Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *		Florian La Roche, <flla@stud.uni-sb.de>
  14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19 *		Jorge Cwik, <jorge@laser.satlink.net>
  20 */
  21
  22/*
  23 * Changes:
  24 *		Pedro Roque	:	Fast Retransmit/Recovery.
  25 *					Two receive queues.
  26 *					Retransmit queue handled by TCP.
  27 *					Better retransmit timer handling.
  28 *					New congestion avoidance.
  29 *					Header prediction.
  30 *					Variable renaming.
  31 *
  32 *		Eric		:	Fast Retransmit.
  33 *		Randy Scott	:	MSS option defines.
  34 *		Eric Schenk	:	Fixes to slow start algorithm.
  35 *		Eric Schenk	:	Yet another double ACK bug.
  36 *		Eric Schenk	:	Delayed ACK bug fixes.
  37 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
  38 *		David S. Miller	:	Don't allow zero congestion window.
  39 *		Eric Schenk	:	Fix retransmitter so that it sends
  40 *					next packet on ack of previous packet.
  41 *		Andi Kleen	:	Moved open_request checking here
  42 *					and process RSTs for open_requests.
  43 *		Andi Kleen	:	Better prune_queue, and other fixes.
  44 *		Andrey Savochkin:	Fix RTT measurements in the presence of
  45 *					timestamps.
  46 *		Andrey Savochkin:	Check sequence numbers correctly when
  47 *					removing SACKs due to in sequence incoming
  48 *					data segments.
  49 *		Andi Kleen:		Make sure we never ack data there is not
  50 *					enough room for. Also make this condition
  51 *					a fatal error if it might still happen.
  52 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
  53 *					connections with MSS<min(MTU,ann. MSS)
  54 *					work without delayed acks.
  55 *		Andi Kleen:		Process packets with PSH set in the
  56 *					fast path.
  57 *		J Hadi Salim:		ECN support
  58 *	 	Andrei Gurtov,
  59 *		Pasi Sarolahti,
  60 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
  61 *					engine. Lots of bugs are found.
  62 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
  63 */
  64
  65#define pr_fmt(fmt) "TCP: " fmt
  66
  67#include <linux/mm.h>
  68#include <linux/slab.h>
  69#include <linux/module.h>
  70#include <linux/sysctl.h>
  71#include <linux/kernel.h>
  72#include <linux/prefetch.h>
  73#include <net/dst.h>
  74#include <net/tcp.h>
  75#include <net/inet_common.h>
  76#include <linux/ipsec.h>
  77#include <asm/unaligned.h>
  78#include <linux/errqueue.h>
  79#include <trace/events/tcp.h>
  80#include <linux/jump_label_ratelimit.h>
  81#include <net/busy_poll.h>
  82#include <net/mptcp.h>
 
 
 
 
 
 
 
 
 
  83
 
 
  84int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
 
 
 
 
 
 
 
 
  85
  86#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
  87#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
  88#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
  89#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
  90#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
  91#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
  92#define FLAG_ECE		0x40 /* ECE in this ACK				*/
  93#define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
  94#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
  95#define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
  96#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  97#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
  98#define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
  99#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
 100#define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
 101#define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
 102#define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
 103#define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
 104
 105#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
 106#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
 107#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
 108#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
 
 109
 110#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
 111#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
 112
 113#define REXMIT_NONE	0 /* no loss recovery to do */
 114#define REXMIT_LOST	1 /* retransmit packets marked lost */
 115#define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
 116
 117#if IS_ENABLED(CONFIG_TLS_DEVICE)
 118static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
 119
 120void clean_acked_data_enable(struct inet_connection_sock *icsk,
 121			     void (*cad)(struct sock *sk, u32 ack_seq))
 122{
 123	icsk->icsk_clean_acked = cad;
 124	static_branch_deferred_inc(&clean_acked_data_enabled);
 125}
 126EXPORT_SYMBOL_GPL(clean_acked_data_enable);
 127
 128void clean_acked_data_disable(struct inet_connection_sock *icsk)
 129{
 130	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
 131	icsk->icsk_clean_acked = NULL;
 132}
 133EXPORT_SYMBOL_GPL(clean_acked_data_disable);
 134
 135void clean_acked_data_flush(void)
 136{
 137	static_key_deferred_flush(&clean_acked_data_enabled);
 138}
 139EXPORT_SYMBOL_GPL(clean_acked_data_flush);
 140#endif
 141
 142#ifdef CONFIG_CGROUP_BPF
 143static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
 144{
 145	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
 146		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
 147				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
 148	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
 149						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
 150	struct bpf_sock_ops_kern sock_ops;
 151
 152	if (likely(!unknown_opt && !parse_all_opt))
 153		return;
 154
 155	/* The skb will be handled in the
 156	 * bpf_skops_established() or
 157	 * bpf_skops_write_hdr_opt().
 158	 */
 159	switch (sk->sk_state) {
 160	case TCP_SYN_RECV:
 161	case TCP_SYN_SENT:
 162	case TCP_LISTEN:
 163		return;
 164	}
 165
 166	sock_owned_by_me(sk);
 167
 168	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
 169	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
 170	sock_ops.is_fullsock = 1;
 171	sock_ops.sk = sk;
 172	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
 173
 174	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
 175}
 176
 177static void bpf_skops_established(struct sock *sk, int bpf_op,
 178				  struct sk_buff *skb)
 179{
 180	struct bpf_sock_ops_kern sock_ops;
 181
 182	sock_owned_by_me(sk);
 183
 184	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
 185	sock_ops.op = bpf_op;
 186	sock_ops.is_fullsock = 1;
 187	sock_ops.sk = sk;
 188	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
 189	if (skb)
 190		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
 191
 192	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
 193}
 194#else
 195static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
 196{
 197}
 198
 199static void bpf_skops_established(struct sock *sk, int bpf_op,
 200				  struct sk_buff *skb)
 201{
 202}
 203#endif
 204
 205static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
 206			     unsigned int len)
 207{
 208	static bool __once __read_mostly;
 209
 210	if (!__once) {
 211		struct net_device *dev;
 212
 213		__once = true;
 214
 215		rcu_read_lock();
 216		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
 217		if (!dev || len >= dev->mtu)
 218			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
 219				dev ? dev->name : "Unknown driver");
 220		rcu_read_unlock();
 221	}
 222}
 223
 224/* Adapt the MSS value used to make delayed ack decision to the
 225 * real world.
 226 */
 227static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
 228{
 229	struct inet_connection_sock *icsk = inet_csk(sk);
 230	const unsigned int lss = icsk->icsk_ack.last_seg_size;
 231	unsigned int len;
 232
 233	icsk->icsk_ack.last_seg_size = 0;
 234
 235	/* skb->len may jitter because of SACKs, even if peer
 236	 * sends good full-sized frames.
 237	 */
 238	len = skb_shinfo(skb)->gso_size ? : skb->len;
 239	if (len >= icsk->icsk_ack.rcv_mss) {
 240		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
 241					       tcp_sk(sk)->advmss);
 242		/* Account for possibly-removed options */
 243		if (unlikely(len > icsk->icsk_ack.rcv_mss +
 244				   MAX_TCP_OPTION_SPACE))
 245			tcp_gro_dev_warn(sk, skb, len);
 246	} else {
 247		/* Otherwise, we make more careful check taking into account,
 248		 * that SACKs block is variable.
 249		 *
 250		 * "len" is invariant segment length, including TCP header.
 251		 */
 252		len += skb->data - skb_transport_header(skb);
 253		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
 254		    /* If PSH is not set, packet should be
 255		     * full sized, provided peer TCP is not badly broken.
 256		     * This observation (if it is correct 8)) allows
 257		     * to handle super-low mtu links fairly.
 258		     */
 259		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
 260		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
 261			/* Subtract also invariant (if peer is RFC compliant),
 262			 * tcp header plus fixed timestamp option length.
 263			 * Resulting "len" is MSS free of SACK jitter.
 264			 */
 265			len -= tcp_sk(sk)->tcp_header_len;
 266			icsk->icsk_ack.last_seg_size = len;
 267			if (len == lss) {
 268				icsk->icsk_ack.rcv_mss = len;
 269				return;
 270			}
 271		}
 272		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
 273			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
 274		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
 275	}
 276}
 277
 278static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
 279{
 280	struct inet_connection_sock *icsk = inet_csk(sk);
 281	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
 282
 283	if (quickacks == 0)
 284		quickacks = 2;
 285	quickacks = min(quickacks, max_quickacks);
 286	if (quickacks > icsk->icsk_ack.quick)
 287		icsk->icsk_ack.quick = quickacks;
 288}
 289
 290void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
 291{
 292	struct inet_connection_sock *icsk = inet_csk(sk);
 293
 294	tcp_incr_quickack(sk, max_quickacks);
 295	inet_csk_exit_pingpong_mode(sk);
 296	icsk->icsk_ack.ato = TCP_ATO_MIN;
 297}
 298EXPORT_SYMBOL(tcp_enter_quickack_mode);
 299
 300/* Send ACKs quickly, if "quick" count is not exhausted
 301 * and the session is not interactive.
 302 */
 303
 304static bool tcp_in_quickack_mode(struct sock *sk)
 305{
 306	const struct inet_connection_sock *icsk = inet_csk(sk);
 307	const struct dst_entry *dst = __sk_dst_get(sk);
 308
 309	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
 310		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
 311}
 312
 313static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
 314{
 315	if (tp->ecn_flags & TCP_ECN_OK)
 316		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
 317}
 318
 319static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
 320{
 321	if (tcp_hdr(skb)->cwr) {
 322		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 323
 324		/* If the sender is telling us it has entered CWR, then its
 325		 * cwnd may be very low (even just 1 packet), so we should ACK
 326		 * immediately.
 327		 */
 328		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
 329			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
 330	}
 331}
 332
 333static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
 334{
 335	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
 336}
 337
 338static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
 339{
 340	struct tcp_sock *tp = tcp_sk(sk);
 341
 342	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
 343	case INET_ECN_NOT_ECT:
 344		/* Funny extension: if ECT is not set on a segment,
 345		 * and we already seen ECT on a previous segment,
 346		 * it is probably a retransmit.
 347		 */
 348		if (tp->ecn_flags & TCP_ECN_SEEN)
 349			tcp_enter_quickack_mode(sk, 2);
 350		break;
 351	case INET_ECN_CE:
 352		if (tcp_ca_needs_ecn(sk))
 353			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
 354
 355		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
 356			/* Better not delay acks, sender can have a very low cwnd */
 357			tcp_enter_quickack_mode(sk, 2);
 358			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
 359		}
 360		tp->ecn_flags |= TCP_ECN_SEEN;
 361		break;
 362	default:
 363		if (tcp_ca_needs_ecn(sk))
 364			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
 365		tp->ecn_flags |= TCP_ECN_SEEN;
 366		break;
 367	}
 368}
 369
 370static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
 371{
 372	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
 373		__tcp_ecn_check_ce(sk, skb);
 374}
 375
 376static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
 377{
 378	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
 379		tp->ecn_flags &= ~TCP_ECN_OK;
 380}
 381
 382static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
 383{
 384	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
 385		tp->ecn_flags &= ~TCP_ECN_OK;
 386}
 387
 388static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
 389{
 390	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
 391		return true;
 392	return false;
 393}
 394
 395/* Buffer size and advertised window tuning.
 396 *
 397 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
 398 */
 399
 400static void tcp_sndbuf_expand(struct sock *sk)
 401{
 402	const struct tcp_sock *tp = tcp_sk(sk);
 403	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
 404	int sndmem, per_mss;
 405	u32 nr_segs;
 406
 407	/* Worst case is non GSO/TSO : each frame consumes one skb
 408	 * and skb->head is kmalloced using power of two area of memory
 409	 */
 410	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
 411		  MAX_TCP_HEADER +
 412		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 413
 414	per_mss = roundup_pow_of_two(per_mss) +
 415		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
 416
 417	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
 418	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
 419
 420	/* Fast Recovery (RFC 5681 3.2) :
 421	 * Cubic needs 1.7 factor, rounded to 2 to include
 422	 * extra cushion (application might react slowly to EPOLLOUT)
 423	 */
 424	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
 425	sndmem *= nr_segs * per_mss;
 426
 427	if (sk->sk_sndbuf < sndmem)
 428		WRITE_ONCE(sk->sk_sndbuf,
 429			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
 430}
 431
 432/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
 433 *
 434 * All tcp_full_space() is split to two parts: "network" buffer, allocated
 435 * forward and advertised in receiver window (tp->rcv_wnd) and
 436 * "application buffer", required to isolate scheduling/application
 437 * latencies from network.
 438 * window_clamp is maximal advertised window. It can be less than
 439 * tcp_full_space(), in this case tcp_full_space() - window_clamp
 440 * is reserved for "application" buffer. The less window_clamp is
 441 * the smoother our behaviour from viewpoint of network, but the lower
 442 * throughput and the higher sensitivity of the connection to losses. 8)
 443 *
 444 * rcv_ssthresh is more strict window_clamp used at "slow start"
 445 * phase to predict further behaviour of this connection.
 446 * It is used for two goals:
 447 * - to enforce header prediction at sender, even when application
 448 *   requires some significant "application buffer". It is check #1.
 449 * - to prevent pruning of receive queue because of misprediction
 450 *   of receiver window. Check #2.
 451 *
 452 * The scheme does not work when sender sends good segments opening
 453 * window and then starts to feed us spaghetti. But it should work
 454 * in common situations. Otherwise, we have to rely on queue collapsing.
 455 */
 456
 457/* Slow part of check#2. */
 458static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
 459			     unsigned int skbtruesize)
 460{
 461	struct tcp_sock *tp = tcp_sk(sk);
 462	/* Optimize this! */
 463	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
 464	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
 465
 466	while (tp->rcv_ssthresh <= window) {
 467		if (truesize <= skb->len)
 468			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
 469
 470		truesize >>= 1;
 471		window >>= 1;
 472	}
 473	return 0;
 474}
 475
 476/* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
 477 * can play nice with us, as sk_buff and skb->head might be either
 478 * freed or shared with up to MAX_SKB_FRAGS segments.
 479 * Only give a boost to drivers using page frag(s) to hold the frame(s),
 480 * and if no payload was pulled in skb->head before reaching us.
 481 */
 482static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
 483{
 484	u32 truesize = skb->truesize;
 485
 486	if (adjust && !skb_headlen(skb)) {
 487		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
 488		/* paranoid check, some drivers might be buggy */
 489		if (unlikely((int)truesize < (int)skb->len))
 490			truesize = skb->truesize;
 491	}
 492	return truesize;
 493}
 494
 495static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
 496			    bool adjust)
 497{
 498	struct tcp_sock *tp = tcp_sk(sk);
 499	int room;
 500
 501	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
 502
 503	if (room <= 0)
 504		return;
 505
 506	/* Check #1 */
 507	if (!tcp_under_memory_pressure(sk)) {
 508		unsigned int truesize = truesize_adjust(adjust, skb);
 
 509		int incr;
 510
 511		/* Check #2. Increase window, if skb with such overhead
 512		 * will fit to rcvbuf in future.
 513		 */
 514		if (tcp_win_from_space(sk, truesize) <= skb->len)
 515			incr = 2 * tp->advmss;
 516		else
 517			incr = __tcp_grow_window(sk, skb, truesize);
 518
 519		if (incr) {
 520			incr = max_t(int, incr, 2 * skb->len);
 521			tp->rcv_ssthresh += min(room, incr);
 522			inet_csk(sk)->icsk_ack.quick |= 1;
 523		}
 524	} else {
 525		/* Under pressure:
 526		 * Adjust rcv_ssthresh according to reserved mem
 527		 */
 528		tcp_adjust_rcv_ssthresh(sk);
 529	}
 530}
 531
 532/* 3. Try to fixup all. It is made immediately after connection enters
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 533 *    established state.
 534 */
 535static void tcp_init_buffer_space(struct sock *sk)
 536{
 537	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
 538	struct tcp_sock *tp = tcp_sk(sk);
 539	int maxwin;
 540
 
 
 541	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
 542		tcp_sndbuf_expand(sk);
 543
 544	tcp_mstamp_refresh(tp);
 545	tp->rcvq_space.time = tp->tcp_mstamp;
 546	tp->rcvq_space.seq = tp->copied_seq;
 547
 548	maxwin = tcp_full_space(sk);
 549
 550	if (tp->window_clamp >= maxwin) {
 551		tp->window_clamp = maxwin;
 552
 553		if (tcp_app_win && maxwin > 4 * tp->advmss)
 554			tp->window_clamp = max(maxwin -
 555					       (maxwin >> tcp_app_win),
 556					       4 * tp->advmss);
 557	}
 558
 559	/* Force reservation of one segment. */
 560	if (tcp_app_win &&
 561	    tp->window_clamp > 2 * tp->advmss &&
 562	    tp->window_clamp + tp->advmss > maxwin)
 563		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
 564
 565	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
 566	tp->snd_cwnd_stamp = tcp_jiffies32;
 567	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
 568				    (u32)TCP_INIT_CWND * tp->advmss);
 569}
 570
 571/* 4. Recalculate window clamp after socket hit its memory bounds. */
 572static void tcp_clamp_window(struct sock *sk)
 573{
 574	struct tcp_sock *tp = tcp_sk(sk);
 575	struct inet_connection_sock *icsk = inet_csk(sk);
 576	struct net *net = sock_net(sk);
 577	int rmem2;
 578
 579	icsk->icsk_ack.quick = 0;
 580	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
 581
 582	if (sk->sk_rcvbuf < rmem2 &&
 583	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
 584	    !tcp_under_memory_pressure(sk) &&
 585	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
 586		WRITE_ONCE(sk->sk_rcvbuf,
 587			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
 588	}
 589	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
 590		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
 591}
 592
 593/* Initialize RCV_MSS value.
 594 * RCV_MSS is an our guess about MSS used by the peer.
 595 * We haven't any direct information about the MSS.
 596 * It's better to underestimate the RCV_MSS rather than overestimate.
 597 * Overestimations make us ACKing less frequently than needed.
 598 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
 599 */
 600void tcp_initialize_rcv_mss(struct sock *sk)
 601{
 602	const struct tcp_sock *tp = tcp_sk(sk);
 603	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
 604
 605	hint = min(hint, tp->rcv_wnd / 2);
 606	hint = min(hint, TCP_MSS_DEFAULT);
 607	hint = max(hint, TCP_MIN_MSS);
 608
 609	inet_csk(sk)->icsk_ack.rcv_mss = hint;
 610}
 611EXPORT_SYMBOL(tcp_initialize_rcv_mss);
 612
 613/* Receiver "autotuning" code.
 614 *
 615 * The algorithm for RTT estimation w/o timestamps is based on
 616 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
 617 * <https://public.lanl.gov/radiant/pubs.html#DRS>
 618 *
 619 * More detail on this code can be found at
 620 * <http://staff.psc.edu/jheffner/>,
 621 * though this reference is out of date.  A new paper
 622 * is pending.
 623 */
 624static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
 625{
 626	u32 new_sample = tp->rcv_rtt_est.rtt_us;
 627	long m = sample;
 628
 
 
 
 629	if (new_sample != 0) {
 630		/* If we sample in larger samples in the non-timestamp
 631		 * case, we could grossly overestimate the RTT especially
 632		 * with chatty applications or bulk transfer apps which
 633		 * are stalled on filesystem I/O.
 634		 *
 635		 * Also, since we are only going for a minimum in the
 636		 * non-timestamp case, we do not smooth things out
 637		 * else with timestamps disabled convergence takes too
 638		 * long.
 639		 */
 640		if (!win_dep) {
 641			m -= (new_sample >> 3);
 642			new_sample += m;
 643		} else {
 644			m <<= 3;
 645			if (m < new_sample)
 646				new_sample = m;
 647		}
 648	} else {
 649		/* No previous measure. */
 650		new_sample = m << 3;
 651	}
 652
 653	tp->rcv_rtt_est.rtt_us = new_sample;
 
 654}
 655
 656static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
 657{
 658	u32 delta_us;
 659
 660	if (tp->rcv_rtt_est.time == 0)
 661		goto new_measure;
 662	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
 663		return;
 664	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
 665	if (!delta_us)
 666		delta_us = 1;
 667	tcp_rcv_rtt_update(tp, delta_us, 1);
 668
 669new_measure:
 670	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
 671	tp->rcv_rtt_est.time = tp->tcp_mstamp;
 672}
 673
 674static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
 675					  const struct sk_buff *skb)
 676{
 677	struct tcp_sock *tp = tcp_sk(sk);
 678
 679	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
 680		return;
 681	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
 682
 683	if (TCP_SKB_CB(skb)->end_seq -
 684	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
 685		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
 686		u32 delta_us;
 687
 688		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
 689			if (!delta)
 690				delta = 1;
 691			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
 692			tcp_rcv_rtt_update(tp, delta_us, 0);
 693		}
 694	}
 695}
 696
 697/*
 698 * This function should be called every time data is copied to user space.
 699 * It calculates the appropriate TCP receive buffer space.
 700 */
 701void tcp_rcv_space_adjust(struct sock *sk)
 702{
 703	struct tcp_sock *tp = tcp_sk(sk);
 704	u32 copied;
 705	int time;
 
 706
 707	trace_tcp_rcv_space_adjust(sk);
 
 708
 709	tcp_mstamp_refresh(tp);
 710	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
 711	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
 712		return;
 713
 714	/* Number of bytes copied to user in last RTT */
 715	copied = tp->copied_seq - tp->rcvq_space.seq;
 716	if (copied <= tp->rcvq_space.space)
 717		goto new_measure;
 718
 719	/* A bit of theory :
 720	 * copied = bytes received in previous RTT, our base window
 721	 * To cope with packet losses, we need a 2x factor
 722	 * To cope with slow start, and sender growing its cwin by 100 %
 723	 * every RTT, we need a 4x factor, because the ACK we are sending
 724	 * now is for the next RTT, not the current one :
 725	 * <prev RTT . ><current RTT .. ><next RTT .... >
 726	 */
 727
 728	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
 729	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
 730		int rcvmem, rcvbuf;
 731		u64 rcvwin, grow;
 732
 733		/* minimal window to cope with packet losses, assuming
 734		 * steady state. Add some cushion because of small variations.
 735		 */
 736		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
 737
 738		/* Accommodate for sender rate increase (eg. slow start) */
 739		grow = rcvwin * (copied - tp->rcvq_space.space);
 740		do_div(grow, tp->rcvq_space.space);
 741		rcvwin += (grow << 1);
 742
 743		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
 744		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
 745			rcvmem += 128;
 746
 747		do_div(rcvwin, tp->advmss);
 748		rcvbuf = min_t(u64, rcvwin * rcvmem,
 749			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
 750		if (rcvbuf > sk->sk_rcvbuf) {
 751			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
 
 
 
 
 
 
 
 
 
 
 752
 753			/* Make the window clamp follow along.  */
 754			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
 
 755		}
 756	}
 757	tp->rcvq_space.space = copied;
 758
 759new_measure:
 760	tp->rcvq_space.seq = tp->copied_seq;
 761	tp->rcvq_space.time = tp->tcp_mstamp;
 762}
 763
 764/* There is something which you must keep in mind when you analyze the
 765 * behavior of the tp->ato delayed ack timeout interval.  When a
 766 * connection starts up, we want to ack as quickly as possible.  The
 767 * problem is that "good" TCP's do slow start at the beginning of data
 768 * transmission.  The means that until we send the first few ACK's the
 769 * sender will sit on his end and only queue most of his data, because
 770 * he can only send snd_cwnd unacked packets at any given time.  For
 771 * each ACK we send, he increments snd_cwnd and transmits more of his
 772 * queue.  -DaveM
 773 */
 774static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
 775{
 776	struct tcp_sock *tp = tcp_sk(sk);
 777	struct inet_connection_sock *icsk = inet_csk(sk);
 778	u32 now;
 779
 780	inet_csk_schedule_ack(sk);
 781
 782	tcp_measure_rcv_mss(sk, skb);
 783
 784	tcp_rcv_rtt_measure(tp);
 785
 786	now = tcp_jiffies32;
 787
 788	if (!icsk->icsk_ack.ato) {
 789		/* The _first_ data packet received, initialize
 790		 * delayed ACK engine.
 791		 */
 792		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
 793		icsk->icsk_ack.ato = TCP_ATO_MIN;
 794	} else {
 795		int m = now - icsk->icsk_ack.lrcvtime;
 796
 797		if (m <= TCP_ATO_MIN / 2) {
 798			/* The fastest case is the first. */
 799			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
 800		} else if (m < icsk->icsk_ack.ato) {
 801			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
 802			if (icsk->icsk_ack.ato > icsk->icsk_rto)
 803				icsk->icsk_ack.ato = icsk->icsk_rto;
 804		} else if (m > icsk->icsk_rto) {
 805			/* Too long gap. Apparently sender failed to
 806			 * restart window, so that we send ACKs quickly.
 807			 */
 808			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
 
 809		}
 810	}
 811	icsk->icsk_ack.lrcvtime = now;
 812
 813	tcp_ecn_check_ce(sk, skb);
 814
 815	if (skb->len >= 128)
 816		tcp_grow_window(sk, skb, true);
 817}
 818
 819/* Called to compute a smoothed rtt estimate. The data fed to this
 820 * routine either comes from timestamps, or from segments that were
 821 * known _not_ to have been retransmitted [see Karn/Partridge
 822 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
 823 * piece by Van Jacobson.
 824 * NOTE: the next three routines used to be one big routine.
 825 * To save cycles in the RFC 1323 implementation it was better to break
 826 * it up into three procedures. -- erics
 827 */
 828static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
 829{
 830	struct tcp_sock *tp = tcp_sk(sk);
 831	long m = mrtt_us; /* RTT */
 832	u32 srtt = tp->srtt_us;
 833
 834	/*	The following amusing code comes from Jacobson's
 835	 *	article in SIGCOMM '88.  Note that rtt and mdev
 836	 *	are scaled versions of rtt and mean deviation.
 837	 *	This is designed to be as fast as possible
 838	 *	m stands for "measurement".
 839	 *
 840	 *	On a 1990 paper the rto value is changed to:
 841	 *	RTO = rtt + 4 * mdev
 842	 *
 843	 * Funny. This algorithm seems to be very broken.
 844	 * These formulae increase RTO, when it should be decreased, increase
 845	 * too slowly, when it should be increased quickly, decrease too quickly
 846	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
 847	 * does not matter how to _calculate_ it. Seems, it was trap
 848	 * that VJ failed to avoid. 8)
 849	 */
 850	if (srtt != 0) {
 851		m -= (srtt >> 3);	/* m is now error in rtt est */
 852		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
 
 
 853		if (m < 0) {
 854			m = -m;		/* m is now abs(error) */
 855			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 856			/* This is similar to one of Eifel findings.
 857			 * Eifel blocks mdev updates when rtt decreases.
 858			 * This solution is a bit different: we use finer gain
 859			 * for mdev in this case (alpha*beta).
 860			 * Like Eifel it also prevents growth of rto,
 861			 * but also it limits too fast rto decreases,
 862			 * happening in pure Eifel.
 863			 */
 864			if (m > 0)
 865				m >>= 3;
 866		} else {
 867			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 868		}
 869		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
 870		if (tp->mdev_us > tp->mdev_max_us) {
 871			tp->mdev_max_us = tp->mdev_us;
 872			if (tp->mdev_max_us > tp->rttvar_us)
 873				tp->rttvar_us = tp->mdev_max_us;
 874		}
 875		if (after(tp->snd_una, tp->rtt_seq)) {
 876			if (tp->mdev_max_us < tp->rttvar_us)
 877				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
 878			tp->rtt_seq = tp->snd_nxt;
 879			tp->mdev_max_us = tcp_rto_min_us(sk);
 880
 881			tcp_bpf_rtt(sk);
 882		}
 883	} else {
 884		/* no previous measure. */
 885		srtt = m << 3;		/* take the measured time to be rtt */
 886		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
 887		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
 888		tp->mdev_max_us = tp->rttvar_us;
 889		tp->rtt_seq = tp->snd_nxt;
 890
 891		tcp_bpf_rtt(sk);
 892	}
 893	tp->srtt_us = max(1U, srtt);
 894}
 895
 896static void tcp_update_pacing_rate(struct sock *sk)
 897{
 898	const struct tcp_sock *tp = tcp_sk(sk);
 899	u64 rate;
 900
 901	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
 902	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
 903
 904	/* current rate is (cwnd * mss) / srtt
 905	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
 906	 * In Congestion Avoidance phase, set it to 120 % the current rate.
 907	 *
 908	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
 909	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
 910	 *	 end of slow start and should slow down.
 911	 */
 912	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
 913		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
 914	else
 915		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
 916
 917	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
 918
 919	if (likely(tp->srtt_us))
 920		do_div(rate, tp->srtt_us);
 921
 922	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
 923	 * without any lock. We want to make sure compiler wont store
 924	 * intermediate values in this location.
 925	 */
 926	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
 927					     sk->sk_max_pacing_rate));
 928}
 929
 930/* Calculate rto without backoff.  This is the second half of Van Jacobson's
 931 * routine referred to above.
 932 */
 933static void tcp_set_rto(struct sock *sk)
 934{
 935	const struct tcp_sock *tp = tcp_sk(sk);
 936	/* Old crap is replaced with new one. 8)
 937	 *
 938	 * More seriously:
 939	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
 940	 *    It cannot be less due to utterly erratic ACK generation made
 941	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
 942	 *    to do with delayed acks, because at cwnd>2 true delack timeout
 943	 *    is invisible. Actually, Linux-2.4 also generates erratic
 944	 *    ACKs in some circumstances.
 945	 */
 946	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
 947
 948	/* 2. Fixups made earlier cannot be right.
 949	 *    If we do not estimate RTO correctly without them,
 950	 *    all the algo is pure shit and should be replaced
 951	 *    with correct one. It is exactly, which we pretend to do.
 952	 */
 953
 954	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
 955	 * guarantees that rto is higher.
 956	 */
 957	tcp_bound_rto(sk);
 958}
 959
 960__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 961{
 962	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
 963
 964	if (!cwnd)
 965		cwnd = TCP_INIT_CWND;
 966	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
 967}
 968
 969struct tcp_sacktag_state {
 970	/* Timestamps for earliest and latest never-retransmitted segment
 971	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
 972	 * but congestion control should still get an accurate delay signal.
 973	 */
 974	u64	first_sackt;
 975	u64	last_sackt;
 976	u32	reord;
 977	u32	sack_delivered;
 978	int	flag;
 979	unsigned int mss_now;
 980	struct rate_sample *rate;
 981};
 982
 983/* Take a notice that peer is sending D-SACKs. Skip update of data delivery
 984 * and spurious retransmission information if this DSACK is unlikely caused by
 985 * sender's action:
 986 * - DSACKed sequence range is larger than maximum receiver's window.
 987 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 988 */
 989static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
 990			  u32 end_seq, struct tcp_sacktag_state *state)
 991{
 992	u32 seq_len, dup_segs = 1;
 
 
 
 
 993
 994	if (!before(start_seq, end_seq))
 995		return 0;
 
 
 
 996
 997	seq_len = end_seq - start_seq;
 998	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
 999	if (seq_len > tp->max_window)
1000		return 0;
1001	if (seq_len > tp->mss_cache)
1002		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1003	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1004		state->flag |= FLAG_DSACK_TLP;
1005
1006	tp->dsack_dups += dup_segs;
1007	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1008	if (tp->dsack_dups > tp->total_retrans)
1009		return 0;
1010
1011	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1012	/* We increase the RACK ordering window in rounds where we receive
1013	 * DSACKs that may have been due to reordering causing RACK to trigger
1014	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1015	 * without having seen reordering, or that match TLP probes (TLP
1016	 * is timer-driven, not triggered by RACK).
1017	 */
1018	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1019		tp->rack.dsack_seen = 1;
1020
1021	state->flag |= FLAG_DSACKING_ACK;
1022	/* A spurious retransmission is delivered */
1023	state->sack_delivered += dup_segs;
1024
1025	return dup_segs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1026}
1027
1028/* It's reordering when higher sequence was delivered (i.e. sacked) before
1029 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1030 * distance is approximated in full-mss packet distance ("reordering").
1031 */
1032static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1033				      const int ts)
1034{
1035	struct tcp_sock *tp = tcp_sk(sk);
1036	const u32 mss = tp->mss_cache;
1037	u32 fack, metric;
1038
1039	fack = tcp_highest_sack_seq(tp);
1040	if (!before(low_seq, fack))
1041		return;
 
 
 
 
 
 
 
 
1042
1043	metric = fack - low_seq;
1044	if ((metric > tp->reordering * mss) && mss) {
1045#if FASTRETRANS_DEBUG > 1
1046		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1047			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1048			 tp->reordering,
1049			 0,
1050			 tp->sacked_out,
1051			 tp->undo_marker ? tp->undo_retrans : 0);
1052#endif
1053		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1054				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1055	}
1056
1057	/* This exciting event is worth to be remembered. 8) */
1058	tp->reord_seen++;
1059	NET_INC_STATS(sock_net(sk),
1060		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1061}
1062
1063 /* This must be called before lost_out or retrans_out are updated
1064  * on a new loss, because we want to know if all skbs previously
1065  * known to be lost have already been retransmitted, indicating
1066  * that this newly lost skb is our next skb to retransmit.
1067  */
1068static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1069{
1070	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1071	    (tp->retransmit_skb_hint &&
1072	     before(TCP_SKB_CB(skb)->seq,
1073		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1074		tp->retransmit_skb_hint = skb;
1075}
1076
1077/* Sum the number of packets on the wire we have marked as lost, and
1078 * notify the congestion control module that the given skb was marked lost.
1079 */
1080static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1081{
1082	tp->lost += tcp_skb_pcount(skb);
1083}
1084
1085void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1086{
1087	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1088	struct tcp_sock *tp = tcp_sk(sk);
1089
1090	if (sacked & TCPCB_SACKED_ACKED)
1091		return;
1092
1093	tcp_verify_retransmit_hint(tp, skb);
1094	if (sacked & TCPCB_LOST) {
1095		if (sacked & TCPCB_SACKED_RETRANS) {
1096			/* Account for retransmits that are lost again */
1097			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1098			tp->retrans_out -= tcp_skb_pcount(skb);
1099			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1100				      tcp_skb_pcount(skb));
1101			tcp_notify_skb_loss_event(tp, skb);
1102		}
1103	} else {
1104		tp->lost_out += tcp_skb_pcount(skb);
1105		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1106		tcp_notify_skb_loss_event(tp, skb);
1107	}
1108}
1109
1110/* Updates the delivered and delivered_ce counts */
1111static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1112				bool ece_ack)
1113{
1114	tp->delivered += delivered;
1115	if (ece_ack)
1116		tp->delivered_ce += delivered;
 
 
 
1117}
1118
1119/* This procedure tags the retransmission queue when SACKs arrive.
1120 *
1121 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1122 * Packets in queue with these bits set are counted in variables
1123 * sacked_out, retrans_out and lost_out, correspondingly.
1124 *
1125 * Valid combinations are:
1126 * Tag  InFlight	Description
1127 * 0	1		- orig segment is in flight.
1128 * S	0		- nothing flies, orig reached receiver.
1129 * L	0		- nothing flies, orig lost by net.
1130 * R	2		- both orig and retransmit are in flight.
1131 * L|R	1		- orig is lost, retransmit is in flight.
1132 * S|R  1		- orig reached receiver, retrans is still in flight.
1133 * (L|S|R is logically valid, it could occur when L|R is sacked,
1134 *  but it is equivalent to plain S and code short-curcuits it to S.
1135 *  L|S is logically invalid, it would mean -1 packet in flight 8))
1136 *
1137 * These 6 states form finite state machine, controlled by the following events:
1138 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1139 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1140 * 3. Loss detection event of two flavors:
1141 *	A. Scoreboard estimator decided the packet is lost.
1142 *	   A'. Reno "three dupacks" marks head of queue lost.
1143 *	B. SACK arrives sacking SND.NXT at the moment, when the
 
 
 
1144 *	   segment was retransmitted.
1145 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1146 *
1147 * It is pleasant to note, that state diagram turns out to be commutative,
1148 * so that we are allowed not to be bothered by order of our actions,
1149 * when multiple events arrive simultaneously. (see the function below).
1150 *
1151 * Reordering detection.
1152 * --------------------
1153 * Reordering metric is maximal distance, which a packet can be displaced
1154 * in packet stream. With SACKs we can estimate it:
1155 *
1156 * 1. SACK fills old hole and the corresponding segment was not
1157 *    ever retransmitted -> reordering. Alas, we cannot use it
1158 *    when segment was retransmitted.
1159 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1160 *    for retransmitted and already SACKed segment -> reordering..
1161 * Both of these heuristics are not used in Loss state, when we cannot
1162 * account for retransmits accurately.
1163 *
1164 * SACK block validation.
1165 * ----------------------
1166 *
1167 * SACK block range validation checks that the received SACK block fits to
1168 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1169 * Note that SND.UNA is not included to the range though being valid because
1170 * it means that the receiver is rather inconsistent with itself reporting
1171 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1172 * perfectly valid, however, in light of RFC2018 which explicitly states
1173 * that "SACK block MUST reflect the newest segment.  Even if the newest
1174 * segment is going to be discarded ...", not that it looks very clever
1175 * in case of head skb. Due to potentional receiver driven attacks, we
1176 * choose to avoid immediate execution of a walk in write queue due to
1177 * reneging and defer head skb's loss recovery to standard loss recovery
1178 * procedure that will eventually trigger (nothing forbids us doing this).
1179 *
1180 * Implements also blockage to start_seq wrap-around. Problem lies in the
1181 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1182 * there's no guarantee that it will be before snd_nxt (n). The problem
1183 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1184 * wrap (s_w):
1185 *
1186 *         <- outs wnd ->                          <- wrapzone ->
1187 *         u     e      n                         u_w   e_w  s n_w
1188 *         |     |      |                          |     |   |  |
1189 * |<------------+------+----- TCP seqno space --------------+---------->|
1190 * ...-- <2^31 ->|                                           |<--------...
1191 * ...---- >2^31 ------>|                                    |<--------...
1192 *
1193 * Current code wouldn't be vulnerable but it's better still to discard such
1194 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1195 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1196 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1197 * equal to the ideal case (infinite seqno space without wrap caused issues).
1198 *
1199 * With D-SACK the lower bound is extended to cover sequence space below
1200 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1201 * again, D-SACK block must not to go across snd_una (for the same reason as
1202 * for the normal SACK blocks, explained above). But there all simplicity
1203 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1204 * fully below undo_marker they do not affect behavior in anyway and can
1205 * therefore be safely ignored. In rare cases (which are more or less
1206 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1207 * fragmentation and packet reordering past skb's retransmission. To consider
1208 * them correctly, the acceptable range must be extended even more though
1209 * the exact amount is rather hard to quantify. However, tp->max_window can
1210 * be used as an exaggerated estimate.
1211 */
1212static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1213				   u32 start_seq, u32 end_seq)
1214{
1215	/* Too far in future, or reversed (interpretation is ambiguous) */
1216	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1217		return false;
1218
1219	/* Nasty start_seq wrap-around check (see comments above) */
1220	if (!before(start_seq, tp->snd_nxt))
1221		return false;
1222
1223	/* In outstanding window? ...This is valid exit for D-SACKs too.
1224	 * start_seq == snd_una is non-sensical (see comments above)
1225	 */
1226	if (after(start_seq, tp->snd_una))
1227		return true;
1228
1229	if (!is_dsack || !tp->undo_marker)
1230		return false;
1231
1232	/* ...Then it's D-SACK, and must reside below snd_una completely */
1233	if (after(end_seq, tp->snd_una))
1234		return false;
1235
1236	if (!before(start_seq, tp->undo_marker))
1237		return true;
1238
1239	/* Too old */
1240	if (!after(end_seq, tp->undo_marker))
1241		return false;
1242
1243	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1244	 *   start_seq < undo_marker and end_seq >= undo_marker.
1245	 */
1246	return !before(start_seq, end_seq - tp->max_window);
1247}
1248
1249static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1250			    struct tcp_sack_block_wire *sp, int num_sacks,
1251			    u32 prior_snd_una, struct tcp_sacktag_state *state)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1252{
1253	struct tcp_sock *tp = tcp_sk(sk);
1254	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1255	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1256	u32 dup_segs;
1257
1258	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1259		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
 
 
1260	} else if (num_sacks > 1) {
1261		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1262		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1263
1264		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1265			return false;
1266		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1267	} else {
1268		return false;
1269	}
1270
1271	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1272	if (!dup_segs) {	/* Skip dubious DSACK */
1273		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1274		return false;
1275	}
1276
1277	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1278
1279	/* D-SACK for already forgotten data... Do dumb counting. */
1280	if (tp->undo_marker && tp->undo_retrans > 0 &&
1281	    !after(end_seq_0, prior_snd_una) &&
1282	    after(end_seq_0, tp->undo_marker))
1283		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1284
1285	return true;
1286}
1287
 
 
 
 
 
 
1288/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1289 * the incoming SACK may not exactly match but we can find smaller MSS
1290 * aligned portion of it that matches. Therefore we might need to fragment
1291 * which may fail and creates some hassle (caller must handle error case
1292 * returns).
1293 *
1294 * FIXME: this could be merged to shift decision code
1295 */
1296static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1297				  u32 start_seq, u32 end_seq)
1298{
1299	int err;
1300	bool in_sack;
1301	unsigned int pkt_len;
1302	unsigned int mss;
1303
1304	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1305		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1306
1307	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1308	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1309		mss = tcp_skb_mss(skb);
1310		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1311
1312		if (!in_sack) {
1313			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1314			if (pkt_len < mss)
1315				pkt_len = mss;
1316		} else {
1317			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1318			if (pkt_len < mss)
1319				return -EINVAL;
1320		}
1321
1322		/* Round if necessary so that SACKs cover only full MSSes
1323		 * and/or the remaining small portion (if present)
1324		 */
1325		if (pkt_len > mss) {
1326			unsigned int new_len = (pkt_len / mss) * mss;
1327			if (!in_sack && new_len < pkt_len)
1328				new_len += mss;
 
 
 
1329			pkt_len = new_len;
1330		}
1331
1332		if (pkt_len >= skb->len && !in_sack)
1333			return 0;
1334
1335		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1336				   pkt_len, mss, GFP_ATOMIC);
1337		if (err < 0)
1338			return err;
1339	}
1340
1341	return in_sack;
1342}
1343
1344/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1345static u8 tcp_sacktag_one(struct sock *sk,
1346			  struct tcp_sacktag_state *state, u8 sacked,
1347			  u32 start_seq, u32 end_seq,
1348			  int dup_sack, int pcount,
1349			  u64 xmit_time)
1350{
1351	struct tcp_sock *tp = tcp_sk(sk);
 
 
1352
1353	/* Account D-SACK for retransmitted packet. */
1354	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1355		if (tp->undo_marker && tp->undo_retrans > 0 &&
1356		    after(end_seq, tp->undo_marker))
1357			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1358		if ((sacked & TCPCB_SACKED_ACKED) &&
1359		    before(start_seq, state->reord))
1360				state->reord = start_seq;
1361	}
1362
1363	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1364	if (!after(end_seq, tp->snd_una))
1365		return sacked;
1366
1367	if (!(sacked & TCPCB_SACKED_ACKED)) {
1368		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1369
1370		if (sacked & TCPCB_SACKED_RETRANS) {
1371			/* If the segment is not tagged as lost,
1372			 * we do not clear RETRANS, believing
1373			 * that retransmission is still in flight.
1374			 */
1375			if (sacked & TCPCB_LOST) {
1376				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1377				tp->lost_out -= pcount;
1378				tp->retrans_out -= pcount;
1379			}
1380		} else {
1381			if (!(sacked & TCPCB_RETRANS)) {
1382				/* New sack for not retransmitted frame,
1383				 * which was in hole. It is reordering.
1384				 */
1385				if (before(start_seq,
1386					   tcp_highest_sack_seq(tp)) &&
1387				    before(start_seq, state->reord))
1388					state->reord = start_seq;
1389
1390				if (!after(end_seq, tp->high_seq))
1391					state->flag |= FLAG_ORIG_SACK_ACKED;
1392				if (state->first_sackt == 0)
1393					state->first_sackt = xmit_time;
1394				state->last_sackt = xmit_time;
1395			}
1396
1397			if (sacked & TCPCB_LOST) {
1398				sacked &= ~TCPCB_LOST;
1399				tp->lost_out -= pcount;
1400			}
1401		}
1402
1403		sacked |= TCPCB_SACKED_ACKED;
1404		state->flag |= FLAG_DATA_SACKED;
1405		tp->sacked_out += pcount;
1406		/* Out-of-order packets delivered */
1407		state->sack_delivered += pcount;
1408
1409		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1410		if (tp->lost_skb_hint &&
1411		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
 
1412			tp->lost_cnt_hint += pcount;
 
 
 
1413	}
1414
1415	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1416	 * frames and clear it. undo_retrans is decreased above, L|R frames
1417	 * are accounted above as well.
1418	 */
1419	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1420		sacked &= ~TCPCB_SACKED_RETRANS;
1421		tp->retrans_out -= pcount;
1422	}
1423
1424	return sacked;
1425}
1426
1427/* Shift newly-SACKed bytes from this skb to the immediately previous
1428 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1429 */
1430static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1431			    struct sk_buff *skb,
1432			    struct tcp_sacktag_state *state,
1433			    unsigned int pcount, int shifted, int mss,
1434			    bool dup_sack)
1435{
1436	struct tcp_sock *tp = tcp_sk(sk);
1437	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1438	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1439
1440	BUG_ON(!pcount);
1441
1442	/* Adjust counters and hints for the newly sacked sequence
1443	 * range but discard the return value since prev is already
1444	 * marked. We must tag the range first because the seq
1445	 * advancement below implicitly advances
1446	 * tcp_highest_sack_seq() when skb is highest_sack.
1447	 */
1448	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1449			start_seq, end_seq, dup_sack, pcount,
1450			tcp_skb_timestamp_us(skb));
1451	tcp_rate_skb_delivered(sk, skb, state->rate);
1452
1453	if (skb == tp->lost_skb_hint)
1454		tp->lost_cnt_hint += pcount;
1455
1456	TCP_SKB_CB(prev)->end_seq += shifted;
1457	TCP_SKB_CB(skb)->seq += shifted;
1458
1459	tcp_skb_pcount_add(prev, pcount);
1460	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1461	tcp_skb_pcount_add(skb, -pcount);
1462
1463	/* When we're adding to gso_segs == 1, gso_size will be zero,
1464	 * in theory this shouldn't be necessary but as long as DSACK
1465	 * code can come after this skb later on it's better to keep
1466	 * setting gso_size to something.
1467	 */
1468	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1469		TCP_SKB_CB(prev)->tcp_gso_size = mss;
 
 
1470
1471	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1472	if (tcp_skb_pcount(skb) <= 1)
1473		TCP_SKB_CB(skb)->tcp_gso_size = 0;
 
 
 
 
 
1474
1475	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1476	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1477
1478	if (skb->len > 0) {
1479		BUG_ON(!tcp_skb_pcount(skb));
1480		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1481		return false;
1482	}
1483
1484	/* Whole SKB was eaten :-) */
1485
1486	if (skb == tp->retransmit_skb_hint)
1487		tp->retransmit_skb_hint = prev;
 
 
1488	if (skb == tp->lost_skb_hint) {
1489		tp->lost_skb_hint = prev;
1490		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1491	}
1492
1493	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1494	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1495	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1496		TCP_SKB_CB(prev)->end_seq++;
1497
1498	if (skb == tcp_highest_sack(sk))
1499		tcp_advance_highest_sack(sk, skb);
1500
1501	tcp_skb_collapse_tstamp(prev, skb);
1502	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1503		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1504
1505	tcp_rtx_queue_unlink_and_free(skb, sk);
1506
1507	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1508
1509	return true;
1510}
1511
1512/* I wish gso_size would have a bit more sane initialization than
1513 * something-or-zero which complicates things
1514 */
1515static int tcp_skb_seglen(const struct sk_buff *skb)
1516{
1517	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1518}
1519
1520/* Shifting pages past head area doesn't work */
1521static int skb_can_shift(const struct sk_buff *skb)
1522{
1523	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1524}
1525
1526int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1527		  int pcount, int shiftlen)
1528{
1529	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1530	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1531	 * to make sure not storing more than 65535 * 8 bytes per skb,
1532	 * even if current MSS is bigger.
1533	 */
1534	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1535		return 0;
1536	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1537		return 0;
1538	return skb_shift(to, from, shiftlen);
1539}
1540
1541/* Try collapsing SACK blocks spanning across multiple skbs to a single
1542 * skb.
1543 */
1544static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1545					  struct tcp_sacktag_state *state,
1546					  u32 start_seq, u32 end_seq,
1547					  bool dup_sack)
1548{
1549	struct tcp_sock *tp = tcp_sk(sk);
1550	struct sk_buff *prev;
1551	int mss;
1552	int pcount = 0;
1553	int len;
1554	int in_sack;
1555
 
 
 
1556	/* Normally R but no L won't result in plain S */
1557	if (!dup_sack &&
1558	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1559		goto fallback;
1560	if (!skb_can_shift(skb))
1561		goto fallback;
1562	/* This frame is about to be dropped (was ACKed). */
1563	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1564		goto fallback;
1565
1566	/* Can only happen with delayed DSACK + discard craziness */
1567	prev = skb_rb_prev(skb);
1568	if (!prev)
1569		goto fallback;
 
1570
1571	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1572		goto fallback;
1573
1574	if (!tcp_skb_can_collapse(prev, skb))
1575		goto fallback;
1576
1577	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1578		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1579
1580	if (in_sack) {
1581		len = skb->len;
1582		pcount = tcp_skb_pcount(skb);
1583		mss = tcp_skb_seglen(skb);
1584
1585		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1586		 * drop this restriction as unnecessary
1587		 */
1588		if (mss != tcp_skb_seglen(prev))
1589			goto fallback;
1590	} else {
1591		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1592			goto noop;
1593		/* CHECKME: This is non-MSS split case only?, this will
1594		 * cause skipped skbs due to advancing loop btw, original
1595		 * has that feature too
1596		 */
1597		if (tcp_skb_pcount(skb) <= 1)
1598			goto noop;
1599
1600		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1601		if (!in_sack) {
1602			/* TODO: head merge to next could be attempted here
1603			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1604			 * though it might not be worth of the additional hassle
1605			 *
1606			 * ...we can probably just fallback to what was done
1607			 * previously. We could try merging non-SACKed ones
1608			 * as well but it probably isn't going to buy off
1609			 * because later SACKs might again split them, and
1610			 * it would make skb timestamp tracking considerably
1611			 * harder problem.
1612			 */
1613			goto fallback;
1614		}
1615
1616		len = end_seq - TCP_SKB_CB(skb)->seq;
1617		BUG_ON(len < 0);
1618		BUG_ON(len > skb->len);
1619
1620		/* MSS boundaries should be honoured or else pcount will
1621		 * severely break even though it makes things bit trickier.
1622		 * Optimize common case to avoid most of the divides
1623		 */
1624		mss = tcp_skb_mss(skb);
1625
1626		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1627		 * drop this restriction as unnecessary
1628		 */
1629		if (mss != tcp_skb_seglen(prev))
1630			goto fallback;
1631
1632		if (len == mss) {
1633			pcount = 1;
1634		} else if (len < mss) {
1635			goto noop;
1636		} else {
1637			pcount = len / mss;
1638			len = pcount * mss;
1639		}
1640	}
1641
1642	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1643	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1644		goto fallback;
1645
1646	if (!tcp_skb_shift(prev, skb, pcount, len))
1647		goto fallback;
1648	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1649		goto out;
1650
1651	/* Hole filled allows collapsing with the next as well, this is very
1652	 * useful when hole on every nth skb pattern happens
1653	 */
1654	skb = skb_rb_next(prev);
1655	if (!skb)
1656		goto out;
 
1657
1658	if (!skb_can_shift(skb) ||
 
1659	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1660	    (mss != tcp_skb_seglen(skb)))
1661		goto out;
1662
1663	if (!tcp_skb_can_collapse(prev, skb))
1664		goto out;
1665	len = skb->len;
1666	pcount = tcp_skb_pcount(skb);
1667	if (tcp_skb_shift(prev, skb, pcount, len))
1668		tcp_shifted_skb(sk, prev, skb, state, pcount,
1669				len, mss, 0);
1670
1671out:
 
1672	return prev;
1673
1674noop:
1675	return skb;
1676
1677fallback:
1678	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1679	return NULL;
1680}
1681
1682static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1683					struct tcp_sack_block *next_dup,
1684					struct tcp_sacktag_state *state,
1685					u32 start_seq, u32 end_seq,
1686					bool dup_sack_in)
1687{
1688	struct tcp_sock *tp = tcp_sk(sk);
1689	struct sk_buff *tmp;
1690
1691	skb_rbtree_walk_from(skb) {
1692		int in_sack = 0;
1693		bool dup_sack = dup_sack_in;
 
 
 
1694
1695		/* queue is in-order => we can short-circuit the walk early */
1696		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1697			break;
1698
1699		if (next_dup  &&
1700		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1701			in_sack = tcp_match_skb_to_sack(sk, skb,
1702							next_dup->start_seq,
1703							next_dup->end_seq);
1704			if (in_sack > 0)
1705				dup_sack = true;
1706		}
1707
1708		/* skb reference here is a bit tricky to get right, since
1709		 * shifting can eat and free both this skb and the next,
1710		 * so not even _safe variant of the loop is enough.
1711		 */
1712		if (in_sack <= 0) {
1713			tmp = tcp_shift_skb_data(sk, skb, state,
1714						 start_seq, end_seq, dup_sack);
1715			if (tmp) {
1716				if (tmp != skb) {
1717					skb = tmp;
1718					continue;
1719				}
1720
1721				in_sack = 0;
1722			} else {
1723				in_sack = tcp_match_skb_to_sack(sk, skb,
1724								start_seq,
1725								end_seq);
1726			}
1727		}
1728
1729		if (unlikely(in_sack < 0))
1730			break;
1731
1732		if (in_sack) {
1733			TCP_SKB_CB(skb)->sacked =
1734				tcp_sacktag_one(sk,
1735						state,
1736						TCP_SKB_CB(skb)->sacked,
1737						TCP_SKB_CB(skb)->seq,
1738						TCP_SKB_CB(skb)->end_seq,
1739						dup_sack,
1740						tcp_skb_pcount(skb),
1741						tcp_skb_timestamp_us(skb));
1742			tcp_rate_skb_delivered(sk, skb, state->rate);
1743			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1744				list_del_init(&skb->tcp_tsorted_anchor);
1745
1746			if (!before(TCP_SKB_CB(skb)->seq,
1747				    tcp_highest_sack_seq(tp)))
1748				tcp_advance_highest_sack(sk, skb);
1749		}
1750	}
1751	return skb;
1752}
1753
1754static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1755{
1756	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1757	struct sk_buff *skb;
1758
1759	while (*p) {
1760		parent = *p;
1761		skb = rb_to_skb(parent);
1762		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1763			p = &parent->rb_left;
1764			continue;
1765		}
1766		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1767			p = &parent->rb_right;
1768			continue;
1769		}
1770		return skb;
1771	}
1772	return NULL;
1773}
1774
 
 
 
1775static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
 
1776					u32 skip_to_seq)
1777{
1778	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1779		return skb;
 
1780
1781	return tcp_sacktag_bsearch(sk, skip_to_seq);
 
 
 
 
 
1782}
1783
1784static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1785						struct sock *sk,
1786						struct tcp_sack_block *next_dup,
1787						struct tcp_sacktag_state *state,
1788						u32 skip_to_seq)
1789{
1790	if (!next_dup)
1791		return skb;
1792
1793	if (before(next_dup->start_seq, skip_to_seq)) {
1794		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1795		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1796				       next_dup->start_seq, next_dup->end_seq,
1797				       1);
1798	}
1799
1800	return skb;
1801}
1802
1803static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1804{
1805	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1806}
1807
1808static int
1809tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1810			u32 prior_snd_una, struct tcp_sacktag_state *state)
1811{
 
1812	struct tcp_sock *tp = tcp_sk(sk);
1813	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1814				    TCP_SKB_CB(ack_skb)->sacked);
1815	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1816	struct tcp_sack_block sp[TCP_NUM_SACKS];
1817	struct tcp_sack_block *cache;
 
1818	struct sk_buff *skb;
1819	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1820	int used_sacks;
1821	bool found_dup_sack = false;
1822	int i, j;
1823	int first_sack_index;
1824
1825	state->flag = 0;
1826	state->reord = tp->snd_nxt;
1827
1828	if (!tp->sacked_out)
 
 
1829		tcp_highest_sack_reset(sk);
 
1830
1831	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1832					 num_sacks, prior_snd_una, state);
 
 
1833
1834	/* Eliminate too old ACKs, but take into
1835	 * account more or less fresh ones, they can
1836	 * contain valid SACK info.
1837	 */
1838	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1839		return 0;
1840
1841	if (!tp->packets_out)
1842		goto out;
1843
1844	used_sacks = 0;
1845	first_sack_index = 0;
1846	for (i = 0; i < num_sacks; i++) {
1847		bool dup_sack = !i && found_dup_sack;
1848
1849		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1850		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1851
1852		if (!tcp_is_sackblock_valid(tp, dup_sack,
1853					    sp[used_sacks].start_seq,
1854					    sp[used_sacks].end_seq)) {
1855			int mib_idx;
1856
1857			if (dup_sack) {
1858				if (!tp->undo_marker)
1859					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1860				else
1861					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1862			} else {
1863				/* Don't count olds caused by ACK reordering */
1864				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1865				    !after(sp[used_sacks].end_seq, tp->snd_una))
1866					continue;
1867				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1868			}
1869
1870			NET_INC_STATS(sock_net(sk), mib_idx);
1871			if (i == 0)
1872				first_sack_index = -1;
1873			continue;
1874		}
1875
1876		/* Ignore very old stuff early */
1877		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1878			if (i == 0)
1879				first_sack_index = -1;
1880			continue;
1881		}
1882
1883		used_sacks++;
1884	}
1885
1886	/* order SACK blocks to allow in order walk of the retrans queue */
1887	for (i = used_sacks - 1; i > 0; i--) {
1888		for (j = 0; j < i; j++) {
1889			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1890				swap(sp[j], sp[j + 1]);
1891
1892				/* Track where the first SACK block goes to */
1893				if (j == first_sack_index)
1894					first_sack_index = j + 1;
1895			}
1896		}
1897	}
1898
1899	state->mss_now = tcp_current_mss(sk);
1900	skb = NULL;
1901	i = 0;
1902
1903	if (!tp->sacked_out) {
1904		/* It's already past, so skip checking against it */
1905		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1906	} else {
1907		cache = tp->recv_sack_cache;
1908		/* Skip empty blocks in at head of the cache */
1909		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1910		       !cache->end_seq)
1911			cache++;
1912	}
1913
1914	while (i < used_sacks) {
1915		u32 start_seq = sp[i].start_seq;
1916		u32 end_seq = sp[i].end_seq;
1917		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1918		struct tcp_sack_block *next_dup = NULL;
1919
1920		if (found_dup_sack && ((i + 1) == first_sack_index))
1921			next_dup = &sp[i + 1];
1922
 
 
 
 
1923		/* Skip too early cached blocks */
1924		while (tcp_sack_cache_ok(tp, cache) &&
1925		       !before(start_seq, cache->end_seq))
1926			cache++;
1927
1928		/* Can skip some work by looking recv_sack_cache? */
1929		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1930		    after(end_seq, cache->start_seq)) {
1931
1932			/* Head todo? */
1933			if (before(start_seq, cache->start_seq)) {
1934				skb = tcp_sacktag_skip(skb, sk, start_seq);
 
1935				skb = tcp_sacktag_walk(skb, sk, next_dup,
1936						       state,
1937						       start_seq,
1938						       cache->start_seq,
1939						       dup_sack);
1940			}
1941
1942			/* Rest of the block already fully processed? */
1943			if (!after(end_seq, cache->end_seq))
1944				goto advance_sp;
1945
1946			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1947						       state,
1948						       cache->end_seq);
1949
1950			/* ...tail remains todo... */
1951			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1952				/* ...but better entrypoint exists! */
1953				skb = tcp_highest_sack(sk);
1954				if (!skb)
1955					break;
 
1956				cache++;
1957				goto walk;
1958			}
1959
1960			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1961			/* Check overlap against next cached too (past this one already) */
1962			cache++;
1963			continue;
1964		}
1965
1966		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1967			skb = tcp_highest_sack(sk);
1968			if (!skb)
1969				break;
 
1970		}
1971		skb = tcp_sacktag_skip(skb, sk, start_seq);
1972
1973walk:
1974		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1975				       start_seq, end_seq, dup_sack);
1976
1977advance_sp:
 
 
 
 
 
 
1978		i++;
1979	}
1980
1981	/* Clear the head of the cache sack blocks so we can skip it next time */
1982	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1983		tp->recv_sack_cache[i].start_seq = 0;
1984		tp->recv_sack_cache[i].end_seq = 0;
1985	}
1986	for (j = 0; j < used_sacks; j++)
1987		tp->recv_sack_cache[i++] = sp[j];
1988
1989	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1990		tcp_check_sack_reordering(sk, state->reord, 0);
1991
1992	tcp_verify_left_out(tp);
 
 
 
 
 
 
1993out:
1994
1995#if FASTRETRANS_DEBUG > 0
1996	WARN_ON((int)tp->sacked_out < 0);
1997	WARN_ON((int)tp->lost_out < 0);
1998	WARN_ON((int)tp->retrans_out < 0);
1999	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2000#endif
2001	return state->flag;
2002}
2003
2004/* Limits sacked_out so that sum with lost_out isn't ever larger than
2005 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2006 */
2007static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2008{
2009	u32 holes;
2010
2011	holes = max(tp->lost_out, 1U);
2012	holes = min(holes, tp->packets_out);
2013
2014	if ((tp->sacked_out + holes) > tp->packets_out) {
2015		tp->sacked_out = tp->packets_out - holes;
2016		return true;
2017	}
2018	return false;
2019}
2020
2021/* If we receive more dupacks than we expected counting segments
2022 * in assumption of absent reordering, interpret this as reordering.
2023 * The only another reason could be bug in receiver TCP.
2024 */
2025static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2026{
2027	struct tcp_sock *tp = tcp_sk(sk);
2028
2029	if (!tcp_limit_reno_sacked(tp))
2030		return;
2031
2032	tp->reordering = min_t(u32, tp->packets_out + addend,
2033			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2034	tp->reord_seen++;
2035	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2036}
2037
2038/* Emulate SACKs for SACKless connection: account for a new dupack. */
2039
2040static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2041{
2042	if (num_dupack) {
2043		struct tcp_sock *tp = tcp_sk(sk);
2044		u32 prior_sacked = tp->sacked_out;
2045		s32 delivered;
2046
2047		tp->sacked_out += num_dupack;
2048		tcp_check_reno_reordering(sk, 0);
2049		delivered = tp->sacked_out - prior_sacked;
2050		if (delivered > 0)
2051			tcp_count_delivered(tp, delivered, ece_ack);
2052		tcp_verify_left_out(tp);
2053	}
2054}
2055
2056/* Account for ACK, ACKing some data in Reno Recovery phase. */
2057
2058static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2059{
2060	struct tcp_sock *tp = tcp_sk(sk);
2061
2062	if (acked > 0) {
2063		/* One ACK acked hole. The rest eat duplicate ACKs. */
2064		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2065				    ece_ack);
2066		if (acked - 1 >= tp->sacked_out)
2067			tp->sacked_out = 0;
2068		else
2069			tp->sacked_out -= acked - 1;
2070	}
2071	tcp_check_reno_reordering(sk, acked);
2072	tcp_verify_left_out(tp);
2073}
2074
2075static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2076{
2077	tp->sacked_out = 0;
2078}
2079
2080void tcp_clear_retrans(struct tcp_sock *tp)
2081{
2082	tp->retrans_out = 0;
2083	tp->lost_out = 0;
2084	tp->undo_marker = 0;
2085	tp->undo_retrans = -1;
2086	tp->sacked_out = 0;
2087}
2088
2089static inline void tcp_init_undo(struct tcp_sock *tp)
 
 
 
2090{
2091	tp->undo_marker = tp->snd_una;
2092	/* Retransmission still in flight may cause DSACKs later. */
2093	tp->undo_retrans = tp->retrans_out ? : -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2094}
2095
2096static bool tcp_is_rack(const struct sock *sk)
 
 
 
 
 
 
 
 
 
 
 
 
2097{
2098	return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2099		TCP_RACK_LOSS_DETECTION;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2100}
2101
2102/* If we detect SACK reneging, forget all SACK information
2103 * and reset tags completely, otherwise preserve SACKs. If receiver
2104 * dropped its ofo queue, we will know this due to reneging detection.
2105 */
2106static void tcp_timeout_mark_lost(struct sock *sk)
2107{
2108	struct tcp_sock *tp = tcp_sk(sk);
2109	struct sk_buff *skb, *head;
2110	bool is_reneg;			/* is receiver reneging on SACKs? */
2111
2112	head = tcp_rtx_queue_head(sk);
2113	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2114	if (is_reneg) {
2115		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2116		tp->sacked_out = 0;
2117		/* Mark SACK reneging until we recover from this loss event. */
2118		tp->is_sack_reneg = 1;
2119	} else if (tcp_is_reno(tp)) {
2120		tcp_reset_reno_sack(tp);
2121	}
2122
2123	skb = head;
2124	skb_rbtree_walk_from(skb) {
2125		if (is_reneg)
2126			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2127		else if (tcp_is_rack(sk) && skb != head &&
2128			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2129			continue; /* Don't mark recently sent ones lost yet */
2130		tcp_mark_skb_lost(sk, skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2131	}
2132	tcp_verify_left_out(tp);
 
 
 
 
 
 
 
 
 
 
 
 
 
2133	tcp_clear_all_retrans_hints(tp);
2134}
2135
2136/* Enter Loss state. */
2137void tcp_enter_loss(struct sock *sk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2138{
2139	const struct inet_connection_sock *icsk = inet_csk(sk);
2140	struct tcp_sock *tp = tcp_sk(sk);
2141	struct net *net = sock_net(sk);
2142	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2143	u8 reordering;
2144
2145	tcp_timeout_mark_lost(sk);
2146
2147	/* Reduce ssthresh if it has not yet been made inside this window. */
2148	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2149	    !after(tp->high_seq, tp->snd_una) ||
2150	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2151		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2152		tp->prior_cwnd = tcp_snd_cwnd(tp);
2153		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2154		tcp_ca_event(sk, CA_EVENT_LOSS);
2155		tcp_init_undo(tp);
2156	}
2157	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2158	tp->snd_cwnd_cnt   = 0;
2159	tp->snd_cwnd_stamp = tcp_jiffies32;
2160
2161	/* Timeout in disordered state after receiving substantial DUPACKs
2162	 * suggests that the degree of reordering is over-estimated.
2163	 */
2164	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2165	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2166	    tp->sacked_out >= reordering)
2167		tp->reordering = min_t(unsigned int, tp->reordering,
2168				       reordering);
 
 
 
 
 
 
 
2169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2170	tcp_set_ca_state(sk, TCP_CA_Loss);
2171	tp->high_seq = tp->snd_nxt;
2172	tcp_ecn_queue_cwr(tp);
2173
2174	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2175	 * loss recovery is underway except recurring timeout(s) on
2176	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2177	 */
2178	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2179		   (new_recovery || icsk->icsk_retransmits) &&
2180		   !inet_csk(sk)->icsk_mtup.probe_size;
2181}
2182
2183/* If ACK arrived pointing to a remembered SACK, it means that our
2184 * remembered SACKs do not reflect real state of receiver i.e.
2185 * receiver _host_ is heavily congested (or buggy).
2186 *
2187 * To avoid big spurious retransmission bursts due to transient SACK
2188 * scoreboard oddities that look like reneging, we give the receiver a
2189 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2190 * restore sanity to the SACK scoreboard. If the apparent reneging
2191 * persists until this RTO then we'll clear the SACK scoreboard.
2192 */
2193static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2194{
2195	if (flag & FLAG_SACK_RENEGING &&
2196	    flag & FLAG_SND_UNA_ADVANCED) {
2197		struct tcp_sock *tp = tcp_sk(sk);
2198		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2199					  msecs_to_jiffies(10));
2200
 
 
 
2201		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2202					  delay, TCP_RTO_MAX);
2203		return true;
2204	}
2205	return false;
 
 
 
 
 
2206}
2207
2208/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2209 * counter when SACK is enabled (without SACK, sacked_out is used for
2210 * that purpose).
2211 *
 
 
 
 
2212 * With reordering, holes may still be in flight, so RFC3517 recovery
2213 * uses pure sacked_out (total number of SACKed segments) even though
2214 * it violates the RFC that uses duplicate ACKs, often these are equal
2215 * but when e.g. out-of-window ACKs or packet duplication occurs,
2216 * they differ. Since neither occurs due to loss, TCP should really
2217 * ignore them.
2218 */
2219static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
 
 
 
 
 
 
 
 
 
 
2220{
2221	return tp->sacked_out + 1;
 
 
 
2222}
2223
2224/* Linux NewReno/SACK/ECN state machine.
2225 * --------------------------------------
2226 *
2227 * "Open"	Normal state, no dubious events, fast path.
2228 * "Disorder"   In all the respects it is "Open",
2229 *		but requires a bit more attention. It is entered when
2230 *		we see some SACKs or dupacks. It is split of "Open"
2231 *		mainly to move some processing from fast path to slow one.
2232 * "CWR"	CWND was reduced due to some Congestion Notification event.
2233 *		It can be ECN, ICMP source quench, local device congestion.
2234 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2235 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2236 *
2237 * tcp_fastretrans_alert() is entered:
2238 * - each incoming ACK, if state is not "Open"
2239 * - when arrived ACK is unusual, namely:
2240 *	* SACK
2241 *	* Duplicate ACK.
2242 *	* ECN ECE.
2243 *
2244 * Counting packets in flight is pretty simple.
2245 *
2246 *	in_flight = packets_out - left_out + retrans_out
2247 *
2248 *	packets_out is SND.NXT-SND.UNA counted in packets.
2249 *
2250 *	retrans_out is number of retransmitted segments.
2251 *
2252 *	left_out is number of segments left network, but not ACKed yet.
2253 *
2254 *		left_out = sacked_out + lost_out
2255 *
2256 *     sacked_out: Packets, which arrived to receiver out of order
2257 *		   and hence not ACKed. With SACKs this number is simply
2258 *		   amount of SACKed data. Even without SACKs
2259 *		   it is easy to give pretty reliable estimate of this number,
2260 *		   counting duplicate ACKs.
2261 *
2262 *       lost_out: Packets lost by network. TCP has no explicit
2263 *		   "loss notification" feedback from network (for now).
2264 *		   It means that this number can be only _guessed_.
2265 *		   Actually, it is the heuristics to predict lossage that
2266 *		   distinguishes different algorithms.
2267 *
2268 *	F.e. after RTO, when all the queue is considered as lost,
2269 *	lost_out = packets_out and in_flight = retrans_out.
2270 *
2271 *		Essentially, we have now a few algorithms detecting
2272 *		lost packets.
2273 *
2274 *		If the receiver supports SACK:
2275 *
2276 *		RFC6675/3517: It is the conventional algorithm. A packet is
2277 *		considered lost if the number of higher sequence packets
2278 *		SACKed is greater than or equal the DUPACK thoreshold
2279 *		(reordering). This is implemented in tcp_mark_head_lost and
2280 *		tcp_update_scoreboard.
2281 *
2282 *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2283 *		(2017-) that checks timing instead of counting DUPACKs.
2284 *		Essentially a packet is considered lost if it's not S/ACKed
2285 *		after RTT + reordering_window, where both metrics are
2286 *		dynamically measured and adjusted. This is implemented in
2287 *		tcp_rack_mark_lost.
2288 *
2289 *		If the receiver does not support SACK:
2290 *
2291 *		NewReno (RFC6582): in Recovery we assume that one segment
2292 *		is lost (classic Reno). While we are in Recovery and
2293 *		a partial ACK arrives, we assume that one more packet
2294 *		is lost (NewReno). This heuristics are the same in NewReno
2295 *		and SACK.
2296 *
 
 
 
 
2297 * Really tricky (and requiring careful tuning) part of algorithm
2298 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2299 * The first determines the moment _when_ we should reduce CWND and,
2300 * hence, slow down forward transmission. In fact, it determines the moment
2301 * when we decide that hole is caused by loss, rather than by a reorder.
2302 *
2303 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2304 * holes, caused by lost packets.
2305 *
2306 * And the most logically complicated part of algorithm is undo
2307 * heuristics. We detect false retransmits due to both too early
2308 * fast retransmit (reordering) and underestimated RTO, analyzing
2309 * timestamps and D-SACKs. When we detect that some segments were
2310 * retransmitted by mistake and CWND reduction was wrong, we undo
2311 * window reduction and abort recovery phase. This logic is hidden
2312 * inside several functions named tcp_try_undo_<something>.
2313 */
2314
2315/* This function decides, when we should leave Disordered state
2316 * and enter Recovery phase, reducing congestion window.
2317 *
2318 * Main question: may we further continue forward transmission
2319 * with the same cwnd?
2320 */
2321static bool tcp_time_to_recover(struct sock *sk, int flag)
2322{
2323	struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 
 
2324
2325	/* Trick#1: The loss is proven. */
2326	if (tp->lost_out)
2327		return true;
2328
2329	/* Not-A-Trick#2 : Classic rule... */
2330	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2331		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2332
2333	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2334}
2335
2336/* Detect loss in event "A" above by marking head of queue up as lost.
2337 * For RFC3517 SACK, a segment is considered lost if it
2338 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2339 * the maximum SACKed segments to pass before reaching this limit.
2340 */
2341static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2342{
2343	struct tcp_sock *tp = tcp_sk(sk);
2344	struct sk_buff *skb;
2345	int cnt;
2346	/* Use SACK to deduce losses of new sequences sent during recovery */
2347	const u32 loss_high = tp->snd_nxt;
2348
2349	WARN_ON(packets > tp->packets_out);
2350	skb = tp->lost_skb_hint;
2351	if (skb) {
 
2352		/* Head already handled? */
2353		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2354			return;
2355		cnt = tp->lost_cnt_hint;
2356	} else {
2357		skb = tcp_rtx_queue_head(sk);
2358		cnt = 0;
2359	}
2360
2361	skb_rbtree_walk_from(skb) {
 
 
2362		/* TODO: do this better */
2363		/* this is not the most efficient way to do this... */
2364		tp->lost_skb_hint = skb;
2365		tp->lost_cnt_hint = cnt;
2366
2367		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2368			break;
2369
2370		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
 
 
2371			cnt += tcp_skb_pcount(skb);
2372
2373		if (cnt > packets)
2374			break;
 
 
 
 
 
 
 
 
 
2375
2376		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2377			tcp_mark_skb_lost(sk, skb);
2378
2379		if (mark_head)
2380			break;
2381	}
2382	tcp_verify_left_out(tp);
2383}
2384
2385/* Account newly detected lost packet(s) */
2386
2387static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2388{
2389	struct tcp_sock *tp = tcp_sk(sk);
2390
2391	if (tcp_is_sack(tp)) {
 
 
 
 
 
 
 
2392		int sacked_upto = tp->sacked_out - tp->reordering;
2393		if (sacked_upto >= 0)
2394			tcp_mark_head_lost(sk, sacked_upto, 0);
2395		else if (fast_rexmit)
2396			tcp_mark_head_lost(sk, 1, 1);
2397	}
2398}
2399
2400static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2401{
2402	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2403	       before(tp->rx_opt.rcv_tsecr, when);
2404}
2405
2406/* skb is spurious retransmitted if the returned timestamp echo
2407 * reply is prior to the skb transmission time
2408 */
2409static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2410				     const struct sk_buff *skb)
2411{
2412	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2413	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
 
2414}
2415
2416/* Nothing was retransmitted or returned timestamp is less
2417 * than timestamp of the first retransmission.
2418 */
2419static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2420{
2421	return tp->retrans_stamp &&
2422	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2423}
2424
2425/* Undo procedures. */
 
2426
2427/* We can clear retrans_stamp when there are no retransmissions in the
2428 * window. It would seem that it is trivially available for us in
2429 * tp->retrans_out, however, that kind of assumptions doesn't consider
2430 * what will happen if errors occur when sending retransmission for the
2431 * second time. ...It could the that such segment has only
2432 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2433 * the head skb is enough except for some reneging corner cases that
2434 * are not worth the effort.
2435 *
2436 * Main reason for all this complexity is the fact that connection dying
2437 * time now depends on the validity of the retrans_stamp, in particular,
2438 * that successive retransmissions of a segment must not advance
2439 * retrans_stamp under any conditions.
2440 */
2441static bool tcp_any_retrans_done(const struct sock *sk)
2442{
2443	const struct tcp_sock *tp = tcp_sk(sk);
2444	struct sk_buff *skb;
2445
2446	if (tp->retrans_out)
2447		return true;
 
 
2448
2449	skb = tcp_rtx_queue_head(sk);
2450	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2451		return true;
2452
2453	return false;
 
 
2454}
2455
2456static void DBGUNDO(struct sock *sk, const char *msg)
 
 
 
2457{
 
 
 
 
 
 
 
2458#if FASTRETRANS_DEBUG > 1
 
 
2459	struct tcp_sock *tp = tcp_sk(sk);
2460	struct inet_sock *inet = inet_sk(sk);
2461
2462	if (sk->sk_family == AF_INET) {
2463		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2464			 msg,
2465			 &inet->inet_daddr, ntohs(inet->inet_dport),
2466			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2467			 tp->snd_ssthresh, tp->prior_ssthresh,
2468			 tp->packets_out);
2469	}
2470#if IS_ENABLED(CONFIG_IPV6)
2471	else if (sk->sk_family == AF_INET6) {
2472		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2473			 msg,
2474			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2475			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2476			 tp->snd_ssthresh, tp->prior_ssthresh,
2477			 tp->packets_out);
 
2478	}
2479#endif
2480#endif
2481}
 
 
 
2482
2483static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2484{
2485	struct tcp_sock *tp = tcp_sk(sk);
2486
2487	if (unmark_loss) {
2488		struct sk_buff *skb;
2489
2490		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2491			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2492		}
2493		tp->lost_out = 0;
2494		tcp_clear_all_retrans_hints(tp);
2495	}
2496
2497	if (tp->prior_ssthresh) {
2498		const struct inet_connection_sock *icsk = inet_csk(sk);
2499
2500		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
 
 
 
2501
2502		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2503			tp->snd_ssthresh = tp->prior_ssthresh;
2504			tcp_ecn_withdraw_cwr(tp);
2505		}
 
 
2506	}
2507	tp->snd_cwnd_stamp = tcp_jiffies32;
2508	tp->undo_marker = 0;
2509	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2510}
2511
2512static inline bool tcp_may_undo(const struct tcp_sock *tp)
2513{
2514	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2515}
2516
2517static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2518{
2519	struct tcp_sock *tp = tcp_sk(sk);
2520
2521	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2522		/* Hold old state until something *above* high_seq
2523		 * is ACKed. For Reno it is MUST to prevent false
2524		 * fast retransmits (RFC2582). SACK TCP is safe. */
2525		if (!tcp_any_retrans_done(sk))
2526			tp->retrans_stamp = 0;
2527		return true;
2528	}
2529	return false;
2530}
2531
2532/* People celebrate: "We love our President!" */
2533static bool tcp_try_undo_recovery(struct sock *sk)
2534{
2535	struct tcp_sock *tp = tcp_sk(sk);
2536
2537	if (tcp_may_undo(tp)) {
2538		int mib_idx;
2539
2540		/* Happy end! We did not retransmit anything
2541		 * or our original transmission succeeded.
2542		 */
2543		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2544		tcp_undo_cwnd_reduction(sk, false);
2545		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2546			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2547		else
2548			mib_idx = LINUX_MIB_TCPFULLUNDO;
2549
2550		NET_INC_STATS(sock_net(sk), mib_idx);
2551	} else if (tp->rack.reo_wnd_persist) {
2552		tp->rack.reo_wnd_persist--;
 
 
 
 
 
 
2553	}
2554	if (tcp_is_non_sack_preventing_reopen(sk))
2555		return true;
2556	tcp_set_ca_state(sk, TCP_CA_Open);
2557	tp->is_sack_reneg = 0;
2558	return false;
2559}
2560
2561/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2562static bool tcp_try_undo_dsack(struct sock *sk)
2563{
2564	struct tcp_sock *tp = tcp_sk(sk);
2565
2566	if (tp->undo_marker && !tp->undo_retrans) {
2567		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2568					       tp->rack.reo_wnd_persist + 1);
2569		DBGUNDO(sk, "D-SACK");
2570		tcp_undo_cwnd_reduction(sk, false);
2571		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2572		return true;
2573	}
2574	return false;
2575}
2576
2577/* Undo during loss recovery after partial ACK or using F-RTO. */
2578static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
 
 
 
 
 
 
 
 
 
 
 
 
 
2579{
2580	struct tcp_sock *tp = tcp_sk(sk);
 
2581
2582	if (frto_undo || tcp_may_undo(tp)) {
2583		tcp_undo_cwnd_reduction(sk, true);
2584
2585		DBGUNDO(sk, "partial loss");
2586		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2587		if (frto_undo)
2588			NET_INC_STATS(sock_net(sk),
2589					LINUX_MIB_TCPSPURIOUSRTOS);
2590		inet_csk(sk)->icsk_retransmits = 0;
2591		if (tcp_is_non_sack_preventing_reopen(sk))
2592			return true;
2593		if (frto_undo || tcp_is_sack(tp)) {
2594			tcp_set_ca_state(sk, TCP_CA_Open);
2595			tp->is_sack_reneg = 0;
2596		}
2597		return true;
2598	}
2599	return false;
2600}
2601
2602/* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2603 * It computes the number of packets to send (sndcnt) based on packets newly
2604 * delivered:
2605 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2606 *	cwnd reductions across a full RTT.
2607 *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2608 *      But when SND_UNA is acked without further losses,
2609 *      slow starts cwnd up to ssthresh to speed up the recovery.
2610 */
2611static void tcp_init_cwnd_reduction(struct sock *sk)
2612{
2613	struct tcp_sock *tp = tcp_sk(sk);
 
 
2614
2615	tp->high_seq = tp->snd_nxt;
2616	tp->tlp_high_seq = 0;
2617	tp->snd_cwnd_cnt = 0;
2618	tp->prior_cwnd = tcp_snd_cwnd(tp);
2619	tp->prr_delivered = 0;
2620	tp->prr_out = 0;
2621	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2622	tcp_ecn_queue_cwr(tp);
2623}
2624
2625void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2626{
2627	struct tcp_sock *tp = tcp_sk(sk);
2628	int sndcnt = 0;
2629	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2630
2631	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2632		return;
 
2633
2634	tp->prr_delivered += newly_acked_sacked;
2635	if (delta < 0) {
2636		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2637			       tp->prior_cwnd - 1;
2638		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2639	} else {
2640		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2641			       newly_acked_sacked);
2642		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2643			sndcnt++;
2644		sndcnt = min(delta, sndcnt);
2645	}
2646	/* Force a fast retransmit upon entering fast recovery */
2647	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2648	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2649}
2650
2651static inline void tcp_end_cwnd_reduction(struct sock *sk)
 
2652{
2653	struct tcp_sock *tp = tcp_sk(sk);
2654
2655	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2656		return;
 
 
 
 
 
2657
2658	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2659	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2660	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2661		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2662		tp->snd_cwnd_stamp = tcp_jiffies32;
 
 
 
 
 
 
2663	}
2664	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2665}
2666
2667/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2668void tcp_enter_cwr(struct sock *sk)
2669{
2670	struct tcp_sock *tp = tcp_sk(sk);
2671
2672	tp->prior_ssthresh = 0;
2673	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2674		tp->undo_marker = 0;
2675		tcp_init_cwnd_reduction(sk);
2676		tcp_set_ca_state(sk, TCP_CA_CWR);
2677	}
 
2678}
2679EXPORT_SYMBOL(tcp_enter_cwr);
2680
2681static void tcp_try_keep_open(struct sock *sk)
2682{
2683	struct tcp_sock *tp = tcp_sk(sk);
2684	int state = TCP_CA_Open;
2685
2686	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2687		state = TCP_CA_Disorder;
2688
2689	if (inet_csk(sk)->icsk_ca_state != state) {
2690		tcp_set_ca_state(sk, state);
2691		tp->high_seq = tp->snd_nxt;
2692	}
2693}
2694
2695static void tcp_try_to_open(struct sock *sk, int flag)
2696{
2697	struct tcp_sock *tp = tcp_sk(sk);
2698
2699	tcp_verify_left_out(tp);
2700
2701	if (!tcp_any_retrans_done(sk))
2702		tp->retrans_stamp = 0;
2703
2704	if (flag & FLAG_ECE)
2705		tcp_enter_cwr(sk);
2706
2707	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2708		tcp_try_keep_open(sk);
 
 
 
2709	}
2710}
2711
2712static void tcp_mtup_probe_failed(struct sock *sk)
2713{
2714	struct inet_connection_sock *icsk = inet_csk(sk);
2715
2716	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2717	icsk->icsk_mtup.probe_size = 0;
2718	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2719}
2720
2721static void tcp_mtup_probe_success(struct sock *sk)
2722{
2723	struct tcp_sock *tp = tcp_sk(sk);
2724	struct inet_connection_sock *icsk = inet_csk(sk);
2725	u64 val;
2726
 
2727	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2728
2729	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2730	do_div(val, icsk->icsk_mtup.probe_size);
2731	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2732	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2733
2734	tp->snd_cwnd_cnt = 0;
2735	tp->snd_cwnd_stamp = tcp_jiffies32;
2736	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2737
2738	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2739	icsk->icsk_mtup.probe_size = 0;
2740	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2741	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2742}
2743
2744/* Do a simple retransmit without using the backoff mechanisms in
2745 * tcp_timer. This is used for path mtu discovery.
2746 * The socket is already locked here.
2747 */
2748void tcp_simple_retransmit(struct sock *sk)
2749{
2750	const struct inet_connection_sock *icsk = inet_csk(sk);
2751	struct tcp_sock *tp = tcp_sk(sk);
2752	struct sk_buff *skb;
2753	int mss;
 
2754
2755	/* A fastopen SYN request is stored as two separate packets within
2756	 * the retransmit queue, this is done by tcp_send_syn_data().
2757	 * As a result simply checking the MSS of the frames in the queue
2758	 * will not work for the SYN packet.
2759	 *
2760	 * Us being here is an indication of a path MTU issue so we can
2761	 * assume that the fastopen SYN was lost and just mark all the
2762	 * frames in the retransmit queue as lost. We will use an MSS of
2763	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2764	 */
2765	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2766		mss = -1;
2767	else
2768		mss = tcp_current_mss(sk);
2769
2770	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2771		if (tcp_skb_seglen(skb) > mss)
2772			tcp_mark_skb_lost(sk, skb);
2773	}
2774
2775	tcp_clear_retrans_hints_partial(tp);
2776
2777	if (!tp->lost_out)
2778		return;
2779
2780	if (tcp_is_reno(tp))
2781		tcp_limit_reno_sacked(tp);
2782
2783	tcp_verify_left_out(tp);
2784
2785	/* Don't muck with the congestion window here.
2786	 * Reason is that we do not increase amount of _data_
2787	 * in network, but units changed and effective
2788	 * cwnd/ssthresh really reduced now.
2789	 */
2790	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2791		tp->high_seq = tp->snd_nxt;
2792		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2793		tp->prior_ssthresh = 0;
2794		tp->undo_marker = 0;
2795		tcp_set_ca_state(sk, TCP_CA_Loss);
2796	}
2797	tcp_xmit_retransmit_queue(sk);
2798}
2799EXPORT_SYMBOL(tcp_simple_retransmit);
2800
2801void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2802{
2803	struct tcp_sock *tp = tcp_sk(sk);
2804	int mib_idx;
2805
2806	if (tcp_is_reno(tp))
2807		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2808	else
2809		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2810
2811	NET_INC_STATS(sock_net(sk), mib_idx);
2812
2813	tp->prior_ssthresh = 0;
2814	tcp_init_undo(tp);
2815
2816	if (!tcp_in_cwnd_reduction(sk)) {
2817		if (!ece_ack)
2818			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2819		tcp_init_cwnd_reduction(sk);
2820	}
2821	tcp_set_ca_state(sk, TCP_CA_Recovery);
2822}
2823
2824/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2825 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2826 */
2827static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2828			     int *rexmit)
2829{
2830	struct tcp_sock *tp = tcp_sk(sk);
2831	bool recovered = !before(tp->snd_una, tp->high_seq);
2832
2833	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2834	    tcp_try_undo_loss(sk, false))
2835		return;
2836
2837	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2838		/* Step 3.b. A timeout is spurious if not all data are
2839		 * lost, i.e., never-retransmitted data are (s)acked.
2840		 */
2841		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2842		    tcp_try_undo_loss(sk, true))
2843			return;
2844
2845		if (after(tp->snd_nxt, tp->high_seq)) {
2846			if (flag & FLAG_DATA_SACKED || num_dupack)
2847				tp->frto = 0; /* Step 3.a. loss was real */
2848		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2849			tp->high_seq = tp->snd_nxt;
2850			/* Step 2.b. Try send new data (but deferred until cwnd
2851			 * is updated in tcp_ack()). Otherwise fall back to
2852			 * the conventional recovery.
2853			 */
2854			if (!tcp_write_queue_empty(sk) &&
2855			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2856				*rexmit = REXMIT_NEW;
2857				return;
2858			}
2859			tp->frto = 0;
2860		}
2861	}
2862
2863	if (recovered) {
2864		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2865		tcp_try_undo_recovery(sk);
2866		return;
2867	}
2868	if (tcp_is_reno(tp)) {
2869		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2870		 * delivered. Lower inflight to clock out (re)tranmissions.
2871		 */
2872		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2873			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2874		else if (flag & FLAG_SND_UNA_ADVANCED)
2875			tcp_reset_reno_sack(tp);
2876	}
2877	*rexmit = REXMIT_LOST;
2878}
2879
2880static bool tcp_force_fast_retransmit(struct sock *sk)
2881{
2882	struct tcp_sock *tp = tcp_sk(sk);
2883
2884	return after(tcp_highest_sack_seq(tp),
2885		     tp->snd_una + tp->reordering * tp->mss_cache);
2886}
2887
2888/* Undo during fast recovery after partial ACK. */
2889static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2890				 bool *do_lost)
2891{
2892	struct tcp_sock *tp = tcp_sk(sk);
2893
2894	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2895		/* Plain luck! Hole if filled with delayed
2896		 * packet, rather than with a retransmit. Check reordering.
2897		 */
2898		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2899
2900		/* We are getting evidence that the reordering degree is higher
2901		 * than we realized. If there are no retransmits out then we
2902		 * can undo. Otherwise we clock out new packets but do not
2903		 * mark more packets lost or retransmit more.
2904		 */
2905		if (tp->retrans_out)
2906			return true;
2907
2908		if (!tcp_any_retrans_done(sk))
2909			tp->retrans_stamp = 0;
2910
2911		DBGUNDO(sk, "partial recovery");
2912		tcp_undo_cwnd_reduction(sk, true);
2913		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2914		tcp_try_keep_open(sk);
2915	} else {
2916		/* Partial ACK arrived. Force fast retransmit. */
2917		*do_lost = tcp_force_fast_retransmit(sk);
2918	}
2919	return false;
2920}
2921
2922static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2923{
2924	struct tcp_sock *tp = tcp_sk(sk);
2925
2926	if (tcp_rtx_queue_empty(sk))
2927		return;
2928
2929	if (unlikely(tcp_is_reno(tp))) {
2930		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2931	} else if (tcp_is_rack(sk)) {
2932		u32 prior_retrans = tp->retrans_out;
2933
2934		if (tcp_rack_mark_lost(sk))
2935			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2936		if (prior_retrans > tp->retrans_out)
2937			*ack_flag |= FLAG_LOST_RETRANS;
2938	}
2939}
2940
2941/* Process an event, which can update packets-in-flight not trivially.
2942 * Main goal of this function is to calculate new estimate for left_out,
2943 * taking into account both packets sitting in receiver's buffer and
2944 * packets lost by network.
2945 *
2946 * Besides that it updates the congestion state when packet loss or ECN
2947 * is detected. But it does not reduce the cwnd, it is done by the
2948 * congestion control later.
2949 *
2950 * It does _not_ decide what to send, it is made in function
2951 * tcp_xmit_retransmit_queue().
2952 */
2953static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2954				  int num_dupack, int *ack_flag, int *rexmit)
2955{
2956	struct inet_connection_sock *icsk = inet_csk(sk);
2957	struct tcp_sock *tp = tcp_sk(sk);
2958	int fast_rexmit = 0, flag = *ack_flag;
2959	bool ece_ack = flag & FLAG_ECE;
2960	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2961				      tcp_force_fast_retransmit(sk));
2962
2963	if (!tp->packets_out && tp->sacked_out)
2964		tp->sacked_out = 0;
 
 
2965
2966	/* Now state machine starts.
2967	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2968	if (ece_ack)
2969		tp->prior_ssthresh = 0;
2970
2971	/* B. In all the states check for reneging SACKs. */
2972	if (tcp_check_sack_reneging(sk, flag))
2973		return;
2974
2975	/* C. Check consistency of the current state. */
 
 
 
 
 
 
 
 
 
2976	tcp_verify_left_out(tp);
2977
2978	/* D. Check state exit conditions. State can be terminated
2979	 *    when high_seq is ACKed. */
2980	if (icsk->icsk_ca_state == TCP_CA_Open) {
2981		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
2982		tp->retrans_stamp = 0;
2983	} else if (!before(tp->snd_una, tp->high_seq)) {
2984		switch (icsk->icsk_ca_state) {
 
 
 
 
 
 
2985		case TCP_CA_CWR:
2986			/* CWR is to be held something *above* high_seq
2987			 * is ACKed for CWR bit to reach receiver. */
2988			if (tp->snd_una != tp->high_seq) {
2989				tcp_end_cwnd_reduction(sk);
 
 
 
 
 
 
 
 
 
 
 
2990				tcp_set_ca_state(sk, TCP_CA_Open);
2991			}
2992			break;
2993
2994		case TCP_CA_Recovery:
2995			if (tcp_is_reno(tp))
2996				tcp_reset_reno_sack(tp);
2997			if (tcp_try_undo_recovery(sk))
2998				return;
2999			tcp_end_cwnd_reduction(sk);
3000			break;
3001		}
3002	}
3003
3004	/* E. Process state. */
3005	switch (icsk->icsk_ca_state) {
3006	case TCP_CA_Recovery:
3007		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3008			if (tcp_is_reno(tp))
3009				tcp_add_reno_sack(sk, num_dupack, ece_ack);
3010		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3011			return;
3012
3013		if (tcp_try_undo_dsack(sk))
3014			tcp_try_keep_open(sk);
3015
3016		tcp_identify_packet_loss(sk, ack_flag);
3017		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3018			if (!tcp_time_to_recover(sk, flag))
3019				return;
3020			/* Undo reverts the recovery state. If loss is evident,
3021			 * starts a new recovery (e.g. reordering then loss);
3022			 */
3023			tcp_enter_recovery(sk, ece_ack);
3024		}
3025		break;
3026	case TCP_CA_Loss:
3027		tcp_process_loss(sk, flag, num_dupack, rexmit);
3028		tcp_identify_packet_loss(sk, ack_flag);
3029		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3030		      (*ack_flag & FLAG_LOST_RETRANS)))
 
 
 
 
 
 
3031			return;
3032		/* Change state if cwnd is undone or retransmits are lost */
3033		fallthrough;
3034	default:
3035		if (tcp_is_reno(tp)) {
3036			if (flag & FLAG_SND_UNA_ADVANCED)
3037				tcp_reset_reno_sack(tp);
3038			tcp_add_reno_sack(sk, num_dupack, ece_ack);
 
3039		}
3040
3041		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3042			tcp_try_undo_dsack(sk);
3043
3044		tcp_identify_packet_loss(sk, ack_flag);
3045		if (!tcp_time_to_recover(sk, flag)) {
3046			tcp_try_to_open(sk, flag);
3047			return;
3048		}
3049
3050		/* MTU probe failure: don't reduce cwnd */
3051		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3052		    icsk->icsk_mtup.probe_size &&
3053		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3054			tcp_mtup_probe_failed(sk);
3055			/* Restores the reduction we did in tcp_mtup_probe() */
3056			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3057			tcp_simple_retransmit(sk);
3058			return;
3059		}
3060
3061		/* Otherwise enter Recovery state */
3062		tcp_enter_recovery(sk, ece_ack);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3063		fast_rexmit = 1;
3064	}
3065
3066	if (!tcp_is_rack(sk) && do_lost)
3067		tcp_update_scoreboard(sk, fast_rexmit);
3068	*rexmit = REXMIT_LOST;
 
3069}
3070
3071static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3072{
3073	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3074	struct tcp_sock *tp = tcp_sk(sk);
3075
3076	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3077		/* If the remote keeps returning delayed ACKs, eventually
3078		 * the min filter would pick it up and overestimate the
3079		 * prop. delay when it expires. Skip suspected delayed ACKs.
3080		 */
3081		return;
3082	}
3083	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3084			   rtt_us ? : jiffies_to_usecs(1));
3085}
 
3086
3087static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3088			       long seq_rtt_us, long sack_rtt_us,
3089			       long ca_rtt_us, struct rate_sample *rs)
 
3090{
3091	const struct tcp_sock *tp = tcp_sk(sk);
3092
3093	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3094	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3095	 * Karn's algorithm forbids taking RTT if some retransmitted data
3096	 * is acked (RFC6298).
3097	 */
3098	if (seq_rtt_us < 0)
3099		seq_rtt_us = sack_rtt_us;
3100
3101	/* RTTM Rule: A TSecr value received in a segment is used to
3102	 * update the averaged RTT measurement only if the segment
3103	 * acknowledges some new data, i.e., only if it advances the
3104	 * left edge of the send window.
 
3105	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
 
 
 
 
 
 
 
 
3106	 */
3107	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3108	    flag & FLAG_ACKED) {
3109		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3110
3111		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3112			if (!delta)
3113				delta = 1;
3114			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3115			ca_rtt_us = seq_rtt_us;
3116		}
3117	}
3118	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3119	if (seq_rtt_us < 0)
3120		return false;
3121
3122	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3123	 * always taken together with ACK, SACK, or TS-opts. Any negative
3124	 * values will be skipped with the seq_rtt_us < 0 check above.
3125	 */
3126	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3127	tcp_rtt_estimator(sk, seq_rtt_us);
3128	tcp_set_rto(sk);
3129
3130	/* RFC6298: only reset backoff on valid RTT measurement. */
3131	inet_csk(sk)->icsk_backoff = 0;
3132	return true;
3133}
3134
3135/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3136void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3137{
3138	struct rate_sample rs;
3139	long rtt_us = -1L;
 
 
 
 
 
 
3140
3141	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3142		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3143
3144	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3145}
3146
 
 
 
 
 
 
 
 
 
 
3147
3148static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3149{
3150	const struct inet_connection_sock *icsk = inet_csk(sk);
3151
3152	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3153	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3154}
3155
3156/* Restart timer after forward progress on connection.
3157 * RFC2988 recommends to restart timer to now+rto.
3158 */
3159void tcp_rearm_rto(struct sock *sk)
3160{
3161	const struct inet_connection_sock *icsk = inet_csk(sk);
3162	struct tcp_sock *tp = tcp_sk(sk);
3163
3164	/* If the retrans timer is currently being used by Fast Open
3165	 * for SYN-ACK retrans purpose, stay put.
3166	 */
3167	if (rcu_access_pointer(tp->fastopen_rsk))
3168		return;
3169
3170	if (!tp->packets_out) {
3171		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3172	} else {
3173		u32 rto = inet_csk(sk)->icsk_rto;
3174		/* Offset the time elapsed after installing regular RTO */
3175		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3176		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3177			s64 delta_us = tcp_rto_delta_us(sk);
3178			/* delta_us may not be positive if the socket is locked
3179			 * when the retrans timer fires and is rescheduled.
3180			 */
3181			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3182		}
3183		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3184				     TCP_RTO_MAX);
3185	}
3186}
3187
3188/* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3189static void tcp_set_xmit_timer(struct sock *sk)
3190{
3191	if (!tcp_schedule_loss_probe(sk, true))
3192		tcp_rearm_rto(sk);
3193}
3194
3195/* If we get here, the whole TSO packet has not been acked. */
3196static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3197{
3198	struct tcp_sock *tp = tcp_sk(sk);
3199	u32 packets_acked;
3200
3201	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3202
3203	packets_acked = tcp_skb_pcount(skb);
3204	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3205		return 0;
3206	packets_acked -= tcp_skb_pcount(skb);
3207
3208	if (packets_acked) {
3209		BUG_ON(tcp_skb_pcount(skb) == 0);
3210		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3211	}
3212
3213	return packets_acked;
3214}
3215
3216static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3217			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3218{
3219	const struct skb_shared_info *shinfo;
3220
3221	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3222	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3223		return;
3224
3225	shinfo = skb_shinfo(skb);
3226	if (!before(shinfo->tskey, prior_snd_una) &&
3227	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3228		tcp_skb_tsorted_save(skb) {
3229			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3230		} tcp_skb_tsorted_restore(skb);
3231	}
3232}
3233
3234/* Remove acknowledged frames from the retransmission queue. If our packet
3235 * is before the ack sequence we can discard it as it's confirmed to have
3236 * arrived at the other end.
3237 */
3238static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3239			       u32 prior_fack, u32 prior_snd_una,
3240			       struct tcp_sacktag_state *sack, bool ece_ack)
3241{
3242	const struct inet_connection_sock *icsk = inet_csk(sk);
3243	u64 first_ackt, last_ackt;
3244	struct tcp_sock *tp = tcp_sk(sk);
3245	u32 prior_sacked = tp->sacked_out;
3246	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3247	struct sk_buff *skb, *next;
3248	bool fully_acked = true;
3249	long sack_rtt_us = -1L;
3250	long seq_rtt_us = -1L;
3251	long ca_rtt_us = -1L;
3252	u32 pkts_acked = 0;
3253	bool rtt_update;
3254	int flag = 0;
 
 
 
 
 
 
3255
3256	first_ackt = 0;
3257
3258	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3259		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3260		const u32 start_seq = scb->seq;
3261		u8 sacked = scb->sacked;
3262		u32 acked_pcount;
 
3263
3264		/* Determine how many packets and what bytes were acked, tso and else */
3265		if (after(scb->end_seq, tp->snd_una)) {
3266			if (tcp_skb_pcount(skb) == 1 ||
3267			    !after(tp->snd_una, scb->seq))
3268				break;
3269
3270			acked_pcount = tcp_tso_acked(sk, skb);
3271			if (!acked_pcount)
3272				break;
3273			fully_acked = false;
 
3274		} else {
3275			acked_pcount = tcp_skb_pcount(skb);
3276		}
3277
3278		if (unlikely(sacked & TCPCB_RETRANS)) {
3279			if (sacked & TCPCB_SACKED_RETRANS)
3280				tp->retrans_out -= acked_pcount;
3281			flag |= FLAG_RETRANS_DATA_ACKED;
3282		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3283			last_ackt = tcp_skb_timestamp_us(skb);
3284			WARN_ON_ONCE(last_ackt == 0);
3285			if (!first_ackt)
3286				first_ackt = last_ackt;
3287
3288			if (before(start_seq, reord))
3289				reord = start_seq;
3290			if (!after(scb->end_seq, tp->high_seq))
3291				flag |= FLAG_ORIG_SACK_ACKED;
 
 
3292		}
3293
3294		if (sacked & TCPCB_SACKED_ACKED) {
3295			tp->sacked_out -= acked_pcount;
3296		} else if (tcp_is_sack(tp)) {
3297			tcp_count_delivered(tp, acked_pcount, ece_ack);
3298			if (!tcp_skb_spurious_retrans(tp, skb))
3299				tcp_rack_advance(tp, sacked, scb->end_seq,
3300						 tcp_skb_timestamp_us(skb));
3301		}
3302		if (sacked & TCPCB_LOST)
3303			tp->lost_out -= acked_pcount;
3304
3305		tp->packets_out -= acked_pcount;
3306		pkts_acked += acked_pcount;
3307		tcp_rate_skb_delivered(sk, skb, sack->rate);
3308
3309		/* Initial outgoing SYN's get put onto the write_queue
3310		 * just like anything else we transmit.  It is not
3311		 * true data, and if we misinform our callers that
3312		 * this ACK acks real data, we will erroneously exit
3313		 * connection startup slow start one packet too
3314		 * quickly.  This is severely frowned upon behavior.
3315		 */
3316		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3317			flag |= FLAG_DATA_ACKED;
3318		} else {
3319			flag |= FLAG_SYN_ACKED;
3320			tp->retrans_stamp = 0;
3321		}
3322
3323		if (!fully_acked)
3324			break;
3325
3326		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3327
3328		next = skb_rb_next(skb);
3329		if (unlikely(skb == tp->retransmit_skb_hint))
3330			tp->retransmit_skb_hint = NULL;
3331		if (unlikely(skb == tp->lost_skb_hint))
3332			tp->lost_skb_hint = NULL;
3333		tcp_highest_sack_replace(sk, skb, next);
3334		tcp_rtx_queue_unlink_and_free(skb, sk);
3335	}
3336
3337	if (!skb)
3338		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3339
3340	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3341		tp->snd_up = tp->snd_una;
3342
3343	if (skb) {
3344		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3345		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3346			flag |= FLAG_SACK_RENEGING;
3347	}
3348
3349	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3350		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3351		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3352
3353		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3354		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3355		    sack->rate->prior_delivered + 1 == tp->delivered &&
3356		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3357			/* Conservatively mark a delayed ACK. It's typically
3358			 * from a lone runt packet over the round trip to
3359			 * a receiver w/o out-of-order or CE events.
3360			 */
3361			flag |= FLAG_ACK_MAYBE_DELAYED;
3362		}
3363	}
3364	if (sack->first_sackt) {
3365		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3366		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3367	}
3368	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3369					ca_rtt_us, sack->rate);
3370
3371	if (flag & FLAG_ACKED) {
3372		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
 
 
3373		if (unlikely(icsk->icsk_mtup.probe_size &&
3374			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3375			tcp_mtup_probe_success(sk);
3376		}
3377
3378		if (tcp_is_reno(tp)) {
3379			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3380
3381			/* If any of the cumulatively ACKed segments was
3382			 * retransmitted, non-SACK case cannot confirm that
3383			 * progress was due to original transmission due to
3384			 * lack of TCPCB_SACKED_ACKED bits even if some of
3385			 * the packets may have been never retransmitted.
3386			 */
3387			if (flag & FLAG_RETRANS_DATA_ACKED)
3388				flag &= ~FLAG_ORIG_SACK_ACKED;
3389		} else {
3390			int delta;
3391
3392			/* Non-retransmitted hole got filled? That's reordering */
3393			if (before(reord, prior_fack))
3394				tcp_check_sack_reordering(sk, reord, 0);
3395
3396			delta = prior_sacked - tp->sacked_out;
 
3397			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3398		}
3399	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3400		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3401						    tcp_skb_timestamp_us(skb))) {
3402		/* Do not re-arm RTO if the sack RTT is measured from data sent
3403		 * after when the head was last (re)transmitted. Otherwise the
3404		 * timeout may continue to extend in loss recovery.
3405		 */
3406		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3407	}
3408
3409	if (icsk->icsk_ca_ops->pkts_acked) {
3410		struct ack_sample sample = { .pkts_acked = pkts_acked,
3411					     .rtt_us = sack->rate->rtt_us };
3412
3413		sample.in_flight = tp->mss_cache *
3414			(tp->delivered - sack->rate->prior_delivered);
3415		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
 
 
 
3416	}
3417
3418#if FASTRETRANS_DEBUG > 0
3419	WARN_ON((int)tp->sacked_out < 0);
3420	WARN_ON((int)tp->lost_out < 0);
3421	WARN_ON((int)tp->retrans_out < 0);
3422	if (!tp->packets_out && tcp_is_sack(tp)) {
3423		icsk = inet_csk(sk);
3424		if (tp->lost_out) {
3425			pr_debug("Leak l=%u %d\n",
3426				 tp->lost_out, icsk->icsk_ca_state);
3427			tp->lost_out = 0;
3428		}
3429		if (tp->sacked_out) {
3430			pr_debug("Leak s=%u %d\n",
3431				 tp->sacked_out, icsk->icsk_ca_state);
3432			tp->sacked_out = 0;
3433		}
3434		if (tp->retrans_out) {
3435			pr_debug("Leak r=%u %d\n",
3436				 tp->retrans_out, icsk->icsk_ca_state);
3437			tp->retrans_out = 0;
3438		}
3439	}
3440#endif
3441	return flag;
3442}
3443
3444static void tcp_ack_probe(struct sock *sk)
3445{
3446	struct inet_connection_sock *icsk = inet_csk(sk);
3447	struct sk_buff *head = tcp_send_head(sk);
3448	const struct tcp_sock *tp = tcp_sk(sk);
 
3449
3450	/* Was it a usable window open? */
3451	if (!head)
3452		return;
3453	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3454		icsk->icsk_backoff = 0;
3455		icsk->icsk_probes_tstamp = 0;
3456		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3457		/* Socket must be waked up by subsequent tcp_data_snd_check().
3458		 * This function is not for random using!
3459		 */
3460	} else {
3461		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3462
3463		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3464		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3465	}
3466}
3467
3468static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3469{
3470	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3471		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3472}
3473
3474/* Decide wheather to run the increase function of congestion control. */
3475static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3476{
3477	/* If reordering is high then always grow cwnd whenever data is
3478	 * delivered regardless of its ordering. Otherwise stay conservative
3479	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3480	 * new SACK or ECE mark may first advance cwnd here and later reduce
3481	 * cwnd in tcp_fastretrans_alert() based on more states.
3482	 */
3483	if (tcp_sk(sk)->reordering >
3484	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3485		return flag & FLAG_FORWARD_PROGRESS;
3486
3487	return flag & FLAG_DATA_ACKED;
3488}
3489
3490/* The "ultimate" congestion control function that aims to replace the rigid
3491 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3492 * It's called toward the end of processing an ACK with precise rate
3493 * information. All transmission or retransmission are delayed afterwards.
3494 */
3495static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3496			     int flag, const struct rate_sample *rs)
3497{
3498	const struct inet_connection_sock *icsk = inet_csk(sk);
3499
3500	if (icsk->icsk_ca_ops->cong_control) {
3501		icsk->icsk_ca_ops->cong_control(sk, rs);
3502		return;
3503	}
3504
3505	if (tcp_in_cwnd_reduction(sk)) {
3506		/* Reduce cwnd if state mandates */
3507		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3508	} else if (tcp_may_raise_cwnd(sk, flag)) {
3509		/* Advance cwnd if state allows */
3510		tcp_cong_avoid(sk, ack, acked_sacked);
3511	}
3512	tcp_update_pacing_rate(sk);
3513}
3514
3515/* Check that window update is acceptable.
3516 * The function assumes that snd_una<=ack<=snd_next.
3517 */
3518static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3519					const u32 ack, const u32 ack_seq,
3520					const u32 nwin)
3521{
3522	return	after(ack, tp->snd_una) ||
3523		after(ack_seq, tp->snd_wl1) ||
3524		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3525}
3526
3527/* If we update tp->snd_una, also update tp->bytes_acked */
3528static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3529{
3530	u32 delta = ack - tp->snd_una;
3531
3532	sock_owned_by_me((struct sock *)tp);
3533	tp->bytes_acked += delta;
3534	tp->snd_una = ack;
3535}
3536
3537/* If we update tp->rcv_nxt, also update tp->bytes_received */
3538static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3539{
3540	u32 delta = seq - tp->rcv_nxt;
3541
3542	sock_owned_by_me((struct sock *)tp);
3543	tp->bytes_received += delta;
3544	WRITE_ONCE(tp->rcv_nxt, seq);
3545}
3546
3547/* Update our send window.
3548 *
3549 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3550 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3551 */
3552static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3553				 u32 ack_seq)
3554{
3555	struct tcp_sock *tp = tcp_sk(sk);
3556	int flag = 0;
3557	u32 nwin = ntohs(tcp_hdr(skb)->window);
3558
3559	if (likely(!tcp_hdr(skb)->syn))
3560		nwin <<= tp->rx_opt.snd_wscale;
3561
3562	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3563		flag |= FLAG_WIN_UPDATE;
3564		tcp_update_wl(tp, ack_seq);
3565
3566		if (tp->snd_wnd != nwin) {
3567			tp->snd_wnd = nwin;
3568
3569			/* Note, it is the only place, where
3570			 * fast path is recovered for sending TCP.
3571			 */
3572			tp->pred_flags = 0;
3573			tcp_fast_path_check(sk);
3574
3575			if (!tcp_write_queue_empty(sk))
3576				tcp_slow_start_after_idle_check(sk);
3577
3578			if (nwin > tp->max_window) {
3579				tp->max_window = nwin;
3580				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3581			}
3582		}
3583	}
3584
3585	tcp_snd_una_update(tp, ack);
3586
3587	return flag;
3588}
3589
3590static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3591				   u32 *last_oow_ack_time)
3592{
3593	if (*last_oow_ack_time) {
3594		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3595
3596		if (0 <= elapsed &&
3597		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3598			NET_INC_STATS(net, mib_idx);
3599			return true;	/* rate-limited: don't send yet! */
3600		}
3601	}
3602
3603	*last_oow_ack_time = tcp_jiffies32;
3604
3605	return false;	/* not rate-limited: go ahead, send dupack now! */
3606}
3607
3608/* Return true if we're currently rate-limiting out-of-window ACKs and
3609 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3610 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3611 * attacks that send repeated SYNs or ACKs for the same connection. To
3612 * do this, we do not send a duplicate SYNACK or ACK if the remote
3613 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3614 */
3615bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3616			  int mib_idx, u32 *last_oow_ack_time)
3617{
3618	/* Data packets without SYNs are not likely part of an ACK loop. */
3619	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3620	    !tcp_hdr(skb)->syn)
3621		return false;
3622
3623	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3624}
3625
3626/* RFC 5961 7 [ACK Throttling] */
3627static void tcp_send_challenge_ack(struct sock *sk)
3628{
3629	struct tcp_sock *tp = tcp_sk(sk);
3630	struct net *net = sock_net(sk);
3631	u32 count, now, ack_limit;
3632
3633	/* First check our per-socket dupack rate limit. */
3634	if (__tcp_oow_rate_limited(net,
3635				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3636				   &tp->last_oow_ack_time))
3637		return;
3638
3639	ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3640	if (ack_limit == INT_MAX)
3641		goto send_ack;
3642
3643	/* Then check host-wide RFC 5961 rate limit. */
3644	now = jiffies / HZ;
3645	if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3646		u32 half = (ack_limit + 1) >> 1;
3647
3648		WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3649		WRITE_ONCE(net->ipv4.tcp_challenge_count,
3650			   get_random_u32_inclusive(half, ack_limit + half - 1));
3651	}
3652	count = READ_ONCE(net->ipv4.tcp_challenge_count);
3653	if (count > 0) {
3654		WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3655send_ack:
3656		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3657		tcp_send_ack(sk);
3658	}
3659}
3660
3661static void tcp_store_ts_recent(struct tcp_sock *tp)
 
 
 
3662{
3663	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3664	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3665}
3666
3667static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3668{
3669	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3670		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3671		 * extra check below makes sure this can only happen
3672		 * for pure ACK frames.  -DaveM
3673		 *
3674		 * Not only, also it occurs for expired timestamps.
3675		 */
3676
3677		if (tcp_paws_check(&tp->rx_opt, 0))
3678			tcp_store_ts_recent(tp);
3679	}
3680}
3681
3682/* This routine deals with acks during a TLP episode and ends an episode by
3683 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3684 */
3685static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3686{
3687	struct tcp_sock *tp = tcp_sk(sk);
3688
3689	if (before(ack, tp->tlp_high_seq))
3690		return;
3691
3692	if (!tp->tlp_retrans) {
3693		/* TLP of new data has been acknowledged */
3694		tp->tlp_high_seq = 0;
3695	} else if (flag & FLAG_DSACK_TLP) {
3696		/* This DSACK means original and TLP probe arrived; no loss */
3697		tp->tlp_high_seq = 0;
3698	} else if (after(ack, tp->tlp_high_seq)) {
3699		/* ACK advances: there was a loss, so reduce cwnd. Reset
3700		 * tlp_high_seq in tcp_init_cwnd_reduction()
3701		 */
3702		tcp_init_cwnd_reduction(sk);
3703		tcp_set_ca_state(sk, TCP_CA_CWR);
3704		tcp_end_cwnd_reduction(sk);
3705		tcp_try_keep_open(sk);
3706		NET_INC_STATS(sock_net(sk),
3707				LINUX_MIB_TCPLOSSPROBERECOVERY);
3708	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3709			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3710		/* Pure dupack: original and TLP probe arrived; no loss */
3711		tp->tlp_high_seq = 0;
3712	}
3713}
3714
3715static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3716{
3717	const struct inet_connection_sock *icsk = inet_csk(sk);
3718
3719	if (icsk->icsk_ca_ops->in_ack_event)
3720		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3721}
 
3722
3723/* Congestion control has updated the cwnd already. So if we're in
3724 * loss recovery then now we do any new sends (for FRTO) or
3725 * retransmits (for CA_Loss or CA_recovery) that make sense.
3726 */
3727static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3728{
3729	struct tcp_sock *tp = tcp_sk(sk);
3730
3731	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3732		return;
 
 
 
 
 
 
 
 
 
 
3733
3734	if (unlikely(rexmit == REXMIT_NEW)) {
3735		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3736					  TCP_NAGLE_OFF);
3737		if (after(tp->snd_nxt, tp->high_seq))
3738			return;
3739		tp->frto = 0;
 
 
 
 
 
 
3740	}
3741	tcp_xmit_retransmit_queue(sk);
3742}
3743
3744/* Returns the number of packets newly acked or sacked by the current ACK */
3745static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3746{
3747	const struct net *net = sock_net(sk);
3748	struct tcp_sock *tp = tcp_sk(sk);
3749	u32 delivered;
3750
3751	delivered = tp->delivered - prior_delivered;
3752	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3753	if (flag & FLAG_ECE)
3754		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3755
3756	return delivered;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3757}
3758
3759/* This routine deals with incoming acks, but not outgoing ones. */
3760static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3761{
3762	struct inet_connection_sock *icsk = inet_csk(sk);
3763	struct tcp_sock *tp = tcp_sk(sk);
3764	struct tcp_sacktag_state sack_state;
3765	struct rate_sample rs = { .prior_delivered = 0 };
3766	u32 prior_snd_una = tp->snd_una;
3767	bool is_sack_reneg = tp->is_sack_reneg;
3768	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3769	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3770	int num_dupack = 0;
3771	int prior_packets = tp->packets_out;
3772	u32 delivered = tp->delivered;
3773	u32 lost = tp->lost;
3774	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3775	u32 prior_fack;
3776
3777	sack_state.first_sackt = 0;
3778	sack_state.rate = &rs;
3779	sack_state.sack_delivered = 0;
3780
3781	/* We very likely will need to access rtx queue. */
3782	prefetch(sk->tcp_rtx_queue.rb_node);
3783
3784	/* If the ack is older than previous acks
3785	 * then we can probably ignore it.
3786	 */
3787	if (before(ack, prior_snd_una)) {
3788		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3789		if (before(ack, prior_snd_una - tp->max_window)) {
3790			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3791				tcp_send_challenge_ack(sk);
3792			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3793		}
3794		goto old_ack;
3795	}
3796
3797	/* If the ack includes data we haven't sent yet, discard
3798	 * this segment (RFC793 Section 3.9).
3799	 */
3800	if (after(ack, tp->snd_nxt))
3801		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3802
3803	if (after(ack, prior_snd_una)) {
3804		flag |= FLAG_SND_UNA_ADVANCED;
3805		icsk->icsk_retransmits = 0;
3806
3807#if IS_ENABLED(CONFIG_TLS_DEVICE)
3808		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3809			if (icsk->icsk_clean_acked)
3810				icsk->icsk_clean_acked(sk, ack);
3811#endif
 
 
3812	}
3813
3814	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3815	rs.prior_in_flight = tcp_packets_in_flight(tp);
3816
3817	/* ts_recent update must be made after we are sure that the packet
3818	 * is in window.
3819	 */
3820	if (flag & FLAG_UPDATE_TS_RECENT)
3821		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3822
3823	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3824	    FLAG_SND_UNA_ADVANCED) {
3825		/* Window is constant, pure forward advance.
3826		 * No more checks are required.
3827		 * Note, we use the fact that SND.UNA>=SND.WL2.
3828		 */
3829		tcp_update_wl(tp, ack_seq);
3830		tcp_snd_una_update(tp, ack);
3831		flag |= FLAG_WIN_UPDATE;
3832
3833		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3834
3835		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3836	} else {
3837		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3838
3839		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3840			flag |= FLAG_DATA;
3841		else
3842			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3843
3844		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3845
3846		if (TCP_SKB_CB(skb)->sacked)
3847			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3848							&sack_state);
3849
3850		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3851			flag |= FLAG_ECE;
3852			ack_ev_flags |= CA_ACK_ECE;
3853		}
3854
3855		if (sack_state.sack_delivered)
3856			tcp_count_delivered(tp, sack_state.sack_delivered,
3857					    flag & FLAG_ECE);
3858
3859		if (flag & FLAG_WIN_UPDATE)
3860			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3861
3862		tcp_in_ack_event(sk, ack_ev_flags);
3863	}
3864
3865	/* This is a deviation from RFC3168 since it states that:
3866	 * "When the TCP data sender is ready to set the CWR bit after reducing
3867	 * the congestion window, it SHOULD set the CWR bit only on the first
3868	 * new data packet that it transmits."
3869	 * We accept CWR on pure ACKs to be more robust
3870	 * with widely-deployed TCP implementations that do this.
3871	 */
3872	tcp_ecn_accept_cwr(sk, skb);
3873
3874	/* We passed data and got it acked, remove any soft error
3875	 * log. Something worked...
3876	 */
3877	sk->sk_err_soft = 0;
3878	icsk->icsk_probes_out = 0;
3879	tp->rcv_tstamp = tcp_jiffies32;
 
3880	if (!prior_packets)
3881		goto no_queue;
3882
3883	/* See if we can take anything off of the retransmit queue. */
3884	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3885				    &sack_state, flag & FLAG_ECE);
3886
3887	tcp_rack_update_reo_wnd(sk, &rs);
3888
3889	if (tp->tlp_high_seq)
3890		tcp_process_tlp_ack(sk, ack, flag);
 
 
 
3891
3892	if (tcp_ack_is_dubious(sk, flag)) {
3893		if (!(flag & (FLAG_SND_UNA_ADVANCED |
3894			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3895			num_dupack = 1;
3896			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3897			if (!(flag & FLAG_DATA))
3898				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3899		}
3900		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3901				      &rexmit);
3902	}
3903
3904	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3905	if (flag & FLAG_SET_XMIT_TIMER)
3906		tcp_set_xmit_timer(sk);
3907
3908	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3909		sk_dst_confirm(sk);
3910
3911	delivered = tcp_newly_delivered(sk, delivered, flag);
3912	lost = tp->lost - lost;			/* freshly marked lost */
3913	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3914	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3915	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3916	tcp_xmit_recovery(sk, rexmit);
3917	return 1;
3918
3919no_queue:
3920	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3921	if (flag & FLAG_DSACKING_ACK) {
3922		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3923				      &rexmit);
3924		tcp_newly_delivered(sk, delivered, flag);
3925	}
3926	/* If this ack opens up a zero window, clear backoff.  It was
3927	 * being used to time the probes, and is probably far higher than
3928	 * it needs to be for normal retransmission.
3929	 */
3930	tcp_ack_probe(sk);
3931
3932	if (tp->tlp_high_seq)
3933		tcp_process_tlp_ack(sk, ack, flag);
3934	return 1;
3935
 
 
 
 
3936old_ack:
3937	/* If data was SACKed, tag it and see if we should send more data.
3938	 * If data was DSACKed, see if we can undo a cwnd reduction.
3939	 */
3940	if (TCP_SKB_CB(skb)->sacked) {
3941		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3942						&sack_state);
3943		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3944				      &rexmit);
3945		tcp_newly_delivered(sk, delivered, flag);
3946		tcp_xmit_recovery(sk, rexmit);
3947	}
3948
 
3949	return 0;
3950}
3951
3952static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3953				      bool syn, struct tcp_fastopen_cookie *foc,
3954				      bool exp_opt)
3955{
3956	/* Valid only in SYN or SYN-ACK with an even length.  */
3957	if (!foc || !syn || len < 0 || (len & 1))
3958		return;
3959
3960	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3961	    len <= TCP_FASTOPEN_COOKIE_MAX)
3962		memcpy(foc->val, cookie, len);
3963	else if (len != 0)
3964		len = -1;
3965	foc->len = len;
3966	foc->exp = exp_opt;
3967}
3968
3969static bool smc_parse_options(const struct tcphdr *th,
3970			      struct tcp_options_received *opt_rx,
3971			      const unsigned char *ptr,
3972			      int opsize)
3973{
3974#if IS_ENABLED(CONFIG_SMC)
3975	if (static_branch_unlikely(&tcp_have_smc)) {
3976		if (th->syn && !(opsize & 1) &&
3977		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3978		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3979			opt_rx->smc_ok = 1;
3980			return true;
3981		}
3982	}
3983#endif
3984	return false;
3985}
3986
3987/* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3988 * value on success.
3989 */
3990u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3991{
3992	const unsigned char *ptr = (const unsigned char *)(th + 1);
3993	int length = (th->doff * 4) - sizeof(struct tcphdr);
3994	u16 mss = 0;
3995
3996	while (length > 0) {
3997		int opcode = *ptr++;
3998		int opsize;
3999
4000		switch (opcode) {
4001		case TCPOPT_EOL:
4002			return mss;
4003		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4004			length--;
4005			continue;
4006		default:
4007			if (length < 2)
4008				return mss;
4009			opsize = *ptr++;
4010			if (opsize < 2) /* "silly options" */
4011				return mss;
4012			if (opsize > length)
4013				return mss;	/* fail on partial options */
4014			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4015				u16 in_mss = get_unaligned_be16(ptr);
4016
4017				if (in_mss) {
4018					if (user_mss && user_mss < in_mss)
4019						in_mss = user_mss;
4020					mss = in_mss;
4021				}
4022			}
4023			ptr += opsize - 2;
4024			length -= opsize;
4025		}
4026	}
4027	return mss;
4028}
4029EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4030
4031/* Look for tcp options. Normally only called on SYN and SYNACK packets.
4032 * But, this can also be called on packets in the established flow when
4033 * the fast version below fails.
4034 */
4035void tcp_parse_options(const struct net *net,
4036		       const struct sk_buff *skb,
4037		       struct tcp_options_received *opt_rx, int estab,
4038		       struct tcp_fastopen_cookie *foc)
4039{
4040	const unsigned char *ptr;
4041	const struct tcphdr *th = tcp_hdr(skb);
4042	int length = (th->doff * 4) - sizeof(struct tcphdr);
4043
4044	ptr = (const unsigned char *)(th + 1);
4045	opt_rx->saw_tstamp = 0;
4046	opt_rx->saw_unknown = 0;
4047
4048	while (length > 0) {
4049		int opcode = *ptr++;
4050		int opsize;
4051
4052		switch (opcode) {
4053		case TCPOPT_EOL:
4054			return;
4055		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4056			length--;
4057			continue;
4058		default:
4059			if (length < 2)
4060				return;
4061			opsize = *ptr++;
4062			if (opsize < 2) /* "silly options" */
4063				return;
4064			if (opsize > length)
4065				return;	/* don't parse partial options */
4066			switch (opcode) {
4067			case TCPOPT_MSS:
4068				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4069					u16 in_mss = get_unaligned_be16(ptr);
4070					if (in_mss) {
4071						if (opt_rx->user_mss &&
4072						    opt_rx->user_mss < in_mss)
4073							in_mss = opt_rx->user_mss;
4074						opt_rx->mss_clamp = in_mss;
4075					}
4076				}
4077				break;
4078			case TCPOPT_WINDOW:
4079				if (opsize == TCPOLEN_WINDOW && th->syn &&
4080				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4081					__u8 snd_wscale = *(__u8 *)ptr;
4082					opt_rx->wscale_ok = 1;
4083					if (snd_wscale > TCP_MAX_WSCALE) {
4084						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4085								     __func__,
4086								     snd_wscale,
4087								     TCP_MAX_WSCALE);
4088						snd_wscale = TCP_MAX_WSCALE;
4089					}
4090					opt_rx->snd_wscale = snd_wscale;
4091				}
4092				break;
4093			case TCPOPT_TIMESTAMP:
4094				if ((opsize == TCPOLEN_TIMESTAMP) &&
4095				    ((estab && opt_rx->tstamp_ok) ||
4096				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4097					opt_rx->saw_tstamp = 1;
4098					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4099					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4100				}
4101				break;
4102			case TCPOPT_SACK_PERM:
4103				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4104				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4105					opt_rx->sack_ok = TCP_SACK_SEEN;
4106					tcp_sack_reset(opt_rx);
4107				}
4108				break;
4109
4110			case TCPOPT_SACK:
4111				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4112				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4113				   opt_rx->sack_ok) {
4114					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4115				}
4116				break;
4117#ifdef CONFIG_TCP_MD5SIG
4118			case TCPOPT_MD5SIG:
4119				/*
4120				 * The MD5 Hash has already been
4121				 * checked (see tcp_v{4,6}_do_rcv()).
4122				 */
4123				break;
4124#endif
4125			case TCPOPT_FASTOPEN:
4126				tcp_parse_fastopen_option(
4127					opsize - TCPOLEN_FASTOPEN_BASE,
4128					ptr, th->syn, foc, false);
4129				break;
4130
4131			case TCPOPT_EXP:
4132				/* Fast Open option shares code 254 using a
4133				 * 16 bits magic number.
4134				 */
4135				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4136				    get_unaligned_be16(ptr) ==
4137				    TCPOPT_FASTOPEN_MAGIC) {
4138					tcp_parse_fastopen_option(opsize -
4139						TCPOLEN_EXP_FASTOPEN_BASE,
4140						ptr + 2, th->syn, foc, true);
4141					break;
4142				}
4143
4144				if (smc_parse_options(th, opt_rx, ptr, opsize))
4145					break;
4146
4147				opt_rx->saw_unknown = 1;
 
 
 
 
 
 
 
 
 
 
 
4148				break;
4149
4150			default:
4151				opt_rx->saw_unknown = 1;
4152			}
 
4153			ptr += opsize-2;
4154			length -= opsize;
4155		}
4156	}
4157}
4158EXPORT_SYMBOL(tcp_parse_options);
4159
4160static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4161{
4162	const __be32 *ptr = (const __be32 *)(th + 1);
4163
4164	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4165			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4166		tp->rx_opt.saw_tstamp = 1;
4167		++ptr;
4168		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4169		++ptr;
4170		if (*ptr)
4171			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4172		else
4173			tp->rx_opt.rcv_tsecr = 0;
4174		return true;
4175	}
4176	return false;
4177}
4178
4179/* Fast parse options. This hopes to only see timestamps.
4180 * If it is wrong it falls back on tcp_parse_options().
4181 */
4182static bool tcp_fast_parse_options(const struct net *net,
4183				   const struct sk_buff *skb,
4184				   const struct tcphdr *th, struct tcp_sock *tp)
4185{
4186	/* In the spirit of fast parsing, compare doff directly to constant
4187	 * values.  Because equality is used, short doff can be ignored here.
4188	 */
4189	if (th->doff == (sizeof(*th) / 4)) {
4190		tp->rx_opt.saw_tstamp = 0;
4191		return false;
4192	} else if (tp->rx_opt.tstamp_ok &&
4193		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4194		if (tcp_parse_aligned_timestamp(tp, th))
4195			return true;
4196	}
4197
4198	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4199	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4200		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4201
4202	return true;
4203}
4204
4205#ifdef CONFIG_TCP_MD5SIG
4206/*
4207 * Parse MD5 Signature option
4208 */
4209const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4210{
4211	int length = (th->doff << 2) - sizeof(*th);
4212	const u8 *ptr = (const u8 *)(th + 1);
 
 
 
 
4213
4214	/* If not enough data remaining, we can short cut */
4215	while (length >= TCPOLEN_MD5SIG) {
4216		int opcode = *ptr++;
4217		int opsize;
4218
4219		switch (opcode) {
4220		case TCPOPT_EOL:
4221			return NULL;
4222		case TCPOPT_NOP:
4223			length--;
4224			continue;
4225		default:
4226			opsize = *ptr++;
4227			if (opsize < 2 || opsize > length)
4228				return NULL;
4229			if (opcode == TCPOPT_MD5SIG)
4230				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4231		}
4232		ptr += opsize - 2;
4233		length -= opsize;
4234	}
4235	return NULL;
4236}
4237EXPORT_SYMBOL(tcp_parse_md5sig_option);
4238#endif
4239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4240/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4241 *
4242 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4243 * it can pass through stack. So, the following predicate verifies that
4244 * this segment is not used for anything but congestion avoidance or
4245 * fast retransmit. Moreover, we even are able to eliminate most of such
4246 * second order effects, if we apply some small "replay" window (~RTO)
4247 * to timestamp space.
4248 *
4249 * All these measures still do not guarantee that we reject wrapped ACKs
4250 * on networks with high bandwidth, when sequence space is recycled fastly,
4251 * but it guarantees that such events will be very rare and do not affect
4252 * connection seriously. This doesn't look nice, but alas, PAWS is really
4253 * buggy extension.
4254 *
4255 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4256 * states that events when retransmit arrives after original data are rare.
4257 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4258 * the biggest problem on large power networks even with minor reordering.
4259 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4260 * up to bandwidth of 18Gigabit/sec. 8) ]
4261 */
4262
4263static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4264{
4265	const struct tcp_sock *tp = tcp_sk(sk);
4266	const struct tcphdr *th = tcp_hdr(skb);
4267	u32 seq = TCP_SKB_CB(skb)->seq;
4268	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4269
4270	return (/* 1. Pure ACK with correct sequence number. */
4271		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4272
4273		/* 2. ... and duplicate ACK. */
4274		ack == tp->snd_una &&
4275
4276		/* 3. ... and does not update window. */
4277		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4278
4279		/* 4. ... and sits in replay window. */
4280		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4281}
4282
4283static inline bool tcp_paws_discard(const struct sock *sk,
4284				   const struct sk_buff *skb)
4285{
4286	const struct tcp_sock *tp = tcp_sk(sk);
4287
4288	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4289	       !tcp_disordered_ack(sk, skb);
4290}
4291
4292/* Check segment sequence number for validity.
4293 *
4294 * Segment controls are considered valid, if the segment
4295 * fits to the window after truncation to the window. Acceptability
4296 * of data (and SYN, FIN, of course) is checked separately.
4297 * See tcp_data_queue(), for example.
4298 *
4299 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4300 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4301 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4302 * (borrowed from freebsd)
4303 */
4304
4305static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4306{
4307	return	!before(end_seq, tp->rcv_wup) &&
4308		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4309}
4310
4311/* When we get a reset we do this. */
4312void tcp_reset(struct sock *sk, struct sk_buff *skb)
4313{
4314	trace_tcp_receive_reset(sk);
4315
4316	/* mptcp can't tell us to ignore reset pkts,
4317	 * so just ignore the return value of mptcp_incoming_options().
4318	 */
4319	if (sk_is_mptcp(sk))
4320		mptcp_incoming_options(sk, skb);
4321
4322	/* We want the right error as BSD sees it (and indeed as we do). */
4323	switch (sk->sk_state) {
4324	case TCP_SYN_SENT:
4325		sk->sk_err = ECONNREFUSED;
4326		break;
4327	case TCP_CLOSE_WAIT:
4328		sk->sk_err = EPIPE;
4329		break;
4330	case TCP_CLOSE:
4331		return;
4332	default:
4333		sk->sk_err = ECONNRESET;
4334	}
4335	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4336	smp_wmb();
4337
4338	tcp_write_queue_purge(sk);
4339	tcp_done(sk);
4340
4341	if (!sock_flag(sk, SOCK_DEAD))
4342		sk_error_report(sk);
 
 
4343}
4344
4345/*
4346 * 	Process the FIN bit. This now behaves as it is supposed to work
4347 *	and the FIN takes effect when it is validly part of sequence
4348 *	space. Not before when we get holes.
4349 *
4350 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4351 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4352 *	TIME-WAIT)
4353 *
4354 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4355 *	close and we go into CLOSING (and later onto TIME-WAIT)
4356 *
4357 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4358 */
4359void tcp_fin(struct sock *sk)
4360{
4361	struct tcp_sock *tp = tcp_sk(sk);
4362
4363	inet_csk_schedule_ack(sk);
4364
4365	sk->sk_shutdown |= RCV_SHUTDOWN;
4366	sock_set_flag(sk, SOCK_DONE);
4367
4368	switch (sk->sk_state) {
4369	case TCP_SYN_RECV:
4370	case TCP_ESTABLISHED:
4371		/* Move to CLOSE_WAIT */
4372		tcp_set_state(sk, TCP_CLOSE_WAIT);
4373		inet_csk_enter_pingpong_mode(sk);
4374		break;
4375
4376	case TCP_CLOSE_WAIT:
4377	case TCP_CLOSING:
4378		/* Received a retransmission of the FIN, do
4379		 * nothing.
4380		 */
4381		break;
4382	case TCP_LAST_ACK:
4383		/* RFC793: Remain in the LAST-ACK state. */
4384		break;
4385
4386	case TCP_FIN_WAIT1:
4387		/* This case occurs when a simultaneous close
4388		 * happens, we must ack the received FIN and
4389		 * enter the CLOSING state.
4390		 */
4391		tcp_send_ack(sk);
4392		tcp_set_state(sk, TCP_CLOSING);
4393		break;
4394	case TCP_FIN_WAIT2:
4395		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4396		tcp_send_ack(sk);
4397		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4398		break;
4399	default:
4400		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4401		 * cases we should never reach this piece of code.
4402		 */
4403		pr_err("%s: Impossible, sk->sk_state=%d\n",
4404		       __func__, sk->sk_state);
4405		break;
4406	}
4407
4408	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4409	 * Probably, we should reset in this case. For now drop them.
4410	 */
4411	skb_rbtree_purge(&tp->out_of_order_queue);
4412	if (tcp_is_sack(tp))
4413		tcp_sack_reset(&tp->rx_opt);
 
4414
4415	if (!sock_flag(sk, SOCK_DEAD)) {
4416		sk->sk_state_change(sk);
4417
4418		/* Do not send POLL_HUP for half duplex close. */
4419		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4420		    sk->sk_state == TCP_CLOSE)
4421			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4422		else
4423			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4424	}
4425}
4426
4427static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4428				  u32 end_seq)
4429{
4430	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4431		if (before(seq, sp->start_seq))
4432			sp->start_seq = seq;
4433		if (after(end_seq, sp->end_seq))
4434			sp->end_seq = end_seq;
4435		return true;
4436	}
4437	return false;
4438}
4439
4440static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4441{
4442	struct tcp_sock *tp = tcp_sk(sk);
4443
4444	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4445		int mib_idx;
4446
4447		if (before(seq, tp->rcv_nxt))
4448			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4449		else
4450			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4451
4452		NET_INC_STATS(sock_net(sk), mib_idx);
4453
4454		tp->rx_opt.dsack = 1;
4455		tp->duplicate_sack[0].start_seq = seq;
4456		tp->duplicate_sack[0].end_seq = end_seq;
4457	}
4458}
4459
4460static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4461{
4462	struct tcp_sock *tp = tcp_sk(sk);
4463
4464	if (!tp->rx_opt.dsack)
4465		tcp_dsack_set(sk, seq, end_seq);
4466	else
4467		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4468}
4469
4470static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4471{
4472	/* When the ACK path fails or drops most ACKs, the sender would
4473	 * timeout and spuriously retransmit the same segment repeatedly.
4474	 * The receiver remembers and reflects via DSACKs. Leverage the
4475	 * DSACK state and change the txhash to re-route speculatively.
4476	 */
4477	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4478	    sk_rethink_txhash(sk))
4479		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4480}
4481
4482static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4483{
4484	struct tcp_sock *tp = tcp_sk(sk);
4485
4486	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4487	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4488		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4489		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4490
4491		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4492			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4493
4494			tcp_rcv_spurious_retrans(sk, skb);
4495			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4496				end_seq = tp->rcv_nxt;
4497			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4498		}
4499	}
4500
4501	tcp_send_ack(sk);
4502}
4503
4504/* These routines update the SACK block as out-of-order packets arrive or
4505 * in-order packets close up the sequence space.
4506 */
4507static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4508{
4509	int this_sack;
4510	struct tcp_sack_block *sp = &tp->selective_acks[0];
4511	struct tcp_sack_block *swalk = sp + 1;
4512
4513	/* See if the recent change to the first SACK eats into
4514	 * or hits the sequence space of other SACK blocks, if so coalesce.
4515	 */
4516	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4517		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4518			int i;
4519
4520			/* Zap SWALK, by moving every further SACK up by one slot.
4521			 * Decrease num_sacks.
4522			 */
4523			tp->rx_opt.num_sacks--;
4524			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4525				sp[i] = sp[i + 1];
4526			continue;
4527		}
4528		this_sack++;
4529		swalk++;
4530	}
4531}
4532
4533static void tcp_sack_compress_send_ack(struct sock *sk)
4534{
4535	struct tcp_sock *tp = tcp_sk(sk);
4536
4537	if (!tp->compressed_ack)
4538		return;
4539
4540	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4541		__sock_put(sk);
4542
4543	/* Since we have to send one ack finally,
4544	 * substract one from tp->compressed_ack to keep
4545	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4546	 */
4547	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4548		      tp->compressed_ack - 1);
4549
4550	tp->compressed_ack = 0;
4551	tcp_send_ack(sk);
4552}
4553
4554/* Reasonable amount of sack blocks included in TCP SACK option
4555 * The max is 4, but this becomes 3 if TCP timestamps are there.
4556 * Given that SACK packets might be lost, be conservative and use 2.
4557 */
4558#define TCP_SACK_BLOCKS_EXPECTED 2
4559
4560static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4561{
4562	struct tcp_sock *tp = tcp_sk(sk);
4563	struct tcp_sack_block *sp = &tp->selective_acks[0];
4564	int cur_sacks = tp->rx_opt.num_sacks;
4565	int this_sack;
4566
4567	if (!cur_sacks)
4568		goto new_sack;
4569
4570	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4571		if (tcp_sack_extend(sp, seq, end_seq)) {
4572			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4573				tcp_sack_compress_send_ack(sk);
4574			/* Rotate this_sack to the first one. */
4575			for (; this_sack > 0; this_sack--, sp--)
4576				swap(*sp, *(sp - 1));
4577			if (cur_sacks > 1)
4578				tcp_sack_maybe_coalesce(tp);
4579			return;
4580		}
4581	}
4582
4583	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4584		tcp_sack_compress_send_ack(sk);
4585
4586	/* Could not find an adjacent existing SACK, build a new one,
4587	 * put it at the front, and shift everyone else down.  We
4588	 * always know there is at least one SACK present already here.
4589	 *
4590	 * If the sack array is full, forget about the last one.
4591	 */
4592	if (this_sack >= TCP_NUM_SACKS) {
4593		this_sack--;
4594		tp->rx_opt.num_sacks--;
4595		sp--;
4596	}
4597	for (; this_sack > 0; this_sack--, sp--)
4598		*sp = *(sp - 1);
4599
4600new_sack:
4601	/* Build the new head SACK, and we're done. */
4602	sp->start_seq = seq;
4603	sp->end_seq = end_seq;
4604	tp->rx_opt.num_sacks++;
4605}
4606
4607/* RCV.NXT advances, some SACKs should be eaten. */
4608
4609static void tcp_sack_remove(struct tcp_sock *tp)
4610{
4611	struct tcp_sack_block *sp = &tp->selective_acks[0];
4612	int num_sacks = tp->rx_opt.num_sacks;
4613	int this_sack;
4614
4615	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4616	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4617		tp->rx_opt.num_sacks = 0;
4618		return;
4619	}
4620
4621	for (this_sack = 0; this_sack < num_sacks;) {
4622		/* Check if the start of the sack is covered by RCV.NXT. */
4623		if (!before(tp->rcv_nxt, sp->start_seq)) {
4624			int i;
4625
4626			/* RCV.NXT must cover all the block! */
4627			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4628
4629			/* Zap this SACK, by moving forward any other SACKS. */
4630			for (i = this_sack+1; i < num_sacks; i++)
4631				tp->selective_acks[i-1] = tp->selective_acks[i];
4632			num_sacks--;
4633			continue;
4634		}
4635		this_sack++;
4636		sp++;
4637	}
4638	tp->rx_opt.num_sacks = num_sacks;
4639}
4640
4641/**
4642 * tcp_try_coalesce - try to merge skb to prior one
4643 * @sk: socket
4644 * @to: prior buffer
4645 * @from: buffer to add in queue
4646 * @fragstolen: pointer to boolean
4647 *
4648 * Before queueing skb @from after @to, try to merge them
4649 * to reduce overall memory use and queue lengths, if cost is small.
4650 * Packets in ofo or receive queues can stay a long time.
4651 * Better try to coalesce them right now to avoid future collapses.
4652 * Returns true if caller should free @from instead of queueing it
4653 */
4654static bool tcp_try_coalesce(struct sock *sk,
4655			     struct sk_buff *to,
4656			     struct sk_buff *from,
4657			     bool *fragstolen)
4658{
4659	int delta;
4660
4661	*fragstolen = false;
4662
4663	/* Its possible this segment overlaps with prior segment in queue */
4664	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4665		return false;
4666
4667	if (!mptcp_skb_can_collapse(to, from))
4668		return false;
4669
4670#ifdef CONFIG_TLS_DEVICE
4671	if (from->decrypted != to->decrypted)
4672		return false;
4673#endif
4674
4675	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4676		return false;
4677
4678	atomic_add(delta, &sk->sk_rmem_alloc);
4679	sk_mem_charge(sk, delta);
4680	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4681	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4682	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4683	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4684
4685	if (TCP_SKB_CB(from)->has_rxtstamp) {
4686		TCP_SKB_CB(to)->has_rxtstamp = true;
4687		to->tstamp = from->tstamp;
4688		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4689	}
4690
4691	return true;
4692}
4693
4694static bool tcp_ooo_try_coalesce(struct sock *sk,
4695			     struct sk_buff *to,
4696			     struct sk_buff *from,
4697			     bool *fragstolen)
4698{
4699	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4700
4701	/* In case tcp_drop_reason() is called later, update to->gso_segs */
4702	if (res) {
4703		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4704			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4705
4706		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4707	}
4708	return res;
4709}
4710
4711static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4712			    enum skb_drop_reason reason)
4713{
4714	sk_drops_add(sk, skb);
4715	kfree_skb_reason(skb, reason);
4716}
4717
4718/* This one checks to see if we can put data from the
4719 * out_of_order queue into the receive_queue.
4720 */
4721static void tcp_ofo_queue(struct sock *sk)
4722{
4723	struct tcp_sock *tp = tcp_sk(sk);
4724	__u32 dsack_high = tp->rcv_nxt;
4725	bool fin, fragstolen, eaten;
4726	struct sk_buff *skb, *tail;
4727	struct rb_node *p;
4728
4729	p = rb_first(&tp->out_of_order_queue);
4730	while (p) {
4731		skb = rb_to_skb(p);
4732		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4733			break;
4734
4735		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4736			__u32 dsack = dsack_high;
4737			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4738				dsack_high = TCP_SKB_CB(skb)->end_seq;
4739			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4740		}
4741		p = rb_next(p);
4742		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4743
4744		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4745			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
 
 
4746			continue;
4747		}
 
 
 
4748
4749		tail = skb_peek_tail(&sk->sk_receive_queue);
4750		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4751		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4752		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4753		if (!eaten)
4754			__skb_queue_tail(&sk->sk_receive_queue, skb);
4755		else
4756			kfree_skb_partial(skb, fragstolen);
4757
4758		if (unlikely(fin)) {
4759			tcp_fin(sk);
4760			/* tcp_fin() purges tp->out_of_order_queue,
4761			 * so we must end this loop right now.
4762			 */
4763			break;
4764		}
4765	}
4766}
4767
4768static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4769static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4770
4771static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4772				 unsigned int size)
4773{
4774	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4775	    !sk_rmem_schedule(sk, skb, size)) {
4776
4777		if (tcp_prune_queue(sk, skb) < 0)
4778			return -1;
4779
4780		while (!sk_rmem_schedule(sk, skb, size)) {
4781			if (!tcp_prune_ofo_queue(sk, skb))
4782				return -1;
4783		}
4784	}
4785	return 0;
4786}
4787
4788static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4789{
4790	struct tcp_sock *tp = tcp_sk(sk);
4791	struct rb_node **p, *parent;
4792	struct sk_buff *skb1;
4793	u32 seq, end_seq;
4794	bool fragstolen;
4795
4796	tcp_ecn_check_ce(sk, skb);
4797
4798	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4799		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4800		sk->sk_data_ready(sk);
4801		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4802		return;
4803	}
4804
4805	/* Disable header prediction. */
4806	tp->pred_flags = 0;
4807	inet_csk_schedule_ack(sk);
4808
4809	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4810	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4811	seq = TCP_SKB_CB(skb)->seq;
4812	end_seq = TCP_SKB_CB(skb)->end_seq;
4813
4814	p = &tp->out_of_order_queue.rb_node;
4815	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4816		/* Initial out of order segment, build 1 SACK. */
4817		if (tcp_is_sack(tp)) {
4818			tp->rx_opt.num_sacks = 1;
4819			tp->selective_acks[0].start_seq = seq;
4820			tp->selective_acks[0].end_seq = end_seq;
4821		}
4822		rb_link_node(&skb->rbnode, NULL, p);
4823		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4824		tp->ooo_last_skb = skb;
4825		goto end;
4826	}
4827
4828	/* In the typical case, we are adding an skb to the end of the list.
4829	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4830	 */
4831	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4832				 skb, &fragstolen)) {
4833coalesce_done:
4834		/* For non sack flows, do not grow window to force DUPACK
4835		 * and trigger fast retransmit.
4836		 */
4837		if (tcp_is_sack(tp))
4838			tcp_grow_window(sk, skb, true);
4839		kfree_skb_partial(skb, fragstolen);
4840		skb = NULL;
4841		goto add_sack;
4842	}
4843	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4844	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4845		parent = &tp->ooo_last_skb->rbnode;
4846		p = &parent->rb_right;
4847		goto insert;
4848	}
4849
4850	/* Find place to insert this segment. Handle overlaps on the way. */
4851	parent = NULL;
4852	while (*p) {
4853		parent = *p;
4854		skb1 = rb_to_skb(parent);
4855		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4856			p = &parent->rb_left;
4857			continue;
4858		}
4859		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4860			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4861				/* All the bits are present. Drop. */
4862				NET_INC_STATS(sock_net(sk),
4863					      LINUX_MIB_TCPOFOMERGE);
4864				tcp_drop_reason(sk, skb,
4865						SKB_DROP_REASON_TCP_OFOMERGE);
4866				skb = NULL;
4867				tcp_dsack_set(sk, seq, end_seq);
4868				goto add_sack;
4869			}
4870			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4871				/* Partial overlap. */
4872				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4873			} else {
4874				/* skb's seq == skb1's seq and skb covers skb1.
4875				 * Replace skb1 with skb.
4876				 */
4877				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4878						&tp->out_of_order_queue);
4879				tcp_dsack_extend(sk,
4880						 TCP_SKB_CB(skb1)->seq,
4881						 TCP_SKB_CB(skb1)->end_seq);
4882				NET_INC_STATS(sock_net(sk),
4883					      LINUX_MIB_TCPOFOMERGE);
4884				tcp_drop_reason(sk, skb1,
4885						SKB_DROP_REASON_TCP_OFOMERGE);
4886				goto merge_right;
4887			}
4888		} else if (tcp_ooo_try_coalesce(sk, skb1,
4889						skb, &fragstolen)) {
4890			goto coalesce_done;
4891		}
4892		p = &parent->rb_right;
4893	}
4894insert:
4895	/* Insert segment into RB tree. */
4896	rb_link_node(&skb->rbnode, parent, p);
4897	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4898
4899merge_right:
4900	/* Remove other segments covered by skb. */
4901	while ((skb1 = skb_rb_next(skb)) != NULL) {
4902		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4903			break;
4904		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4905			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4906					 end_seq);
4907			break;
4908		}
4909		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4910		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4911				 TCP_SKB_CB(skb1)->end_seq);
4912		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4913		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
4914	}
4915	/* If there is no skb after us, we are the last_skb ! */
4916	if (!skb1)
4917		tp->ooo_last_skb = skb;
4918
4919add_sack:
4920	if (tcp_is_sack(tp))
4921		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4922end:
4923	if (skb) {
4924		/* For non sack flows, do not grow window to force DUPACK
4925		 * and trigger fast retransmit.
4926		 */
4927		if (tcp_is_sack(tp))
4928			tcp_grow_window(sk, skb, false);
4929		skb_condense(skb);
4930		skb_set_owner_r(skb, sk);
4931	}
4932}
4933
4934static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4935				      bool *fragstolen)
4936{
4937	int eaten;
4938	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4939
4940	eaten = (tail &&
4941		 tcp_try_coalesce(sk, tail,
4942				  skb, fragstolen)) ? 1 : 0;
4943	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4944	if (!eaten) {
4945		__skb_queue_tail(&sk->sk_receive_queue, skb);
4946		skb_set_owner_r(skb, sk);
4947	}
4948	return eaten;
4949}
4950
4951int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4952{
4953	struct sk_buff *skb;
4954	int err = -ENOMEM;
4955	int data_len = 0;
4956	bool fragstolen;
4957
4958	if (size == 0)
4959		return 0;
4960
4961	if (size > PAGE_SIZE) {
4962		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4963
4964		data_len = npages << PAGE_SHIFT;
4965		size = data_len + (size & ~PAGE_MASK);
4966	}
4967	skb = alloc_skb_with_frags(size - data_len, data_len,
4968				   PAGE_ALLOC_COSTLY_ORDER,
4969				   &err, sk->sk_allocation);
4970	if (!skb)
4971		goto err;
4972
4973	skb_put(skb, size - data_len);
4974	skb->data_len = data_len;
4975	skb->len = size;
4976
4977	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4978		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4979		goto err_free;
4980	}
4981
4982	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4983	if (err)
4984		goto err_free;
4985
4986	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4987	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4988	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4989
4990	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4991		WARN_ON_ONCE(fragstolen); /* should not happen */
4992		__kfree_skb(skb);
4993	}
4994	return size;
4995
4996err_free:
4997	kfree_skb(skb);
4998err:
4999	return err;
5000
5001}
5002
5003void tcp_data_ready(struct sock *sk)
5004{
5005	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5006		sk->sk_data_ready(sk);
5007}
5008
5009static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5010{
 
5011	struct tcp_sock *tp = tcp_sk(sk);
5012	enum skb_drop_reason reason;
5013	bool fragstolen;
5014	int eaten;
5015
5016	/* If a subflow has been reset, the packet should not continue
5017	 * to be processed, drop the packet.
5018	 */
5019	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5020		__kfree_skb(skb);
5021		return;
5022	}
5023
5024	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5025		__kfree_skb(skb);
5026		return;
5027	}
5028	skb_dst_drop(skb);
5029	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
 
 
5030
5031	reason = SKB_DROP_REASON_NOT_SPECIFIED;
5032	tp->rx_opt.dsack = 0;
5033
5034	/*  Queue data for delivery to the user.
5035	 *  Packets in sequence go to the receive queue.
5036	 *  Out of sequence packets to the out_of_order_queue.
5037	 */
5038	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5039		if (tcp_receive_window(tp) == 0) {
5040			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5041			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5042			goto out_of_window;
5043		}
5044
5045		/* Ok. In sequence. In window. */
5046queue_and_out:
5047		if (skb_queue_len(&sk->sk_receive_queue) == 0)
5048			sk_forced_mem_schedule(sk, skb->truesize);
5049		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5050			reason = SKB_DROP_REASON_PROTO_MEM;
5051			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5052			sk->sk_data_ready(sk);
5053			goto drop;
 
 
 
 
 
 
 
 
5054		}
5055
5056		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
 
 
 
 
 
 
 
 
 
5057		if (skb->len)
5058			tcp_event_data_recv(sk, skb);
5059		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5060			tcp_fin(sk);
5061
5062		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5063			tcp_ofo_queue(sk);
5064
5065			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5066			 * gap in queue is filled.
5067			 */
5068			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5069				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5070		}
5071
5072		if (tp->rx_opt.num_sacks)
5073			tcp_sack_remove(tp);
5074
5075		tcp_fast_path_check(sk);
5076
5077		if (eaten > 0)
5078			kfree_skb_partial(skb, fragstolen);
5079		if (!sock_flag(sk, SOCK_DEAD))
5080			tcp_data_ready(sk);
5081		return;
5082	}
5083
5084	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5085		tcp_rcv_spurious_retrans(sk, skb);
5086		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5087		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5088		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5089		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5090
5091out_of_window:
5092		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5093		inet_csk_schedule_ack(sk);
5094drop:
5095		tcp_drop_reason(sk, skb, reason);
5096		return;
5097	}
5098
5099	/* Out of window. F.e. zero window probe. */
5100	if (!before(TCP_SKB_CB(skb)->seq,
5101		    tp->rcv_nxt + tcp_receive_window(tp))) {
5102		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5103		goto out_of_window;
5104	}
 
5105
5106	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5107		/* Partial packet, seq < rcv_next < end_seq */
 
 
 
 
5108		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5109
5110		/* If window is closed, drop tail of packet. But after
5111		 * remembering D-SACK for its head made in previous line.
5112		 */
5113		if (!tcp_receive_window(tp)) {
5114			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5115			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5116			goto out_of_window;
5117		}
5118		goto queue_and_out;
5119	}
5120
5121	tcp_data_queue_ofo(sk, skb);
5122}
5123
5124static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5125{
5126	if (list)
5127		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5128
5129	return skb_rb_next(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5130}
5131
5132static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5133					struct sk_buff_head *list,
5134					struct rb_root *root)
5135{
5136	struct sk_buff *next = tcp_skb_next(skb, list);
5137
5138	if (list)
5139		__skb_unlink(skb, list);
5140	else
5141		rb_erase(&skb->rbnode, root);
5142
 
5143	__kfree_skb(skb);
5144	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5145
5146	return next;
5147}
5148
5149/* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5150void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5151{
5152	struct rb_node **p = &root->rb_node;
5153	struct rb_node *parent = NULL;
5154	struct sk_buff *skb1;
5155
5156	while (*p) {
5157		parent = *p;
5158		skb1 = rb_to_skb(parent);
5159		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5160			p = &parent->rb_left;
5161		else
5162			p = &parent->rb_right;
5163	}
5164	rb_link_node(&skb->rbnode, parent, p);
5165	rb_insert_color(&skb->rbnode, root);
5166}
5167
5168/* Collapse contiguous sequence of skbs head..tail with
5169 * sequence numbers start..end.
5170 *
5171 * If tail is NULL, this means until the end of the queue.
5172 *
5173 * Segments with FIN/SYN are not collapsed (only because this
5174 * simplifies code)
5175 */
5176static void
5177tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5178	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
 
5179{
5180	struct sk_buff *skb = head, *n;
5181	struct sk_buff_head tmp;
5182	bool end_of_skbs;
5183
5184	/* First, check that queue is collapsible and find
5185	 * the point where collapsing can be useful.
5186	 */
5187restart:
5188	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5189		n = tcp_skb_next(skb, list);
5190
 
5191		/* No new bits? It is possible on ofo queue. */
5192		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5193			skb = tcp_collapse_one(sk, skb, list, root);
5194			if (!skb)
5195				break;
5196			goto restart;
5197		}
5198
5199		/* The first skb to collapse is:
5200		 * - not SYN/FIN and
5201		 * - bloated or contains data before "start" or
5202		 *   overlaps to the next one and mptcp allow collapsing.
5203		 */
5204		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5205		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5206		     before(TCP_SKB_CB(skb)->seq, start))) {
5207			end_of_skbs = false;
5208			break;
5209		}
5210
5211		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5212		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5213			end_of_skbs = false;
5214			break;
 
 
 
5215		}
5216
5217		/* Decided to skip this, advance start seq. */
5218		start = TCP_SKB_CB(skb)->end_seq;
5219	}
5220	if (end_of_skbs ||
5221	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5222		return;
5223
5224	__skb_queue_head_init(&tmp);
5225
5226	while (before(start, end)) {
5227		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5228		struct sk_buff *nskb;
 
 
5229
5230		nskb = alloc_skb(copy, GFP_ATOMIC);
 
 
 
 
 
5231		if (!nskb)
5232			break;
5233
 
 
 
 
 
 
 
5234		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5235#ifdef CONFIG_TLS_DEVICE
5236		nskb->decrypted = skb->decrypted;
5237#endif
5238		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5239		if (list)
5240			__skb_queue_before(list, skb, nskb);
5241		else
5242			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5243		skb_set_owner_r(nskb, sk);
5244		mptcp_skb_ext_move(nskb, skb);
5245
5246		/* Copy data, releasing collapsed skbs. */
5247		while (copy > 0) {
5248			int offset = start - TCP_SKB_CB(skb)->seq;
5249			int size = TCP_SKB_CB(skb)->end_seq - start;
5250
5251			BUG_ON(offset < 0);
5252			if (size > 0) {
5253				size = min(copy, size);
5254				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5255					BUG();
5256				TCP_SKB_CB(nskb)->end_seq += size;
5257				copy -= size;
5258				start += size;
5259			}
5260			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5261				skb = tcp_collapse_one(sk, skb, list, root);
5262				if (!skb ||
5263				    skb == tail ||
5264				    !mptcp_skb_can_collapse(nskb, skb) ||
5265				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5266					goto end;
5267#ifdef CONFIG_TLS_DEVICE
5268				if (skb->decrypted != nskb->decrypted)
5269					goto end;
5270#endif
5271			}
5272		}
5273	}
5274end:
5275	skb_queue_walk_safe(&tmp, skb, n)
5276		tcp_rbtree_insert(root, skb);
5277}
5278
5279/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5280 * and tcp_collapse() them until all the queue is collapsed.
5281 */
5282static void tcp_collapse_ofo_queue(struct sock *sk)
5283{
5284	struct tcp_sock *tp = tcp_sk(sk);
5285	u32 range_truesize, sum_tiny = 0;
5286	struct sk_buff *skb, *head;
5287	u32 start, end;
5288
5289	skb = skb_rb_first(&tp->out_of_order_queue);
5290new_range:
5291	if (!skb) {
5292		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5293		return;
5294	}
5295	start = TCP_SKB_CB(skb)->seq;
5296	end = TCP_SKB_CB(skb)->end_seq;
5297	range_truesize = skb->truesize;
5298
5299	for (head = skb;;) {
5300		skb = skb_rb_next(skb);
5301
5302		/* Range is terminated when we see a gap or when
5303		 * we are at the queue end.
5304		 */
 
 
 
5305		if (!skb ||
5306		    after(TCP_SKB_CB(skb)->seq, end) ||
5307		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5308			/* Do not attempt collapsing tiny skbs */
5309			if (range_truesize != head->truesize ||
5310			    end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5311				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5312					     head, skb, start, end);
5313			} else {
5314				sum_tiny += range_truesize;
5315				if (sum_tiny > sk->sk_rcvbuf >> 3)
5316					return;
5317			}
5318			goto new_range;
5319		}
5320
5321		range_truesize += skb->truesize;
5322		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5323			start = TCP_SKB_CB(skb)->seq;
5324		if (after(TCP_SKB_CB(skb)->end_seq, end))
5325			end = TCP_SKB_CB(skb)->end_seq;
 
 
 
 
 
 
5326	}
5327}
5328
5329/*
5330 * Clean the out-of-order queue to make room.
5331 * We drop high sequences packets to :
5332 * 1) Let a chance for holes to be filled.
5333 *    This means we do not drop packets from ooo queue if their sequence
5334 *    is before incoming packet sequence.
5335 * 2) not add too big latencies if thousands of packets sit there.
5336 *    (But if application shrinks SO_RCVBUF, we could still end up
5337 *     freeing whole queue here)
5338 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5339 *
5340 * Return true if queue has shrunk.
5341 */
5342static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5343{
5344	struct tcp_sock *tp = tcp_sk(sk);
5345	struct rb_node *node, *prev;
5346	bool pruned = false;
5347	int goal;
5348
5349	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5350		return false;
 
5351
5352	goal = sk->sk_rcvbuf >> 3;
5353	node = &tp->ooo_last_skb->rbnode;
5354
5355	do {
5356		struct sk_buff *skb = rb_to_skb(node);
5357
5358		/* If incoming skb would land last in ofo queue, stop pruning. */
5359		if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5360			break;
5361		pruned = true;
5362		prev = rb_prev(node);
5363		rb_erase(node, &tp->out_of_order_queue);
5364		goal -= skb->truesize;
5365		tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5366		tp->ooo_last_skb = rb_to_skb(prev);
5367		if (!prev || goal <= 0) {
5368			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5369			    !tcp_under_memory_pressure(sk))
5370				break;
5371			goal = sk->sk_rcvbuf >> 3;
5372		}
5373		node = prev;
5374	} while (node);
5375
5376	if (pruned) {
5377		NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5378		/* Reset SACK state.  A conforming SACK implementation will
5379		 * do the same at a timeout based retransmit.  When a connection
5380		 * is in a sad state like this, we care only about integrity
5381		 * of the connection not performance.
5382		 */
5383		if (tp->rx_opt.sack_ok)
5384			tcp_sack_reset(&tp->rx_opt);
 
 
5385	}
5386	return pruned;
5387}
5388
5389/* Reduce allocated memory if we can, trying to get
5390 * the socket within its memory limits again.
5391 *
5392 * Return less than zero if we should start dropping frames
5393 * until the socket owning process reads some of the data
5394 * to stabilize the situation.
5395 */
5396static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5397{
5398	struct tcp_sock *tp = tcp_sk(sk);
5399
5400	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
 
 
5401
5402	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5403		tcp_clamp_window(sk);
5404	else if (tcp_under_memory_pressure(sk))
5405		tcp_adjust_rcv_ssthresh(sk);
5406
5407	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5408		return 0;
5409
5410	tcp_collapse_ofo_queue(sk);
5411	if (!skb_queue_empty(&sk->sk_receive_queue))
5412		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5413			     skb_peek(&sk->sk_receive_queue),
5414			     NULL,
5415			     tp->copied_seq, tp->rcv_nxt);
 
5416
5417	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5418		return 0;
5419
5420	/* Collapsing did not help, destructive actions follow.
5421	 * This must not ever occur. */
5422
5423	tcp_prune_ofo_queue(sk, in_skb);
5424
5425	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5426		return 0;
5427
5428	/* If we are really being abused, tell the caller to silently
5429	 * drop receive data on the floor.  It will get retransmitted
5430	 * and hopefully then we'll have sufficient space.
5431	 */
5432	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5433
5434	/* Massive buffer overcommit. */
5435	tp->pred_flags = 0;
5436	return -1;
5437}
5438
5439static bool tcp_should_expand_sndbuf(struct sock *sk)
 
 
 
 
5440{
5441	const struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5442
5443	/* If the user specified a specific send buffer setting, do
5444	 * not modify it.
5445	 */
5446	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5447		return false;
5448
5449	/* If we are under global TCP memory pressure, do not expand.  */
5450	if (tcp_under_memory_pressure(sk)) {
5451		int unused_mem = sk_unused_reserved_mem(sk);
5452
5453		/* Adjust sndbuf according to reserved mem. But make sure
5454		 * it never goes below SOCK_MIN_SNDBUF.
5455		 * See sk_stream_moderate_sndbuf() for more details.
5456		 */
5457		if (unused_mem > SOCK_MIN_SNDBUF)
5458			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5459
5460		return false;
5461	}
5462
5463	/* If we are under soft global TCP memory pressure, do not expand.  */
5464	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5465		return false;
5466
5467	/* If we filled the congestion window, do not expand.  */
5468	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5469		return false;
5470
5471	return true;
5472}
5473
 
 
 
 
 
 
5474static void tcp_new_space(struct sock *sk)
5475{
5476	struct tcp_sock *tp = tcp_sk(sk);
5477
5478	if (tcp_should_expand_sndbuf(sk)) {
5479		tcp_sndbuf_expand(sk);
5480		tp->snd_cwnd_stamp = tcp_jiffies32;
5481	}
5482
5483	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5484}
5485
5486/* Caller made space either from:
5487 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5488 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5489 *
5490 * We might be able to generate EPOLLOUT to the application if:
5491 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5492 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5493 *    small enough that tcp_stream_memory_free() decides it
5494 *    is time to generate EPOLLOUT.
5495 */
5496void tcp_check_space(struct sock *sk)
5497{
5498	/* pairs with tcp_poll() */
5499	smp_mb();
5500	if (sk->sk_socket &&
5501	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5502		tcp_new_space(sk);
5503		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5504			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5505	}
5506}
5507
5508static inline void tcp_data_snd_check(struct sock *sk)
5509{
5510	tcp_push_pending_frames(sk);
5511	tcp_check_space(sk);
5512}
5513
5514/*
5515 * Check if sending an ack is needed.
5516 */
5517static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5518{
5519	struct tcp_sock *tp = tcp_sk(sk);
5520	unsigned long rtt, delay;
5521
5522	    /* More than one full frame received... */
5523	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5524	     /* ... and right edge of window advances far enough.
5525	      * (tcp_recvmsg() will send ACK otherwise).
5526	      * If application uses SO_RCVLOWAT, we want send ack now if
5527	      * we have not received enough bytes to satisfy the condition.
5528	      */
5529	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5530	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5531	    /* We ACK each frame or... */
5532	    tcp_in_quickack_mode(sk) ||
5533	    /* Protocol state mandates a one-time immediate ACK */
5534	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5535send_now:
5536		tcp_send_ack(sk);
5537		return;
5538	}
5539
5540	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5541		tcp_send_delayed_ack(sk);
5542		return;
5543	}
5544
5545	if (!tcp_is_sack(tp) ||
5546	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5547		goto send_now;
5548
5549	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5550		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5551		tp->dup_ack_counter = 0;
5552	}
5553	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5554		tp->dup_ack_counter++;
5555		goto send_now;
5556	}
5557	tp->compressed_ack++;
5558	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5559		return;
5560
5561	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5562
5563	rtt = tp->rcv_rtt_est.rtt_us;
5564	if (tp->srtt_us && tp->srtt_us < rtt)
5565		rtt = tp->srtt_us;
5566
5567	delay = min_t(unsigned long,
5568		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5569		      rtt * (NSEC_PER_USEC >> 3)/20);
5570	sock_hold(sk);
5571	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5572			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5573			       HRTIMER_MODE_REL_PINNED_SOFT);
5574}
5575
5576static inline void tcp_ack_snd_check(struct sock *sk)
5577{
5578	if (!inet_csk_ack_scheduled(sk)) {
5579		/* We sent a data segment already. */
5580		return;
5581	}
5582	__tcp_ack_snd_check(sk, 1);
5583}
5584
5585/*
5586 *	This routine is only called when we have urgent data
5587 *	signaled. Its the 'slow' part of tcp_urg. It could be
5588 *	moved inline now as tcp_urg is only called from one
5589 *	place. We handle URGent data wrong. We have to - as
5590 *	BSD still doesn't use the correction from RFC961.
5591 *	For 1003.1g we should support a new option TCP_STDURG to permit
5592 *	either form (or just set the sysctl tcp_stdurg).
5593 */
5594
5595static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5596{
5597	struct tcp_sock *tp = tcp_sk(sk);
5598	u32 ptr = ntohs(th->urg_ptr);
5599
5600	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5601		ptr--;
5602	ptr += ntohl(th->seq);
5603
5604	/* Ignore urgent data that we've already seen and read. */
5605	if (after(tp->copied_seq, ptr))
5606		return;
5607
5608	/* Do not replay urg ptr.
5609	 *
5610	 * NOTE: interesting situation not covered by specs.
5611	 * Misbehaving sender may send urg ptr, pointing to segment,
5612	 * which we already have in ofo queue. We are not able to fetch
5613	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5614	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5615	 * situations. But it is worth to think about possibility of some
5616	 * DoSes using some hypothetical application level deadlock.
5617	 */
5618	if (before(ptr, tp->rcv_nxt))
5619		return;
5620
5621	/* Do we already have a newer (or duplicate) urgent pointer? */
5622	if (tp->urg_data && !after(ptr, tp->urg_seq))
5623		return;
5624
5625	/* Tell the world about our new urgent pointer. */
5626	sk_send_sigurg(sk);
5627
5628	/* We may be adding urgent data when the last byte read was
5629	 * urgent. To do this requires some care. We cannot just ignore
5630	 * tp->copied_seq since we would read the last urgent byte again
5631	 * as data, nor can we alter copied_seq until this data arrives
5632	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5633	 *
5634	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5635	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5636	 * and expect that both A and B disappear from stream. This is _wrong_.
5637	 * Though this happens in BSD with high probability, this is occasional.
5638	 * Any application relying on this is buggy. Note also, that fix "works"
5639	 * only in this artificial test. Insert some normal data between A and B and we will
5640	 * decline of BSD again. Verdict: it is better to remove to trap
5641	 * buggy users.
5642	 */
5643	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5644	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5645		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5646		tp->copied_seq++;
5647		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5648			__skb_unlink(skb, &sk->sk_receive_queue);
5649			__kfree_skb(skb);
5650		}
5651	}
5652
5653	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5654	WRITE_ONCE(tp->urg_seq, ptr);
5655
5656	/* Disable header prediction. */
5657	tp->pred_flags = 0;
5658}
5659
5660/* This is the 'fast' part of urgent handling. */
5661static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5662{
5663	struct tcp_sock *tp = tcp_sk(sk);
5664
5665	/* Check if we get a new urgent pointer - normally not. */
5666	if (unlikely(th->urg))
5667		tcp_check_urg(sk, th);
5668
5669	/* Do we wait for any urgent data? - normally not... */
5670	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5671		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5672			  th->syn;
5673
5674		/* Is the urgent pointer pointing into this packet? */
5675		if (ptr < skb->len) {
5676			u8 tmp;
5677			if (skb_copy_bits(skb, ptr, &tmp, 1))
5678				BUG();
5679			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5680			if (!sock_flag(sk, SOCK_DEAD))
5681				sk->sk_data_ready(sk);
5682		}
5683	}
5684}
5685
5686/* Accept RST for rcv_nxt - 1 after a FIN.
5687 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5688 * FIN is sent followed by a RST packet. The RST is sent with the same
5689 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5690 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5691 * ACKs on the closed socket. In addition middleboxes can drop either the
5692 * challenge ACK or a subsequent RST.
5693 */
5694static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5695{
5696	struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 
 
 
 
 
 
 
 
5697
5698	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5699			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5700					       TCPF_CLOSING));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5701}
 
5702
5703/* Does PAWS and seqno based validation of an incoming segment, flags will
5704 * play significant role here.
5705 */
5706static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5707				  const struct tcphdr *th, int syn_inerr)
5708{
 
5709	struct tcp_sock *tp = tcp_sk(sk);
5710	SKB_DR(reason);
5711
5712	/* RFC1323: H1. Apply PAWS check first. */
5713	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5714	    tp->rx_opt.saw_tstamp &&
5715	    tcp_paws_discard(sk, skb)) {
5716		if (!th->rst) {
5717			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5718			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5719						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5720						  &tp->last_oow_ack_time))
5721				tcp_send_dupack(sk, skb);
5722			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5723			goto discard;
5724		}
5725		/* Reset is accepted even if it did not pass PAWS. */
5726	}
5727
5728	/* Step 1: check sequence number */
5729	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5730		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5731		 * (RST) segments are validated by checking their SEQ-fields."
5732		 * And page 69: "If an incoming segment is not acceptable,
5733		 * an acknowledgment should be sent in reply (unless the RST
5734		 * bit is set, if so drop the segment and return)".
5735		 */
5736		if (!th->rst) {
5737			if (th->syn)
5738				goto syn_challenge;
5739			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5740						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5741						  &tp->last_oow_ack_time))
5742				tcp_send_dupack(sk, skb);
5743		} else if (tcp_reset_check(sk, skb)) {
5744			goto reset;
5745		}
5746		SKB_DR_SET(reason, TCP_INVALID_SEQUENCE);
5747		goto discard;
5748	}
5749
5750	/* Step 2: check RST bit */
5751	if (th->rst) {
5752		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5753		 * FIN and SACK too if available):
5754		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5755		 * the right-most SACK block,
5756		 * then
5757		 *     RESET the connection
5758		 * else
5759		 *     Send a challenge ACK
5760		 */
5761		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5762		    tcp_reset_check(sk, skb))
5763			goto reset;
5764
5765		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5766			struct tcp_sack_block *sp = &tp->selective_acks[0];
5767			int max_sack = sp[0].end_seq;
5768			int this_sack;
5769
5770			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5771			     ++this_sack) {
5772				max_sack = after(sp[this_sack].end_seq,
5773						 max_sack) ?
5774					sp[this_sack].end_seq : max_sack;
5775			}
5776
5777			if (TCP_SKB_CB(skb)->seq == max_sack)
5778				goto reset;
5779		}
5780
5781		/* Disable TFO if RST is out-of-order
5782		 * and no data has been received
5783		 * for current active TFO socket
5784		 */
5785		if (tp->syn_fastopen && !tp->data_segs_in &&
5786		    sk->sk_state == TCP_ESTABLISHED)
5787			tcp_fastopen_active_disable(sk);
5788		tcp_send_challenge_ack(sk);
5789		SKB_DR_SET(reason, TCP_RESET);
5790		goto discard;
5791	}
5792
 
 
 
 
 
5793	/* step 3: check security and precedence [ignored] */
5794
5795	/* step 4: Check for a SYN
5796	 * RFC 5961 4.2 : Send a challenge ack
5797	 */
5798	if (th->syn) {
5799syn_challenge:
5800		if (syn_inerr)
5801			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5802		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5803		tcp_send_challenge_ack(sk);
5804		SKB_DR_SET(reason, TCP_INVALID_SYN);
5805		goto discard;
5806	}
5807
5808	bpf_skops_parse_hdr(sk, skb);
5809
5810	return true;
5811
5812discard:
5813	tcp_drop_reason(sk, skb, reason);
5814	return false;
5815
5816reset:
5817	tcp_reset(sk, skb);
5818	__kfree_skb(skb);
5819	return false;
5820}
5821
5822/*
5823 *	TCP receive function for the ESTABLISHED state.
5824 *
5825 *	It is split into a fast path and a slow path. The fast path is
5826 * 	disabled when:
5827 *	- A zero window was announced from us - zero window probing
5828 *        is only handled properly in the slow path.
5829 *	- Out of order segments arrived.
5830 *	- Urgent data is expected.
5831 *	- There is no buffer space left
5832 *	- Unexpected TCP flags/window values/header lengths are received
5833 *	  (detected by checking the TCP header against pred_flags)
5834 *	- Data is sent in both directions. Fast path only supports pure senders
5835 *	  or pure receivers (this means either the sequence number or the ack
5836 *	  value must stay constant)
5837 *	- Unexpected TCP option.
5838 *
5839 *	When these conditions are not satisfied it drops into a standard
5840 *	receive procedure patterned after RFC793 to handle all cases.
5841 *	The first three cases are guaranteed by proper pred_flags setting,
5842 *	the rest is checked inline. Fast processing is turned on in
5843 *	tcp_data_queue when everything is OK.
5844 */
5845void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
 
5846{
5847	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
5848	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5849	struct tcp_sock *tp = tcp_sk(sk);
5850	unsigned int len = skb->len;
5851
5852	/* TCP congestion window tracking */
5853	trace_tcp_probe(sk, skb);
5854
5855	tcp_mstamp_refresh(tp);
5856	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5857		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5858	/*
5859	 *	Header prediction.
5860	 *	The code loosely follows the one in the famous
5861	 *	"30 instruction TCP receive" Van Jacobson mail.
5862	 *
5863	 *	Van's trick is to deposit buffers into socket queue
5864	 *	on a device interrupt, to call tcp_recv function
5865	 *	on the receive process context and checksum and copy
5866	 *	the buffer to user space. smart...
5867	 *
5868	 *	Our current scheme is not silly either but we take the
5869	 *	extra cost of the net_bh soft interrupt processing...
5870	 *	We do checksum and copy also but from device to kernel.
5871	 */
5872
5873	tp->rx_opt.saw_tstamp = 0;
5874
5875	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5876	 *	if header_prediction is to be made
5877	 *	'S' will always be tp->tcp_header_len >> 2
5878	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5879	 *  turn it off	(when there are holes in the receive
5880	 *	 space for instance)
5881	 *	PSH flag is ignored.
5882	 */
5883
5884	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5885	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5886	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5887		int tcp_header_len = tp->tcp_header_len;
5888
5889		/* Timestamp header prediction: tcp_header_len
5890		 * is automatically equal to th->doff*4 due to pred_flags
5891		 * match.
5892		 */
5893
5894		/* Check timestamp */
5895		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5896			/* No? Slow path! */
5897			if (!tcp_parse_aligned_timestamp(tp, th))
5898				goto slow_path;
5899
5900			/* If PAWS failed, check it more carefully in slow path */
5901			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5902				goto slow_path;
5903
5904			/* DO NOT update ts_recent here, if checksum fails
5905			 * and timestamp was corrupted part, it will result
5906			 * in a hung connection since we will drop all
5907			 * future packets due to the PAWS test.
5908			 */
5909		}
5910
5911		if (len <= tcp_header_len) {
5912			/* Bulk data transfer: sender */
5913			if (len == tcp_header_len) {
5914				/* Predicted packet is in window by definition.
5915				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5916				 * Hence, check seq<=rcv_wup reduces to:
5917				 */
5918				if (tcp_header_len ==
5919				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5920				    tp->rcv_nxt == tp->rcv_wup)
5921					tcp_store_ts_recent(tp);
5922
5923				/* We know that such packets are checksummed
5924				 * on entry.
5925				 */
5926				tcp_ack(sk, skb, 0);
5927				__kfree_skb(skb);
5928				tcp_data_snd_check(sk);
5929				/* When receiving pure ack in fast path, update
5930				 * last ts ecr directly instead of calling
5931				 * tcp_rcv_rtt_measure_ts()
5932				 */
5933				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5934				return;
5935			} else { /* Header too small */
5936				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
5937				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5938				goto discard;
5939			}
5940		} else {
5941			int eaten = 0;
5942			bool fragstolen = false;
 
 
 
 
 
 
 
 
 
 
 
 
5943
5944			if (tcp_checksum_complete(skb))
5945				goto csum_error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5946
5947			if ((int)skb->truesize > sk->sk_forward_alloc)
5948				goto step5;
 
 
 
 
 
 
5949
5950			/* Predicted packet is in window by definition.
5951			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5952			 * Hence, check seq<=rcv_wup reduces to:
5953			 */
5954			if (tcp_header_len ==
5955			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5956			    tp->rcv_nxt == tp->rcv_wup)
5957				tcp_store_ts_recent(tp);
5958
5959			tcp_rcv_rtt_measure_ts(sk, skb);
5960
5961			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5962
5963			/* Bulk data transfer: receiver */
5964			skb_dst_drop(skb);
5965			__skb_pull(skb, tcp_header_len);
5966			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5967
5968			tcp_event_data_recv(sk, skb);
5969
5970			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5971				/* Well, only one small jumplet in fast path... */
5972				tcp_ack(sk, skb, FLAG_DATA);
5973				tcp_data_snd_check(sk);
5974				if (!inet_csk_ack_scheduled(sk))
5975					goto no_ack;
5976			} else {
5977				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5978			}
5979
5980			__tcp_ack_snd_check(sk, 0);
 
5981no_ack:
 
 
 
 
 
5982			if (eaten)
5983				kfree_skb_partial(skb, fragstolen);
5984			tcp_data_ready(sk);
5985			return;
 
5986		}
5987	}
5988
5989slow_path:
5990	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5991		goto csum_error;
5992
5993	if (!th->ack && !th->rst && !th->syn) {
5994		reason = SKB_DROP_REASON_TCP_FLAGS;
5995		goto discard;
5996	}
5997
5998	/*
5999	 *	Standard slow path.
6000	 */
6001
6002	if (!tcp_validate_incoming(sk, skb, th, 1))
6003		return;
 
6004
6005step5:
6006	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6007	if ((int)reason < 0) {
6008		reason = -reason;
6009		goto discard;
6010	}
6011	tcp_rcv_rtt_measure_ts(sk, skb);
6012
6013	/* Process urgent data. */
6014	tcp_urg(sk, skb, th);
6015
6016	/* step 7: process the segment text */
6017	tcp_data_queue(sk, skb);
6018
6019	tcp_data_snd_check(sk);
6020	tcp_ack_snd_check(sk);
6021	return;
6022
6023csum_error:
6024	reason = SKB_DROP_REASON_TCP_CSUM;
6025	trace_tcp_bad_csum(skb);
6026	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6027	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6028
6029discard:
6030	tcp_drop_reason(sk, skb, reason);
 
6031}
6032EXPORT_SYMBOL(tcp_rcv_established);
6033
6034void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6035{
6036	struct inet_connection_sock *icsk = inet_csk(sk);
6037	struct tcp_sock *tp = tcp_sk(sk);
6038
6039	tcp_mtup_init(sk);
6040	icsk->icsk_af_ops->rebuild_header(sk);
6041	tcp_init_metrics(sk);
6042
6043	/* Initialize the congestion window to start the transfer.
6044	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6045	 * retransmitted. In light of RFC6298 more aggressive 1sec
6046	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6047	 * retransmission has occurred.
6048	 */
6049	if (tp->total_retrans > 1 && tp->undo_marker)
6050		tcp_snd_cwnd_set(tp, 1);
6051	else
6052		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6053	tp->snd_cwnd_stamp = tcp_jiffies32;
6054
6055	bpf_skops_established(sk, bpf_op, skb);
6056	/* Initialize congestion control unless BPF initialized it already: */
6057	if (!icsk->icsk_ca_initialized)
6058		tcp_init_congestion_control(sk);
6059	tcp_init_buffer_space(sk);
6060}
6061
6062void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6063{
6064	struct tcp_sock *tp = tcp_sk(sk);
6065	struct inet_connection_sock *icsk = inet_csk(sk);
6066
6067	tcp_set_state(sk, TCP_ESTABLISHED);
6068	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6069
6070	if (skb) {
6071		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6072		security_inet_conn_established(sk, skb);
6073		sk_mark_napi_id(sk, skb);
6074	}
6075
6076	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6077
6078	/* Prevent spurious tcp_cwnd_restart() on first data
6079	 * packet.
6080	 */
6081	tp->lsndtime = tcp_jiffies32;
6082
6083	if (sock_flag(sk, SOCK_KEEPOPEN))
6084		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6085
6086	if (!tp->rx_opt.snd_wscale)
6087		__tcp_fast_path_on(tp, tp->snd_wnd);
6088	else
6089		tp->pred_flags = 0;
6090}
6091
6092static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6093				    struct tcp_fastopen_cookie *cookie)
6094{
6095	struct tcp_sock *tp = tcp_sk(sk);
6096	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6097	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6098	bool syn_drop = false;
6099
6100	if (mss == tp->rx_opt.user_mss) {
6101		struct tcp_options_received opt;
6102
6103		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6104		tcp_clear_options(&opt);
6105		opt.user_mss = opt.mss_clamp = 0;
6106		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6107		mss = opt.mss_clamp;
6108	}
6109
6110	if (!tp->syn_fastopen) {
6111		/* Ignore an unsolicited cookie */
6112		cookie->len = -1;
6113	} else if (tp->total_retrans) {
6114		/* SYN timed out and the SYN-ACK neither has a cookie nor
6115		 * acknowledges data. Presumably the remote received only
6116		 * the retransmitted (regular) SYNs: either the original
6117		 * SYN-data or the corresponding SYN-ACK was dropped.
6118		 */
6119		syn_drop = (cookie->len < 0 && data);
6120	} else if (cookie->len < 0 && !tp->syn_data) {
6121		/* We requested a cookie but didn't get it. If we did not use
6122		 * the (old) exp opt format then try so next time (try_exp=1).
6123		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6124		 */
6125		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6126	}
6127
6128	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6129
6130	if (data) { /* Retransmit unacked data in SYN */
6131		if (tp->total_retrans)
6132			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6133		else
6134			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6135		skb_rbtree_walk_from(data)
6136			 tcp_mark_skb_lost(sk, data);
6137		tcp_xmit_retransmit_queue(sk);
6138		NET_INC_STATS(sock_net(sk),
6139				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6140		return true;
6141	}
6142	tp->syn_data_acked = tp->syn_data;
6143	if (tp->syn_data_acked) {
6144		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6145		/* SYN-data is counted as two separate packets in tcp_ack() */
6146		if (tp->delivered > 1)
6147			--tp->delivered;
6148	}
6149
6150	tcp_fastopen_add_skb(sk, synack);
6151
6152	return false;
6153}
6154
6155static void smc_check_reset_syn(struct tcp_sock *tp)
6156{
6157#if IS_ENABLED(CONFIG_SMC)
6158	if (static_branch_unlikely(&tcp_have_smc)) {
6159		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6160			tp->syn_smc = 0;
6161	}
6162#endif
6163}
6164
6165static void tcp_try_undo_spurious_syn(struct sock *sk)
6166{
6167	struct tcp_sock *tp = tcp_sk(sk);
6168	u32 syn_stamp;
6169
6170	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6171	 * spurious if the ACK's timestamp option echo value matches the
6172	 * original SYN timestamp.
6173	 */
6174	syn_stamp = tp->retrans_stamp;
6175	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6176	    syn_stamp == tp->rx_opt.rcv_tsecr)
6177		tp->undo_marker = 0;
6178}
6179
6180static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6181					 const struct tcphdr *th)
6182{
 
6183	struct inet_connection_sock *icsk = inet_csk(sk);
6184	struct tcp_sock *tp = tcp_sk(sk);
6185	struct tcp_fastopen_cookie foc = { .len = -1 };
6186	int saved_clamp = tp->rx_opt.mss_clamp;
6187	bool fastopen_fail;
6188	SKB_DR(reason);
6189
6190	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6191	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6192		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6193
6194	if (th->ack) {
6195		/* rfc793:
6196		 * "If the state is SYN-SENT then
6197		 *    first check the ACK bit
6198		 *      If the ACK bit is set
6199		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6200		 *        a reset (unless the RST bit is set, if so drop
6201		 *        the segment and return)"
 
 
 
6202		 */
6203		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6204		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6205			/* Previous FIN/ACK or RST/ACK might be ignored. */
6206			if (icsk->icsk_retransmits == 0)
6207				inet_csk_reset_xmit_timer(sk,
6208						ICSK_TIME_RETRANS,
6209						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6210			goto reset_and_undo;
6211		}
6212
6213		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6214		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6215			     tcp_time_stamp(tp))) {
6216			NET_INC_STATS(sock_net(sk),
6217					LINUX_MIB_PAWSACTIVEREJECTED);
6218			goto reset_and_undo;
6219		}
6220
6221		/* Now ACK is acceptable.
6222		 *
6223		 * "If the RST bit is set
6224		 *    If the ACK was acceptable then signal the user "error:
6225		 *    connection reset", drop the segment, enter CLOSED state,
6226		 *    delete TCB, and return."
6227		 */
6228
6229		if (th->rst) {
6230			tcp_reset(sk, skb);
6231consume:
6232			__kfree_skb(skb);
6233			return 0;
6234		}
6235
6236		/* rfc793:
6237		 *   "fifth, if neither of the SYN or RST bits is set then
6238		 *    drop the segment and return."
6239		 *
6240		 *    See note below!
6241		 *                                        --ANK(990513)
6242		 */
6243		if (!th->syn) {
6244			SKB_DR_SET(reason, TCP_FLAGS);
6245			goto discard_and_undo;
6246		}
6247		/* rfc793:
6248		 *   "If the SYN bit is on ...
6249		 *    are acceptable then ...
6250		 *    (our SYN has been ACKed), change the connection
6251		 *    state to ESTABLISHED..."
6252		 */
6253
6254		tcp_ecn_rcv_synack(tp, th);
6255
6256		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6257		tcp_try_undo_spurious_syn(sk);
6258		tcp_ack(sk, skb, FLAG_SLOWPATH);
6259
6260		/* Ok.. it's good. Set up sequence numbers and
6261		 * move to established.
6262		 */
6263		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6264		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6265
6266		/* RFC1323: The window in SYN & SYN/ACK segments is
6267		 * never scaled.
6268		 */
6269		tp->snd_wnd = ntohs(th->window);
 
6270
6271		if (!tp->rx_opt.wscale_ok) {
6272			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6273			tp->window_clamp = min(tp->window_clamp, 65535U);
6274		}
6275
6276		if (tp->rx_opt.saw_tstamp) {
6277			tp->rx_opt.tstamp_ok	   = 1;
6278			tp->tcp_header_len =
6279				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6280			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6281			tcp_store_ts_recent(tp);
6282		} else {
6283			tp->tcp_header_len = sizeof(struct tcphdr);
6284		}
6285
 
 
 
 
6286		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6287		tcp_initialize_rcv_mss(sk);
6288
6289		/* Remember, tcp_poll() does not lock socket!
6290		 * Change state from SYN-SENT only after copied_seq
6291		 * is initialized. */
6292		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6293
6294		smc_check_reset_syn(tp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6295
6296		smp_mb();
 
6297
6298		tcp_finish_connect(sk, skb);
 
 
 
 
 
 
 
 
 
 
 
 
6299
6300		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6301				tcp_rcv_fastopen_synack(sk, skb, &foc);
 
 
 
 
 
 
 
6302
6303		if (!sock_flag(sk, SOCK_DEAD)) {
6304			sk->sk_state_change(sk);
6305			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6306		}
6307		if (fastopen_fail)
6308			return -1;
6309		if (sk->sk_write_pending ||
6310		    icsk->icsk_accept_queue.rskq_defer_accept ||
6311		    inet_csk_in_pingpong_mode(sk)) {
6312			/* Save one ACK. Data will be ready after
6313			 * several ticks, if write_pending is set.
6314			 *
6315			 * It may be deleted, but with this feature tcpdumps
6316			 * look so _wonderfully_ clever, that I was not able
6317			 * to stand against the temptation 8)     --ANK
6318			 */
6319			inet_csk_schedule_ack(sk);
6320			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
 
 
 
6321			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6322						  TCP_DELACK_MAX, TCP_RTO_MAX);
6323			goto consume;
 
 
 
 
 
6324		}
6325		tcp_send_ack(sk);
6326		return -1;
6327	}
6328
6329	/* No ACK in the segment */
6330
6331	if (th->rst) {
6332		/* rfc793:
6333		 * "If the RST bit is set
6334		 *
6335		 *      Otherwise (no ACK) drop the segment and return."
6336		 */
6337		SKB_DR_SET(reason, TCP_RESET);
6338		goto discard_and_undo;
6339	}
6340
6341	/* PAWS check. */
6342	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6343	    tcp_paws_reject(&tp->rx_opt, 0)) {
6344		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6345		goto discard_and_undo;
6346	}
6347	if (th->syn) {
6348		/* We see SYN without ACK. It is attempt of
6349		 * simultaneous connect with crossed SYNs.
6350		 * Particularly, it can be connect to self.
6351		 */
6352		tcp_set_state(sk, TCP_SYN_RECV);
6353
6354		if (tp->rx_opt.saw_tstamp) {
6355			tp->rx_opt.tstamp_ok = 1;
6356			tcp_store_ts_recent(tp);
6357			tp->tcp_header_len =
6358				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6359		} else {
6360			tp->tcp_header_len = sizeof(struct tcphdr);
6361		}
6362
6363		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6364		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6365		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6366
6367		/* RFC1323: The window in SYN & SYN/ACK segments is
6368		 * never scaled.
6369		 */
6370		tp->snd_wnd    = ntohs(th->window);
6371		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6372		tp->max_window = tp->snd_wnd;
6373
6374		tcp_ecn_rcv_syn(tp, th);
6375
6376		tcp_mtup_init(sk);
6377		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6378		tcp_initialize_rcv_mss(sk);
6379
6380		tcp_send_synack(sk);
6381#if 0
6382		/* Note, we could accept data and URG from this segment.
6383		 * There are no obstacles to make this (except that we must
6384		 * either change tcp_recvmsg() to prevent it from returning data
6385		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6386		 *
6387		 * However, if we ignore data in ACKless segments sometimes,
6388		 * we have no reasons to accept it sometimes.
6389		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6390		 * is not flawless. So, discard packet for sanity.
6391		 * Uncomment this return to process the data.
6392		 */
6393		return -1;
6394#else
6395		goto consume;
6396#endif
6397	}
6398	/* "fifth, if neither of the SYN or RST bits is set then
6399	 * drop the segment and return."
6400	 */
6401
6402discard_and_undo:
6403	tcp_clear_options(&tp->rx_opt);
6404	tp->rx_opt.mss_clamp = saved_clamp;
6405	tcp_drop_reason(sk, skb, reason);
6406	return 0;
6407
6408reset_and_undo:
6409	tcp_clear_options(&tp->rx_opt);
6410	tp->rx_opt.mss_clamp = saved_clamp;
6411	return 1;
6412}
6413
6414static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6415{
6416	struct request_sock *req;
6417
6418	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6419	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6420	 */
6421	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6422		tcp_try_undo_loss(sk, false);
6423
6424	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6425	tcp_sk(sk)->retrans_stamp = 0;
6426	inet_csk(sk)->icsk_retransmits = 0;
6427
6428	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6429	 * we no longer need req so release it.
6430	 */
6431	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6432					lockdep_sock_is_held(sk));
6433	reqsk_fastopen_remove(sk, req, false);
6434
6435	/* Re-arm the timer because data may have been sent out.
6436	 * This is similar to the regular data transmission case
6437	 * when new data has just been ack'ed.
6438	 *
6439	 * (TFO) - we could try to be more aggressive and
6440	 * retransmitting any data sooner based on when they
6441	 * are sent out.
6442	 */
6443	tcp_rearm_rto(sk);
6444}
6445
6446/*
6447 *	This function implements the receiving procedure of RFC 793 for
6448 *	all states except ESTABLISHED and TIME_WAIT.
6449 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6450 *	address independent.
6451 */
6452
6453int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
 
6454{
6455	struct tcp_sock *tp = tcp_sk(sk);
6456	struct inet_connection_sock *icsk = inet_csk(sk);
6457	const struct tcphdr *th = tcp_hdr(skb);
6458	struct request_sock *req;
6459	int queued = 0;
6460	bool acceptable;
6461	SKB_DR(reason);
 
6462
6463	switch (sk->sk_state) {
6464	case TCP_CLOSE:
6465		SKB_DR_SET(reason, TCP_CLOSE);
6466		goto discard;
6467
6468	case TCP_LISTEN:
6469		if (th->ack)
6470			return 1;
6471
6472		if (th->rst) {
6473			SKB_DR_SET(reason, TCP_RESET);
6474			goto discard;
6475		}
6476		if (th->syn) {
6477			if (th->fin) {
6478				SKB_DR_SET(reason, TCP_FLAGS);
6479				goto discard;
6480			}
6481			/* It is possible that we process SYN packets from backlog,
6482			 * so we need to make sure to disable BH and RCU right there.
6483			 */
6484			rcu_read_lock();
6485			local_bh_disable();
6486			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6487			local_bh_enable();
6488			rcu_read_unlock();
6489
6490			if (!acceptable)
 
6491				return 1;
6492			consume_skb(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6493			return 0;
6494		}
6495		SKB_DR_SET(reason, TCP_FLAGS);
6496		goto discard;
6497
6498	case TCP_SYN_SENT:
6499		tp->rx_opt.saw_tstamp = 0;
6500		tcp_mstamp_refresh(tp);
6501		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6502		if (queued >= 0)
6503			return queued;
6504
6505		/* Do step6 onward by hand. */
6506		tcp_urg(sk, skb, th);
6507		__kfree_skb(skb);
6508		tcp_data_snd_check(sk);
6509		return 0;
6510	}
6511
6512	tcp_mstamp_refresh(tp);
6513	tp->rx_opt.saw_tstamp = 0;
6514	req = rcu_dereference_protected(tp->fastopen_rsk,
6515					lockdep_sock_is_held(sk));
6516	if (req) {
6517		bool req_stolen;
6518
6519		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6520		    sk->sk_state != TCP_FIN_WAIT1);
6521
6522		if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6523			SKB_DR_SET(reason, TCP_FASTOPEN);
6524			goto discard;
6525		}
6526	}
6527
6528	if (!th->ack && !th->rst && !th->syn) {
6529		SKB_DR_SET(reason, TCP_FLAGS);
6530		goto discard;
6531	}
6532	if (!tcp_validate_incoming(sk, skb, th, 0))
6533		return 0;
6534
6535	/* step 5: check the ACK field */
6536	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6537				      FLAG_UPDATE_TS_RECENT |
6538				      FLAG_NO_CHALLENGE_ACK) > 0;
6539
6540	if (!acceptable) {
6541		if (sk->sk_state == TCP_SYN_RECV)
6542			return 1;	/* send one RST */
6543		tcp_send_challenge_ack(sk);
6544		SKB_DR_SET(reason, TCP_OLD_ACK);
6545		goto discard;
6546	}
6547	switch (sk->sk_state) {
6548	case TCP_SYN_RECV:
6549		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6550		if (!tp->srtt_us)
6551			tcp_synack_rtt_meas(sk, req);
6552
6553		if (req) {
6554			tcp_rcv_synrecv_state_fastopen(sk);
6555		} else {
6556			tcp_try_undo_spurious_syn(sk);
6557			tp->retrans_stamp = 0;
6558			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6559					  skb);
6560			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6561		}
6562		smp_mb();
6563		tcp_set_state(sk, TCP_ESTABLISHED);
6564		sk->sk_state_change(sk);
6565
6566		/* Note, that this wakeup is only for marginal crossed SYN case.
6567		 * Passively open sockets are not waked up, because
6568		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6569		 */
6570		if (sk->sk_socket)
6571			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6572
6573		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6574		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6575		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6576
6577		if (tp->rx_opt.tstamp_ok)
6578			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6579
6580		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6581			tcp_update_pacing_rate(sk);
6582
6583		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6584		tp->lsndtime = tcp_jiffies32;
 
 
6585
6586		tcp_initialize_rcv_mss(sk);
6587		tcp_fast_path_on(tp);
6588		break;
6589
6590	case TCP_FIN_WAIT1: {
6591		int tmo;
6592
6593		if (req)
6594			tcp_rcv_synrecv_state_fastopen(sk);
 
 
6595
6596		if (tp->snd_una != tp->write_seq)
 
 
 
 
 
 
6597			break;
6598
6599		tcp_set_state(sk, TCP_FIN_WAIT2);
6600		sk->sk_shutdown |= SEND_SHUTDOWN;
6601
6602		sk_dst_confirm(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6603
6604		if (!sock_flag(sk, SOCK_DEAD)) {
6605			/* Wake up lingering close() */
6606			sk->sk_state_change(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6607			break;
6608		}
6609
6610		if (tp->linger2 < 0) {
6611			tcp_done(sk);
6612			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6613			return 1;
6614		}
6615		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6616		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6617			/* Receive out of order FIN after close() */
6618			if (tp->syn_fastopen && th->fin)
6619				tcp_fastopen_active_disable(sk);
6620			tcp_done(sk);
6621			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6622			return 1;
6623		}
6624
6625		tmo = tcp_fin_time(sk);
6626		if (tmo > TCP_TIMEWAIT_LEN) {
6627			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6628		} else if (th->fin || sock_owned_by_user(sk)) {
6629			/* Bad case. We could lose such FIN otherwise.
6630			 * It is not a big problem, but it looks confusing
6631			 * and not so rare event. We still can lose it now,
6632			 * if it spins in bh_lock_sock(), but it is really
6633			 * marginal case.
6634			 */
6635			inet_csk_reset_keepalive_timer(sk, tmo);
6636		} else {
6637			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6638			goto consume;
6639		}
6640		break;
6641	}
6642
6643	case TCP_CLOSING:
6644		if (tp->snd_una == tp->write_seq) {
6645			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6646			goto consume;
6647		}
6648		break;
6649
6650	case TCP_LAST_ACK:
6651		if (tp->snd_una == tp->write_seq) {
6652			tcp_update_metrics(sk);
6653			tcp_done(sk);
6654			goto consume;
 
 
6655		}
6656		break;
6657	}
6658
6659	/* step 6: check the URG bit */
6660	tcp_urg(sk, skb, th);
6661
6662	/* step 7: process the segment text */
6663	switch (sk->sk_state) {
6664	case TCP_CLOSE_WAIT:
6665	case TCP_CLOSING:
6666	case TCP_LAST_ACK:
6667		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6668			/* If a subflow has been reset, the packet should not
6669			 * continue to be processed, drop the packet.
6670			 */
6671			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6672				goto discard;
6673			break;
6674		}
6675		fallthrough;
6676	case TCP_FIN_WAIT1:
6677	case TCP_FIN_WAIT2:
6678		/* RFC 793 says to queue data in these states,
6679		 * RFC 1122 says we MUST send a reset.
6680		 * BSD 4.4 also does reset.
6681		 */
6682		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6683			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6684			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6685				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6686				tcp_reset(sk, skb);
6687				return 1;
6688			}
6689		}
6690		fallthrough;
6691	case TCP_ESTABLISHED:
6692		tcp_data_queue(sk, skb);
6693		queued = 1;
6694		break;
6695	}
6696
6697	/* tcp_data could move socket to TIME-WAIT */
6698	if (sk->sk_state != TCP_CLOSE) {
6699		tcp_data_snd_check(sk);
6700		tcp_ack_snd_check(sk);
6701	}
6702
6703	if (!queued) {
6704discard:
6705		tcp_drop_reason(sk, skb, reason);
6706	}
6707	return 0;
6708
6709consume:
6710	__kfree_skb(skb);
6711	return 0;
6712}
6713EXPORT_SYMBOL(tcp_rcv_state_process);
6714
6715static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6716{
6717	struct inet_request_sock *ireq = inet_rsk(req);
6718
6719	if (family == AF_INET)
6720		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6721				    &ireq->ir_rmt_addr, port);
6722#if IS_ENABLED(CONFIG_IPV6)
6723	else if (family == AF_INET6)
6724		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6725				    &ireq->ir_v6_rmt_addr, port);
6726#endif
6727}
6728
6729/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6730 *
6731 * If we receive a SYN packet with these bits set, it means a
6732 * network is playing bad games with TOS bits. In order to
6733 * avoid possible false congestion notifications, we disable
6734 * TCP ECN negotiation.
6735 *
6736 * Exception: tcp_ca wants ECN. This is required for DCTCP
6737 * congestion control: Linux DCTCP asserts ECT on all packets,
6738 * including SYN, which is most optimal solution; however,
6739 * others, such as FreeBSD do not.
6740 *
6741 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6742 * set, indicating the use of a future TCP extension (such as AccECN). See
6743 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6744 * extensions.
6745 */
6746static void tcp_ecn_create_request(struct request_sock *req,
6747				   const struct sk_buff *skb,
6748				   const struct sock *listen_sk,
6749				   const struct dst_entry *dst)
6750{
6751	const struct tcphdr *th = tcp_hdr(skb);
6752	const struct net *net = sock_net(listen_sk);
6753	bool th_ecn = th->ece && th->cwr;
6754	bool ect, ecn_ok;
6755	u32 ecn_ok_dst;
6756
6757	if (!th_ecn)
6758		return;
6759
6760	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6761	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6762	ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6763
6764	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6765	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6766	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6767		inet_rsk(req)->ecn_ok = 1;
6768}
6769
6770static void tcp_openreq_init(struct request_sock *req,
6771			     const struct tcp_options_received *rx_opt,
6772			     struct sk_buff *skb, const struct sock *sk)
6773{
6774	struct inet_request_sock *ireq = inet_rsk(req);
6775
6776	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6777	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6778	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6779	tcp_rsk(req)->snt_synack = 0;
6780	tcp_rsk(req)->last_oow_ack_time = 0;
6781	req->mss = rx_opt->mss_clamp;
6782	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6783	ireq->tstamp_ok = rx_opt->tstamp_ok;
6784	ireq->sack_ok = rx_opt->sack_ok;
6785	ireq->snd_wscale = rx_opt->snd_wscale;
6786	ireq->wscale_ok = rx_opt->wscale_ok;
6787	ireq->acked = 0;
6788	ireq->ecn_ok = 0;
6789	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6790	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6791	ireq->ir_mark = inet_request_mark(sk, skb);
6792#if IS_ENABLED(CONFIG_SMC)
6793	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6794			tcp_sk(sk)->smc_hs_congested(sk));
6795#endif
6796}
6797
6798struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6799				      struct sock *sk_listener,
6800				      bool attach_listener)
6801{
6802	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6803					       attach_listener);
6804
6805	if (req) {
6806		struct inet_request_sock *ireq = inet_rsk(req);
6807
6808		ireq->ireq_opt = NULL;
6809#if IS_ENABLED(CONFIG_IPV6)
6810		ireq->pktopts = NULL;
6811#endif
6812		atomic64_set(&ireq->ir_cookie, 0);
6813		ireq->ireq_state = TCP_NEW_SYN_RECV;
6814		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6815		ireq->ireq_family = sk_listener->sk_family;
6816		req->timeout = TCP_TIMEOUT_INIT;
6817	}
6818
6819	return req;
6820}
6821EXPORT_SYMBOL(inet_reqsk_alloc);
6822
6823/*
6824 * Return true if a syncookie should be sent
6825 */
6826static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6827{
6828	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6829	const char *msg = "Dropping request";
6830	struct net *net = sock_net(sk);
6831	bool want_cookie = false;
6832	u8 syncookies;
6833
6834	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6835
6836#ifdef CONFIG_SYN_COOKIES
6837	if (syncookies) {
6838		msg = "Sending cookies";
6839		want_cookie = true;
6840		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6841	} else
6842#endif
6843		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6844
6845	if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
6846	    xchg(&queue->synflood_warned, 1) == 0) {
6847		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
6848			net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
6849					proto, inet6_rcv_saddr(sk),
6850					sk->sk_num, msg);
6851		} else {
6852			net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
6853					proto, &sk->sk_rcv_saddr,
6854					sk->sk_num, msg);
6855		}
6856	}
6857
6858	return want_cookie;
6859}
6860
6861static void tcp_reqsk_record_syn(const struct sock *sk,
6862				 struct request_sock *req,
6863				 const struct sk_buff *skb)
6864{
6865	if (tcp_sk(sk)->save_syn) {
6866		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6867		struct saved_syn *saved_syn;
6868		u32 mac_hdrlen;
6869		void *base;
6870
6871		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
6872			base = skb_mac_header(skb);
6873			mac_hdrlen = skb_mac_header_len(skb);
6874			len += mac_hdrlen;
6875		} else {
6876			base = skb_network_header(skb);
6877			mac_hdrlen = 0;
6878		}
6879
6880		saved_syn = kmalloc(struct_size(saved_syn, data, len),
6881				    GFP_ATOMIC);
6882		if (saved_syn) {
6883			saved_syn->mac_hdrlen = mac_hdrlen;
6884			saved_syn->network_hdrlen = skb_network_header_len(skb);
6885			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6886			memcpy(saved_syn->data, base, len);
6887			req->saved_syn = saved_syn;
6888		}
6889	}
6890}
6891
6892/* If a SYN cookie is required and supported, returns a clamped MSS value to be
6893 * used for SYN cookie generation.
6894 */
6895u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6896			  const struct tcp_request_sock_ops *af_ops,
6897			  struct sock *sk, struct tcphdr *th)
6898{
6899	struct tcp_sock *tp = tcp_sk(sk);
6900	u16 mss;
6901
6902	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
6903	    !inet_csk_reqsk_queue_is_full(sk))
6904		return 0;
6905
6906	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6907		return 0;
6908
6909	if (sk_acceptq_is_full(sk)) {
6910		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6911		return 0;
6912	}
6913
6914	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6915	if (!mss)
6916		mss = af_ops->mss_clamp;
6917
6918	return mss;
6919}
6920EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6921
6922int tcp_conn_request(struct request_sock_ops *rsk_ops,
6923		     const struct tcp_request_sock_ops *af_ops,
6924		     struct sock *sk, struct sk_buff *skb)
6925{
6926	struct tcp_fastopen_cookie foc = { .len = -1 };
6927	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6928	struct tcp_options_received tmp_opt;
6929	struct tcp_sock *tp = tcp_sk(sk);
6930	struct net *net = sock_net(sk);
6931	struct sock *fastopen_sk = NULL;
6932	struct request_sock *req;
6933	bool want_cookie = false;
6934	struct dst_entry *dst;
6935	struct flowi fl;
6936	u8 syncookies;
6937
6938	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6939
6940	/* TW buckets are converted to open requests without
6941	 * limitations, they conserve resources and peer is
6942	 * evidently real one.
6943	 */
6944	if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6945		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6946		if (!want_cookie)
6947			goto drop;
6948	}
6949
6950	if (sk_acceptq_is_full(sk)) {
6951		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6952		goto drop;
6953	}
6954
6955	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6956	if (!req)
6957		goto drop;
6958
6959	req->syncookie = want_cookie;
6960	tcp_rsk(req)->af_specific = af_ops;
6961	tcp_rsk(req)->ts_off = 0;
6962#if IS_ENABLED(CONFIG_MPTCP)
6963	tcp_rsk(req)->is_mptcp = 0;
6964#endif
6965
6966	tcp_clear_options(&tmp_opt);
6967	tmp_opt.mss_clamp = af_ops->mss_clamp;
6968	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6969	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6970			  want_cookie ? NULL : &foc);
6971
6972	if (want_cookie && !tmp_opt.saw_tstamp)
6973		tcp_clear_options(&tmp_opt);
6974
6975	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6976		tmp_opt.smc_ok = 0;
6977
6978	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6979	tcp_openreq_init(req, &tmp_opt, skb, sk);
6980	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6981
6982	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6983	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6984
6985	dst = af_ops->route_req(sk, skb, &fl, req);
6986	if (!dst)
6987		goto drop_and_free;
6988
6989	if (tmp_opt.tstamp_ok)
6990		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6991
6992	if (!want_cookie && !isn) {
6993		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
6994
6995		/* Kill the following clause, if you dislike this way. */
6996		if (!syncookies &&
6997		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6998		     (max_syn_backlog >> 2)) &&
6999		    !tcp_peer_is_proven(req, dst)) {
7000			/* Without syncookies last quarter of
7001			 * backlog is filled with destinations,
7002			 * proven to be alive.
7003			 * It means that we continue to communicate
7004			 * to destinations, already remembered
7005			 * to the moment of synflood.
7006			 */
7007			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7008				    rsk_ops->family);
7009			goto drop_and_release;
7010		}
7011
7012		isn = af_ops->init_seq(skb);
7013	}
7014
7015	tcp_ecn_create_request(req, skb, sk, dst);
7016
7017	if (want_cookie) {
7018		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7019		if (!tmp_opt.tstamp_ok)
7020			inet_rsk(req)->ecn_ok = 0;
7021	}
7022
7023	tcp_rsk(req)->snt_isn = isn;
7024	tcp_rsk(req)->txhash = net_tx_rndhash();
7025	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7026	tcp_openreq_init_rwin(req, sk, dst);
7027	sk_rx_queue_set(req_to_sk(req), skb);
7028	if (!want_cookie) {
7029		tcp_reqsk_record_syn(sk, req, skb);
7030		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7031	}
7032	if (fastopen_sk) {
7033		af_ops->send_synack(fastopen_sk, dst, &fl, req,
7034				    &foc, TCP_SYNACK_FASTOPEN, skb);
7035		/* Add the child socket directly into the accept queue */
7036		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7037			reqsk_fastopen_remove(fastopen_sk, req, false);
7038			bh_unlock_sock(fastopen_sk);
7039			sock_put(fastopen_sk);
7040			goto drop_and_free;
7041		}
7042		sk->sk_data_ready(sk);
7043		bh_unlock_sock(fastopen_sk);
7044		sock_put(fastopen_sk);
7045	} else {
7046		tcp_rsk(req)->tfo_listener = false;
7047		if (!want_cookie) {
7048			req->timeout = tcp_timeout_init((struct sock *)req);
7049			inet_csk_reqsk_queue_hash_add(sk, req, req->timeout);
7050		}
7051		af_ops->send_synack(sk, dst, &fl, req, &foc,
7052				    !want_cookie ? TCP_SYNACK_NORMAL :
7053						   TCP_SYNACK_COOKIE,
7054				    skb);
7055		if (want_cookie) {
7056			reqsk_free(req);
7057			return 0;
7058		}
7059	}
7060	reqsk_put(req);
7061	return 0;
7062
7063drop_and_release:
7064	dst_release(dst);
7065drop_and_free:
7066	__reqsk_free(req);
7067drop:
7068	tcp_listendrop(sk);
7069	return 0;
7070}
7071EXPORT_SYMBOL(tcp_conn_request);
v3.1
 
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 * Authors:	Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18 *		Jorge Cwik, <jorge@laser.satlink.net>
  19 */
  20
  21/*
  22 * Changes:
  23 *		Pedro Roque	:	Fast Retransmit/Recovery.
  24 *					Two receive queues.
  25 *					Retransmit queue handled by TCP.
  26 *					Better retransmit timer handling.
  27 *					New congestion avoidance.
  28 *					Header prediction.
  29 *					Variable renaming.
  30 *
  31 *		Eric		:	Fast Retransmit.
  32 *		Randy Scott	:	MSS option defines.
  33 *		Eric Schenk	:	Fixes to slow start algorithm.
  34 *		Eric Schenk	:	Yet another double ACK bug.
  35 *		Eric Schenk	:	Delayed ACK bug fixes.
  36 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
  37 *		David S. Miller	:	Don't allow zero congestion window.
  38 *		Eric Schenk	:	Fix retransmitter so that it sends
  39 *					next packet on ack of previous packet.
  40 *		Andi Kleen	:	Moved open_request checking here
  41 *					and process RSTs for open_requests.
  42 *		Andi Kleen	:	Better prune_queue, and other fixes.
  43 *		Andrey Savochkin:	Fix RTT measurements in the presence of
  44 *					timestamps.
  45 *		Andrey Savochkin:	Check sequence numbers correctly when
  46 *					removing SACKs due to in sequence incoming
  47 *					data segments.
  48 *		Andi Kleen:		Make sure we never ack data there is not
  49 *					enough room for. Also make this condition
  50 *					a fatal error if it might still happen.
  51 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
  52 *					connections with MSS<min(MTU,ann. MSS)
  53 *					work without delayed acks.
  54 *		Andi Kleen:		Process packets with PSH set in the
  55 *					fast path.
  56 *		J Hadi Salim:		ECN support
  57 *	 	Andrei Gurtov,
  58 *		Pasi Sarolahti,
  59 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
  60 *					engine. Lots of bugs are found.
  61 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
  62 */
  63
 
 
  64#include <linux/mm.h>
  65#include <linux/slab.h>
  66#include <linux/module.h>
  67#include <linux/sysctl.h>
  68#include <linux/kernel.h>
 
  69#include <net/dst.h>
  70#include <net/tcp.h>
  71#include <net/inet_common.h>
  72#include <linux/ipsec.h>
  73#include <asm/unaligned.h>
  74#include <net/netdma.h>
  75
  76int sysctl_tcp_timestamps __read_mostly = 1;
  77int sysctl_tcp_window_scaling __read_mostly = 1;
  78int sysctl_tcp_sack __read_mostly = 1;
  79int sysctl_tcp_fack __read_mostly = 1;
  80int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  81EXPORT_SYMBOL(sysctl_tcp_reordering);
  82int sysctl_tcp_ecn __read_mostly = 2;
  83EXPORT_SYMBOL(sysctl_tcp_ecn);
  84int sysctl_tcp_dsack __read_mostly = 1;
  85int sysctl_tcp_app_win __read_mostly = 31;
  86int sysctl_tcp_adv_win_scale __read_mostly = 2;
  87EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  88
  89int sysctl_tcp_stdurg __read_mostly;
  90int sysctl_tcp_rfc1337 __read_mostly;
  91int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  92int sysctl_tcp_frto __read_mostly = 2;
  93int sysctl_tcp_frto_response __read_mostly;
  94int sysctl_tcp_nometrics_save __read_mostly;
  95
  96int sysctl_tcp_thin_dupack __read_mostly;
  97
  98int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  99int sysctl_tcp_abc __read_mostly;
 100
 101#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
 102#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
 103#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
 104#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
 105#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
 106#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
 107#define FLAG_ECE		0x40 /* ECE in this ACK				*/
 108#define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
 109#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
 110#define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
 111#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
 112#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
 113#define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
 114#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
 
 
 
 
 115
 116#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
 117#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
 118#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
 119#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
 120#define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
 121
 122#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
 123#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
 124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 125/* Adapt the MSS value used to make delayed ack decision to the
 126 * real world.
 127 */
 128static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
 129{
 130	struct inet_connection_sock *icsk = inet_csk(sk);
 131	const unsigned int lss = icsk->icsk_ack.last_seg_size;
 132	unsigned int len;
 133
 134	icsk->icsk_ack.last_seg_size = 0;
 135
 136	/* skb->len may jitter because of SACKs, even if peer
 137	 * sends good full-sized frames.
 138	 */
 139	len = skb_shinfo(skb)->gso_size ? : skb->len;
 140	if (len >= icsk->icsk_ack.rcv_mss) {
 141		icsk->icsk_ack.rcv_mss = len;
 
 
 
 
 
 142	} else {
 143		/* Otherwise, we make more careful check taking into account,
 144		 * that SACKs block is variable.
 145		 *
 146		 * "len" is invariant segment length, including TCP header.
 147		 */
 148		len += skb->data - skb_transport_header(skb);
 149		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
 150		    /* If PSH is not set, packet should be
 151		     * full sized, provided peer TCP is not badly broken.
 152		     * This observation (if it is correct 8)) allows
 153		     * to handle super-low mtu links fairly.
 154		     */
 155		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
 156		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
 157			/* Subtract also invariant (if peer is RFC compliant),
 158			 * tcp header plus fixed timestamp option length.
 159			 * Resulting "len" is MSS free of SACK jitter.
 160			 */
 161			len -= tcp_sk(sk)->tcp_header_len;
 162			icsk->icsk_ack.last_seg_size = len;
 163			if (len == lss) {
 164				icsk->icsk_ack.rcv_mss = len;
 165				return;
 166			}
 167		}
 168		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
 169			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
 170		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
 171	}
 172}
 173
 174static void tcp_incr_quickack(struct sock *sk)
 175{
 176	struct inet_connection_sock *icsk = inet_csk(sk);
 177	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
 178
 179	if (quickacks == 0)
 180		quickacks = 2;
 
 181	if (quickacks > icsk->icsk_ack.quick)
 182		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
 183}
 184
 185static void tcp_enter_quickack_mode(struct sock *sk)
 186{
 187	struct inet_connection_sock *icsk = inet_csk(sk);
 188	tcp_incr_quickack(sk);
 189	icsk->icsk_ack.pingpong = 0;
 
 190	icsk->icsk_ack.ato = TCP_ATO_MIN;
 191}
 
 192
 193/* Send ACKs quickly, if "quick" count is not exhausted
 194 * and the session is not interactive.
 195 */
 196
 197static inline int tcp_in_quickack_mode(const struct sock *sk)
 198{
 199	const struct inet_connection_sock *icsk = inet_csk(sk);
 200	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
 
 
 
 201}
 202
 203static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
 204{
 205	if (tp->ecn_flags & TCP_ECN_OK)
 206		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
 207}
 208
 209static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
 210{
 211	if (tcp_hdr(skb)->cwr)
 212		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 
 
 
 
 
 
 
 
 213}
 214
 215static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
 216{
 217	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 218}
 219
 220static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
 221{
 222	if (tp->ecn_flags & TCP_ECN_OK) {
 223		if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 224			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
 225		/* Funny extension: if ECT is not set on a segment,
 226		 * it is surely retransmit. It is not in ECN RFC,
 227		 * but Linux follows this rule. */
 228		else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
 229			tcp_enter_quickack_mode((struct sock *)tp);
 
 
 
 230	}
 231}
 232
 233static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
 
 
 
 
 
 
 234{
 235	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
 236		tp->ecn_flags &= ~TCP_ECN_OK;
 237}
 238
 239static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
 240{
 241	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
 242		tp->ecn_flags &= ~TCP_ECN_OK;
 243}
 244
 245static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
 246{
 247	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
 248		return 1;
 249	return 0;
 250}
 251
 252/* Buffer size and advertised window tuning.
 253 *
 254 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
 255 */
 256
 257static void tcp_fixup_sndbuf(struct sock *sk)
 258{
 259	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
 260		     sizeof(struct sk_buff);
 
 
 261
 262	if (sk->sk_sndbuf < 3 * sndmem) {
 263		sk->sk_sndbuf = 3 * sndmem;
 264		if (sk->sk_sndbuf > sysctl_tcp_wmem[2])
 265			sk->sk_sndbuf = sysctl_tcp_wmem[2];
 266	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 267}
 268
 269/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
 270 *
 271 * All tcp_full_space() is split to two parts: "network" buffer, allocated
 272 * forward and advertised in receiver window (tp->rcv_wnd) and
 273 * "application buffer", required to isolate scheduling/application
 274 * latencies from network.
 275 * window_clamp is maximal advertised window. It can be less than
 276 * tcp_full_space(), in this case tcp_full_space() - window_clamp
 277 * is reserved for "application" buffer. The less window_clamp is
 278 * the smoother our behaviour from viewpoint of network, but the lower
 279 * throughput and the higher sensitivity of the connection to losses. 8)
 280 *
 281 * rcv_ssthresh is more strict window_clamp used at "slow start"
 282 * phase to predict further behaviour of this connection.
 283 * It is used for two goals:
 284 * - to enforce header prediction at sender, even when application
 285 *   requires some significant "application buffer". It is check #1.
 286 * - to prevent pruning of receive queue because of misprediction
 287 *   of receiver window. Check #2.
 288 *
 289 * The scheme does not work when sender sends good segments opening
 290 * window and then starts to feed us spaghetti. But it should work
 291 * in common situations. Otherwise, we have to rely on queue collapsing.
 292 */
 293
 294/* Slow part of check#2. */
 295static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
 
 296{
 297	struct tcp_sock *tp = tcp_sk(sk);
 298	/* Optimize this! */
 299	int truesize = tcp_win_from_space(skb->truesize) >> 1;
 300	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
 301
 302	while (tp->rcv_ssthresh <= window) {
 303		if (truesize <= skb->len)
 304			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
 305
 306		truesize >>= 1;
 307		window >>= 1;
 308	}
 309	return 0;
 310}
 311
 312static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 313{
 314	struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 
 
 
 315
 316	/* Check #1 */
 317	if (tp->rcv_ssthresh < tp->window_clamp &&
 318	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
 319	    !tcp_memory_pressure) {
 320		int incr;
 321
 322		/* Check #2. Increase window, if skb with such overhead
 323		 * will fit to rcvbuf in future.
 324		 */
 325		if (tcp_win_from_space(skb->truesize) <= skb->len)
 326			incr = 2 * tp->advmss;
 327		else
 328			incr = __tcp_grow_window(sk, skb);
 329
 330		if (incr) {
 331			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
 332					       tp->window_clamp);
 333			inet_csk(sk)->icsk_ack.quick |= 1;
 334		}
 
 
 
 
 
 335	}
 336}
 337
 338/* 3. Tuning rcvbuf, when connection enters established state. */
 339
 340static void tcp_fixup_rcvbuf(struct sock *sk)
 341{
 342	struct tcp_sock *tp = tcp_sk(sk);
 343	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
 344
 345	/* Try to select rcvbuf so that 4 mss-sized segments
 346	 * will fit to window and corresponding skbs will fit to our rcvbuf.
 347	 * (was 3; 4 is minimum to allow fast retransmit to work.)
 348	 */
 349	while (tcp_win_from_space(rcvmem) < tp->advmss)
 350		rcvmem += 128;
 351	if (sk->sk_rcvbuf < 4 * rcvmem)
 352		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
 353}
 354
 355/* 4. Try to fixup all. It is made immediately after connection enters
 356 *    established state.
 357 */
 358static void tcp_init_buffer_space(struct sock *sk)
 359{
 
 360	struct tcp_sock *tp = tcp_sk(sk);
 361	int maxwin;
 362
 363	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
 364		tcp_fixup_rcvbuf(sk);
 365	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
 366		tcp_fixup_sndbuf(sk);
 367
 368	tp->rcvq_space.space = tp->rcv_wnd;
 
 
 369
 370	maxwin = tcp_full_space(sk);
 371
 372	if (tp->window_clamp >= maxwin) {
 373		tp->window_clamp = maxwin;
 374
 375		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
 376			tp->window_clamp = max(maxwin -
 377					       (maxwin >> sysctl_tcp_app_win),
 378					       4 * tp->advmss);
 379	}
 380
 381	/* Force reservation of one segment. */
 382	if (sysctl_tcp_app_win &&
 383	    tp->window_clamp > 2 * tp->advmss &&
 384	    tp->window_clamp + tp->advmss > maxwin)
 385		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
 386
 387	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
 388	tp->snd_cwnd_stamp = tcp_time_stamp;
 
 
 389}
 390
 391/* 5. Recalculate window clamp after socket hit its memory bounds. */
 392static void tcp_clamp_window(struct sock *sk)
 393{
 394	struct tcp_sock *tp = tcp_sk(sk);
 395	struct inet_connection_sock *icsk = inet_csk(sk);
 
 
 396
 397	icsk->icsk_ack.quick = 0;
 
 398
 399	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
 400	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
 401	    !tcp_memory_pressure &&
 402	    atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
 403		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
 404				    sysctl_tcp_rmem[2]);
 405	}
 406	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
 407		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
 408}
 409
 410/* Initialize RCV_MSS value.
 411 * RCV_MSS is an our guess about MSS used by the peer.
 412 * We haven't any direct information about the MSS.
 413 * It's better to underestimate the RCV_MSS rather than overestimate.
 414 * Overestimations make us ACKing less frequently than needed.
 415 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
 416 */
 417void tcp_initialize_rcv_mss(struct sock *sk)
 418{
 419	struct tcp_sock *tp = tcp_sk(sk);
 420	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
 421
 422	hint = min(hint, tp->rcv_wnd / 2);
 423	hint = min(hint, TCP_MSS_DEFAULT);
 424	hint = max(hint, TCP_MIN_MSS);
 425
 426	inet_csk(sk)->icsk_ack.rcv_mss = hint;
 427}
 428EXPORT_SYMBOL(tcp_initialize_rcv_mss);
 429
 430/* Receiver "autotuning" code.
 431 *
 432 * The algorithm for RTT estimation w/o timestamps is based on
 433 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
 434 * <http://public.lanl.gov/radiant/pubs.html#DRS>
 435 *
 436 * More detail on this code can be found at
 437 * <http://staff.psc.edu/jheffner/>,
 438 * though this reference is out of date.  A new paper
 439 * is pending.
 440 */
 441static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
 442{
 443	u32 new_sample = tp->rcv_rtt_est.rtt;
 444	long m = sample;
 445
 446	if (m == 0)
 447		m = 1;
 448
 449	if (new_sample != 0) {
 450		/* If we sample in larger samples in the non-timestamp
 451		 * case, we could grossly overestimate the RTT especially
 452		 * with chatty applications or bulk transfer apps which
 453		 * are stalled on filesystem I/O.
 454		 *
 455		 * Also, since we are only going for a minimum in the
 456		 * non-timestamp case, we do not smooth things out
 457		 * else with timestamps disabled convergence takes too
 458		 * long.
 459		 */
 460		if (!win_dep) {
 461			m -= (new_sample >> 3);
 462			new_sample += m;
 463		} else if (m < new_sample)
 464			new_sample = m << 3;
 
 
 
 465	} else {
 466		/* No previous measure. */
 467		new_sample = m << 3;
 468	}
 469
 470	if (tp->rcv_rtt_est.rtt != new_sample)
 471		tp->rcv_rtt_est.rtt = new_sample;
 472}
 473
 474static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
 475{
 
 
 476	if (tp->rcv_rtt_est.time == 0)
 477		goto new_measure;
 478	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
 479		return;
 480	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
 
 
 
 481
 482new_measure:
 483	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
 484	tp->rcv_rtt_est.time = tcp_time_stamp;
 485}
 486
 487static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
 488					  const struct sk_buff *skb)
 489{
 490	struct tcp_sock *tp = tcp_sk(sk);
 491	if (tp->rx_opt.rcv_tsecr &&
 492	    (TCP_SKB_CB(skb)->end_seq -
 493	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
 494		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 495}
 496
 497/*
 498 * This function should be called every time data is copied to user space.
 499 * It calculates the appropriate TCP receive buffer space.
 500 */
 501void tcp_rcv_space_adjust(struct sock *sk)
 502{
 503	struct tcp_sock *tp = tcp_sk(sk);
 
 504	int time;
 505	int space;
 506
 507	if (tp->rcvq_space.time == 0)
 508		goto new_measure;
 509
 510	time = tcp_time_stamp - tp->rcvq_space.time;
 511	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
 
 512		return;
 513
 514	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
 
 
 
 515
 516	space = max(tp->rcvq_space.space, space);
 
 
 
 
 
 
 
 
 
 
 
 
 517
 518	if (tp->rcvq_space.space != space) {
 519		int rcvmem;
 
 
 520
 521		tp->rcvq_space.space = space;
 
 
 
 522
 523		if (sysctl_tcp_moderate_rcvbuf &&
 524		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
 525			int new_clamp = space;
 526
 527			/* Receive space grows, normalize in order to
 528			 * take into account packet headers and sk_buff
 529			 * structure overhead.
 530			 */
 531			space /= tp->advmss;
 532			if (!space)
 533				space = 1;
 534			rcvmem = (tp->advmss + MAX_TCP_HEADER +
 535				  16 + sizeof(struct sk_buff));
 536			while (tcp_win_from_space(rcvmem) < tp->advmss)
 537				rcvmem += 128;
 538			space *= rcvmem;
 539			space = min(space, sysctl_tcp_rmem[2]);
 540			if (space > sk->sk_rcvbuf) {
 541				sk->sk_rcvbuf = space;
 542
 543				/* Make the window clamp follow along.  */
 544				tp->window_clamp = new_clamp;
 545			}
 546		}
 547	}
 
 548
 549new_measure:
 550	tp->rcvq_space.seq = tp->copied_seq;
 551	tp->rcvq_space.time = tcp_time_stamp;
 552}
 553
 554/* There is something which you must keep in mind when you analyze the
 555 * behavior of the tp->ato delayed ack timeout interval.  When a
 556 * connection starts up, we want to ack as quickly as possible.  The
 557 * problem is that "good" TCP's do slow start at the beginning of data
 558 * transmission.  The means that until we send the first few ACK's the
 559 * sender will sit on his end and only queue most of his data, because
 560 * he can only send snd_cwnd unacked packets at any given time.  For
 561 * each ACK we send, he increments snd_cwnd and transmits more of his
 562 * queue.  -DaveM
 563 */
 564static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
 565{
 566	struct tcp_sock *tp = tcp_sk(sk);
 567	struct inet_connection_sock *icsk = inet_csk(sk);
 568	u32 now;
 569
 570	inet_csk_schedule_ack(sk);
 571
 572	tcp_measure_rcv_mss(sk, skb);
 573
 574	tcp_rcv_rtt_measure(tp);
 575
 576	now = tcp_time_stamp;
 577
 578	if (!icsk->icsk_ack.ato) {
 579		/* The _first_ data packet received, initialize
 580		 * delayed ACK engine.
 581		 */
 582		tcp_incr_quickack(sk);
 583		icsk->icsk_ack.ato = TCP_ATO_MIN;
 584	} else {
 585		int m = now - icsk->icsk_ack.lrcvtime;
 586
 587		if (m <= TCP_ATO_MIN / 2) {
 588			/* The fastest case is the first. */
 589			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
 590		} else if (m < icsk->icsk_ack.ato) {
 591			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
 592			if (icsk->icsk_ack.ato > icsk->icsk_rto)
 593				icsk->icsk_ack.ato = icsk->icsk_rto;
 594		} else if (m > icsk->icsk_rto) {
 595			/* Too long gap. Apparently sender failed to
 596			 * restart window, so that we send ACKs quickly.
 597			 */
 598			tcp_incr_quickack(sk);
 599			sk_mem_reclaim(sk);
 600		}
 601	}
 602	icsk->icsk_ack.lrcvtime = now;
 603
 604	TCP_ECN_check_ce(tp, skb);
 605
 606	if (skb->len >= 128)
 607		tcp_grow_window(sk, skb);
 608}
 609
 610/* Called to compute a smoothed rtt estimate. The data fed to this
 611 * routine either comes from timestamps, or from segments that were
 612 * known _not_ to have been retransmitted [see Karn/Partridge
 613 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
 614 * piece by Van Jacobson.
 615 * NOTE: the next three routines used to be one big routine.
 616 * To save cycles in the RFC 1323 implementation it was better to break
 617 * it up into three procedures. -- erics
 618 */
 619static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
 620{
 621	struct tcp_sock *tp = tcp_sk(sk);
 622	long m = mrtt; /* RTT */
 
 623
 624	/*	The following amusing code comes from Jacobson's
 625	 *	article in SIGCOMM '88.  Note that rtt and mdev
 626	 *	are scaled versions of rtt and mean deviation.
 627	 *	This is designed to be as fast as possible
 628	 *	m stands for "measurement".
 629	 *
 630	 *	On a 1990 paper the rto value is changed to:
 631	 *	RTO = rtt + 4 * mdev
 632	 *
 633	 * Funny. This algorithm seems to be very broken.
 634	 * These formulae increase RTO, when it should be decreased, increase
 635	 * too slowly, when it should be increased quickly, decrease too quickly
 636	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
 637	 * does not matter how to _calculate_ it. Seems, it was trap
 638	 * that VJ failed to avoid. 8)
 639	 */
 640	if (m == 0)
 641		m = 1;
 642	if (tp->srtt != 0) {
 643		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
 644		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
 645		if (m < 0) {
 646			m = -m;		/* m is now abs(error) */
 647			m -= (tp->mdev >> 2);   /* similar update on mdev */
 648			/* This is similar to one of Eifel findings.
 649			 * Eifel blocks mdev updates when rtt decreases.
 650			 * This solution is a bit different: we use finer gain
 651			 * for mdev in this case (alpha*beta).
 652			 * Like Eifel it also prevents growth of rto,
 653			 * but also it limits too fast rto decreases,
 654			 * happening in pure Eifel.
 655			 */
 656			if (m > 0)
 657				m >>= 3;
 658		} else {
 659			m -= (tp->mdev >> 2);   /* similar update on mdev */
 660		}
 661		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
 662		if (tp->mdev > tp->mdev_max) {
 663			tp->mdev_max = tp->mdev;
 664			if (tp->mdev_max > tp->rttvar)
 665				tp->rttvar = tp->mdev_max;
 666		}
 667		if (after(tp->snd_una, tp->rtt_seq)) {
 668			if (tp->mdev_max < tp->rttvar)
 669				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
 670			tp->rtt_seq = tp->snd_nxt;
 671			tp->mdev_max = tcp_rto_min(sk);
 
 
 672		}
 673	} else {
 674		/* no previous measure. */
 675		tp->srtt = m << 3;	/* take the measured time to be rtt */
 676		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
 677		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
 
 678		tp->rtt_seq = tp->snd_nxt;
 
 
 679	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 680}
 681
 682/* Calculate rto without backoff.  This is the second half of Van Jacobson's
 683 * routine referred to above.
 684 */
 685static inline void tcp_set_rto(struct sock *sk)
 686{
 687	const struct tcp_sock *tp = tcp_sk(sk);
 688	/* Old crap is replaced with new one. 8)
 689	 *
 690	 * More seriously:
 691	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
 692	 *    It cannot be less due to utterly erratic ACK generation made
 693	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
 694	 *    to do with delayed acks, because at cwnd>2 true delack timeout
 695	 *    is invisible. Actually, Linux-2.4 also generates erratic
 696	 *    ACKs in some circumstances.
 697	 */
 698	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
 699
 700	/* 2. Fixups made earlier cannot be right.
 701	 *    If we do not estimate RTO correctly without them,
 702	 *    all the algo is pure shit and should be replaced
 703	 *    with correct one. It is exactly, which we pretend to do.
 704	 */
 705
 706	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
 707	 * guarantees that rto is higher.
 708	 */
 709	tcp_bound_rto(sk);
 710}
 711
 712/* Save metrics learned by this TCP session.
 713   This function is called only, when TCP finishes successfully
 714   i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
 715 */
 716void tcp_update_metrics(struct sock *sk)
 717{
 718	struct tcp_sock *tp = tcp_sk(sk);
 719	struct dst_entry *dst = __sk_dst_get(sk);
 720
 721	if (sysctl_tcp_nometrics_save)
 722		return;
 723
 724	dst_confirm(dst);
 725
 726	if (dst && (dst->flags & DST_HOST)) {
 727		const struct inet_connection_sock *icsk = inet_csk(sk);
 728		int m;
 729		unsigned long rtt;
 730
 731		if (icsk->icsk_backoff || !tp->srtt) {
 732			/* This session failed to estimate rtt. Why?
 733			 * Probably, no packets returned in time.
 734			 * Reset our results.
 735			 */
 736			if (!(dst_metric_locked(dst, RTAX_RTT)))
 737				dst_metric_set(dst, RTAX_RTT, 0);
 738			return;
 739		}
 740
 741		rtt = dst_metric_rtt(dst, RTAX_RTT);
 742		m = rtt - tp->srtt;
 743
 744		/* If newly calculated rtt larger than stored one,
 745		 * store new one. Otherwise, use EWMA. Remember,
 746		 * rtt overestimation is always better than underestimation.
 747		 */
 748		if (!(dst_metric_locked(dst, RTAX_RTT))) {
 749			if (m <= 0)
 750				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
 751			else
 752				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
 753		}
 754
 755		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
 756			unsigned long var;
 757			if (m < 0)
 758				m = -m;
 759
 760			/* Scale deviation to rttvar fixed point */
 761			m >>= 1;
 762			if (m < tp->mdev)
 763				m = tp->mdev;
 764
 765			var = dst_metric_rtt(dst, RTAX_RTTVAR);
 766			if (m >= var)
 767				var = m;
 768			else
 769				var -= (var - m) >> 2;
 770
 771			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
 772		}
 773
 774		if (tcp_in_initial_slowstart(tp)) {
 775			/* Slow start still did not finish. */
 776			if (dst_metric(dst, RTAX_SSTHRESH) &&
 777			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
 778			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
 779				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
 780			if (!dst_metric_locked(dst, RTAX_CWND) &&
 781			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
 782				dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
 783		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
 784			   icsk->icsk_ca_state == TCP_CA_Open) {
 785			/* Cong. avoidance phase, cwnd is reliable. */
 786			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
 787				dst_metric_set(dst, RTAX_SSTHRESH,
 788					       max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
 789			if (!dst_metric_locked(dst, RTAX_CWND))
 790				dst_metric_set(dst, RTAX_CWND,
 791					       (dst_metric(dst, RTAX_CWND) +
 792						tp->snd_cwnd) >> 1);
 793		} else {
 794			/* Else slow start did not finish, cwnd is non-sense,
 795			   ssthresh may be also invalid.
 796			 */
 797			if (!dst_metric_locked(dst, RTAX_CWND))
 798				dst_metric_set(dst, RTAX_CWND,
 799					       (dst_metric(dst, RTAX_CWND) +
 800						tp->snd_ssthresh) >> 1);
 801			if (dst_metric(dst, RTAX_SSTHRESH) &&
 802			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
 803			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
 804				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
 805		}
 806
 807		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
 808			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
 809			    tp->reordering != sysctl_tcp_reordering)
 810				dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
 811		}
 812	}
 813}
 814
 815__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
 816{
 817	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
 818
 819	if (!cwnd)
 820		cwnd = TCP_INIT_CWND;
 821	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
 822}
 823
 824/* Set slow start threshold and cwnd not falling to slow start */
 825void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
 826{
 827	struct tcp_sock *tp = tcp_sk(sk);
 828	const struct inet_connection_sock *icsk = inet_csk(sk);
 
 
 
 
 
 
 
 
 829
 830	tp->prior_ssthresh = 0;
 831	tp->bytes_acked = 0;
 832	if (icsk->icsk_ca_state < TCP_CA_CWR) {
 833		tp->undo_marker = 0;
 834		if (set_ssthresh)
 835			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
 836		tp->snd_cwnd = min(tp->snd_cwnd,
 837				   tcp_packets_in_flight(tp) + 1U);
 838		tp->snd_cwnd_cnt = 0;
 839		tp->high_seq = tp->snd_nxt;
 840		tp->snd_cwnd_stamp = tcp_time_stamp;
 841		TCP_ECN_queue_cwr(tp);
 842
 843		tcp_set_ca_state(sk, TCP_CA_CWR);
 844	}
 845}
 846
 847/*
 848 * Packet counting of FACK is based on in-order assumptions, therefore TCP
 849 * disables it when reordering is detected
 850 */
 851static void tcp_disable_fack(struct tcp_sock *tp)
 
 852{
 853	/* RFC3517 uses different metric in lost marker => reset on change */
 854	if (tcp_is_fack(tp))
 855		tp->lost_skb_hint = NULL;
 856	tp->rx_opt.sack_ok &= ~2;
 857}
 858
 859/* Take a notice that peer is sending D-SACKs */
 860static void tcp_dsack_seen(struct tcp_sock *tp)
 861{
 862	tp->rx_opt.sack_ok |= 4;
 863}
 864
 865/* Initialize metrics on socket. */
 
 
 
 
 
 
 
 
 
 
 
 
 866
 867static void tcp_init_metrics(struct sock *sk)
 868{
 869	struct tcp_sock *tp = tcp_sk(sk);
 870	struct dst_entry *dst = __sk_dst_get(sk);
 871
 872	if (dst == NULL)
 873		goto reset;
 
 
 874
 875	dst_confirm(dst);
 
 
 876
 877	if (dst_metric_locked(dst, RTAX_CWND))
 878		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
 879	if (dst_metric(dst, RTAX_SSTHRESH)) {
 880		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
 881		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
 882			tp->snd_ssthresh = tp->snd_cwnd_clamp;
 883	} else {
 884		/* ssthresh may have been reduced unnecessarily during.
 885		 * 3WHS. Restore it back to its initial default.
 886		 */
 887		tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
 888	}
 889	if (dst_metric(dst, RTAX_REORDERING) &&
 890	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
 891		tcp_disable_fack(tp);
 892		tp->reordering = dst_metric(dst, RTAX_REORDERING);
 893	}
 894
 895	if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
 896		goto reset;
 897
 898	/* Initial rtt is determined from SYN,SYN-ACK.
 899	 * The segment is small and rtt may appear much
 900	 * less than real one. Use per-dst memory
 901	 * to make it more realistic.
 902	 *
 903	 * A bit of theory. RTT is time passed after "normal" sized packet
 904	 * is sent until it is ACKed. In normal circumstances sending small
 905	 * packets force peer to delay ACKs and calculation is correct too.
 906	 * The algorithm is adaptive and, provided we follow specs, it
 907	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
 908	 * tricks sort of "quick acks" for time long enough to decrease RTT
 909	 * to low value, and then abruptly stops to do it and starts to delay
 910	 * ACKs, wait for troubles.
 911	 */
 912	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
 913		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
 914		tp->rtt_seq = tp->snd_nxt;
 915	}
 916	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
 917		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
 918		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
 919	}
 920	tcp_set_rto(sk);
 921reset:
 922	if (tp->srtt == 0) {
 923		/* RFC2988bis: We've failed to get a valid RTT sample from
 924		 * 3WHS. This is most likely due to retransmission,
 925		 * including spurious one. Reset the RTO back to 3secs
 926		 * from the more aggressive 1sec to avoid more spurious
 927		 * retransmission.
 928		 */
 929		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
 930		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
 931	}
 932	/* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
 933	 * retransmitted. In light of RFC2988bis' more aggressive 1sec
 934	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
 935	 * retransmission has occurred.
 936	 */
 937	if (tp->total_retrans > 1)
 938		tp->snd_cwnd = 1;
 939	else
 940		tp->snd_cwnd = tcp_init_cwnd(tp, dst);
 941	tp->snd_cwnd_stamp = tcp_time_stamp;
 942}
 943
 944static void tcp_update_reordering(struct sock *sk, const int metric,
 945				  const int ts)
 
 
 
 
 946{
 947	struct tcp_sock *tp = tcp_sk(sk);
 948	if (metric > tp->reordering) {
 949		int mib_idx;
 950
 951		tp->reordering = min(TCP_MAX_REORDERING, metric);
 952
 953		/* This exciting event is worth to be remembered. 8) */
 954		if (ts)
 955			mib_idx = LINUX_MIB_TCPTSREORDER;
 956		else if (tcp_is_reno(tp))
 957			mib_idx = LINUX_MIB_TCPRENOREORDER;
 958		else if (tcp_is_fack(tp))
 959			mib_idx = LINUX_MIB_TCPFACKREORDER;
 960		else
 961			mib_idx = LINUX_MIB_TCPSACKREORDER;
 962
 963		NET_INC_STATS_BH(sock_net(sk), mib_idx);
 
 964#if FASTRETRANS_DEBUG > 1
 965		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
 966		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
 967		       tp->reordering,
 968		       tp->fackets_out,
 969		       tp->sacked_out,
 970		       tp->undo_marker ? tp->undo_retrans : 0);
 971#endif
 972		tcp_disable_fack(tp);
 
 973	}
 
 
 
 
 
 974}
 975
 976/* This must be called before lost_out is incremented */
 
 
 
 
 977static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
 978{
 979	if ((tp->retransmit_skb_hint == NULL) ||
 980	    before(TCP_SKB_CB(skb)->seq,
 981		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
 
 982		tp->retransmit_skb_hint = skb;
 
 983
 984	if (!tp->lost_out ||
 985	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
 986		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
 
 
 
 987}
 988
 989static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
 990{
 991	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 992		tcp_verify_retransmit_hint(tp, skb);
 
 
 
 993
 
 
 
 
 
 
 
 
 
 
 
 994		tp->lost_out += tcp_skb_pcount(skb);
 995		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 
 996	}
 997}
 998
 999static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1000					    struct sk_buff *skb)
 
1001{
1002	tcp_verify_retransmit_hint(tp, skb);
1003
1004	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1005		tp->lost_out += tcp_skb_pcount(skb);
1006		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1007	}
1008}
1009
1010/* This procedure tags the retransmission queue when SACKs arrive.
1011 *
1012 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1013 * Packets in queue with these bits set are counted in variables
1014 * sacked_out, retrans_out and lost_out, correspondingly.
1015 *
1016 * Valid combinations are:
1017 * Tag  InFlight	Description
1018 * 0	1		- orig segment is in flight.
1019 * S	0		- nothing flies, orig reached receiver.
1020 * L	0		- nothing flies, orig lost by net.
1021 * R	2		- both orig and retransmit are in flight.
1022 * L|R	1		- orig is lost, retransmit is in flight.
1023 * S|R  1		- orig reached receiver, retrans is still in flight.
1024 * (L|S|R is logically valid, it could occur when L|R is sacked,
1025 *  but it is equivalent to plain S and code short-curcuits it to S.
1026 *  L|S is logically invalid, it would mean -1 packet in flight 8))
1027 *
1028 * These 6 states form finite state machine, controlled by the following events:
1029 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1030 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1031 * 3. Loss detection event of one of three flavors:
1032 *	A. Scoreboard estimator decided the packet is lost.
1033 *	   A'. Reno "three dupacks" marks head of queue lost.
1034 *	   A''. Its FACK modfication, head until snd.fack is lost.
1035 *	B. SACK arrives sacking data transmitted after never retransmitted
1036 *	   hole was sent out.
1037 *	C. SACK arrives sacking SND.NXT at the moment, when the
1038 *	   segment was retransmitted.
1039 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1040 *
1041 * It is pleasant to note, that state diagram turns out to be commutative,
1042 * so that we are allowed not to be bothered by order of our actions,
1043 * when multiple events arrive simultaneously. (see the function below).
1044 *
1045 * Reordering detection.
1046 * --------------------
1047 * Reordering metric is maximal distance, which a packet can be displaced
1048 * in packet stream. With SACKs we can estimate it:
1049 *
1050 * 1. SACK fills old hole and the corresponding segment was not
1051 *    ever retransmitted -> reordering. Alas, we cannot use it
1052 *    when segment was retransmitted.
1053 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1054 *    for retransmitted and already SACKed segment -> reordering..
1055 * Both of these heuristics are not used in Loss state, when we cannot
1056 * account for retransmits accurately.
1057 *
1058 * SACK block validation.
1059 * ----------------------
1060 *
1061 * SACK block range validation checks that the received SACK block fits to
1062 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1063 * Note that SND.UNA is not included to the range though being valid because
1064 * it means that the receiver is rather inconsistent with itself reporting
1065 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1066 * perfectly valid, however, in light of RFC2018 which explicitly states
1067 * that "SACK block MUST reflect the newest segment.  Even if the newest
1068 * segment is going to be discarded ...", not that it looks very clever
1069 * in case of head skb. Due to potentional receiver driven attacks, we
1070 * choose to avoid immediate execution of a walk in write queue due to
1071 * reneging and defer head skb's loss recovery to standard loss recovery
1072 * procedure that will eventually trigger (nothing forbids us doing this).
1073 *
1074 * Implements also blockage to start_seq wrap-around. Problem lies in the
1075 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1076 * there's no guarantee that it will be before snd_nxt (n). The problem
1077 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1078 * wrap (s_w):
1079 *
1080 *         <- outs wnd ->                          <- wrapzone ->
1081 *         u     e      n                         u_w   e_w  s n_w
1082 *         |     |      |                          |     |   |  |
1083 * |<------------+------+----- TCP seqno space --------------+---------->|
1084 * ...-- <2^31 ->|                                           |<--------...
1085 * ...---- >2^31 ------>|                                    |<--------...
1086 *
1087 * Current code wouldn't be vulnerable but it's better still to discard such
1088 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1089 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1090 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1091 * equal to the ideal case (infinite seqno space without wrap caused issues).
1092 *
1093 * With D-SACK the lower bound is extended to cover sequence space below
1094 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1095 * again, D-SACK block must not to go across snd_una (for the same reason as
1096 * for the normal SACK blocks, explained above). But there all simplicity
1097 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1098 * fully below undo_marker they do not affect behavior in anyway and can
1099 * therefore be safely ignored. In rare cases (which are more or less
1100 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1101 * fragmentation and packet reordering past skb's retransmission. To consider
1102 * them correctly, the acceptable range must be extended even more though
1103 * the exact amount is rather hard to quantify. However, tp->max_window can
1104 * be used as an exaggerated estimate.
1105 */
1106static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1107				  u32 start_seq, u32 end_seq)
1108{
1109	/* Too far in future, or reversed (interpretation is ambiguous) */
1110	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1111		return 0;
1112
1113	/* Nasty start_seq wrap-around check (see comments above) */
1114	if (!before(start_seq, tp->snd_nxt))
1115		return 0;
1116
1117	/* In outstanding window? ...This is valid exit for D-SACKs too.
1118	 * start_seq == snd_una is non-sensical (see comments above)
1119	 */
1120	if (after(start_seq, tp->snd_una))
1121		return 1;
1122
1123	if (!is_dsack || !tp->undo_marker)
1124		return 0;
1125
1126	/* ...Then it's D-SACK, and must reside below snd_una completely */
1127	if (after(end_seq, tp->snd_una))
1128		return 0;
1129
1130	if (!before(start_seq, tp->undo_marker))
1131		return 1;
1132
1133	/* Too old */
1134	if (!after(end_seq, tp->undo_marker))
1135		return 0;
1136
1137	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1138	 *   start_seq < undo_marker and end_seq >= undo_marker.
1139	 */
1140	return !before(start_seq, end_seq - tp->max_window);
1141}
1142
1143/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1144 * Event "C". Later note: FACK people cheated me again 8), we have to account
1145 * for reordering! Ugly, but should help.
1146 *
1147 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1148 * less than what is now known to be received by the other end (derived from
1149 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1150 * retransmitted skbs to avoid some costly processing per ACKs.
1151 */
1152static void tcp_mark_lost_retrans(struct sock *sk)
1153{
1154	const struct inet_connection_sock *icsk = inet_csk(sk);
1155	struct tcp_sock *tp = tcp_sk(sk);
1156	struct sk_buff *skb;
1157	int cnt = 0;
1158	u32 new_low_seq = tp->snd_nxt;
1159	u32 received_upto = tcp_highest_sack_seq(tp);
1160
1161	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1162	    !after(received_upto, tp->lost_retrans_low) ||
1163	    icsk->icsk_ca_state != TCP_CA_Recovery)
1164		return;
1165
1166	tcp_for_write_queue(skb, sk) {
1167		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1168
1169		if (skb == tcp_send_head(sk))
1170			break;
1171		if (cnt == tp->retrans_out)
1172			break;
1173		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1174			continue;
1175
1176		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1177			continue;
1178
1179		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1180		 * constraint here (see above) but figuring out that at
1181		 * least tp->reordering SACK blocks reside between ack_seq
1182		 * and received_upto is not easy task to do cheaply with
1183		 * the available datastructures.
1184		 *
1185		 * Whether FACK should check here for tp->reordering segs
1186		 * in-between one could argue for either way (it would be
1187		 * rather simple to implement as we could count fack_count
1188		 * during the walk and do tp->fackets_out - fack_count).
1189		 */
1190		if (after(received_upto, ack_seq)) {
1191			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1192			tp->retrans_out -= tcp_skb_pcount(skb);
1193
1194			tcp_skb_mark_lost_uncond_verify(tp, skb);
1195			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1196		} else {
1197			if (before(ack_seq, new_low_seq))
1198				new_low_seq = ack_seq;
1199			cnt += tcp_skb_pcount(skb);
1200		}
1201	}
1202
1203	if (tp->retrans_out)
1204		tp->lost_retrans_low = new_low_seq;
1205}
1206
1207static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1208			   struct tcp_sack_block_wire *sp, int num_sacks,
1209			   u32 prior_snd_una)
1210{
1211	struct tcp_sock *tp = tcp_sk(sk);
1212	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1213	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1214	int dup_sack = 0;
1215
1216	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1217		dup_sack = 1;
1218		tcp_dsack_seen(tp);
1219		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1220	} else if (num_sacks > 1) {
1221		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1222		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1223
1224		if (!after(end_seq_0, end_seq_1) &&
1225		    !before(start_seq_0, start_seq_1)) {
1226			dup_sack = 1;
1227			tcp_dsack_seen(tp);
1228			NET_INC_STATS_BH(sock_net(sk),
1229					LINUX_MIB_TCPDSACKOFORECV);
1230		}
 
 
 
 
1231	}
1232
 
 
1233	/* D-SACK for already forgotten data... Do dumb counting. */
1234	if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1235	    !after(end_seq_0, prior_snd_una) &&
1236	    after(end_seq_0, tp->undo_marker))
1237		tp->undo_retrans--;
1238
1239	return dup_sack;
1240}
1241
1242struct tcp_sacktag_state {
1243	int reord;
1244	int fack_count;
1245	int flag;
1246};
1247
1248/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1249 * the incoming SACK may not exactly match but we can find smaller MSS
1250 * aligned portion of it that matches. Therefore we might need to fragment
1251 * which may fail and creates some hassle (caller must handle error case
1252 * returns).
1253 *
1254 * FIXME: this could be merged to shift decision code
1255 */
1256static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1257				 u32 start_seq, u32 end_seq)
1258{
1259	int in_sack, err;
 
1260	unsigned int pkt_len;
1261	unsigned int mss;
1262
1263	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1264		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1265
1266	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1267	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1268		mss = tcp_skb_mss(skb);
1269		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1270
1271		if (!in_sack) {
1272			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1273			if (pkt_len < mss)
1274				pkt_len = mss;
1275		} else {
1276			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1277			if (pkt_len < mss)
1278				return -EINVAL;
1279		}
1280
1281		/* Round if necessary so that SACKs cover only full MSSes
1282		 * and/or the remaining small portion (if present)
1283		 */
1284		if (pkt_len > mss) {
1285			unsigned int new_len = (pkt_len / mss) * mss;
1286			if (!in_sack && new_len < pkt_len) {
1287				new_len += mss;
1288				if (new_len > skb->len)
1289					return 0;
1290			}
1291			pkt_len = new_len;
1292		}
1293		err = tcp_fragment(sk, skb, pkt_len, mss);
 
 
 
 
 
1294		if (err < 0)
1295			return err;
1296	}
1297
1298	return in_sack;
1299}
1300
1301static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1302			  struct tcp_sacktag_state *state,
1303			  int dup_sack, int pcount)
 
 
 
1304{
1305	struct tcp_sock *tp = tcp_sk(sk);
1306	u8 sacked = TCP_SKB_CB(skb)->sacked;
1307	int fack_count = state->fack_count;
1308
1309	/* Account D-SACK for retransmitted packet. */
1310	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1311		if (tp->undo_marker && tp->undo_retrans &&
1312		    after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1313			tp->undo_retrans--;
1314		if (sacked & TCPCB_SACKED_ACKED)
1315			state->reord = min(fack_count, state->reord);
 
1316	}
1317
1318	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1319	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1320		return sacked;
1321
1322	if (!(sacked & TCPCB_SACKED_ACKED)) {
 
 
1323		if (sacked & TCPCB_SACKED_RETRANS) {
1324			/* If the segment is not tagged as lost,
1325			 * we do not clear RETRANS, believing
1326			 * that retransmission is still in flight.
1327			 */
1328			if (sacked & TCPCB_LOST) {
1329				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1330				tp->lost_out -= pcount;
1331				tp->retrans_out -= pcount;
1332			}
1333		} else {
1334			if (!(sacked & TCPCB_RETRANS)) {
1335				/* New sack for not retransmitted frame,
1336				 * which was in hole. It is reordering.
1337				 */
1338				if (before(TCP_SKB_CB(skb)->seq,
1339					   tcp_highest_sack_seq(tp)))
1340					state->reord = min(fack_count,
1341							   state->reord);
1342
1343				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1344				if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1345					state->flag |= FLAG_ONLY_ORIG_SACKED;
 
 
1346			}
1347
1348			if (sacked & TCPCB_LOST) {
1349				sacked &= ~TCPCB_LOST;
1350				tp->lost_out -= pcount;
1351			}
1352		}
1353
1354		sacked |= TCPCB_SACKED_ACKED;
1355		state->flag |= FLAG_DATA_SACKED;
1356		tp->sacked_out += pcount;
1357
1358		fack_count += pcount;
1359
1360		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1361		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1362		    before(TCP_SKB_CB(skb)->seq,
1363			   TCP_SKB_CB(tp->lost_skb_hint)->seq))
1364			tp->lost_cnt_hint += pcount;
1365
1366		if (fack_count > tp->fackets_out)
1367			tp->fackets_out = fack_count;
1368	}
1369
1370	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1371	 * frames and clear it. undo_retrans is decreased above, L|R frames
1372	 * are accounted above as well.
1373	 */
1374	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1375		sacked &= ~TCPCB_SACKED_RETRANS;
1376		tp->retrans_out -= pcount;
1377	}
1378
1379	return sacked;
1380}
1381
1382static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1383			   struct tcp_sacktag_state *state,
1384			   unsigned int pcount, int shifted, int mss,
1385			   int dup_sack)
 
 
 
 
1386{
1387	struct tcp_sock *tp = tcp_sk(sk);
1388	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
 
1389
1390	BUG_ON(!pcount);
1391
 
 
 
 
 
 
 
 
 
 
 
1392	if (skb == tp->lost_skb_hint)
1393		tp->lost_cnt_hint += pcount;
1394
1395	TCP_SKB_CB(prev)->end_seq += shifted;
1396	TCP_SKB_CB(skb)->seq += shifted;
1397
1398	skb_shinfo(prev)->gso_segs += pcount;
1399	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1400	skb_shinfo(skb)->gso_segs -= pcount;
1401
1402	/* When we're adding to gso_segs == 1, gso_size will be zero,
1403	 * in theory this shouldn't be necessary but as long as DSACK
1404	 * code can come after this skb later on it's better to keep
1405	 * setting gso_size to something.
1406	 */
1407	if (!skb_shinfo(prev)->gso_size) {
1408		skb_shinfo(prev)->gso_size = mss;
1409		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1410	}
1411
1412	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1413	if (skb_shinfo(skb)->gso_segs <= 1) {
1414		skb_shinfo(skb)->gso_size = 0;
1415		skb_shinfo(skb)->gso_type = 0;
1416	}
1417
1418	/* We discard results */
1419	tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1420
1421	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1422	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1423
1424	if (skb->len > 0) {
1425		BUG_ON(!tcp_skb_pcount(skb));
1426		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1427		return 0;
1428	}
1429
1430	/* Whole SKB was eaten :-) */
1431
1432	if (skb == tp->retransmit_skb_hint)
1433		tp->retransmit_skb_hint = prev;
1434	if (skb == tp->scoreboard_skb_hint)
1435		tp->scoreboard_skb_hint = prev;
1436	if (skb == tp->lost_skb_hint) {
1437		tp->lost_skb_hint = prev;
1438		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1439	}
1440
1441	TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
 
 
 
 
1442	if (skb == tcp_highest_sack(sk))
1443		tcp_advance_highest_sack(sk, skb);
1444
1445	tcp_unlink_write_queue(skb, sk);
1446	sk_wmem_free_skb(sk, skb);
 
1447
1448	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1449
1450	return 1;
 
 
1451}
1452
1453/* I wish gso_size would have a bit more sane initialization than
1454 * something-or-zero which complicates things
1455 */
1456static int tcp_skb_seglen(struct sk_buff *skb)
1457{
1458	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1459}
1460
1461/* Shifting pages past head area doesn't work */
1462static int skb_can_shift(struct sk_buff *skb)
1463{
1464	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1465}
1466
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1467/* Try collapsing SACK blocks spanning across multiple skbs to a single
1468 * skb.
1469 */
1470static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1471					  struct tcp_sacktag_state *state,
1472					  u32 start_seq, u32 end_seq,
1473					  int dup_sack)
1474{
1475	struct tcp_sock *tp = tcp_sk(sk);
1476	struct sk_buff *prev;
1477	int mss;
1478	int pcount = 0;
1479	int len;
1480	int in_sack;
1481
1482	if (!sk_can_gso(sk))
1483		goto fallback;
1484
1485	/* Normally R but no L won't result in plain S */
1486	if (!dup_sack &&
1487	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1488		goto fallback;
1489	if (!skb_can_shift(skb))
1490		goto fallback;
1491	/* This frame is about to be dropped (was ACKed). */
1492	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1493		goto fallback;
1494
1495	/* Can only happen with delayed DSACK + discard craziness */
1496	if (unlikely(skb == tcp_write_queue_head(sk)))
 
1497		goto fallback;
1498	prev = tcp_write_queue_prev(sk, skb);
1499
1500	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1501		goto fallback;
1502
 
 
 
1503	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1504		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1505
1506	if (in_sack) {
1507		len = skb->len;
1508		pcount = tcp_skb_pcount(skb);
1509		mss = tcp_skb_seglen(skb);
1510
1511		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1512		 * drop this restriction as unnecessary
1513		 */
1514		if (mss != tcp_skb_seglen(prev))
1515			goto fallback;
1516	} else {
1517		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1518			goto noop;
1519		/* CHECKME: This is non-MSS split case only?, this will
1520		 * cause skipped skbs due to advancing loop btw, original
1521		 * has that feature too
1522		 */
1523		if (tcp_skb_pcount(skb) <= 1)
1524			goto noop;
1525
1526		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1527		if (!in_sack) {
1528			/* TODO: head merge to next could be attempted here
1529			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1530			 * though it might not be worth of the additional hassle
1531			 *
1532			 * ...we can probably just fallback to what was done
1533			 * previously. We could try merging non-SACKed ones
1534			 * as well but it probably isn't going to buy off
1535			 * because later SACKs might again split them, and
1536			 * it would make skb timestamp tracking considerably
1537			 * harder problem.
1538			 */
1539			goto fallback;
1540		}
1541
1542		len = end_seq - TCP_SKB_CB(skb)->seq;
1543		BUG_ON(len < 0);
1544		BUG_ON(len > skb->len);
1545
1546		/* MSS boundaries should be honoured or else pcount will
1547		 * severely break even though it makes things bit trickier.
1548		 * Optimize common case to avoid most of the divides
1549		 */
1550		mss = tcp_skb_mss(skb);
1551
1552		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1553		 * drop this restriction as unnecessary
1554		 */
1555		if (mss != tcp_skb_seglen(prev))
1556			goto fallback;
1557
1558		if (len == mss) {
1559			pcount = 1;
1560		} else if (len < mss) {
1561			goto noop;
1562		} else {
1563			pcount = len / mss;
1564			len = pcount * mss;
1565		}
1566	}
1567
1568	if (!skb_shift(prev, skb, len))
 
1569		goto fallback;
1570	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
 
 
 
1571		goto out;
1572
1573	/* Hole filled allows collapsing with the next as well, this is very
1574	 * useful when hole on every nth skb pattern happens
1575	 */
1576	if (prev == tcp_write_queue_tail(sk))
 
1577		goto out;
1578	skb = tcp_write_queue_next(sk, prev);
1579
1580	if (!skb_can_shift(skb) ||
1581	    (skb == tcp_send_head(sk)) ||
1582	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1583	    (mss != tcp_skb_seglen(skb)))
1584		goto out;
1585
 
 
1586	len = skb->len;
1587	if (skb_shift(prev, skb, len)) {
1588		pcount += tcp_skb_pcount(skb);
1589		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1590	}
1591
1592out:
1593	state->fack_count += pcount;
1594	return prev;
1595
1596noop:
1597	return skb;
1598
1599fallback:
1600	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1601	return NULL;
1602}
1603
1604static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1605					struct tcp_sack_block *next_dup,
1606					struct tcp_sacktag_state *state,
1607					u32 start_seq, u32 end_seq,
1608					int dup_sack_in)
1609{
1610	struct tcp_sock *tp = tcp_sk(sk);
1611	struct sk_buff *tmp;
1612
1613	tcp_for_write_queue_from(skb, sk) {
1614		int in_sack = 0;
1615		int dup_sack = dup_sack_in;
1616
1617		if (skb == tcp_send_head(sk))
1618			break;
1619
1620		/* queue is in-order => we can short-circuit the walk early */
1621		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1622			break;
1623
1624		if ((next_dup != NULL) &&
1625		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1626			in_sack = tcp_match_skb_to_sack(sk, skb,
1627							next_dup->start_seq,
1628							next_dup->end_seq);
1629			if (in_sack > 0)
1630				dup_sack = 1;
1631		}
1632
1633		/* skb reference here is a bit tricky to get right, since
1634		 * shifting can eat and free both this skb and the next,
1635		 * so not even _safe variant of the loop is enough.
1636		 */
1637		if (in_sack <= 0) {
1638			tmp = tcp_shift_skb_data(sk, skb, state,
1639						 start_seq, end_seq, dup_sack);
1640			if (tmp != NULL) {
1641				if (tmp != skb) {
1642					skb = tmp;
1643					continue;
1644				}
1645
1646				in_sack = 0;
1647			} else {
1648				in_sack = tcp_match_skb_to_sack(sk, skb,
1649								start_seq,
1650								end_seq);
1651			}
1652		}
1653
1654		if (unlikely(in_sack < 0))
1655			break;
1656
1657		if (in_sack) {
1658			TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1659								  state,
1660								  dup_sack,
1661								  tcp_skb_pcount(skb));
 
 
 
 
 
 
 
 
1662
1663			if (!before(TCP_SKB_CB(skb)->seq,
1664				    tcp_highest_sack_seq(tp)))
1665				tcp_advance_highest_sack(sk, skb);
1666		}
 
 
 
 
 
 
 
 
1667
1668		state->fack_count += tcp_skb_pcount(skb);
 
 
 
 
 
 
 
 
 
 
 
1669	}
1670	return skb;
1671}
1672
1673/* Avoid all extra work that is being done by sacktag while walking in
1674 * a normal way
1675 */
1676static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1677					struct tcp_sacktag_state *state,
1678					u32 skip_to_seq)
1679{
1680	tcp_for_write_queue_from(skb, sk) {
1681		if (skb == tcp_send_head(sk))
1682			break;
1683
1684		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1685			break;
1686
1687		state->fack_count += tcp_skb_pcount(skb);
1688	}
1689	return skb;
1690}
1691
1692static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1693						struct sock *sk,
1694						struct tcp_sack_block *next_dup,
1695						struct tcp_sacktag_state *state,
1696						u32 skip_to_seq)
1697{
1698	if (next_dup == NULL)
1699		return skb;
1700
1701	if (before(next_dup->start_seq, skip_to_seq)) {
1702		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1703		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1704				       next_dup->start_seq, next_dup->end_seq,
1705				       1);
1706	}
1707
1708	return skb;
1709}
1710
1711static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1712{
1713	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1714}
1715
1716static int
1717tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1718			u32 prior_snd_una)
1719{
1720	const struct inet_connection_sock *icsk = inet_csk(sk);
1721	struct tcp_sock *tp = tcp_sk(sk);
1722	unsigned char *ptr = (skb_transport_header(ack_skb) +
1723			      TCP_SKB_CB(ack_skb)->sacked);
1724	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1725	struct tcp_sack_block sp[TCP_NUM_SACKS];
1726	struct tcp_sack_block *cache;
1727	struct tcp_sacktag_state state;
1728	struct sk_buff *skb;
1729	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1730	int used_sacks;
1731	int found_dup_sack = 0;
1732	int i, j;
1733	int first_sack_index;
1734
1735	state.flag = 0;
1736	state.reord = tp->packets_out;
1737
1738	if (!tp->sacked_out) {
1739		if (WARN_ON(tp->fackets_out))
1740			tp->fackets_out = 0;
1741		tcp_highest_sack_reset(sk);
1742	}
1743
1744	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1745					 num_sacks, prior_snd_una);
1746	if (found_dup_sack)
1747		state.flag |= FLAG_DSACKING_ACK;
1748
1749	/* Eliminate too old ACKs, but take into
1750	 * account more or less fresh ones, they can
1751	 * contain valid SACK info.
1752	 */
1753	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1754		return 0;
1755
1756	if (!tp->packets_out)
1757		goto out;
1758
1759	used_sacks = 0;
1760	first_sack_index = 0;
1761	for (i = 0; i < num_sacks; i++) {
1762		int dup_sack = !i && found_dup_sack;
1763
1764		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1765		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1766
1767		if (!tcp_is_sackblock_valid(tp, dup_sack,
1768					    sp[used_sacks].start_seq,
1769					    sp[used_sacks].end_seq)) {
1770			int mib_idx;
1771
1772			if (dup_sack) {
1773				if (!tp->undo_marker)
1774					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1775				else
1776					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1777			} else {
1778				/* Don't count olds caused by ACK reordering */
1779				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1780				    !after(sp[used_sacks].end_seq, tp->snd_una))
1781					continue;
1782				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1783			}
1784
1785			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1786			if (i == 0)
1787				first_sack_index = -1;
1788			continue;
1789		}
1790
1791		/* Ignore very old stuff early */
1792		if (!after(sp[used_sacks].end_seq, prior_snd_una))
 
 
1793			continue;
 
1794
1795		used_sacks++;
1796	}
1797
1798	/* order SACK blocks to allow in order walk of the retrans queue */
1799	for (i = used_sacks - 1; i > 0; i--) {
1800		for (j = 0; j < i; j++) {
1801			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1802				swap(sp[j], sp[j + 1]);
1803
1804				/* Track where the first SACK block goes to */
1805				if (j == first_sack_index)
1806					first_sack_index = j + 1;
1807			}
1808		}
1809	}
1810
1811	skb = tcp_write_queue_head(sk);
1812	state.fack_count = 0;
1813	i = 0;
1814
1815	if (!tp->sacked_out) {
1816		/* It's already past, so skip checking against it */
1817		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1818	} else {
1819		cache = tp->recv_sack_cache;
1820		/* Skip empty blocks in at head of the cache */
1821		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1822		       !cache->end_seq)
1823			cache++;
1824	}
1825
1826	while (i < used_sacks) {
1827		u32 start_seq = sp[i].start_seq;
1828		u32 end_seq = sp[i].end_seq;
1829		int dup_sack = (found_dup_sack && (i == first_sack_index));
1830		struct tcp_sack_block *next_dup = NULL;
1831
1832		if (found_dup_sack && ((i + 1) == first_sack_index))
1833			next_dup = &sp[i + 1];
1834
1835		/* Event "B" in the comment above. */
1836		if (after(end_seq, tp->high_seq))
1837			state.flag |= FLAG_DATA_LOST;
1838
1839		/* Skip too early cached blocks */
1840		while (tcp_sack_cache_ok(tp, cache) &&
1841		       !before(start_seq, cache->end_seq))
1842			cache++;
1843
1844		/* Can skip some work by looking recv_sack_cache? */
1845		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1846		    after(end_seq, cache->start_seq)) {
1847
1848			/* Head todo? */
1849			if (before(start_seq, cache->start_seq)) {
1850				skb = tcp_sacktag_skip(skb, sk, &state,
1851						       start_seq);
1852				skb = tcp_sacktag_walk(skb, sk, next_dup,
1853						       &state,
1854						       start_seq,
1855						       cache->start_seq,
1856						       dup_sack);
1857			}
1858
1859			/* Rest of the block already fully processed? */
1860			if (!after(end_seq, cache->end_seq))
1861				goto advance_sp;
1862
1863			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1864						       &state,
1865						       cache->end_seq);
1866
1867			/* ...tail remains todo... */
1868			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1869				/* ...but better entrypoint exists! */
1870				skb = tcp_highest_sack(sk);
1871				if (skb == NULL)
1872					break;
1873				state.fack_count = tp->fackets_out;
1874				cache++;
1875				goto walk;
1876			}
1877
1878			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1879			/* Check overlap against next cached too (past this one already) */
1880			cache++;
1881			continue;
1882		}
1883
1884		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1885			skb = tcp_highest_sack(sk);
1886			if (skb == NULL)
1887				break;
1888			state.fack_count = tp->fackets_out;
1889		}
1890		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1891
1892walk:
1893		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1894				       start_seq, end_seq, dup_sack);
1895
1896advance_sp:
1897		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1898		 * due to in-order walk
1899		 */
1900		if (after(end_seq, tp->frto_highmark))
1901			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1902
1903		i++;
1904	}
1905
1906	/* Clear the head of the cache sack blocks so we can skip it next time */
1907	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1908		tp->recv_sack_cache[i].start_seq = 0;
1909		tp->recv_sack_cache[i].end_seq = 0;
1910	}
1911	for (j = 0; j < used_sacks; j++)
1912		tp->recv_sack_cache[i++] = sp[j];
1913
1914	tcp_mark_lost_retrans(sk);
 
1915
1916	tcp_verify_left_out(tp);
1917
1918	if ((state.reord < tp->fackets_out) &&
1919	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1920	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1921		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1922
1923out:
1924
1925#if FASTRETRANS_DEBUG > 0
1926	WARN_ON((int)tp->sacked_out < 0);
1927	WARN_ON((int)tp->lost_out < 0);
1928	WARN_ON((int)tp->retrans_out < 0);
1929	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1930#endif
1931	return state.flag;
1932}
1933
1934/* Limits sacked_out so that sum with lost_out isn't ever larger than
1935 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1936 */
1937static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1938{
1939	u32 holes;
1940
1941	holes = max(tp->lost_out, 1U);
1942	holes = min(holes, tp->packets_out);
1943
1944	if ((tp->sacked_out + holes) > tp->packets_out) {
1945		tp->sacked_out = tp->packets_out - holes;
1946		return 1;
1947	}
1948	return 0;
1949}
1950
1951/* If we receive more dupacks than we expected counting segments
1952 * in assumption of absent reordering, interpret this as reordering.
1953 * The only another reason could be bug in receiver TCP.
1954 */
1955static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1956{
1957	struct tcp_sock *tp = tcp_sk(sk);
1958	if (tcp_limit_reno_sacked(tp))
1959		tcp_update_reordering(sk, tp->packets_out + addend, 0);
 
 
 
 
 
 
1960}
1961
1962/* Emulate SACKs for SACKless connection: account for a new dupack. */
1963
1964static void tcp_add_reno_sack(struct sock *sk)
1965{
1966	struct tcp_sock *tp = tcp_sk(sk);
1967	tp->sacked_out++;
1968	tcp_check_reno_reordering(sk, 0);
1969	tcp_verify_left_out(tp);
 
 
 
 
 
 
 
 
1970}
1971
1972/* Account for ACK, ACKing some data in Reno Recovery phase. */
1973
1974static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1975{
1976	struct tcp_sock *tp = tcp_sk(sk);
1977
1978	if (acked > 0) {
1979		/* One ACK acked hole. The rest eat duplicate ACKs. */
 
 
1980		if (acked - 1 >= tp->sacked_out)
1981			tp->sacked_out = 0;
1982		else
1983			tp->sacked_out -= acked - 1;
1984	}
1985	tcp_check_reno_reordering(sk, acked);
1986	tcp_verify_left_out(tp);
1987}
1988
1989static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1990{
1991	tp->sacked_out = 0;
1992}
1993
1994static int tcp_is_sackfrto(const struct tcp_sock *tp)
1995{
1996	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
 
 
 
 
1997}
1998
1999/* F-RTO can only be used if TCP has never retransmitted anything other than
2000 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2001 */
2002int tcp_use_frto(struct sock *sk)
2003{
2004	const struct tcp_sock *tp = tcp_sk(sk);
2005	const struct inet_connection_sock *icsk = inet_csk(sk);
2006	struct sk_buff *skb;
2007
2008	if (!sysctl_tcp_frto)
2009		return 0;
2010
2011	/* MTU probe and F-RTO won't really play nicely along currently */
2012	if (icsk->icsk_mtup.probe_size)
2013		return 0;
2014
2015	if (tcp_is_sackfrto(tp))
2016		return 1;
2017
2018	/* Avoid expensive walking of rexmit queue if possible */
2019	if (tp->retrans_out > 1)
2020		return 0;
2021
2022	skb = tcp_write_queue_head(sk);
2023	if (tcp_skb_is_last(sk, skb))
2024		return 1;
2025	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
2026	tcp_for_write_queue_from(skb, sk) {
2027		if (skb == tcp_send_head(sk))
2028			break;
2029		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2030			return 0;
2031		/* Short-circuit when first non-SACKed skb has been checked */
2032		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2033			break;
2034	}
2035	return 1;
2036}
2037
2038/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2039 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2040 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2041 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2042 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2043 * bits are handled if the Loss state is really to be entered (in
2044 * tcp_enter_frto_loss).
2045 *
2046 * Do like tcp_enter_loss() would; when RTO expires the second time it
2047 * does:
2048 *  "Reduce ssthresh if it has not yet been made inside this window."
2049 */
2050void tcp_enter_frto(struct sock *sk)
2051{
2052	const struct inet_connection_sock *icsk = inet_csk(sk);
2053	struct tcp_sock *tp = tcp_sk(sk);
2054	struct sk_buff *skb;
2055
2056	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2057	    tp->snd_una == tp->high_seq ||
2058	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2059	     !icsk->icsk_retransmits)) {
2060		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2061		/* Our state is too optimistic in ssthresh() call because cwnd
2062		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2063		 * recovery has not yet completed. Pattern would be this: RTO,
2064		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2065		 * up here twice).
2066		 * RFC4138 should be more specific on what to do, even though
2067		 * RTO is quite unlikely to occur after the first Cumulative ACK
2068		 * due to back-off and complexity of triggering events ...
2069		 */
2070		if (tp->frto_counter) {
2071			u32 stored_cwnd;
2072			stored_cwnd = tp->snd_cwnd;
2073			tp->snd_cwnd = 2;
2074			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2075			tp->snd_cwnd = stored_cwnd;
2076		} else {
2077			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2078		}
2079		/* ... in theory, cong.control module could do "any tricks" in
2080		 * ssthresh(), which means that ca_state, lost bits and lost_out
2081		 * counter would have to be faked before the call occurs. We
2082		 * consider that too expensive, unlikely and hacky, so modules
2083		 * using these in ssthresh() must deal these incompatibility
2084		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2085		 */
2086		tcp_ca_event(sk, CA_EVENT_FRTO);
2087	}
2088
2089	tp->undo_marker = tp->snd_una;
2090	tp->undo_retrans = 0;
2091
2092	skb = tcp_write_queue_head(sk);
2093	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2094		tp->undo_marker = 0;
2095	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2096		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2097		tp->retrans_out -= tcp_skb_pcount(skb);
2098	}
2099	tcp_verify_left_out(tp);
2100
2101	/* Too bad if TCP was application limited */
2102	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2103
2104	/* Earlier loss recovery underway (see RFC4138; Appendix B).
2105	 * The last condition is necessary at least in tp->frto_counter case.
2106	 */
2107	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2108	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2109	    after(tp->high_seq, tp->snd_una)) {
2110		tp->frto_highmark = tp->high_seq;
2111	} else {
2112		tp->frto_highmark = tp->snd_nxt;
2113	}
2114	tcp_set_ca_state(sk, TCP_CA_Disorder);
2115	tp->high_seq = tp->snd_nxt;
2116	tp->frto_counter = 1;
2117}
2118
2119/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2120 * which indicates that we should follow the traditional RTO recovery,
2121 * i.e. mark everything lost and do go-back-N retransmission.
2122 */
2123static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2124{
2125	struct tcp_sock *tp = tcp_sk(sk);
2126	struct sk_buff *skb;
 
2127
2128	tp->lost_out = 0;
2129	tp->retrans_out = 0;
2130	if (tcp_is_reno(tp))
 
 
 
 
 
2131		tcp_reset_reno_sack(tp);
 
2132
2133	tcp_for_write_queue(skb, sk) {
2134		if (skb == tcp_send_head(sk))
2135			break;
2136
2137		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2138		/*
2139		 * Count the retransmission made on RTO correctly (only when
2140		 * waiting for the first ACK and did not get it)...
2141		 */
2142		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2143			/* For some reason this R-bit might get cleared? */
2144			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2145				tp->retrans_out += tcp_skb_pcount(skb);
2146			/* ...enter this if branch just for the first segment */
2147			flag |= FLAG_DATA_ACKED;
2148		} else {
2149			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2150				tp->undo_marker = 0;
2151			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2152		}
2153
2154		/* Marking forward transmissions that were made after RTO lost
2155		 * can cause unnecessary retransmissions in some scenarios,
2156		 * SACK blocks will mitigate that in some but not in all cases.
2157		 * We used to not mark them but it was causing break-ups with
2158		 * receivers that do only in-order receival.
2159		 *
2160		 * TODO: we could detect presence of such receiver and select
2161		 * different behavior per flow.
2162		 */
2163		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2164			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2165			tp->lost_out += tcp_skb_pcount(skb);
2166			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2167		}
2168	}
2169	tcp_verify_left_out(tp);
2170
2171	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2172	tp->snd_cwnd_cnt = 0;
2173	tp->snd_cwnd_stamp = tcp_time_stamp;
2174	tp->frto_counter = 0;
2175	tp->bytes_acked = 0;
2176
2177	tp->reordering = min_t(unsigned int, tp->reordering,
2178			       sysctl_tcp_reordering);
2179	tcp_set_ca_state(sk, TCP_CA_Loss);
2180	tp->high_seq = tp->snd_nxt;
2181	TCP_ECN_queue_cwr(tp);
2182
2183	tcp_clear_all_retrans_hints(tp);
2184}
2185
2186static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2187{
2188	tp->retrans_out = 0;
2189	tp->lost_out = 0;
2190
2191	tp->undo_marker = 0;
2192	tp->undo_retrans = 0;
2193}
2194
2195void tcp_clear_retrans(struct tcp_sock *tp)
2196{
2197	tcp_clear_retrans_partial(tp);
2198
2199	tp->fackets_out = 0;
2200	tp->sacked_out = 0;
2201}
2202
2203/* Enter Loss state. If "how" is not zero, forget all SACK information
2204 * and reset tags completely, otherwise preserve SACKs. If receiver
2205 * dropped its ofo queue, we will know this due to reneging detection.
2206 */
2207void tcp_enter_loss(struct sock *sk, int how)
2208{
2209	const struct inet_connection_sock *icsk = inet_csk(sk);
2210	struct tcp_sock *tp = tcp_sk(sk);
2211	struct sk_buff *skb;
 
 
 
 
2212
2213	/* Reduce ssthresh if it has not yet been made inside this window. */
2214	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
 
2215	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2216		tp->prior_ssthresh = tcp_current_ssthresh(sk);
 
2217		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2218		tcp_ca_event(sk, CA_EVENT_LOSS);
 
2219	}
2220	tp->snd_cwnd	   = 1;
2221	tp->snd_cwnd_cnt   = 0;
2222	tp->snd_cwnd_stamp = tcp_time_stamp;
2223
2224	tp->bytes_acked = 0;
2225	tcp_clear_retrans_partial(tp);
2226
2227	if (tcp_is_reno(tp))
2228		tcp_reset_reno_sack(tp);
2229
2230	if (!how) {
2231		/* Push undo marker, if it was plain RTO and nothing
2232		 * was retransmitted. */
2233		tp->undo_marker = tp->snd_una;
2234	} else {
2235		tp->sacked_out = 0;
2236		tp->fackets_out = 0;
2237	}
2238	tcp_clear_all_retrans_hints(tp);
2239
2240	tcp_for_write_queue(skb, sk) {
2241		if (skb == tcp_send_head(sk))
2242			break;
2243
2244		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2245			tp->undo_marker = 0;
2246		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2247		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2248			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2249			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2250			tp->lost_out += tcp_skb_pcount(skb);
2251			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2252		}
2253	}
2254	tcp_verify_left_out(tp);
2255
2256	tp->reordering = min_t(unsigned int, tp->reordering,
2257			       sysctl_tcp_reordering);
2258	tcp_set_ca_state(sk, TCP_CA_Loss);
2259	tp->high_seq = tp->snd_nxt;
2260	TCP_ECN_queue_cwr(tp);
2261	/* Abort F-RTO algorithm if one is in progress */
2262	tp->frto_counter = 0;
 
 
 
 
 
 
2263}
2264
2265/* If ACK arrived pointing to a remembered SACK, it means that our
2266 * remembered SACKs do not reflect real state of receiver i.e.
2267 * receiver _host_ is heavily congested (or buggy).
2268 *
2269 * Do processing similar to RTO timeout.
2270 */
2271static int tcp_check_sack_reneging(struct sock *sk, int flag)
2272{
2273	if (flag & FLAG_SACK_RENEGING) {
2274		struct inet_connection_sock *icsk = inet_csk(sk);
2275		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
 
 
 
 
 
 
2276
2277		tcp_enter_loss(sk, 1);
2278		icsk->icsk_retransmits++;
2279		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2280		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2281					  icsk->icsk_rto, TCP_RTO_MAX);
2282		return 1;
2283	}
2284	return 0;
2285}
2286
2287static inline int tcp_fackets_out(struct tcp_sock *tp)
2288{
2289	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2290}
2291
2292/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2293 * counter when SACK is enabled (without SACK, sacked_out is used for
2294 * that purpose).
2295 *
2296 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2297 * segments up to the highest received SACK block so far and holes in
2298 * between them.
2299 *
2300 * With reordering, holes may still be in flight, so RFC3517 recovery
2301 * uses pure sacked_out (total number of SACKed segments) even though
2302 * it violates the RFC that uses duplicate ACKs, often these are equal
2303 * but when e.g. out-of-window ACKs or packet duplication occurs,
2304 * they differ. Since neither occurs due to loss, TCP should really
2305 * ignore them.
2306 */
2307static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2308{
2309	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2310}
2311
2312static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2313{
2314	return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2315}
2316
2317static inline int tcp_head_timedout(struct sock *sk)
2318{
2319	struct tcp_sock *tp = tcp_sk(sk);
2320
2321	return tp->packets_out &&
2322	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2323}
2324
2325/* Linux NewReno/SACK/FACK/ECN state machine.
2326 * --------------------------------------
2327 *
2328 * "Open"	Normal state, no dubious events, fast path.
2329 * "Disorder"   In all the respects it is "Open",
2330 *		but requires a bit more attention. It is entered when
2331 *		we see some SACKs or dupacks. It is split of "Open"
2332 *		mainly to move some processing from fast path to slow one.
2333 * "CWR"	CWND was reduced due to some Congestion Notification event.
2334 *		It can be ECN, ICMP source quench, local device congestion.
2335 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2336 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2337 *
2338 * tcp_fastretrans_alert() is entered:
2339 * - each incoming ACK, if state is not "Open"
2340 * - when arrived ACK is unusual, namely:
2341 *	* SACK
2342 *	* Duplicate ACK.
2343 *	* ECN ECE.
2344 *
2345 * Counting packets in flight is pretty simple.
2346 *
2347 *	in_flight = packets_out - left_out + retrans_out
2348 *
2349 *	packets_out is SND.NXT-SND.UNA counted in packets.
2350 *
2351 *	retrans_out is number of retransmitted segments.
2352 *
2353 *	left_out is number of segments left network, but not ACKed yet.
2354 *
2355 *		left_out = sacked_out + lost_out
2356 *
2357 *     sacked_out: Packets, which arrived to receiver out of order
2358 *		   and hence not ACKed. With SACKs this number is simply
2359 *		   amount of SACKed data. Even without SACKs
2360 *		   it is easy to give pretty reliable estimate of this number,
2361 *		   counting duplicate ACKs.
2362 *
2363 *       lost_out: Packets lost by network. TCP has no explicit
2364 *		   "loss notification" feedback from network (for now).
2365 *		   It means that this number can be only _guessed_.
2366 *		   Actually, it is the heuristics to predict lossage that
2367 *		   distinguishes different algorithms.
2368 *
2369 *	F.e. after RTO, when all the queue is considered as lost,
2370 *	lost_out = packets_out and in_flight = retrans_out.
2371 *
2372 *		Essentially, we have now two algorithms counting
2373 *		lost packets.
2374 *
2375 *		FACK: It is the simplest heuristics. As soon as we decided
2376 *		that something is lost, we decide that _all_ not SACKed
2377 *		packets until the most forward SACK are lost. I.e.
2378 *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2379 *		It is absolutely correct estimate, if network does not reorder
2380 *		packets. And it loses any connection to reality when reordering
2381 *		takes place. We use FACK by default until reordering
2382 *		is suspected on the path to this destination.
 
 
 
 
 
 
 
 
2383 *
2384 *		NewReno: when Recovery is entered, we assume that one segment
2385 *		is lost (classic Reno). While we are in Recovery and
2386 *		a partial ACK arrives, we assume that one more packet
2387 *		is lost (NewReno). This heuristics are the same in NewReno
2388 *		and SACK.
2389 *
2390 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2391 *  deflation etc. CWND is real congestion window, never inflated, changes
2392 *  only according to classic VJ rules.
2393 *
2394 * Really tricky (and requiring careful tuning) part of algorithm
2395 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2396 * The first determines the moment _when_ we should reduce CWND and,
2397 * hence, slow down forward transmission. In fact, it determines the moment
2398 * when we decide that hole is caused by loss, rather than by a reorder.
2399 *
2400 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2401 * holes, caused by lost packets.
2402 *
2403 * And the most logically complicated part of algorithm is undo
2404 * heuristics. We detect false retransmits due to both too early
2405 * fast retransmit (reordering) and underestimated RTO, analyzing
2406 * timestamps and D-SACKs. When we detect that some segments were
2407 * retransmitted by mistake and CWND reduction was wrong, we undo
2408 * window reduction and abort recovery phase. This logic is hidden
2409 * inside several functions named tcp_try_undo_<something>.
2410 */
2411
2412/* This function decides, when we should leave Disordered state
2413 * and enter Recovery phase, reducing congestion window.
2414 *
2415 * Main question: may we further continue forward transmission
2416 * with the same cwnd?
2417 */
2418static int tcp_time_to_recover(struct sock *sk)
2419{
2420	struct tcp_sock *tp = tcp_sk(sk);
2421	__u32 packets_out;
2422
2423	/* Do not perform any recovery during F-RTO algorithm */
2424	if (tp->frto_counter)
2425		return 0;
2426
2427	/* Trick#1: The loss is proven. */
2428	if (tp->lost_out)
2429		return 1;
2430
2431	/* Not-A-Trick#2 : Classic rule... */
2432	if (tcp_dupack_heuristics(tp) > tp->reordering)
2433		return 1;
2434
2435	/* Trick#3 : when we use RFC2988 timer restart, fast
2436	 * retransmit can be triggered by timeout of queue head.
2437	 */
2438	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2439		return 1;
2440
2441	/* Trick#4: It is still not OK... But will it be useful to delay
2442	 * recovery more?
2443	 */
2444	packets_out = tp->packets_out;
2445	if (packets_out <= tp->reordering &&
2446	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2447	    !tcp_may_send_now(sk)) {
2448		/* We have nothing to send. This connection is limited
2449		 * either by receiver window or by application.
2450		 */
2451		return 1;
2452	}
2453
2454	/* If a thin stream is detected, retransmit after first
2455	 * received dupack. Employ only if SACK is supported in order
2456	 * to avoid possible corner-case series of spurious retransmissions
2457	 * Use only if there are no unsent data.
2458	 */
2459	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2460	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2461	    tcp_is_sack(tp) && !tcp_send_head(sk))
2462		return 1;
2463
2464	return 0;
2465}
2466
2467/* New heuristics: it is possible only after we switched to restart timer
2468 * each time when something is ACKed. Hence, we can detect timed out packets
2469 * during fast retransmit without falling to slow start.
2470 *
2471 * Usefulness of this as is very questionable, since we should know which of
2472 * the segments is the next to timeout which is relatively expensive to find
2473 * in general case unless we add some data structure just for that. The
2474 * current approach certainly won't find the right one too often and when it
2475 * finally does find _something_ it usually marks large part of the window
2476 * right away (because a retransmission with a larger timestamp blocks the
2477 * loop from advancing). -ij
2478 */
2479static void tcp_timeout_skbs(struct sock *sk)
2480{
2481	struct tcp_sock *tp = tcp_sk(sk);
2482	struct sk_buff *skb;
2483
2484	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2485		return;
2486
2487	skb = tp->scoreboard_skb_hint;
2488	if (tp->scoreboard_skb_hint == NULL)
2489		skb = tcp_write_queue_head(sk);
2490
2491	tcp_for_write_queue_from(skb, sk) {
2492		if (skb == tcp_send_head(sk))
2493			break;
2494		if (!tcp_skb_timedout(sk, skb))
2495			break;
2496
2497		tcp_skb_mark_lost(tp, skb);
2498	}
2499
2500	tp->scoreboard_skb_hint = skb;
2501
2502	tcp_verify_left_out(tp);
2503}
2504
2505/* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2506 * is against sacked "cnt", otherwise it's against facked "cnt"
 
 
2507 */
2508static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2509{
2510	struct tcp_sock *tp = tcp_sk(sk);
2511	struct sk_buff *skb;
2512	int cnt, oldcnt;
2513	int err;
2514	unsigned int mss;
2515
2516	WARN_ON(packets > tp->packets_out);
2517	if (tp->lost_skb_hint) {
2518		skb = tp->lost_skb_hint;
2519		cnt = tp->lost_cnt_hint;
2520		/* Head already handled? */
2521		if (mark_head && skb != tcp_write_queue_head(sk))
2522			return;
 
2523	} else {
2524		skb = tcp_write_queue_head(sk);
2525		cnt = 0;
2526	}
2527
2528	tcp_for_write_queue_from(skb, sk) {
2529		if (skb == tcp_send_head(sk))
2530			break;
2531		/* TODO: do this better */
2532		/* this is not the most efficient way to do this... */
2533		tp->lost_skb_hint = skb;
2534		tp->lost_cnt_hint = cnt;
2535
2536		if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2537			break;
2538
2539		oldcnt = cnt;
2540		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2541		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2542			cnt += tcp_skb_pcount(skb);
2543
2544		if (cnt > packets) {
2545			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2546			    (oldcnt >= packets))
2547				break;
2548
2549			mss = skb_shinfo(skb)->gso_size;
2550			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2551			if (err < 0)
2552				break;
2553			cnt = packets;
2554		}
2555
2556		tcp_skb_mark_lost(tp, skb);
 
2557
2558		if (mark_head)
2559			break;
2560	}
2561	tcp_verify_left_out(tp);
2562}
2563
2564/* Account newly detected lost packet(s) */
2565
2566static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2567{
2568	struct tcp_sock *tp = tcp_sk(sk);
2569
2570	if (tcp_is_reno(tp)) {
2571		tcp_mark_head_lost(sk, 1, 1);
2572	} else if (tcp_is_fack(tp)) {
2573		int lost = tp->fackets_out - tp->reordering;
2574		if (lost <= 0)
2575			lost = 1;
2576		tcp_mark_head_lost(sk, lost, 0);
2577	} else {
2578		int sacked_upto = tp->sacked_out - tp->reordering;
2579		if (sacked_upto >= 0)
2580			tcp_mark_head_lost(sk, sacked_upto, 0);
2581		else if (fast_rexmit)
2582			tcp_mark_head_lost(sk, 1, 1);
2583	}
 
2584
2585	tcp_timeout_skbs(sk);
 
 
 
2586}
2587
2588/* CWND moderation, preventing bursts due to too big ACKs
2589 * in dubious situations.
2590 */
2591static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
 
2592{
2593	tp->snd_cwnd = min(tp->snd_cwnd,
2594			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2595	tp->snd_cwnd_stamp = tcp_time_stamp;
2596}
2597
2598/* Lower bound on congestion window is slow start threshold
2599 * unless congestion avoidance choice decides to overide it.
2600 */
2601static inline u32 tcp_cwnd_min(const struct sock *sk)
2602{
2603	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
 
 
2604
2605	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2606}
2607
2608/* Decrease cwnd each second ack. */
2609static void tcp_cwnd_down(struct sock *sk, int flag)
 
 
 
 
 
 
 
 
 
 
 
 
 
2610{
2611	struct tcp_sock *tp = tcp_sk(sk);
2612	int decr = tp->snd_cwnd_cnt + 1;
2613
2614	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2615	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2616		tp->snd_cwnd_cnt = decr & 1;
2617		decr >>= 1;
2618
2619		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2620			tp->snd_cwnd -= decr;
 
2621
2622		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2623		tp->snd_cwnd_stamp = tcp_time_stamp;
2624	}
2625}
2626
2627/* Nothing was retransmitted or returned timestamp is less
2628 * than timestamp of the first retransmission.
2629 */
2630static inline int tcp_packet_delayed(struct tcp_sock *tp)
2631{
2632	return !tp->retrans_stamp ||
2633		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2634		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2635}
2636
2637/* Undo procedures. */
2638
2639#if FASTRETRANS_DEBUG > 1
2640static void DBGUNDO(struct sock *sk, const char *msg)
2641{
2642	struct tcp_sock *tp = tcp_sk(sk);
2643	struct inet_sock *inet = inet_sk(sk);
2644
2645	if (sk->sk_family == AF_INET) {
2646		printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2647		       msg,
2648		       &inet->inet_daddr, ntohs(inet->inet_dport),
2649		       tp->snd_cwnd, tcp_left_out(tp),
2650		       tp->snd_ssthresh, tp->prior_ssthresh,
2651		       tp->packets_out);
2652	}
2653#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2654	else if (sk->sk_family == AF_INET6) {
2655		struct ipv6_pinfo *np = inet6_sk(sk);
2656		printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2657		       msg,
2658		       &np->daddr, ntohs(inet->inet_dport),
2659		       tp->snd_cwnd, tcp_left_out(tp),
2660		       tp->snd_ssthresh, tp->prior_ssthresh,
2661		       tp->packets_out);
2662	}
2663#endif
 
2664}
2665#else
2666#define DBGUNDO(x...) do { } while (0)
2667#endif
2668
2669static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2670{
2671	struct tcp_sock *tp = tcp_sk(sk);
2672
 
 
 
 
 
 
 
 
 
 
2673	if (tp->prior_ssthresh) {
2674		const struct inet_connection_sock *icsk = inet_csk(sk);
2675
2676		if (icsk->icsk_ca_ops->undo_cwnd)
2677			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2678		else
2679			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2680
2681		if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2682			tp->snd_ssthresh = tp->prior_ssthresh;
2683			TCP_ECN_withdraw_cwr(tp);
2684		}
2685	} else {
2686		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2687	}
2688	tp->snd_cwnd_stamp = tcp_time_stamp;
 
 
2689}
2690
2691static inline int tcp_may_undo(struct tcp_sock *tp)
2692{
2693	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2694}
2695
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2696/* People celebrate: "We love our President!" */
2697static int tcp_try_undo_recovery(struct sock *sk)
2698{
2699	struct tcp_sock *tp = tcp_sk(sk);
2700
2701	if (tcp_may_undo(tp)) {
2702		int mib_idx;
2703
2704		/* Happy end! We did not retransmit anything
2705		 * or our original transmission succeeded.
2706		 */
2707		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2708		tcp_undo_cwr(sk, true);
2709		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2710			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2711		else
2712			mib_idx = LINUX_MIB_TCPFULLUNDO;
2713
2714		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2715		tp->undo_marker = 0;
2716	}
2717	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2718		/* Hold old state until something *above* high_seq
2719		 * is ACKed. For Reno it is MUST to prevent false
2720		 * fast retransmits (RFC2582). SACK TCP is safe. */
2721		tcp_moderate_cwnd(tp);
2722		return 1;
2723	}
 
 
2724	tcp_set_ca_state(sk, TCP_CA_Open);
2725	return 0;
 
2726}
2727
2728/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2729static void tcp_try_undo_dsack(struct sock *sk)
2730{
2731	struct tcp_sock *tp = tcp_sk(sk);
2732
2733	if (tp->undo_marker && !tp->undo_retrans) {
 
 
2734		DBGUNDO(sk, "D-SACK");
2735		tcp_undo_cwr(sk, true);
2736		tp->undo_marker = 0;
2737		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2738	}
 
2739}
2740
2741/* We can clear retrans_stamp when there are no retransmissions in the
2742 * window. It would seem that it is trivially available for us in
2743 * tp->retrans_out, however, that kind of assumptions doesn't consider
2744 * what will happen if errors occur when sending retransmission for the
2745 * second time. ...It could the that such segment has only
2746 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2747 * the head skb is enough except for some reneging corner cases that
2748 * are not worth the effort.
2749 *
2750 * Main reason for all this complexity is the fact that connection dying
2751 * time now depends on the validity of the retrans_stamp, in particular,
2752 * that successive retransmissions of a segment must not advance
2753 * retrans_stamp under any conditions.
2754 */
2755static int tcp_any_retrans_done(struct sock *sk)
2756{
2757	struct tcp_sock *tp = tcp_sk(sk);
2758	struct sk_buff *skb;
2759
2760	if (tp->retrans_out)
2761		return 1;
2762
2763	skb = tcp_write_queue_head(sk);
2764	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2765		return 1;
2766
2767	return 0;
 
 
 
 
 
 
 
 
 
 
2768}
2769
2770/* Undo during fast recovery after partial ACK. */
2771
2772static int tcp_try_undo_partial(struct sock *sk, int acked)
 
 
 
 
 
 
 
2773{
2774	struct tcp_sock *tp = tcp_sk(sk);
2775	/* Partial ACK arrived. Force Hoe's retransmit. */
2776	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2777
2778	if (tcp_may_undo(tp)) {
2779		/* Plain luck! Hole if filled with delayed
2780		 * packet, rather than with a retransmit.
2781		 */
2782		if (!tcp_any_retrans_done(sk))
2783			tp->retrans_stamp = 0;
 
 
 
2784
2785		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
 
 
 
 
2786
2787		DBGUNDO(sk, "Hoe");
2788		tcp_undo_cwr(sk, false);
2789		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2790
2791		/* So... Do not make Hoe's retransmit yet.
2792		 * If the first packet was delayed, the rest
2793		 * ones are most probably delayed as well.
2794		 */
2795		failed = 0;
 
 
 
 
 
 
2796	}
2797	return failed;
 
 
2798}
2799
2800/* Undo during loss recovery after partial ACK. */
2801static int tcp_try_undo_loss(struct sock *sk)
2802{
2803	struct tcp_sock *tp = tcp_sk(sk);
2804
2805	if (tcp_may_undo(tp)) {
2806		struct sk_buff *skb;
2807		tcp_for_write_queue(skb, sk) {
2808			if (skb == tcp_send_head(sk))
2809				break;
2810			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2811		}
2812
2813		tcp_clear_all_retrans_hints(tp);
2814
2815		DBGUNDO(sk, "partial loss");
2816		tp->lost_out = 0;
2817		tcp_undo_cwr(sk, true);
2818		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2819		inet_csk(sk)->icsk_retransmits = 0;
2820		tp->undo_marker = 0;
2821		if (tcp_is_sack(tp))
2822			tcp_set_ca_state(sk, TCP_CA_Open);
2823		return 1;
2824	}
2825	return 0;
2826}
2827
2828static inline void tcp_complete_cwr(struct sock *sk)
 
2829{
2830	struct tcp_sock *tp = tcp_sk(sk);
2831	/* Do not moderate cwnd if it's already undone in cwr or recovery */
2832	if (tp->undo_marker && tp->snd_cwnd > tp->snd_ssthresh) {
2833		tp->snd_cwnd = tp->snd_ssthresh;
2834		tp->snd_cwnd_stamp = tcp_time_stamp;
 
 
2835	}
2836	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2837}
 
2838
2839static void tcp_try_keep_open(struct sock *sk)
2840{
2841	struct tcp_sock *tp = tcp_sk(sk);
2842	int state = TCP_CA_Open;
2843
2844	if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2845		state = TCP_CA_Disorder;
2846
2847	if (inet_csk(sk)->icsk_ca_state != state) {
2848		tcp_set_ca_state(sk, state);
2849		tp->high_seq = tp->snd_nxt;
2850	}
2851}
2852
2853static void tcp_try_to_open(struct sock *sk, int flag)
2854{
2855	struct tcp_sock *tp = tcp_sk(sk);
2856
2857	tcp_verify_left_out(tp);
2858
2859	if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2860		tp->retrans_stamp = 0;
2861
2862	if (flag & FLAG_ECE)
2863		tcp_enter_cwr(sk, 1);
2864
2865	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2866		tcp_try_keep_open(sk);
2867		tcp_moderate_cwnd(tp);
2868	} else {
2869		tcp_cwnd_down(sk, flag);
2870	}
2871}
2872
2873static void tcp_mtup_probe_failed(struct sock *sk)
2874{
2875	struct inet_connection_sock *icsk = inet_csk(sk);
2876
2877	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2878	icsk->icsk_mtup.probe_size = 0;
 
2879}
2880
2881static void tcp_mtup_probe_success(struct sock *sk)
2882{
2883	struct tcp_sock *tp = tcp_sk(sk);
2884	struct inet_connection_sock *icsk = inet_csk(sk);
 
2885
2886	/* FIXME: breaks with very large cwnd */
2887	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2888	tp->snd_cwnd = tp->snd_cwnd *
2889		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2890		       icsk->icsk_mtup.probe_size;
 
 
 
2891	tp->snd_cwnd_cnt = 0;
2892	tp->snd_cwnd_stamp = tcp_time_stamp;
2893	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2894
2895	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2896	icsk->icsk_mtup.probe_size = 0;
2897	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
 
2898}
2899
2900/* Do a simple retransmit without using the backoff mechanisms in
2901 * tcp_timer. This is used for path mtu discovery.
2902 * The socket is already locked here.
2903 */
2904void tcp_simple_retransmit(struct sock *sk)
2905{
2906	const struct inet_connection_sock *icsk = inet_csk(sk);
2907	struct tcp_sock *tp = tcp_sk(sk);
2908	struct sk_buff *skb;
2909	unsigned int mss = tcp_current_mss(sk);
2910	u32 prior_lost = tp->lost_out;
2911
2912	tcp_for_write_queue(skb, sk) {
2913		if (skb == tcp_send_head(sk))
2914			break;
2915		if (tcp_skb_seglen(skb) > mss &&
2916		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2917			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2918				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2919				tp->retrans_out -= tcp_skb_pcount(skb);
2920			}
2921			tcp_skb_mark_lost_uncond_verify(tp, skb);
2922		}
 
 
 
 
 
 
 
2923	}
2924
2925	tcp_clear_retrans_hints_partial(tp);
2926
2927	if (prior_lost == tp->lost_out)
2928		return;
2929
2930	if (tcp_is_reno(tp))
2931		tcp_limit_reno_sacked(tp);
2932
2933	tcp_verify_left_out(tp);
2934
2935	/* Don't muck with the congestion window here.
2936	 * Reason is that we do not increase amount of _data_
2937	 * in network, but units changed and effective
2938	 * cwnd/ssthresh really reduced now.
2939	 */
2940	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2941		tp->high_seq = tp->snd_nxt;
2942		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2943		tp->prior_ssthresh = 0;
2944		tp->undo_marker = 0;
2945		tcp_set_ca_state(sk, TCP_CA_Loss);
2946	}
2947	tcp_xmit_retransmit_queue(sk);
2948}
2949EXPORT_SYMBOL(tcp_simple_retransmit);
2950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2951/* Process an event, which can update packets-in-flight not trivially.
2952 * Main goal of this function is to calculate new estimate for left_out,
2953 * taking into account both packets sitting in receiver's buffer and
2954 * packets lost by network.
2955 *
2956 * Besides that it does CWND reduction, when packet loss is detected
2957 * and changes state of machine.
 
2958 *
2959 * It does _not_ decide what to send, it is made in function
2960 * tcp_xmit_retransmit_queue().
2961 */
2962static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
 
2963{
2964	struct inet_connection_sock *icsk = inet_csk(sk);
2965	struct tcp_sock *tp = tcp_sk(sk);
2966	int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2967	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2968				    (tcp_fackets_out(tp) > tp->reordering));
2969	int fast_rexmit = 0, mib_idx;
2970
2971	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2972		tp->sacked_out = 0;
2973	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2974		tp->fackets_out = 0;
2975
2976	/* Now state machine starts.
2977	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2978	if (flag & FLAG_ECE)
2979		tp->prior_ssthresh = 0;
2980
2981	/* B. In all the states check for reneging SACKs. */
2982	if (tcp_check_sack_reneging(sk, flag))
2983		return;
2984
2985	/* C. Process data loss notification, provided it is valid. */
2986	if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2987	    before(tp->snd_una, tp->high_seq) &&
2988	    icsk->icsk_ca_state != TCP_CA_Open &&
2989	    tp->fackets_out > tp->reordering) {
2990		tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0);
2991		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2992	}
2993
2994	/* D. Check consistency of the current state. */
2995	tcp_verify_left_out(tp);
2996
2997	/* E. Check state exit conditions. State can be terminated
2998	 *    when high_seq is ACKed. */
2999	if (icsk->icsk_ca_state == TCP_CA_Open) {
3000		WARN_ON(tp->retrans_out != 0);
3001		tp->retrans_stamp = 0;
3002	} else if (!before(tp->snd_una, tp->high_seq)) {
3003		switch (icsk->icsk_ca_state) {
3004		case TCP_CA_Loss:
3005			icsk->icsk_retransmits = 0;
3006			if (tcp_try_undo_recovery(sk))
3007				return;
3008			break;
3009
3010		case TCP_CA_CWR:
3011			/* CWR is to be held something *above* high_seq
3012			 * is ACKed for CWR bit to reach receiver. */
3013			if (tp->snd_una != tp->high_seq) {
3014				tcp_complete_cwr(sk);
3015				tcp_set_ca_state(sk, TCP_CA_Open);
3016			}
3017			break;
3018
3019		case TCP_CA_Disorder:
3020			tcp_try_undo_dsack(sk);
3021			if (!tp->undo_marker ||
3022			    /* For SACK case do not Open to allow to undo
3023			     * catching for all duplicate ACKs. */
3024			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3025				tp->undo_marker = 0;
3026				tcp_set_ca_state(sk, TCP_CA_Open);
3027			}
3028			break;
3029
3030		case TCP_CA_Recovery:
3031			if (tcp_is_reno(tp))
3032				tcp_reset_reno_sack(tp);
3033			if (tcp_try_undo_recovery(sk))
3034				return;
3035			tcp_complete_cwr(sk);
3036			break;
3037		}
3038	}
3039
3040	/* F. Process state. */
3041	switch (icsk->icsk_ca_state) {
3042	case TCP_CA_Recovery:
3043		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3044			if (tcp_is_reno(tp) && is_dupack)
3045				tcp_add_reno_sack(sk);
3046		} else
3047			do_lost = tcp_try_undo_partial(sk, pkts_acked);
 
 
 
 
 
 
 
 
 
 
 
 
 
3048		break;
3049	case TCP_CA_Loss:
3050		if (flag & FLAG_DATA_ACKED)
3051			icsk->icsk_retransmits = 0;
3052		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3053			tcp_reset_reno_sack(tp);
3054		if (!tcp_try_undo_loss(sk)) {
3055			tcp_moderate_cwnd(tp);
3056			tcp_xmit_retransmit_queue(sk);
3057			return;
3058		}
3059		if (icsk->icsk_ca_state != TCP_CA_Open)
3060			return;
3061		/* Loss is undone; fall through to processing in Open state. */
 
3062	default:
3063		if (tcp_is_reno(tp)) {
3064			if (flag & FLAG_SND_UNA_ADVANCED)
3065				tcp_reset_reno_sack(tp);
3066			if (is_dupack)
3067				tcp_add_reno_sack(sk);
3068		}
3069
3070		if (icsk->icsk_ca_state == TCP_CA_Disorder)
3071			tcp_try_undo_dsack(sk);
3072
3073		if (!tcp_time_to_recover(sk)) {
 
3074			tcp_try_to_open(sk, flag);
3075			return;
3076		}
3077
3078		/* MTU probe failure: don't reduce cwnd */
3079		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3080		    icsk->icsk_mtup.probe_size &&
3081		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3082			tcp_mtup_probe_failed(sk);
3083			/* Restores the reduction we did in tcp_mtup_probe() */
3084			tp->snd_cwnd++;
3085			tcp_simple_retransmit(sk);
3086			return;
3087		}
3088
3089		/* Otherwise enter Recovery state */
3090
3091		if (tcp_is_reno(tp))
3092			mib_idx = LINUX_MIB_TCPRENORECOVERY;
3093		else
3094			mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3095
3096		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3097
3098		tp->high_seq = tp->snd_nxt;
3099		tp->prior_ssthresh = 0;
3100		tp->undo_marker = tp->snd_una;
3101		tp->undo_retrans = tp->retrans_out;
3102
3103		if (icsk->icsk_ca_state < TCP_CA_CWR) {
3104			if (!(flag & FLAG_ECE))
3105				tp->prior_ssthresh = tcp_current_ssthresh(sk);
3106			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3107			TCP_ECN_queue_cwr(tp);
3108		}
3109
3110		tp->bytes_acked = 0;
3111		tp->snd_cwnd_cnt = 0;
3112		tcp_set_ca_state(sk, TCP_CA_Recovery);
3113		fast_rexmit = 1;
3114	}
3115
3116	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3117		tcp_update_scoreboard(sk, fast_rexmit);
3118	tcp_cwnd_down(sk, flag);
3119	tcp_xmit_retransmit_queue(sk);
3120}
3121
3122void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3123{
3124	tcp_rtt_estimator(sk, seq_rtt);
3125	tcp_set_rto(sk);
3126	inet_csk(sk)->icsk_backoff = 0;
 
 
 
 
 
 
 
 
 
3127}
3128EXPORT_SYMBOL(tcp_valid_rtt_meas);
3129
3130/* Read draft-ietf-tcplw-high-performance before mucking
3131 * with this code. (Supersedes RFC1323)
3132 */
3133static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3134{
 
 
 
 
 
 
 
 
 
 
3135	/* RTTM Rule: A TSecr value received in a segment is used to
3136	 * update the averaged RTT measurement only if the segment
3137	 * acknowledges some new data, i.e., only if it advances the
3138	 * left edge of the send window.
3139	 *
3140	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3141	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3142	 *
3143	 * Changed: reset backoff as soon as we see the first valid sample.
3144	 * If we do not, we get strongly overestimated rto. With timestamps
3145	 * samples are accepted even from very old segments: f.e., when rtt=1
3146	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3147	 * answer arrives rto becomes 120 seconds! If at least one of segments
3148	 * in window is lost... Voila.	 			--ANK (010210)
3149	 */
3150	struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3151
3152	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
 
 
3153}
3154
3155static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
 
3156{
3157	/* We don't have a timestamp. Can only use
3158	 * packets that are not retransmitted to determine
3159	 * rtt estimates. Also, we must not reset the
3160	 * backoff for rto until we get a non-retransmitted
3161	 * packet. This allows us to deal with a situation
3162	 * where the network delay has increased suddenly.
3163	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3164	 */
3165
3166	if (flag & FLAG_RETRANS_DATA_ACKED)
3167		return;
3168
3169	tcp_valid_rtt_meas(sk, seq_rtt);
3170}
3171
3172static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3173				      const s32 seq_rtt)
3174{
3175	const struct tcp_sock *tp = tcp_sk(sk);
3176	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3177	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3178		tcp_ack_saw_tstamp(sk, flag);
3179	else if (seq_rtt >= 0)
3180		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3181}
3182
3183static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3184{
3185	const struct inet_connection_sock *icsk = inet_csk(sk);
3186	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3187	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
 
3188}
3189
3190/* Restart timer after forward progress on connection.
3191 * RFC2988 recommends to restart timer to now+rto.
3192 */
3193static void tcp_rearm_rto(struct sock *sk)
3194{
 
3195	struct tcp_sock *tp = tcp_sk(sk);
3196
 
 
 
 
 
 
3197	if (!tp->packets_out) {
3198		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3199	} else {
3200		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3201					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
 
 
 
 
 
 
 
 
 
 
3202	}
3203}
3204
 
 
 
 
 
 
 
3205/* If we get here, the whole TSO packet has not been acked. */
3206static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3207{
3208	struct tcp_sock *tp = tcp_sk(sk);
3209	u32 packets_acked;
3210
3211	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3212
3213	packets_acked = tcp_skb_pcount(skb);
3214	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3215		return 0;
3216	packets_acked -= tcp_skb_pcount(skb);
3217
3218	if (packets_acked) {
3219		BUG_ON(tcp_skb_pcount(skb) == 0);
3220		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3221	}
3222
3223	return packets_acked;
3224}
3225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3226/* Remove acknowledged frames from the retransmission queue. If our packet
3227 * is before the ack sequence we can discard it as it's confirmed to have
3228 * arrived at the other end.
3229 */
3230static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3231			       u32 prior_snd_una)
 
3232{
 
 
3233	struct tcp_sock *tp = tcp_sk(sk);
3234	const struct inet_connection_sock *icsk = inet_csk(sk);
3235	struct sk_buff *skb;
3236	u32 now = tcp_time_stamp;
3237	int fully_acked = 1;
 
 
 
 
 
3238	int flag = 0;
3239	u32 pkts_acked = 0;
3240	u32 reord = tp->packets_out;
3241	u32 prior_sacked = tp->sacked_out;
3242	s32 seq_rtt = -1;
3243	s32 ca_seq_rtt = -1;
3244	ktime_t last_ackt = net_invalid_timestamp();
3245
3246	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
 
 
3247		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
 
 
3248		u32 acked_pcount;
3249		u8 sacked = scb->sacked;
3250
3251		/* Determine how many packets and what bytes were acked, tso and else */
3252		if (after(scb->end_seq, tp->snd_una)) {
3253			if (tcp_skb_pcount(skb) == 1 ||
3254			    !after(tp->snd_una, scb->seq))
3255				break;
3256
3257			acked_pcount = tcp_tso_acked(sk, skb);
3258			if (!acked_pcount)
3259				break;
3260
3261			fully_acked = 0;
3262		} else {
3263			acked_pcount = tcp_skb_pcount(skb);
3264		}
3265
3266		if (sacked & TCPCB_RETRANS) {
3267			if (sacked & TCPCB_SACKED_RETRANS)
3268				tp->retrans_out -= acked_pcount;
3269			flag |= FLAG_RETRANS_DATA_ACKED;
3270			ca_seq_rtt = -1;
3271			seq_rtt = -1;
3272			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3273				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3274		} else {
3275			ca_seq_rtt = now - scb->when;
3276			last_ackt = skb->tstamp;
3277			if (seq_rtt < 0) {
3278				seq_rtt = ca_seq_rtt;
3279			}
3280			if (!(sacked & TCPCB_SACKED_ACKED))
3281				reord = min(pkts_acked, reord);
3282		}
3283
3284		if (sacked & TCPCB_SACKED_ACKED)
3285			tp->sacked_out -= acked_pcount;
 
 
 
 
 
 
3286		if (sacked & TCPCB_LOST)
3287			tp->lost_out -= acked_pcount;
3288
3289		tp->packets_out -= acked_pcount;
3290		pkts_acked += acked_pcount;
 
3291
3292		/* Initial outgoing SYN's get put onto the write_queue
3293		 * just like anything else we transmit.  It is not
3294		 * true data, and if we misinform our callers that
3295		 * this ACK acks real data, we will erroneously exit
3296		 * connection startup slow start one packet too
3297		 * quickly.  This is severely frowned upon behavior.
3298		 */
3299		if (!(scb->flags & TCPHDR_SYN)) {
3300			flag |= FLAG_DATA_ACKED;
3301		} else {
3302			flag |= FLAG_SYN_ACKED;
3303			tp->retrans_stamp = 0;
3304		}
3305
3306		if (!fully_acked)
3307			break;
3308
3309		tcp_unlink_write_queue(skb, sk);
3310		sk_wmem_free_skb(sk, skb);
3311		tp->scoreboard_skb_hint = NULL;
3312		if (skb == tp->retransmit_skb_hint)
3313			tp->retransmit_skb_hint = NULL;
3314		if (skb == tp->lost_skb_hint)
3315			tp->lost_skb_hint = NULL;
 
 
3316	}
3317
 
 
 
3318	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3319		tp->snd_up = tp->snd_una;
3320
3321	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3322		flag |= FLAG_SACK_RENEGING;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3323
3324	if (flag & FLAG_ACKED) {
3325		const struct tcp_congestion_ops *ca_ops
3326			= inet_csk(sk)->icsk_ca_ops;
3327
3328		if (unlikely(icsk->icsk_mtup.probe_size &&
3329			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3330			tcp_mtup_probe_success(sk);
3331		}
3332
3333		tcp_ack_update_rtt(sk, flag, seq_rtt);
3334		tcp_rearm_rto(sk);
3335
3336		if (tcp_is_reno(tp)) {
3337			tcp_remove_reno_sacks(sk, pkts_acked);
 
 
 
 
 
 
3338		} else {
3339			int delta;
3340
3341			/* Non-retransmitted hole got filled? That's reordering */
3342			if (reord < prior_fackets)
3343				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3344
3345			delta = tcp_is_fack(tp) ? pkts_acked :
3346						  prior_sacked - tp->sacked_out;
3347			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3348		}
3349
3350		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3351
3352		if (ca_ops->pkts_acked) {
3353			s32 rtt_us = -1;
3354
3355			/* Is the ACK triggering packet unambiguous? */
3356			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3357				/* High resolution needed and available? */
3358				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3359				    !ktime_equal(last_ackt,
3360						 net_invalid_timestamp()))
3361					rtt_us = ktime_us_delta(ktime_get_real(),
3362								last_ackt);
3363				else if (ca_seq_rtt >= 0)
3364					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3365			}
3366
3367			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3368		}
3369	}
3370
3371#if FASTRETRANS_DEBUG > 0
3372	WARN_ON((int)tp->sacked_out < 0);
3373	WARN_ON((int)tp->lost_out < 0);
3374	WARN_ON((int)tp->retrans_out < 0);
3375	if (!tp->packets_out && tcp_is_sack(tp)) {
3376		icsk = inet_csk(sk);
3377		if (tp->lost_out) {
3378			printk(KERN_DEBUG "Leak l=%u %d\n",
3379			       tp->lost_out, icsk->icsk_ca_state);
3380			tp->lost_out = 0;
3381		}
3382		if (tp->sacked_out) {
3383			printk(KERN_DEBUG "Leak s=%u %d\n",
3384			       tp->sacked_out, icsk->icsk_ca_state);
3385			tp->sacked_out = 0;
3386		}
3387		if (tp->retrans_out) {
3388			printk(KERN_DEBUG "Leak r=%u %d\n",
3389			       tp->retrans_out, icsk->icsk_ca_state);
3390			tp->retrans_out = 0;
3391		}
3392	}
3393#endif
3394	return flag;
3395}
3396
3397static void tcp_ack_probe(struct sock *sk)
3398{
 
 
3399	const struct tcp_sock *tp = tcp_sk(sk);
3400	struct inet_connection_sock *icsk = inet_csk(sk);
3401
3402	/* Was it a usable window open? */
3403
3404	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
 
3405		icsk->icsk_backoff = 0;
 
3406		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3407		/* Socket must be waked up by subsequent tcp_data_snd_check().
3408		 * This function is not for random using!
3409		 */
3410	} else {
3411		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3412					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3413					  TCP_RTO_MAX);
 
3414	}
3415}
3416
3417static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3418{
3419	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3420		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3421}
3422
3423static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
 
3424{
3425	const struct tcp_sock *tp = tcp_sk(sk);
3426	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3427		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3428}
3429
3430/* Check that window update is acceptable.
3431 * The function assumes that snd_una<=ack<=snd_next.
3432 */
3433static inline int tcp_may_update_window(const struct tcp_sock *tp,
3434					const u32 ack, const u32 ack_seq,
3435					const u32 nwin)
3436{
3437	return	after(ack, tp->snd_una) ||
3438		after(ack_seq, tp->snd_wl1) ||
3439		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3440}
3441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3442/* Update our send window.
3443 *
3444 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3445 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3446 */
3447static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3448				 u32 ack_seq)
3449{
3450	struct tcp_sock *tp = tcp_sk(sk);
3451	int flag = 0;
3452	u32 nwin = ntohs(tcp_hdr(skb)->window);
3453
3454	if (likely(!tcp_hdr(skb)->syn))
3455		nwin <<= tp->rx_opt.snd_wscale;
3456
3457	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3458		flag |= FLAG_WIN_UPDATE;
3459		tcp_update_wl(tp, ack_seq);
3460
3461		if (tp->snd_wnd != nwin) {
3462			tp->snd_wnd = nwin;
3463
3464			/* Note, it is the only place, where
3465			 * fast path is recovered for sending TCP.
3466			 */
3467			tp->pred_flags = 0;
3468			tcp_fast_path_check(sk);
3469
 
 
 
3470			if (nwin > tp->max_window) {
3471				tp->max_window = nwin;
3472				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3473			}
3474		}
3475	}
3476
3477	tp->snd_una = ack;
3478
3479	return flag;
3480}
3481
3482/* A very conservative spurious RTO response algorithm: reduce cwnd and
3483 * continue in congestion avoidance.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3484 */
3485static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
 
 
 
 
 
 
 
 
 
 
 
 
3486{
3487	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3488	tp->snd_cwnd_cnt = 0;
3489	tp->bytes_acked = 0;
3490	TCP_ECN_queue_cwr(tp);
3491	tcp_moderate_cwnd(tp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3492}
3493
3494/* A conservative spurious RTO response algorithm: reduce cwnd using
3495 * rate halving and continue in congestion avoidance.
3496 */
3497static void tcp_ratehalving_spur_to_response(struct sock *sk)
3498{
3499	tcp_enter_cwr(sk, 0);
 
3500}
3501
3502static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3503{
3504	if (flag & FLAG_ECE)
3505		tcp_ratehalving_spur_to_response(sk);
3506	else
3507		tcp_undo_cwr(sk, true);
 
 
 
 
 
 
 
3508}
3509
3510/* F-RTO spurious RTO detection algorithm (RFC4138)
3511 *
3512 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3513 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3514 * window (but not to or beyond highest sequence sent before RTO):
3515 *   On First ACK,  send two new segments out.
3516 *   On Second ACK, RTO was likely spurious. Do spurious response (response
3517 *                  algorithm is not part of the F-RTO detection algorithm
3518 *                  given in RFC4138 but can be selected separately).
3519 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3520 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3521 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3522 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3523 *
3524 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3525 * original window even after we transmit two new data segments.
3526 *
3527 * SACK version:
3528 *   on first step, wait until first cumulative ACK arrives, then move to
3529 *   the second step. In second step, the next ACK decides.
3530 *
3531 * F-RTO is implemented (mainly) in four functions:
3532 *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3533 *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3534 *     called when tcp_use_frto() showed green light
3535 *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3536 *   - tcp_enter_frto_loss() is called if there is not enough evidence
3537 *     to prove that the RTO is indeed spurious. It transfers the control
3538 *     from F-RTO to the conventional RTO recovery
3539 */
3540static int tcp_process_frto(struct sock *sk, int flag)
3541{
3542	struct tcp_sock *tp = tcp_sk(sk);
3543
3544	tcp_verify_left_out(tp);
 
3545
3546	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3547	if (flag & FLAG_DATA_ACKED)
3548		inet_csk(sk)->icsk_retransmits = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3549
3550	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3551	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3552		tp->undo_marker = 0;
3553
3554	if (!before(tp->snd_una, tp->frto_highmark)) {
3555		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3556		return 1;
3557	}
3558
3559	if (!tcp_is_sackfrto(tp)) {
3560		/* RFC4138 shortcoming in step 2; should also have case c):
3561		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3562		 * data, winupdate
3563		 */
3564		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3565			return 1;
3566
3567		if (!(flag & FLAG_DATA_ACKED)) {
3568			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3569					    flag);
3570			return 1;
3571		}
3572	} else {
3573		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3574			/* Prevent sending of new data. */
3575			tp->snd_cwnd = min(tp->snd_cwnd,
3576					   tcp_packets_in_flight(tp));
3577			return 1;
3578		}
3579
3580		if ((tp->frto_counter >= 2) &&
3581		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3582		     ((flag & FLAG_DATA_SACKED) &&
3583		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3584			/* RFC4138 shortcoming (see comment above) */
3585			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3586			    (flag & FLAG_NOT_DUP))
3587				return 1;
3588
3589			tcp_enter_frto_loss(sk, 3, flag);
3590			return 1;
3591		}
3592	}
 
 
3593
3594	if (tp->frto_counter == 1) {
3595		/* tcp_may_send_now needs to see updated state */
3596		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3597		tp->frto_counter = 2;
 
 
3598
3599		if (!tcp_may_send_now(sk))
3600			tcp_enter_frto_loss(sk, 2, flag);
 
 
3601
3602		return 1;
3603	} else {
3604		switch (sysctl_tcp_frto_response) {
3605		case 2:
3606			tcp_undo_spur_to_response(sk, flag);
3607			break;
3608		case 1:
3609			tcp_conservative_spur_to_response(tp);
3610			break;
3611		default:
3612			tcp_ratehalving_spur_to_response(sk);
3613			break;
3614		}
3615		tp->frto_counter = 0;
3616		tp->undo_marker = 0;
3617		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3618	}
3619	return 0;
3620}
3621
3622/* This routine deals with incoming acks, but not outgoing ones. */
3623static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3624{
3625	struct inet_connection_sock *icsk = inet_csk(sk);
3626	struct tcp_sock *tp = tcp_sk(sk);
 
 
3627	u32 prior_snd_una = tp->snd_una;
 
3628	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3629	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3630	u32 prior_in_flight;
3631	u32 prior_fackets;
3632	int prior_packets;
3633	int frto_cwnd = 0;
 
 
 
 
 
 
 
 
 
3634
3635	/* If the ack is older than previous acks
3636	 * then we can probably ignore it.
3637	 */
3638	if (before(ack, prior_snd_una))
 
 
 
 
 
 
3639		goto old_ack;
 
3640
3641	/* If the ack includes data we haven't sent yet, discard
3642	 * this segment (RFC793 Section 3.9).
3643	 */
3644	if (after(ack, tp->snd_nxt))
3645		goto invalid_ack;
3646
3647	if (after(ack, prior_snd_una))
3648		flag |= FLAG_SND_UNA_ADVANCED;
 
3649
3650	if (sysctl_tcp_abc) {
3651		if (icsk->icsk_ca_state < TCP_CA_CWR)
3652			tp->bytes_acked += ack - prior_snd_una;
3653		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3654			/* we assume just one segment left network */
3655			tp->bytes_acked += min(ack - prior_snd_una,
3656					       tp->mss_cache);
3657	}
3658
3659	prior_fackets = tp->fackets_out;
3660	prior_in_flight = tcp_packets_in_flight(tp);
3661
3662	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
 
 
 
 
 
 
 
3663		/* Window is constant, pure forward advance.
3664		 * No more checks are required.
3665		 * Note, we use the fact that SND.UNA>=SND.WL2.
3666		 */
3667		tcp_update_wl(tp, ack_seq);
3668		tp->snd_una = ack;
3669		flag |= FLAG_WIN_UPDATE;
3670
3671		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3672
3673		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3674	} else {
 
 
3675		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3676			flag |= FLAG_DATA;
3677		else
3678			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3679
3680		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3681
3682		if (TCP_SKB_CB(skb)->sacked)
3683			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
 
3684
3685		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3686			flag |= FLAG_ECE;
 
 
3687
3688		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
 
 
 
 
 
 
 
3689	}
3690
 
 
 
 
 
 
 
 
 
3691	/* We passed data and got it acked, remove any soft error
3692	 * log. Something worked...
3693	 */
3694	sk->sk_err_soft = 0;
3695	icsk->icsk_probes_out = 0;
3696	tp->rcv_tstamp = tcp_time_stamp;
3697	prior_packets = tp->packets_out;
3698	if (!prior_packets)
3699		goto no_queue;
3700
3701	/* See if we can take anything off of the retransmit queue. */
3702	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
 
 
 
3703
3704	if (tp->frto_counter)
3705		frto_cwnd = tcp_process_frto(sk, flag);
3706	/* Guarantee sacktag reordering detection against wrap-arounds */
3707	if (before(tp->frto_highmark, tp->snd_una))
3708		tp->frto_highmark = 0;
3709
3710	if (tcp_ack_is_dubious(sk, flag)) {
3711		/* Advance CWND, if state allows this. */
3712		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3713		    tcp_may_raise_cwnd(sk, flag))
3714			tcp_cong_avoid(sk, ack, prior_in_flight);
3715		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3716				      flag);
3717	} else {
3718		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3719			tcp_cong_avoid(sk, ack, prior_in_flight);
3720	}
3721
 
 
 
 
3722	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3723		dst_confirm(__sk_dst_get(sk));
3724
 
 
 
 
 
 
3725	return 1;
3726
3727no_queue:
 
 
 
 
 
 
3728	/* If this ack opens up a zero window, clear backoff.  It was
3729	 * being used to time the probes, and is probably far higher than
3730	 * it needs to be for normal retransmission.
3731	 */
3732	if (tcp_send_head(sk))
3733		tcp_ack_probe(sk);
 
 
3734	return 1;
3735
3736invalid_ack:
3737	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3738	return -1;
3739
3740old_ack:
 
 
 
3741	if (TCP_SKB_CB(skb)->sacked) {
3742		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3743		if (icsk->icsk_ca_state == TCP_CA_Open)
3744			tcp_try_keep_open(sk);
 
 
 
3745	}
3746
3747	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3748	return 0;
3749}
3750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3751/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3752 * But, this can also be called on packets in the established flow when
3753 * the fast version below fails.
3754 */
3755void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3756		       u8 **hvpp, int estab)
 
 
3757{
3758	unsigned char *ptr;
3759	struct tcphdr *th = tcp_hdr(skb);
3760	int length = (th->doff * 4) - sizeof(struct tcphdr);
3761
3762	ptr = (unsigned char *)(th + 1);
3763	opt_rx->saw_tstamp = 0;
 
3764
3765	while (length > 0) {
3766		int opcode = *ptr++;
3767		int opsize;
3768
3769		switch (opcode) {
3770		case TCPOPT_EOL:
3771			return;
3772		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3773			length--;
3774			continue;
3775		default:
 
 
3776			opsize = *ptr++;
3777			if (opsize < 2) /* "silly options" */
3778				return;
3779			if (opsize > length)
3780				return;	/* don't parse partial options */
3781			switch (opcode) {
3782			case TCPOPT_MSS:
3783				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3784					u16 in_mss = get_unaligned_be16(ptr);
3785					if (in_mss) {
3786						if (opt_rx->user_mss &&
3787						    opt_rx->user_mss < in_mss)
3788							in_mss = opt_rx->user_mss;
3789						opt_rx->mss_clamp = in_mss;
3790					}
3791				}
3792				break;
3793			case TCPOPT_WINDOW:
3794				if (opsize == TCPOLEN_WINDOW && th->syn &&
3795				    !estab && sysctl_tcp_window_scaling) {
3796					__u8 snd_wscale = *(__u8 *)ptr;
3797					opt_rx->wscale_ok = 1;
3798					if (snd_wscale > 14) {
3799						if (net_ratelimit())
3800							printk(KERN_INFO "tcp_parse_options: Illegal window "
3801							       "scaling value %d >14 received.\n",
3802							       snd_wscale);
3803						snd_wscale = 14;
3804					}
3805					opt_rx->snd_wscale = snd_wscale;
3806				}
3807				break;
3808			case TCPOPT_TIMESTAMP:
3809				if ((opsize == TCPOLEN_TIMESTAMP) &&
3810				    ((estab && opt_rx->tstamp_ok) ||
3811				     (!estab && sysctl_tcp_timestamps))) {
3812					opt_rx->saw_tstamp = 1;
3813					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3814					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3815				}
3816				break;
3817			case TCPOPT_SACK_PERM:
3818				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3819				    !estab && sysctl_tcp_sack) {
3820					opt_rx->sack_ok = 1;
3821					tcp_sack_reset(opt_rx);
3822				}
3823				break;
3824
3825			case TCPOPT_SACK:
3826				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3827				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3828				   opt_rx->sack_ok) {
3829					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3830				}
3831				break;
3832#ifdef CONFIG_TCP_MD5SIG
3833			case TCPOPT_MD5SIG:
3834				/*
3835				 * The MD5 Hash has already been
3836				 * checked (see tcp_v{4,6}_do_rcv()).
3837				 */
3838				break;
3839#endif
3840			case TCPOPT_COOKIE:
3841				/* This option is variable length.
 
 
 
 
 
 
 
3842				 */
3843				switch (opsize) {
3844				case TCPOLEN_COOKIE_BASE:
3845					/* not yet implemented */
 
 
 
3846					break;
3847				case TCPOLEN_COOKIE_PAIR:
3848					/* not yet implemented */
 
3849					break;
3850				case TCPOLEN_COOKIE_MIN+0:
3851				case TCPOLEN_COOKIE_MIN+2:
3852				case TCPOLEN_COOKIE_MIN+4:
3853				case TCPOLEN_COOKIE_MIN+6:
3854				case TCPOLEN_COOKIE_MAX:
3855					/* 16-bit multiple */
3856					opt_rx->cookie_plus = opsize;
3857					*hvpp = ptr;
3858					break;
3859				default:
3860					/* ignore option */
3861					break;
3862				}
3863				break;
 
 
 
3864			}
3865
3866			ptr += opsize-2;
3867			length -= opsize;
3868		}
3869	}
3870}
3871EXPORT_SYMBOL(tcp_parse_options);
3872
3873static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3874{
3875	__be32 *ptr = (__be32 *)(th + 1);
3876
3877	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3878			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3879		tp->rx_opt.saw_tstamp = 1;
3880		++ptr;
3881		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3882		++ptr;
3883		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3884		return 1;
 
 
 
3885	}
3886	return 0;
3887}
3888
3889/* Fast parse options. This hopes to only see timestamps.
3890 * If it is wrong it falls back on tcp_parse_options().
3891 */
3892static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3893				  struct tcp_sock *tp, u8 **hvpp)
 
3894{
3895	/* In the spirit of fast parsing, compare doff directly to constant
3896	 * values.  Because equality is used, short doff can be ignored here.
3897	 */
3898	if (th->doff == (sizeof(*th) / 4)) {
3899		tp->rx_opt.saw_tstamp = 0;
3900		return 0;
3901	} else if (tp->rx_opt.tstamp_ok &&
3902		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3903		if (tcp_parse_aligned_timestamp(tp, th))
3904			return 1;
3905	}
3906	tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3907	return 1;
 
 
 
 
3908}
3909
3910#ifdef CONFIG_TCP_MD5SIG
3911/*
3912 * Parse MD5 Signature option
3913 */
3914u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3915{
3916	int length = (th->doff << 2) - sizeof (*th);
3917	u8 *ptr = (u8*)(th + 1);
3918
3919	/* If the TCP option is too short, we can short cut */
3920	if (length < TCPOLEN_MD5SIG)
3921		return NULL;
3922
3923	while (length > 0) {
 
3924		int opcode = *ptr++;
3925		int opsize;
3926
3927		switch(opcode) {
3928		case TCPOPT_EOL:
3929			return NULL;
3930		case TCPOPT_NOP:
3931			length--;
3932			continue;
3933		default:
3934			opsize = *ptr++;
3935			if (opsize < 2 || opsize > length)
3936				return NULL;
3937			if (opcode == TCPOPT_MD5SIG)
3938				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3939		}
3940		ptr += opsize - 2;
3941		length -= opsize;
3942	}
3943	return NULL;
3944}
3945EXPORT_SYMBOL(tcp_parse_md5sig_option);
3946#endif
3947
3948static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3949{
3950	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3951	tp->rx_opt.ts_recent_stamp = get_seconds();
3952}
3953
3954static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3955{
3956	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3957		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3958		 * extra check below makes sure this can only happen
3959		 * for pure ACK frames.  -DaveM
3960		 *
3961		 * Not only, also it occurs for expired timestamps.
3962		 */
3963
3964		if (tcp_paws_check(&tp->rx_opt, 0))
3965			tcp_store_ts_recent(tp);
3966	}
3967}
3968
3969/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3970 *
3971 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3972 * it can pass through stack. So, the following predicate verifies that
3973 * this segment is not used for anything but congestion avoidance or
3974 * fast retransmit. Moreover, we even are able to eliminate most of such
3975 * second order effects, if we apply some small "replay" window (~RTO)
3976 * to timestamp space.
3977 *
3978 * All these measures still do not guarantee that we reject wrapped ACKs
3979 * on networks with high bandwidth, when sequence space is recycled fastly,
3980 * but it guarantees that such events will be very rare and do not affect
3981 * connection seriously. This doesn't look nice, but alas, PAWS is really
3982 * buggy extension.
3983 *
3984 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3985 * states that events when retransmit arrives after original data are rare.
3986 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3987 * the biggest problem on large power networks even with minor reordering.
3988 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3989 * up to bandwidth of 18Gigabit/sec. 8) ]
3990 */
3991
3992static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3993{
3994	struct tcp_sock *tp = tcp_sk(sk);
3995	struct tcphdr *th = tcp_hdr(skb);
3996	u32 seq = TCP_SKB_CB(skb)->seq;
3997	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3998
3999	return (/* 1. Pure ACK with correct sequence number. */
4000		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4001
4002		/* 2. ... and duplicate ACK. */
4003		ack == tp->snd_una &&
4004
4005		/* 3. ... and does not update window. */
4006		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4007
4008		/* 4. ... and sits in replay window. */
4009		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4010}
4011
4012static inline int tcp_paws_discard(const struct sock *sk,
4013				   const struct sk_buff *skb)
4014{
4015	const struct tcp_sock *tp = tcp_sk(sk);
4016
4017	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4018	       !tcp_disordered_ack(sk, skb);
4019}
4020
4021/* Check segment sequence number for validity.
4022 *
4023 * Segment controls are considered valid, if the segment
4024 * fits to the window after truncation to the window. Acceptability
4025 * of data (and SYN, FIN, of course) is checked separately.
4026 * See tcp_data_queue(), for example.
4027 *
4028 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4029 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4030 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4031 * (borrowed from freebsd)
4032 */
4033
4034static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
4035{
4036	return	!before(end_seq, tp->rcv_wup) &&
4037		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4038}
4039
4040/* When we get a reset we do this. */
4041static void tcp_reset(struct sock *sk)
4042{
 
 
 
 
 
 
 
 
4043	/* We want the right error as BSD sees it (and indeed as we do). */
4044	switch (sk->sk_state) {
4045	case TCP_SYN_SENT:
4046		sk->sk_err = ECONNREFUSED;
4047		break;
4048	case TCP_CLOSE_WAIT:
4049		sk->sk_err = EPIPE;
4050		break;
4051	case TCP_CLOSE:
4052		return;
4053	default:
4054		sk->sk_err = ECONNRESET;
4055	}
4056	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4057	smp_wmb();
4058
 
 
 
4059	if (!sock_flag(sk, SOCK_DEAD))
4060		sk->sk_error_report(sk);
4061
4062	tcp_done(sk);
4063}
4064
4065/*
4066 * 	Process the FIN bit. This now behaves as it is supposed to work
4067 *	and the FIN takes effect when it is validly part of sequence
4068 *	space. Not before when we get holes.
4069 *
4070 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4071 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4072 *	TIME-WAIT)
4073 *
4074 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4075 *	close and we go into CLOSING (and later onto TIME-WAIT)
4076 *
4077 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4078 */
4079static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4080{
4081	struct tcp_sock *tp = tcp_sk(sk);
4082
4083	inet_csk_schedule_ack(sk);
4084
4085	sk->sk_shutdown |= RCV_SHUTDOWN;
4086	sock_set_flag(sk, SOCK_DONE);
4087
4088	switch (sk->sk_state) {
4089	case TCP_SYN_RECV:
4090	case TCP_ESTABLISHED:
4091		/* Move to CLOSE_WAIT */
4092		tcp_set_state(sk, TCP_CLOSE_WAIT);
4093		inet_csk(sk)->icsk_ack.pingpong = 1;
4094		break;
4095
4096	case TCP_CLOSE_WAIT:
4097	case TCP_CLOSING:
4098		/* Received a retransmission of the FIN, do
4099		 * nothing.
4100		 */
4101		break;
4102	case TCP_LAST_ACK:
4103		/* RFC793: Remain in the LAST-ACK state. */
4104		break;
4105
4106	case TCP_FIN_WAIT1:
4107		/* This case occurs when a simultaneous close
4108		 * happens, we must ack the received FIN and
4109		 * enter the CLOSING state.
4110		 */
4111		tcp_send_ack(sk);
4112		tcp_set_state(sk, TCP_CLOSING);
4113		break;
4114	case TCP_FIN_WAIT2:
4115		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4116		tcp_send_ack(sk);
4117		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4118		break;
4119	default:
4120		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4121		 * cases we should never reach this piece of code.
4122		 */
4123		printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4124		       __func__, sk->sk_state);
4125		break;
4126	}
4127
4128	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4129	 * Probably, we should reset in this case. For now drop them.
4130	 */
4131	__skb_queue_purge(&tp->out_of_order_queue);
4132	if (tcp_is_sack(tp))
4133		tcp_sack_reset(&tp->rx_opt);
4134	sk_mem_reclaim(sk);
4135
4136	if (!sock_flag(sk, SOCK_DEAD)) {
4137		sk->sk_state_change(sk);
4138
4139		/* Do not send POLL_HUP for half duplex close. */
4140		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4141		    sk->sk_state == TCP_CLOSE)
4142			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4143		else
4144			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4145	}
4146}
4147
4148static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4149				  u32 end_seq)
4150{
4151	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4152		if (before(seq, sp->start_seq))
4153			sp->start_seq = seq;
4154		if (after(end_seq, sp->end_seq))
4155			sp->end_seq = end_seq;
4156		return 1;
4157	}
4158	return 0;
4159}
4160
4161static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4162{
4163	struct tcp_sock *tp = tcp_sk(sk);
4164
4165	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4166		int mib_idx;
4167
4168		if (before(seq, tp->rcv_nxt))
4169			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4170		else
4171			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4172
4173		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4174
4175		tp->rx_opt.dsack = 1;
4176		tp->duplicate_sack[0].start_seq = seq;
4177		tp->duplicate_sack[0].end_seq = end_seq;
4178	}
4179}
4180
4181static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4182{
4183	struct tcp_sock *tp = tcp_sk(sk);
4184
4185	if (!tp->rx_opt.dsack)
4186		tcp_dsack_set(sk, seq, end_seq);
4187	else
4188		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4189}
4190
4191static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
4192{
4193	struct tcp_sock *tp = tcp_sk(sk);
4194
4195	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4196	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4197		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4198		tcp_enter_quickack_mode(sk);
4199
4200		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4201			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4202
 
4203			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4204				end_seq = tp->rcv_nxt;
4205			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4206		}
4207	}
4208
4209	tcp_send_ack(sk);
4210}
4211
4212/* These routines update the SACK block as out-of-order packets arrive or
4213 * in-order packets close up the sequence space.
4214 */
4215static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4216{
4217	int this_sack;
4218	struct tcp_sack_block *sp = &tp->selective_acks[0];
4219	struct tcp_sack_block *swalk = sp + 1;
4220
4221	/* See if the recent change to the first SACK eats into
4222	 * or hits the sequence space of other SACK blocks, if so coalesce.
4223	 */
4224	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4225		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4226			int i;
4227
4228			/* Zap SWALK, by moving every further SACK up by one slot.
4229			 * Decrease num_sacks.
4230			 */
4231			tp->rx_opt.num_sacks--;
4232			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4233				sp[i] = sp[i + 1];
4234			continue;
4235		}
4236		this_sack++, swalk++;
 
4237	}
4238}
4239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4240static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4241{
4242	struct tcp_sock *tp = tcp_sk(sk);
4243	struct tcp_sack_block *sp = &tp->selective_acks[0];
4244	int cur_sacks = tp->rx_opt.num_sacks;
4245	int this_sack;
4246
4247	if (!cur_sacks)
4248		goto new_sack;
4249
4250	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4251		if (tcp_sack_extend(sp, seq, end_seq)) {
 
 
4252			/* Rotate this_sack to the first one. */
4253			for (; this_sack > 0; this_sack--, sp--)
4254				swap(*sp, *(sp - 1));
4255			if (cur_sacks > 1)
4256				tcp_sack_maybe_coalesce(tp);
4257			return;
4258		}
4259	}
4260
 
 
 
4261	/* Could not find an adjacent existing SACK, build a new one,
4262	 * put it at the front, and shift everyone else down.  We
4263	 * always know there is at least one SACK present already here.
4264	 *
4265	 * If the sack array is full, forget about the last one.
4266	 */
4267	if (this_sack >= TCP_NUM_SACKS) {
4268		this_sack--;
4269		tp->rx_opt.num_sacks--;
4270		sp--;
4271	}
4272	for (; this_sack > 0; this_sack--, sp--)
4273		*sp = *(sp - 1);
4274
4275new_sack:
4276	/* Build the new head SACK, and we're done. */
4277	sp->start_seq = seq;
4278	sp->end_seq = end_seq;
4279	tp->rx_opt.num_sacks++;
4280}
4281
4282/* RCV.NXT advances, some SACKs should be eaten. */
4283
4284static void tcp_sack_remove(struct tcp_sock *tp)
4285{
4286	struct tcp_sack_block *sp = &tp->selective_acks[0];
4287	int num_sacks = tp->rx_opt.num_sacks;
4288	int this_sack;
4289
4290	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4291	if (skb_queue_empty(&tp->out_of_order_queue)) {
4292		tp->rx_opt.num_sacks = 0;
4293		return;
4294	}
4295
4296	for (this_sack = 0; this_sack < num_sacks;) {
4297		/* Check if the start of the sack is covered by RCV.NXT. */
4298		if (!before(tp->rcv_nxt, sp->start_seq)) {
4299			int i;
4300
4301			/* RCV.NXT must cover all the block! */
4302			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4303
4304			/* Zap this SACK, by moving forward any other SACKS. */
4305			for (i=this_sack+1; i < num_sacks; i++)
4306				tp->selective_acks[i-1] = tp->selective_acks[i];
4307			num_sacks--;
4308			continue;
4309		}
4310		this_sack++;
4311		sp++;
4312	}
4313	tp->rx_opt.num_sacks = num_sacks;
4314}
4315
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4316/* This one checks to see if we can put data from the
4317 * out_of_order queue into the receive_queue.
4318 */
4319static void tcp_ofo_queue(struct sock *sk)
4320{
4321	struct tcp_sock *tp = tcp_sk(sk);
4322	__u32 dsack_high = tp->rcv_nxt;
4323	struct sk_buff *skb;
4324
4325	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
 
 
 
 
4326		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4327			break;
4328
4329		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4330			__u32 dsack = dsack_high;
4331			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4332				dsack_high = TCP_SKB_CB(skb)->end_seq;
4333			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4334		}
 
 
4335
4336		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4337			SOCK_DEBUG(sk, "ofo packet was already received\n");
4338			__skb_unlink(skb, &tp->out_of_order_queue);
4339			__kfree_skb(skb);
4340			continue;
4341		}
4342		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4343			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4344			   TCP_SKB_CB(skb)->end_seq);
4345
4346		__skb_unlink(skb, &tp->out_of_order_queue);
4347		__skb_queue_tail(&sk->sk_receive_queue, skb);
4348		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4349		if (tcp_hdr(skb)->fin)
4350			tcp_fin(skb, sk, tcp_hdr(skb));
 
 
 
 
 
 
 
 
 
 
 
4351	}
4352}
4353
4354static int tcp_prune_ofo_queue(struct sock *sk);
4355static int tcp_prune_queue(struct sock *sk);
4356
4357static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
 
4358{
4359	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4360	    !sk_rmem_schedule(sk, size)) {
4361
4362		if (tcp_prune_queue(sk) < 0)
4363			return -1;
4364
4365		if (!sk_rmem_schedule(sk, size)) {
4366			if (!tcp_prune_ofo_queue(sk))
4367				return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4368
4369			if (!sk_rmem_schedule(sk, size))
4370				return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4371		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4372	}
4373	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
4374}
4375
4376static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4377{
4378	struct tcphdr *th = tcp_hdr(skb);
4379	struct tcp_sock *tp = tcp_sk(sk);
4380	int eaten = -1;
 
 
4381
4382	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4383		goto drop;
 
 
 
 
 
4384
 
 
 
 
4385	skb_dst_drop(skb);
4386	__skb_pull(skb, th->doff * 4);
4387
4388	TCP_ECN_accept_cwr(tp, skb);
4389
 
4390	tp->rx_opt.dsack = 0;
4391
4392	/*  Queue data for delivery to the user.
4393	 *  Packets in sequence go to the receive queue.
4394	 *  Out of sequence packets to the out_of_order_queue.
4395	 */
4396	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4397		if (tcp_receive_window(tp) == 0)
 
 
4398			goto out_of_window;
 
4399
4400		/* Ok. In sequence. In window. */
4401		if (tp->ucopy.task == current &&
4402		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4403		    sock_owned_by_user(sk) && !tp->urg_data) {
4404			int chunk = min_t(unsigned int, skb->len,
4405					  tp->ucopy.len);
4406
4407			__set_current_state(TASK_RUNNING);
4408
4409			local_bh_enable();
4410			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4411				tp->ucopy.len -= chunk;
4412				tp->copied_seq += chunk;
4413				eaten = (chunk == skb->len);
4414				tcp_rcv_space_adjust(sk);
4415			}
4416			local_bh_disable();
4417		}
4418
4419		if (eaten <= 0) {
4420queue_and_out:
4421			if (eaten < 0 &&
4422			    tcp_try_rmem_schedule(sk, skb->truesize))
4423				goto drop;
4424
4425			skb_set_owner_r(skb, sk);
4426			__skb_queue_tail(&sk->sk_receive_queue, skb);
4427		}
4428		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4429		if (skb->len)
4430			tcp_event_data_recv(sk, skb);
4431		if (th->fin)
4432			tcp_fin(skb, sk, th);
4433
4434		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4435			tcp_ofo_queue(sk);
4436
4437			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4438			 * gap in queue is filled.
4439			 */
4440			if (skb_queue_empty(&tp->out_of_order_queue))
4441				inet_csk(sk)->icsk_ack.pingpong = 0;
4442		}
4443
4444		if (tp->rx_opt.num_sacks)
4445			tcp_sack_remove(tp);
4446
4447		tcp_fast_path_check(sk);
4448
4449		if (eaten > 0)
4450			__kfree_skb(skb);
4451		else if (!sock_flag(sk, SOCK_DEAD))
4452			sk->sk_data_ready(sk, 0);
4453		return;
4454	}
4455
4456	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
 
4457		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4458		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
 
4459		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4460
4461out_of_window:
4462		tcp_enter_quickack_mode(sk);
4463		inet_csk_schedule_ack(sk);
4464drop:
4465		__kfree_skb(skb);
4466		return;
4467	}
4468
4469	/* Out of window. F.e. zero window probe. */
4470	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
 
 
4471		goto out_of_window;
4472
4473	tcp_enter_quickack_mode(sk);
4474
4475	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4476		/* Partial packet, seq < rcv_next < end_seq */
4477		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4478			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4479			   TCP_SKB_CB(skb)->end_seq);
4480
4481		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4482
4483		/* If window is closed, drop tail of packet. But after
4484		 * remembering D-SACK for its head made in previous line.
4485		 */
4486		if (!tcp_receive_window(tp))
 
 
4487			goto out_of_window;
 
4488		goto queue_and_out;
4489	}
4490
4491	TCP_ECN_check_ce(tp, skb);
 
4492
4493	if (tcp_try_rmem_schedule(sk, skb->truesize))
4494		goto drop;
4495
4496	/* Disable header prediction. */
4497	tp->pred_flags = 0;
4498	inet_csk_schedule_ack(sk);
4499
4500	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4501		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4502
4503	skb_set_owner_r(skb, sk);
4504
4505	if (!skb_peek(&tp->out_of_order_queue)) {
4506		/* Initial out of order segment, build 1 SACK. */
4507		if (tcp_is_sack(tp)) {
4508			tp->rx_opt.num_sacks = 1;
4509			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4510			tp->selective_acks[0].end_seq =
4511						TCP_SKB_CB(skb)->end_seq;
4512		}
4513		__skb_queue_head(&tp->out_of_order_queue, skb);
4514	} else {
4515		struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4516		u32 seq = TCP_SKB_CB(skb)->seq;
4517		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4518
4519		if (seq == TCP_SKB_CB(skb1)->end_seq) {
4520			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4521
4522			if (!tp->rx_opt.num_sacks ||
4523			    tp->selective_acks[0].end_seq != seq)
4524				goto add_sack;
4525
4526			/* Common case: data arrive in order after hole. */
4527			tp->selective_acks[0].end_seq = end_seq;
4528			return;
4529		}
4530
4531		/* Find place to insert this segment. */
4532		while (1) {
4533			if (!after(TCP_SKB_CB(skb1)->seq, seq))
4534				break;
4535			if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4536				skb1 = NULL;
4537				break;
4538			}
4539			skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4540		}
4541
4542		/* Do skb overlap to previous one? */
4543		if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4544			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4545				/* All the bits are present. Drop. */
4546				__kfree_skb(skb);
4547				tcp_dsack_set(sk, seq, end_seq);
4548				goto add_sack;
4549			}
4550			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4551				/* Partial overlap. */
4552				tcp_dsack_set(sk, seq,
4553					      TCP_SKB_CB(skb1)->end_seq);
4554			} else {
4555				if (skb_queue_is_first(&tp->out_of_order_queue,
4556						       skb1))
4557					skb1 = NULL;
4558				else
4559					skb1 = skb_queue_prev(
4560						&tp->out_of_order_queue,
4561						skb1);
4562			}
4563		}
4564		if (!skb1)
4565			__skb_queue_head(&tp->out_of_order_queue, skb);
4566		else
4567			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4568
4569		/* And clean segments covered by new one as whole. */
4570		while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4571			skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4572
4573			if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4574				break;
4575			if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4576				tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4577						 end_seq);
4578				break;
4579			}
4580			__skb_unlink(skb1, &tp->out_of_order_queue);
4581			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4582					 TCP_SKB_CB(skb1)->end_seq);
4583			__kfree_skb(skb1);
4584		}
4585
4586add_sack:
4587		if (tcp_is_sack(tp))
4588			tcp_sack_new_ofo_skb(sk, seq, end_seq);
4589	}
4590}
4591
4592static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4593					struct sk_buff_head *list)
 
4594{
4595	struct sk_buff *next = NULL;
4596
4597	if (!skb_queue_is_last(list, skb))
4598		next = skb_queue_next(list, skb);
 
 
4599
4600	__skb_unlink(skb, list);
4601	__kfree_skb(skb);
4602	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4603
4604	return next;
4605}
4606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4607/* Collapse contiguous sequence of skbs head..tail with
4608 * sequence numbers start..end.
4609 *
4610 * If tail is NULL, this means until the end of the list.
4611 *
4612 * Segments with FIN/SYN are not collapsed (only because this
4613 * simplifies code)
4614 */
4615static void
4616tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4617	     struct sk_buff *head, struct sk_buff *tail,
4618	     u32 start, u32 end)
4619{
4620	struct sk_buff *skb, *n;
 
4621	bool end_of_skbs;
4622
4623	/* First, check that queue is collapsible and find
4624	 * the point where collapsing can be useful. */
4625	skb = head;
4626restart:
4627	end_of_skbs = true;
4628	skb_queue_walk_from_safe(list, skb, n) {
4629		if (skb == tail)
4630			break;
4631		/* No new bits? It is possible on ofo queue. */
4632		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4633			skb = tcp_collapse_one(sk, skb, list);
4634			if (!skb)
4635				break;
4636			goto restart;
4637		}
4638
4639		/* The first skb to collapse is:
4640		 * - not SYN/FIN and
4641		 * - bloated or contains data before "start" or
4642		 *   overlaps to the next one.
4643		 */
4644		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4645		    (tcp_win_from_space(skb->truesize) > skb->len ||
4646		     before(TCP_SKB_CB(skb)->seq, start))) {
4647			end_of_skbs = false;
4648			break;
4649		}
4650
4651		if (!skb_queue_is_last(list, skb)) {
4652			struct sk_buff *next = skb_queue_next(list, skb);
4653			if (next != tail &&
4654			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4655				end_of_skbs = false;
4656				break;
4657			}
4658		}
4659
4660		/* Decided to skip this, advance start seq. */
4661		start = TCP_SKB_CB(skb)->end_seq;
4662	}
4663	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
 
4664		return;
4665
 
 
4666	while (before(start, end)) {
 
4667		struct sk_buff *nskb;
4668		unsigned int header = skb_headroom(skb);
4669		int copy = SKB_MAX_ORDER(header, 0);
4670
4671		/* Too big header? This can happen with IPv6. */
4672		if (copy < 0)
4673			return;
4674		if (end - start < copy)
4675			copy = end - start;
4676		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4677		if (!nskb)
4678			return;
4679
4680		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4681		skb_set_network_header(nskb, (skb_network_header(skb) -
4682					      skb->head));
4683		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4684						skb->head));
4685		skb_reserve(nskb, header);
4686		memcpy(nskb->head, skb->head, header);
4687		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
 
 
 
4688		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4689		__skb_queue_before(list, skb, nskb);
 
 
 
4690		skb_set_owner_r(nskb, sk);
 
4691
4692		/* Copy data, releasing collapsed skbs. */
4693		while (copy > 0) {
4694			int offset = start - TCP_SKB_CB(skb)->seq;
4695			int size = TCP_SKB_CB(skb)->end_seq - start;
4696
4697			BUG_ON(offset < 0);
4698			if (size > 0) {
4699				size = min(copy, size);
4700				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4701					BUG();
4702				TCP_SKB_CB(nskb)->end_seq += size;
4703				copy -= size;
4704				start += size;
4705			}
4706			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4707				skb = tcp_collapse_one(sk, skb, list);
4708				if (!skb ||
4709				    skb == tail ||
4710				    tcp_hdr(skb)->syn ||
4711				    tcp_hdr(skb)->fin)
4712					return;
 
 
 
 
4713			}
4714		}
4715	}
 
 
 
4716}
4717
4718/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4719 * and tcp_collapse() them until all the queue is collapsed.
4720 */
4721static void tcp_collapse_ofo_queue(struct sock *sk)
4722{
4723	struct tcp_sock *tp = tcp_sk(sk);
4724	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4725	struct sk_buff *head;
4726	u32 start, end;
4727
4728	if (skb == NULL)
 
 
 
4729		return;
4730
4731	start = TCP_SKB_CB(skb)->seq;
4732	end = TCP_SKB_CB(skb)->end_seq;
4733	head = skb;
4734
4735	for (;;) {
4736		struct sk_buff *next = NULL;
4737
4738		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4739			next = skb_queue_next(&tp->out_of_order_queue, skb);
4740		skb = next;
4741
4742		/* Segment is terminated when we see gap or when
4743		 * we are at the end of all the queue. */
4744		if (!skb ||
4745		    after(TCP_SKB_CB(skb)->seq, end) ||
4746		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4747			tcp_collapse(sk, &tp->out_of_order_queue,
4748				     head, skb, start, end);
4749			head = skb;
4750			if (!skb)
4751				break;
4752			/* Start new segment */
 
 
 
 
 
 
 
 
 
4753			start = TCP_SKB_CB(skb)->seq;
 
4754			end = TCP_SKB_CB(skb)->end_seq;
4755		} else {
4756			if (before(TCP_SKB_CB(skb)->seq, start))
4757				start = TCP_SKB_CB(skb)->seq;
4758			if (after(TCP_SKB_CB(skb)->end_seq, end))
4759				end = TCP_SKB_CB(skb)->end_seq;
4760		}
4761	}
4762}
4763
4764/*
4765 * Purge the out-of-order queue.
4766 * Return true if queue was pruned.
 
 
 
 
 
 
 
 
 
4767 */
4768static int tcp_prune_ofo_queue(struct sock *sk)
4769{
4770	struct tcp_sock *tp = tcp_sk(sk);
4771	int res = 0;
 
 
4772
4773	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4774		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4775		__skb_queue_purge(&tp->out_of_order_queue);
4776
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4777		/* Reset SACK state.  A conforming SACK implementation will
4778		 * do the same at a timeout based retransmit.  When a connection
4779		 * is in a sad state like this, we care only about integrity
4780		 * of the connection not performance.
4781		 */
4782		if (tp->rx_opt.sack_ok)
4783			tcp_sack_reset(&tp->rx_opt);
4784		sk_mem_reclaim(sk);
4785		res = 1;
4786	}
4787	return res;
4788}
4789
4790/* Reduce allocated memory if we can, trying to get
4791 * the socket within its memory limits again.
4792 *
4793 * Return less than zero if we should start dropping frames
4794 * until the socket owning process reads some of the data
4795 * to stabilize the situation.
4796 */
4797static int tcp_prune_queue(struct sock *sk)
4798{
4799	struct tcp_sock *tp = tcp_sk(sk);
4800
4801	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4802
4803	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4804
4805	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4806		tcp_clamp_window(sk);
4807	else if (tcp_memory_pressure)
4808		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
 
 
 
4809
4810	tcp_collapse_ofo_queue(sk);
4811	if (!skb_queue_empty(&sk->sk_receive_queue))
4812		tcp_collapse(sk, &sk->sk_receive_queue,
4813			     skb_peek(&sk->sk_receive_queue),
4814			     NULL,
4815			     tp->copied_seq, tp->rcv_nxt);
4816	sk_mem_reclaim(sk);
4817
4818	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4819		return 0;
4820
4821	/* Collapsing did not help, destructive actions follow.
4822	 * This must not ever occur. */
4823
4824	tcp_prune_ofo_queue(sk);
4825
4826	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4827		return 0;
4828
4829	/* If we are really being abused, tell the caller to silently
4830	 * drop receive data on the floor.  It will get retransmitted
4831	 * and hopefully then we'll have sufficient space.
4832	 */
4833	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4834
4835	/* Massive buffer overcommit. */
4836	tp->pred_flags = 0;
4837	return -1;
4838}
4839
4840/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4841 * As additional protections, we do not touch cwnd in retransmission phases,
4842 * and if application hit its sndbuf limit recently.
4843 */
4844void tcp_cwnd_application_limited(struct sock *sk)
4845{
4846	struct tcp_sock *tp = tcp_sk(sk);
4847
4848	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4849	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4850		/* Limited by application or receiver window. */
4851		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4852		u32 win_used = max(tp->snd_cwnd_used, init_win);
4853		if (win_used < tp->snd_cwnd) {
4854			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4855			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4856		}
4857		tp->snd_cwnd_used = 0;
4858	}
4859	tp->snd_cwnd_stamp = tcp_time_stamp;
4860}
4861
4862static int tcp_should_expand_sndbuf(struct sock *sk)
4863{
4864	struct tcp_sock *tp = tcp_sk(sk);
4865
4866	/* If the user specified a specific send buffer setting, do
4867	 * not modify it.
4868	 */
4869	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4870		return 0;
4871
4872	/* If we are under global TCP memory pressure, do not expand.  */
4873	if (tcp_memory_pressure)
4874		return 0;
 
 
 
 
 
 
 
 
 
 
4875
4876	/* If we are under soft global TCP memory pressure, do not expand.  */
4877	if (atomic_long_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4878		return 0;
4879
4880	/* If we filled the congestion window, do not expand.  */
4881	if (tp->packets_out >= tp->snd_cwnd)
4882		return 0;
4883
4884	return 1;
4885}
4886
4887/* When incoming ACK allowed to free some skb from write_queue,
4888 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4889 * on the exit from tcp input handler.
4890 *
4891 * PROBLEM: sndbuf expansion does not work well with largesend.
4892 */
4893static void tcp_new_space(struct sock *sk)
4894{
4895	struct tcp_sock *tp = tcp_sk(sk);
4896
4897	if (tcp_should_expand_sndbuf(sk)) {
4898		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4899			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4900		int demanded = max_t(unsigned int, tp->snd_cwnd,
4901				     tp->reordering + 1);
4902		sndmem *= 2 * demanded;
4903		if (sndmem > sk->sk_sndbuf)
4904			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4905		tp->snd_cwnd_stamp = tcp_time_stamp;
4906	}
4907
4908	sk->sk_write_space(sk);
4909}
4910
4911static void tcp_check_space(struct sock *sk)
4912{
4913	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4914		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4915		if (sk->sk_socket &&
4916		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4917			tcp_new_space(sk);
 
 
 
 
 
 
4918	}
4919}
4920
4921static inline void tcp_data_snd_check(struct sock *sk)
4922{
4923	tcp_push_pending_frames(sk);
4924	tcp_check_space(sk);
4925}
4926
4927/*
4928 * Check if sending an ack is needed.
4929 */
4930static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4931{
4932	struct tcp_sock *tp = tcp_sk(sk);
 
4933
4934	    /* More than one full frame received... */
4935	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4936	     /* ... and right edge of window advances far enough.
4937	      * (tcp_recvmsg() will send ACK otherwise). Or...
 
 
4938	      */
4939	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
 
4940	    /* We ACK each frame or... */
4941	    tcp_in_quickack_mode(sk) ||
4942	    /* We have out of order data. */
4943	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4944		/* Then ack it now */
4945		tcp_send_ack(sk);
4946	} else {
4947		/* Else, send delayed ack. */
 
 
4948		tcp_send_delayed_ack(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4949	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4950}
4951
4952static inline void tcp_ack_snd_check(struct sock *sk)
4953{
4954	if (!inet_csk_ack_scheduled(sk)) {
4955		/* We sent a data segment already. */
4956		return;
4957	}
4958	__tcp_ack_snd_check(sk, 1);
4959}
4960
4961/*
4962 *	This routine is only called when we have urgent data
4963 *	signaled. Its the 'slow' part of tcp_urg. It could be
4964 *	moved inline now as tcp_urg is only called from one
4965 *	place. We handle URGent data wrong. We have to - as
4966 *	BSD still doesn't use the correction from RFC961.
4967 *	For 1003.1g we should support a new option TCP_STDURG to permit
4968 *	either form (or just set the sysctl tcp_stdurg).
4969 */
4970
4971static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4972{
4973	struct tcp_sock *tp = tcp_sk(sk);
4974	u32 ptr = ntohs(th->urg_ptr);
4975
4976	if (ptr && !sysctl_tcp_stdurg)
4977		ptr--;
4978	ptr += ntohl(th->seq);
4979
4980	/* Ignore urgent data that we've already seen and read. */
4981	if (after(tp->copied_seq, ptr))
4982		return;
4983
4984	/* Do not replay urg ptr.
4985	 *
4986	 * NOTE: interesting situation not covered by specs.
4987	 * Misbehaving sender may send urg ptr, pointing to segment,
4988	 * which we already have in ofo queue. We are not able to fetch
4989	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4990	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4991	 * situations. But it is worth to think about possibility of some
4992	 * DoSes using some hypothetical application level deadlock.
4993	 */
4994	if (before(ptr, tp->rcv_nxt))
4995		return;
4996
4997	/* Do we already have a newer (or duplicate) urgent pointer? */
4998	if (tp->urg_data && !after(ptr, tp->urg_seq))
4999		return;
5000
5001	/* Tell the world about our new urgent pointer. */
5002	sk_send_sigurg(sk);
5003
5004	/* We may be adding urgent data when the last byte read was
5005	 * urgent. To do this requires some care. We cannot just ignore
5006	 * tp->copied_seq since we would read the last urgent byte again
5007	 * as data, nor can we alter copied_seq until this data arrives
5008	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5009	 *
5010	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5011	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5012	 * and expect that both A and B disappear from stream. This is _wrong_.
5013	 * Though this happens in BSD with high probability, this is occasional.
5014	 * Any application relying on this is buggy. Note also, that fix "works"
5015	 * only in this artificial test. Insert some normal data between A and B and we will
5016	 * decline of BSD again. Verdict: it is better to remove to trap
5017	 * buggy users.
5018	 */
5019	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5020	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5021		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5022		tp->copied_seq++;
5023		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5024			__skb_unlink(skb, &sk->sk_receive_queue);
5025			__kfree_skb(skb);
5026		}
5027	}
5028
5029	tp->urg_data = TCP_URG_NOTYET;
5030	tp->urg_seq = ptr;
5031
5032	/* Disable header prediction. */
5033	tp->pred_flags = 0;
5034}
5035
5036/* This is the 'fast' part of urgent handling. */
5037static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
5038{
5039	struct tcp_sock *tp = tcp_sk(sk);
5040
5041	/* Check if we get a new urgent pointer - normally not. */
5042	if (th->urg)
5043		tcp_check_urg(sk, th);
5044
5045	/* Do we wait for any urgent data? - normally not... */
5046	if (tp->urg_data == TCP_URG_NOTYET) {
5047		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5048			  th->syn;
5049
5050		/* Is the urgent pointer pointing into this packet? */
5051		if (ptr < skb->len) {
5052			u8 tmp;
5053			if (skb_copy_bits(skb, ptr, &tmp, 1))
5054				BUG();
5055			tp->urg_data = TCP_URG_VALID | tmp;
5056			if (!sock_flag(sk, SOCK_DEAD))
5057				sk->sk_data_ready(sk, 0);
5058		}
5059	}
5060}
5061
5062static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5063{
5064	struct tcp_sock *tp = tcp_sk(sk);
5065	int chunk = skb->len - hlen;
5066	int err;
5067
5068	local_bh_enable();
5069	if (skb_csum_unnecessary(skb))
5070		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5071	else
5072		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5073						       tp->ucopy.iov);
5074
5075	if (!err) {
5076		tp->ucopy.len -= chunk;
5077		tp->copied_seq += chunk;
5078		tcp_rcv_space_adjust(sk);
5079	}
5080
5081	local_bh_disable();
5082	return err;
5083}
5084
5085static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5086					    struct sk_buff *skb)
5087{
5088	__sum16 result;
5089
5090	if (sock_owned_by_user(sk)) {
5091		local_bh_enable();
5092		result = __tcp_checksum_complete(skb);
5093		local_bh_disable();
5094	} else {
5095		result = __tcp_checksum_complete(skb);
5096	}
5097	return result;
5098}
5099
5100static inline int tcp_checksum_complete_user(struct sock *sk,
5101					     struct sk_buff *skb)
5102{
5103	return !skb_csum_unnecessary(skb) &&
5104	       __tcp_checksum_complete_user(sk, skb);
5105}
5106
5107#ifdef CONFIG_NET_DMA
5108static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5109				  int hlen)
5110{
5111	struct tcp_sock *tp = tcp_sk(sk);
5112	int chunk = skb->len - hlen;
5113	int dma_cookie;
5114	int copied_early = 0;
5115
5116	if (tp->ucopy.wakeup)
5117		return 0;
5118
5119	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5120		tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5121
5122	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5123
5124		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5125							 skb, hlen,
5126							 tp->ucopy.iov, chunk,
5127							 tp->ucopy.pinned_list);
5128
5129		if (dma_cookie < 0)
5130			goto out;
5131
5132		tp->ucopy.dma_cookie = dma_cookie;
5133		copied_early = 1;
5134
5135		tp->ucopy.len -= chunk;
5136		tp->copied_seq += chunk;
5137		tcp_rcv_space_adjust(sk);
5138
5139		if ((tp->ucopy.len == 0) ||
5140		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5141		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5142			tp->ucopy.wakeup = 1;
5143			sk->sk_data_ready(sk, 0);
5144		}
5145	} else if (chunk > 0) {
5146		tp->ucopy.wakeup = 1;
5147		sk->sk_data_ready(sk, 0);
5148	}
5149out:
5150	return copied_early;
5151}
5152#endif /* CONFIG_NET_DMA */
5153
5154/* Does PAWS and seqno based validation of an incoming segment, flags will
5155 * play significant role here.
5156 */
5157static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5158			      struct tcphdr *th, int syn_inerr)
5159{
5160	u8 *hash_location;
5161	struct tcp_sock *tp = tcp_sk(sk);
 
5162
5163	/* RFC1323: H1. Apply PAWS check first. */
5164	if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5165	    tp->rx_opt.saw_tstamp &&
5166	    tcp_paws_discard(sk, skb)) {
5167		if (!th->rst) {
5168			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5169			tcp_send_dupack(sk, skb);
 
 
 
 
5170			goto discard;
5171		}
5172		/* Reset is accepted even if it did not pass PAWS. */
5173	}
5174
5175	/* Step 1: check sequence number */
5176	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5177		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5178		 * (RST) segments are validated by checking their SEQ-fields."
5179		 * And page 69: "If an incoming segment is not acceptable,
5180		 * an acknowledgment should be sent in reply (unless the RST
5181		 * bit is set, if so drop the segment and return)".
5182		 */
5183		if (!th->rst)
5184			tcp_send_dupack(sk, skb);
 
 
 
 
 
 
 
 
 
5185		goto discard;
5186	}
5187
5188	/* Step 2: check RST bit */
5189	if (th->rst) {
5190		tcp_reset(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5191		goto discard;
5192	}
5193
5194	/* ts_recent update must be made after we are sure that the packet
5195	 * is in window.
5196	 */
5197	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5198
5199	/* step 3: check security and precedence [ignored] */
5200
5201	/* step 4: Check for a SYN in window. */
5202	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
 
 
 
5203		if (syn_inerr)
5204			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5205		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5206		tcp_reset(sk);
5207		return -1;
 
5208	}
5209
5210	return 1;
 
 
5211
5212discard:
 
 
 
 
 
5213	__kfree_skb(skb);
5214	return 0;
5215}
5216
5217/*
5218 *	TCP receive function for the ESTABLISHED state.
5219 *
5220 *	It is split into a fast path and a slow path. The fast path is
5221 * 	disabled when:
5222 *	- A zero window was announced from us - zero window probing
5223 *        is only handled properly in the slow path.
5224 *	- Out of order segments arrived.
5225 *	- Urgent data is expected.
5226 *	- There is no buffer space left
5227 *	- Unexpected TCP flags/window values/header lengths are received
5228 *	  (detected by checking the TCP header against pred_flags)
5229 *	- Data is sent in both directions. Fast path only supports pure senders
5230 *	  or pure receivers (this means either the sequence number or the ack
5231 *	  value must stay constant)
5232 *	- Unexpected TCP option.
5233 *
5234 *	When these conditions are not satisfied it drops into a standard
5235 *	receive procedure patterned after RFC793 to handle all cases.
5236 *	The first three cases are guaranteed by proper pred_flags setting,
5237 *	the rest is checked inline. Fast processing is turned on in
5238 *	tcp_data_queue when everything is OK.
5239 */
5240int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5241			struct tcphdr *th, unsigned len)
5242{
 
 
5243	struct tcp_sock *tp = tcp_sk(sk);
5244	int res;
 
 
 
5245
 
 
 
5246	/*
5247	 *	Header prediction.
5248	 *	The code loosely follows the one in the famous
5249	 *	"30 instruction TCP receive" Van Jacobson mail.
5250	 *
5251	 *	Van's trick is to deposit buffers into socket queue
5252	 *	on a device interrupt, to call tcp_recv function
5253	 *	on the receive process context and checksum and copy
5254	 *	the buffer to user space. smart...
5255	 *
5256	 *	Our current scheme is not silly either but we take the
5257	 *	extra cost of the net_bh soft interrupt processing...
5258	 *	We do checksum and copy also but from device to kernel.
5259	 */
5260
5261	tp->rx_opt.saw_tstamp = 0;
5262
5263	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5264	 *	if header_prediction is to be made
5265	 *	'S' will always be tp->tcp_header_len >> 2
5266	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5267	 *  turn it off	(when there are holes in the receive
5268	 *	 space for instance)
5269	 *	PSH flag is ignored.
5270	 */
5271
5272	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5273	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5274	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5275		int tcp_header_len = tp->tcp_header_len;
5276
5277		/* Timestamp header prediction: tcp_header_len
5278		 * is automatically equal to th->doff*4 due to pred_flags
5279		 * match.
5280		 */
5281
5282		/* Check timestamp */
5283		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5284			/* No? Slow path! */
5285			if (!tcp_parse_aligned_timestamp(tp, th))
5286				goto slow_path;
5287
5288			/* If PAWS failed, check it more carefully in slow path */
5289			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5290				goto slow_path;
5291
5292			/* DO NOT update ts_recent here, if checksum fails
5293			 * and timestamp was corrupted part, it will result
5294			 * in a hung connection since we will drop all
5295			 * future packets due to the PAWS test.
5296			 */
5297		}
5298
5299		if (len <= tcp_header_len) {
5300			/* Bulk data transfer: sender */
5301			if (len == tcp_header_len) {
5302				/* Predicted packet is in window by definition.
5303				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5304				 * Hence, check seq<=rcv_wup reduces to:
5305				 */
5306				if (tcp_header_len ==
5307				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5308				    tp->rcv_nxt == tp->rcv_wup)
5309					tcp_store_ts_recent(tp);
5310
5311				/* We know that such packets are checksummed
5312				 * on entry.
5313				 */
5314				tcp_ack(sk, skb, 0);
5315				__kfree_skb(skb);
5316				tcp_data_snd_check(sk);
5317				return 0;
 
 
 
 
 
5318			} else { /* Header too small */
5319				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
 
5320				goto discard;
5321			}
5322		} else {
5323			int eaten = 0;
5324			int copied_early = 0;
5325
5326			if (tp->copied_seq == tp->rcv_nxt &&
5327			    len - tcp_header_len <= tp->ucopy.len) {
5328#ifdef CONFIG_NET_DMA
5329				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5330					copied_early = 1;
5331					eaten = 1;
5332				}
5333#endif
5334				if (tp->ucopy.task == current &&
5335				    sock_owned_by_user(sk) && !copied_early) {
5336					__set_current_state(TASK_RUNNING);
5337
5338					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5339						eaten = 1;
5340				}
5341				if (eaten) {
5342					/* Predicted packet is in window by definition.
5343					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5344					 * Hence, check seq<=rcv_wup reduces to:
5345					 */
5346					if (tcp_header_len ==
5347					    (sizeof(struct tcphdr) +
5348					     TCPOLEN_TSTAMP_ALIGNED) &&
5349					    tp->rcv_nxt == tp->rcv_wup)
5350						tcp_store_ts_recent(tp);
5351
5352					tcp_rcv_rtt_measure_ts(sk, skb);
5353
5354					__skb_pull(skb, tcp_header_len);
5355					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5356					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5357				}
5358				if (copied_early)
5359					tcp_cleanup_rbuf(sk, skb->len);
5360			}
5361			if (!eaten) {
5362				if (tcp_checksum_complete_user(sk, skb))
5363					goto csum_error;
5364
5365				/* Predicted packet is in window by definition.
5366				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5367				 * Hence, check seq<=rcv_wup reduces to:
5368				 */
5369				if (tcp_header_len ==
5370				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5371				    tp->rcv_nxt == tp->rcv_wup)
5372					tcp_store_ts_recent(tp);
5373
5374				tcp_rcv_rtt_measure_ts(sk, skb);
5375
5376				if ((int)skb->truesize > sk->sk_forward_alloc)
5377					goto step5;
5378
5379				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5380
5381				/* Bulk data transfer: receiver */
5382				__skb_pull(skb, tcp_header_len);
5383				__skb_queue_tail(&sk->sk_receive_queue, skb);
5384				skb_set_owner_r(skb, sk);
5385				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5386			}
 
 
 
 
5387
5388			tcp_event_data_recv(sk, skb);
5389
5390			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5391				/* Well, only one small jumplet in fast path... */
5392				tcp_ack(sk, skb, FLAG_DATA);
5393				tcp_data_snd_check(sk);
5394				if (!inet_csk_ack_scheduled(sk))
5395					goto no_ack;
 
 
5396			}
5397
5398			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5399				__tcp_ack_snd_check(sk, 0);
5400no_ack:
5401#ifdef CONFIG_NET_DMA
5402			if (copied_early)
5403				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5404			else
5405#endif
5406			if (eaten)
5407				__kfree_skb(skb);
5408			else
5409				sk->sk_data_ready(sk, 0);
5410			return 0;
5411		}
5412	}
5413
5414slow_path:
5415	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5416		goto csum_error;
5417
 
 
 
 
 
5418	/*
5419	 *	Standard slow path.
5420	 */
5421
5422	res = tcp_validate_incoming(sk, skb, th, 1);
5423	if (res <= 0)
5424		return -res;
5425
5426step5:
5427	if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
 
 
5428		goto discard;
5429
5430	tcp_rcv_rtt_measure_ts(sk, skb);
5431
5432	/* Process urgent data. */
5433	tcp_urg(sk, skb, th);
5434
5435	/* step 7: process the segment text */
5436	tcp_data_queue(sk, skb);
5437
5438	tcp_data_snd_check(sk);
5439	tcp_ack_snd_check(sk);
5440	return 0;
5441
5442csum_error:
5443	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
 
 
 
5444
5445discard:
5446	__kfree_skb(skb);
5447	return 0;
5448}
5449EXPORT_SYMBOL(tcp_rcv_established);
5450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5451static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5452					 struct tcphdr *th, unsigned len)
5453{
5454	u8 *hash_location;
5455	struct inet_connection_sock *icsk = inet_csk(sk);
5456	struct tcp_sock *tp = tcp_sk(sk);
5457	struct tcp_cookie_values *cvp = tp->cookie_values;
5458	int saved_clamp = tp->rx_opt.mss_clamp;
 
 
5459
5460	tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
 
 
5461
5462	if (th->ack) {
5463		/* rfc793:
5464		 * "If the state is SYN-SENT then
5465		 *    first check the ACK bit
5466		 *      If the ACK bit is set
5467		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5468		 *        a reset (unless the RST bit is set, if so drop
5469		 *        the segment and return)"
5470		 *
5471		 *  We do not send data with SYN, so that RFC-correct
5472		 *  test reduces to:
5473		 */
5474		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
 
 
 
 
 
 
5475			goto reset_and_undo;
 
5476
5477		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5478		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5479			     tcp_time_stamp)) {
5480			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
 
5481			goto reset_and_undo;
5482		}
5483
5484		/* Now ACK is acceptable.
5485		 *
5486		 * "If the RST bit is set
5487		 *    If the ACK was acceptable then signal the user "error:
5488		 *    connection reset", drop the segment, enter CLOSED state,
5489		 *    delete TCB, and return."
5490		 */
5491
5492		if (th->rst) {
5493			tcp_reset(sk);
5494			goto discard;
 
 
5495		}
5496
5497		/* rfc793:
5498		 *   "fifth, if neither of the SYN or RST bits is set then
5499		 *    drop the segment and return."
5500		 *
5501		 *    See note below!
5502		 *                                        --ANK(990513)
5503		 */
5504		if (!th->syn)
 
5505			goto discard_and_undo;
5506
5507		/* rfc793:
5508		 *   "If the SYN bit is on ...
5509		 *    are acceptable then ...
5510		 *    (our SYN has been ACKed), change the connection
5511		 *    state to ESTABLISHED..."
5512		 */
5513
5514		TCP_ECN_rcv_synack(tp, th);
5515
5516		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
 
5517		tcp_ack(sk, skb, FLAG_SLOWPATH);
5518
5519		/* Ok.. it's good. Set up sequence numbers and
5520		 * move to established.
5521		 */
5522		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5523		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5524
5525		/* RFC1323: The window in SYN & SYN/ACK segments is
5526		 * never scaled.
5527		 */
5528		tp->snd_wnd = ntohs(th->window);
5529		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5530
5531		if (!tp->rx_opt.wscale_ok) {
5532			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5533			tp->window_clamp = min(tp->window_clamp, 65535U);
5534		}
5535
5536		if (tp->rx_opt.saw_tstamp) {
5537			tp->rx_opt.tstamp_ok	   = 1;
5538			tp->tcp_header_len =
5539				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5540			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5541			tcp_store_ts_recent(tp);
5542		} else {
5543			tp->tcp_header_len = sizeof(struct tcphdr);
5544		}
5545
5546		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5547			tcp_enable_fack(tp);
5548
5549		tcp_mtup_init(sk);
5550		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5551		tcp_initialize_rcv_mss(sk);
5552
5553		/* Remember, tcp_poll() does not lock socket!
5554		 * Change state from SYN-SENT only after copied_seq
5555		 * is initialized. */
5556		tp->copied_seq = tp->rcv_nxt;
5557
5558		if (cvp != NULL &&
5559		    cvp->cookie_pair_size > 0 &&
5560		    tp->rx_opt.cookie_plus > 0) {
5561			int cookie_size = tp->rx_opt.cookie_plus
5562					- TCPOLEN_COOKIE_BASE;
5563			int cookie_pair_size = cookie_size
5564					     + cvp->cookie_desired;
5565
5566			/* A cookie extension option was sent and returned.
5567			 * Note that each incoming SYNACK replaces the
5568			 * Responder cookie.  The initial exchange is most
5569			 * fragile, as protection against spoofing relies
5570			 * entirely upon the sequence and timestamp (above).
5571			 * This replacement strategy allows the correct pair to
5572			 * pass through, while any others will be filtered via
5573			 * Responder verification later.
5574			 */
5575			if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5576				memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5577				       hash_location, cookie_size);
5578				cvp->cookie_pair_size = cookie_pair_size;
5579			}
5580		}
5581
5582		smp_mb();
5583		tcp_set_state(sk, TCP_ESTABLISHED);
5584
5585		security_inet_conn_established(sk, skb);
5586
5587		/* Make sure socket is routed, for correct metrics.  */
5588		icsk->icsk_af_ops->rebuild_header(sk);
5589
5590		tcp_init_metrics(sk);
5591
5592		tcp_init_congestion_control(sk);
5593
5594		/* Prevent spurious tcp_cwnd_restart() on first data
5595		 * packet.
5596		 */
5597		tp->lsndtime = tcp_time_stamp;
5598
5599		tcp_init_buffer_space(sk);
5600
5601		if (sock_flag(sk, SOCK_KEEPOPEN))
5602			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5603
5604		if (!tp->rx_opt.snd_wscale)
5605			__tcp_fast_path_on(tp, tp->snd_wnd);
5606		else
5607			tp->pred_flags = 0;
5608
5609		if (!sock_flag(sk, SOCK_DEAD)) {
5610			sk->sk_state_change(sk);
5611			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5612		}
5613
 
5614		if (sk->sk_write_pending ||
5615		    icsk->icsk_accept_queue.rskq_defer_accept ||
5616		    icsk->icsk_ack.pingpong) {
5617			/* Save one ACK. Data will be ready after
5618			 * several ticks, if write_pending is set.
5619			 *
5620			 * It may be deleted, but with this feature tcpdumps
5621			 * look so _wonderfully_ clever, that I was not able
5622			 * to stand against the temptation 8)     --ANK
5623			 */
5624			inet_csk_schedule_ack(sk);
5625			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5626			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
5627			tcp_incr_quickack(sk);
5628			tcp_enter_quickack_mode(sk);
5629			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5630						  TCP_DELACK_MAX, TCP_RTO_MAX);
5631
5632discard:
5633			__kfree_skb(skb);
5634			return 0;
5635		} else {
5636			tcp_send_ack(sk);
5637		}
 
5638		return -1;
5639	}
5640
5641	/* No ACK in the segment */
5642
5643	if (th->rst) {
5644		/* rfc793:
5645		 * "If the RST bit is set
5646		 *
5647		 *      Otherwise (no ACK) drop the segment and return."
5648		 */
5649
5650		goto discard_and_undo;
5651	}
5652
5653	/* PAWS check. */
5654	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5655	    tcp_paws_reject(&tp->rx_opt, 0))
 
5656		goto discard_and_undo;
5657
5658	if (th->syn) {
5659		/* We see SYN without ACK. It is attempt of
5660		 * simultaneous connect with crossed SYNs.
5661		 * Particularly, it can be connect to self.
5662		 */
5663		tcp_set_state(sk, TCP_SYN_RECV);
5664
5665		if (tp->rx_opt.saw_tstamp) {
5666			tp->rx_opt.tstamp_ok = 1;
5667			tcp_store_ts_recent(tp);
5668			tp->tcp_header_len =
5669				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5670		} else {
5671			tp->tcp_header_len = sizeof(struct tcphdr);
5672		}
5673
5674		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
 
5675		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5676
5677		/* RFC1323: The window in SYN & SYN/ACK segments is
5678		 * never scaled.
5679		 */
5680		tp->snd_wnd    = ntohs(th->window);
5681		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5682		tp->max_window = tp->snd_wnd;
5683
5684		TCP_ECN_rcv_syn(tp, th);
5685
5686		tcp_mtup_init(sk);
5687		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5688		tcp_initialize_rcv_mss(sk);
5689
5690		tcp_send_synack(sk);
5691#if 0
5692		/* Note, we could accept data and URG from this segment.
5693		 * There are no obstacles to make this.
 
 
5694		 *
5695		 * However, if we ignore data in ACKless segments sometimes,
5696		 * we have no reasons to accept it sometimes.
5697		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5698		 * is not flawless. So, discard packet for sanity.
5699		 * Uncomment this return to process the data.
5700		 */
5701		return -1;
5702#else
5703		goto discard;
5704#endif
5705	}
5706	/* "fifth, if neither of the SYN or RST bits is set then
5707	 * drop the segment and return."
5708	 */
5709
5710discard_and_undo:
5711	tcp_clear_options(&tp->rx_opt);
5712	tp->rx_opt.mss_clamp = saved_clamp;
5713	goto discard;
 
5714
5715reset_and_undo:
5716	tcp_clear_options(&tp->rx_opt);
5717	tp->rx_opt.mss_clamp = saved_clamp;
5718	return 1;
5719}
5720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5721/*
5722 *	This function implements the receiving procedure of RFC 793 for
5723 *	all states except ESTABLISHED and TIME_WAIT.
5724 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5725 *	address independent.
5726 */
5727
5728int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5729			  struct tcphdr *th, unsigned len)
5730{
5731	struct tcp_sock *tp = tcp_sk(sk);
5732	struct inet_connection_sock *icsk = inet_csk(sk);
 
 
5733	int queued = 0;
5734	int res;
5735
5736	tp->rx_opt.saw_tstamp = 0;
5737
5738	switch (sk->sk_state) {
5739	case TCP_CLOSE:
 
5740		goto discard;
5741
5742	case TCP_LISTEN:
5743		if (th->ack)
5744			return 1;
5745
5746		if (th->rst)
 
5747			goto discard;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5748
5749		if (th->syn) {
5750			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5751				return 1;
5752
5753			/* Now we have several options: In theory there is
5754			 * nothing else in the frame. KA9Q has an option to
5755			 * send data with the syn, BSD accepts data with the
5756			 * syn up to the [to be] advertised window and
5757			 * Solaris 2.1 gives you a protocol error. For now
5758			 * we just ignore it, that fits the spec precisely
5759			 * and avoids incompatibilities. It would be nice in
5760			 * future to drop through and process the data.
5761			 *
5762			 * Now that TTCP is starting to be used we ought to
5763			 * queue this data.
5764			 * But, this leaves one open to an easy denial of
5765			 * service attack, and SYN cookies can't defend
5766			 * against this problem. So, we drop the data
5767			 * in the interest of security over speed unless
5768			 * it's still in use.
5769			 */
5770			kfree_skb(skb);
5771			return 0;
5772		}
 
5773		goto discard;
5774
5775	case TCP_SYN_SENT:
5776		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
 
 
5777		if (queued >= 0)
5778			return queued;
5779
5780		/* Do step6 onward by hand. */
5781		tcp_urg(sk, skb, th);
5782		__kfree_skb(skb);
5783		tcp_data_snd_check(sk);
5784		return 0;
5785	}
5786
5787	res = tcp_validate_incoming(sk, skb, th, 0);
5788	if (res <= 0)
5789		return -res;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5790
5791	/* step 5: check the ACK field */
5792	if (th->ack) {
5793		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5794
5795		switch (sk->sk_state) {
5796		case TCP_SYN_RECV:
5797			if (acceptable) {
5798				tp->copied_seq = tp->rcv_nxt;
5799				smp_mb();
5800				tcp_set_state(sk, TCP_ESTABLISHED);
5801				sk->sk_state_change(sk);
5802
5803				/* Note, that this wakeup is only for marginal
5804				 * crossed SYN case. Passively open sockets
5805				 * are not waked up, because sk->sk_sleep ==
5806				 * NULL and sk->sk_socket == NULL.
5807				 */
5808				if (sk->sk_socket)
5809					sk_wake_async(sk,
5810						      SOCK_WAKE_IO, POLL_OUT);
5811
5812				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5813				tp->snd_wnd = ntohs(th->window) <<
5814					      tp->rx_opt.snd_wscale;
5815				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5816
5817				if (tp->rx_opt.tstamp_ok)
5818					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5819
5820				/* Make sure socket is routed, for
5821				 * correct metrics.
5822				 */
5823				icsk->icsk_af_ops->rebuild_header(sk);
5824
5825				tcp_init_metrics(sk);
 
 
5826
5827				tcp_init_congestion_control(sk);
 
5828
5829				/* Prevent spurious tcp_cwnd_restart() on
5830				 * first data packet.
5831				 */
5832				tp->lsndtime = tcp_time_stamp;
5833
5834				tcp_mtup_init(sk);
5835				tcp_initialize_rcv_mss(sk);
5836				tcp_init_buffer_space(sk);
5837				tcp_fast_path_on(tp);
5838			} else {
5839				return 1;
5840			}
5841			break;
5842
5843		case TCP_FIN_WAIT1:
5844			if (tp->snd_una == tp->write_seq) {
5845				tcp_set_state(sk, TCP_FIN_WAIT2);
5846				sk->sk_shutdown |= SEND_SHUTDOWN;
5847				dst_confirm(__sk_dst_get(sk));
5848
5849				if (!sock_flag(sk, SOCK_DEAD))
5850					/* Wake up lingering close() */
5851					sk->sk_state_change(sk);
5852				else {
5853					int tmo;
5854
5855					if (tp->linger2 < 0 ||
5856					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5857					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5858						tcp_done(sk);
5859						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5860						return 1;
5861					}
5862
5863					tmo = tcp_fin_time(sk);
5864					if (tmo > TCP_TIMEWAIT_LEN) {
5865						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5866					} else if (th->fin || sock_owned_by_user(sk)) {
5867						/* Bad case. We could lose such FIN otherwise.
5868						 * It is not a big problem, but it looks confusing
5869						 * and not so rare event. We still can lose it now,
5870						 * if it spins in bh_lock_sock(), but it is really
5871						 * marginal case.
5872						 */
5873						inet_csk_reset_keepalive_timer(sk, tmo);
5874					} else {
5875						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5876						goto discard;
5877					}
5878				}
5879			}
5880			break;
 
5881
5882		case TCP_CLOSING:
5883			if (tp->snd_una == tp->write_seq) {
5884				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5885				goto discard;
5886			}
5887			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5888
5889		case TCP_LAST_ACK:
5890			if (tp->snd_una == tp->write_seq) {
5891				tcp_update_metrics(sk);
5892				tcp_done(sk);
5893				goto discard;
5894			}
5895			break;
5896		}
5897	} else
5898		goto discard;
5899
5900	/* step 6: check the URG bit */
5901	tcp_urg(sk, skb, th);
5902
5903	/* step 7: process the segment text */
5904	switch (sk->sk_state) {
5905	case TCP_CLOSE_WAIT:
5906	case TCP_CLOSING:
5907	case TCP_LAST_ACK:
5908		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
 
 
 
 
 
5909			break;
 
 
5910	case TCP_FIN_WAIT1:
5911	case TCP_FIN_WAIT2:
5912		/* RFC 793 says to queue data in these states,
5913		 * RFC 1122 says we MUST send a reset.
5914		 * BSD 4.4 also does reset.
5915		 */
5916		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5917			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5918			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5919				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5920				tcp_reset(sk);
5921				return 1;
5922			}
5923		}
5924		/* Fall through */
5925	case TCP_ESTABLISHED:
5926		tcp_data_queue(sk, skb);
5927		queued = 1;
5928		break;
5929	}
5930
5931	/* tcp_data could move socket to TIME-WAIT */
5932	if (sk->sk_state != TCP_CLOSE) {
5933		tcp_data_snd_check(sk);
5934		tcp_ack_snd_check(sk);
5935	}
5936
5937	if (!queued) {
5938discard:
5939		__kfree_skb(skb);
5940	}
5941	return 0;
 
 
 
 
5942}
5943EXPORT_SYMBOL(tcp_rcv_state_process);