3703		tcp_set_ca_state(sk, TCP_CA_CWR);
3704		tcp_end_cwnd_reduction(sk);
3705		tcp_try_keep_open(sk);
3706		NET_INC_STATS(sock_net(sk),
3707				LINUX_MIB_TCPLOSSPROBERECOVERY);
3708	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3709			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3710		/* Pure dupack: original and TLP probe arrived; no loss */
3711		tp->tlp_high_seq = 0;
3712	}
3713}
3714
3715static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3716{
3717	const struct inet_connection_sock *icsk = inet_csk(sk);
3718
3719	if (icsk->icsk_ca_ops->in_ack_event)
3720		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3721}
3722
3723/* Congestion control has updated the cwnd already. So if we're in
3724 * loss recovery then now we do any new sends (for FRTO) or
3725 * retransmits (for CA_Loss or CA_recovery) that make sense.
3726 */
3727static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3728{
3729	struct tcp_sock *tp = tcp_sk(sk);
3730
3731	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3732		return;
3733
3734	if (unlikely(rexmit == REXMIT_NEW)) {
3735		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3736					  TCP_NAGLE_OFF);
3737		if (after(tp->snd_nxt, tp->high_seq))
3738			return;
3739		tp->frto = 0;
3740	}
3741	tcp_xmit_retransmit_queue(sk);
3742}
3743
3744/* Returns the number of packets newly acked or sacked by the current ACK */
3745static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3746{
3747	const struct net *net = sock_net(sk);
3748	struct tcp_sock *tp = tcp_sk(sk);
3749	u32 delivered;
3750
3751	delivered = tp->delivered - prior_delivered;
3752	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3753	if (flag & FLAG_ECE)
3754		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3755
3756	return delivered;
3757}
3758
3759/* This routine deals with incoming acks, but not outgoing ones. */
3760static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3761{
3762	struct inet_connection_sock *icsk = inet_csk(sk);
3763	struct tcp_sock *tp = tcp_sk(sk);
3764	struct tcp_sacktag_state sack_state;
3765	struct rate_sample rs = { .prior_delivered = 0 };
3766	u32 prior_snd_una = tp->snd_una;
3767	bool is_sack_reneg = tp->is_sack_reneg;
3768	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3769	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3770	int num_dupack = 0;
3771	int prior_packets = tp->packets_out;
3772	u32 delivered = tp->delivered;
3773	u32 lost = tp->lost;
3774	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3775	u32 prior_fack;
3776
3777	sack_state.first_sackt = 0;
3778	sack_state.rate = &rs;
3779	sack_state.sack_delivered = 0;
3780
3781	/* We very likely will need to access rtx queue. */
3782	prefetch(sk->tcp_rtx_queue.rb_node);
3783
3784	/* If the ack is older than previous acks
3785	 * then we can probably ignore it.
3786	 */
3787	if (before(ack, prior_snd_una)) {
3788		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3789		if (before(ack, prior_snd_una - tp->max_window)) {
3790			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3791				tcp_send_challenge_ack(sk);
3792			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3793		}
3794		goto old_ack;
3795	}
3796
3797	/* If the ack includes data we haven't sent yet, discard
3798	 * this segment (RFC793 Section 3.9).
3799	 */
3800	if (after(ack, tp->snd_nxt))
3801		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3802
3803	if (after(ack, prior_snd_una)) {
3804		flag |= FLAG_SND_UNA_ADVANCED;
3805		icsk->icsk_retransmits = 0;
3806
3807#if IS_ENABLED(CONFIG_TLS_DEVICE)
3808		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3809			if (icsk->icsk_clean_acked)
3810				icsk->icsk_clean_acked(sk, ack);
3811#endif
3812	}
3813
3814	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3815	rs.prior_in_flight = tcp_packets_in_flight(tp);
3816
3817	/* ts_recent update must be made after we are sure that the packet
3818	 * is in window.
3819	 */
3820	if (flag & FLAG_UPDATE_TS_RECENT)
3821		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3822
3823	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3824	    FLAG_SND_UNA_ADVANCED) {
3825		/* Window is constant, pure forward advance.
3826		 * No more checks are required.
3827		 * Note, we use the fact that SND.UNA>=SND.WL2.
3828		 */
3829		tcp_update_wl(tp, ack_seq);
3830		tcp_snd_una_update(tp, ack);
3831		flag |= FLAG_WIN_UPDATE;
3832
3833		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3834
3835		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3836	} else {
3837		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3838
3839		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3840			flag |= FLAG_DATA;
3841		else
3842			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3843
3844		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3845
3846		if (TCP_SKB_CB(skb)->sacked)
3847			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3848							&sack_state);
3849
3850		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3851			flag |= FLAG_ECE;
3852			ack_ev_flags |= CA_ACK_ECE;
3853		}
3854
3855		if (sack_state.sack_delivered)
3856			tcp_count_delivered(tp, sack_state.sack_delivered,
3857					    flag & FLAG_ECE);
3858
3859		if (flag & FLAG_WIN_UPDATE)
3860			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3861
3862		tcp_in_ack_event(sk, ack_ev_flags);
3863	}
3864
3865	/* This is a deviation from RFC3168 since it states that:
3866	 * "When the TCP data sender is ready to set the CWR bit after reducing
3867	 * the congestion window, it SHOULD set the CWR bit only on the first
3868	 * new data packet that it transmits."
3869	 * We accept CWR on pure ACKs to be more robust
3870	 * with widely-deployed TCP implementations that do this.
3871	 */
3872	tcp_ecn_accept_cwr(sk, skb);
3873
3874	/* We passed data and got it acked, remove any soft error
3875	 * log. Something worked...
3876	 */
3877	sk->sk_err_soft = 0;
3878	icsk->icsk_probes_out = 0;
3879	tp->rcv_tstamp = tcp_jiffies32;
3880	if (!prior_packets)
3881		goto no_queue;
3882
3883	/* See if we can take anything off of the retransmit queue. */
3884	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3885				    &sack_state, flag & FLAG_ECE);
3886
3887	tcp_rack_update_reo_wnd(sk, &rs);
3888
3889	if (tp->tlp_high_seq)
3890		tcp_process_tlp_ack(sk, ack, flag);
 
 
 
3891
3892	if (tcp_ack_is_dubious(sk, flag)) {
3893		if (!(flag & (FLAG_SND_UNA_ADVANCED |
3894			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3895			num_dupack = 1;
3896			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3897			if (!(flag & FLAG_DATA))
3898				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3899		}
3900		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3901				      &rexmit);
3902	}
3903
3904	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3905	if (flag & FLAG_SET_XMIT_TIMER)
3906		tcp_set_xmit_timer(sk);
3907
3908	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3909		sk_dst_confirm(sk);
3910
3911	delivered = tcp_newly_delivered(sk, delivered, flag);
3912	lost = tp->lost - lost;			/* freshly marked lost */
3913	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3914	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3915	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3916	tcp_xmit_recovery(sk, rexmit);
3917	return 1;
3918
3919no_queue:
3920	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3921	if (flag & FLAG_DSACKING_ACK) {
3922		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3923				      &rexmit);
3924		tcp_newly_delivered(sk, delivered, flag);
3925	}
3926	/* If this ack opens up a zero window, clear backoff.  It was
3927	 * being used to time the probes, and is probably far higher than
3928	 * it needs to be for normal retransmission.
3929	 */
3930	tcp_ack_probe(sk);
3931
3932	if (tp->tlp_high_seq)
3933		tcp_process_tlp_ack(sk, ack, flag);
3934	return 1;
3935
 
 
 
 
3936old_ack:
3937	/* If data was SACKed, tag it and see if we should send more data.
3938	 * If data was DSACKed, see if we can undo a cwnd reduction.
3939	 */
3940	if (TCP_SKB_CB(skb)->sacked) {
3941		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3942						&sack_state);
3943		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3944				      &rexmit);
3945		tcp_newly_delivered(sk, delivered, flag);
3946		tcp_xmit_recovery(sk, rexmit);
3947	}
3948
 
3949	return 0;
3950}
3951
3952static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3953				      bool syn, struct tcp_fastopen_cookie *foc,
3954				      bool exp_opt)
3955{
3956	/* Valid only in SYN or SYN-ACK with an even length.  */
3957	if (!foc || !syn || len < 0 || (len & 1))
3958		return;
3959
3960	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3961	    len <= TCP_FASTOPEN_COOKIE_MAX)
3962		memcpy(foc->val, cookie, len);
3963	else if (len != 0)
3964		len = -1;
3965	foc->len = len;
3966	foc->exp = exp_opt;
3967}
3968
3969static bool smc_parse_options(const struct tcphdr *th,
3970			      struct tcp_options_received *opt_rx,
3971			      const unsigned char *ptr,
3972			      int opsize)
3973{
3974#if IS_ENABLED(CONFIG_SMC)
3975	if (static_branch_unlikely(&tcp_have_smc)) {
3976		if (th->syn && !(opsize & 1) &&
3977		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3978		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3979			opt_rx->smc_ok = 1;
3980			return true;
3981		}
3982	}
3983#endif
3984	return false;
3985}
3986
3987/* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3988 * value on success.
3989 */
3990u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3991{
3992	const unsigned char *ptr = (const unsigned char *)(th + 1);
3993	int length = (th->doff * 4) - sizeof(struct tcphdr);
3994	u16 mss = 0;
3995
3996	while (length > 0) {
3997		int opcode = *ptr++;
3998		int opsize;
3999
4000		switch (opcode) {
4001		case TCPOPT_EOL:
4002			return mss;
4003		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4004			length--;
4005			continue;
4006		default:
4007			if (length < 2)
4008				return mss;
4009			opsize = *ptr++;
4010			if (opsize < 2) /* "silly options" */
4011				return mss;
4012			if (opsize > length)
4013				return mss;	/* fail on partial options */
4014			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4015				u16 in_mss = get_unaligned_be16(ptr);
4016
4017				if (in_mss) {
4018					if (user_mss && user_mss < in_mss)
4019						in_mss = user_mss;
4020					mss = in_mss;
4021				}
4022			}
4023			ptr += opsize - 2;
4024			length -= opsize;
4025		}
4026	}
4027	return mss;
4028}
4029EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4030
4031/* Look for tcp options. Normally only called on SYN and SYNACK packets.
4032 * But, this can also be called on packets in the established flow when
4033 * the fast version below fails.
4034 */
4035void tcp_parse_options(const struct net *net,
4036		       const struct sk_buff *skb,
4037		       struct tcp_options_received *opt_rx, int estab,
4038		       struct tcp_fastopen_cookie *foc)
4039{
4040	const unsigned char *ptr;
4041	const struct tcphdr *th = tcp_hdr(skb);
4042	int length = (th->doff * 4) - sizeof(struct tcphdr);
4043
4044	ptr = (const unsigned char *)(th + 1);
4045	opt_rx->saw_tstamp = 0;
4046	opt_rx->saw_unknown = 0;
4047
4048	while (length > 0) {
4049		int opcode = *ptr++;
4050		int opsize;
4051
4052		switch (opcode) {
4053		case TCPOPT_EOL:
4054			return;
4055		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4056			length--;
4057			continue;
4058		default:
4059			if (length < 2)
4060				return;
4061			opsize = *ptr++;
4062			if (opsize < 2) /* "silly options" */
4063				return;
4064			if (opsize > length)
4065				return;	/* don't parse partial options */
4066			switch (opcode) {
4067			case TCPOPT_MSS:
4068				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4069					u16 in_mss = get_unaligned_be16(ptr);
4070					if (in_mss) {
4071						if (opt_rx->user_mss &&
4072						    opt_rx->user_mss < in_mss)
4073							in_mss = opt_rx->user_mss;
4074						opt_rx->mss_clamp = in_mss;
4075					}
4076				}
4077				break;
4078			case TCPOPT_WINDOW:
4079				if (opsize == TCPOLEN_WINDOW && th->syn &&
4080				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4081					__u8 snd_wscale = *(__u8 *)ptr;
4082					opt_rx->wscale_ok = 1;
4083					if (snd_wscale > TCP_MAX_WSCALE) {
4084						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4085								     __func__,
4086								     snd_wscale,
4087								     TCP_MAX_WSCALE);
4088						snd_wscale = TCP_MAX_WSCALE;
4089					}
4090					opt_rx->snd_wscale = snd_wscale;
4091				}
4092				break;
4093			case TCPOPT_TIMESTAMP:
4094				if ((opsize == TCPOLEN_TIMESTAMP) &&
4095				    ((estab && opt_rx->tstamp_ok) ||
4096				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4097					opt_rx->saw_tstamp = 1;
4098					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4099					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4100				}
4101				break;
4102			case TCPOPT_SACK_PERM:
4103				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4104				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4105					opt_rx->sack_ok = TCP_SACK_SEEN;
4106					tcp_sack_reset(opt_rx);
4107				}
4108				break;
4109
4110			case TCPOPT_SACK:
4111				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4112				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4113				   opt_rx->sack_ok) {
4114					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4115				}
4116				break;
4117#ifdef CONFIG_TCP_MD5SIG
4118			case TCPOPT_MD5SIG:
4119				/*
4120				 * The MD5 Hash has already been
4121				 * checked (see tcp_v{4,6}_do_rcv()).
4122				 */
4123				break;
4124#endif
4125			case TCPOPT_FASTOPEN:
4126				tcp_parse_fastopen_option(
4127					opsize - TCPOLEN_FASTOPEN_BASE,
4128					ptr, th->syn, foc, false);
4129				break;
4130
4131			case TCPOPT_EXP:
4132				/* Fast Open option shares code 254 using a
4133				 * 16 bits magic number.
4134				 */
4135				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4136				    get_unaligned_be16(ptr) ==
4137				    TCPOPT_FASTOPEN_MAGIC) {
4138					tcp_parse_fastopen_option(opsize -
4139						TCPOLEN_EXP_FASTOPEN_BASE,
4140						ptr + 2, th->syn, foc, true);
4141					break;
4142				}
4143
4144				if (smc_parse_options(th, opt_rx, ptr, opsize))
4145					break;
4146
4147				opt_rx->saw_unknown = 1;
4148				break;
4149
4150			default:
4151				opt_rx->saw_unknown = 1;
4152			}
4153			ptr += opsize-2;
4154			length -= opsize;
4155		}
4156	}
4157}
4158EXPORT_SYMBOL(tcp_parse_options);
4159
4160static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4161{
4162	const __be32 *ptr = (const __be32 *)(th + 1);
4163
4164	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4165			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4166		tp->rx_opt.saw_tstamp = 1;
4167		++ptr;
4168		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4169		++ptr;
4170		if (*ptr)
4171			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4172		else
4173			tp->rx_opt.rcv_tsecr = 0;
4174		return true;
4175	}
4176	return false;
4177}
4178
4179/* Fast parse options. This hopes to only see timestamps.
4180 * If it is wrong it falls back on tcp_parse_options().
4181 */
4182static bool tcp_fast_parse_options(const struct net *net,
4183				   const struct sk_buff *skb,
4184				   const struct tcphdr *th, struct tcp_sock *tp)
4185{
4186	/* In the spirit of fast parsing, compare doff directly to constant
4187	 * values.  Because equality is used, short doff can be ignored here.
4188	 */
4189	if (th->doff == (sizeof(*th) / 4)) {
4190		tp->rx_opt.saw_tstamp = 0;
4191		return false;
4192	} else if (tp->rx_opt.tstamp_ok &&
4193		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4194		if (tcp_parse_aligned_timestamp(tp, th))
4195			return true;
4196	}
4197
4198	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4199	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4200		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4201
4202	return true;
4203}
4204
4205#ifdef CONFIG_TCP_MD5SIG
4206/*
4207 * Parse MD5 Signature option
4208 */
4209const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4210{
4211	int length = (th->doff << 2) - sizeof(*th);
4212	const u8 *ptr = (const u8 *)(th + 1);
4213
4214	/* If not enough data remaining, we can short cut */
4215	while (length >= TCPOLEN_MD5SIG) {
4216		int opcode = *ptr++;
4217		int opsize;
4218
4219		switch (opcode) {
4220		case TCPOPT_EOL:
4221			return NULL;
4222		case TCPOPT_NOP:
4223			length--;
4224			continue;
4225		default:
4226			opsize = *ptr++;
4227			if (opsize < 2 || opsize > length)
4228				return NULL;
4229			if (opcode == TCPOPT_MD5SIG)
4230				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4231		}
4232		ptr += opsize - 2;
4233		length -= opsize;
4234	}
4235	return NULL;
4236}
4237EXPORT_SYMBOL(tcp_parse_md5sig_option);
4238#endif
4239
4240/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4241 *
4242 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4243 * it can pass through stack. So, the following predicate verifies that
4244 * this segment is not used for anything but congestion avoidance or
4245 * fast retransmit. Moreover, we even are able to eliminate most of such
4246 * second order effects, if we apply some small "replay" window (~RTO)
4247 * to timestamp space.
4248 *
4249 * All these measures still do not guarantee that we reject wrapped ACKs
4250 * on networks with high bandwidth, when sequence space is recycled fastly,
4251 * but it guarantees that such events will be very rare and do not affect
4252 * connection seriously. This doesn't look nice, but alas, PAWS is really
4253 * buggy extension.
4254 *
4255 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4256 * states that events when retransmit arrives after original data are rare.
4257 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4258 * the biggest problem on large power networks even with minor reordering.
4259 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4260 * up to bandwidth of 18Gigabit/sec. 8) ]
4261 */
4262
4263static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4264{
4265	const struct tcp_sock *tp = tcp_sk(sk);
4266	const struct tcphdr *th = tcp_hdr(skb);
4267	u32 seq = TCP_SKB_CB(skb)->seq;
4268	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4269
4270	return (/* 1. Pure ACK with correct sequence number. */
4271		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4272
4273		/* 2. ... and duplicate ACK. */
4274		ack == tp->snd_una &&
4275
4276		/* 3. ... and does not update window. */
4277		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4278
4279		/* 4. ... and sits in replay window. */
4280		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4281}
4282
4283static inline bool tcp_paws_discard(const struct sock *sk,
4284				   const struct sk_buff *skb)
4285{
4286	const struct tcp_sock *tp = tcp_sk(sk);
4287
4288	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4289	       !tcp_disordered_ack(sk, skb);
4290}
4291
4292/* Check segment sequence number for validity.
4293 *
4294 * Segment controls are considered valid, if the segment
4295 * fits to the window after truncation to the window. Acceptability
4296 * of data (and SYN, FIN, of course) is checked separately.
4297 * See tcp_data_queue(), for example.
4298 *
4299 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4300 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4301 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4302 * (borrowed from freebsd)
4303 */
4304
4305static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4306{
4307	return	!before(end_seq, tp->rcv_wup) &&
4308		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4309}
4310
4311/* When we get a reset we do this. */
4312void tcp_reset(struct sock *sk, struct sk_buff *skb)
4313{
4314	trace_tcp_receive_reset(sk);
4315
4316	/* mptcp can't tell us to ignore reset pkts,
4317	 * so just ignore the return value of mptcp_incoming_options().
4318	 */
4319	if (sk_is_mptcp(sk))
4320		mptcp_incoming_options(sk, skb);
4321
4322	/* We want the right error as BSD sees it (and indeed as we do). */
4323	switch (sk->sk_state) {
4324	case TCP_SYN_SENT:
4325		sk->sk_err = ECONNREFUSED;
4326		break;
4327	case TCP_CLOSE_WAIT:
4328		sk->sk_err = EPIPE;
4329		break;
4330	case TCP_CLOSE:
4331		return;
4332	default:
4333		sk->sk_err = ECONNRESET;
4334	}
4335	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4336	smp_wmb();
4337
4338	tcp_write_queue_purge(sk);
4339	tcp_done(sk);
4340
4341	if (!sock_flag(sk, SOCK_DEAD))
4342		sk_error_report(sk);
4343}
4344
4345/*
4346 * 	Process the FIN bit. This now behaves as it is supposed to work
4347 *	and the FIN takes effect when it is validly part of sequence
4348 *	space. Not before when we get holes.
4349 *
4350 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4351 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4352 *	TIME-WAIT)
4353 *
4354 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4355 *	close and we go into CLOSING (and later onto TIME-WAIT)
4356 *
4357 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4358 */
4359void tcp_fin(struct sock *sk)
4360{
4361	struct tcp_sock *tp = tcp_sk(sk);
4362
4363	inet_csk_schedule_ack(sk);
4364
4365	sk->sk_shutdown |= RCV_SHUTDOWN;
4366	sock_set_flag(sk, SOCK_DONE);
4367
4368	switch (sk->sk_state) {
4369	case TCP_SYN_RECV:
4370	case TCP_ESTABLISHED:
4371		/* Move to CLOSE_WAIT */
4372		tcp_set_state(sk, TCP_CLOSE_WAIT);
4373		inet_csk_enter_pingpong_mode(sk);
4374		break;
4375
4376	case TCP_CLOSE_WAIT:
4377	case TCP_CLOSING:
4378		/* Received a retransmission of the FIN, do
4379		 * nothing.
4380		 */
4381		break;
4382	case TCP_LAST_ACK:
4383		/* RFC793: Remain in the LAST-ACK state. */
4384		break;
4385
4386	case TCP_FIN_WAIT1:
4387		/* This case occurs when a simultaneous close
4388		 * happens, we must ack the received FIN and
4389		 * enter the CLOSING state.
4390		 */
4391		tcp_send_ack(sk);
4392		tcp_set_state(sk, TCP_CLOSING);
4393		break;
4394	case TCP_FIN_WAIT2:
4395		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4396		tcp_send_ack(sk);
4397		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4398		break;
4399	default:
4400		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4401		 * cases we should never reach this piece of code.
4402		 */
4403		pr_err("%s: Impossible, sk->sk_state=%d\n",
4404		       __func__, sk->sk_state);
4405		break;
4406	}
4407
4408	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4409	 * Probably, we should reset in this case. For now drop them.
4410	 */
4411	skb_rbtree_purge(&tp->out_of_order_queue);
4412	if (tcp_is_sack(tp))
4413		tcp_sack_reset(&tp->rx_opt);
 
4414
4415	if (!sock_flag(sk, SOCK_DEAD)) {
4416		sk->sk_state_change(sk);
4417
4418		/* Do not send POLL_HUP for half duplex close. */
4419		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4420		    sk->sk_state == TCP_CLOSE)
4421			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4422		else
4423			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4424	}
4425}
4426
4427static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4428				  u32 end_seq)
4429{
4430	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4431		if (before(seq, sp->start_seq))
4432			sp->start_seq = seq;
4433		if (after(end_seq, sp->end_seq))
4434			sp->end_seq = end_seq;
4435		return true;
4436	}
4437	return false;
4438}
4439
4440static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4441{
4442	struct tcp_sock *tp = tcp_sk(sk);
4443
4444	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4445		int mib_idx;
4446
4447		if (before(seq, tp->rcv_nxt))
4448			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4449		else
4450			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4451
4452		NET_INC_STATS(sock_net(sk), mib_idx);
4453
4454		tp->rx_opt.dsack = 1;
4455		tp->duplicate_sack[0].start_seq = seq;
4456		tp->duplicate_sack[0].end_seq = end_seq;
4457	}
4458}
4459
4460static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4461{
4462	struct tcp_sock *tp = tcp_sk(sk);
4463
4464	if (!tp->rx_opt.dsack)
4465		tcp_dsack_set(sk, seq, end_seq);
4466	else
4467		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4468}
4469
4470static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4471{
4472	/* When the ACK path fails or drops most ACKs, the sender would
4473	 * timeout and spuriously retransmit the same segment repeatedly.
4474	 * The receiver remembers and reflects via DSACKs. Leverage the
4475	 * DSACK state and change the txhash to re-route speculatively.
4476	 */
4477	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4478	    sk_rethink_txhash(sk))
4479		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4480}
4481
4482static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4483{
4484	struct tcp_sock *tp = tcp_sk(sk);
4485
4486	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4487	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4488		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4489		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4490
4491		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4492			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4493
4494			tcp_rcv_spurious_retrans(sk, skb);
4495			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4496				end_seq = tp->rcv_nxt;
4497			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4498		}
4499	}
4500
4501	tcp_send_ack(sk);
4502}
4503
4504/* These routines update the SACK block as out-of-order packets arrive or
4505 * in-order packets close up the sequence space.
4506 */
4507static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4508{
4509	int this_sack;
4510	struct tcp_sack_block *sp = &tp->selective_acks[0];
4511	struct tcp_sack_block *swalk = sp + 1;
4512
4513	/* See if the recent change to the first SACK eats into
4514	 * or hits the sequence space of other SACK blocks, if so coalesce.
4515	 */
4516	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4517		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4518			int i;
4519
4520			/* Zap SWALK, by moving every further SACK up by one slot.
4521			 * Decrease num_sacks.
4522			 */
4523			tp->rx_opt.num_sacks--;
4524			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4525				sp[i] = sp[i + 1];
4526			continue;
4527		}
4528		this_sack++;
4529		swalk++;
4530	}
4531}
4532
4533static void tcp_sack_compress_send_ack(struct sock *sk)
4534{
4535	struct tcp_sock *tp = tcp_sk(sk);
4536
4537	if (!tp->compressed_ack)
4538		return;
4539
4540	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4541		__sock_put(sk);
4542
4543	/* Since we have to send one ack finally,
4544	 * substract one from tp->compressed_ack to keep
4545	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4546	 */
4547	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4548		      tp->compressed_ack - 1);
4549
4550	tp->compressed_ack = 0;
4551	tcp_send_ack(sk);
4552}
4553
4554/* Reasonable amount of sack blocks included in TCP SACK option
4555 * The max is 4, but this becomes 3 if TCP timestamps are there.
4556 * Given that SACK packets might be lost, be conservative and use 2.
4557 */
4558#define TCP_SACK_BLOCKS_EXPECTED 2
4559
4560static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4561{
4562	struct tcp_sock *tp = tcp_sk(sk);
4563	struct tcp_sack_block *sp = &tp->selective_acks[0];
4564	int cur_sacks = tp->rx_opt.num_sacks;
4565	int this_sack;
4566
4567	if (!cur_sacks)
4568		goto new_sack;
4569
4570	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4571		if (tcp_sack_extend(sp, seq, end_seq)) {
4572			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4573				tcp_sack_compress_send_ack(sk);
4574			/* Rotate this_sack to the first one. */
4575			for (; this_sack > 0; this_sack--, sp--)
4576				swap(*sp, *(sp - 1));
4577			if (cur_sacks > 1)
4578				tcp_sack_maybe_coalesce(tp);
4579			return;
4580		}
4581	}
4582
4583	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4584		tcp_sack_compress_send_ack(sk);
4585
4586	/* Could not find an adjacent existing SACK, build a new one,
4587	 * put it at the front, and shift everyone else down.  We
4588	 * always know there is at least one SACK present already here.
4589	 *
4590	 * If the sack array is full, forget about the last one.
4591	 */
4592	if (this_sack >= TCP_NUM_SACKS) {
4593		this_sack--;
4594		tp->rx_opt.num_sacks--;
4595		sp--;
4596	}
4597	for (; this_sack > 0; this_sack--, sp--)
4598		*sp = *(sp - 1);
4599
4600new_sack:
4601	/* Build the new head SACK, and we're done. */
4602	sp->start_seq = seq;
4603	sp->end_seq = end_seq;
4604	tp->rx_opt.num_sacks++;
4605}
4606
4607/* RCV.NXT advances, some SACKs should be eaten. */
4608
4609static void tcp_sack_remove(struct tcp_sock *tp)
4610{
4611	struct tcp_sack_block *sp = &tp->selective_acks[0];
4612	int num_sacks = tp->rx_opt.num_sacks;
4613	int this_sack;
4614
4615	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4616	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4617		tp->rx_opt.num_sacks = 0;
4618		return;
4619	}
4620
4621	for (this_sack = 0; this_sack < num_sacks;) {
4622		/* Check if the start of the sack is covered by RCV.NXT. */
4623		if (!before(tp->rcv_nxt, sp->start_seq)) {
4624			int i;
4625
4626			/* RCV.NXT must cover all the block! */
4627			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4628
4629			/* Zap this SACK, by moving forward any other SACKS. */
4630			for (i = this_sack+1; i < num_sacks; i++)
4631				tp->selective_acks[i-1] = tp->selective_acks[i];
4632			num_sacks--;
4633			continue;
4634		}
4635		this_sack++;
4636		sp++;
4637	}
4638	tp->rx_opt.num_sacks = num_sacks;
4639}
4640
4641/**
4642 * tcp_try_coalesce - try to merge skb to prior one
4643 * @sk: socket
 
4644 * @to: prior buffer
4645 * @from: buffer to add in queue
4646 * @fragstolen: pointer to boolean
4647 *
4648 * Before queueing skb @from after @to, try to merge them
4649 * to reduce overall memory use and queue lengths, if cost is small.
4650 * Packets in ofo or receive queues can stay a long time.
4651 * Better try to coalesce them right now to avoid future collapses.
4652 * Returns true if caller should free @from instead of queueing it
4653 */
4654static bool tcp_try_coalesce(struct sock *sk,
4655			     struct sk_buff *to,
4656			     struct sk_buff *from,
4657			     bool *fragstolen)
4658{
4659	int delta;
4660
4661	*fragstolen = false;
4662
4663	/* Its possible this segment overlaps with prior segment in queue */
4664	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4665		return false;
4666
4667	if (!mptcp_skb_can_collapse(to, from))
4668		return false;
4669
4670#ifdef CONFIG_TLS_DEVICE
4671	if (from->decrypted != to->decrypted)
4672		return false;
4673#endif
4674
4675	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4676		return false;
4677
4678	atomic_add(delta, &sk->sk_rmem_alloc);
4679	sk_mem_charge(sk, delta);
4680	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4681	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4682	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4683	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4684
4685	if (TCP_SKB_CB(from)->has_rxtstamp) {
4686		TCP_SKB_CB(to)->has_rxtstamp = true;
4687		to->tstamp = from->tstamp;
4688		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4689	}
4690
4691	return true;
4692}
4693
4694static bool tcp_ooo_try_coalesce(struct sock *sk,
4695			     struct sk_buff *to,
4696			     struct sk_buff *from,
4697			     bool *fragstolen)
4698{
4699	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4700
4701	/* In case tcp_drop_reason() is called later, update to->gso_segs */
4702	if (res) {
4703		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4704			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4705
4706		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4707	}
4708	return res;
4709}
4710
4711static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4712			    enum skb_drop_reason reason)
4713{
4714	sk_drops_add(sk, skb);
4715	kfree_skb_reason(skb, reason);
4716}
4717
4718/* This one checks to see if we can put data from the
4719 * out_of_order queue into the receive_queue.
4720 */
4721static void tcp_ofo_queue(struct sock *sk)
4722{
4723	struct tcp_sock *tp = tcp_sk(sk);
4724	__u32 dsack_high = tp->rcv_nxt;
4725	bool fin, fragstolen, eaten;
4726	struct sk_buff *skb, *tail;
4727	struct rb_node *p;
4728
4729	p = rb_first(&tp->out_of_order_queue);
4730	while (p) {
4731		skb = rb_to_skb(p);
4732		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4733			break;
4734
4735		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4736			__u32 dsack = dsack_high;
4737			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4738				dsack_high = TCP_SKB_CB(skb)->end_seq;
4739			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4740		}
4741		p = rb_next(p);
4742		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4743
4744		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4745			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
 
4746			continue;
4747		}
 
 
 
4748
4749		tail = skb_peek_tail(&sk->sk_receive_queue);
4750		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4751		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4752		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4753		if (!eaten)
4754			__skb_queue_tail(&sk->sk_receive_queue, skb);
4755		else
4756			kfree_skb_partial(skb, fragstolen);
4757
4758		if (unlikely(fin)) {
4759			tcp_fin(sk);
4760			/* tcp_fin() purges tp->out_of_order_queue,
4761			 * so we must end this loop right now.
4762			 */
4763			break;
4764		}
4765	}
4766}
4767
4768static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4769static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4770
4771static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4772				 unsigned int size)
4773{
4774	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4775	    !sk_rmem_schedule(sk, skb, size)) {
4776
4777		if (tcp_prune_queue(sk, skb) < 0)
4778			return -1;
4779
4780		while (!sk_rmem_schedule(sk, skb, size)) {
4781			if (!tcp_prune_ofo_queue(sk, skb))
4782				return -1;
4783		}
4784	}
4785	return 0;
4786}
4787
4788static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4789{
4790	struct tcp_sock *tp = tcp_sk(sk);
4791	struct rb_node **p, *parent;
4792	struct sk_buff *skb1;
4793	u32 seq, end_seq;
4794	bool fragstolen;
4795
4796	tcp_ecn_check_ce(sk, skb);
4797
4798	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4799		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4800		sk->sk_data_ready(sk);
4801		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4802		return;
4803	}
4804
4805	/* Disable header prediction. */
4806	tp->pred_flags = 0;
4807	inet_csk_schedule_ack(sk);
4808
4809	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4810	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4811	seq = TCP_SKB_CB(skb)->seq;
4812	end_seq = TCP_SKB_CB(skb)->end_seq;
 
 
4813
4814	p = &tp->out_of_order_queue.rb_node;
4815	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4816		/* Initial out of order segment, build 1 SACK. */
4817		if (tcp_is_sack(tp)) {
4818			tp->rx_opt.num_sacks = 1;
4819			tp->selective_acks[0].start_seq = seq;
4820			tp->selective_acks[0].end_seq = end_seq;
4821		}
4822		rb_link_node(&skb->rbnode, NULL, p);
4823		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4824		tp->ooo_last_skb = skb;
4825		goto end;
4826	}
4827
4828	/* In the typical case, we are adding an skb to the end of the list.
4829	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4830	 */
4831	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4832				 skb, &fragstolen)) {
4833coalesce_done:
4834		/* For non sack flows, do not grow window to force DUPACK
4835		 * and trigger fast retransmit.
4836		 */
4837		if (tcp_is_sack(tp))
4838			tcp_grow_window(sk, skb, true);
4839		kfree_skb_partial(skb, fragstolen);
4840		skb = NULL;
4841		goto add_sack;
4842	}
4843	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4844	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4845		parent = &tp->ooo_last_skb->rbnode;
4846		p = &parent->rb_right;
4847		goto insert;
4848	}
4849
4850	/* Find place to insert this segment. Handle overlaps on the way. */
4851	parent = NULL;
4852	while (*p) {
4853		parent = *p;
4854		skb1 = rb_to_skb(parent);
4855		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4856			p = &parent->rb_left;
4857			continue;
4858		}
4859		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4860			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4861				/* All the bits are present. Drop. */
4862				NET_INC_STATS(sock_net(sk),
4863					      LINUX_MIB_TCPOFOMERGE);
4864				tcp_drop_reason(sk, skb,
4865						SKB_DROP_REASON_TCP_OFOMERGE);
4866				skb = NULL;
4867				tcp_dsack_set(sk, seq, end_seq);
4868				goto add_sack;
4869			}
4870			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4871				/* Partial overlap. */
4872				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4873			} else {
4874				/* skb's seq == skb1's seq and skb covers skb1.
4875				 * Replace skb1 with skb.
4876				 */
4877				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4878						&tp->out_of_order_queue);
4879				tcp_dsack_extend(sk,
4880						 TCP_SKB_CB(skb1)->seq,
4881						 TCP_SKB_CB(skb1)->end_seq);
4882				NET_INC_STATS(sock_net(sk),
4883					      LINUX_MIB_TCPOFOMERGE);
4884				tcp_drop_reason(sk, skb1,
4885						SKB_DROP_REASON_TCP_OFOMERGE);
4886				goto merge_right;
4887			}
4888		} else if (tcp_ooo_try_coalesce(sk, skb1,
4889						skb, &fragstolen)) {
4890			goto coalesce_done;
4891		}
4892		p = &parent->rb_right;
4893	}
4894insert:
4895	/* Insert segment into RB tree. */
4896	rb_link_node(&skb->rbnode, parent, p);
4897	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4898
4899merge_right:
4900	/* Remove other segments covered by skb. */
4901	while ((skb1 = skb_rb_next(skb)) != NULL) {
4902		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4903			break;
4904		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4905			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4906					 end_seq);
4907			break;
4908		}
4909		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4910		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4911				 TCP_SKB_CB(skb1)->end_seq);
4912		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4913		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
4914	}
4915	/* If there is no skb after us, we are the last_skb ! */
4916	if (!skb1)
4917		tp->ooo_last_skb = skb;
4918
4919add_sack:
4920	if (tcp_is_sack(tp))
4921		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4922end:
4923	if (skb) {
4924		/* For non sack flows, do not grow window to force DUPACK
4925		 * and trigger fast retransmit.
4926		 */
4927		if (tcp_is_sack(tp))
4928			tcp_grow_window(sk, skb, false);
4929		skb_condense(skb);
4930		skb_set_owner_r(skb, sk);
4931	}
4932}
4933
4934static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4935				      bool *fragstolen)
4936{
4937	int eaten;
4938	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4939
 
4940	eaten = (tail &&
4941		 tcp_try_coalesce(sk, tail,
4942				  skb, fragstolen)) ? 1 : 0;
4943	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4944	if (!eaten) {
4945		__skb_queue_tail(&sk->sk_receive_queue, skb);
4946		skb_set_owner_r(skb, sk);
4947	}
4948	return eaten;
4949}
4950
4951int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4952{
4953	struct sk_buff *skb;
4954	int err = -ENOMEM;
4955	int data_len = 0;
4956	bool fragstolen;
4957
4958	if (size == 0)
4959		return 0;
4960
4961	if (size > PAGE_SIZE) {
4962		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4963
4964		data_len = npages << PAGE_SHIFT;
4965		size = data_len + (size & ~PAGE_MASK);
4966	}
4967	skb = alloc_skb_with_frags(size - data_len, data_len,
4968				   PAGE_ALLOC_COSTLY_ORDER,
4969				   &err, sk->sk_allocation);
4970	if (!skb)
4971		goto err;
4972
4973	skb_put(skb, size - data_len);
4974	skb->data_len = data_len;
4975	skb->len = size;
4976
4977	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4978		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4979		goto err_free;
4980	}
4981
4982	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4983	if (err)
4984		goto err_free;
4985
4986	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4987	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4988	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4989
4990	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4991		WARN_ON_ONCE(fragstolen); /* should not happen */
4992		__kfree_skb(skb);
4993	}
4994	return size;
4995
4996err_free:
4997	kfree_skb(skb);
4998err:
4999	return err;
5000
5001}
5002
5003void tcp_data_ready(struct sock *sk)
5004{
5005	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5006		sk->sk_data_ready(sk);
5007}
5008
5009static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5010{
5011	struct tcp_sock *tp = tcp_sk(sk);
5012	enum skb_drop_reason reason;
5013	bool fragstolen;
5014	int eaten;
5015
5016	/* If a subflow has been reset, the packet should not continue
5017	 * to be processed, drop the packet.
5018	 */
5019	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5020		__kfree_skb(skb);
5021		return;
5022	}
5023
5024	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5025		__kfree_skb(skb);
5026		return;
5027	}
5028	skb_dst_drop(skb);
5029	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5030
5031	reason = SKB_DROP_REASON_NOT_SPECIFIED;
 
5032	tp->rx_opt.dsack = 0;
5033
5034	/*  Queue data for delivery to the user.
5035	 *  Packets in sequence go to the receive queue.
5036	 *  Out of sequence packets to the out_of_order_queue.
5037	 */
5038	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5039		if (tcp_receive_window(tp) == 0) {
5040			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5041			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5042			goto out_of_window;
5043		}
5044
5045		/* Ok. In sequence. In window. */
5046queue_and_out:
5047		if (skb_queue_len(&sk->sk_receive_queue) == 0)
5048			sk_forced_mem_schedule(sk, skb->truesize);
5049		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5050			reason = SKB_DROP_REASON_PROTO_MEM;
5051			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5052			sk->sk_data_ready(sk);
5053			goto drop;
5054		}
5055
5056		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
 
5057		if (skb->len)
5058			tcp_event_data_recv(sk, skb);
5059		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5060			tcp_fin(sk);
5061
5062		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5063			tcp_ofo_queue(sk);
5064
5065			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5066			 * gap in queue is filled.
5067			 */
5068			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5069				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5070		}
5071
5072		if (tp->rx_opt.num_sacks)
5073			tcp_sack_remove(tp);
5074
5075		tcp_fast_path_check(sk);
5076
5077		if (eaten > 0)
5078			kfree_skb_partial(skb, fragstolen);
5079		if (!sock_flag(sk, SOCK_DEAD))
5080			tcp_data_ready(sk);
5081		return;
5082	}
5083
5084	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5085		tcp_rcv_spurious_retrans(sk, skb);
5086		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5087		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5088		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5089		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5090
5091out_of_window:
5092		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5093		inet_csk_schedule_ack(sk);
5094drop:
5095		tcp_drop_reason(sk, skb, reason);
5096		return;
5097	}
5098
5099	/* Out of window. F.e. zero window probe. */
5100	if (!before(TCP_SKB_CB(skb)->seq,
5101		    tp->rcv_nxt + tcp_receive_window(tp))) {
5102		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5103		goto out_of_window;
5104	}
 
5105
5106	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5107		/* Partial packet, seq < rcv_next < end_seq */
 
 
 
 
5108		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5109
5110		/* If window is closed, drop tail of packet. But after
5111		 * remembering D-SACK for its head made in previous line.
5112		 */
5113		if (!tcp_receive_window(tp)) {
5114			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5115			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5116			goto out_of_window;
5117		}
5118		goto queue_and_out;
5119	}
5120
5121	tcp_data_queue_ofo(sk, skb);
5122}
5123
5124static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5125{
5126	if (list)
5127		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5128
5129	return skb_rb_next(skb);
5130}
5131
5132static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5133					struct sk_buff_head *list,
5134					struct rb_root *root)
5135{
5136	struct sk_buff *next = tcp_skb_next(skb, list);
5137
5138	if (list)
5139		__skb_unlink(skb, list);
5140	else
5141		rb_erase(&skb->rbnode, root);
5142
5143	__kfree_skb(skb);
5144	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5145
5146	return next;
5147}
5148
5149/* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5150void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5151{
5152	struct rb_node **p = &root->rb_node;
5153	struct rb_node *parent = NULL;
5154	struct sk_buff *skb1;
5155
5156	while (*p) {
5157		parent = *p;
5158		skb1 = rb_to_skb(parent);
5159		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5160			p = &parent->rb_left;
5161		else
5162			p = &parent->rb_right;
5163	}
5164	rb_link_node(&skb->rbnode, parent, p);
5165	rb_insert_color(&skb->rbnode, root);
5166}
5167
5168/* Collapse contiguous sequence of skbs head..tail with
5169 * sequence numbers start..end.
5170 *
5171 * If tail is NULL, this means until the end of the queue.
5172 *
5173 * Segments with FIN/SYN are not collapsed (only because this
5174 * simplifies code)
5175 */
5176static void
5177tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5178	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5179{
5180	struct sk_buff *skb = head, *n;
5181	struct sk_buff_head tmp;
5182	bool end_of_skbs;
5183
5184	/* First, check that queue is collapsible and find
5185	 * the point where collapsing can be useful.
5186	 */
5187restart:
5188	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5189		n = tcp_skb_next(skb, list);
5190
5191		/* No new bits? It is possible on ofo queue. */
5192		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5193			skb = tcp_collapse_one(sk, skb, list, root);
5194			if (!skb)
5195				break;
5196			goto restart;
5197		}
5198
5199		/* The first skb to collapse is:
5200		 * - not SYN/FIN and
5201		 * - bloated or contains data before "start" or
5202		 *   overlaps to the next one and mptcp allow collapsing.
5203		 */
5204		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5205		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5206		     before(TCP_SKB_CB(skb)->seq, start))) {
5207			end_of_skbs = false;
5208			break;
5209		}
5210
5211		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5212		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5213			end_of_skbs = false;
5214			break;
5215		}
5216
5217		/* Decided to skip this, advance start seq. */
5218		start = TCP_SKB_CB(skb)->end_seq;
5219	}
5220	if (end_of_skbs ||
5221	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5222		return;
5223
5224	__skb_queue_head_init(&tmp);
5225
5226	while (before(start, end)) {
5227		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5228		struct sk_buff *nskb;
5229
5230		nskb = alloc_skb(copy, GFP_ATOMIC);
5231		if (!nskb)
5232			break;
5233
5234		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5235#ifdef CONFIG_TLS_DEVICE
5236		nskb->decrypted = skb->decrypted;
5237#endif
5238		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5239		if (list)
5240			__skb_queue_before(list, skb, nskb);
5241		else
5242			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5243		skb_set_owner_r(nskb, sk);
5244		mptcp_skb_ext_move(nskb, skb);
5245
5246		/* Copy data, releasing collapsed skbs. */
5247		while (copy > 0) {
5248			int offset = start - TCP_SKB_CB(skb)->seq;
5249			int size = TCP_SKB_CB(skb)->end_seq - start;
5250
5251			BUG_ON(offset < 0);
5252			if (size > 0) {
5253				size = min(copy, size);
5254				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5255					BUG();
5256				TCP_SKB_CB(nskb)->end_seq += size;
5257				copy -= size;
5258				start += size;
5259			}
5260			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5261				skb = tcp_collapse_one(sk, skb, list, root);
5262				if (!skb ||
5263				    skb == tail ||
5264				    !mptcp_skb_can_collapse(nskb, skb) ||
5265				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5266					goto end;
5267#ifdef CONFIG_TLS_DEVICE
5268				if (skb->decrypted != nskb->decrypted)
5269					goto end;
5270#endif
5271			}
5272		}
5273	}
5274end:
5275	skb_queue_walk_safe(&tmp, skb, n)
5276		tcp_rbtree_insert(root, skb);
5277}
5278
5279/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5280 * and tcp_collapse() them until all the queue is collapsed.
5281 */
5282static void tcp_collapse_ofo_queue(struct sock *sk)
5283{
5284	struct tcp_sock *tp = tcp_sk(sk);
5285	u32 range_truesize, sum_tiny = 0;
5286	struct sk_buff *skb, *head;
5287	u32 start, end;
5288
5289	skb = skb_rb_first(&tp->out_of_order_queue);
5290new_range:
5291	if (!skb) {
5292		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5293		return;
5294	}
5295	start = TCP_SKB_CB(skb)->seq;
5296	end = TCP_SKB_CB(skb)->end_seq;
5297	range_truesize = skb->truesize;
5298
5299	for (head = skb;;) {
5300		skb = skb_rb_next(skb);
5301
5302		/* Range is terminated when we see a gap or when
5303		 * we are at the queue end.
5304		 */
5305		if (!skb ||
5306		    after(TCP_SKB_CB(skb)->seq, end) ||
5307		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5308			/* Do not attempt collapsing tiny skbs */
5309			if (range_truesize != head->truesize ||
5310			    end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5311				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5312					     head, skb, start, end);
5313			} else {
5314				sum_tiny += range_truesize;
5315				if (sum_tiny > sk->sk_rcvbuf >> 3)
5316					return;
5317			}
5318			goto new_range;
5319		}
5320
5321		range_truesize += skb->truesize;
5322		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5323			start = TCP_SKB_CB(skb)->seq;
5324		if (after(TCP_SKB_CB(skb)->end_seq, end))
5325			end = TCP_SKB_CB(skb)->end_seq;
5326	}
5327}
5328
5329/*
5330 * Clean the out-of-order queue to make room.
5331 * We drop high sequences packets to :
5332 * 1) Let a chance for holes to be filled.
5333 *    This means we do not drop packets from ooo queue if their sequence
5334 *    is before incoming packet sequence.
5335 * 2) not add too big latencies if thousands of packets sit there.
5336 *    (But if application shrinks SO_RCVBUF, we could still end up
5337 *     freeing whole queue here)
5338 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5339 *
5340 * Return true if queue has shrunk.
5341 */
5342static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5343{
5344	struct tcp_sock *tp = tcp_sk(sk);
5345	struct rb_node *node, *prev;
5346	bool pruned = false;
5347	int goal;
5348
5349	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5350		return false;
5351
5352	goal = sk->sk_rcvbuf >> 3;
5353	node = &tp->ooo_last_skb->rbnode;
5354
5355	do {
5356		struct sk_buff *skb = rb_to_skb(node);
5357
5358		/* If incoming skb would land last in ofo queue, stop pruning. */
5359		if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5360			break;
5361		pruned = true;
5362		prev = rb_prev(node);
5363		rb_erase(node, &tp->out_of_order_queue);
5364		goal -= skb->truesize;
5365		tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5366		tp->ooo_last_skb = rb_to_skb(prev);
5367		if (!prev || goal <= 0) {
5368			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5369			    !tcp_under_memory_pressure(sk))
5370				break;
5371			goal = sk->sk_rcvbuf >> 3;
5372		}
5373		node = prev;
5374	} while (node);
 
5375
5376	if (pruned) {
5377		NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5378		/* Reset SACK state.  A conforming SACK implementation will
5379		 * do the same at a timeout based retransmit.  When a connection
5380		 * is in a sad state like this, we care only about integrity
5381		 * of the connection not performance.
5382		 */
5383		if (tp->rx_opt.sack_ok)
5384			tcp_sack_reset(&tp->rx_opt);
5385	}
5386	return pruned;
5387}
5388
5389/* Reduce allocated memory if we can, trying to get
5390 * the socket within its memory limits again.
5391 *
5392 * Return less than zero if we should start dropping frames
5393 * until the socket owning process reads some of the data
5394 * to stabilize the situation.
5395 */
5396static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5397{
5398	struct tcp_sock *tp = tcp_sk(sk);
5399
 
 
5400	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5401
5402	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5403		tcp_clamp_window(sk);
5404	else if (tcp_under_memory_pressure(sk))
5405		tcp_adjust_rcv_ssthresh(sk);
5406
5407	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5408		return 0;
5409
5410	tcp_collapse_ofo_queue(sk);
5411	if (!skb_queue_empty(&sk->sk_receive_queue))
5412		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5413			     skb_peek(&sk->sk_receive_queue),
5414			     NULL,
5415			     tp->copied_seq, tp->rcv_nxt);
 
5416
5417	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5418		return 0;
5419
5420	/* Collapsing did not help, destructive actions follow.
5421	 * This must not ever occur. */
5422
5423	tcp_prune_ofo_queue(sk, in_skb);
5424
5425	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5426		return 0;
5427
5428	/* If we are really being abused, tell the caller to silently
5429	 * drop receive data on the floor.  It will get retransmitted
5430	 * and hopefully then we'll have sufficient space.
5431	 */
5432	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5433
5434	/* Massive buffer overcommit. */
5435	tp->pred_flags = 0;
5436	return -1;
5437}
5438
5439static bool tcp_should_expand_sndbuf(struct sock *sk)
5440{
5441	const struct tcp_sock *tp = tcp_sk(sk);
5442
5443	/* If the user specified a specific send buffer setting, do
5444	 * not modify it.
5445	 */
5446	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5447		return false;
5448
5449	/* If we are under global TCP memory pressure, do not expand.  */
5450	if (tcp_under_memory_pressure(sk)) {
5451		int unused_mem = sk_unused_reserved_mem(sk);
5452
5453		/* Adjust sndbuf according to reserved mem. But make sure
5454		 * it never goes below SOCK_MIN_SNDBUF.
5455		 * See sk_stream_moderate_sndbuf() for more details.
5456		 */
5457		if (unused_mem > SOCK_MIN_SNDBUF)
5458			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5459
5460		return false;
5461	}
5462
5463	/* If we are under soft global TCP memory pressure, do not expand.  */
5464	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5465		return false;
5466
5467	/* If we filled the congestion window, do not expand.  */
5468	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5469		return false;
5470
5471	return true;
5472}
5473
 
 
 
 
 
 
5474static void tcp_new_space(struct sock *sk)
5475{
5476	struct tcp_sock *tp = tcp_sk(sk);
5477
5478	if (tcp_should_expand_sndbuf(sk)) {
5479		tcp_sndbuf_expand(sk);
5480		tp->snd_cwnd_stamp = tcp_jiffies32;
5481	}
5482
5483	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5484}
5485
5486/* Caller made space either from:
5487 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5488 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5489 *
5490 * We might be able to generate EPOLLOUT to the application if:
5491 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5492 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5493 *    small enough that tcp_stream_memory_free() decides it
5494 *    is time to generate EPOLLOUT.
5495 */
5496void tcp_check_space(struct sock *sk)
5497{
5498	/* pairs with tcp_poll() */
5499	smp_mb();
5500	if (sk->sk_socket &&
5501	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5502		tcp_new_space(sk);
5503		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5504			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5505	}
5506}
5507
5508static inline void tcp_data_snd_check(struct sock *sk)
5509{
5510	tcp_push_pending_frames(sk);
5511	tcp_check_space(sk);
5512}
5513
5514/*
5515 * Check if sending an ack is needed.
5516 */
5517static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5518{
5519	struct tcp_sock *tp = tcp_sk(sk);
5520	unsigned long rtt, delay;
5521
5522	    /* More than one full frame received... */
5523	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5524	     /* ... and right edge of window advances far enough.
5525	      * (tcp_recvmsg() will send ACK otherwise).
5526	      * If application uses SO_RCVLOWAT, we want send ack now if
5527	      * we have not received enough bytes to satisfy the condition.
5528	      */
5529	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5530	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5531	    /* We ACK each frame or... */
5532	    tcp_in_quickack_mode(sk) ||
5533	    /* Protocol state mandates a one-time immediate ACK */
5534	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5535send_now:
5536		tcp_send_ack(sk);
5537		return;
5538	}
5539
5540	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5541		tcp_send_delayed_ack(sk);
5542		return;
5543	}
5544
5545	if (!tcp_is_sack(tp) ||
5546	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5547		goto send_now;
5548
5549	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5550		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5551		tp->dup_ack_counter = 0;
5552	}
5553	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5554		tp->dup_ack_counter++;
5555		goto send_now;
5556	}
5557	tp->compressed_ack++;
5558	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5559		return;
5560
5561	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5562
5563	rtt = tp->rcv_rtt_est.rtt_us;
5564	if (tp->srtt_us && tp->srtt_us < rtt)
5565		rtt = tp->srtt_us;
5566
5567	delay = min_t(unsigned long,
5568		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5569		      rtt * (NSEC_PER_USEC >> 3)/20);
5570	sock_hold(sk);
5571	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5572			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5573			       HRTIMER_MODE_REL_PINNED_SOFT);
5574}
5575
5576static inline void tcp_ack_snd_check(struct sock *sk)
5577{
5578	if (!inet_csk_ack_scheduled(sk)) {
5579		/* We sent a data segment already. */
5580		return;
5581	}
5582	__tcp_ack_snd_check(sk, 1);
5583}
5584
5585/*
5586 *	This routine is only called when we have urgent data
5587 *	signaled. Its the 'slow' part of tcp_urg. It could be
5588 *	moved inline now as tcp_urg is only called from one
5589 *	place. We handle URGent data wrong. We have to - as
5590 *	BSD still doesn't use the correction from RFC961.
5591 *	For 1003.1g we should support a new option TCP_STDURG to permit
5592 *	either form (or just set the sysctl tcp_stdurg).
5593 */
5594
5595static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5596{
5597	struct tcp_sock *tp = tcp_sk(sk);
5598	u32 ptr = ntohs(th->urg_ptr);
5599
5600	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5601		ptr--;
5602	ptr += ntohl(th->seq);
5603
5604	/* Ignore urgent data that we've already seen and read. */
5605	if (after(tp->copied_seq, ptr))
5606		return;
5607
5608	/* Do not replay urg ptr.
5609	 *
5610	 * NOTE: interesting situation not covered by specs.
5611	 * Misbehaving sender may send urg ptr, pointing to segment,
5612	 * which we already have in ofo queue. We are not able to fetch
5613	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5614	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5615	 * situations. But it is worth to think about possibility of some
5616	 * DoSes using some hypothetical application level deadlock.
5617	 */
5618	if (before(ptr, tp->rcv_nxt))
5619		return;
5620
5621	/* Do we already have a newer (or duplicate) urgent pointer? */
5622	if (tp->urg_data && !after(ptr, tp->urg_seq))
5623		return;
5624
5625	/* Tell the world about our new urgent pointer. */
5626	sk_send_sigurg(sk);
5627
5628	/* We may be adding urgent data when the last byte read was
5629	 * urgent. To do this requires some care. We cannot just ignore
5630	 * tp->copied_seq since we would read the last urgent byte again
5631	 * as data, nor can we alter copied_seq until this data arrives
5632	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5633	 *
5634	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5635	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5636	 * and expect that both A and B disappear from stream. This is _wrong_.
5637	 * Though this happens in BSD with high probability, this is occasional.
5638	 * Any application relying on this is buggy. Note also, that fix "works"
5639	 * only in this artificial test. Insert some normal data between A and B and we will
5640	 * decline of BSD again. Verdict: it is better to remove to trap
5641	 * buggy users.
5642	 */
5643	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5644	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5645		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5646		tp->copied_seq++;
5647		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5648			__skb_unlink(skb, &sk->sk_receive_queue);
5649			__kfree_skb(skb);
5650		}
5651	}
5652
5653	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5654	WRITE_ONCE(tp->urg_seq, ptr);
5655
5656	/* Disable header prediction. */
5657	tp->pred_flags = 0;
5658}
5659
5660/* This is the 'fast' part of urgent handling. */
5661static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5662{
5663	struct tcp_sock *tp = tcp_sk(sk);
5664
5665	/* Check if we get a new urgent pointer - normally not. */
5666	if (unlikely(th->urg))
5667		tcp_check_urg(sk, th);
5668
5669	/* Do we wait for any urgent data? - normally not... */
5670	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5671		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5672			  th->syn;
5673
5674		/* Is the urgent pointer pointing into this packet? */
5675		if (ptr < skb->len) {
5676			u8 tmp;
5677			if (skb_copy_bits(skb, ptr, &tmp, 1))
5678				BUG();
5679			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5680			if (!sock_flag(sk, SOCK_DEAD))
5681				sk->sk_data_ready(sk);
5682		}
5683	}
5684}
5685
5686/* Accept RST for rcv_nxt - 1 after a FIN.
5687 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5688 * FIN is sent followed by a RST packet. The RST is sent with the same
5689 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5690 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5691 * ACKs on the closed socket. In addition middleboxes can drop either the
5692 * challenge ACK or a subsequent RST.
5693 */
5694static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5695{
5696	struct tcp_sock *tp = tcp_sk(sk);
5697
5698	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5699			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5700					       TCPF_CLOSING));
5701}
5702
5703/* Does PAWS and seqno based validation of an incoming segment, flags will
5704 * play significant role here.
5705 */
5706static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5707				  const struct tcphdr *th, int syn_inerr)
5708{
5709	struct tcp_sock *tp = tcp_sk(sk);
5710	SKB_DR(reason);
5711
5712	/* RFC1323: H1. Apply PAWS check first. */
5713	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5714	    tp->rx_opt.saw_tstamp &&
5715	    tcp_paws_discard(sk, skb)) {
5716		if (!th->rst) {
5717			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5718			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5719						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5720						  &tp->last_oow_ack_time))
5721				tcp_send_dupack(sk, skb);
5722			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5723			goto discard;
5724		}
5725		/* Reset is accepted even if it did not pass PAWS. */
5726	}
5727
5728	/* Step 1: check sequence number */
5729	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5730		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5731		 * (RST) segments are validated by checking their SEQ-fields."
5732		 * And page 69: "If an incoming segment is not acceptable,
5733		 * an acknowledgment should be sent in reply (unless the RST
5734		 * bit is set, if so drop the segment and return)".
5735		 */
5736		if (!th->rst) {
5737			if (th->syn)
5738				goto syn_challenge;
5739			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5740						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5741						  &tp->last_oow_ack_time))
5742				tcp_send_dupack(sk, skb);
5743		} else if (tcp_reset_check(sk, skb)) {
5744			goto reset;
5745		}
5746		SKB_DR_SET(reason, TCP_INVALID_SEQUENCE);
5747		goto discard;
5748	}
5749
5750	/* Step 2: check RST bit */
5751	if (th->rst) {
5752		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5753		 * FIN and SACK too if available):
5754		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5755		 * the right-most SACK block,
5756		 * then
5757		 *     RESET the connection
5758		 * else
5759		 *     Send a challenge ACK
5760		 */
5761		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5762		    tcp_reset_check(sk, skb))
5763			goto reset;
5764
5765		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5766			struct tcp_sack_block *sp = &tp->selective_acks[0];
5767			int max_sack = sp[0].end_seq;
5768			int this_sack;
5769
5770			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5771			     ++this_sack) {
5772				max_sack = after(sp[this_sack].end_seq,
5773						 max_sack) ?
5774					sp[this_sack].end_seq : max_sack;
5775			}
5776
5777			if (TCP_SKB_CB(skb)->seq == max_sack)
5778				goto reset;
5779		}
5780
5781		/* Disable TFO if RST is out-of-order
5782		 * and no data has been received
5783		 * for current active TFO socket
5784		 */
5785		if (tp->syn_fastopen && !tp->data_segs_in &&
5786		    sk->sk_state == TCP_ESTABLISHED)
5787			tcp_fastopen_active_disable(sk);
5788		tcp_send_challenge_ack(sk);
5789		SKB_DR_SET(reason, TCP_RESET);
 
 
 
5790		goto discard;
5791	}
5792
5793	/* step 3: check security and precedence [ignored] */
5794
5795	/* step 4: Check for a SYN
5796	 * RFC 5961 4.2 : Send a challenge ack
5797	 */
5798	if (th->syn) {
5799syn_challenge:
5800		if (syn_inerr)
5801			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5802		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5803		tcp_send_challenge_ack(sk);
5804		SKB_DR_SET(reason, TCP_INVALID_SYN);
5805		goto discard;
5806	}
5807
5808	bpf_skops_parse_hdr(sk, skb);
5809
5810	return true;
5811
5812discard:
5813	tcp_drop_reason(sk, skb, reason);
5814	return false;
5815
5816reset:
5817	tcp_reset(sk, skb);
5818	__kfree_skb(skb);
5819	return false;
5820}
5821
5822/*
5823 *	TCP receive function for the ESTABLISHED state.
5824 *
5825 *	It is split into a fast path and a slow path. The fast path is
5826 * 	disabled when:
5827 *	- A zero window was announced from us - zero window probing
5828 *        is only handled properly in the slow path.
5829 *	- Out of order segments arrived.
5830 *	- Urgent data is expected.
5831 *	- There is no buffer space left
5832 *	- Unexpected TCP flags/window values/header lengths are received
5833 *	  (detected by checking the TCP header against pred_flags)
5834 *	- Data is sent in both directions. Fast path only supports pure senders
5835 *	  or pure receivers (this means either the sequence number or the ack
5836 *	  value must stay constant)
5837 *	- Unexpected TCP option.
5838 *
5839 *	When these conditions are not satisfied it drops into a standard
5840 *	receive procedure patterned after RFC793 to handle all cases.
5841 *	The first three cases are guaranteed by proper pred_flags setting,
5842 *	the rest is checked inline. Fast processing is turned on in
5843 *	tcp_data_queue when everything is OK.
5844 */
5845void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
 
5846{
5847	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
5848	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5849	struct tcp_sock *tp = tcp_sk(sk);
5850	unsigned int len = skb->len;
 
5851
5852	/* TCP congestion window tracking */
5853	trace_tcp_probe(sk, skb);
5854
5855	tcp_mstamp_refresh(tp);
5856	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5857		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5858	/*
5859	 *	Header prediction.
5860	 *	The code loosely follows the one in the famous
5861	 *	"30 instruction TCP receive" Van Jacobson mail.
5862	 *
5863	 *	Van's trick is to deposit buffers into socket queue
5864	 *	on a device interrupt, to call tcp_recv function
5865	 *	on the receive process context and checksum and copy
5866	 *	the buffer to user space. smart...
5867	 *
5868	 *	Our current scheme is not silly either but we take the
5869	 *	extra cost of the net_bh soft interrupt processing...
5870	 *	We do checksum and copy also but from device to kernel.
5871	 */
5872
5873	tp->rx_opt.saw_tstamp = 0;
5874
5875	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5876	 *	if header_prediction is to be made
5877	 *	'S' will always be tp->tcp_header_len >> 2
5878	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5879	 *  turn it off	(when there are holes in the receive
5880	 *	 space for instance)
5881	 *	PSH flag is ignored.
5882	 */
5883
5884	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5885	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5886	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5887		int tcp_header_len = tp->tcp_header_len;
5888
5889		/* Timestamp header prediction: tcp_header_len
5890		 * is automatically equal to th->doff*4 due to pred_flags
5891		 * match.
5892		 */
5893
5894		/* Check timestamp */
5895		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5896			/* No? Slow path! */
5897			if (!tcp_parse_aligned_timestamp(tp, th))
5898				goto slow_path;
5899
5900			/* If PAWS failed, check it more carefully in slow path */
5901			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5902				goto slow_path;
5903
5904			/* DO NOT update ts_recent here, if checksum fails
5905			 * and timestamp was corrupted part, it will result
5906			 * in a hung connection since we will drop all
5907			 * future packets due to the PAWS test.
5908			 */
5909		}
5910
5911		if (len <= tcp_header_len) {
5912			/* Bulk data transfer: sender */
5913			if (len == tcp_header_len) {
5914				/* Predicted packet is in window by definition.
5915				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5916				 * Hence, check seq<=rcv_wup reduces to:
5917				 */
5918				if (tcp_header_len ==
5919				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5920				    tp->rcv_nxt == tp->rcv_wup)
5921					tcp_store_ts_recent(tp);
5922
5923				/* We know that such packets are checksummed
5924				 * on entry.
5925				 */
5926				tcp_ack(sk, skb, 0);
5927				__kfree_skb(skb);
5928				tcp_data_snd_check(sk);
5929				/* When receiving pure ack in fast path, update
5930				 * last ts ecr directly instead of calling
5931				 * tcp_rcv_rtt_measure_ts()
5932				 */
5933				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5934				return;
5935			} else { /* Header too small */
5936				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
5937				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5938				goto discard;
5939			}
5940		} else {
5941			int eaten = 0;
5942			bool fragstolen = false;
5943
5944			if (tcp_checksum_complete(skb))
5945				goto csum_error;
5946
5947			if ((int)skb->truesize > sk->sk_forward_alloc)
5948				goto step5;
5949
5950			/* Predicted packet is in window by definition.
5951			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5952			 * Hence, check seq<=rcv_wup reduces to:
5953			 */
5954			if (tcp_header_len ==
5955			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5956			    tp->rcv_nxt == tp->rcv_wup)
5957				tcp_store_ts_recent(tp);
5958
5959			tcp_rcv_rtt_measure_ts(sk, skb);
5960
5961			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5962
5963			/* Bulk data transfer: receiver */
5964			skb_dst_drop(skb);
5965			__skb_pull(skb, tcp_header_len);
5966			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5967
5968			tcp_event_data_recv(sk, skb);
5969
5970			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5971				/* Well, only one small jumplet in fast path... */
5972				tcp_ack(sk, skb, FLAG_DATA);
5973				tcp_data_snd_check(sk);
5974				if (!inet_csk_ack_scheduled(sk))
5975					goto no_ack;
5976			} else {
5977				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5978			}
5979
5980			__tcp_ack_snd_check(sk, 0);
5981no_ack:
5982			if (eaten)
5983				kfree_skb_partial(skb, fragstolen);
5984			tcp_data_ready(sk);
5985			return;
5986		}
5987	}
5988
5989slow_path:
5990	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5991		goto csum_error;
5992
5993	if (!th->ack && !th->rst && !th->syn) {
5994		reason = SKB_DROP_REASON_TCP_FLAGS;
5995		goto discard;
5996	}
5997
5998	/*
5999	 *	Standard slow path.
6000	 */
6001
6002	if (!tcp_validate_incoming(sk, skb, th, 1))
6003		return;
6004
6005step5:
6006	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6007	if ((int)reason < 0) {
6008		reason = -reason;
6009		goto discard;
6010	}
6011	tcp_rcv_rtt_measure_ts(sk, skb);
6012
6013	/* Process urgent data. */
6014	tcp_urg(sk, skb, th);
6015
6016	/* step 7: process the segment text */
6017	tcp_data_queue(sk, skb);
6018
6019	tcp_data_snd_check(sk);
6020	tcp_ack_snd_check(sk);
6021	return;
6022
6023csum_error:
6024	reason = SKB_DROP_REASON_TCP_CSUM;
6025	trace_tcp_bad_csum(skb);
6026	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6027	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6028
6029discard:
6030	tcp_drop_reason(sk, skb, reason);
6031}
6032EXPORT_SYMBOL(tcp_rcv_established);
6033
6034void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6035{
6036	struct inet_connection_sock *icsk = inet_csk(sk);
6037	struct tcp_sock *tp = tcp_sk(sk);
6038
6039	tcp_mtup_init(sk);
6040	icsk->icsk_af_ops->rebuild_header(sk);
6041	tcp_init_metrics(sk);
6042
6043	/* Initialize the congestion window to start the transfer.
6044	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6045	 * retransmitted. In light of RFC6298 more aggressive 1sec
6046	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6047	 * retransmission has occurred.
6048	 */
6049	if (tp->total_retrans > 1 && tp->undo_marker)
6050		tcp_snd_cwnd_set(tp, 1);
6051	else
6052		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6053	tp->snd_cwnd_stamp = tcp_jiffies32;
6054
6055	bpf_skops_established(sk, bpf_op, skb);
6056	/* Initialize congestion control unless BPF initialized it already: */
6057	if (!icsk->icsk_ca_initialized)
6058		tcp_init_congestion_control(sk);
6059	tcp_init_buffer_space(sk);
6060}
6061
6062void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6063{
6064	struct tcp_sock *tp = tcp_sk(sk);
6065	struct inet_connection_sock *icsk = inet_csk(sk);
6066
6067	tcp_set_state(sk, TCP_ESTABLISHED);
6068	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6069
6070	if (skb) {
6071		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6072		security_inet_conn_established(sk, skb);
6073		sk_mark_napi_id(sk, skb);
6074	}
6075
6076	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6077
6078	/* Prevent spurious tcp_cwnd_restart() on first data
6079	 * packet.
6080	 */
6081	tp->lsndtime = tcp_jiffies32;
6082
6083	if (sock_flag(sk, SOCK_KEEPOPEN))
6084		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6085
6086	if (!tp->rx_opt.snd_wscale)
6087		__tcp_fast_path_on(tp, tp->snd_wnd);
6088	else
6089		tp->pred_flags = 0;
6090}
6091
6092static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6093				    struct tcp_fastopen_cookie *cookie)
6094{
6095	struct tcp_sock *tp = tcp_sk(sk);
6096	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6097	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6098	bool syn_drop = false;
6099
6100	if (mss == tp->rx_opt.user_mss) {
6101		struct tcp_options_received opt;
6102
6103		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6104		tcp_clear_options(&opt);
6105		opt.user_mss = opt.mss_clamp = 0;
6106		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6107		mss = opt.mss_clamp;
6108	}
6109
6110	if (!tp->syn_fastopen) {
6111		/* Ignore an unsolicited cookie */
6112		cookie->len = -1;
6113	} else if (tp->total_retrans) {
6114		/* SYN timed out and the SYN-ACK neither has a cookie nor
6115		 * acknowledges data. Presumably the remote received only
6116		 * the retransmitted (regular) SYNs: either the original
6117		 * SYN-data or the corresponding SYN-ACK was dropped.
6118		 */
6119		syn_drop = (cookie->len < 0 && data);
6120	} else if (cookie->len < 0 && !tp->syn_data) {
6121		/* We requested a cookie but didn't get it. If we did not use
6122		 * the (old) exp opt format then try so next time (try_exp=1).
6123		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6124		 */
6125		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6126	}
6127
6128	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6129
6130	if (data) { /* Retransmit unacked data in SYN */
6131		if (tp->total_retrans)
6132			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6133		else
6134			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6135		skb_rbtree_walk_from(data)
6136			 tcp_mark_skb_lost(sk, data);
6137		tcp_xmit_retransmit_queue(sk);
6138		NET_INC_STATS(sock_net(sk),
6139				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6140		return true;
6141	}
6142	tp->syn_data_acked = tp->syn_data;
6143	if (tp->syn_data_acked) {
6144		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6145		/* SYN-data is counted as two separate packets in tcp_ack() */
6146		if (tp->delivered > 1)
6147			--tp->delivered;
6148	}
6149
6150	tcp_fastopen_add_skb(sk, synack);
6151
6152	return false;
6153}
6154
6155static void smc_check_reset_syn(struct tcp_sock *tp)
6156{
6157#if IS_ENABLED(CONFIG_SMC)
6158	if (static_branch_unlikely(&tcp_have_smc)) {
6159		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6160			tp->syn_smc = 0;
6161	}
6162#endif
6163}
6164
6165static void tcp_try_undo_spurious_syn(struct sock *sk)
6166{
6167	struct tcp_sock *tp = tcp_sk(sk);
6168	u32 syn_stamp;
6169
6170	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6171	 * spurious if the ACK's timestamp option echo value matches the
6172	 * original SYN timestamp.
6173	 */
6174	syn_stamp = tp->retrans_stamp;
6175	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6176	    syn_stamp == tp->rx_opt.rcv_tsecr)
6177		tp->undo_marker = 0;
6178}
6179
6180static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6181					 const struct tcphdr *th)
6182{
6183	struct inet_connection_sock *icsk = inet_csk(sk);
6184	struct tcp_sock *tp = tcp_sk(sk);
6185	struct tcp_fastopen_cookie foc = { .len = -1 };
6186	int saved_clamp = tp->rx_opt.mss_clamp;
6187	bool fastopen_fail;
6188	SKB_DR(reason);
6189
6190	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6191	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6192		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6193
6194	if (th->ack) {
6195		/* rfc793:
6196		 * "If the state is SYN-SENT then
6197		 *    first check the ACK bit
6198		 *      If the ACK bit is set
6199		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6200		 *        a reset (unless the RST bit is set, if so drop
6201		 *        the segment and return)"
6202		 */
6203		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6204		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6205			/* Previous FIN/ACK or RST/ACK might be ignored. */
6206			if (icsk->icsk_retransmits == 0)
6207				inet_csk_reset_xmit_timer(sk,
6208						ICSK_TIME_RETRANS,
6209						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6210			goto reset_and_undo;
6211		}
6212
6213		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6214		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6215			     tcp_time_stamp(tp))) {
6216			NET_INC_STATS(sock_net(sk),
6217					LINUX_MIB_PAWSACTIVEREJECTED);
6218			goto reset_and_undo;
6219		}
6220
6221		/* Now ACK is acceptable.
6222		 *
6223		 * "If the RST bit is set
6224		 *    If the ACK was acceptable then signal the user "error:
6225		 *    connection reset", drop the segment, enter CLOSED state,
6226		 *    delete TCB, and return."
6227		 */
6228
6229		if (th->rst) {
6230			tcp_reset(sk, skb);
6231consume:
6232			__kfree_skb(skb);
6233			return 0;
6234		}
6235
6236		/* rfc793:
6237		 *   "fifth, if neither of the SYN or RST bits is set then
6238		 *    drop the segment and return."
6239		 *
6240		 *    See note below!
6241		 *                                        --ANK(990513)
6242		 */
6243		if (!th->syn) {
6244			SKB_DR_SET(reason, TCP_FLAGS);
6245			goto discard_and_undo;
6246		}
6247		/* rfc793:
6248		 *   "If the SYN bit is on ...
6249		 *    are acceptable then ...
6250		 *    (our SYN has been ACKed), change the connection
6251		 *    state to ESTABLISHED..."
6252		 */
6253
6254		tcp_ecn_rcv_synack(tp, th);
6255
6256		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6257		tcp_try_undo_spurious_syn(sk);
6258		tcp_ack(sk, skb, FLAG_SLOWPATH);
6259
6260		/* Ok.. it's good. Set up sequence numbers and
6261		 * move to established.
6262		 */
6263		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6264		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6265
6266		/* RFC1323: The window in SYN & SYN/ACK segments is
6267		 * never scaled.
6268		 */
6269		tp->snd_wnd = ntohs(th->window);
6270
6271		if (!tp->rx_opt.wscale_ok) {
6272			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6273			tp->window_clamp = min(tp->window_clamp, 65535U);
6274		}
6275
6276		if (tp->rx_opt.saw_tstamp) {
6277			tp->rx_opt.tstamp_ok	   = 1;
6278			tp->tcp_header_len =
6279				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6280			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6281			tcp_store_ts_recent(tp);
6282		} else {
6283			tp->tcp_header_len = sizeof(struct tcphdr);
6284		}
6285
6286		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6287		tcp_initialize_rcv_mss(sk);
6288
6289		/* Remember, tcp_poll() does not lock socket!
6290		 * Change state from SYN-SENT only after copied_seq
6291		 * is initialized. */
6292		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6293
6294		smc_check_reset_syn(tp);
6295
6296		smp_mb();
6297
6298		tcp_finish_connect(sk, skb);
6299
6300		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6301				tcp_rcv_fastopen_synack(sk, skb, &foc);
6302
6303		if (!sock_flag(sk, SOCK_DEAD)) {
6304			sk->sk_state_change(sk);
6305			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6306		}
6307		if (fastopen_fail)
6308			return -1;
6309		if (sk->sk_write_pending ||
6310		    icsk->icsk_accept_queue.rskq_defer_accept ||
6311		    inet_csk_in_pingpong_mode(sk)) {
6312			/* Save one ACK. Data will be ready after
6313			 * several ticks, if write_pending is set.
6314			 *
6315			 * It may be deleted, but with this feature tcpdumps
6316			 * look so _wonderfully_ clever, that I was not able
6317			 * to stand against the temptation 8)     --ANK
6318			 */
6319			inet_csk_schedule_ack(sk);
6320			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6321			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6322						  TCP_DELACK_MAX, TCP_RTO_MAX);
6323			goto consume;
 
 
 
 
 
6324		}
6325		tcp_send_ack(sk);
6326		return -1;
6327	}
6328
6329	/* No ACK in the segment */
6330
6331	if (th->rst) {
6332		/* rfc793:
6333		 * "If the RST bit is set
6334		 *
6335		 *      Otherwise (no ACK) drop the segment and return."
6336		 */
6337		SKB_DR_SET(reason, TCP_RESET);
6338		goto discard_and_undo;
6339	}
6340
6341	/* PAWS check. */
6342	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6343	    tcp_paws_reject(&tp->rx_opt, 0)) {
6344		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6345		goto discard_and_undo;
6346	}
6347	if (th->syn) {
6348		/* We see SYN without ACK. It is attempt of
6349		 * simultaneous connect with crossed SYNs.
6350		 * Particularly, it can be connect to self.
6351		 */
6352		tcp_set_state(sk, TCP_SYN_RECV);
6353
6354		if (tp->rx_opt.saw_tstamp) {
6355			tp->rx_opt.tstamp_ok = 1;
6356			tcp_store_ts_recent(tp);
6357			tp->tcp_header_len =
6358				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6359		} else {
6360			tp->tcp_header_len = sizeof(struct tcphdr);
6361		}
6362
6363		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6364		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6365		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6366
6367		/* RFC1323: The window in SYN & SYN/ACK segments is
6368		 * never scaled.
6369		 */
6370		tp->snd_wnd    = ntohs(th->window);
6371		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6372		tp->max_window = tp->snd_wnd;
6373
6374		tcp_ecn_rcv_syn(tp, th);
6375
6376		tcp_mtup_init(sk);
6377		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6378		tcp_initialize_rcv_mss(sk);
6379
6380		tcp_send_synack(sk);
6381#if 0
6382		/* Note, we could accept data and URG from this segment.
6383		 * There are no obstacles to make this (except that we must
6384		 * either change tcp_recvmsg() to prevent it from returning data
6385		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6386		 *
6387		 * However, if we ignore data in ACKless segments sometimes,
6388		 * we have no reasons to accept it sometimes.
6389		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6390		 * is not flawless. So, discard packet for sanity.
6391		 * Uncomment this return to process the data.
6392		 */
6393		return -1;
6394#else
6395		goto consume;
6396#endif
6397	}
6398	/* "fifth, if neither of the SYN or RST bits is set then
6399	 * drop the segment and return."
6400	 */
6401
6402discard_and_undo:
6403	tcp_clear_options(&tp->rx_opt);
6404	tp->rx_opt.mss_clamp = saved_clamp;
6405	tcp_drop_reason(sk, skb, reason);
6406	return 0;
6407
6408reset_and_undo:
6409	tcp_clear_options(&tp->rx_opt);
6410	tp->rx_opt.mss_clamp = saved_clamp;
6411	return 1;
6412}
6413
6414static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6415{
6416	struct request_sock *req;
6417
6418	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6419	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6420	 */
6421	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6422		tcp_try_undo_loss(sk, false);
6423
6424	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6425	tcp_sk(sk)->retrans_stamp = 0;
6426	inet_csk(sk)->icsk_retransmits = 0;
6427
6428	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6429	 * we no longer need req so release it.
6430	 */
6431	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6432					lockdep_sock_is_held(sk));
6433	reqsk_fastopen_remove(sk, req, false);
6434
6435	/* Re-arm the timer because data may have been sent out.
6436	 * This is similar to the regular data transmission case
6437	 * when new data has just been ack'ed.
6438	 *
6439	 * (TFO) - we could try to be more aggressive and
6440	 * retransmitting any data sooner based on when they
6441	 * are sent out.
6442	 */
6443	tcp_rearm_rto(sk);
6444}
6445
6446/*
6447 *	This function implements the receiving procedure of RFC 793 for
6448 *	all states except ESTABLISHED and TIME_WAIT.
6449 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6450 *	address independent.
6451 */
6452
6453int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6454{
6455	struct tcp_sock *tp = tcp_sk(sk);
6456	struct inet_connection_sock *icsk = inet_csk(sk);
6457	const struct tcphdr *th = tcp_hdr(skb);
6458	struct request_sock *req;
6459	int queued = 0;
6460	bool acceptable;
6461	SKB_DR(reason);
6462
6463	switch (sk->sk_state) {
6464	case TCP_CLOSE:
6465		SKB_DR_SET(reason, TCP_CLOSE);
6466		goto discard;
6467
6468	case TCP_LISTEN:
6469		if (th->ack)
6470			return 1;
6471
6472		if (th->rst) {
6473			SKB_DR_SET(reason, TCP_RESET);
6474			goto discard;
6475		}
6476		if (th->syn) {
6477			if (th->fin) {
6478				SKB_DR_SET(reason, TCP_FLAGS);
6479				goto discard;
6480			}
6481			/* It is possible that we process SYN packets from backlog,
6482			 * so we need to make sure to disable BH and RCU right there.
6483			 */
6484			rcu_read_lock();
6485			local_bh_disable();
6486			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6487			local_bh_enable();
6488			rcu_read_unlock();
6489
6490			if (!acceptable)
6491				return 1;
6492			consume_skb(skb);
6493			return 0;
6494		}
6495		SKB_DR_SET(reason, TCP_FLAGS);
6496		goto discard;
6497
6498	case TCP_SYN_SENT:
6499		tp->rx_opt.saw_tstamp = 0;
6500		tcp_mstamp_refresh(tp);
6501		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6502		if (queued >= 0)
6503			return queued;
6504
6505		/* Do step6 onward by hand. */
6506		tcp_urg(sk, skb, th);
6507		__kfree_skb(skb);
6508		tcp_data_snd_check(sk);
6509		return 0;
6510	}
6511
6512	tcp_mstamp_refresh(tp);
6513	tp->rx_opt.saw_tstamp = 0;
6514	req = rcu_dereference_protected(tp->fastopen_rsk,
6515					lockdep_sock_is_held(sk));
6516	if (req) {
6517		bool req_stolen;
6518
6519		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6520		    sk->sk_state != TCP_FIN_WAIT1);
6521
6522		if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6523			SKB_DR_SET(reason, TCP_FASTOPEN);
6524			goto discard;
6525		}
6526	}
6527
6528	if (!th->ack && !th->rst && !th->syn) {
6529		SKB_DR_SET(reason, TCP_FLAGS);
6530		goto discard;
6531	}
6532	if (!tcp_validate_incoming(sk, skb, th, 0))
6533		return 0;
6534
6535	/* step 5: check the ACK field */
6536	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6537				      FLAG_UPDATE_TS_RECENT |
6538				      FLAG_NO_CHALLENGE_ACK) > 0;
6539
6540	if (!acceptable) {
6541		if (sk->sk_state == TCP_SYN_RECV)
6542			return 1;	/* send one RST */
6543		tcp_send_challenge_ack(sk);
6544		SKB_DR_SET(reason, TCP_OLD_ACK);
6545		goto discard;
6546	}
6547	switch (sk->sk_state) {
6548	case TCP_SYN_RECV:
6549		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6550		if (!tp->srtt_us)
6551			tcp_synack_rtt_meas(sk, req);
6552
 
 
 
6553		if (req) {
6554			tcp_rcv_synrecv_state_fastopen(sk);
 
 
 
 
 
 
 
 
 
 
6555		} else {
6556			tcp_try_undo_spurious_syn(sk);
6557			tp->retrans_stamp = 0;
6558			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6559					  skb);
6560			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6561		}
6562		smp_mb();
6563		tcp_set_state(sk, TCP_ESTABLISHED);
6564		sk->sk_state_change(sk);
6565
6566		/* Note, that this wakeup is only for marginal crossed SYN case.
6567		 * Passively open sockets are not waked up, because
6568		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6569		 */
6570		if (sk->sk_socket)
6571			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6572
6573		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6574		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6575		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6576
6577		if (tp->rx_opt.tstamp_ok)
6578			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6579
6580		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6581			tcp_update_pacing_rate(sk);
6582
6583		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6584		tp->lsndtime = tcp_jiffies32;
6585
6586		tcp_initialize_rcv_mss(sk);
6587		tcp_fast_path_on(tp);
6588		break;
6589
6590	case TCP_FIN_WAIT1: {
6591		int tmo;
6592
6593		if (req)
6594			tcp_rcv_synrecv_state_fastopen(sk);
6595
 
 
 
 
 
 
 
6596		if (tp->snd_una != tp->write_seq)
6597			break;
6598
6599		tcp_set_state(sk, TCP_FIN_WAIT2);
6600		sk->sk_shutdown |= SEND_SHUTDOWN;
6601
6602		sk_dst_confirm(sk);
6603
6604		if (!sock_flag(sk, SOCK_DEAD)) {
6605			/* Wake up lingering close() */
6606			sk->sk_state_change(sk);
6607			break;
6608		}
6609
6610		if (tp->linger2 < 0) {
6611			tcp_done(sk);
6612			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6613			return 1;
6614		}
6615		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6616		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6617			/* Receive out of order FIN after close() */
6618			if (tp->syn_fastopen && th->fin)
6619				tcp_fastopen_active_disable(sk);
6620			tcp_done(sk);
6621			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6622			return 1;
6623		}
6624
6625		tmo = tcp_fin_time(sk);
6626		if (tmo > TCP_TIMEWAIT_LEN) {
6627			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6628		} else if (th->fin || sock_owned_by_user(sk)) {
6629			/* Bad case. We could lose such FIN otherwise.
6630			 * It is not a big problem, but it looks confusing
6631			 * and not so rare event. We still can lose it now,
6632			 * if it spins in bh_lock_sock(), but it is really
6633			 * marginal case.
6634			 */
6635			inet_csk_reset_keepalive_timer(sk, tmo);
6636		} else {
6637			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6638			goto consume;
6639		}
6640		break;
6641	}
6642
6643	case TCP_CLOSING:
6644		if (tp->snd_una == tp->write_seq) {
6645			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6646			goto consume;
6647		}
6648		break;
6649
6650	case TCP_LAST_ACK:
6651		if (tp->snd_una == tp->write_seq) {
6652			tcp_update_metrics(sk);
6653			tcp_done(sk);
6654			goto consume;
6655		}
6656		break;
6657	}
6658
6659	/* step 6: check the URG bit */
6660	tcp_urg(sk, skb, th);
6661
6662	/* step 7: process the segment text */
6663	switch (sk->sk_state) {
6664	case TCP_CLOSE_WAIT:
6665	case TCP_CLOSING:
6666	case TCP_LAST_ACK:
6667		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6668			/* If a subflow has been reset, the packet should not
6669			 * continue to be processed, drop the packet.
6670			 */
6671			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6672				goto discard;
6673			break;
6674		}
6675		fallthrough;
6676	case TCP_FIN_WAIT1:
6677	case TCP_FIN_WAIT2:
6678		/* RFC 793 says to queue data in these states,
6679		 * RFC 1122 says we MUST send a reset.
6680		 * BSD 4.4 also does reset.
6681		 */
6682		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6683			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6684			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6685				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6686				tcp_reset(sk, skb);
6687				return 1;
6688			}
6689		}
6690		fallthrough;
6691	case TCP_ESTABLISHED:
6692		tcp_data_queue(sk, skb);
6693		queued = 1;
6694		break;
6695	}
6696
6697	/* tcp_data could move socket to TIME-WAIT */
6698	if (sk->sk_state != TCP_CLOSE) {
6699		tcp_data_snd_check(sk);
6700		tcp_ack_snd_check(sk);
6701	}
6702
6703	if (!queued) {
6704discard:
6705		tcp_drop_reason(sk, skb, reason);
6706	}
6707	return 0;
6708
6709consume:
6710	__kfree_skb(skb);
6711	return 0;
6712}
6713EXPORT_SYMBOL(tcp_rcv_state_process);
6714
6715static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6716{
6717	struct inet_request_sock *ireq = inet_rsk(req);
6718
6719	if (family == AF_INET)
6720		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6721				    &ireq->ir_rmt_addr, port);
6722#if IS_ENABLED(CONFIG_IPV6)
6723	else if (family == AF_INET6)
6724		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6725				    &ireq->ir_v6_rmt_addr, port);
6726#endif
6727}
6728
6729/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6730 *
6731 * If we receive a SYN packet with these bits set, it means a
6732 * network is playing bad games with TOS bits. In order to
6733 * avoid possible false congestion notifications, we disable
6734 * TCP ECN negotiation.
6735 *
6736 * Exception: tcp_ca wants ECN. This is required for DCTCP
6737 * congestion control: Linux DCTCP asserts ECT on all packets,
6738 * including SYN, which is most optimal solution; however,
6739 * others, such as FreeBSD do not.
6740 *
6741 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6742 * set, indicating the use of a future TCP extension (such as AccECN). See
6743 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6744 * extensions.
6745 */
6746static void tcp_ecn_create_request(struct request_sock *req,
6747				   const struct sk_buff *skb,
6748				   const struct sock *listen_sk,
6749				   const struct dst_entry *dst)
6750{
6751	const struct tcphdr *th = tcp_hdr(skb);
6752	const struct net *net = sock_net(listen_sk);
6753	bool th_ecn = th->ece && th->cwr;
6754	bool ect, ecn_ok;
6755	u32 ecn_ok_dst;
6756
6757	if (!th_ecn)
6758		return;
6759
6760	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6761	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6762	ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6763
6764	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6765	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6766	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6767		inet_rsk(req)->ecn_ok = 1;
6768}
6769
6770static void tcp_openreq_init(struct request_sock *req,
6771			     const struct tcp_options_received *rx_opt,
6772			     struct sk_buff *skb, const struct sock *sk)
6773{
6774	struct inet_request_sock *ireq = inet_rsk(req);
6775
6776	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
 
6777	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6778	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6779	tcp_rsk(req)->snt_synack = 0;
6780	tcp_rsk(req)->last_oow_ack_time = 0;
6781	req->mss = rx_opt->mss_clamp;
6782	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6783	ireq->tstamp_ok = rx_opt->tstamp_ok;
6784	ireq->sack_ok = rx_opt->sack_ok;
6785	ireq->snd_wscale = rx_opt->snd_wscale;
6786	ireq->wscale_ok = rx_opt->wscale_ok;
6787	ireq->acked = 0;
6788	ireq->ecn_ok = 0;
6789	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6790	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6791	ireq->ir_mark = inet_request_mark(sk, skb);
6792#if IS_ENABLED(CONFIG_SMC)
6793	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6794			tcp_sk(sk)->smc_hs_congested(sk));
6795#endif
6796}
6797
6798struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6799				      struct sock *sk_listener,
6800				      bool attach_listener)
6801{
6802	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6803					       attach_listener);
6804
6805	if (req) {
6806		struct inet_request_sock *ireq = inet_rsk(req);
6807
6808		ireq->ireq_opt = NULL;
6809#if IS_ENABLED(CONFIG_IPV6)
6810		ireq->pktopts = NULL;
6811#endif
6812		atomic64_set(&ireq->ir_cookie, 0);
6813		ireq->ireq_state = TCP_NEW_SYN_RECV;
6814		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6815		ireq->ireq_family = sk_listener->sk_family;
6816		req->timeout = TCP_TIMEOUT_INIT;
6817	}
6818
6819	return req;
6820}
6821EXPORT_SYMBOL(inet_reqsk_alloc);
6822
6823/*
6824 * Return true if a syncookie should be sent
6825 */
6826static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
 
 
6827{
6828	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6829	const char *msg = "Dropping request";
6830	struct net *net = sock_net(sk);
6831	bool want_cookie = false;
6832	u8 syncookies;
6833
6834	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6835
6836#ifdef CONFIG_SYN_COOKIES
6837	if (syncookies) {
6838		msg = "Sending cookies";
6839		want_cookie = true;
6840		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6841	} else
6842#endif
6843		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6844
6845	if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
6846	    xchg(&queue->synflood_warned, 1) == 0) {
6847		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
6848			net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
6849					proto, inet6_rcv_saddr(sk),
6850					sk->sk_num, msg);
6851		} else {
6852			net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
6853					proto, &sk->sk_rcv_saddr,
6854					sk->sk_num, msg);
6855		}
6856	}
6857
6858	return want_cookie;
6859}
6860
6861static void tcp_reqsk_record_syn(const struct sock *sk,
6862				 struct request_sock *req,
6863				 const struct sk_buff *skb)
6864{
6865	if (tcp_sk(sk)->save_syn) {
6866		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6867		struct saved_syn *saved_syn;
6868		u32 mac_hdrlen;
6869		void *base;
6870
6871		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
6872			base = skb_mac_header(skb);
6873			mac_hdrlen = skb_mac_header_len(skb);
6874			len += mac_hdrlen;
6875		} else {
6876			base = skb_network_header(skb);
6877			mac_hdrlen = 0;
6878		}
6879
6880		saved_syn = kmalloc(struct_size(saved_syn, data, len),
6881				    GFP_ATOMIC);
6882		if (saved_syn) {
6883			saved_syn->mac_hdrlen = mac_hdrlen;
6884			saved_syn->network_hdrlen = skb_network_header_len(skb);
6885			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6886			memcpy(saved_syn->data, base, len);
6887			req->saved_syn = saved_syn;
6888		}
6889	}
6890}
6891
6892/* If a SYN cookie is required and supported, returns a clamped MSS value to be
6893 * used for SYN cookie generation.
6894 */
6895u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6896			  const struct tcp_request_sock_ops *af_ops,
6897			  struct sock *sk, struct tcphdr *th)
6898{
6899	struct tcp_sock *tp = tcp_sk(sk);
6900	u16 mss;
6901
6902	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
6903	    !inet_csk_reqsk_queue_is_full(sk))
6904		return 0;
6905
6906	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6907		return 0;
6908
6909	if (sk_acceptq_is_full(sk)) {
6910		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6911		return 0;
6912	}
6913
6914	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6915	if (!mss)
6916		mss = af_ops->mss_clamp;
6917
6918	return mss;
6919}
6920EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6921
6922int tcp_conn_request(struct request_sock_ops *rsk_ops,
6923		     const struct tcp_request_sock_ops *af_ops,
6924		     struct sock *sk, struct sk_buff *skb)
6925{
6926	struct tcp_fastopen_cookie foc = { .len = -1 };
6927	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6928	struct tcp_options_received tmp_opt;
6929	struct tcp_sock *tp = tcp_sk(sk);
6930	struct net *net = sock_net(sk);
6931	struct sock *fastopen_sk = NULL;
6932	struct request_sock *req;
6933	bool want_cookie = false;
6934	struct dst_entry *dst;
6935	struct flowi fl;
6936	u8 syncookies;
6937
6938	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6939
6940	/* TW buckets are converted to open requests without
6941	 * limitations, they conserve resources and peer is
6942	 * evidently real one.
6943	 */
6944	if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6945		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
 
6946		if (!want_cookie)
6947			goto drop;
6948	}
6949
6950	if (sk_acceptq_is_full(sk)) {
6951		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6952		goto drop;
6953	}
6954
6955	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6956	if (!req)
6957		goto drop;
6958
6959	req->syncookie = want_cookie;
6960	tcp_rsk(req)->af_specific = af_ops;
6961	tcp_rsk(req)->ts_off = 0;
6962#if IS_ENABLED(CONFIG_MPTCP)
6963	tcp_rsk(req)->is_mptcp = 0;
6964#endif
6965
6966	tcp_clear_options(&tmp_opt);
6967	tmp_opt.mss_clamp = af_ops->mss_clamp;
6968	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6969	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6970			  want_cookie ? NULL : &foc);
6971
6972	if (want_cookie && !tmp_opt.saw_tstamp)
6973		tcp_clear_options(&tmp_opt);
6974
6975	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6976		tmp_opt.smc_ok = 0;
6977
6978	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6979	tcp_openreq_init(req, &tmp_opt, skb, sk);
6980	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6981
6982	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6983	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6984
6985	dst = af_ops->route_req(sk, skb, &fl, req);
6986	if (!dst)
 
6987		goto drop_and_free;
6988
6989	if (tmp_opt.tstamp_ok)
6990		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6991
6992	if (!want_cookie && !isn) {
6993		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
 
6994
 
6995		/* Kill the following clause, if you dislike this way. */
6996		if (!syncookies &&
6997		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6998		     (max_syn_backlog >> 2)) &&
6999		    !tcp_peer_is_proven(req, dst)) {
7000			/* Without syncookies last quarter of
7001			 * backlog is filled with destinations,
7002			 * proven to be alive.
7003			 * It means that we continue to communicate
7004			 * to destinations, already remembered
7005			 * to the moment of synflood.
7006			 */
7007			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7008				    rsk_ops->family);
7009			goto drop_and_release;
7010		}
7011
7012		isn = af_ops->init_seq(skb);
7013	}
7014
7015	tcp_ecn_create_request(req, skb, sk, dst);
7016
7017	if (want_cookie) {
7018		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
 
7019		if (!tmp_opt.tstamp_ok)
7020			inet_rsk(req)->ecn_ok = 0;
7021	}
7022
7023	tcp_rsk(req)->snt_isn = isn;
7024	tcp_rsk(req)->txhash = net_tx_rndhash();
7025	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7026	tcp_openreq_init_rwin(req, sk, dst);
7027	sk_rx_queue_set(req_to_sk(req), skb);
7028	if (!want_cookie) {
7029		tcp_reqsk_record_syn(sk, req, skb);
7030		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7031	}
7032	if (fastopen_sk) {
7033		af_ops->send_synack(fastopen_sk, dst, &fl, req,
7034				    &foc, TCP_SYNACK_FASTOPEN, skb);
7035		/* Add the child socket directly into the accept queue */
7036		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7037			reqsk_fastopen_remove(fastopen_sk, req, false);
7038			bh_unlock_sock(fastopen_sk);
7039			sock_put(fastopen_sk);
7040			goto drop_and_free;
7041		}
7042		sk->sk_data_ready(sk);
7043		bh_unlock_sock(fastopen_sk);
7044		sock_put(fastopen_sk);
7045	} else {
7046		tcp_rsk(req)->tfo_listener = false;
7047		if (!want_cookie) {
7048			req->timeout = tcp_timeout_init((struct sock *)req);
7049			inet_csk_reqsk_queue_hash_add(sk, req, req->timeout);
7050		}
7051		af_ops->send_synack(sk, dst, &fl, req, &foc,
7052				    !want_cookie ? TCP_SYNACK_NORMAL :
7053						   TCP_SYNACK_COOKIE,
7054				    skb);
7055		if (want_cookie) {
7056			reqsk_free(req);
7057			return 0;
7058		}
7059	}
7060	reqsk_put(req);
7061	return 0;
7062
7063drop_and_release:
7064	dst_release(dst);
7065drop_and_free:
7066	__reqsk_free(req);
7067drop:
7068	tcp_listendrop(sk);
7069	return 0;
7070}
7071EXPORT_SYMBOL(tcp_conn_request);
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *		Florian La Roche, <flla@stud.uni-sb.de>
  14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19 *		Jorge Cwik, <jorge@laser.satlink.net>
  20 */
  21
  22/*
  23 * Changes:
  24 *		Pedro Roque	:	Fast Retransmit/Recovery.
  25 *					Two receive queues.
  26 *					Retransmit queue handled by TCP.
  27 *					Better retransmit timer handling.
  28 *					New congestion avoidance.
  29 *					Header prediction.
  30 *					Variable renaming.
  31 *
  32 *		Eric		:	Fast Retransmit.
  33 *		Randy Scott	:	MSS option defines.
  34 *		Eric Schenk	:	Fixes to slow start algorithm.
  35 *		Eric Schenk	:	Yet another double ACK bug.
  36 *		Eric Schenk	:	Delayed ACK bug fixes.
  37 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
  38 *		David S. Miller	:	Don't allow zero congestion window.
  39 *		Eric Schenk	:	Fix retransmitter so that it sends
  40 *					next packet on ack of previous packet.
  41 *		Andi Kleen	:	Moved open_request checking here
  42 *					and process RSTs for open_requests.
  43 *		Andi Kleen	:	Better prune_queue, and other fixes.
  44 *		Andrey Savochkin:	Fix RTT measurements in the presence of
  45 *					timestamps.
  46 *		Andrey Savochkin:	Check sequence numbers correctly when
  47 *					removing SACKs due to in sequence incoming
  48 *					data segments.
  49 *		Andi Kleen:		Make sure we never ack data there is not
  50 *					enough room for. Also make this condition
  51 *					a fatal error if it might still happen.
  52 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
  53 *					connections with MSS<min(MTU,ann. MSS)
  54 *					work without delayed acks.
  55 *		Andi Kleen:		Process packets with PSH set in the
  56 *					fast path.
  57 *		J Hadi Salim:		ECN support
  58 *	 	Andrei Gurtov,
  59 *		Pasi Sarolahti,
  60 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
  61 *					engine. Lots of bugs are found.
  62 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
  63 */
  64
  65#define pr_fmt(fmt) "TCP: " fmt
  66
  67#include <linux/mm.h>
  68#include <linux/slab.h>
  69#include <linux/module.h>
  70#include <linux/sysctl.h>
  71#include <linux/kernel.h>
  72#include <linux/prefetch.h>
  73#include <net/dst.h>
  74#include <net/tcp.h>
  75#include <net/inet_common.h>
  76#include <linux/ipsec.h>
  77#include <asm/unaligned.h>
  78#include <linux/errqueue.h>
  79#include <trace/events/tcp.h>
  80#include <linux/static_key.h>
 
 
  81
  82int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  83
  84#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
  85#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
  86#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
  87#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
  88#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
  89#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
  90#define FLAG_ECE		0x40 /* ECE in this ACK				*/
  91#define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
  92#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
  93#define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
  94#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  95#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
  96#define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
  97#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
  98#define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
  99#define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
 100#define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
 
 101
 102#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
 103#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
 104#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
 105#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
 106
 107#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
 108#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
 109
 110#define REXMIT_NONE	0 /* no loss recovery to do */
 111#define REXMIT_LOST	1 /* retransmit packets marked lost */
 112#define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
 113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
 115			     unsigned int len)
 116{
 117	static bool __once __read_mostly;
 118
 119	if (!__once) {
 120		struct net_device *dev;
 121
 122		__once = true;
 123
 124		rcu_read_lock();
 125		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
 126		if (!dev || len >= dev->mtu)
 127			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
 128				dev ? dev->name : "Unknown driver");
 129		rcu_read_unlock();
 130	}
 131}
 132
 133/* Adapt the MSS value used to make delayed ack decision to the
 134 * real world.
 135 */
 136static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
 137{
 138	struct inet_connection_sock *icsk = inet_csk(sk);
 139	const unsigned int lss = icsk->icsk_ack.last_seg_size;
 140	unsigned int len;
 141
 142	icsk->icsk_ack.last_seg_size = 0;
 143
 144	/* skb->len may jitter because of SACKs, even if peer
 145	 * sends good full-sized frames.
 146	 */
 147	len = skb_shinfo(skb)->gso_size ? : skb->len;
 148	if (len >= icsk->icsk_ack.rcv_mss) {
 149		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
 150					       tcp_sk(sk)->advmss);
 151		/* Account for possibly-removed options */
 152		if (unlikely(len > icsk->icsk_ack.rcv_mss +
 153				   MAX_TCP_OPTION_SPACE))
 154			tcp_gro_dev_warn(sk, skb, len);
 155	} else {
 156		/* Otherwise, we make more careful check taking into account,
 157		 * that SACKs block is variable.
 158		 *
 159		 * "len" is invariant segment length, including TCP header.
 160		 */
 161		len += skb->data - skb_transport_header(skb);
 162		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
 163		    /* If PSH is not set, packet should be
 164		     * full sized, provided peer TCP is not badly broken.
 165		     * This observation (if it is correct 8)) allows
 166		     * to handle super-low mtu links fairly.
 167		     */
 168		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
 169		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
 170			/* Subtract also invariant (if peer is RFC compliant),
 171			 * tcp header plus fixed timestamp option length.
 172			 * Resulting "len" is MSS free of SACK jitter.
 173			 */
 174			len -= tcp_sk(sk)->tcp_header_len;
 175			icsk->icsk_ack.last_seg_size = len;
 176			if (len == lss) {
 177				icsk->icsk_ack.rcv_mss = len;
 178				return;
 179			}
 180		}
 181		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
 182			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
 183		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
 184	}
 185}
 186
 187static void tcp_incr_quickack(struct sock *sk)
 188{
 189	struct inet_connection_sock *icsk = inet_csk(sk);
 190	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
 191
 192	if (quickacks == 0)
 193		quickacks = 2;
 
 194	if (quickacks > icsk->icsk_ack.quick)
 195		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
 196}
 197
 198static void tcp_enter_quickack_mode(struct sock *sk)
 199{
 200	struct inet_connection_sock *icsk = inet_csk(sk);
 201	tcp_incr_quickack(sk);
 202	icsk->icsk_ack.pingpong = 0;
 
 203	icsk->icsk_ack.ato = TCP_ATO_MIN;
 204}
 
 205
 206/* Send ACKs quickly, if "quick" count is not exhausted
 207 * and the session is not interactive.
 208 */
 209
 210static bool tcp_in_quickack_mode(struct sock *sk)
 211{
 212	const struct inet_connection_sock *icsk = inet_csk(sk);
 213	const struct dst_entry *dst = __sk_dst_get(sk);
 214
 215	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
 216		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
 217}
 218
 219static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
 220{
 221	if (tp->ecn_flags & TCP_ECN_OK)
 222		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
 223}
 224
 225static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
 226{
 227	if (tcp_hdr(skb)->cwr)
 228		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 
 
 
 
 
 
 
 
 229}
 230
 231static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
 232{
 233	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 234}
 235
 236static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
 237{
 
 
 238	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
 239	case INET_ECN_NOT_ECT:
 240		/* Funny extension: if ECT is not set on a segment,
 241		 * and we already seen ECT on a previous segment,
 242		 * it is probably a retransmit.
 243		 */
 244		if (tp->ecn_flags & TCP_ECN_SEEN)
 245			tcp_enter_quickack_mode((struct sock *)tp);
 246		break;
 247	case INET_ECN_CE:
 248		if (tcp_ca_needs_ecn((struct sock *)tp))
 249			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
 250
 251		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
 252			/* Better not delay acks, sender can have a very low cwnd */
 253			tcp_enter_quickack_mode((struct sock *)tp);
 254			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
 255		}
 256		tp->ecn_flags |= TCP_ECN_SEEN;
 257		break;
 258	default:
 259		if (tcp_ca_needs_ecn((struct sock *)tp))
 260			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
 261		tp->ecn_flags |= TCP_ECN_SEEN;
 262		break;
 263	}
 264}
 265
 266static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
 267{
 268	if (tp->ecn_flags & TCP_ECN_OK)
 269		__tcp_ecn_check_ce(tp, skb);
 270}
 271
 272static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
 273{
 274	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
 275		tp->ecn_flags &= ~TCP_ECN_OK;
 276}
 277
 278static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
 279{
 280	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
 281		tp->ecn_flags &= ~TCP_ECN_OK;
 282}
 283
 284static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
 285{
 286	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
 287		return true;
 288	return false;
 289}
 290
 291/* Buffer size and advertised window tuning.
 292 *
 293 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
 294 */
 295
 296static void tcp_sndbuf_expand(struct sock *sk)
 297{
 298	const struct tcp_sock *tp = tcp_sk(sk);
 299	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
 300	int sndmem, per_mss;
 301	u32 nr_segs;
 302
 303	/* Worst case is non GSO/TSO : each frame consumes one skb
 304	 * and skb->head is kmalloced using power of two area of memory
 305	 */
 306	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
 307		  MAX_TCP_HEADER +
 308		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 309
 310	per_mss = roundup_pow_of_two(per_mss) +
 311		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
 312
 313	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
 314	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
 315
 316	/* Fast Recovery (RFC 5681 3.2) :
 317	 * Cubic needs 1.7 factor, rounded to 2 to include
 318	 * extra cushion (application might react slowly to EPOLLOUT)
 319	 */
 320	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
 321	sndmem *= nr_segs * per_mss;
 322
 323	if (sk->sk_sndbuf < sndmem)
 324		sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
 
 325}
 326
 327/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
 328 *
 329 * All tcp_full_space() is split to two parts: "network" buffer, allocated
 330 * forward and advertised in receiver window (tp->rcv_wnd) and
 331 * "application buffer", required to isolate scheduling/application
 332 * latencies from network.
 333 * window_clamp is maximal advertised window. It can be less than
 334 * tcp_full_space(), in this case tcp_full_space() - window_clamp
 335 * is reserved for "application" buffer. The less window_clamp is
 336 * the smoother our behaviour from viewpoint of network, but the lower
 337 * throughput and the higher sensitivity of the connection to losses. 8)
 338 *
 339 * rcv_ssthresh is more strict window_clamp used at "slow start"
 340 * phase to predict further behaviour of this connection.
 341 * It is used for two goals:
 342 * - to enforce header prediction at sender, even when application
 343 *   requires some significant "application buffer". It is check #1.
 344 * - to prevent pruning of receive queue because of misprediction
 345 *   of receiver window. Check #2.
 346 *
 347 * The scheme does not work when sender sends good segments opening
 348 * window and then starts to feed us spaghetti. But it should work
 349 * in common situations. Otherwise, we have to rely on queue collapsing.
 350 */
 351
 352/* Slow part of check#2. */
 353static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
 
 354{
 355	struct tcp_sock *tp = tcp_sk(sk);
 356	/* Optimize this! */
 357	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
 358	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
 359
 360	while (tp->rcv_ssthresh <= window) {
 361		if (truesize <= skb->len)
 362			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
 363
 364		truesize >>= 1;
 365		window >>= 1;
 366	}
 367	return 0;
 368}
 369
 370static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 371{
 372	struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 
 
 
 373
 374	/* Check #1 */
 375	if (tp->rcv_ssthresh < tp->window_clamp &&
 376	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
 377	    !tcp_under_memory_pressure(sk)) {
 378		int incr;
 379
 380		/* Check #2. Increase window, if skb with such overhead
 381		 * will fit to rcvbuf in future.
 382		 */
 383		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
 384			incr = 2 * tp->advmss;
 385		else
 386			incr = __tcp_grow_window(sk, skb);
 387
 388		if (incr) {
 389			incr = max_t(int, incr, 2 * skb->len);
 390			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
 391					       tp->window_clamp);
 392			inet_csk(sk)->icsk_ack.quick |= 1;
 393		}
 
 
 
 
 
 394	}
 395}
 396
 397/* 3. Tuning rcvbuf, when connection enters established state. */
 398static void tcp_fixup_rcvbuf(struct sock *sk)
 399{
 400	u32 mss = tcp_sk(sk)->advmss;
 401	int rcvmem;
 402
 403	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
 404		 tcp_default_init_rwnd(mss);
 405
 406	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
 407	 * Allow enough cushion so that sender is not limited by our window
 408	 */
 409	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)
 410		rcvmem <<= 2;
 411
 412	if (sk->sk_rcvbuf < rcvmem)
 413		sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
 414}
 415
 416/* 4. Try to fixup all. It is made immediately after connection enters
 417 *    established state.
 418 */
 419void tcp_init_buffer_space(struct sock *sk)
 420{
 421	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
 422	struct tcp_sock *tp = tcp_sk(sk);
 423	int maxwin;
 424
 425	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
 426		tcp_fixup_rcvbuf(sk);
 427	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
 428		tcp_sndbuf_expand(sk);
 429
 430	tp->rcvq_space.space = tp->rcv_wnd;
 431	tcp_mstamp_refresh(tp);
 432	tp->rcvq_space.time = tp->tcp_mstamp;
 433	tp->rcvq_space.seq = tp->copied_seq;
 434
 435	maxwin = tcp_full_space(sk);
 436
 437	if (tp->window_clamp >= maxwin) {
 438		tp->window_clamp = maxwin;
 439
 440		if (tcp_app_win && maxwin > 4 * tp->advmss)
 441			tp->window_clamp = max(maxwin -
 442					       (maxwin >> tcp_app_win),
 443					       4 * tp->advmss);
 444	}
 445
 446	/* Force reservation of one segment. */
 447	if (tcp_app_win &&
 448	    tp->window_clamp > 2 * tp->advmss &&
 449	    tp->window_clamp + tp->advmss > maxwin)
 450		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
 451
 452	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
 453	tp->snd_cwnd_stamp = tcp_jiffies32;
 
 
 454}
 455
 456/* 5. Recalculate window clamp after socket hit its memory bounds. */
 457static void tcp_clamp_window(struct sock *sk)
 458{
 459	struct tcp_sock *tp = tcp_sk(sk);
 460	struct inet_connection_sock *icsk = inet_csk(sk);
 461	struct net *net = sock_net(sk);
 
 462
 463	icsk->icsk_ack.quick = 0;
 
 464
 465	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
 466	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
 467	    !tcp_under_memory_pressure(sk) &&
 468	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
 469		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
 470				    net->ipv4.sysctl_tcp_rmem[2]);
 471	}
 472	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
 473		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
 474}
 475
 476/* Initialize RCV_MSS value.
 477 * RCV_MSS is an our guess about MSS used by the peer.
 478 * We haven't any direct information about the MSS.
 479 * It's better to underestimate the RCV_MSS rather than overestimate.
 480 * Overestimations make us ACKing less frequently than needed.
 481 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
 482 */
 483void tcp_initialize_rcv_mss(struct sock *sk)
 484{
 485	const struct tcp_sock *tp = tcp_sk(sk);
 486	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
 487
 488	hint = min(hint, tp->rcv_wnd / 2);
 489	hint = min(hint, TCP_MSS_DEFAULT);
 490	hint = max(hint, TCP_MIN_MSS);
 491
 492	inet_csk(sk)->icsk_ack.rcv_mss = hint;
 493}
 494EXPORT_SYMBOL(tcp_initialize_rcv_mss);
 495
 496/* Receiver "autotuning" code.
 497 *
 498 * The algorithm for RTT estimation w/o timestamps is based on
 499 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
 500 * <http://public.lanl.gov/radiant/pubs.html#DRS>
 501 *
 502 * More detail on this code can be found at
 503 * <http://staff.psc.edu/jheffner/>,
 504 * though this reference is out of date.  A new paper
 505 * is pending.
 506 */
 507static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
 508{
 509	u32 new_sample = tp->rcv_rtt_est.rtt_us;
 510	long m = sample;
 511
 512	if (new_sample != 0) {
 513		/* If we sample in larger samples in the non-timestamp
 514		 * case, we could grossly overestimate the RTT especially
 515		 * with chatty applications or bulk transfer apps which
 516		 * are stalled on filesystem I/O.
 517		 *
 518		 * Also, since we are only going for a minimum in the
 519		 * non-timestamp case, we do not smooth things out
 520		 * else with timestamps disabled convergence takes too
 521		 * long.
 522		 */
 523		if (!win_dep) {
 524			m -= (new_sample >> 3);
 525			new_sample += m;
 526		} else {
 527			m <<= 3;
 528			if (m < new_sample)
 529				new_sample = m;
 530		}
 531	} else {
 532		/* No previous measure. */
 533		new_sample = m << 3;
 534	}
 535
 536	tp->rcv_rtt_est.rtt_us = new_sample;
 537}
 538
 539static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
 540{
 541	u32 delta_us;
 542
 543	if (tp->rcv_rtt_est.time == 0)
 544		goto new_measure;
 545	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
 546		return;
 547	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
 548	if (!delta_us)
 549		delta_us = 1;
 550	tcp_rcv_rtt_update(tp, delta_us, 1);
 551
 552new_measure:
 553	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
 554	tp->rcv_rtt_est.time = tp->tcp_mstamp;
 555}
 556
 557static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
 558					  const struct sk_buff *skb)
 559{
 560	struct tcp_sock *tp = tcp_sk(sk);
 561
 562	if (tp->rx_opt.rcv_tsecr &&
 563	    (TCP_SKB_CB(skb)->end_seq -
 564	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
 
 
 
 565		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
 566		u32 delta_us;
 567
 568		if (!delta)
 569			delta = 1;
 570		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
 571		tcp_rcv_rtt_update(tp, delta_us, 0);
 
 
 572	}
 573}
 574
 575/*
 576 * This function should be called every time data is copied to user space.
 577 * It calculates the appropriate TCP receive buffer space.
 578 */
 579void tcp_rcv_space_adjust(struct sock *sk)
 580{
 581	struct tcp_sock *tp = tcp_sk(sk);
 582	u32 copied;
 583	int time;
 584
 
 
 585	tcp_mstamp_refresh(tp);
 586	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
 587	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
 588		return;
 589
 590	/* Number of bytes copied to user in last RTT */
 591	copied = tp->copied_seq - tp->rcvq_space.seq;
 592	if (copied <= tp->rcvq_space.space)
 593		goto new_measure;
 594
 595	/* A bit of theory :
 596	 * copied = bytes received in previous RTT, our base window
 597	 * To cope with packet losses, we need a 2x factor
 598	 * To cope with slow start, and sender growing its cwin by 100 %
 599	 * every RTT, we need a 4x factor, because the ACK we are sending
 600	 * now is for the next RTT, not the current one :
 601	 * <prev RTT . ><current RTT .. ><next RTT .... >
 602	 */
 603
 604	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
 605	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
 606		int rcvmem, rcvbuf;
 607		u64 rcvwin, grow;
 608
 609		/* minimal window to cope with packet losses, assuming
 610		 * steady state. Add some cushion because of small variations.
 611		 */
 612		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
 613
 614		/* Accommodate for sender rate increase (eg. slow start) */
 615		grow = rcvwin * (copied - tp->rcvq_space.space);
 616		do_div(grow, tp->rcvq_space.space);
 617		rcvwin += (grow << 1);
 618
 619		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
 620		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
 621			rcvmem += 128;
 622
 623		do_div(rcvwin, tp->advmss);
 624		rcvbuf = min_t(u64, rcvwin * rcvmem,
 625			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
 626		if (rcvbuf > sk->sk_rcvbuf) {
 627			sk->sk_rcvbuf = rcvbuf;
 628
 629			/* Make the window clamp follow along.  */
 630			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
 631		}
 632	}
 633	tp->rcvq_space.space = copied;
 634
 635new_measure:
 636	tp->rcvq_space.seq = tp->copied_seq;
 637	tp->rcvq_space.time = tp->tcp_mstamp;
 638}
 639
 640/* There is something which you must keep in mind when you analyze the
 641 * behavior of the tp->ato delayed ack timeout interval.  When a
 642 * connection starts up, we want to ack as quickly as possible.  The
 643 * problem is that "good" TCP's do slow start at the beginning of data
 644 * transmission.  The means that until we send the first few ACK's the
 645 * sender will sit on his end and only queue most of his data, because
 646 * he can only send snd_cwnd unacked packets at any given time.  For
 647 * each ACK we send, he increments snd_cwnd and transmits more of his
 648 * queue.  -DaveM
 649 */
 650static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
 651{
 652	struct tcp_sock *tp = tcp_sk(sk);
 653	struct inet_connection_sock *icsk = inet_csk(sk);
 654	u32 now;
 655
 656	inet_csk_schedule_ack(sk);
 657
 658	tcp_measure_rcv_mss(sk, skb);
 659
 660	tcp_rcv_rtt_measure(tp);
 661
 662	now = tcp_jiffies32;
 663
 664	if (!icsk->icsk_ack.ato) {
 665		/* The _first_ data packet received, initialize
 666		 * delayed ACK engine.
 667		 */
 668		tcp_incr_quickack(sk);
 669		icsk->icsk_ack.ato = TCP_ATO_MIN;
 670	} else {
 671		int m = now - icsk->icsk_ack.lrcvtime;
 672
 673		if (m <= TCP_ATO_MIN / 2) {
 674			/* The fastest case is the first. */
 675			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
 676		} else if (m < icsk->icsk_ack.ato) {
 677			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
 678			if (icsk->icsk_ack.ato > icsk->icsk_rto)
 679				icsk->icsk_ack.ato = icsk->icsk_rto;
 680		} else if (m > icsk->icsk_rto) {
 681			/* Too long gap. Apparently sender failed to
 682			 * restart window, so that we send ACKs quickly.
 683			 */
 684			tcp_incr_quickack(sk);
 685			sk_mem_reclaim(sk);
 686		}
 687	}
 688	icsk->icsk_ack.lrcvtime = now;
 689
 690	tcp_ecn_check_ce(tp, skb);
 691
 692	if (skb->len >= 128)
 693		tcp_grow_window(sk, skb);
 694}
 695
 696/* Called to compute a smoothed rtt estimate. The data fed to this
 697 * routine either comes from timestamps, or from segments that were
 698 * known _not_ to have been retransmitted [see Karn/Partridge
 699 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
 700 * piece by Van Jacobson.
 701 * NOTE: the next three routines used to be one big routine.
 702 * To save cycles in the RFC 1323 implementation it was better to break
 703 * it up into three procedures. -- erics
 704 */
 705static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
 706{
 707	struct tcp_sock *tp = tcp_sk(sk);
 708	long m = mrtt_us; /* RTT */
 709	u32 srtt = tp->srtt_us;
 710
 711	/*	The following amusing code comes from Jacobson's
 712	 *	article in SIGCOMM '88.  Note that rtt and mdev
 713	 *	are scaled versions of rtt and mean deviation.
 714	 *	This is designed to be as fast as possible
 715	 *	m stands for "measurement".
 716	 *
 717	 *	On a 1990 paper the rto value is changed to:
 718	 *	RTO = rtt + 4 * mdev
 719	 *
 720	 * Funny. This algorithm seems to be very broken.
 721	 * These formulae increase RTO, when it should be decreased, increase
 722	 * too slowly, when it should be increased quickly, decrease too quickly
 723	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
 724	 * does not matter how to _calculate_ it. Seems, it was trap
 725	 * that VJ failed to avoid. 8)
 726	 */
 727	if (srtt != 0) {
 728		m -= (srtt >> 3);	/* m is now error in rtt est */
 729		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
 730		if (m < 0) {
 731			m = -m;		/* m is now abs(error) */
 732			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 733			/* This is similar to one of Eifel findings.
 734			 * Eifel blocks mdev updates when rtt decreases.
 735			 * This solution is a bit different: we use finer gain
 736			 * for mdev in this case (alpha*beta).
 737			 * Like Eifel it also prevents growth of rto,
 738			 * but also it limits too fast rto decreases,
 739			 * happening in pure Eifel.
 740			 */
 741			if (m > 0)
 742				m >>= 3;
 743		} else {
 744			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 745		}
 746		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
 747		if (tp->mdev_us > tp->mdev_max_us) {
 748			tp->mdev_max_us = tp->mdev_us;
 749			if (tp->mdev_max_us > tp->rttvar_us)
 750				tp->rttvar_us = tp->mdev_max_us;
 751		}
 752		if (after(tp->snd_una, tp->rtt_seq)) {
 753			if (tp->mdev_max_us < tp->rttvar_us)
 754				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
 755			tp->rtt_seq = tp->snd_nxt;
 756			tp->mdev_max_us = tcp_rto_min_us(sk);
 
 
 757		}
 758	} else {
 759		/* no previous measure. */
 760		srtt = m << 3;		/* take the measured time to be rtt */
 761		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
 762		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
 763		tp->mdev_max_us = tp->rttvar_us;
 764		tp->rtt_seq = tp->snd_nxt;
 
 
 765	}
 766	tp->srtt_us = max(1U, srtt);
 767}
 768
 769static void tcp_update_pacing_rate(struct sock *sk)
 770{
 771	const struct tcp_sock *tp = tcp_sk(sk);
 772	u64 rate;
 773
 774	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
 775	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
 776
 777	/* current rate is (cwnd * mss) / srtt
 778	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
 779	 * In Congestion Avoidance phase, set it to 120 % the current rate.
 780	 *
 781	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
 782	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
 783	 *	 end of slow start and should slow down.
 784	 */
 785	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
 786		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
 787	else
 788		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
 789
 790	rate *= max(tp->snd_cwnd, tp->packets_out);
 791
 792	if (likely(tp->srtt_us))
 793		do_div(rate, tp->srtt_us);
 794
 795	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
 796	 * without any lock. We want to make sure compiler wont store
 797	 * intermediate values in this location.
 798	 */
 799	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
 800					     sk->sk_max_pacing_rate));
 801}
 802
 803/* Calculate rto without backoff.  This is the second half of Van Jacobson's
 804 * routine referred to above.
 805 */
 806static void tcp_set_rto(struct sock *sk)
 807{
 808	const struct tcp_sock *tp = tcp_sk(sk);
 809	/* Old crap is replaced with new one. 8)
 810	 *
 811	 * More seriously:
 812	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
 813	 *    It cannot be less due to utterly erratic ACK generation made
 814	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
 815	 *    to do with delayed acks, because at cwnd>2 true delack timeout
 816	 *    is invisible. Actually, Linux-2.4 also generates erratic
 817	 *    ACKs in some circumstances.
 818	 */
 819	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
 820
 821	/* 2. Fixups made earlier cannot be right.
 822	 *    If we do not estimate RTO correctly without them,
 823	 *    all the algo is pure shit and should be replaced
 824	 *    with correct one. It is exactly, which we pretend to do.
 825	 */
 826
 827	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
 828	 * guarantees that rto is higher.
 829	 */
 830	tcp_bound_rto(sk);
 831}
 832
 833__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
 834{
 835	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
 836
 837	if (!cwnd)
 838		cwnd = TCP_INIT_CWND;
 839	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
 840}
 841
 842/* Take a notice that peer is sending D-SACKs */
 843static void tcp_dsack_seen(struct tcp_sock *tp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 844{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 845	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
 846	tp->rack.dsack_seen = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 847}
 848
 849/* It's reordering when higher sequence was delivered (i.e. sacked) before
 850 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
 851 * distance is approximated in full-mss packet distance ("reordering").
 852 */
 853static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
 854				      const int ts)
 855{
 856	struct tcp_sock *tp = tcp_sk(sk);
 857	const u32 mss = tp->mss_cache;
 858	u32 fack, metric;
 859
 860	fack = tcp_highest_sack_seq(tp);
 861	if (!before(low_seq, fack))
 862		return;
 863
 864	metric = fack - low_seq;
 865	if ((metric > tp->reordering * mss) && mss) {
 866#if FASTRETRANS_DEBUG > 1
 867		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
 868			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
 869			 tp->reordering,
 870			 0,
 871			 tp->sacked_out,
 872			 tp->undo_marker ? tp->undo_retrans : 0);
 873#endif
 874		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
 875				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
 876	}
 877
 878	tp->rack.reord = 1;
 879	/* This exciting event is worth to be remembered. 8) */
 
 880	NET_INC_STATS(sock_net(sk),
 881		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
 882}
 883
 884/* This must be called before lost_out is incremented */
 
 
 
 
 885static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
 886{
 887	if (!tp->retransmit_skb_hint ||
 888	    before(TCP_SKB_CB(skb)->seq,
 889		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
 
 890		tp->retransmit_skb_hint = skb;
 891}
 892
 893/* Sum the number of packets on the wire we have marked as lost.
 894 * There are two cases we care about here:
 895 * a) Packet hasn't been marked lost (nor retransmitted),
 896 *    and this is the first loss.
 897 * b) Packet has been marked both lost and retransmitted,
 898 *    and this means we think it was lost again.
 899 */
 900static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
 901{
 902	__u8 sacked = TCP_SKB_CB(skb)->sacked;
 903
 904	if (!(sacked & TCPCB_LOST) ||
 905	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
 906		tp->lost += tcp_skb_pcount(skb);
 907}
 908
 909static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
 910{
 911	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 912		tcp_verify_retransmit_hint(tp, skb);
 913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 914		tp->lost_out += tcp_skb_pcount(skb);
 915		tcp_sum_lost(tp, skb);
 916		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 
 917	}
 918}
 919
 920void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
 
 
 921{
 922	tcp_verify_retransmit_hint(tp, skb);
 923
 924	tcp_sum_lost(tp, skb);
 925	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 926		tp->lost_out += tcp_skb_pcount(skb);
 927		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 928	}
 929}
 930
 931/* This procedure tags the retransmission queue when SACKs arrive.
 932 *
 933 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
 934 * Packets in queue with these bits set are counted in variables
 935 * sacked_out, retrans_out and lost_out, correspondingly.
 936 *
 937 * Valid combinations are:
 938 * Tag  InFlight	Description
 939 * 0	1		- orig segment is in flight.
 940 * S	0		- nothing flies, orig reached receiver.
 941 * L	0		- nothing flies, orig lost by net.
 942 * R	2		- both orig and retransmit are in flight.
 943 * L|R	1		- orig is lost, retransmit is in flight.
 944 * S|R  1		- orig reached receiver, retrans is still in flight.
 945 * (L|S|R is logically valid, it could occur when L|R is sacked,
 946 *  but it is equivalent to plain S and code short-curcuits it to S.
 947 *  L|S is logically invalid, it would mean -1 packet in flight 8))
 948 *
 949 * These 6 states form finite state machine, controlled by the following events:
 950 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
 951 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
 952 * 3. Loss detection event of two flavors:
 953 *	A. Scoreboard estimator decided the packet is lost.
 954 *	   A'. Reno "three dupacks" marks head of queue lost.
 955 *	B. SACK arrives sacking SND.NXT at the moment, when the
 956 *	   segment was retransmitted.
 957 * 4. D-SACK added new rule: D-SACK changes any tag to S.
 958 *
 959 * It is pleasant to note, that state diagram turns out to be commutative,
 960 * so that we are allowed not to be bothered by order of our actions,
 961 * when multiple events arrive simultaneously. (see the function below).
 962 *
 963 * Reordering detection.
 964 * --------------------
 965 * Reordering metric is maximal distance, which a packet can be displaced
 966 * in packet stream. With SACKs we can estimate it:
 967 *
 968 * 1. SACK fills old hole and the corresponding segment was not
 969 *    ever retransmitted -> reordering. Alas, we cannot use it
 970 *    when segment was retransmitted.
 971 * 2. The last flaw is solved with D-SACK. D-SACK arrives
 972 *    for retransmitted and already SACKed segment -> reordering..
 973 * Both of these heuristics are not used in Loss state, when we cannot
 974 * account for retransmits accurately.
 975 *
 976 * SACK block validation.
 977 * ----------------------
 978 *
 979 * SACK block range validation checks that the received SACK block fits to
 980 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
 981 * Note that SND.UNA is not included to the range though being valid because
 982 * it means that the receiver is rather inconsistent with itself reporting
 983 * SACK reneging when it should advance SND.UNA. Such SACK block this is
 984 * perfectly valid, however, in light of RFC2018 which explicitly states
 985 * that "SACK block MUST reflect the newest segment.  Even if the newest
 986 * segment is going to be discarded ...", not that it looks very clever
 987 * in case of head skb. Due to potentional receiver driven attacks, we
 988 * choose to avoid immediate execution of a walk in write queue due to
 989 * reneging and defer head skb's loss recovery to standard loss recovery
 990 * procedure that will eventually trigger (nothing forbids us doing this).
 991 *
 992 * Implements also blockage to start_seq wrap-around. Problem lies in the
 993 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
 994 * there's no guarantee that it will be before snd_nxt (n). The problem
 995 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
 996 * wrap (s_w):
 997 *
 998 *         <- outs wnd ->                          <- wrapzone ->
 999 *         u     e      n                         u_w   e_w  s n_w
1000 *         |     |      |                          |     |   |  |
1001 * |<------------+------+----- TCP seqno space --------------+---------->|
1002 * ...-- <2^31 ->|                                           |<--------...
1003 * ...---- >2^31 ------>|                                    |<--------...
1004 *
1005 * Current code wouldn't be vulnerable but it's better still to discard such
1006 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1007 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1008 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1009 * equal to the ideal case (infinite seqno space without wrap caused issues).
1010 *
1011 * With D-SACK the lower bound is extended to cover sequence space below
1012 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1013 * again, D-SACK block must not to go across snd_una (for the same reason as
1014 * for the normal SACK blocks, explained above). But there all simplicity
1015 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1016 * fully below undo_marker they do not affect behavior in anyway and can
1017 * therefore be safely ignored. In rare cases (which are more or less
1018 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1019 * fragmentation and packet reordering past skb's retransmission. To consider
1020 * them correctly, the acceptable range must be extended even more though
1021 * the exact amount is rather hard to quantify. However, tp->max_window can
1022 * be used as an exaggerated estimate.
1023 */
1024static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1025				   u32 start_seq, u32 end_seq)
1026{
1027	/* Too far in future, or reversed (interpretation is ambiguous) */
1028	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1029		return false;
1030
1031	/* Nasty start_seq wrap-around check (see comments above) */
1032	if (!before(start_seq, tp->snd_nxt))
1033		return false;
1034
1035	/* In outstanding window? ...This is valid exit for D-SACKs too.
1036	 * start_seq == snd_una is non-sensical (see comments above)
1037	 */
1038	if (after(start_seq, tp->snd_una))
1039		return true;
1040
1041	if (!is_dsack || !tp->undo_marker)
1042		return false;
1043
1044	/* ...Then it's D-SACK, and must reside below snd_una completely */
1045	if (after(end_seq, tp->snd_una))
1046		return false;
1047
1048	if (!before(start_seq, tp->undo_marker))
1049		return true;
1050
1051	/* Too old */
1052	if (!after(end_seq, tp->undo_marker))
1053		return false;
1054
1055	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1056	 *   start_seq < undo_marker and end_seq >= undo_marker.
1057	 */
1058	return !before(start_seq, end_seq - tp->max_window);
1059}
1060
1061static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1062			    struct tcp_sack_block_wire *sp, int num_sacks,
1063			    u32 prior_snd_una)
1064{
1065	struct tcp_sock *tp = tcp_sk(sk);
1066	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1067	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1068	bool dup_sack = false;
1069
1070	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1071		dup_sack = true;
1072		tcp_dsack_seen(tp);
1073		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1074	} else if (num_sacks > 1) {
1075		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1076		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1077
1078		if (!after(end_seq_0, end_seq_1) &&
1079		    !before(start_seq_0, start_seq_1)) {
1080			dup_sack = true;
1081			tcp_dsack_seen(tp);
1082			NET_INC_STATS(sock_net(sk),
1083					LINUX_MIB_TCPDSACKOFORECV);
1084		}
 
 
 
 
1085	}
1086
 
 
1087	/* D-SACK for already forgotten data... Do dumb counting. */
1088	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1089	    !after(end_seq_0, prior_snd_una) &&
1090	    after(end_seq_0, tp->undo_marker))
1091		tp->undo_retrans--;
1092
1093	return dup_sack;
1094}
1095
1096struct tcp_sacktag_state {
1097	u32	reord;
1098	/* Timestamps for earliest and latest never-retransmitted segment
1099	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1100	 * but congestion control should still get an accurate delay signal.
1101	 */
1102	u64	first_sackt;
1103	u64	last_sackt;
1104	struct rate_sample *rate;
1105	int	flag;
1106	unsigned int mss_now;
1107};
1108
1109/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1110 * the incoming SACK may not exactly match but we can find smaller MSS
1111 * aligned portion of it that matches. Therefore we might need to fragment
1112 * which may fail and creates some hassle (caller must handle error case
1113 * returns).
1114 *
1115 * FIXME: this could be merged to shift decision code
1116 */
1117static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1118				  u32 start_seq, u32 end_seq)
1119{
1120	int err;
1121	bool in_sack;
1122	unsigned int pkt_len;
1123	unsigned int mss;
1124
1125	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1126		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1127
1128	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1129	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1130		mss = tcp_skb_mss(skb);
1131		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1132
1133		if (!in_sack) {
1134			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1135			if (pkt_len < mss)
1136				pkt_len = mss;
1137		} else {
1138			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1139			if (pkt_len < mss)
1140				return -EINVAL;
1141		}
1142
1143		/* Round if necessary so that SACKs cover only full MSSes
1144		 * and/or the remaining small portion (if present)
1145		 */
1146		if (pkt_len > mss) {
1147			unsigned int new_len = (pkt_len / mss) * mss;
1148			if (!in_sack && new_len < pkt_len)
1149				new_len += mss;
1150			pkt_len = new_len;
1151		}
1152
1153		if (pkt_len >= skb->len && !in_sack)
1154			return 0;
1155
1156		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1157				   pkt_len, mss, GFP_ATOMIC);
1158		if (err < 0)
1159			return err;
1160	}
1161
1162	return in_sack;
1163}
1164
1165/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1166static u8 tcp_sacktag_one(struct sock *sk,
1167			  struct tcp_sacktag_state *state, u8 sacked,
1168			  u32 start_seq, u32 end_seq,
1169			  int dup_sack, int pcount,
1170			  u64 xmit_time)
1171{
1172	struct tcp_sock *tp = tcp_sk(sk);
1173
1174	/* Account D-SACK for retransmitted packet. */
1175	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1176		if (tp->undo_marker && tp->undo_retrans > 0 &&
1177		    after(end_seq, tp->undo_marker))
1178			tp->undo_retrans--;
1179		if ((sacked & TCPCB_SACKED_ACKED) &&
1180		    before(start_seq, state->reord))
1181				state->reord = start_seq;
1182	}
1183
1184	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1185	if (!after(end_seq, tp->snd_una))
1186		return sacked;
1187
1188	if (!(sacked & TCPCB_SACKED_ACKED)) {
1189		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1190
1191		if (sacked & TCPCB_SACKED_RETRANS) {
1192			/* If the segment is not tagged as lost,
1193			 * we do not clear RETRANS, believing
1194			 * that retransmission is still in flight.
1195			 */
1196			if (sacked & TCPCB_LOST) {
1197				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1198				tp->lost_out -= pcount;
1199				tp->retrans_out -= pcount;
1200			}
1201		} else {
1202			if (!(sacked & TCPCB_RETRANS)) {
1203				/* New sack for not retransmitted frame,
1204				 * which was in hole. It is reordering.
1205				 */
1206				if (before(start_seq,
1207					   tcp_highest_sack_seq(tp)) &&
1208				    before(start_seq, state->reord))
1209					state->reord = start_seq;
1210
1211				if (!after(end_seq, tp->high_seq))
1212					state->flag |= FLAG_ORIG_SACK_ACKED;
1213				if (state->first_sackt == 0)
1214					state->first_sackt = xmit_time;
1215				state->last_sackt = xmit_time;
1216			}
1217
1218			if (sacked & TCPCB_LOST) {
1219				sacked &= ~TCPCB_LOST;
1220				tp->lost_out -= pcount;
1221			}
1222		}
1223
1224		sacked |= TCPCB_SACKED_ACKED;
1225		state->flag |= FLAG_DATA_SACKED;
1226		tp->sacked_out += pcount;
1227		tp->delivered += pcount;  /* Out-of-order packets delivered */
 
1228
1229		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1230		if (tp->lost_skb_hint &&
1231		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1232			tp->lost_cnt_hint += pcount;
1233	}
1234
1235	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1236	 * frames and clear it. undo_retrans is decreased above, L|R frames
1237	 * are accounted above as well.
1238	 */
1239	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1240		sacked &= ~TCPCB_SACKED_RETRANS;
1241		tp->retrans_out -= pcount;
1242	}
1243
1244	return sacked;
1245}
1246
1247/* Shift newly-SACKed bytes from this skb to the immediately previous
1248 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1249 */
1250static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1251			    struct sk_buff *skb,
1252			    struct tcp_sacktag_state *state,
1253			    unsigned int pcount, int shifted, int mss,
1254			    bool dup_sack)
1255{
1256	struct tcp_sock *tp = tcp_sk(sk);
1257	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1258	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1259
1260	BUG_ON(!pcount);
1261
1262	/* Adjust counters and hints for the newly sacked sequence
1263	 * range but discard the return value since prev is already
1264	 * marked. We must tag the range first because the seq
1265	 * advancement below implicitly advances
1266	 * tcp_highest_sack_seq() when skb is highest_sack.
1267	 */
1268	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1269			start_seq, end_seq, dup_sack, pcount,
1270			skb->skb_mstamp);
1271	tcp_rate_skb_delivered(sk, skb, state->rate);
1272
1273	if (skb == tp->lost_skb_hint)
1274		tp->lost_cnt_hint += pcount;
1275
1276	TCP_SKB_CB(prev)->end_seq += shifted;
1277	TCP_SKB_CB(skb)->seq += shifted;
1278
1279	tcp_skb_pcount_add(prev, pcount);
1280	BUG_ON(tcp_skb_pcount(skb) < pcount);
1281	tcp_skb_pcount_add(skb, -pcount);
1282
1283	/* When we're adding to gso_segs == 1, gso_size will be zero,
1284	 * in theory this shouldn't be necessary but as long as DSACK
1285	 * code can come after this skb later on it's better to keep
1286	 * setting gso_size to something.
1287	 */
1288	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1289		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1290
1291	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1292	if (tcp_skb_pcount(skb) <= 1)
1293		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1294
1295	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1296	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1297
1298	if (skb->len > 0) {
1299		BUG_ON(!tcp_skb_pcount(skb));
1300		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1301		return false;
1302	}
1303
1304	/* Whole SKB was eaten :-) */
1305
1306	if (skb == tp->retransmit_skb_hint)
1307		tp->retransmit_skb_hint = prev;
1308	if (skb == tp->lost_skb_hint) {
1309		tp->lost_skb_hint = prev;
1310		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1311	}
1312
1313	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1314	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1315	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1316		TCP_SKB_CB(prev)->end_seq++;
1317
1318	if (skb == tcp_highest_sack(sk))
1319		tcp_advance_highest_sack(sk, skb);
1320
1321	tcp_skb_collapse_tstamp(prev, skb);
1322	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1323		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1324
1325	tcp_rtx_queue_unlink_and_free(skb, sk);
1326
1327	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1328
1329	return true;
1330}
1331
1332/* I wish gso_size would have a bit more sane initialization than
1333 * something-or-zero which complicates things
1334 */
1335static int tcp_skb_seglen(const struct sk_buff *skb)
1336{
1337	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1338}
1339
1340/* Shifting pages past head area doesn't work */
1341static int skb_can_shift(const struct sk_buff *skb)
1342{
1343	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1344}
1345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1346/* Try collapsing SACK blocks spanning across multiple skbs to a single
1347 * skb.
1348 */
1349static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1350					  struct tcp_sacktag_state *state,
1351					  u32 start_seq, u32 end_seq,
1352					  bool dup_sack)
1353{
1354	struct tcp_sock *tp = tcp_sk(sk);
1355	struct sk_buff *prev;
1356	int mss;
1357	int pcount = 0;
1358	int len;
1359	int in_sack;
1360
1361	/* Normally R but no L won't result in plain S */
1362	if (!dup_sack &&
1363	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1364		goto fallback;
1365	if (!skb_can_shift(skb))
1366		goto fallback;
1367	/* This frame is about to be dropped (was ACKed). */
1368	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1369		goto fallback;
1370
1371	/* Can only happen with delayed DSACK + discard craziness */
1372	prev = skb_rb_prev(skb);
1373	if (!prev)
1374		goto fallback;
1375
1376	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1377		goto fallback;
1378
1379	if (!tcp_skb_can_collapse_to(prev))
1380		goto fallback;
1381
1382	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1383		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1384
1385	if (in_sack) {
1386		len = skb->len;
1387		pcount = tcp_skb_pcount(skb);
1388		mss = tcp_skb_seglen(skb);
1389
1390		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1391		 * drop this restriction as unnecessary
1392		 */
1393		if (mss != tcp_skb_seglen(prev))
1394			goto fallback;
1395	} else {
1396		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1397			goto noop;
1398		/* CHECKME: This is non-MSS split case only?, this will
1399		 * cause skipped skbs due to advancing loop btw, original
1400		 * has that feature too
1401		 */
1402		if (tcp_skb_pcount(skb) <= 1)
1403			goto noop;
1404
1405		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1406		if (!in_sack) {
1407			/* TODO: head merge to next could be attempted here
1408			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1409			 * though it might not be worth of the additional hassle
1410			 *
1411			 * ...we can probably just fallback to what was done
1412			 * previously. We could try merging non-SACKed ones
1413			 * as well but it probably isn't going to buy off
1414			 * because later SACKs might again split them, and
1415			 * it would make skb timestamp tracking considerably
1416			 * harder problem.
1417			 */
1418			goto fallback;
1419		}
1420
1421		len = end_seq - TCP_SKB_CB(skb)->seq;
1422		BUG_ON(len < 0);
1423		BUG_ON(len > skb->len);
1424
1425		/* MSS boundaries should be honoured or else pcount will
1426		 * severely break even though it makes things bit trickier.
1427		 * Optimize common case to avoid most of the divides
1428		 */
1429		mss = tcp_skb_mss(skb);
1430
1431		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1432		 * drop this restriction as unnecessary
1433		 */
1434		if (mss != tcp_skb_seglen(prev))
1435			goto fallback;
1436
1437		if (len == mss) {
1438			pcount = 1;
1439		} else if (len < mss) {
1440			goto noop;
1441		} else {
1442			pcount = len / mss;
1443			len = pcount * mss;
1444		}
1445	}
1446
1447	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1448	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1449		goto fallback;
1450
1451	if (!skb_shift(prev, skb, len))
1452		goto fallback;
1453	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1454		goto out;
1455
1456	/* Hole filled allows collapsing with the next as well, this is very
1457	 * useful when hole on every nth skb pattern happens
1458	 */
1459	skb = skb_rb_next(prev);
1460	if (!skb)
1461		goto out;
1462
1463	if (!skb_can_shift(skb) ||
1464	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1465	    (mss != tcp_skb_seglen(skb)))
1466		goto out;
1467
 
 
1468	len = skb->len;
1469	if (skb_shift(prev, skb, len)) {
1470		pcount += tcp_skb_pcount(skb);
1471		tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1472				len, mss, 0);
1473	}
1474
1475out:
1476	return prev;
1477
1478noop:
1479	return skb;
1480
1481fallback:
1482	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1483	return NULL;
1484}
1485
1486static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1487					struct tcp_sack_block *next_dup,
1488					struct tcp_sacktag_state *state,
1489					u32 start_seq, u32 end_seq,
1490					bool dup_sack_in)
1491{
1492	struct tcp_sock *tp = tcp_sk(sk);
1493	struct sk_buff *tmp;
1494
1495	skb_rbtree_walk_from(skb) {
1496		int in_sack = 0;
1497		bool dup_sack = dup_sack_in;
1498
1499		/* queue is in-order => we can short-circuit the walk early */
1500		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1501			break;
1502
1503		if (next_dup  &&
1504		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1505			in_sack = tcp_match_skb_to_sack(sk, skb,
1506							next_dup->start_seq,
1507							next_dup->end_seq);
1508			if (in_sack > 0)
1509				dup_sack = true;
1510		}
1511
1512		/* skb reference here is a bit tricky to get right, since
1513		 * shifting can eat and free both this skb and the next,
1514		 * so not even _safe variant of the loop is enough.
1515		 */
1516		if (in_sack <= 0) {
1517			tmp = tcp_shift_skb_data(sk, skb, state,
1518						 start_seq, end_seq, dup_sack);
1519			if (tmp) {
1520				if (tmp != skb) {
1521					skb = tmp;
1522					continue;
1523				}
1524
1525				in_sack = 0;
1526			} else {
1527				in_sack = tcp_match_skb_to_sack(sk, skb,
1528								start_seq,
1529								end_seq);
1530			}
1531		}
1532
1533		if (unlikely(in_sack < 0))
1534			break;
1535
1536		if (in_sack) {
1537			TCP_SKB_CB(skb)->sacked =
1538				tcp_sacktag_one(sk,
1539						state,
1540						TCP_SKB_CB(skb)->sacked,
1541						TCP_SKB_CB(skb)->seq,
1542						TCP_SKB_CB(skb)->end_seq,
1543						dup_sack,
1544						tcp_skb_pcount(skb),
1545						skb->skb_mstamp);
1546			tcp_rate_skb_delivered(sk, skb, state->rate);
1547			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1548				list_del_init(&skb->tcp_tsorted_anchor);
1549
1550			if (!before(TCP_SKB_CB(skb)->seq,
1551				    tcp_highest_sack_seq(tp)))
1552				tcp_advance_highest_sack(sk, skb);
1553		}
1554	}
1555	return skb;
1556}
1557
1558static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1559					   struct tcp_sacktag_state *state,
1560					   u32 seq)
1561{
1562	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1563	struct sk_buff *skb;
1564
1565	while (*p) {
1566		parent = *p;
1567		skb = rb_to_skb(parent);
1568		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1569			p = &parent->rb_left;
1570			continue;
1571		}
1572		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1573			p = &parent->rb_right;
1574			continue;
1575		}
1576		return skb;
1577	}
1578	return NULL;
1579}
1580
1581static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1582					struct tcp_sacktag_state *state,
1583					u32 skip_to_seq)
1584{
1585	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1586		return skb;
1587
1588	return tcp_sacktag_bsearch(sk, state, skip_to_seq);
1589}
1590
1591static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1592						struct sock *sk,
1593						struct tcp_sack_block *next_dup,
1594						struct tcp_sacktag_state *state,
1595						u32 skip_to_seq)
1596{
1597	if (!next_dup)
1598		return skb;
1599
1600	if (before(next_dup->start_seq, skip_to_seq)) {
1601		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1602		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1603				       next_dup->start_seq, next_dup->end_seq,
1604				       1);
1605	}
1606
1607	return skb;
1608}
1609
1610static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1611{
1612	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1613}
1614
1615static int
1616tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1617			u32 prior_snd_una, struct tcp_sacktag_state *state)
1618{
1619	struct tcp_sock *tp = tcp_sk(sk);
1620	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1621				    TCP_SKB_CB(ack_skb)->sacked);
1622	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1623	struct tcp_sack_block sp[TCP_NUM_SACKS];
1624	struct tcp_sack_block *cache;
1625	struct sk_buff *skb;
1626	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1627	int used_sacks;
1628	bool found_dup_sack = false;
1629	int i, j;
1630	int first_sack_index;
1631
1632	state->flag = 0;
1633	state->reord = tp->snd_nxt;
1634
1635	if (!tp->sacked_out)
1636		tcp_highest_sack_reset(sk);
1637
1638	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1639					 num_sacks, prior_snd_una);
1640	if (found_dup_sack) {
1641		state->flag |= FLAG_DSACKING_ACK;
1642		tp->delivered++; /* A spurious retransmission is delivered */
1643	}
1644
1645	/* Eliminate too old ACKs, but take into
1646	 * account more or less fresh ones, they can
1647	 * contain valid SACK info.
1648	 */
1649	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1650		return 0;
1651
1652	if (!tp->packets_out)
1653		goto out;
1654
1655	used_sacks = 0;
1656	first_sack_index = 0;
1657	for (i = 0; i < num_sacks; i++) {
1658		bool dup_sack = !i && found_dup_sack;
1659
1660		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1661		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1662
1663		if (!tcp_is_sackblock_valid(tp, dup_sack,
1664					    sp[used_sacks].start_seq,
1665					    sp[used_sacks].end_seq)) {
1666			int mib_idx;
1667
1668			if (dup_sack) {
1669				if (!tp->undo_marker)
1670					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1671				else
1672					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1673			} else {
1674				/* Don't count olds caused by ACK reordering */
1675				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1676				    !after(sp[used_sacks].end_seq, tp->snd_una))
1677					continue;
1678				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1679			}
1680
1681			NET_INC_STATS(sock_net(sk), mib_idx);
1682			if (i == 0)
1683				first_sack_index = -1;
1684			continue;
1685		}
1686
1687		/* Ignore very old stuff early */
1688		if (!after(sp[used_sacks].end_seq, prior_snd_una))
 
 
1689			continue;
 
1690
1691		used_sacks++;
1692	}
1693
1694	/* order SACK blocks to allow in order walk of the retrans queue */
1695	for (i = used_sacks - 1; i > 0; i--) {
1696		for (j = 0; j < i; j++) {
1697			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1698				swap(sp[j], sp[j + 1]);
1699
1700				/* Track where the first SACK block goes to */
1701				if (j == first_sack_index)
1702					first_sack_index = j + 1;
1703			}
1704		}
1705	}
1706
1707	state->mss_now = tcp_current_mss(sk);
1708	skb = NULL;
1709	i = 0;
1710
1711	if (!tp->sacked_out) {
1712		/* It's already past, so skip checking against it */
1713		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1714	} else {
1715		cache = tp->recv_sack_cache;
1716		/* Skip empty blocks in at head of the cache */
1717		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1718		       !cache->end_seq)
1719			cache++;
1720	}
1721
1722	while (i < used_sacks) {
1723		u32 start_seq = sp[i].start_seq;
1724		u32 end_seq = sp[i].end_seq;
1725		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1726		struct tcp_sack_block *next_dup = NULL;
1727
1728		if (found_dup_sack && ((i + 1) == first_sack_index))
1729			next_dup = &sp[i + 1];
1730
1731		/* Skip too early cached blocks */
1732		while (tcp_sack_cache_ok(tp, cache) &&
1733		       !before(start_seq, cache->end_seq))
1734			cache++;
1735
1736		/* Can skip some work by looking recv_sack_cache? */
1737		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1738		    after(end_seq, cache->start_seq)) {
1739
1740			/* Head todo? */
1741			if (before(start_seq, cache->start_seq)) {
1742				skb = tcp_sacktag_skip(skb, sk, state,
1743						       start_seq);
1744				skb = tcp_sacktag_walk(skb, sk, next_dup,
1745						       state,
1746						       start_seq,
1747						       cache->start_seq,
1748						       dup_sack);
1749			}
1750
1751			/* Rest of the block already fully processed? */
1752			if (!after(end_seq, cache->end_seq))
1753				goto advance_sp;
1754
1755			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1756						       state,
1757						       cache->end_seq);
1758
1759			/* ...tail remains todo... */
1760			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1761				/* ...but better entrypoint exists! */
1762				skb = tcp_highest_sack(sk);
1763				if (!skb)
1764					break;
1765				cache++;
1766				goto walk;
1767			}
1768
1769			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1770			/* Check overlap against next cached too (past this one already) */
1771			cache++;
1772			continue;
1773		}
1774
1775		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1776			skb = tcp_highest_sack(sk);
1777			if (!skb)
1778				break;
1779		}
1780		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1781
1782walk:
1783		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1784				       start_seq, end_seq, dup_sack);
1785
1786advance_sp:
1787		i++;
1788	}
1789
1790	/* Clear the head of the cache sack blocks so we can skip it next time */
1791	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1792		tp->recv_sack_cache[i].start_seq = 0;
1793		tp->recv_sack_cache[i].end_seq = 0;
1794	}
1795	for (j = 0; j < used_sacks; j++)
1796		tp->recv_sack_cache[i++] = sp[j];
1797
1798	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1799		tcp_check_sack_reordering(sk, state->reord, 0);
1800
1801	tcp_verify_left_out(tp);
1802out:
1803
1804#if FASTRETRANS_DEBUG > 0
1805	WARN_ON((int)tp->sacked_out < 0);
1806	WARN_ON((int)tp->lost_out < 0);
1807	WARN_ON((int)tp->retrans_out < 0);
1808	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1809#endif
1810	return state->flag;
1811}
1812
1813/* Limits sacked_out so that sum with lost_out isn't ever larger than
1814 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1815 */
1816static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1817{
1818	u32 holes;
1819
1820	holes = max(tp->lost_out, 1U);
1821	holes = min(holes, tp->packets_out);
1822
1823	if ((tp->sacked_out + holes) > tp->packets_out) {
1824		tp->sacked_out = tp->packets_out - holes;
1825		return true;
1826	}
1827	return false;
1828}
1829
1830/* If we receive more dupacks than we expected counting segments
1831 * in assumption of absent reordering, interpret this as reordering.
1832 * The only another reason could be bug in receiver TCP.
1833 */
1834static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1835{
1836	struct tcp_sock *tp = tcp_sk(sk);
1837
1838	if (!tcp_limit_reno_sacked(tp))
1839		return;
1840
1841	tp->reordering = min_t(u32, tp->packets_out + addend,
1842			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
 
1843	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1844}
1845
1846/* Emulate SACKs for SACKless connection: account for a new dupack. */
1847
1848static void tcp_add_reno_sack(struct sock *sk)
1849{
1850	struct tcp_sock *tp = tcp_sk(sk);
1851	u32 prior_sacked = tp->sacked_out;
 
 
1852
1853	tp->sacked_out++;
1854	tcp_check_reno_reordering(sk, 0);
1855	if (tp->sacked_out > prior_sacked)
1856		tp->delivered++; /* Some out-of-order packet is delivered */
1857	tcp_verify_left_out(tp);
 
 
1858}
1859
1860/* Account for ACK, ACKing some data in Reno Recovery phase. */
1861
1862static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1863{
1864	struct tcp_sock *tp = tcp_sk(sk);
1865
1866	if (acked > 0) {
1867		/* One ACK acked hole. The rest eat duplicate ACKs. */
1868		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
 
1869		if (acked - 1 >= tp->sacked_out)
1870			tp->sacked_out = 0;
1871		else
1872			tp->sacked_out -= acked - 1;
1873	}
1874	tcp_check_reno_reordering(sk, acked);
1875	tcp_verify_left_out(tp);
1876}
1877
1878static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1879{
1880	tp->sacked_out = 0;
1881}
1882
1883void tcp_clear_retrans(struct tcp_sock *tp)
1884{
1885	tp->retrans_out = 0;
1886	tp->lost_out = 0;
1887	tp->undo_marker = 0;
1888	tp->undo_retrans = -1;
1889	tp->sacked_out = 0;
1890}
1891
1892static inline void tcp_init_undo(struct tcp_sock *tp)
1893{
1894	tp->undo_marker = tp->snd_una;
1895	/* Retransmission still in flight may cause DSACKs later. */
1896	tp->undo_retrans = tp->retrans_out ? : -1;
1897}
1898
1899/* Enter Loss state. If we detect SACK reneging, forget all SACK information
 
 
 
 
 
 
1900 * and reset tags completely, otherwise preserve SACKs. If receiver
1901 * dropped its ofo queue, we will know this due to reneging detection.
1902 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1903void tcp_enter_loss(struct sock *sk)
1904{
1905	const struct inet_connection_sock *icsk = inet_csk(sk);
1906	struct tcp_sock *tp = tcp_sk(sk);
1907	struct net *net = sock_net(sk);
1908	struct sk_buff *skb;
1909	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1910	bool is_reneg;			/* is receiver reneging on SACKs? */
1911	bool mark_lost;
 
1912
1913	/* Reduce ssthresh if it has not yet been made inside this window. */
1914	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1915	    !after(tp->high_seq, tp->snd_una) ||
1916	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1917		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1918		tp->prior_cwnd = tp->snd_cwnd;
1919		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1920		tcp_ca_event(sk, CA_EVENT_LOSS);
1921		tcp_init_undo(tp);
1922	}
1923	tp->snd_cwnd	   = 1;
1924	tp->snd_cwnd_cnt   = 0;
1925	tp->snd_cwnd_stamp = tcp_jiffies32;
1926
1927	tp->retrans_out = 0;
1928	tp->lost_out = 0;
1929
1930	if (tcp_is_reno(tp))
1931		tcp_reset_reno_sack(tp);
1932
1933	skb = tcp_rtx_queue_head(sk);
1934	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1935	if (is_reneg) {
1936		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1937		tp->sacked_out = 0;
1938		/* Mark SACK reneging until we recover from this loss event. */
1939		tp->is_sack_reneg = 1;
1940	}
1941	tcp_clear_all_retrans_hints(tp);
1942
1943	skb_rbtree_walk_from(skb) {
1944		mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1945			     is_reneg);
1946		if (mark_lost)
1947			tcp_sum_lost(tp, skb);
1948		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1949		if (mark_lost) {
1950			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1951			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1952			tp->lost_out += tcp_skb_pcount(skb);
1953		}
1954	}
1955	tcp_verify_left_out(tp);
1956
1957	/* Timeout in disordered state after receiving substantial DUPACKs
1958	 * suggests that the degree of reordering is over-estimated.
1959	 */
 
1960	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1961	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1962		tp->reordering = min_t(unsigned int, tp->reordering,
1963				       net->ipv4.sysctl_tcp_reordering);
 
1964	tcp_set_ca_state(sk, TCP_CA_Loss);
1965	tp->high_seq = tp->snd_nxt;
1966	tcp_ecn_queue_cwr(tp);
1967
1968	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1969	 * loss recovery is underway except recurring timeout(s) on
1970	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1971	 */
1972	tp->frto = net->ipv4.sysctl_tcp_frto &&
1973		   (new_recovery || icsk->icsk_retransmits) &&
1974		   !inet_csk(sk)->icsk_mtup.probe_size;
1975}
1976
1977/* If ACK arrived pointing to a remembered SACK, it means that our
1978 * remembered SACKs do not reflect real state of receiver i.e.
1979 * receiver _host_ is heavily congested (or buggy).
1980 *
1981 * To avoid big spurious retransmission bursts due to transient SACK
1982 * scoreboard oddities that look like reneging, we give the receiver a
1983 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1984 * restore sanity to the SACK scoreboard. If the apparent reneging
1985 * persists until this RTO then we'll clear the SACK scoreboard.
1986 */
1987static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1988{
1989	if (flag & FLAG_SACK_RENEGING) {
 
1990		struct tcp_sock *tp = tcp_sk(sk);
1991		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
1992					  msecs_to_jiffies(10));
1993
1994		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1995					  delay, TCP_RTO_MAX);
1996		return true;
1997	}
1998	return false;
1999}
2000
2001/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2002 * counter when SACK is enabled (without SACK, sacked_out is used for
2003 * that purpose).
2004 *
2005 * With reordering, holes may still be in flight, so RFC3517 recovery
2006 * uses pure sacked_out (total number of SACKed segments) even though
2007 * it violates the RFC that uses duplicate ACKs, often these are equal
2008 * but when e.g. out-of-window ACKs or packet duplication occurs,
2009 * they differ. Since neither occurs due to loss, TCP should really
2010 * ignore them.
2011 */
2012static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2013{
2014	return tp->sacked_out + 1;
2015}
2016
2017/* Linux NewReno/SACK/ECN state machine.
2018 * --------------------------------------
2019 *
2020 * "Open"	Normal state, no dubious events, fast path.
2021 * "Disorder"   In all the respects it is "Open",
2022 *		but requires a bit more attention. It is entered when
2023 *		we see some SACKs or dupacks. It is split of "Open"
2024 *		mainly to move some processing from fast path to slow one.
2025 * "CWR"	CWND was reduced due to some Congestion Notification event.
2026 *		It can be ECN, ICMP source quench, local device congestion.
2027 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2028 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2029 *
2030 * tcp_fastretrans_alert() is entered:
2031 * - each incoming ACK, if state is not "Open"
2032 * - when arrived ACK is unusual, namely:
2033 *	* SACK
2034 *	* Duplicate ACK.
2035 *	* ECN ECE.
2036 *
2037 * Counting packets in flight is pretty simple.
2038 *
2039 *	in_flight = packets_out - left_out + retrans_out
2040 *
2041 *	packets_out is SND.NXT-SND.UNA counted in packets.
2042 *
2043 *	retrans_out is number of retransmitted segments.
2044 *
2045 *	left_out is number of segments left network, but not ACKed yet.
2046 *
2047 *		left_out = sacked_out + lost_out
2048 *
2049 *     sacked_out: Packets, which arrived to receiver out of order
2050 *		   and hence not ACKed. With SACKs this number is simply
2051 *		   amount of SACKed data. Even without SACKs
2052 *		   it is easy to give pretty reliable estimate of this number,
2053 *		   counting duplicate ACKs.
2054 *
2055 *       lost_out: Packets lost by network. TCP has no explicit
2056 *		   "loss notification" feedback from network (for now).
2057 *		   It means that this number can be only _guessed_.
2058 *		   Actually, it is the heuristics to predict lossage that
2059 *		   distinguishes different algorithms.
2060 *
2061 *	F.e. after RTO, when all the queue is considered as lost,
2062 *	lost_out = packets_out and in_flight = retrans_out.
2063 *
2064 *		Essentially, we have now a few algorithms detecting
2065 *		lost packets.
2066 *
2067 *		If the receiver supports SACK:
2068 *
2069 *		RFC6675/3517: It is the conventional algorithm. A packet is
2070 *		considered lost if the number of higher sequence packets
2071 *		SACKed is greater than or equal the DUPACK thoreshold
2072 *		(reordering). This is implemented in tcp_mark_head_lost and
2073 *		tcp_update_scoreboard.
2074 *
2075 *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2076 *		(2017-) that checks timing instead of counting DUPACKs.
2077 *		Essentially a packet is considered lost if it's not S/ACKed
2078 *		after RTT + reordering_window, where both metrics are
2079 *		dynamically measured and adjusted. This is implemented in
2080 *		tcp_rack_mark_lost.
2081 *
2082 *		If the receiver does not support SACK:
2083 *
2084 *		NewReno (RFC6582): in Recovery we assume that one segment
2085 *		is lost (classic Reno). While we are in Recovery and
2086 *		a partial ACK arrives, we assume that one more packet
2087 *		is lost (NewReno). This heuristics are the same in NewReno
2088 *		and SACK.
2089 *
2090 * Really tricky (and requiring careful tuning) part of algorithm
2091 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2092 * The first determines the moment _when_ we should reduce CWND and,
2093 * hence, slow down forward transmission. In fact, it determines the moment
2094 * when we decide that hole is caused by loss, rather than by a reorder.
2095 *
2096 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2097 * holes, caused by lost packets.
2098 *
2099 * And the most logically complicated part of algorithm is undo
2100 * heuristics. We detect false retransmits due to both too early
2101 * fast retransmit (reordering) and underestimated RTO, analyzing
2102 * timestamps and D-SACKs. When we detect that some segments were
2103 * retransmitted by mistake and CWND reduction was wrong, we undo
2104 * window reduction and abort recovery phase. This logic is hidden
2105 * inside several functions named tcp_try_undo_<something>.
2106 */
2107
2108/* This function decides, when we should leave Disordered state
2109 * and enter Recovery phase, reducing congestion window.
2110 *
2111 * Main question: may we further continue forward transmission
2112 * with the same cwnd?
2113 */
2114static bool tcp_time_to_recover(struct sock *sk, int flag)
2115{
2116	struct tcp_sock *tp = tcp_sk(sk);
2117
2118	/* Trick#1: The loss is proven. */
2119	if (tp->lost_out)
2120		return true;
2121
2122	/* Not-A-Trick#2 : Classic rule... */
2123	if (tcp_dupack_heuristics(tp) > tp->reordering)
2124		return true;
2125
2126	return false;
2127}
2128
2129/* Detect loss in event "A" above by marking head of queue up as lost.
2130 * For non-SACK(Reno) senders, the first "packets" number of segments
2131 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2132 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2133 * the maximum SACKed segments to pass before reaching this limit.
2134 */
2135static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2136{
2137	struct tcp_sock *tp = tcp_sk(sk);
2138	struct sk_buff *skb;
2139	int cnt, oldcnt, lost;
2140	unsigned int mss;
2141	/* Use SACK to deduce losses of new sequences sent during recovery */
2142	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2143
2144	WARN_ON(packets > tp->packets_out);
2145	skb = tp->lost_skb_hint;
2146	if (skb) {
2147		/* Head already handled? */
2148		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2149			return;
2150		cnt = tp->lost_cnt_hint;
2151	} else {
2152		skb = tcp_rtx_queue_head(sk);
2153		cnt = 0;
2154	}
2155
2156	skb_rbtree_walk_from(skb) {
2157		/* TODO: do this better */
2158		/* this is not the most efficient way to do this... */
2159		tp->lost_skb_hint = skb;
2160		tp->lost_cnt_hint = cnt;
2161
2162		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2163			break;
2164
2165		oldcnt = cnt;
2166		if (tcp_is_reno(tp) ||
2167		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2168			cnt += tcp_skb_pcount(skb);
2169
2170		if (cnt > packets) {
2171			if (tcp_is_sack(tp) ||
2172			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2173			    (oldcnt >= packets))
2174				break;
2175
2176			mss = tcp_skb_mss(skb);
2177			/* If needed, chop off the prefix to mark as lost. */
2178			lost = (packets - oldcnt) * mss;
2179			if (lost < skb->len &&
2180			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2181					 lost, mss, GFP_ATOMIC) < 0)
2182				break;
2183			cnt = packets;
2184		}
2185
2186		tcp_skb_mark_lost(tp, skb);
2187
2188		if (mark_head)
2189			break;
2190	}
2191	tcp_verify_left_out(tp);
2192}
2193
2194/* Account newly detected lost packet(s) */
2195
2196static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2197{
2198	struct tcp_sock *tp = tcp_sk(sk);
2199
2200	if (tcp_is_reno(tp)) {
2201		tcp_mark_head_lost(sk, 1, 1);
2202	} else {
2203		int sacked_upto = tp->sacked_out - tp->reordering;
2204		if (sacked_upto >= 0)
2205			tcp_mark_head_lost(sk, sacked_upto, 0);
2206		else if (fast_rexmit)
2207			tcp_mark_head_lost(sk, 1, 1);
2208	}
2209}
2210
2211static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2212{
2213	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2214	       before(tp->rx_opt.rcv_tsecr, when);
2215}
2216
2217/* skb is spurious retransmitted if the returned timestamp echo
2218 * reply is prior to the skb transmission time
2219 */
2220static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2221				     const struct sk_buff *skb)
2222{
2223	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2224	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2225}
2226
2227/* Nothing was retransmitted or returned timestamp is less
2228 * than timestamp of the first retransmission.
2229 */
2230static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2231{
2232	return !tp->retrans_stamp ||
2233	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2234}
2235
2236/* Undo procedures. */
2237
2238/* We can clear retrans_stamp when there are no retransmissions in the
2239 * window. It would seem that it is trivially available for us in
2240 * tp->retrans_out, however, that kind of assumptions doesn't consider
2241 * what will happen if errors occur when sending retransmission for the
2242 * second time. ...It could the that such segment has only
2243 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2244 * the head skb is enough except for some reneging corner cases that
2245 * are not worth the effort.
2246 *
2247 * Main reason for all this complexity is the fact that connection dying
2248 * time now depends on the validity of the retrans_stamp, in particular,
2249 * that successive retransmissions of a segment must not advance
2250 * retrans_stamp under any conditions.
2251 */
2252static bool tcp_any_retrans_done(const struct sock *sk)
2253{
2254	const struct tcp_sock *tp = tcp_sk(sk);
2255	struct sk_buff *skb;
2256
2257	if (tp->retrans_out)
2258		return true;
2259
2260	skb = tcp_rtx_queue_head(sk);
2261	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2262		return true;
2263
2264	return false;
2265}
2266
2267static void DBGUNDO(struct sock *sk, const char *msg)
2268{
2269#if FASTRETRANS_DEBUG > 1
2270	struct tcp_sock *tp = tcp_sk(sk);
2271	struct inet_sock *inet = inet_sk(sk);
2272
2273	if (sk->sk_family == AF_INET) {
2274		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2275			 msg,
2276			 &inet->inet_daddr, ntohs(inet->inet_dport),
2277			 tp->snd_cwnd, tcp_left_out(tp),
2278			 tp->snd_ssthresh, tp->prior_ssthresh,
2279			 tp->packets_out);
2280	}
2281#if IS_ENABLED(CONFIG_IPV6)
2282	else if (sk->sk_family == AF_INET6) {
2283		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2284			 msg,
2285			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2286			 tp->snd_cwnd, tcp_left_out(tp),
2287			 tp->snd_ssthresh, tp->prior_ssthresh,
2288			 tp->packets_out);
2289	}
2290#endif
2291#endif
2292}
2293
2294static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2295{
2296	struct tcp_sock *tp = tcp_sk(sk);
2297
2298	if (unmark_loss) {
2299		struct sk_buff *skb;
2300
2301		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2302			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2303		}
2304		tp->lost_out = 0;
2305		tcp_clear_all_retrans_hints(tp);
2306	}
2307
2308	if (tp->prior_ssthresh) {
2309		const struct inet_connection_sock *icsk = inet_csk(sk);
2310
2311		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2312
2313		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2314			tp->snd_ssthresh = tp->prior_ssthresh;
2315			tcp_ecn_withdraw_cwr(tp);
2316		}
2317	}
2318	tp->snd_cwnd_stamp = tcp_jiffies32;
2319	tp->undo_marker = 0;
2320	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2321}
2322
2323static inline bool tcp_may_undo(const struct tcp_sock *tp)
2324{
2325	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2326}
2327
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2328/* People celebrate: "We love our President!" */
2329static bool tcp_try_undo_recovery(struct sock *sk)
2330{
2331	struct tcp_sock *tp = tcp_sk(sk);
2332
2333	if (tcp_may_undo(tp)) {
2334		int mib_idx;
2335
2336		/* Happy end! We did not retransmit anything
2337		 * or our original transmission succeeded.
2338		 */
2339		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2340		tcp_undo_cwnd_reduction(sk, false);
2341		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2342			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2343		else
2344			mib_idx = LINUX_MIB_TCPFULLUNDO;
2345
2346		NET_INC_STATS(sock_net(sk), mib_idx);
2347	} else if (tp->rack.reo_wnd_persist) {
2348		tp->rack.reo_wnd_persist--;
2349	}
2350	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2351		/* Hold old state until something *above* high_seq
2352		 * is ACKed. For Reno it is MUST to prevent false
2353		 * fast retransmits (RFC2582). SACK TCP is safe. */
2354		if (!tcp_any_retrans_done(sk))
2355			tp->retrans_stamp = 0;
2356		return true;
2357	}
2358	tcp_set_ca_state(sk, TCP_CA_Open);
2359	tp->is_sack_reneg = 0;
2360	return false;
2361}
2362
2363/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2364static bool tcp_try_undo_dsack(struct sock *sk)
2365{
2366	struct tcp_sock *tp = tcp_sk(sk);
2367
2368	if (tp->undo_marker && !tp->undo_retrans) {
2369		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2370					       tp->rack.reo_wnd_persist + 1);
2371		DBGUNDO(sk, "D-SACK");
2372		tcp_undo_cwnd_reduction(sk, false);
2373		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2374		return true;
2375	}
2376	return false;
2377}
2378
2379/* Undo during loss recovery after partial ACK or using F-RTO. */
2380static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2381{
2382	struct tcp_sock *tp = tcp_sk(sk);
2383
2384	if (frto_undo || tcp_may_undo(tp)) {
2385		tcp_undo_cwnd_reduction(sk, true);
2386
2387		DBGUNDO(sk, "partial loss");
2388		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2389		if (frto_undo)
2390			NET_INC_STATS(sock_net(sk),
2391					LINUX_MIB_TCPSPURIOUSRTOS);
2392		inet_csk(sk)->icsk_retransmits = 0;
 
 
2393		if (frto_undo || tcp_is_sack(tp)) {
2394			tcp_set_ca_state(sk, TCP_CA_Open);
2395			tp->is_sack_reneg = 0;
2396		}
2397		return true;
2398	}
2399	return false;
2400}
2401
2402/* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2403 * It computes the number of packets to send (sndcnt) based on packets newly
2404 * delivered:
2405 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2406 *	cwnd reductions across a full RTT.
2407 *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2408 *      But when the retransmits are acked without further losses, PRR
2409 *      slow starts cwnd up to ssthresh to speed up the recovery.
2410 */
2411static void tcp_init_cwnd_reduction(struct sock *sk)
2412{
2413	struct tcp_sock *tp = tcp_sk(sk);
2414
2415	tp->high_seq = tp->snd_nxt;
2416	tp->tlp_high_seq = 0;
2417	tp->snd_cwnd_cnt = 0;
2418	tp->prior_cwnd = tp->snd_cwnd;
2419	tp->prr_delivered = 0;
2420	tp->prr_out = 0;
2421	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2422	tcp_ecn_queue_cwr(tp);
2423}
2424
2425void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2426{
2427	struct tcp_sock *tp = tcp_sk(sk);
2428	int sndcnt = 0;
2429	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2430
2431	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2432		return;
2433
2434	tp->prr_delivered += newly_acked_sacked;
2435	if (delta < 0) {
2436		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2437			       tp->prior_cwnd - 1;
2438		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2439	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2440		   !(flag & FLAG_LOST_RETRANS)) {
2441		sndcnt = min_t(int, delta,
2442			       max_t(int, tp->prr_delivered - tp->prr_out,
2443				     newly_acked_sacked) + 1);
2444	} else {
2445		sndcnt = min(delta, newly_acked_sacked);
 
 
 
 
2446	}
2447	/* Force a fast retransmit upon entering fast recovery */
2448	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2449	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2450}
2451
2452static inline void tcp_end_cwnd_reduction(struct sock *sk)
2453{
2454	struct tcp_sock *tp = tcp_sk(sk);
2455
2456	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2457		return;
2458
2459	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2460	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2461	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2462		tp->snd_cwnd = tp->snd_ssthresh;
2463		tp->snd_cwnd_stamp = tcp_jiffies32;
2464	}
2465	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2466}
2467
2468/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2469void tcp_enter_cwr(struct sock *sk)
2470{
2471	struct tcp_sock *tp = tcp_sk(sk);
2472
2473	tp->prior_ssthresh = 0;
2474	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2475		tp->undo_marker = 0;
2476		tcp_init_cwnd_reduction(sk);
2477		tcp_set_ca_state(sk, TCP_CA_CWR);
2478	}
2479}
2480EXPORT_SYMBOL(tcp_enter_cwr);
2481
2482static void tcp_try_keep_open(struct sock *sk)
2483{
2484	struct tcp_sock *tp = tcp_sk(sk);
2485	int state = TCP_CA_Open;
2486
2487	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2488		state = TCP_CA_Disorder;
2489
2490	if (inet_csk(sk)->icsk_ca_state != state) {
2491		tcp_set_ca_state(sk, state);
2492		tp->high_seq = tp->snd_nxt;
2493	}
2494}
2495
2496static void tcp_try_to_open(struct sock *sk, int flag)
2497{
2498	struct tcp_sock *tp = tcp_sk(sk);
2499
2500	tcp_verify_left_out(tp);
2501
2502	if (!tcp_any_retrans_done(sk))
2503		tp->retrans_stamp = 0;
2504
2505	if (flag & FLAG_ECE)
2506		tcp_enter_cwr(sk);
2507
2508	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2509		tcp_try_keep_open(sk);
2510	}
2511}
2512
2513static void tcp_mtup_probe_failed(struct sock *sk)
2514{
2515	struct inet_connection_sock *icsk = inet_csk(sk);
2516
2517	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2518	icsk->icsk_mtup.probe_size = 0;
2519	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2520}
2521
2522static void tcp_mtup_probe_success(struct sock *sk)
2523{
2524	struct tcp_sock *tp = tcp_sk(sk);
2525	struct inet_connection_sock *icsk = inet_csk(sk);
 
2526
2527	/* FIXME: breaks with very large cwnd */
2528	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2529	tp->snd_cwnd = tp->snd_cwnd *
2530		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2531		       icsk->icsk_mtup.probe_size;
 
 
 
2532	tp->snd_cwnd_cnt = 0;
2533	tp->snd_cwnd_stamp = tcp_jiffies32;
2534	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2535
2536	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2537	icsk->icsk_mtup.probe_size = 0;
2538	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2539	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2540}
2541
2542/* Do a simple retransmit without using the backoff mechanisms in
2543 * tcp_timer. This is used for path mtu discovery.
2544 * The socket is already locked here.
2545 */
2546void tcp_simple_retransmit(struct sock *sk)
2547{
2548	const struct inet_connection_sock *icsk = inet_csk(sk);
2549	struct tcp_sock *tp = tcp_sk(sk);
2550	struct sk_buff *skb;
2551	unsigned int mss = tcp_current_mss(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2552
2553	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2554		if (tcp_skb_seglen(skb) > mss &&
2555		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2556			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2557				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2558				tp->retrans_out -= tcp_skb_pcount(skb);
2559			}
2560			tcp_skb_mark_lost_uncond_verify(tp, skb);
2561		}
2562	}
2563
2564	tcp_clear_retrans_hints_partial(tp);
2565
2566	if (!tp->lost_out)
2567		return;
2568
2569	if (tcp_is_reno(tp))
2570		tcp_limit_reno_sacked(tp);
2571
2572	tcp_verify_left_out(tp);
2573
2574	/* Don't muck with the congestion window here.
2575	 * Reason is that we do not increase amount of _data_
2576	 * in network, but units changed and effective
2577	 * cwnd/ssthresh really reduced now.
2578	 */
2579	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2580		tp->high_seq = tp->snd_nxt;
2581		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2582		tp->prior_ssthresh = 0;
2583		tp->undo_marker = 0;
2584		tcp_set_ca_state(sk, TCP_CA_Loss);
2585	}
2586	tcp_xmit_retransmit_queue(sk);
2587}
2588EXPORT_SYMBOL(tcp_simple_retransmit);
2589
2590void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2591{
2592	struct tcp_sock *tp = tcp_sk(sk);
2593	int mib_idx;
2594
2595	if (tcp_is_reno(tp))
2596		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2597	else
2598		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2599
2600	NET_INC_STATS(sock_net(sk), mib_idx);
2601
2602	tp->prior_ssthresh = 0;
2603	tcp_init_undo(tp);
2604
2605	if (!tcp_in_cwnd_reduction(sk)) {
2606		if (!ece_ack)
2607			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2608		tcp_init_cwnd_reduction(sk);
2609	}
2610	tcp_set_ca_state(sk, TCP_CA_Recovery);
2611}
2612
2613/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2614 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2615 */
2616static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2617			     int *rexmit)
2618{
2619	struct tcp_sock *tp = tcp_sk(sk);
2620	bool recovered = !before(tp->snd_una, tp->high_seq);
2621
2622	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2623	    tcp_try_undo_loss(sk, false))
2624		return;
2625
2626	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2627		/* Step 3.b. A timeout is spurious if not all data are
2628		 * lost, i.e., never-retransmitted data are (s)acked.
2629		 */
2630		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2631		    tcp_try_undo_loss(sk, true))
2632			return;
2633
2634		if (after(tp->snd_nxt, tp->high_seq)) {
2635			if (flag & FLAG_DATA_SACKED || is_dupack)
2636				tp->frto = 0; /* Step 3.a. loss was real */
2637		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2638			tp->high_seq = tp->snd_nxt;
2639			/* Step 2.b. Try send new data (but deferred until cwnd
2640			 * is updated in tcp_ack()). Otherwise fall back to
2641			 * the conventional recovery.
2642			 */
2643			if (!tcp_write_queue_empty(sk) &&
2644			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2645				*rexmit = REXMIT_NEW;
2646				return;
2647			}
2648			tp->frto = 0;
2649		}
2650	}
2651
2652	if (recovered) {
2653		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2654		tcp_try_undo_recovery(sk);
2655		return;
2656	}
2657	if (tcp_is_reno(tp)) {
2658		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2659		 * delivered. Lower inflight to clock out (re)tranmissions.
2660		 */
2661		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2662			tcp_add_reno_sack(sk);
2663		else if (flag & FLAG_SND_UNA_ADVANCED)
2664			tcp_reset_reno_sack(tp);
2665	}
2666	*rexmit = REXMIT_LOST;
2667}
2668
 
 
 
 
 
 
 
 
2669/* Undo during fast recovery after partial ACK. */
2670static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
 
2671{
2672	struct tcp_sock *tp = tcp_sk(sk);
2673
2674	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2675		/* Plain luck! Hole if filled with delayed
2676		 * packet, rather than with a retransmit. Check reordering.
2677		 */
2678		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2679
2680		/* We are getting evidence that the reordering degree is higher
2681		 * than we realized. If there are no retransmits out then we
2682		 * can undo. Otherwise we clock out new packets but do not
2683		 * mark more packets lost or retransmit more.
2684		 */
2685		if (tp->retrans_out)
2686			return true;
2687
2688		if (!tcp_any_retrans_done(sk))
2689			tp->retrans_stamp = 0;
2690
2691		DBGUNDO(sk, "partial recovery");
2692		tcp_undo_cwnd_reduction(sk, true);
2693		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2694		tcp_try_keep_open(sk);
2695		return true;
 
 
2696	}
2697	return false;
2698}
2699
2700static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
2701{
2702	struct tcp_sock *tp = tcp_sk(sk);
2703
2704	/* Use RACK to detect loss */
2705	if (sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
 
 
 
 
2706		u32 prior_retrans = tp->retrans_out;
2707
2708		tcp_rack_mark_lost(sk);
 
2709		if (prior_retrans > tp->retrans_out)
2710			*ack_flag |= FLAG_LOST_RETRANS;
2711	}
2712}
2713
2714static bool tcp_force_fast_retransmit(struct sock *sk)
2715{
2716	struct tcp_sock *tp = tcp_sk(sk);
2717
2718	return after(tcp_highest_sack_seq(tp),
2719		     tp->snd_una + tp->reordering * tp->mss_cache);
2720}
2721
2722/* Process an event, which can update packets-in-flight not trivially.
2723 * Main goal of this function is to calculate new estimate for left_out,
2724 * taking into account both packets sitting in receiver's buffer and
2725 * packets lost by network.
2726 *
2727 * Besides that it updates the congestion state when packet loss or ECN
2728 * is detected. But it does not reduce the cwnd, it is done by the
2729 * congestion control later.
2730 *
2731 * It does _not_ decide what to send, it is made in function
2732 * tcp_xmit_retransmit_queue().
2733 */
2734static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2735				  bool is_dupack, int *ack_flag, int *rexmit)
2736{
2737	struct inet_connection_sock *icsk = inet_csk(sk);
2738	struct tcp_sock *tp = tcp_sk(sk);
2739	int fast_rexmit = 0, flag = *ack_flag;
2740	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2741				     tcp_force_fast_retransmit(sk));
 
2742
2743	if (!tp->packets_out && tp->sacked_out)
2744		tp->sacked_out = 0;
2745
2746	/* Now state machine starts.
2747	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2748	if (flag & FLAG_ECE)
2749		tp->prior_ssthresh = 0;
2750
2751	/* B. In all the states check for reneging SACKs. */
2752	if (tcp_check_sack_reneging(sk, flag))
2753		return;
2754
2755	/* C. Check consistency of the current state. */
2756	tcp_verify_left_out(tp);
2757
2758	/* D. Check state exit conditions. State can be terminated
2759	 *    when high_seq is ACKed. */
2760	if (icsk->icsk_ca_state == TCP_CA_Open) {
2761		WARN_ON(tp->retrans_out != 0);
2762		tp->retrans_stamp = 0;
2763	} else if (!before(tp->snd_una, tp->high_seq)) {
2764		switch (icsk->icsk_ca_state) {
2765		case TCP_CA_CWR:
2766			/* CWR is to be held something *above* high_seq
2767			 * is ACKed for CWR bit to reach receiver. */
2768			if (tp->snd_una != tp->high_seq) {
2769				tcp_end_cwnd_reduction(sk);
2770				tcp_set_ca_state(sk, TCP_CA_Open);
2771			}
2772			break;
2773
2774		case TCP_CA_Recovery:
2775			if (tcp_is_reno(tp))
2776				tcp_reset_reno_sack(tp);
2777			if (tcp_try_undo_recovery(sk))
2778				return;
2779			tcp_end_cwnd_reduction(sk);
2780			break;
2781		}
2782	}
2783
2784	/* E. Process state. */
2785	switch (icsk->icsk_ca_state) {
2786	case TCP_CA_Recovery:
2787		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2788			if (tcp_is_reno(tp) && is_dupack)
2789				tcp_add_reno_sack(sk);
2790		} else {
2791			if (tcp_try_undo_partial(sk, prior_snd_una))
 
 
 
 
 
 
 
2792				return;
2793			/* Partial ACK arrived. Force fast retransmit. */
2794			do_lost = tcp_is_reno(tp) ||
2795				  tcp_force_fast_retransmit(sk);
2796		}
2797		if (tcp_try_undo_dsack(sk)) {
2798			tcp_try_keep_open(sk);
2799			return;
2800		}
2801		tcp_rack_identify_loss(sk, ack_flag);
2802		break;
2803	case TCP_CA_Loss:
2804		tcp_process_loss(sk, flag, is_dupack, rexmit);
2805		tcp_rack_identify_loss(sk, ack_flag);
2806		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2807		      (*ack_flag & FLAG_LOST_RETRANS)))
2808			return;
2809		/* Change state if cwnd is undone or retransmits are lost */
2810		/* fall through */
2811	default:
2812		if (tcp_is_reno(tp)) {
2813			if (flag & FLAG_SND_UNA_ADVANCED)
2814				tcp_reset_reno_sack(tp);
2815			if (is_dupack)
2816				tcp_add_reno_sack(sk);
2817		}
2818
2819		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2820			tcp_try_undo_dsack(sk);
2821
2822		tcp_rack_identify_loss(sk, ack_flag);
2823		if (!tcp_time_to_recover(sk, flag)) {
2824			tcp_try_to_open(sk, flag);
2825			return;
2826		}
2827
2828		/* MTU probe failure: don't reduce cwnd */
2829		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2830		    icsk->icsk_mtup.probe_size &&
2831		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2832			tcp_mtup_probe_failed(sk);
2833			/* Restores the reduction we did in tcp_mtup_probe() */
2834			tp->snd_cwnd++;
2835			tcp_simple_retransmit(sk);
2836			return;
2837		}
2838
2839		/* Otherwise enter Recovery state */
2840		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2841		fast_rexmit = 1;
2842	}
2843
2844	if (do_lost)
2845		tcp_update_scoreboard(sk, fast_rexmit);
2846	*rexmit = REXMIT_LOST;
2847}
2848
2849static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2850{
2851	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2852	struct tcp_sock *tp = tcp_sk(sk);
2853
2854	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2855		/* If the remote keeps returning delayed ACKs, eventually
2856		 * the min filter would pick it up and overestimate the
2857		 * prop. delay when it expires. Skip suspected delayed ACKs.
2858		 */
2859		return;
2860	}
2861	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2862			   rtt_us ? : jiffies_to_usecs(1));
2863}
2864
2865static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2866			       long seq_rtt_us, long sack_rtt_us,
2867			       long ca_rtt_us, struct rate_sample *rs)
2868{
2869	const struct tcp_sock *tp = tcp_sk(sk);
2870
2871	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2872	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2873	 * Karn's algorithm forbids taking RTT if some retransmitted data
2874	 * is acked (RFC6298).
2875	 */
2876	if (seq_rtt_us < 0)
2877		seq_rtt_us = sack_rtt_us;
2878
2879	/* RTTM Rule: A TSecr value received in a segment is used to
2880	 * update the averaged RTT measurement only if the segment
2881	 * acknowledges some new data, i.e., only if it advances the
2882	 * left edge of the send window.
2883	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2884	 */
2885	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2886	    flag & FLAG_ACKED) {
2887		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2888		u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2889
2890		seq_rtt_us = ca_rtt_us = delta_us;
 
 
 
 
 
2891	}
2892	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2893	if (seq_rtt_us < 0)
2894		return false;
2895
2896	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2897	 * always taken together with ACK, SACK, or TS-opts. Any negative
2898	 * values will be skipped with the seq_rtt_us < 0 check above.
2899	 */
2900	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2901	tcp_rtt_estimator(sk, seq_rtt_us);
2902	tcp_set_rto(sk);
2903
2904	/* RFC6298: only reset backoff on valid RTT measurement. */
2905	inet_csk(sk)->icsk_backoff = 0;
2906	return true;
2907}
2908
2909/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2910void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2911{
2912	struct rate_sample rs;
2913	long rtt_us = -1L;
2914
2915	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2916		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2917
2918	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2919}
2920
2921
2922static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2923{
2924	const struct inet_connection_sock *icsk = inet_csk(sk);
2925
2926	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2927	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2928}
2929
2930/* Restart timer after forward progress on connection.
2931 * RFC2988 recommends to restart timer to now+rto.
2932 */
2933void tcp_rearm_rto(struct sock *sk)
2934{
2935	const struct inet_connection_sock *icsk = inet_csk(sk);
2936	struct tcp_sock *tp = tcp_sk(sk);
2937
2938	/* If the retrans timer is currently being used by Fast Open
2939	 * for SYN-ACK retrans purpose, stay put.
2940	 */
2941	if (tp->fastopen_rsk)
2942		return;
2943
2944	if (!tp->packets_out) {
2945		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2946	} else {
2947		u32 rto = inet_csk(sk)->icsk_rto;
2948		/* Offset the time elapsed after installing regular RTO */
2949		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2950		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2951			s64 delta_us = tcp_rto_delta_us(sk);
2952			/* delta_us may not be positive if the socket is locked
2953			 * when the retrans timer fires and is rescheduled.
2954			 */
2955			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
2956		}
2957		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2958					  TCP_RTO_MAX);
2959	}
2960}
2961
2962/* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
2963static void tcp_set_xmit_timer(struct sock *sk)
2964{
2965	if (!tcp_schedule_loss_probe(sk, true))
2966		tcp_rearm_rto(sk);
2967}
2968
2969/* If we get here, the whole TSO packet has not been acked. */
2970static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2971{
2972	struct tcp_sock *tp = tcp_sk(sk);
2973	u32 packets_acked;
2974
2975	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2976
2977	packets_acked = tcp_skb_pcount(skb);
2978	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2979		return 0;
2980	packets_acked -= tcp_skb_pcount(skb);
2981
2982	if (packets_acked) {
2983		BUG_ON(tcp_skb_pcount(skb) == 0);
2984		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2985	}
2986
2987	return packets_acked;
2988}
2989
2990static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
2991			   u32 prior_snd_una)
2992{
2993	const struct skb_shared_info *shinfo;
2994
2995	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
2996	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
2997		return;
2998
2999	shinfo = skb_shinfo(skb);
3000	if (!before(shinfo->tskey, prior_snd_una) &&
3001	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3002		tcp_skb_tsorted_save(skb) {
3003			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3004		} tcp_skb_tsorted_restore(skb);
3005	}
3006}
3007
3008/* Remove acknowledged frames from the retransmission queue. If our packet
3009 * is before the ack sequence we can discard it as it's confirmed to have
3010 * arrived at the other end.
3011 */
3012static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3013			       u32 prior_snd_una,
3014			       struct tcp_sacktag_state *sack)
3015{
3016	const struct inet_connection_sock *icsk = inet_csk(sk);
3017	u64 first_ackt, last_ackt;
3018	struct tcp_sock *tp = tcp_sk(sk);
3019	u32 prior_sacked = tp->sacked_out;
3020	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3021	struct sk_buff *skb, *next;
3022	bool fully_acked = true;
3023	long sack_rtt_us = -1L;
3024	long seq_rtt_us = -1L;
3025	long ca_rtt_us = -1L;
3026	u32 pkts_acked = 0;
3027	u32 last_in_flight = 0;
3028	bool rtt_update;
3029	int flag = 0;
3030
3031	first_ackt = 0;
3032
3033	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3034		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3035		const u32 start_seq = scb->seq;
3036		u8 sacked = scb->sacked;
3037		u32 acked_pcount;
3038
3039		tcp_ack_tstamp(sk, skb, prior_snd_una);
3040
3041		/* Determine how many packets and what bytes were acked, tso and else */
3042		if (after(scb->end_seq, tp->snd_una)) {
3043			if (tcp_skb_pcount(skb) == 1 ||
3044			    !after(tp->snd_una, scb->seq))
3045				break;
3046
3047			acked_pcount = tcp_tso_acked(sk, skb);
3048			if (!acked_pcount)
3049				break;
3050			fully_acked = false;
3051		} else {
3052			acked_pcount = tcp_skb_pcount(skb);
3053		}
3054
3055		if (unlikely(sacked & TCPCB_RETRANS)) {
3056			if (sacked & TCPCB_SACKED_RETRANS)
3057				tp->retrans_out -= acked_pcount;
3058			flag |= FLAG_RETRANS_DATA_ACKED;
3059		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3060			last_ackt = skb->skb_mstamp;
3061			WARN_ON_ONCE(last_ackt == 0);
3062			if (!first_ackt)
3063				first_ackt = last_ackt;
3064
3065			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3066			if (before(start_seq, reord))
3067				reord = start_seq;
3068			if (!after(scb->end_seq, tp->high_seq))
3069				flag |= FLAG_ORIG_SACK_ACKED;
3070		}
3071
3072		if (sacked & TCPCB_SACKED_ACKED) {
3073			tp->sacked_out -= acked_pcount;
3074		} else if (tcp_is_sack(tp)) {
3075			tp->delivered += acked_pcount;
3076			if (!tcp_skb_spurious_retrans(tp, skb))
3077				tcp_rack_advance(tp, sacked, scb->end_seq,
3078						 skb->skb_mstamp);
3079		}
3080		if (sacked & TCPCB_LOST)
3081			tp->lost_out -= acked_pcount;
3082
3083		tp->packets_out -= acked_pcount;
3084		pkts_acked += acked_pcount;
3085		tcp_rate_skb_delivered(sk, skb, sack->rate);
3086
3087		/* Initial outgoing SYN's get put onto the write_queue
3088		 * just like anything else we transmit.  It is not
3089		 * true data, and if we misinform our callers that
3090		 * this ACK acks real data, we will erroneously exit
3091		 * connection startup slow start one packet too
3092		 * quickly.  This is severely frowned upon behavior.
3093		 */
3094		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3095			flag |= FLAG_DATA_ACKED;
3096		} else {
3097			flag |= FLAG_SYN_ACKED;
3098			tp->retrans_stamp = 0;
3099		}
3100
3101		if (!fully_acked)
3102			break;
3103
 
 
3104		next = skb_rb_next(skb);
3105		if (unlikely(skb == tp->retransmit_skb_hint))
3106			tp->retransmit_skb_hint = NULL;
3107		if (unlikely(skb == tp->lost_skb_hint))
3108			tp->lost_skb_hint = NULL;
 
3109		tcp_rtx_queue_unlink_and_free(skb, sk);
3110	}
3111
3112	if (!skb)
3113		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3114
3115	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3116		tp->snd_up = tp->snd_una;
3117
3118	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3119		flag |= FLAG_SACK_RENEGING;
 
 
 
3120
3121	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3122		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3123		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3124
3125		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3126		    last_in_flight && !prior_sacked && fully_acked &&
3127		    sack->rate->prior_delivered + 1 == tp->delivered &&
3128		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3129			/* Conservatively mark a delayed ACK. It's typically
3130			 * from a lone runt packet over the round trip to
3131			 * a receiver w/o out-of-order or CE events.
3132			 */
3133			flag |= FLAG_ACK_MAYBE_DELAYED;
3134		}
3135	}
3136	if (sack->first_sackt) {
3137		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3138		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3139	}
3140	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3141					ca_rtt_us, sack->rate);
3142
3143	if (flag & FLAG_ACKED) {
3144		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3145		if (unlikely(icsk->icsk_mtup.probe_size &&
3146			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3147			tcp_mtup_probe_success(sk);
3148		}
3149
3150		if (tcp_is_reno(tp)) {
3151			tcp_remove_reno_sacks(sk, pkts_acked);
 
 
 
 
 
 
 
 
 
3152		} else {
3153			int delta;
3154
3155			/* Non-retransmitted hole got filled? That's reordering */
3156			if (before(reord, prior_fack))
3157				tcp_check_sack_reordering(sk, reord, 0);
3158
3159			delta = prior_sacked - tp->sacked_out;
3160			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3161		}
3162	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3163		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
 
3164		/* Do not re-arm RTO if the sack RTT is measured from data sent
3165		 * after when the head was last (re)transmitted. Otherwise the
3166		 * timeout may continue to extend in loss recovery.
3167		 */
3168		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3169	}
3170
3171	if (icsk->icsk_ca_ops->pkts_acked) {
3172		struct ack_sample sample = { .pkts_acked = pkts_acked,
3173					     .rtt_us = sack->rate->rtt_us,
3174					     .in_flight = last_in_flight };
3175
 
 
3176		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3177	}
3178
3179#if FASTRETRANS_DEBUG > 0
3180	WARN_ON((int)tp->sacked_out < 0);
3181	WARN_ON((int)tp->lost_out < 0);
3182	WARN_ON((int)tp->retrans_out < 0);
3183	if (!tp->packets_out && tcp_is_sack(tp)) {
3184		icsk = inet_csk(sk);
3185		if (tp->lost_out) {
3186			pr_debug("Leak l=%u %d\n",
3187				 tp->lost_out, icsk->icsk_ca_state);
3188			tp->lost_out = 0;
3189		}
3190		if (tp->sacked_out) {
3191			pr_debug("Leak s=%u %d\n",
3192				 tp->sacked_out, icsk->icsk_ca_state);
3193			tp->sacked_out = 0;
3194		}
3195		if (tp->retrans_out) {
3196			pr_debug("Leak r=%u %d\n",
3197				 tp->retrans_out, icsk->icsk_ca_state);
3198			tp->retrans_out = 0;
3199		}
3200	}
3201#endif
3202	return flag;
3203}
3204
3205static void tcp_ack_probe(struct sock *sk)
3206{
3207	struct inet_connection_sock *icsk = inet_csk(sk);
3208	struct sk_buff *head = tcp_send_head(sk);
3209	const struct tcp_sock *tp = tcp_sk(sk);
3210
3211	/* Was it a usable window open? */
3212	if (!head)
3213		return;
3214	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3215		icsk->icsk_backoff = 0;
 
3216		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3217		/* Socket must be waked up by subsequent tcp_data_snd_check().
3218		 * This function is not for random using!
3219		 */
3220	} else {
3221		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3222
3223		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3224					  when, TCP_RTO_MAX);
3225	}
3226}
3227
3228static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3229{
3230	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3231		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3232}
3233
3234/* Decide wheather to run the increase function of congestion control. */
3235static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3236{
3237	/* If reordering is high then always grow cwnd whenever data is
3238	 * delivered regardless of its ordering. Otherwise stay conservative
3239	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3240	 * new SACK or ECE mark may first advance cwnd here and later reduce
3241	 * cwnd in tcp_fastretrans_alert() based on more states.
3242	 */
3243	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
 
3244		return flag & FLAG_FORWARD_PROGRESS;
3245
3246	return flag & FLAG_DATA_ACKED;
3247}
3248
3249/* The "ultimate" congestion control function that aims to replace the rigid
3250 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3251 * It's called toward the end of processing an ACK with precise rate
3252 * information. All transmission or retransmission are delayed afterwards.
3253 */
3254static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3255			     int flag, const struct rate_sample *rs)
3256{
3257	const struct inet_connection_sock *icsk = inet_csk(sk);
3258
3259	if (icsk->icsk_ca_ops->cong_control) {
3260		icsk->icsk_ca_ops->cong_control(sk, rs);
3261		return;
3262	}
3263
3264	if (tcp_in_cwnd_reduction(sk)) {
3265		/* Reduce cwnd if state mandates */
3266		tcp_cwnd_reduction(sk, acked_sacked, flag);
3267	} else if (tcp_may_raise_cwnd(sk, flag)) {
3268		/* Advance cwnd if state allows */
3269		tcp_cong_avoid(sk, ack, acked_sacked);
3270	}
3271	tcp_update_pacing_rate(sk);
3272}
3273
3274/* Check that window update is acceptable.
3275 * The function assumes that snd_una<=ack<=snd_next.
3276 */
3277static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3278					const u32 ack, const u32 ack_seq,
3279					const u32 nwin)
3280{
3281	return	after(ack, tp->snd_una) ||
3282		after(ack_seq, tp->snd_wl1) ||
3283		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3284}
3285
3286/* If we update tp->snd_una, also update tp->bytes_acked */
3287static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3288{
3289	u32 delta = ack - tp->snd_una;
3290
3291	sock_owned_by_me((struct sock *)tp);
3292	tp->bytes_acked += delta;
3293	tp->snd_una = ack;
3294}
3295
3296/* If we update tp->rcv_nxt, also update tp->bytes_received */
3297static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3298{
3299	u32 delta = seq - tp->rcv_nxt;
3300
3301	sock_owned_by_me((struct sock *)tp);
3302	tp->bytes_received += delta;
3303	tp->rcv_nxt = seq;
3304}
3305
3306/* Update our send window.
3307 *
3308 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3309 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3310 */
3311static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3312				 u32 ack_seq)
3313{
3314	struct tcp_sock *tp = tcp_sk(sk);
3315	int flag = 0;
3316	u32 nwin = ntohs(tcp_hdr(skb)->window);
3317
3318	if (likely(!tcp_hdr(skb)->syn))
3319		nwin <<= tp->rx_opt.snd_wscale;
3320
3321	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3322		flag |= FLAG_WIN_UPDATE;
3323		tcp_update_wl(tp, ack_seq);
3324
3325		if (tp->snd_wnd != nwin) {
3326			tp->snd_wnd = nwin;
3327
3328			/* Note, it is the only place, where
3329			 * fast path is recovered for sending TCP.
3330			 */
3331			tp->pred_flags = 0;
3332			tcp_fast_path_check(sk);
3333
3334			if (!tcp_write_queue_empty(sk))
3335				tcp_slow_start_after_idle_check(sk);
3336
3337			if (nwin > tp->max_window) {
3338				tp->max_window = nwin;
3339				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3340			}
3341		}
3342	}
3343
3344	tcp_snd_una_update(tp, ack);
3345
3346	return flag;
3347}
3348
3349static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3350				   u32 *last_oow_ack_time)
3351{
3352	if (*last_oow_ack_time) {
3353		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3354
3355		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
 
3356			NET_INC_STATS(net, mib_idx);
3357			return true;	/* rate-limited: don't send yet! */
3358		}
3359	}
3360
3361	*last_oow_ack_time = tcp_jiffies32;
3362
3363	return false;	/* not rate-limited: go ahead, send dupack now! */
3364}
3365
3366/* Return true if we're currently rate-limiting out-of-window ACKs and
3367 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3368 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3369 * attacks that send repeated SYNs or ACKs for the same connection. To
3370 * do this, we do not send a duplicate SYNACK or ACK if the remote
3371 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3372 */
3373bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3374			  int mib_idx, u32 *last_oow_ack_time)
3375{
3376	/* Data packets without SYNs are not likely part of an ACK loop. */
3377	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3378	    !tcp_hdr(skb)->syn)
3379		return false;
3380
3381	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3382}
3383
3384/* RFC 5961 7 [ACK Throttling] */
3385static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3386{
3387	/* unprotected vars, we dont care of overwrites */
3388	static u32 challenge_timestamp;
3389	static unsigned int challenge_count;
3390	struct tcp_sock *tp = tcp_sk(sk);
3391	struct net *net = sock_net(sk);
3392	u32 count, now;
3393
3394	/* First check our per-socket dupack rate limit. */
3395	if (__tcp_oow_rate_limited(net,
3396				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3397				   &tp->last_oow_ack_time))
3398		return;
3399
 
 
 
 
3400	/* Then check host-wide RFC 5961 rate limit. */
3401	now = jiffies / HZ;
3402	if (now != challenge_timestamp) {
3403		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3404		u32 half = (ack_limit + 1) >> 1;
3405
3406		challenge_timestamp = now;
3407		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
 
3408	}
3409	count = READ_ONCE(challenge_count);
3410	if (count > 0) {
3411		WRITE_ONCE(challenge_count, count - 1);
 
3412		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3413		tcp_send_ack(sk);
3414	}
3415}
3416
3417static void tcp_store_ts_recent(struct tcp_sock *tp)
3418{
3419	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3420	tp->rx_opt.ts_recent_stamp = get_seconds();
3421}
3422
3423static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3424{
3425	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3426		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3427		 * extra check below makes sure this can only happen
3428		 * for pure ACK frames.  -DaveM
3429		 *
3430		 * Not only, also it occurs for expired timestamps.
3431		 */
3432
3433		if (tcp_paws_check(&tp->rx_opt, 0))
3434			tcp_store_ts_recent(tp);
3435	}
3436}
3437
3438/* This routine deals with acks during a TLP episode.
3439 * We mark the end of a TLP episode on receiving TLP dupack or when
3440 * ack is after tlp_high_seq.
3441 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3442 */
3443static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3444{
3445	struct tcp_sock *tp = tcp_sk(sk);
3446
3447	if (before(ack, tp->tlp_high_seq))
3448		return;
3449
3450	if (flag & FLAG_DSACKING_ACK) {
 
 
 
3451		/* This DSACK means original and TLP probe arrived; no loss */
3452		tp->tlp_high_seq = 0;
3453	} else if (after(ack, tp->tlp_high_seq)) {
3454		/* ACK advances: there was a loss, so reduce cwnd. Reset
3455		 * tlp_high_seq in tcp_init_cwnd_reduction()
3456		 */
3457		tcp_init_cwnd_reduction(sk);
3458		tcp_set_ca_state(sk, TCP_CA_CWR);
3459		tcp_end_cwnd_reduction(sk);
3460		tcp_try_keep_open(sk);
3461		NET_INC_STATS(sock_net(sk),
3462				LINUX_MIB_TCPLOSSPROBERECOVERY);
3463	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3464			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3465		/* Pure dupack: original and TLP probe arrived; no loss */
3466		tp->tlp_high_seq = 0;
3467	}
3468}
3469
3470static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3471{
3472	const struct inet_connection_sock *icsk = inet_csk(sk);
3473
3474	if (icsk->icsk_ca_ops->in_ack_event)
3475		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3476}
3477
3478/* Congestion control has updated the cwnd already. So if we're in
3479 * loss recovery then now we do any new sends (for FRTO) or
3480 * retransmits (for CA_Loss or CA_recovery) that make sense.
3481 */
3482static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3483{
3484	struct tcp_sock *tp = tcp_sk(sk);
3485
3486	if (rexmit == REXMIT_NONE)
3487		return;
3488
3489	if (unlikely(rexmit == 2)) {
3490		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3491					  TCP_NAGLE_OFF);
3492		if (after(tp->snd_nxt, tp->high_seq))
3493			return;
3494		tp->frto = 0;
3495	}
3496	tcp_xmit_retransmit_queue(sk);
3497}
3498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3499/* This routine deals with incoming acks, but not outgoing ones. */
3500static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3501{
3502	struct inet_connection_sock *icsk = inet_csk(sk);
3503	struct tcp_sock *tp = tcp_sk(sk);
3504	struct tcp_sacktag_state sack_state;
3505	struct rate_sample rs = { .prior_delivered = 0 };
3506	u32 prior_snd_una = tp->snd_una;
3507	bool is_sack_reneg = tp->is_sack_reneg;
3508	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3509	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3510	bool is_dupack = false;
3511	int prior_packets = tp->packets_out;
3512	u32 delivered = tp->delivered;
3513	u32 lost = tp->lost;
3514	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3515	u32 prior_fack;
3516
3517	sack_state.first_sackt = 0;
3518	sack_state.rate = &rs;
 
3519
3520	/* We very likely will need to access rtx queue. */
3521	prefetch(sk->tcp_rtx_queue.rb_node);
3522
3523	/* If the ack is older than previous acks
3524	 * then we can probably ignore it.
3525	 */
3526	if (before(ack, prior_snd_una)) {
3527		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3528		if (before(ack, prior_snd_una - tp->max_window)) {
3529			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3530				tcp_send_challenge_ack(sk, skb);
3531			return -1;
3532		}
3533		goto old_ack;
3534	}
3535
3536	/* If the ack includes data we haven't sent yet, discard
3537	 * this segment (RFC793 Section 3.9).
3538	 */
3539	if (after(ack, tp->snd_nxt))
3540		goto invalid_ack;
3541
3542	if (after(ack, prior_snd_una)) {
3543		flag |= FLAG_SND_UNA_ADVANCED;
3544		icsk->icsk_retransmits = 0;
 
 
 
 
 
 
3545	}
3546
3547	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3548	rs.prior_in_flight = tcp_packets_in_flight(tp);
3549
3550	/* ts_recent update must be made after we are sure that the packet
3551	 * is in window.
3552	 */
3553	if (flag & FLAG_UPDATE_TS_RECENT)
3554		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3555
3556	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
 
3557		/* Window is constant, pure forward advance.
3558		 * No more checks are required.
3559		 * Note, we use the fact that SND.UNA>=SND.WL2.
3560		 */
3561		tcp_update_wl(tp, ack_seq);
3562		tcp_snd_una_update(tp, ack);
3563		flag |= FLAG_WIN_UPDATE;
3564
3565		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3566
3567		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3568	} else {
3569		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3570
3571		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3572			flag |= FLAG_DATA;
3573		else
3574			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3575
3576		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3577
3578		if (TCP_SKB_CB(skb)->sacked)
3579			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3580							&sack_state);
3581
3582		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3583			flag |= FLAG_ECE;
3584			ack_ev_flags |= CA_ACK_ECE;
3585		}
3586
 
 
 
 
3587		if (flag & FLAG_WIN_UPDATE)
3588			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3589
3590		tcp_in_ack_event(sk, ack_ev_flags);
3591	}
3592
 
 
 
 
 
 
 
 
 
3593	/* We passed data and got it acked, remove any soft error
3594	 * log. Something worked...
3595	 */
3596	sk->sk_err_soft = 0;
3597	icsk->icsk_probes_out = 0;
3598	tp->rcv_tstamp = tcp_jiffies32;
3599	if (!prior_packets)
3600		goto no_queue;
3601
3602	/* See if we can take anything off of the retransmit queue. */
3603	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
 
3604
3605	tcp_rack_update_reo_wnd(sk, &rs);
3606
3607	if (tp->tlp_high_seq)
3608		tcp_process_tlp_ack(sk, ack, flag);
3609	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3610	if (flag & FLAG_SET_XMIT_TIMER)
3611		tcp_set_xmit_timer(sk);
3612
3613	if (tcp_ack_is_dubious(sk, flag)) {
3614		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3615		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
 
 
 
 
 
 
3616				      &rexmit);
3617	}
3618
 
 
 
 
3619	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3620		sk_dst_confirm(sk);
3621
3622	delivered = tp->delivered - delivered;	/* freshly ACKed or SACKed */
3623	lost = tp->lost - lost;			/* freshly marked lost */
3624	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3625	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3626	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3627	tcp_xmit_recovery(sk, rexmit);
3628	return 1;
3629
3630no_queue:
3631	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3632	if (flag & FLAG_DSACKING_ACK)
3633		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3634				      &rexmit);
 
 
3635	/* If this ack opens up a zero window, clear backoff.  It was
3636	 * being used to time the probes, and is probably far higher than
3637	 * it needs to be for normal retransmission.
3638	 */
3639	tcp_ack_probe(sk);
3640
3641	if (tp->tlp_high_seq)
3642		tcp_process_tlp_ack(sk, ack, flag);
3643	return 1;
3644
3645invalid_ack:
3646	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3647	return -1;
3648
3649old_ack:
3650	/* If data was SACKed, tag it and see if we should send more data.
3651	 * If data was DSACKed, see if we can undo a cwnd reduction.
3652	 */
3653	if (TCP_SKB_CB(skb)->sacked) {
3654		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3655						&sack_state);
3656		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3657				      &rexmit);
 
3658		tcp_xmit_recovery(sk, rexmit);
3659	}
3660
3661	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3662	return 0;
3663}
3664
3665static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3666				      bool syn, struct tcp_fastopen_cookie *foc,
3667				      bool exp_opt)
3668{
3669	/* Valid only in SYN or SYN-ACK with an even length.  */
3670	if (!foc || !syn || len < 0 || (len & 1))
3671		return;
3672
3673	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3674	    len <= TCP_FASTOPEN_COOKIE_MAX)
3675		memcpy(foc->val, cookie, len);
3676	else if (len != 0)
3677		len = -1;
3678	foc->len = len;
3679	foc->exp = exp_opt;
3680}
3681
3682static void smc_parse_options(const struct tcphdr *th,
3683			      struct tcp_options_received *opt_rx,
3684			      const unsigned char *ptr,
3685			      int opsize)
3686{
3687#if IS_ENABLED(CONFIG_SMC)
3688	if (static_branch_unlikely(&tcp_have_smc)) {
3689		if (th->syn && !(opsize & 1) &&
3690		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3691		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3692			opt_rx->smc_ok = 1;
 
 
3693	}
3694#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3695}
 
3696
3697/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3698 * But, this can also be called on packets in the established flow when
3699 * the fast version below fails.
3700 */
3701void tcp_parse_options(const struct net *net,
3702		       const struct sk_buff *skb,
3703		       struct tcp_options_received *opt_rx, int estab,
3704		       struct tcp_fastopen_cookie *foc)
3705{
3706	const unsigned char *ptr;
3707	const struct tcphdr *th = tcp_hdr(skb);
3708	int length = (th->doff * 4) - sizeof(struct tcphdr);
3709
3710	ptr = (const unsigned char *)(th + 1);
3711	opt_rx->saw_tstamp = 0;
 
3712
3713	while (length > 0) {
3714		int opcode = *ptr++;
3715		int opsize;
3716
3717		switch (opcode) {
3718		case TCPOPT_EOL:
3719			return;
3720		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3721			length--;
3722			continue;
3723		default:
 
 
3724			opsize = *ptr++;
3725			if (opsize < 2) /* "silly options" */
3726				return;
3727			if (opsize > length)
3728				return;	/* don't parse partial options */
3729			switch (opcode) {
3730			case TCPOPT_MSS:
3731				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3732					u16 in_mss = get_unaligned_be16(ptr);
3733					if (in_mss) {
3734						if (opt_rx->user_mss &&
3735						    opt_rx->user_mss < in_mss)
3736							in_mss = opt_rx->user_mss;
3737						opt_rx->mss_clamp = in_mss;
3738					}
3739				}
3740				break;
3741			case TCPOPT_WINDOW:
3742				if (opsize == TCPOLEN_WINDOW && th->syn &&
3743				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3744					__u8 snd_wscale = *(__u8 *)ptr;
3745					opt_rx->wscale_ok = 1;
3746					if (snd_wscale > TCP_MAX_WSCALE) {
3747						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3748								     __func__,
3749								     snd_wscale,
3750								     TCP_MAX_WSCALE);
3751						snd_wscale = TCP_MAX_WSCALE;
3752					}
3753					opt_rx->snd_wscale = snd_wscale;
3754				}
3755				break;
3756			case TCPOPT_TIMESTAMP:
3757				if ((opsize == TCPOLEN_TIMESTAMP) &&
3758				    ((estab && opt_rx->tstamp_ok) ||
3759				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3760					opt_rx->saw_tstamp = 1;
3761					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3762					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3763				}
3764				break;
3765			case TCPOPT_SACK_PERM:
3766				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3767				    !estab && net->ipv4.sysctl_tcp_sack) {
3768					opt_rx->sack_ok = TCP_SACK_SEEN;
3769					tcp_sack_reset(opt_rx);
3770				}
3771				break;
3772
3773			case TCPOPT_SACK:
3774				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3775				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3776				   opt_rx->sack_ok) {
3777					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3778				}
3779				break;
3780#ifdef CONFIG_TCP_MD5SIG
3781			case TCPOPT_MD5SIG:
3782				/*
3783				 * The MD5 Hash has already been
3784				 * checked (see tcp_v{4,6}_do_rcv()).
3785				 */
3786				break;
3787#endif
3788			case TCPOPT_FASTOPEN:
3789				tcp_parse_fastopen_option(
3790					opsize - TCPOLEN_FASTOPEN_BASE,
3791					ptr, th->syn, foc, false);
3792				break;
3793
3794			case TCPOPT_EXP:
3795				/* Fast Open option shares code 254 using a
3796				 * 16 bits magic number.
3797				 */
3798				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3799				    get_unaligned_be16(ptr) ==
3800				    TCPOPT_FASTOPEN_MAGIC)
3801					tcp_parse_fastopen_option(opsize -
3802						TCPOLEN_EXP_FASTOPEN_BASE,
3803						ptr + 2, th->syn, foc, true);
3804				else
3805					smc_parse_options(th, opt_rx, ptr,
3806							  opsize);
 
 
 
 
3807				break;
3808
 
 
3809			}
3810			ptr += opsize-2;
3811			length -= opsize;
3812		}
3813	}
3814}
3815EXPORT_SYMBOL(tcp_parse_options);
3816
3817static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3818{
3819	const __be32 *ptr = (const __be32 *)(th + 1);
3820
3821	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3822			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3823		tp->rx_opt.saw_tstamp = 1;
3824		++ptr;
3825		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3826		++ptr;
3827		if (*ptr)
3828			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3829		else
3830			tp->rx_opt.rcv_tsecr = 0;
3831		return true;
3832	}
3833	return false;
3834}
3835
3836/* Fast parse options. This hopes to only see timestamps.
3837 * If it is wrong it falls back on tcp_parse_options().
3838 */
3839static bool tcp_fast_parse_options(const struct net *net,
3840				   const struct sk_buff *skb,
3841				   const struct tcphdr *th, struct tcp_sock *tp)
3842{
3843	/* In the spirit of fast parsing, compare doff directly to constant
3844	 * values.  Because equality is used, short doff can be ignored here.
3845	 */
3846	if (th->doff == (sizeof(*th) / 4)) {
3847		tp->rx_opt.saw_tstamp = 0;
3848		return false;
3849	} else if (tp->rx_opt.tstamp_ok &&
3850		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3851		if (tcp_parse_aligned_timestamp(tp, th))
3852			return true;
3853	}
3854
3855	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3856	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3857		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3858
3859	return true;
3860}
3861
3862#ifdef CONFIG_TCP_MD5SIG
3863/*
3864 * Parse MD5 Signature option
3865 */
3866const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3867{
3868	int length = (th->doff << 2) - sizeof(*th);
3869	const u8 *ptr = (const u8 *)(th + 1);
3870
3871	/* If not enough data remaining, we can short cut */
3872	while (length >= TCPOLEN_MD5SIG) {
3873		int opcode = *ptr++;
3874		int opsize;
3875
3876		switch (opcode) {
3877		case TCPOPT_EOL:
3878			return NULL;
3879		case TCPOPT_NOP:
3880			length--;
3881			continue;
3882		default:
3883			opsize = *ptr++;
3884			if (opsize < 2 || opsize > length)
3885				return NULL;
3886			if (opcode == TCPOPT_MD5SIG)
3887				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3888		}
3889		ptr += opsize - 2;
3890		length -= opsize;
3891	}
3892	return NULL;
3893}
3894EXPORT_SYMBOL(tcp_parse_md5sig_option);
3895#endif
3896
3897/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3898 *
3899 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3900 * it can pass through stack. So, the following predicate verifies that
3901 * this segment is not used for anything but congestion avoidance or
3902 * fast retransmit. Moreover, we even are able to eliminate most of such
3903 * second order effects, if we apply some small "replay" window (~RTO)
3904 * to timestamp space.
3905 *
3906 * All these measures still do not guarantee that we reject wrapped ACKs
3907 * on networks with high bandwidth, when sequence space is recycled fastly,
3908 * but it guarantees that such events will be very rare and do not affect
3909 * connection seriously. This doesn't look nice, but alas, PAWS is really
3910 * buggy extension.
3911 *
3912 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3913 * states that events when retransmit arrives after original data are rare.
3914 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3915 * the biggest problem on large power networks even with minor reordering.
3916 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3917 * up to bandwidth of 18Gigabit/sec. 8) ]
3918 */
3919
3920static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3921{
3922	const struct tcp_sock *tp = tcp_sk(sk);
3923	const struct tcphdr *th = tcp_hdr(skb);
3924	u32 seq = TCP_SKB_CB(skb)->seq;
3925	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3926
3927	return (/* 1. Pure ACK with correct sequence number. */
3928		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3929
3930		/* 2. ... and duplicate ACK. */
3931		ack == tp->snd_una &&
3932
3933		/* 3. ... and does not update window. */
3934		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3935
3936		/* 4. ... and sits in replay window. */
3937		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3938}
3939
3940static inline bool tcp_paws_discard(const struct sock *sk,
3941				   const struct sk_buff *skb)
3942{
3943	const struct tcp_sock *tp = tcp_sk(sk);
3944
3945	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3946	       !tcp_disordered_ack(sk, skb);
3947}
3948
3949/* Check segment sequence number for validity.
3950 *
3951 * Segment controls are considered valid, if the segment
3952 * fits to the window after truncation to the window. Acceptability
3953 * of data (and SYN, FIN, of course) is checked separately.
3954 * See tcp_data_queue(), for example.
3955 *
3956 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3957 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3958 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3959 * (borrowed from freebsd)
3960 */
3961
3962static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3963{
3964	return	!before(end_seq, tp->rcv_wup) &&
3965		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3966}
3967
3968/* When we get a reset we do this. */
3969void tcp_reset(struct sock *sk)
3970{
3971	trace_tcp_receive_reset(sk);
3972
 
 
 
 
 
 
3973	/* We want the right error as BSD sees it (and indeed as we do). */
3974	switch (sk->sk_state) {
3975	case TCP_SYN_SENT:
3976		sk->sk_err = ECONNREFUSED;
3977		break;
3978	case TCP_CLOSE_WAIT:
3979		sk->sk_err = EPIPE;
3980		break;
3981	case TCP_CLOSE:
3982		return;
3983	default:
3984		sk->sk_err = ECONNRESET;
3985	}
3986	/* This barrier is coupled with smp_rmb() in tcp_poll() */
3987	smp_wmb();
3988
3989	tcp_write_queue_purge(sk);
3990	tcp_done(sk);
3991
3992	if (!sock_flag(sk, SOCK_DEAD))
3993		sk->sk_error_report(sk);
3994}
3995
3996/*
3997 * 	Process the FIN bit. This now behaves as it is supposed to work
3998 *	and the FIN takes effect when it is validly part of sequence
3999 *	space. Not before when we get holes.
4000 *
4001 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4002 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4003 *	TIME-WAIT)
4004 *
4005 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4006 *	close and we go into CLOSING (and later onto TIME-WAIT)
4007 *
4008 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4009 */
4010void tcp_fin(struct sock *sk)
4011{
4012	struct tcp_sock *tp = tcp_sk(sk);
4013
4014	inet_csk_schedule_ack(sk);
4015
4016	sk->sk_shutdown |= RCV_SHUTDOWN;
4017	sock_set_flag(sk, SOCK_DONE);
4018
4019	switch (sk->sk_state) {
4020	case TCP_SYN_RECV:
4021	case TCP_ESTABLISHED:
4022		/* Move to CLOSE_WAIT */
4023		tcp_set_state(sk, TCP_CLOSE_WAIT);
4024		inet_csk(sk)->icsk_ack.pingpong = 1;
4025		break;
4026
4027	case TCP_CLOSE_WAIT:
4028	case TCP_CLOSING:
4029		/* Received a retransmission of the FIN, do
4030		 * nothing.
4031		 */
4032		break;
4033	case TCP_LAST_ACK:
4034		/* RFC793: Remain in the LAST-ACK state. */
4035		break;
4036
4037	case TCP_FIN_WAIT1:
4038		/* This case occurs when a simultaneous close
4039		 * happens, we must ack the received FIN and
4040		 * enter the CLOSING state.
4041		 */
4042		tcp_send_ack(sk);
4043		tcp_set_state(sk, TCP_CLOSING);
4044		break;
4045	case TCP_FIN_WAIT2:
4046		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4047		tcp_send_ack(sk);
4048		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4049		break;
4050	default:
4051		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4052		 * cases we should never reach this piece of code.
4053		 */
4054		pr_err("%s: Impossible, sk->sk_state=%d\n",
4055		       __func__, sk->sk_state);
4056		break;
4057	}
4058
4059	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4060	 * Probably, we should reset in this case. For now drop them.
4061	 */
4062	skb_rbtree_purge(&tp->out_of_order_queue);
4063	if (tcp_is_sack(tp))
4064		tcp_sack_reset(&tp->rx_opt);
4065	sk_mem_reclaim(sk);
4066
4067	if (!sock_flag(sk, SOCK_DEAD)) {
4068		sk->sk_state_change(sk);
4069
4070		/* Do not send POLL_HUP for half duplex close. */
4071		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4072		    sk->sk_state == TCP_CLOSE)
4073			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4074		else
4075			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4076	}
4077}
4078
4079static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4080				  u32 end_seq)
4081{
4082	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4083		if (before(seq, sp->start_seq))
4084			sp->start_seq = seq;
4085		if (after(end_seq, sp->end_seq))
4086			sp->end_seq = end_seq;
4087		return true;
4088	}
4089	return false;
4090}
4091
4092static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4093{
4094	struct tcp_sock *tp = tcp_sk(sk);
4095
4096	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4097		int mib_idx;
4098
4099		if (before(seq, tp->rcv_nxt))
4100			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4101		else
4102			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4103
4104		NET_INC_STATS(sock_net(sk), mib_idx);
4105
4106		tp->rx_opt.dsack = 1;
4107		tp->duplicate_sack[0].start_seq = seq;
4108		tp->duplicate_sack[0].end_seq = end_seq;
4109	}
4110}
4111
4112static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4113{
4114	struct tcp_sock *tp = tcp_sk(sk);
4115
4116	if (!tp->rx_opt.dsack)
4117		tcp_dsack_set(sk, seq, end_seq);
4118	else
4119		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4120}
4121
 
 
 
 
 
 
 
 
 
 
 
 
4122static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4123{
4124	struct tcp_sock *tp = tcp_sk(sk);
4125
4126	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4127	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4128		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4129		tcp_enter_quickack_mode(sk);
4130
4131		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4132			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4133
 
4134			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4135				end_seq = tp->rcv_nxt;
4136			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4137		}
4138	}
4139
4140	tcp_send_ack(sk);
4141}
4142
4143/* These routines update the SACK block as out-of-order packets arrive or
4144 * in-order packets close up the sequence space.
4145 */
4146static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4147{
4148	int this_sack;
4149	struct tcp_sack_block *sp = &tp->selective_acks[0];
4150	struct tcp_sack_block *swalk = sp + 1;
4151
4152	/* See if the recent change to the first SACK eats into
4153	 * or hits the sequence space of other SACK blocks, if so coalesce.
4154	 */
4155	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4156		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4157			int i;
4158
4159			/* Zap SWALK, by moving every further SACK up by one slot.
4160			 * Decrease num_sacks.
4161			 */
4162			tp->rx_opt.num_sacks--;
4163			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4164				sp[i] = sp[i + 1];
4165			continue;
4166		}
4167		this_sack++, swalk++;
 
4168	}
4169}
4170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4171static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4172{
4173	struct tcp_sock *tp = tcp_sk(sk);
4174	struct tcp_sack_block *sp = &tp->selective_acks[0];
4175	int cur_sacks = tp->rx_opt.num_sacks;
4176	int this_sack;
4177
4178	if (!cur_sacks)
4179		goto new_sack;
4180
4181	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4182		if (tcp_sack_extend(sp, seq, end_seq)) {
 
 
4183			/* Rotate this_sack to the first one. */
4184			for (; this_sack > 0; this_sack--, sp--)
4185				swap(*sp, *(sp - 1));
4186			if (cur_sacks > 1)
4187				tcp_sack_maybe_coalesce(tp);
4188			return;
4189		}
4190	}
4191
 
 
 
4192	/* Could not find an adjacent existing SACK, build a new one,
4193	 * put it at the front, and shift everyone else down.  We
4194	 * always know there is at least one SACK present already here.
4195	 *
4196	 * If the sack array is full, forget about the last one.
4197	 */
4198	if (this_sack >= TCP_NUM_SACKS) {
4199		this_sack--;
4200		tp->rx_opt.num_sacks--;
4201		sp--;
4202	}
4203	for (; this_sack > 0; this_sack--, sp--)
4204		*sp = *(sp - 1);
4205
4206new_sack:
4207	/* Build the new head SACK, and we're done. */
4208	sp->start_seq = seq;
4209	sp->end_seq = end_seq;
4210	tp->rx_opt.num_sacks++;
4211}
4212
4213/* RCV.NXT advances, some SACKs should be eaten. */
4214
4215static void tcp_sack_remove(struct tcp_sock *tp)
4216{
4217	struct tcp_sack_block *sp = &tp->selective_acks[0];
4218	int num_sacks = tp->rx_opt.num_sacks;
4219	int this_sack;
4220
4221	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4222	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4223		tp->rx_opt.num_sacks = 0;
4224		return;
4225	}
4226
4227	for (this_sack = 0; this_sack < num_sacks;) {
4228		/* Check if the start of the sack is covered by RCV.NXT. */
4229		if (!before(tp->rcv_nxt, sp->start_seq)) {
4230			int i;
4231
4232			/* RCV.NXT must cover all the block! */
4233			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4234
4235			/* Zap this SACK, by moving forward any other SACKS. */
4236			for (i = this_sack+1; i < num_sacks; i++)
4237				tp->selective_acks[i-1] = tp->selective_acks[i];
4238			num_sacks--;
4239			continue;
4240		}
4241		this_sack++;
4242		sp++;
4243	}
4244	tp->rx_opt.num_sacks = num_sacks;
4245}
4246
4247/**
4248 * tcp_try_coalesce - try to merge skb to prior one
4249 * @sk: socket
4250 * @dest: destination queue
4251 * @to: prior buffer
4252 * @from: buffer to add in queue
4253 * @fragstolen: pointer to boolean
4254 *
4255 * Before queueing skb @from after @to, try to merge them
4256 * to reduce overall memory use and queue lengths, if cost is small.
4257 * Packets in ofo or receive queues can stay a long time.
4258 * Better try to coalesce them right now to avoid future collapses.
4259 * Returns true if caller should free @from instead of queueing it
4260 */
4261static bool tcp_try_coalesce(struct sock *sk,
4262			     struct sk_buff *to,
4263			     struct sk_buff *from,
4264			     bool *fragstolen)
4265{
4266	int delta;
4267
4268	*fragstolen = false;
4269
4270	/* Its possible this segment overlaps with prior segment in queue */
4271	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4272		return false;
4273
 
 
 
 
 
 
 
 
4274	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4275		return false;
4276
4277	atomic_add(delta, &sk->sk_rmem_alloc);
4278	sk_mem_charge(sk, delta);
4279	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4280	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4281	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4282	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4283
4284	if (TCP_SKB_CB(from)->has_rxtstamp) {
4285		TCP_SKB_CB(to)->has_rxtstamp = true;
4286		to->tstamp = from->tstamp;
 
4287	}
4288
4289	return true;
4290}
4291
4292static void tcp_drop(struct sock *sk, struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4293{
4294	sk_drops_add(sk, skb);
4295	__kfree_skb(skb);
4296}
4297
4298/* This one checks to see if we can put data from the
4299 * out_of_order queue into the receive_queue.
4300 */
4301static void tcp_ofo_queue(struct sock *sk)
4302{
4303	struct tcp_sock *tp = tcp_sk(sk);
4304	__u32 dsack_high = tp->rcv_nxt;
4305	bool fin, fragstolen, eaten;
4306	struct sk_buff *skb, *tail;
4307	struct rb_node *p;
4308
4309	p = rb_first(&tp->out_of_order_queue);
4310	while (p) {
4311		skb = rb_to_skb(p);
4312		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4313			break;
4314
4315		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4316			__u32 dsack = dsack_high;
4317			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4318				dsack_high = TCP_SKB_CB(skb)->end_seq;
4319			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4320		}
4321		p = rb_next(p);
4322		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4323
4324		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4325			SOCK_DEBUG(sk, "ofo packet was already received\n");
4326			tcp_drop(sk, skb);
4327			continue;
4328		}
4329		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4330			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4331			   TCP_SKB_CB(skb)->end_seq);
4332
4333		tail = skb_peek_tail(&sk->sk_receive_queue);
4334		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4335		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4336		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4337		if (!eaten)
4338			__skb_queue_tail(&sk->sk_receive_queue, skb);
4339		else
4340			kfree_skb_partial(skb, fragstolen);
4341
4342		if (unlikely(fin)) {
4343			tcp_fin(sk);
4344			/* tcp_fin() purges tp->out_of_order_queue,
4345			 * so we must end this loop right now.
4346			 */
4347			break;
4348		}
4349	}
4350}
4351
4352static bool tcp_prune_ofo_queue(struct sock *sk);
4353static int tcp_prune_queue(struct sock *sk);
4354
4355static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4356				 unsigned int size)
4357{
4358	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4359	    !sk_rmem_schedule(sk, skb, size)) {
4360
4361		if (tcp_prune_queue(sk) < 0)
4362			return -1;
4363
4364		while (!sk_rmem_schedule(sk, skb, size)) {
4365			if (!tcp_prune_ofo_queue(sk))
4366				return -1;
4367		}
4368	}
4369	return 0;
4370}
4371
4372static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4373{
4374	struct tcp_sock *tp = tcp_sk(sk);
4375	struct rb_node **p, *parent;
4376	struct sk_buff *skb1;
4377	u32 seq, end_seq;
4378	bool fragstolen;
4379
4380	tcp_ecn_check_ce(tp, skb);
4381
4382	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4383		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4384		tcp_drop(sk, skb);
 
4385		return;
4386	}
4387
4388	/* Disable header prediction. */
4389	tp->pred_flags = 0;
4390	inet_csk_schedule_ack(sk);
4391
 
4392	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4393	seq = TCP_SKB_CB(skb)->seq;
4394	end_seq = TCP_SKB_CB(skb)->end_seq;
4395	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4396		   tp->rcv_nxt, seq, end_seq);
4397
4398	p = &tp->out_of_order_queue.rb_node;
4399	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4400		/* Initial out of order segment, build 1 SACK. */
4401		if (tcp_is_sack(tp)) {
4402			tp->rx_opt.num_sacks = 1;
4403			tp->selective_acks[0].start_seq = seq;
4404			tp->selective_acks[0].end_seq = end_seq;
4405		}
4406		rb_link_node(&skb->rbnode, NULL, p);
4407		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4408		tp->ooo_last_skb = skb;
4409		goto end;
4410	}
4411
4412	/* In the typical case, we are adding an skb to the end of the list.
4413	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4414	 */
4415	if (tcp_try_coalesce(sk, tp->ooo_last_skb,
4416			     skb, &fragstolen)) {
4417coalesce_done:
4418		tcp_grow_window(sk, skb);
 
 
 
 
4419		kfree_skb_partial(skb, fragstolen);
4420		skb = NULL;
4421		goto add_sack;
4422	}
4423	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4424	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4425		parent = &tp->ooo_last_skb->rbnode;
4426		p = &parent->rb_right;
4427		goto insert;
4428	}
4429
4430	/* Find place to insert this segment. Handle overlaps on the way. */
4431	parent = NULL;
4432	while (*p) {
4433		parent = *p;
4434		skb1 = rb_to_skb(parent);
4435		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4436			p = &parent->rb_left;
4437			continue;
4438		}
4439		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4440			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4441				/* All the bits are present. Drop. */
4442				NET_INC_STATS(sock_net(sk),
4443					      LINUX_MIB_TCPOFOMERGE);
4444				__kfree_skb(skb);
 
4445				skb = NULL;
4446				tcp_dsack_set(sk, seq, end_seq);
4447				goto add_sack;
4448			}
4449			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4450				/* Partial overlap. */
4451				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4452			} else {
4453				/* skb's seq == skb1's seq and skb covers skb1.
4454				 * Replace skb1 with skb.
4455				 */
4456				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4457						&tp->out_of_order_queue);
4458				tcp_dsack_extend(sk,
4459						 TCP_SKB_CB(skb1)->seq,
4460						 TCP_SKB_CB(skb1)->end_seq);
4461				NET_INC_STATS(sock_net(sk),
4462					      LINUX_MIB_TCPOFOMERGE);
4463				__kfree_skb(skb1);
 
4464				goto merge_right;
4465			}
4466		} else if (tcp_try_coalesce(sk, skb1,
4467					    skb, &fragstolen)) {
4468			goto coalesce_done;
4469		}
4470		p = &parent->rb_right;
4471	}
4472insert:
4473	/* Insert segment into RB tree. */
4474	rb_link_node(&skb->rbnode, parent, p);
4475	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4476
4477merge_right:
4478	/* Remove other segments covered by skb. */
4479	while ((skb1 = skb_rb_next(skb)) != NULL) {
4480		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4481			break;
4482		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4483			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4484					 end_seq);
4485			break;
4486		}
4487		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4488		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4489				 TCP_SKB_CB(skb1)->end_seq);
4490		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4491		tcp_drop(sk, skb1);
4492	}
4493	/* If there is no skb after us, we are the last_skb ! */
4494	if (!skb1)
4495		tp->ooo_last_skb = skb;
4496
4497add_sack:
4498	if (tcp_is_sack(tp))
4499		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4500end:
4501	if (skb) {
4502		tcp_grow_window(sk, skb);
 
 
 
 
4503		skb_condense(skb);
4504		skb_set_owner_r(skb, sk);
4505	}
4506}
4507
4508static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4509		  bool *fragstolen)
4510{
4511	int eaten;
4512	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4513
4514	__skb_pull(skb, hdrlen);
4515	eaten = (tail &&
4516		 tcp_try_coalesce(sk, tail,
4517				  skb, fragstolen)) ? 1 : 0;
4518	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4519	if (!eaten) {
4520		__skb_queue_tail(&sk->sk_receive_queue, skb);
4521		skb_set_owner_r(skb, sk);
4522	}
4523	return eaten;
4524}
4525
4526int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4527{
4528	struct sk_buff *skb;
4529	int err = -ENOMEM;
4530	int data_len = 0;
4531	bool fragstolen;
4532
4533	if (size == 0)
4534		return 0;
4535
4536	if (size > PAGE_SIZE) {
4537		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4538
4539		data_len = npages << PAGE_SHIFT;
4540		size = data_len + (size & ~PAGE_MASK);
4541	}
4542	skb = alloc_skb_with_frags(size - data_len, data_len,
4543				   PAGE_ALLOC_COSTLY_ORDER,
4544				   &err, sk->sk_allocation);
4545	if (!skb)
4546		goto err;
4547
4548	skb_put(skb, size - data_len);
4549	skb->data_len = data_len;
4550	skb->len = size;
4551
4552	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
 
4553		goto err_free;
 
4554
4555	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4556	if (err)
4557		goto err_free;
4558
4559	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4560	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4561	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4562
4563	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4564		WARN_ON_ONCE(fragstolen); /* should not happen */
4565		__kfree_skb(skb);
4566	}
4567	return size;
4568
4569err_free:
4570	kfree_skb(skb);
4571err:
4572	return err;
4573
4574}
4575
 
 
 
 
 
 
4576static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4577{
4578	struct tcp_sock *tp = tcp_sk(sk);
 
4579	bool fragstolen;
4580	int eaten;
4581
 
 
 
 
 
 
 
 
4582	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4583		__kfree_skb(skb);
4584		return;
4585	}
4586	skb_dst_drop(skb);
4587	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4588
4589	tcp_ecn_accept_cwr(tp, skb);
4590
4591	tp->rx_opt.dsack = 0;
4592
4593	/*  Queue data for delivery to the user.
4594	 *  Packets in sequence go to the receive queue.
4595	 *  Out of sequence packets to the out_of_order_queue.
4596	 */
4597	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4598		if (tcp_receive_window(tp) == 0)
 
 
4599			goto out_of_window;
 
4600
4601		/* Ok. In sequence. In window. */
4602queue_and_out:
4603		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4604			sk_forced_mem_schedule(sk, skb->truesize);
4605		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
 
 
 
4606			goto drop;
 
4607
4608		eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4609		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4610		if (skb->len)
4611			tcp_event_data_recv(sk, skb);
4612		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4613			tcp_fin(sk);
4614
4615		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4616			tcp_ofo_queue(sk);
4617
4618			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4619			 * gap in queue is filled.
4620			 */
4621			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4622				inet_csk(sk)->icsk_ack.pingpong = 0;
4623		}
4624
4625		if (tp->rx_opt.num_sacks)
4626			tcp_sack_remove(tp);
4627
4628		tcp_fast_path_check(sk);
4629
4630		if (eaten > 0)
4631			kfree_skb_partial(skb, fragstolen);
4632		if (!sock_flag(sk, SOCK_DEAD))
4633			sk->sk_data_ready(sk);
4634		return;
4635	}
4636
4637	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
 
4638		/* A retransmit, 2nd most common case.  Force an immediate ack. */
 
4639		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4640		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4641
4642out_of_window:
4643		tcp_enter_quickack_mode(sk);
4644		inet_csk_schedule_ack(sk);
4645drop:
4646		tcp_drop(sk, skb);
4647		return;
4648	}
4649
4650	/* Out of window. F.e. zero window probe. */
4651	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
 
 
4652		goto out_of_window;
4653
4654	tcp_enter_quickack_mode(sk);
4655
4656	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4657		/* Partial packet, seq < rcv_next < end_seq */
4658		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4659			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4660			   TCP_SKB_CB(skb)->end_seq);
4661
4662		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4663
4664		/* If window is closed, drop tail of packet. But after
4665		 * remembering D-SACK for its head made in previous line.
4666		 */
4667		if (!tcp_receive_window(tp))
 
 
4668			goto out_of_window;
 
4669		goto queue_and_out;
4670	}
4671
4672	tcp_data_queue_ofo(sk, skb);
4673}
4674
4675static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4676{
4677	if (list)
4678		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4679
4680	return skb_rb_next(skb);
4681}
4682
4683static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4684					struct sk_buff_head *list,
4685					struct rb_root *root)
4686{
4687	struct sk_buff *next = tcp_skb_next(skb, list);
4688
4689	if (list)
4690		__skb_unlink(skb, list);
4691	else
4692		rb_erase(&skb->rbnode, root);
4693
4694	__kfree_skb(skb);
4695	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4696
4697	return next;
4698}
4699
4700/* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4701void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4702{
4703	struct rb_node **p = &root->rb_node;
4704	struct rb_node *parent = NULL;
4705	struct sk_buff *skb1;
4706
4707	while (*p) {
4708		parent = *p;
4709		skb1 = rb_to_skb(parent);
4710		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4711			p = &parent->rb_left;
4712		else
4713			p = &parent->rb_right;
4714	}
4715	rb_link_node(&skb->rbnode, parent, p);
4716	rb_insert_color(&skb->rbnode, root);
4717}
4718
4719/* Collapse contiguous sequence of skbs head..tail with
4720 * sequence numbers start..end.
4721 *
4722 * If tail is NULL, this means until the end of the queue.
4723 *
4724 * Segments with FIN/SYN are not collapsed (only because this
4725 * simplifies code)
4726 */
4727static void
4728tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4729	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4730{
4731	struct sk_buff *skb = head, *n;
4732	struct sk_buff_head tmp;
4733	bool end_of_skbs;
4734
4735	/* First, check that queue is collapsible and find
4736	 * the point where collapsing can be useful.
4737	 */
4738restart:
4739	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4740		n = tcp_skb_next(skb, list);
4741
4742		/* No new bits? It is possible on ofo queue. */
4743		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4744			skb = tcp_collapse_one(sk, skb, list, root);
4745			if (!skb)
4746				break;
4747			goto restart;
4748		}
4749
4750		/* The first skb to collapse is:
4751		 * - not SYN/FIN and
4752		 * - bloated or contains data before "start" or
4753		 *   overlaps to the next one.
4754		 */
4755		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4756		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4757		     before(TCP_SKB_CB(skb)->seq, start))) {
4758			end_of_skbs = false;
4759			break;
4760		}
4761
4762		if (n && n != tail &&
4763		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4764			end_of_skbs = false;
4765			break;
4766		}
4767
4768		/* Decided to skip this, advance start seq. */
4769		start = TCP_SKB_CB(skb)->end_seq;
4770	}
4771	if (end_of_skbs ||
4772	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4773		return;
4774
4775	__skb_queue_head_init(&tmp);
4776
4777	while (before(start, end)) {
4778		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4779		struct sk_buff *nskb;
4780
4781		nskb = alloc_skb(copy, GFP_ATOMIC);
4782		if (!nskb)
4783			break;
4784
4785		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
 
 
 
4786		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4787		if (list)
4788			__skb_queue_before(list, skb, nskb);
4789		else
4790			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4791		skb_set_owner_r(nskb, sk);
 
4792
4793		/* Copy data, releasing collapsed skbs. */
4794		while (copy > 0) {
4795			int offset = start - TCP_SKB_CB(skb)->seq;
4796			int size = TCP_SKB_CB(skb)->end_seq - start;
4797
4798			BUG_ON(offset < 0);
4799			if (size > 0) {
4800				size = min(copy, size);
4801				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4802					BUG();
4803				TCP_SKB_CB(nskb)->end_seq += size;
4804				copy -= size;
4805				start += size;
4806			}
4807			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4808				skb = tcp_collapse_one(sk, skb, list, root);
4809				if (!skb ||
4810				    skb == tail ||
 
4811				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4812					goto end;
 
 
 
 
4813			}
4814		}
4815	}
4816end:
4817	skb_queue_walk_safe(&tmp, skb, n)
4818		tcp_rbtree_insert(root, skb);
4819}
4820
4821/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4822 * and tcp_collapse() them until all the queue is collapsed.
4823 */
4824static void tcp_collapse_ofo_queue(struct sock *sk)
4825{
4826	struct tcp_sock *tp = tcp_sk(sk);
 
4827	struct sk_buff *skb, *head;
4828	u32 start, end;
4829
4830	skb = skb_rb_first(&tp->out_of_order_queue);
4831new_range:
4832	if (!skb) {
4833		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4834		return;
4835	}
4836	start = TCP_SKB_CB(skb)->seq;
4837	end = TCP_SKB_CB(skb)->end_seq;
 
4838
4839	for (head = skb;;) {
4840		skb = skb_rb_next(skb);
4841
4842		/* Range is terminated when we see a gap or when
4843		 * we are at the queue end.
4844		 */
4845		if (!skb ||
4846		    after(TCP_SKB_CB(skb)->seq, end) ||
4847		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4848			tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4849				     head, skb, start, end);
 
 
 
 
 
 
 
 
4850			goto new_range;
4851		}
4852
 
4853		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4854			start = TCP_SKB_CB(skb)->seq;
4855		if (after(TCP_SKB_CB(skb)->end_seq, end))
4856			end = TCP_SKB_CB(skb)->end_seq;
4857	}
4858}
4859
4860/*
4861 * Clean the out-of-order queue to make room.
4862 * We drop high sequences packets to :
4863 * 1) Let a chance for holes to be filled.
 
 
4864 * 2) not add too big latencies if thousands of packets sit there.
4865 *    (But if application shrinks SO_RCVBUF, we could still end up
4866 *     freeing whole queue here)
 
4867 *
4868 * Return true if queue has shrunk.
4869 */
4870static bool tcp_prune_ofo_queue(struct sock *sk)
4871{
4872	struct tcp_sock *tp = tcp_sk(sk);
4873	struct rb_node *node, *prev;
 
 
4874
4875	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4876		return false;
4877
4878	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4879	node = &tp->ooo_last_skb->rbnode;
 
4880	do {
 
 
 
 
 
 
4881		prev = rb_prev(node);
4882		rb_erase(node, &tp->out_of_order_queue);
4883		tcp_drop(sk, rb_to_skb(node));
4884		sk_mem_reclaim(sk);
4885		if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4886		    !tcp_under_memory_pressure(sk))
4887			break;
 
 
 
 
4888		node = prev;
4889	} while (node);
4890	tp->ooo_last_skb = rb_to_skb(prev);
4891
4892	/* Reset SACK state.  A conforming SACK implementation will
4893	 * do the same at a timeout based retransmit.  When a connection
4894	 * is in a sad state like this, we care only about integrity
4895	 * of the connection not performance.
4896	 */
4897	if (tp->rx_opt.sack_ok)
4898		tcp_sack_reset(&tp->rx_opt);
4899	return true;
 
 
 
4900}
4901
4902/* Reduce allocated memory if we can, trying to get
4903 * the socket within its memory limits again.
4904 *
4905 * Return less than zero if we should start dropping frames
4906 * until the socket owning process reads some of the data
4907 * to stabilize the situation.
4908 */
4909static int tcp_prune_queue(struct sock *sk)
4910{
4911	struct tcp_sock *tp = tcp_sk(sk);
4912
4913	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4914
4915	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4916
4917	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4918		tcp_clamp_window(sk);
4919	else if (tcp_under_memory_pressure(sk))
4920		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
 
 
 
4921
4922	tcp_collapse_ofo_queue(sk);
4923	if (!skb_queue_empty(&sk->sk_receive_queue))
4924		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4925			     skb_peek(&sk->sk_receive_queue),
4926			     NULL,
4927			     tp->copied_seq, tp->rcv_nxt);
4928	sk_mem_reclaim(sk);
4929
4930	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4931		return 0;
4932
4933	/* Collapsing did not help, destructive actions follow.
4934	 * This must not ever occur. */
4935
4936	tcp_prune_ofo_queue(sk);
4937
4938	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4939		return 0;
4940
4941	/* If we are really being abused, tell the caller to silently
4942	 * drop receive data on the floor.  It will get retransmitted
4943	 * and hopefully then we'll have sufficient space.
4944	 */
4945	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
4946
4947	/* Massive buffer overcommit. */
4948	tp->pred_flags = 0;
4949	return -1;
4950}
4951
4952static bool tcp_should_expand_sndbuf(const struct sock *sk)
4953{
4954	const struct tcp_sock *tp = tcp_sk(sk);
4955
4956	/* If the user specified a specific send buffer setting, do
4957	 * not modify it.
4958	 */
4959	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4960		return false;
4961
4962	/* If we are under global TCP memory pressure, do not expand.  */
4963	if (tcp_under_memory_pressure(sk))
 
 
 
 
 
 
 
 
 
4964		return false;
 
4965
4966	/* If we are under soft global TCP memory pressure, do not expand.  */
4967	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4968		return false;
4969
4970	/* If we filled the congestion window, do not expand.  */
4971	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4972		return false;
4973
4974	return true;
4975}
4976
4977/* When incoming ACK allowed to free some skb from write_queue,
4978 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4979 * on the exit from tcp input handler.
4980 *
4981 * PROBLEM: sndbuf expansion does not work well with largesend.
4982 */
4983static void tcp_new_space(struct sock *sk)
4984{
4985	struct tcp_sock *tp = tcp_sk(sk);
4986
4987	if (tcp_should_expand_sndbuf(sk)) {
4988		tcp_sndbuf_expand(sk);
4989		tp->snd_cwnd_stamp = tcp_jiffies32;
4990	}
4991
4992	sk->sk_write_space(sk);
4993}
4994
4995static void tcp_check_space(struct sock *sk)
4996{
4997	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4998		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4999		/* pairs with tcp_poll() */
5000		smp_mb();
5001		if (sk->sk_socket &&
5002		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5003			tcp_new_space(sk);
5004			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5005				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5006		}
 
 
 
 
 
 
 
5007	}
5008}
5009
5010static inline void tcp_data_snd_check(struct sock *sk)
5011{
5012	tcp_push_pending_frames(sk);
5013	tcp_check_space(sk);
5014}
5015
5016/*
5017 * Check if sending an ack is needed.
5018 */
5019static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5020{
5021	struct tcp_sock *tp = tcp_sk(sk);
 
5022
5023	    /* More than one full frame received... */
5024	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5025	     /* ... and right edge of window advances far enough.
5026	      * (tcp_recvmsg() will send ACK otherwise). Or...
 
 
5027	      */
5028	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
 
5029	    /* We ACK each frame or... */
5030	    tcp_in_quickack_mode(sk) ||
5031	    /* We have out of order data. */
5032	    (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5033		/* Then ack it now */
5034		tcp_send_ack(sk);
5035	} else {
5036		/* Else, send delayed ack. */
 
 
5037		tcp_send_delayed_ack(sk);
 
5038	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5039}
5040
5041static inline void tcp_ack_snd_check(struct sock *sk)
5042{
5043	if (!inet_csk_ack_scheduled(sk)) {
5044		/* We sent a data segment already. */
5045		return;
5046	}
5047	__tcp_ack_snd_check(sk, 1);
5048}
5049
5050/*
5051 *	This routine is only called when we have urgent data
5052 *	signaled. Its the 'slow' part of tcp_urg. It could be
5053 *	moved inline now as tcp_urg is only called from one
5054 *	place. We handle URGent data wrong. We have to - as
5055 *	BSD still doesn't use the correction from RFC961.
5056 *	For 1003.1g we should support a new option TCP_STDURG to permit
5057 *	either form (or just set the sysctl tcp_stdurg).
5058 */
5059
5060static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5061{
5062	struct tcp_sock *tp = tcp_sk(sk);
5063	u32 ptr = ntohs(th->urg_ptr);
5064
5065	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5066		ptr--;
5067	ptr += ntohl(th->seq);
5068
5069	/* Ignore urgent data that we've already seen and read. */
5070	if (after(tp->copied_seq, ptr))
5071		return;
5072
5073	/* Do not replay urg ptr.
5074	 *
5075	 * NOTE: interesting situation not covered by specs.
5076	 * Misbehaving sender may send urg ptr, pointing to segment,
5077	 * which we already have in ofo queue. We are not able to fetch
5078	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5079	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5080	 * situations. But it is worth to think about possibility of some
5081	 * DoSes using some hypothetical application level deadlock.
5082	 */
5083	if (before(ptr, tp->rcv_nxt))
5084		return;
5085
5086	/* Do we already have a newer (or duplicate) urgent pointer? */
5087	if (tp->urg_data && !after(ptr, tp->urg_seq))
5088		return;
5089
5090	/* Tell the world about our new urgent pointer. */
5091	sk_send_sigurg(sk);
5092
5093	/* We may be adding urgent data when the last byte read was
5094	 * urgent. To do this requires some care. We cannot just ignore
5095	 * tp->copied_seq since we would read the last urgent byte again
5096	 * as data, nor can we alter copied_seq until this data arrives
5097	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5098	 *
5099	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5100	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5101	 * and expect that both A and B disappear from stream. This is _wrong_.
5102	 * Though this happens in BSD with high probability, this is occasional.
5103	 * Any application relying on this is buggy. Note also, that fix "works"
5104	 * only in this artificial test. Insert some normal data between A and B and we will
5105	 * decline of BSD again. Verdict: it is better to remove to trap
5106	 * buggy users.
5107	 */
5108	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5109	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5110		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5111		tp->copied_seq++;
5112		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5113			__skb_unlink(skb, &sk->sk_receive_queue);
5114			__kfree_skb(skb);
5115		}
5116	}
5117
5118	tp->urg_data = TCP_URG_NOTYET;
5119	tp->urg_seq = ptr;
5120
5121	/* Disable header prediction. */
5122	tp->pred_flags = 0;
5123}
5124
5125/* This is the 'fast' part of urgent handling. */
5126static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5127{
5128	struct tcp_sock *tp = tcp_sk(sk);
5129
5130	/* Check if we get a new urgent pointer - normally not. */
5131	if (th->urg)
5132		tcp_check_urg(sk, th);
5133
5134	/* Do we wait for any urgent data? - normally not... */
5135	if (tp->urg_data == TCP_URG_NOTYET) {
5136		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5137			  th->syn;
5138
5139		/* Is the urgent pointer pointing into this packet? */
5140		if (ptr < skb->len) {
5141			u8 tmp;
5142			if (skb_copy_bits(skb, ptr, &tmp, 1))
5143				BUG();
5144			tp->urg_data = TCP_URG_VALID | tmp;
5145			if (!sock_flag(sk, SOCK_DEAD))
5146				sk->sk_data_ready(sk);
5147		}
5148	}
5149}
5150
5151/* Accept RST for rcv_nxt - 1 after a FIN.
5152 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5153 * FIN is sent followed by a RST packet. The RST is sent with the same
5154 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5155 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5156 * ACKs on the closed socket. In addition middleboxes can drop either the
5157 * challenge ACK or a subsequent RST.
5158 */
5159static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5160{
5161	struct tcp_sock *tp = tcp_sk(sk);
5162
5163	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5164			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5165					       TCPF_CLOSING));
5166}
5167
5168/* Does PAWS and seqno based validation of an incoming segment, flags will
5169 * play significant role here.
5170 */
5171static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5172				  const struct tcphdr *th, int syn_inerr)
5173{
5174	struct tcp_sock *tp = tcp_sk(sk);
5175	bool rst_seq_match = false;
5176
5177	/* RFC1323: H1. Apply PAWS check first. */
5178	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5179	    tp->rx_opt.saw_tstamp &&
5180	    tcp_paws_discard(sk, skb)) {
5181		if (!th->rst) {
5182			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5183			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5184						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5185						  &tp->last_oow_ack_time))
5186				tcp_send_dupack(sk, skb);
 
5187			goto discard;
5188		}
5189		/* Reset is accepted even if it did not pass PAWS. */
5190	}
5191
5192	/* Step 1: check sequence number */
5193	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5194		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5195		 * (RST) segments are validated by checking their SEQ-fields."
5196		 * And page 69: "If an incoming segment is not acceptable,
5197		 * an acknowledgment should be sent in reply (unless the RST
5198		 * bit is set, if so drop the segment and return)".
5199		 */
5200		if (!th->rst) {
5201			if (th->syn)
5202				goto syn_challenge;
5203			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5204						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5205						  &tp->last_oow_ack_time))
5206				tcp_send_dupack(sk, skb);
5207		} else if (tcp_reset_check(sk, skb)) {
5208			tcp_reset(sk);
5209		}
 
5210		goto discard;
5211	}
5212
5213	/* Step 2: check RST bit */
5214	if (th->rst) {
5215		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5216		 * FIN and SACK too if available):
5217		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5218		 * the right-most SACK block,
5219		 * then
5220		 *     RESET the connection
5221		 * else
5222		 *     Send a challenge ACK
5223		 */
5224		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5225		    tcp_reset_check(sk, skb)) {
5226			rst_seq_match = true;
5227		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
 
5228			struct tcp_sack_block *sp = &tp->selective_acks[0];
5229			int max_sack = sp[0].end_seq;
5230			int this_sack;
5231
5232			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5233			     ++this_sack) {
5234				max_sack = after(sp[this_sack].end_seq,
5235						 max_sack) ?
5236					sp[this_sack].end_seq : max_sack;
5237			}
5238
5239			if (TCP_SKB_CB(skb)->seq == max_sack)
5240				rst_seq_match = true;
5241		}
5242
5243		if (rst_seq_match)
5244			tcp_reset(sk);
5245		else {
5246			/* Disable TFO if RST is out-of-order
5247			 * and no data has been received
5248			 * for current active TFO socket
5249			 */
5250			if (tp->syn_fastopen && !tp->data_segs_in &&
5251			    sk->sk_state == TCP_ESTABLISHED)
5252				tcp_fastopen_active_disable(sk);
5253			tcp_send_challenge_ack(sk, skb);
5254		}
5255		goto discard;
5256	}
5257
5258	/* step 3: check security and precedence [ignored] */
5259
5260	/* step 4: Check for a SYN
5261	 * RFC 5961 4.2 : Send a challenge ack
5262	 */
5263	if (th->syn) {
5264syn_challenge:
5265		if (syn_inerr)
5266			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5267		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5268		tcp_send_challenge_ack(sk, skb);
 
5269		goto discard;
5270	}
5271
 
 
5272	return true;
5273
5274discard:
5275	tcp_drop(sk, skb);
 
 
 
 
 
5276	return false;
5277}
5278
5279/*
5280 *	TCP receive function for the ESTABLISHED state.
5281 *
5282 *	It is split into a fast path and a slow path. The fast path is
5283 * 	disabled when:
5284 *	- A zero window was announced from us - zero window probing
5285 *        is only handled properly in the slow path.
5286 *	- Out of order segments arrived.
5287 *	- Urgent data is expected.
5288 *	- There is no buffer space left
5289 *	- Unexpected TCP flags/window values/header lengths are received
5290 *	  (detected by checking the TCP header against pred_flags)
5291 *	- Data is sent in both directions. Fast path only supports pure senders
5292 *	  or pure receivers (this means either the sequence number or the ack
5293 *	  value must stay constant)
5294 *	- Unexpected TCP option.
5295 *
5296 *	When these conditions are not satisfied it drops into a standard
5297 *	receive procedure patterned after RFC793 to handle all cases.
5298 *	The first three cases are guaranteed by proper pred_flags setting,
5299 *	the rest is checked inline. Fast processing is turned on in
5300 *	tcp_data_queue when everything is OK.
5301 */
5302void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5303			 const struct tcphdr *th)
5304{
 
 
 
5305	unsigned int len = skb->len;
5306	struct tcp_sock *tp = tcp_sk(sk);
5307
5308	/* TCP congestion window tracking */
5309	trace_tcp_probe(sk, skb);
5310
5311	tcp_mstamp_refresh(tp);
5312	if (unlikely(!sk->sk_rx_dst))
5313		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5314	/*
5315	 *	Header prediction.
5316	 *	The code loosely follows the one in the famous
5317	 *	"30 instruction TCP receive" Van Jacobson mail.
5318	 *
5319	 *	Van's trick is to deposit buffers into socket queue
5320	 *	on a device interrupt, to call tcp_recv function
5321	 *	on the receive process context and checksum and copy
5322	 *	the buffer to user space. smart...
5323	 *
5324	 *	Our current scheme is not silly either but we take the
5325	 *	extra cost of the net_bh soft interrupt processing...
5326	 *	We do checksum and copy also but from device to kernel.
5327	 */
5328
5329	tp->rx_opt.saw_tstamp = 0;
5330
5331	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5332	 *	if header_prediction is to be made
5333	 *	'S' will always be tp->tcp_header_len >> 2
5334	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5335	 *  turn it off	(when there are holes in the receive
5336	 *	 space for instance)
5337	 *	PSH flag is ignored.
5338	 */
5339
5340	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5341	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5342	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5343		int tcp_header_len = tp->tcp_header_len;
5344
5345		/* Timestamp header prediction: tcp_header_len
5346		 * is automatically equal to th->doff*4 due to pred_flags
5347		 * match.
5348		 */
5349
5350		/* Check timestamp */
5351		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5352			/* No? Slow path! */
5353			if (!tcp_parse_aligned_timestamp(tp, th))
5354				goto slow_path;
5355
5356			/* If PAWS failed, check it more carefully in slow path */
5357			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5358				goto slow_path;
5359
5360			/* DO NOT update ts_recent here, if checksum fails
5361			 * and timestamp was corrupted part, it will result
5362			 * in a hung connection since we will drop all
5363			 * future packets due to the PAWS test.
5364			 */
5365		}
5366
5367		if (len <= tcp_header_len) {
5368			/* Bulk data transfer: sender */
5369			if (len == tcp_header_len) {
5370				/* Predicted packet is in window by definition.
5371				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5372				 * Hence, check seq<=rcv_wup reduces to:
5373				 */
5374				if (tcp_header_len ==
5375				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5376				    tp->rcv_nxt == tp->rcv_wup)
5377					tcp_store_ts_recent(tp);
5378
5379				/* We know that such packets are checksummed
5380				 * on entry.
5381				 */
5382				tcp_ack(sk, skb, 0);
5383				__kfree_skb(skb);
5384				tcp_data_snd_check(sk);
 
 
 
 
 
5385				return;
5386			} else { /* Header too small */
 
5387				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5388				goto discard;
5389			}
5390		} else {
5391			int eaten = 0;
5392			bool fragstolen = false;
5393
5394			if (tcp_checksum_complete(skb))
5395				goto csum_error;
5396
5397			if ((int)skb->truesize > sk->sk_forward_alloc)
5398				goto step5;
5399
5400			/* Predicted packet is in window by definition.
5401			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5402			 * Hence, check seq<=rcv_wup reduces to:
5403			 */
5404			if (tcp_header_len ==
5405			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5406			    tp->rcv_nxt == tp->rcv_wup)
5407				tcp_store_ts_recent(tp);
5408
5409			tcp_rcv_rtt_measure_ts(sk, skb);
5410
5411			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5412
5413			/* Bulk data transfer: receiver */
5414			eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5415					      &fragstolen);
 
5416
5417			tcp_event_data_recv(sk, skb);
5418
5419			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5420				/* Well, only one small jumplet in fast path... */
5421				tcp_ack(sk, skb, FLAG_DATA);
5422				tcp_data_snd_check(sk);
5423				if (!inet_csk_ack_scheduled(sk))
5424					goto no_ack;
 
 
5425			}
5426
5427			__tcp_ack_snd_check(sk, 0);
5428no_ack:
5429			if (eaten)
5430				kfree_skb_partial(skb, fragstolen);
5431			sk->sk_data_ready(sk);
5432			return;
5433		}
5434	}
5435
5436slow_path:
5437	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5438		goto csum_error;
5439
5440	if (!th->ack && !th->rst && !th->syn)
 
5441		goto discard;
 
5442
5443	/*
5444	 *	Standard slow path.
5445	 */
5446
5447	if (!tcp_validate_incoming(sk, skb, th, 1))
5448		return;
5449
5450step5:
5451	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
 
 
5452		goto discard;
5453
5454	tcp_rcv_rtt_measure_ts(sk, skb);
5455
5456	/* Process urgent data. */
5457	tcp_urg(sk, skb, th);
5458
5459	/* step 7: process the segment text */
5460	tcp_data_queue(sk, skb);
5461
5462	tcp_data_snd_check(sk);
5463	tcp_ack_snd_check(sk);
5464	return;
5465
5466csum_error:
 
 
5467	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5468	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5469
5470discard:
5471	tcp_drop(sk, skb);
5472}
5473EXPORT_SYMBOL(tcp_rcv_established);
5474
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5475void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5476{
5477	struct tcp_sock *tp = tcp_sk(sk);
5478	struct inet_connection_sock *icsk = inet_csk(sk);
5479
5480	tcp_set_state(sk, TCP_ESTABLISHED);
5481	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5482
5483	if (skb) {
5484		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5485		security_inet_conn_established(sk, skb);
 
5486	}
5487
5488	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5489
5490	/* Prevent spurious tcp_cwnd_restart() on first data
5491	 * packet.
5492	 */
5493	tp->lsndtime = tcp_jiffies32;
5494
5495	if (sock_flag(sk, SOCK_KEEPOPEN))
5496		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5497
5498	if (!tp->rx_opt.snd_wscale)
5499		__tcp_fast_path_on(tp, tp->snd_wnd);
5500	else
5501		tp->pred_flags = 0;
5502}
5503
5504static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5505				    struct tcp_fastopen_cookie *cookie)
5506{
5507	struct tcp_sock *tp = tcp_sk(sk);
5508	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5509	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5510	bool syn_drop = false;
5511
5512	if (mss == tp->rx_opt.user_mss) {
5513		struct tcp_options_received opt;
5514
5515		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5516		tcp_clear_options(&opt);
5517		opt.user_mss = opt.mss_clamp = 0;
5518		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5519		mss = opt.mss_clamp;
5520	}
5521
5522	if (!tp->syn_fastopen) {
5523		/* Ignore an unsolicited cookie */
5524		cookie->len = -1;
5525	} else if (tp->total_retrans) {
5526		/* SYN timed out and the SYN-ACK neither has a cookie nor
5527		 * acknowledges data. Presumably the remote received only
5528		 * the retransmitted (regular) SYNs: either the original
5529		 * SYN-data or the corresponding SYN-ACK was dropped.
5530		 */
5531		syn_drop = (cookie->len < 0 && data);
5532	} else if (cookie->len < 0 && !tp->syn_data) {
5533		/* We requested a cookie but didn't get it. If we did not use
5534		 * the (old) exp opt format then try so next time (try_exp=1).
5535		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5536		 */
5537		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5538	}
5539
5540	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5541
5542	if (data) { /* Retransmit unacked data in SYN */
5543		skb_rbtree_walk_from(data) {
5544			if (__tcp_retransmit_skb(sk, data, 1))
5545				break;
5546		}
5547		tcp_rearm_rto(sk);
 
 
5548		NET_INC_STATS(sock_net(sk),
5549				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5550		return true;
5551	}
5552	tp->syn_data_acked = tp->syn_data;
5553	if (tp->syn_data_acked)
5554		NET_INC_STATS(sock_net(sk),
5555				LINUX_MIB_TCPFASTOPENACTIVE);
 
 
 
5556
5557	tcp_fastopen_add_skb(sk, synack);
5558
5559	return false;
5560}
5561
5562static void smc_check_reset_syn(struct tcp_sock *tp)
5563{
5564#if IS_ENABLED(CONFIG_SMC)
5565	if (static_branch_unlikely(&tcp_have_smc)) {
5566		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5567			tp->syn_smc = 0;
5568	}
5569#endif
5570}
5571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5572static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5573					 const struct tcphdr *th)
5574{
5575	struct inet_connection_sock *icsk = inet_csk(sk);
5576	struct tcp_sock *tp = tcp_sk(sk);
5577	struct tcp_fastopen_cookie foc = { .len = -1 };
5578	int saved_clamp = tp->rx_opt.mss_clamp;
5579	bool fastopen_fail;
 
5580
5581	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5582	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5583		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5584
5585	if (th->ack) {
5586		/* rfc793:
5587		 * "If the state is SYN-SENT then
5588		 *    first check the ACK bit
5589		 *      If the ACK bit is set
5590		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5591		 *        a reset (unless the RST bit is set, if so drop
5592		 *        the segment and return)"
5593		 */
5594		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5595		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
 
 
 
 
 
5596			goto reset_and_undo;
 
5597
5598		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5599		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5600			     tcp_time_stamp(tp))) {
5601			NET_INC_STATS(sock_net(sk),
5602					LINUX_MIB_PAWSACTIVEREJECTED);
5603			goto reset_and_undo;
5604		}
5605
5606		/* Now ACK is acceptable.
5607		 *
5608		 * "If the RST bit is set
5609		 *    If the ACK was acceptable then signal the user "error:
5610		 *    connection reset", drop the segment, enter CLOSED state,
5611		 *    delete TCB, and return."
5612		 */
5613
5614		if (th->rst) {
5615			tcp_reset(sk);
5616			goto discard;
 
 
5617		}
5618
5619		/* rfc793:
5620		 *   "fifth, if neither of the SYN or RST bits is set then
5621		 *    drop the segment and return."
5622		 *
5623		 *    See note below!
5624		 *                                        --ANK(990513)
5625		 */
5626		if (!th->syn)
 
5627			goto discard_and_undo;
5628
5629		/* rfc793:
5630		 *   "If the SYN bit is on ...
5631		 *    are acceptable then ...
5632		 *    (our SYN has been ACKed), change the connection
5633		 *    state to ESTABLISHED..."
5634		 */
5635
5636		tcp_ecn_rcv_synack(tp, th);
5637
5638		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
 
5639		tcp_ack(sk, skb, FLAG_SLOWPATH);
5640
5641		/* Ok.. it's good. Set up sequence numbers and
5642		 * move to established.
5643		 */
5644		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5645		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5646
5647		/* RFC1323: The window in SYN & SYN/ACK segments is
5648		 * never scaled.
5649		 */
5650		tp->snd_wnd = ntohs(th->window);
5651
5652		if (!tp->rx_opt.wscale_ok) {
5653			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5654			tp->window_clamp = min(tp->window_clamp, 65535U);
5655		}
5656
5657		if (tp->rx_opt.saw_tstamp) {
5658			tp->rx_opt.tstamp_ok	   = 1;
5659			tp->tcp_header_len =
5660				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5661			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5662			tcp_store_ts_recent(tp);
5663		} else {
5664			tp->tcp_header_len = sizeof(struct tcphdr);
5665		}
5666
5667		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5668		tcp_initialize_rcv_mss(sk);
5669
5670		/* Remember, tcp_poll() does not lock socket!
5671		 * Change state from SYN-SENT only after copied_seq
5672		 * is initialized. */
5673		tp->copied_seq = tp->rcv_nxt;
5674
5675		smc_check_reset_syn(tp);
5676
5677		smp_mb();
5678
5679		tcp_finish_connect(sk, skb);
5680
5681		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5682				tcp_rcv_fastopen_synack(sk, skb, &foc);
5683
5684		if (!sock_flag(sk, SOCK_DEAD)) {
5685			sk->sk_state_change(sk);
5686			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5687		}
5688		if (fastopen_fail)
5689			return -1;
5690		if (sk->sk_write_pending ||
5691		    icsk->icsk_accept_queue.rskq_defer_accept ||
5692		    icsk->icsk_ack.pingpong) {
5693			/* Save one ACK. Data will be ready after
5694			 * several ticks, if write_pending is set.
5695			 *
5696			 * It may be deleted, but with this feature tcpdumps
5697			 * look so _wonderfully_ clever, that I was not able
5698			 * to stand against the temptation 8)     --ANK
5699			 */
5700			inet_csk_schedule_ack(sk);
5701			tcp_enter_quickack_mode(sk);
5702			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5703						  TCP_DELACK_MAX, TCP_RTO_MAX);
5704
5705discard:
5706			tcp_drop(sk, skb);
5707			return 0;
5708		} else {
5709			tcp_send_ack(sk);
5710		}
 
5711		return -1;
5712	}
5713
5714	/* No ACK in the segment */
5715
5716	if (th->rst) {
5717		/* rfc793:
5718		 * "If the RST bit is set
5719		 *
5720		 *      Otherwise (no ACK) drop the segment and return."
5721		 */
5722
5723		goto discard_and_undo;
5724	}
5725
5726	/* PAWS check. */
5727	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5728	    tcp_paws_reject(&tp->rx_opt, 0))
 
5729		goto discard_and_undo;
5730
5731	if (th->syn) {
5732		/* We see SYN without ACK. It is attempt of
5733		 * simultaneous connect with crossed SYNs.
5734		 * Particularly, it can be connect to self.
5735		 */
5736		tcp_set_state(sk, TCP_SYN_RECV);
5737
5738		if (tp->rx_opt.saw_tstamp) {
5739			tp->rx_opt.tstamp_ok = 1;
5740			tcp_store_ts_recent(tp);
5741			tp->tcp_header_len =
5742				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5743		} else {
5744			tp->tcp_header_len = sizeof(struct tcphdr);
5745		}
5746
5747		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5748		tp->copied_seq = tp->rcv_nxt;
5749		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5750
5751		/* RFC1323: The window in SYN & SYN/ACK segments is
5752		 * never scaled.
5753		 */
5754		tp->snd_wnd    = ntohs(th->window);
5755		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5756		tp->max_window = tp->snd_wnd;
5757
5758		tcp_ecn_rcv_syn(tp, th);
5759
5760		tcp_mtup_init(sk);
5761		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5762		tcp_initialize_rcv_mss(sk);
5763
5764		tcp_send_synack(sk);
5765#if 0
5766		/* Note, we could accept data and URG from this segment.
5767		 * There are no obstacles to make this (except that we must
5768		 * either change tcp_recvmsg() to prevent it from returning data
5769		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5770		 *
5771		 * However, if we ignore data in ACKless segments sometimes,
5772		 * we have no reasons to accept it sometimes.
5773		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5774		 * is not flawless. So, discard packet for sanity.
5775		 * Uncomment this return to process the data.
5776		 */
5777		return -1;
5778#else
5779		goto discard;
5780#endif
5781	}
5782	/* "fifth, if neither of the SYN or RST bits is set then
5783	 * drop the segment and return."
5784	 */
5785
5786discard_and_undo:
5787	tcp_clear_options(&tp->rx_opt);
5788	tp->rx_opt.mss_clamp = saved_clamp;
5789	goto discard;
 
5790
5791reset_and_undo:
5792	tcp_clear_options(&tp->rx_opt);
5793	tp->rx_opt.mss_clamp = saved_clamp;
5794	return 1;
5795}
5796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5797/*
5798 *	This function implements the receiving procedure of RFC 793 for
5799 *	all states except ESTABLISHED and TIME_WAIT.
5800 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5801 *	address independent.
5802 */
5803
5804int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5805{
5806	struct tcp_sock *tp = tcp_sk(sk);
5807	struct inet_connection_sock *icsk = inet_csk(sk);
5808	const struct tcphdr *th = tcp_hdr(skb);
5809	struct request_sock *req;
5810	int queued = 0;
5811	bool acceptable;
 
5812
5813	switch (sk->sk_state) {
5814	case TCP_CLOSE:
 
5815		goto discard;
5816
5817	case TCP_LISTEN:
5818		if (th->ack)
5819			return 1;
5820
5821		if (th->rst)
 
5822			goto discard;
5823
5824		if (th->syn) {
5825			if (th->fin)
 
5826				goto discard;
 
5827			/* It is possible that we process SYN packets from backlog,
5828			 * so we need to make sure to disable BH right there.
5829			 */
 
5830			local_bh_disable();
5831			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5832			local_bh_enable();
 
5833
5834			if (!acceptable)
5835				return 1;
5836			consume_skb(skb);
5837			return 0;
5838		}
 
5839		goto discard;
5840
5841	case TCP_SYN_SENT:
5842		tp->rx_opt.saw_tstamp = 0;
5843		tcp_mstamp_refresh(tp);
5844		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5845		if (queued >= 0)
5846			return queued;
5847
5848		/* Do step6 onward by hand. */
5849		tcp_urg(sk, skb, th);
5850		__kfree_skb(skb);
5851		tcp_data_snd_check(sk);
5852		return 0;
5853	}
5854
5855	tcp_mstamp_refresh(tp);
5856	tp->rx_opt.saw_tstamp = 0;
5857	req = tp->fastopen_rsk;
 
5858	if (req) {
5859		bool req_stolen;
5860
5861		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5862		    sk->sk_state != TCP_FIN_WAIT1);
5863
5864		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
 
5865			goto discard;
 
5866	}
5867
5868	if (!th->ack && !th->rst && !th->syn)
 
5869		goto discard;
5870
5871	if (!tcp_validate_incoming(sk, skb, th, 0))
5872		return 0;
5873
5874	/* step 5: check the ACK field */
5875	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5876				      FLAG_UPDATE_TS_RECENT |
5877				      FLAG_NO_CHALLENGE_ACK) > 0;
5878
5879	if (!acceptable) {
5880		if (sk->sk_state == TCP_SYN_RECV)
5881			return 1;	/* send one RST */
5882		tcp_send_challenge_ack(sk, skb);
 
5883		goto discard;
5884	}
5885	switch (sk->sk_state) {
5886	case TCP_SYN_RECV:
 
5887		if (!tp->srtt_us)
5888			tcp_synack_rtt_meas(sk, req);
5889
5890		/* Once we leave TCP_SYN_RECV, we no longer need req
5891		 * so release it.
5892		 */
5893		if (req) {
5894			inet_csk(sk)->icsk_retransmits = 0;
5895			reqsk_fastopen_remove(sk, req, false);
5896			/* Re-arm the timer because data may have been sent out.
5897			 * This is similar to the regular data transmission case
5898			 * when new data has just been ack'ed.
5899			 *
5900			 * (TFO) - we could try to be more aggressive and
5901			 * retransmitting any data sooner based on when they
5902			 * are sent out.
5903			 */
5904			tcp_rearm_rto(sk);
5905		} else {
5906			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
5907			tp->copied_seq = tp->rcv_nxt;
 
 
 
5908		}
5909		smp_mb();
5910		tcp_set_state(sk, TCP_ESTABLISHED);
5911		sk->sk_state_change(sk);
5912
5913		/* Note, that this wakeup is only for marginal crossed SYN case.
5914		 * Passively open sockets are not waked up, because
5915		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5916		 */
5917		if (sk->sk_socket)
5918			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5919
5920		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5921		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5922		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5923
5924		if (tp->rx_opt.tstamp_ok)
5925			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5926
5927		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
5928			tcp_update_pacing_rate(sk);
5929
5930		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5931		tp->lsndtime = tcp_jiffies32;
5932
5933		tcp_initialize_rcv_mss(sk);
5934		tcp_fast_path_on(tp);
5935		break;
5936
5937	case TCP_FIN_WAIT1: {
5938		int tmo;
5939
5940		/* If we enter the TCP_FIN_WAIT1 state and we are a
5941		 * Fast Open socket and this is the first acceptable
5942		 * ACK we have received, this would have acknowledged
5943		 * our SYNACK so stop the SYNACK timer.
5944		 */
5945		if (req) {
5946			/* We no longer need the request sock. */
5947			reqsk_fastopen_remove(sk, req, false);
5948			tcp_rearm_rto(sk);
5949		}
5950		if (tp->snd_una != tp->write_seq)
5951			break;
5952
5953		tcp_set_state(sk, TCP_FIN_WAIT2);
5954		sk->sk_shutdown |= SEND_SHUTDOWN;
5955
5956		sk_dst_confirm(sk);
5957
5958		if (!sock_flag(sk, SOCK_DEAD)) {
5959			/* Wake up lingering close() */
5960			sk->sk_state_change(sk);
5961			break;
5962		}
5963
5964		if (tp->linger2 < 0) {
5965			tcp_done(sk);
5966			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5967			return 1;
5968		}
5969		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5970		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5971			/* Receive out of order FIN after close() */
5972			if (tp->syn_fastopen && th->fin)
5973				tcp_fastopen_active_disable(sk);
5974			tcp_done(sk);
5975			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5976			return 1;
5977		}
5978
5979		tmo = tcp_fin_time(sk);
5980		if (tmo > TCP_TIMEWAIT_LEN) {
5981			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5982		} else if (th->fin || sock_owned_by_user(sk)) {
5983			/* Bad case. We could lose such FIN otherwise.
5984			 * It is not a big problem, but it looks confusing
5985			 * and not so rare event. We still can lose it now,
5986			 * if it spins in bh_lock_sock(), but it is really
5987			 * marginal case.
5988			 */
5989			inet_csk_reset_keepalive_timer(sk, tmo);
5990		} else {
5991			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5992			goto discard;
5993		}
5994		break;
5995	}
5996
5997	case TCP_CLOSING:
5998		if (tp->snd_una == tp->write_seq) {
5999			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6000			goto discard;
6001		}
6002		break;
6003
6004	case TCP_LAST_ACK:
6005		if (tp->snd_una == tp->write_seq) {
6006			tcp_update_metrics(sk);
6007			tcp_done(sk);
6008			goto discard;
6009		}
6010		break;
6011	}
6012
6013	/* step 6: check the URG bit */
6014	tcp_urg(sk, skb, th);
6015
6016	/* step 7: process the segment text */
6017	switch (sk->sk_state) {
6018	case TCP_CLOSE_WAIT:
6019	case TCP_CLOSING:
6020	case TCP_LAST_ACK:
6021		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
 
 
 
 
 
6022			break;
6023		/* fall through */
 
6024	case TCP_FIN_WAIT1:
6025	case TCP_FIN_WAIT2:
6026		/* RFC 793 says to queue data in these states,
6027		 * RFC 1122 says we MUST send a reset.
6028		 * BSD 4.4 also does reset.
6029		 */
6030		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6031			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6032			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6033				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6034				tcp_reset(sk);
6035				return 1;
6036			}
6037		}
6038		/* Fall through */
6039	case TCP_ESTABLISHED:
6040		tcp_data_queue(sk, skb);
6041		queued = 1;
6042		break;
6043	}
6044
6045	/* tcp_data could move socket to TIME-WAIT */
6046	if (sk->sk_state != TCP_CLOSE) {
6047		tcp_data_snd_check(sk);
6048		tcp_ack_snd_check(sk);
6049	}
6050
6051	if (!queued) {
6052discard:
6053		tcp_drop(sk, skb);
6054	}
6055	return 0;
 
 
 
 
6056}
6057EXPORT_SYMBOL(tcp_rcv_state_process);
6058
6059static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6060{
6061	struct inet_request_sock *ireq = inet_rsk(req);
6062
6063	if (family == AF_INET)
6064		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6065				    &ireq->ir_rmt_addr, port);
6066#if IS_ENABLED(CONFIG_IPV6)
6067	else if (family == AF_INET6)
6068		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6069				    &ireq->ir_v6_rmt_addr, port);
6070#endif
6071}
6072
6073/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6074 *
6075 * If we receive a SYN packet with these bits set, it means a
6076 * network is playing bad games with TOS bits. In order to
6077 * avoid possible false congestion notifications, we disable
6078 * TCP ECN negotiation.
6079 *
6080 * Exception: tcp_ca wants ECN. This is required for DCTCP
6081 * congestion control: Linux DCTCP asserts ECT on all packets,
6082 * including SYN, which is most optimal solution; however,
6083 * others, such as FreeBSD do not.
 
 
 
 
 
6084 */
6085static void tcp_ecn_create_request(struct request_sock *req,
6086				   const struct sk_buff *skb,
6087				   const struct sock *listen_sk,
6088				   const struct dst_entry *dst)
6089{
6090	const struct tcphdr *th = tcp_hdr(skb);
6091	const struct net *net = sock_net(listen_sk);
6092	bool th_ecn = th->ece && th->cwr;
6093	bool ect, ecn_ok;
6094	u32 ecn_ok_dst;
6095
6096	if (!th_ecn)
6097		return;
6098
6099	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6100	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6101	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6102
6103	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6104	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6105	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6106		inet_rsk(req)->ecn_ok = 1;
6107}
6108
6109static void tcp_openreq_init(struct request_sock *req,
6110			     const struct tcp_options_received *rx_opt,
6111			     struct sk_buff *skb, const struct sock *sk)
6112{
6113	struct inet_request_sock *ireq = inet_rsk(req);
6114
6115	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6116	req->cookie_ts = 0;
6117	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6118	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6119	tcp_rsk(req)->snt_synack = tcp_clock_us();
6120	tcp_rsk(req)->last_oow_ack_time = 0;
6121	req->mss = rx_opt->mss_clamp;
6122	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6123	ireq->tstamp_ok = rx_opt->tstamp_ok;
6124	ireq->sack_ok = rx_opt->sack_ok;
6125	ireq->snd_wscale = rx_opt->snd_wscale;
6126	ireq->wscale_ok = rx_opt->wscale_ok;
6127	ireq->acked = 0;
6128	ireq->ecn_ok = 0;
6129	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6130	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6131	ireq->ir_mark = inet_request_mark(sk, skb);
6132#if IS_ENABLED(CONFIG_SMC)
6133	ireq->smc_ok = rx_opt->smc_ok;
 
6134#endif
6135}
6136
6137struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6138				      struct sock *sk_listener,
6139				      bool attach_listener)
6140{
6141	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6142					       attach_listener);
6143
6144	if (req) {
6145		struct inet_request_sock *ireq = inet_rsk(req);
6146
6147		ireq->ireq_opt = NULL;
6148#if IS_ENABLED(CONFIG_IPV6)
6149		ireq->pktopts = NULL;
6150#endif
6151		atomic64_set(&ireq->ir_cookie, 0);
6152		ireq->ireq_state = TCP_NEW_SYN_RECV;
6153		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6154		ireq->ireq_family = sk_listener->sk_family;
 
6155	}
6156
6157	return req;
6158}
6159EXPORT_SYMBOL(inet_reqsk_alloc);
6160
6161/*
6162 * Return true if a syncookie should be sent
6163 */
6164static bool tcp_syn_flood_action(const struct sock *sk,
6165				 const struct sk_buff *skb,
6166				 const char *proto)
6167{
6168	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6169	const char *msg = "Dropping request";
 
6170	bool want_cookie = false;
6171	struct net *net = sock_net(sk);
 
 
6172
6173#ifdef CONFIG_SYN_COOKIES
6174	if (net->ipv4.sysctl_tcp_syncookies) {
6175		msg = "Sending cookies";
6176		want_cookie = true;
6177		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6178	} else
6179#endif
6180		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6181
6182	if (!queue->synflood_warned &&
6183	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6184	    xchg(&queue->synflood_warned, 1) == 0)
6185		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6186			proto, ntohs(tcp_hdr(skb)->dest), msg);
 
 
 
 
 
 
 
6187
6188	return want_cookie;
6189}
6190
6191static void tcp_reqsk_record_syn(const struct sock *sk,
6192				 struct request_sock *req,
6193				 const struct sk_buff *skb)
6194{
6195	if (tcp_sk(sk)->save_syn) {
6196		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6197		u32 *copy;
 
 
 
 
 
 
 
 
 
 
 
6198
6199		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6200		if (copy) {
6201			copy[0] = len;
6202			memcpy(&copy[1], skb_network_header(skb), len);
6203			req->saved_syn = copy;
 
 
 
6204		}
6205	}
6206}
6207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6208int tcp_conn_request(struct request_sock_ops *rsk_ops,
6209		     const struct tcp_request_sock_ops *af_ops,
6210		     struct sock *sk, struct sk_buff *skb)
6211{
6212	struct tcp_fastopen_cookie foc = { .len = -1 };
6213	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6214	struct tcp_options_received tmp_opt;
6215	struct tcp_sock *tp = tcp_sk(sk);
6216	struct net *net = sock_net(sk);
6217	struct sock *fastopen_sk = NULL;
6218	struct request_sock *req;
6219	bool want_cookie = false;
6220	struct dst_entry *dst;
6221	struct flowi fl;
 
 
 
6222
6223	/* TW buckets are converted to open requests without
6224	 * limitations, they conserve resources and peer is
6225	 * evidently real one.
6226	 */
6227	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6228	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6229		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6230		if (!want_cookie)
6231			goto drop;
6232	}
6233
6234	if (sk_acceptq_is_full(sk)) {
6235		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6236		goto drop;
6237	}
6238
6239	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6240	if (!req)
6241		goto drop;
6242
 
6243	tcp_rsk(req)->af_specific = af_ops;
6244	tcp_rsk(req)->ts_off = 0;
 
 
 
6245
6246	tcp_clear_options(&tmp_opt);
6247	tmp_opt.mss_clamp = af_ops->mss_clamp;
6248	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6249	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6250			  want_cookie ? NULL : &foc);
6251
6252	if (want_cookie && !tmp_opt.saw_tstamp)
6253		tcp_clear_options(&tmp_opt);
6254
6255	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6256		tmp_opt.smc_ok = 0;
6257
6258	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6259	tcp_openreq_init(req, &tmp_opt, skb, sk);
6260	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6261
6262	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6263	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6264
6265	af_ops->init_req(req, sk, skb);
6266
6267	if (security_inet_conn_request(sk, skb, req))
6268		goto drop_and_free;
6269
6270	if (tmp_opt.tstamp_ok)
6271		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6272
6273	dst = af_ops->route_req(sk, &fl, req);
6274	if (!dst)
6275		goto drop_and_free;
6276
6277	if (!want_cookie && !isn) {
6278		/* Kill the following clause, if you dislike this way. */
6279		if (!net->ipv4.sysctl_tcp_syncookies &&
6280		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6281		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6282		    !tcp_peer_is_proven(req, dst)) {
6283			/* Without syncookies last quarter of
6284			 * backlog is filled with destinations,
6285			 * proven to be alive.
6286			 * It means that we continue to communicate
6287			 * to destinations, already remembered
6288			 * to the moment of synflood.
6289			 */
6290			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6291				    rsk_ops->family);
6292			goto drop_and_release;
6293		}
6294
6295		isn = af_ops->init_seq(skb);
6296	}
6297
6298	tcp_ecn_create_request(req, skb, sk, dst);
6299
6300	if (want_cookie) {
6301		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6302		req->cookie_ts = tmp_opt.tstamp_ok;
6303		if (!tmp_opt.tstamp_ok)
6304			inet_rsk(req)->ecn_ok = 0;
6305	}
6306
6307	tcp_rsk(req)->snt_isn = isn;
6308	tcp_rsk(req)->txhash = net_tx_rndhash();
 
6309	tcp_openreq_init_rwin(req, sk, dst);
 
6310	if (!want_cookie) {
6311		tcp_reqsk_record_syn(sk, req, skb);
6312		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6313	}
6314	if (fastopen_sk) {
6315		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6316				    &foc, TCP_SYNACK_FASTOPEN);
6317		/* Add the child socket directly into the accept queue */
6318		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
 
 
 
 
 
6319		sk->sk_data_ready(sk);
6320		bh_unlock_sock(fastopen_sk);
6321		sock_put(fastopen_sk);
6322	} else {
6323		tcp_rsk(req)->tfo_listener = false;
6324		if (!want_cookie)
6325			inet_csk_reqsk_queue_hash_add(sk, req,
6326				tcp_timeout_init((struct sock *)req));
 
6327		af_ops->send_synack(sk, dst, &fl, req, &foc,
6328				    !want_cookie ? TCP_SYNACK_NORMAL :
6329						   TCP_SYNACK_COOKIE);
 
6330		if (want_cookie) {
6331			reqsk_free(req);
6332			return 0;
6333		}
6334	}
6335	reqsk_put(req);
6336	return 0;
6337
6338drop_and_release:
6339	dst_release(dst);
6340drop_and_free:
6341	reqsk_free(req);
6342drop:
6343	tcp_listendrop(sk);
6344	return 0;
6345}
6346EXPORT_SYMBOL(tcp_conn_request);