Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
5 */
6
7#include <linux/spinlock.h>
8#include <linux/completion.h>
9#include <linux/buffer_head.h>
10#include <linux/blkdev.h>
11#include <linux/gfs2_ondisk.h>
12#include <linux/crc32.h>
13#include <linux/iomap.h>
14#include <linux/ktime.h>
15
16#include "gfs2.h"
17#include "incore.h"
18#include "bmap.h"
19#include "glock.h"
20#include "inode.h"
21#include "meta_io.h"
22#include "quota.h"
23#include "rgrp.h"
24#include "log.h"
25#include "super.h"
26#include "trans.h"
27#include "dir.h"
28#include "util.h"
29#include "aops.h"
30#include "trace_gfs2.h"
31
32/* This doesn't need to be that large as max 64 bit pointers in a 4k
33 * block is 512, so __u16 is fine for that. It saves stack space to
34 * keep it small.
35 */
36struct metapath {
37 struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT];
38 __u16 mp_list[GFS2_MAX_META_HEIGHT];
39 int mp_fheight; /* find_metapath height */
40 int mp_aheight; /* actual height (lookup height) */
41};
42
43static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length);
44
45/**
46 * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page
47 * @ip: the inode
48 * @dibh: the dinode buffer
49 * @block: the block number that was allocated
50 * @page: The (optional) page. This is looked up if @page is NULL
51 *
52 * Returns: errno
53 */
54
55static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh,
56 u64 block, struct page *page)
57{
58 struct inode *inode = &ip->i_inode;
59
60 if (!PageUptodate(page)) {
61 void *kaddr = kmap(page);
62 u64 dsize = i_size_read(inode);
63
64 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
65 memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
66 kunmap(page);
67
68 SetPageUptodate(page);
69 }
70
71 if (gfs2_is_jdata(ip)) {
72 struct buffer_head *bh;
73
74 if (!page_has_buffers(page))
75 create_empty_buffers(page, BIT(inode->i_blkbits),
76 BIT(BH_Uptodate));
77
78 bh = page_buffers(page);
79 if (!buffer_mapped(bh))
80 map_bh(bh, inode->i_sb, block);
81
82 set_buffer_uptodate(bh);
83 gfs2_trans_add_data(ip->i_gl, bh);
84 } else {
85 set_page_dirty(page);
86 gfs2_ordered_add_inode(ip);
87 }
88
89 return 0;
90}
91
92static int __gfs2_unstuff_inode(struct gfs2_inode *ip, struct page *page)
93{
94 struct buffer_head *bh, *dibh;
95 struct gfs2_dinode *di;
96 u64 block = 0;
97 int isdir = gfs2_is_dir(ip);
98 int error;
99
100 error = gfs2_meta_inode_buffer(ip, &dibh);
101 if (error)
102 return error;
103
104 if (i_size_read(&ip->i_inode)) {
105 /* Get a free block, fill it with the stuffed data,
106 and write it out to disk */
107
108 unsigned int n = 1;
109 error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL);
110 if (error)
111 goto out_brelse;
112 if (isdir) {
113 gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1);
114 error = gfs2_dir_get_new_buffer(ip, block, &bh);
115 if (error)
116 goto out_brelse;
117 gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header),
118 dibh, sizeof(struct gfs2_dinode));
119 brelse(bh);
120 } else {
121 error = gfs2_unstuffer_page(ip, dibh, block, page);
122 if (error)
123 goto out_brelse;
124 }
125 }
126
127 /* Set up the pointer to the new block */
128
129 gfs2_trans_add_meta(ip->i_gl, dibh);
130 di = (struct gfs2_dinode *)dibh->b_data;
131 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
132
133 if (i_size_read(&ip->i_inode)) {
134 *(__be64 *)(di + 1) = cpu_to_be64(block);
135 gfs2_add_inode_blocks(&ip->i_inode, 1);
136 di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode));
137 }
138
139 ip->i_height = 1;
140 di->di_height = cpu_to_be16(1);
141
142out_brelse:
143 brelse(dibh);
144 return error;
145}
146
147/**
148 * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big
149 * @ip: The GFS2 inode to unstuff
150 *
151 * This routine unstuffs a dinode and returns it to a "normal" state such
152 * that the height can be grown in the traditional way.
153 *
154 * Returns: errno
155 */
156
157int gfs2_unstuff_dinode(struct gfs2_inode *ip)
158{
159 struct inode *inode = &ip->i_inode;
160 struct page *page;
161 int error;
162
163 down_write(&ip->i_rw_mutex);
164 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
165 error = -ENOMEM;
166 if (!page)
167 goto out;
168 error = __gfs2_unstuff_inode(ip, page);
169 unlock_page(page);
170 put_page(page);
171out:
172 up_write(&ip->i_rw_mutex);
173 return error;
174}
175
176/**
177 * find_metapath - Find path through the metadata tree
178 * @sdp: The superblock
179 * @block: The disk block to look up
180 * @mp: The metapath to return the result in
181 * @height: The pre-calculated height of the metadata tree
182 *
183 * This routine returns a struct metapath structure that defines a path
184 * through the metadata of inode "ip" to get to block "block".
185 *
186 * Example:
187 * Given: "ip" is a height 3 file, "offset" is 101342453, and this is a
188 * filesystem with a blocksize of 4096.
189 *
190 * find_metapath() would return a struct metapath structure set to:
191 * mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165.
192 *
193 * That means that in order to get to the block containing the byte at
194 * offset 101342453, we would load the indirect block pointed to by pointer
195 * 0 in the dinode. We would then load the indirect block pointed to by
196 * pointer 48 in that indirect block. We would then load the data block
197 * pointed to by pointer 165 in that indirect block.
198 *
199 * ----------------------------------------
200 * | Dinode | |
201 * | | 4|
202 * | |0 1 2 3 4 5 9|
203 * | | 6|
204 * ----------------------------------------
205 * |
206 * |
207 * V
208 * ----------------------------------------
209 * | Indirect Block |
210 * | 5|
211 * | 4 4 4 4 4 5 5 1|
212 * |0 5 6 7 8 9 0 1 2|
213 * ----------------------------------------
214 * |
215 * |
216 * V
217 * ----------------------------------------
218 * | Indirect Block |
219 * | 1 1 1 1 1 5|
220 * | 6 6 6 6 6 1|
221 * |0 3 4 5 6 7 2|
222 * ----------------------------------------
223 * |
224 * |
225 * V
226 * ----------------------------------------
227 * | Data block containing offset |
228 * | 101342453 |
229 * | |
230 * | |
231 * ----------------------------------------
232 *
233 */
234
235static void find_metapath(const struct gfs2_sbd *sdp, u64 block,
236 struct metapath *mp, unsigned int height)
237{
238 unsigned int i;
239
240 mp->mp_fheight = height;
241 for (i = height; i--;)
242 mp->mp_list[i] = do_div(block, sdp->sd_inptrs);
243}
244
245static inline unsigned int metapath_branch_start(const struct metapath *mp)
246{
247 if (mp->mp_list[0] == 0)
248 return 2;
249 return 1;
250}
251
252/**
253 * metaptr1 - Return the first possible metadata pointer in a metapath buffer
254 * @height: The metadata height (0 = dinode)
255 * @mp: The metapath
256 */
257static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp)
258{
259 struct buffer_head *bh = mp->mp_bh[height];
260 if (height == 0)
261 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode)));
262 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header)));
263}
264
265/**
266 * metapointer - Return pointer to start of metadata in a buffer
267 * @height: The metadata height (0 = dinode)
268 * @mp: The metapath
269 *
270 * Return a pointer to the block number of the next height of the metadata
271 * tree given a buffer containing the pointer to the current height of the
272 * metadata tree.
273 */
274
275static inline __be64 *metapointer(unsigned int height, const struct metapath *mp)
276{
277 __be64 *p = metaptr1(height, mp);
278 return p + mp->mp_list[height];
279}
280
281static inline const __be64 *metaend(unsigned int height, const struct metapath *mp)
282{
283 const struct buffer_head *bh = mp->mp_bh[height];
284 return (const __be64 *)(bh->b_data + bh->b_size);
285}
286
287static void clone_metapath(struct metapath *clone, struct metapath *mp)
288{
289 unsigned int hgt;
290
291 *clone = *mp;
292 for (hgt = 0; hgt < mp->mp_aheight; hgt++)
293 get_bh(clone->mp_bh[hgt]);
294}
295
296static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end)
297{
298 const __be64 *t;
299
300 for (t = start; t < end; t++) {
301 struct buffer_head *rabh;
302
303 if (!*t)
304 continue;
305
306 rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE);
307 if (trylock_buffer(rabh)) {
308 if (!buffer_uptodate(rabh)) {
309 rabh->b_end_io = end_buffer_read_sync;
310 submit_bh(REQ_OP_READ | REQ_RAHEAD | REQ_META |
311 REQ_PRIO, rabh);
312 continue;
313 }
314 unlock_buffer(rabh);
315 }
316 brelse(rabh);
317 }
318}
319
320static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp,
321 unsigned int x, unsigned int h)
322{
323 for (; x < h; x++) {
324 __be64 *ptr = metapointer(x, mp);
325 u64 dblock = be64_to_cpu(*ptr);
326 int ret;
327
328 if (!dblock)
329 break;
330 ret = gfs2_meta_buffer(ip, GFS2_METATYPE_IN, dblock, &mp->mp_bh[x + 1]);
331 if (ret)
332 return ret;
333 }
334 mp->mp_aheight = x + 1;
335 return 0;
336}
337
338/**
339 * lookup_metapath - Walk the metadata tree to a specific point
340 * @ip: The inode
341 * @mp: The metapath
342 *
343 * Assumes that the inode's buffer has already been looked up and
344 * hooked onto mp->mp_bh[0] and that the metapath has been initialised
345 * by find_metapath().
346 *
347 * If this function encounters part of the tree which has not been
348 * allocated, it returns the current height of the tree at the point
349 * at which it found the unallocated block. Blocks which are found are
350 * added to the mp->mp_bh[] list.
351 *
352 * Returns: error
353 */
354
355static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp)
356{
357 return __fillup_metapath(ip, mp, 0, ip->i_height - 1);
358}
359
360/**
361 * fillup_metapath - fill up buffers for the metadata path to a specific height
362 * @ip: The inode
363 * @mp: The metapath
364 * @h: The height to which it should be mapped
365 *
366 * Similar to lookup_metapath, but does lookups for a range of heights
367 *
368 * Returns: error or the number of buffers filled
369 */
370
371static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h)
372{
373 unsigned int x = 0;
374 int ret;
375
376 if (h) {
377 /* find the first buffer we need to look up. */
378 for (x = h - 1; x > 0; x--) {
379 if (mp->mp_bh[x])
380 break;
381 }
382 }
383 ret = __fillup_metapath(ip, mp, x, h);
384 if (ret)
385 return ret;
386 return mp->mp_aheight - x - 1;
387}
388
389static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp)
390{
391 sector_t factor = 1, block = 0;
392 int hgt;
393
394 for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) {
395 if (hgt < mp->mp_aheight)
396 block += mp->mp_list[hgt] * factor;
397 factor *= sdp->sd_inptrs;
398 }
399 return block;
400}
401
402static void release_metapath(struct metapath *mp)
403{
404 int i;
405
406 for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) {
407 if (mp->mp_bh[i] == NULL)
408 break;
409 brelse(mp->mp_bh[i]);
410 mp->mp_bh[i] = NULL;
411 }
412}
413
414/**
415 * gfs2_extent_length - Returns length of an extent of blocks
416 * @bh: The metadata block
417 * @ptr: Current position in @bh
418 * @limit: Max extent length to return
419 * @eob: Set to 1 if we hit "end of block"
420 *
421 * Returns: The length of the extent (minimum of one block)
422 */
423
424static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob)
425{
426 const __be64 *end = (__be64 *)(bh->b_data + bh->b_size);
427 const __be64 *first = ptr;
428 u64 d = be64_to_cpu(*ptr);
429
430 *eob = 0;
431 do {
432 ptr++;
433 if (ptr >= end)
434 break;
435 d++;
436 } while(be64_to_cpu(*ptr) == d);
437 if (ptr >= end)
438 *eob = 1;
439 return ptr - first;
440}
441
442enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE };
443
444/*
445 * gfs2_metadata_walker - walk an indirect block
446 * @mp: Metapath to indirect block
447 * @ptrs: Number of pointers to look at
448 *
449 * When returning WALK_FOLLOW, the walker must update @mp to point at the right
450 * indirect block to follow.
451 */
452typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp,
453 unsigned int ptrs);
454
455/*
456 * gfs2_walk_metadata - walk a tree of indirect blocks
457 * @inode: The inode
458 * @mp: Starting point of walk
459 * @max_len: Maximum number of blocks to walk
460 * @walker: Called during the walk
461 *
462 * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or
463 * past the end of metadata, and a negative error code otherwise.
464 */
465
466static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp,
467 u64 max_len, gfs2_metadata_walker walker)
468{
469 struct gfs2_inode *ip = GFS2_I(inode);
470 struct gfs2_sbd *sdp = GFS2_SB(inode);
471 u64 factor = 1;
472 unsigned int hgt;
473 int ret;
474
475 /*
476 * The walk starts in the lowest allocated indirect block, which may be
477 * before the position indicated by @mp. Adjust @max_len accordingly
478 * to avoid a short walk.
479 */
480 for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) {
481 max_len += mp->mp_list[hgt] * factor;
482 mp->mp_list[hgt] = 0;
483 factor *= sdp->sd_inptrs;
484 }
485
486 for (;;) {
487 u16 start = mp->mp_list[hgt];
488 enum walker_status status;
489 unsigned int ptrs;
490 u64 len;
491
492 /* Walk indirect block. */
493 ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start;
494 len = ptrs * factor;
495 if (len > max_len)
496 ptrs = DIV_ROUND_UP_ULL(max_len, factor);
497 status = walker(mp, ptrs);
498 switch (status) {
499 case WALK_STOP:
500 return 1;
501 case WALK_FOLLOW:
502 BUG_ON(mp->mp_aheight == mp->mp_fheight);
503 ptrs = mp->mp_list[hgt] - start;
504 len = ptrs * factor;
505 break;
506 case WALK_CONTINUE:
507 break;
508 }
509 if (len >= max_len)
510 break;
511 max_len -= len;
512 if (status == WALK_FOLLOW)
513 goto fill_up_metapath;
514
515lower_metapath:
516 /* Decrease height of metapath. */
517 brelse(mp->mp_bh[hgt]);
518 mp->mp_bh[hgt] = NULL;
519 mp->mp_list[hgt] = 0;
520 if (!hgt)
521 break;
522 hgt--;
523 factor *= sdp->sd_inptrs;
524
525 /* Advance in metadata tree. */
526 (mp->mp_list[hgt])++;
527 if (hgt) {
528 if (mp->mp_list[hgt] >= sdp->sd_inptrs)
529 goto lower_metapath;
530 } else {
531 if (mp->mp_list[hgt] >= sdp->sd_diptrs)
532 break;
533 }
534
535fill_up_metapath:
536 /* Increase height of metapath. */
537 ret = fillup_metapath(ip, mp, ip->i_height - 1);
538 if (ret < 0)
539 return ret;
540 hgt += ret;
541 for (; ret; ret--)
542 do_div(factor, sdp->sd_inptrs);
543 mp->mp_aheight = hgt + 1;
544 }
545 return 0;
546}
547
548static enum walker_status gfs2_hole_walker(struct metapath *mp,
549 unsigned int ptrs)
550{
551 const __be64 *start, *ptr, *end;
552 unsigned int hgt;
553
554 hgt = mp->mp_aheight - 1;
555 start = metapointer(hgt, mp);
556 end = start + ptrs;
557
558 for (ptr = start; ptr < end; ptr++) {
559 if (*ptr) {
560 mp->mp_list[hgt] += ptr - start;
561 if (mp->mp_aheight == mp->mp_fheight)
562 return WALK_STOP;
563 return WALK_FOLLOW;
564 }
565 }
566 return WALK_CONTINUE;
567}
568
569/**
570 * gfs2_hole_size - figure out the size of a hole
571 * @inode: The inode
572 * @lblock: The logical starting block number
573 * @len: How far to look (in blocks)
574 * @mp: The metapath at lblock
575 * @iomap: The iomap to store the hole size in
576 *
577 * This function modifies @mp.
578 *
579 * Returns: errno on error
580 */
581static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len,
582 struct metapath *mp, struct iomap *iomap)
583{
584 struct metapath clone;
585 u64 hole_size;
586 int ret;
587
588 clone_metapath(&clone, mp);
589 ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker);
590 if (ret < 0)
591 goto out;
592
593 if (ret == 1)
594 hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock;
595 else
596 hole_size = len;
597 iomap->length = hole_size << inode->i_blkbits;
598 ret = 0;
599
600out:
601 release_metapath(&clone);
602 return ret;
603}
604
605static inline void gfs2_indirect_init(struct metapath *mp,
606 struct gfs2_glock *gl, unsigned int i,
607 unsigned offset, u64 bn)
608{
609 __be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data +
610 ((i > 1) ? sizeof(struct gfs2_meta_header) :
611 sizeof(struct gfs2_dinode)));
612 BUG_ON(i < 1);
613 BUG_ON(mp->mp_bh[i] != NULL);
614 mp->mp_bh[i] = gfs2_meta_new(gl, bn);
615 gfs2_trans_add_meta(gl, mp->mp_bh[i]);
616 gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN);
617 gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header));
618 ptr += offset;
619 *ptr = cpu_to_be64(bn);
620}
621
622enum alloc_state {
623 ALLOC_DATA = 0,
624 ALLOC_GROW_DEPTH = 1,
625 ALLOC_GROW_HEIGHT = 2,
626 /* ALLOC_UNSTUFF = 3, TBD and rather complicated */
627};
628
629/**
630 * __gfs2_iomap_alloc - Build a metadata tree of the requested height
631 * @inode: The GFS2 inode
632 * @iomap: The iomap structure
633 * @mp: The metapath, with proper height information calculated
634 *
635 * In this routine we may have to alloc:
636 * i) Indirect blocks to grow the metadata tree height
637 * ii) Indirect blocks to fill in lower part of the metadata tree
638 * iii) Data blocks
639 *
640 * This function is called after __gfs2_iomap_get, which works out the
641 * total number of blocks which we need via gfs2_alloc_size.
642 *
643 * We then do the actual allocation asking for an extent at a time (if
644 * enough contiguous free blocks are available, there will only be one
645 * allocation request per call) and uses the state machine to initialise
646 * the blocks in order.
647 *
648 * Right now, this function will allocate at most one indirect block
649 * worth of data -- with a default block size of 4K, that's slightly
650 * less than 2M. If this limitation is ever removed to allow huge
651 * allocations, we would probably still want to limit the iomap size we
652 * return to avoid stalling other tasks during huge writes; the next
653 * iomap iteration would then find the blocks already allocated.
654 *
655 * Returns: errno on error
656 */
657
658static int __gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap,
659 struct metapath *mp)
660{
661 struct gfs2_inode *ip = GFS2_I(inode);
662 struct gfs2_sbd *sdp = GFS2_SB(inode);
663 struct buffer_head *dibh = mp->mp_bh[0];
664 u64 bn;
665 unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0;
666 size_t dblks = iomap->length >> inode->i_blkbits;
667 const unsigned end_of_metadata = mp->mp_fheight - 1;
668 int ret;
669 enum alloc_state state;
670 __be64 *ptr;
671 __be64 zero_bn = 0;
672
673 BUG_ON(mp->mp_aheight < 1);
674 BUG_ON(dibh == NULL);
675 BUG_ON(dblks < 1);
676
677 gfs2_trans_add_meta(ip->i_gl, dibh);
678
679 down_write(&ip->i_rw_mutex);
680
681 if (mp->mp_fheight == mp->mp_aheight) {
682 /* Bottom indirect block exists */
683 state = ALLOC_DATA;
684 } else {
685 /* Need to allocate indirect blocks */
686 if (mp->mp_fheight == ip->i_height) {
687 /* Writing into existing tree, extend tree down */
688 iblks = mp->mp_fheight - mp->mp_aheight;
689 state = ALLOC_GROW_DEPTH;
690 } else {
691 /* Building up tree height */
692 state = ALLOC_GROW_HEIGHT;
693 iblks = mp->mp_fheight - ip->i_height;
694 branch_start = metapath_branch_start(mp);
695 iblks += (mp->mp_fheight - branch_start);
696 }
697 }
698
699 /* start of the second part of the function (state machine) */
700
701 blks = dblks + iblks;
702 i = mp->mp_aheight;
703 do {
704 n = blks - alloced;
705 ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL);
706 if (ret)
707 goto out;
708 alloced += n;
709 if (state != ALLOC_DATA || gfs2_is_jdata(ip))
710 gfs2_trans_remove_revoke(sdp, bn, n);
711 switch (state) {
712 /* Growing height of tree */
713 case ALLOC_GROW_HEIGHT:
714 if (i == 1) {
715 ptr = (__be64 *)(dibh->b_data +
716 sizeof(struct gfs2_dinode));
717 zero_bn = *ptr;
718 }
719 for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0;
720 i++, n--)
721 gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++);
722 if (i - 1 == mp->mp_fheight - ip->i_height) {
723 i--;
724 gfs2_buffer_copy_tail(mp->mp_bh[i],
725 sizeof(struct gfs2_meta_header),
726 dibh, sizeof(struct gfs2_dinode));
727 gfs2_buffer_clear_tail(dibh,
728 sizeof(struct gfs2_dinode) +
729 sizeof(__be64));
730 ptr = (__be64 *)(mp->mp_bh[i]->b_data +
731 sizeof(struct gfs2_meta_header));
732 *ptr = zero_bn;
733 state = ALLOC_GROW_DEPTH;
734 for(i = branch_start; i < mp->mp_fheight; i++) {
735 if (mp->mp_bh[i] == NULL)
736 break;
737 brelse(mp->mp_bh[i]);
738 mp->mp_bh[i] = NULL;
739 }
740 i = branch_start;
741 }
742 if (n == 0)
743 break;
744 fallthrough; /* To branching from existing tree */
745 case ALLOC_GROW_DEPTH:
746 if (i > 1 && i < mp->mp_fheight)
747 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]);
748 for (; i < mp->mp_fheight && n > 0; i++, n--)
749 gfs2_indirect_init(mp, ip->i_gl, i,
750 mp->mp_list[i-1], bn++);
751 if (i == mp->mp_fheight)
752 state = ALLOC_DATA;
753 if (n == 0)
754 break;
755 fallthrough; /* To tree complete, adding data blocks */
756 case ALLOC_DATA:
757 BUG_ON(n > dblks);
758 BUG_ON(mp->mp_bh[end_of_metadata] == NULL);
759 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]);
760 dblks = n;
761 ptr = metapointer(end_of_metadata, mp);
762 iomap->addr = bn << inode->i_blkbits;
763 iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW;
764 while (n-- > 0)
765 *ptr++ = cpu_to_be64(bn++);
766 break;
767 }
768 } while (iomap->addr == IOMAP_NULL_ADDR);
769
770 iomap->type = IOMAP_MAPPED;
771 iomap->length = (u64)dblks << inode->i_blkbits;
772 ip->i_height = mp->mp_fheight;
773 gfs2_add_inode_blocks(&ip->i_inode, alloced);
774 gfs2_dinode_out(ip, dibh->b_data);
775out:
776 up_write(&ip->i_rw_mutex);
777 return ret;
778}
779
780#define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE
781
782/**
783 * gfs2_alloc_size - Compute the maximum allocation size
784 * @inode: The inode
785 * @mp: The metapath
786 * @size: Requested size in blocks
787 *
788 * Compute the maximum size of the next allocation at @mp.
789 *
790 * Returns: size in blocks
791 */
792static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size)
793{
794 struct gfs2_inode *ip = GFS2_I(inode);
795 struct gfs2_sbd *sdp = GFS2_SB(inode);
796 const __be64 *first, *ptr, *end;
797
798 /*
799 * For writes to stuffed files, this function is called twice via
800 * __gfs2_iomap_get, before and after unstuffing. The size we return the
801 * first time needs to be large enough to get the reservation and
802 * allocation sizes right. The size we return the second time must
803 * be exact or else __gfs2_iomap_alloc won't do the right thing.
804 */
805
806 if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) {
807 unsigned int maxsize = mp->mp_fheight > 1 ?
808 sdp->sd_inptrs : sdp->sd_diptrs;
809 maxsize -= mp->mp_list[mp->mp_fheight - 1];
810 if (size > maxsize)
811 size = maxsize;
812 return size;
813 }
814
815 first = metapointer(ip->i_height - 1, mp);
816 end = metaend(ip->i_height - 1, mp);
817 if (end - first > size)
818 end = first + size;
819 for (ptr = first; ptr < end; ptr++) {
820 if (*ptr)
821 break;
822 }
823 return ptr - first;
824}
825
826/**
827 * __gfs2_iomap_get - Map blocks from an inode to disk blocks
828 * @inode: The inode
829 * @pos: Starting position in bytes
830 * @length: Length to map, in bytes
831 * @flags: iomap flags
832 * @iomap: The iomap structure
833 * @mp: The metapath
834 *
835 * Returns: errno
836 */
837static int __gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
838 unsigned flags, struct iomap *iomap,
839 struct metapath *mp)
840{
841 struct gfs2_inode *ip = GFS2_I(inode);
842 struct gfs2_sbd *sdp = GFS2_SB(inode);
843 loff_t size = i_size_read(inode);
844 __be64 *ptr;
845 sector_t lblock;
846 sector_t lblock_stop;
847 int ret;
848 int eob;
849 u64 len;
850 struct buffer_head *dibh = NULL, *bh;
851 u8 height;
852
853 if (!length)
854 return -EINVAL;
855
856 down_read(&ip->i_rw_mutex);
857
858 ret = gfs2_meta_inode_buffer(ip, &dibh);
859 if (ret)
860 goto unlock;
861 mp->mp_bh[0] = dibh;
862
863 if (gfs2_is_stuffed(ip)) {
864 if (flags & IOMAP_WRITE) {
865 loff_t max_size = gfs2_max_stuffed_size(ip);
866
867 if (pos + length > max_size)
868 goto unstuff;
869 iomap->length = max_size;
870 } else {
871 if (pos >= size) {
872 if (flags & IOMAP_REPORT) {
873 ret = -ENOENT;
874 goto unlock;
875 } else {
876 iomap->offset = pos;
877 iomap->length = length;
878 goto hole_found;
879 }
880 }
881 iomap->length = size;
882 }
883 iomap->addr = (ip->i_no_addr << inode->i_blkbits) +
884 sizeof(struct gfs2_dinode);
885 iomap->type = IOMAP_INLINE;
886 iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode);
887 goto out;
888 }
889
890unstuff:
891 lblock = pos >> inode->i_blkbits;
892 iomap->offset = lblock << inode->i_blkbits;
893 lblock_stop = (pos + length - 1) >> inode->i_blkbits;
894 len = lblock_stop - lblock + 1;
895 iomap->length = len << inode->i_blkbits;
896
897 height = ip->i_height;
898 while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height])
899 height++;
900 find_metapath(sdp, lblock, mp, height);
901 if (height > ip->i_height || gfs2_is_stuffed(ip))
902 goto do_alloc;
903
904 ret = lookup_metapath(ip, mp);
905 if (ret)
906 goto unlock;
907
908 if (mp->mp_aheight != ip->i_height)
909 goto do_alloc;
910
911 ptr = metapointer(ip->i_height - 1, mp);
912 if (*ptr == 0)
913 goto do_alloc;
914
915 bh = mp->mp_bh[ip->i_height - 1];
916 len = gfs2_extent_length(bh, ptr, len, &eob);
917
918 iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits;
919 iomap->length = len << inode->i_blkbits;
920 iomap->type = IOMAP_MAPPED;
921 iomap->flags |= IOMAP_F_MERGED;
922 if (eob)
923 iomap->flags |= IOMAP_F_GFS2_BOUNDARY;
924
925out:
926 iomap->bdev = inode->i_sb->s_bdev;
927unlock:
928 up_read(&ip->i_rw_mutex);
929 return ret;
930
931do_alloc:
932 if (flags & IOMAP_REPORT) {
933 if (pos >= size)
934 ret = -ENOENT;
935 else if (height == ip->i_height)
936 ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
937 else
938 iomap->length = size - iomap->offset;
939 } else if (flags & IOMAP_WRITE) {
940 u64 alloc_size;
941
942 if (flags & IOMAP_DIRECT)
943 goto out; /* (see gfs2_file_direct_write) */
944
945 len = gfs2_alloc_size(inode, mp, len);
946 alloc_size = len << inode->i_blkbits;
947 if (alloc_size < iomap->length)
948 iomap->length = alloc_size;
949 } else {
950 if (pos < size && height == ip->i_height)
951 ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
952 }
953hole_found:
954 iomap->addr = IOMAP_NULL_ADDR;
955 iomap->type = IOMAP_HOLE;
956 goto out;
957}
958
959static int gfs2_iomap_page_prepare(struct inode *inode, loff_t pos,
960 unsigned len)
961{
962 unsigned int blockmask = i_blocksize(inode) - 1;
963 struct gfs2_sbd *sdp = GFS2_SB(inode);
964 unsigned int blocks;
965
966 blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits;
967 return gfs2_trans_begin(sdp, RES_DINODE + blocks, 0);
968}
969
970static void gfs2_iomap_page_done(struct inode *inode, loff_t pos,
971 unsigned copied, struct page *page)
972{
973 struct gfs2_trans *tr = current->journal_info;
974 struct gfs2_inode *ip = GFS2_I(inode);
975 struct gfs2_sbd *sdp = GFS2_SB(inode);
976
977 if (page && !gfs2_is_stuffed(ip))
978 gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied);
979
980 if (tr->tr_num_buf_new)
981 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
982
983 gfs2_trans_end(sdp);
984}
985
986static const struct iomap_page_ops gfs2_iomap_page_ops = {
987 .page_prepare = gfs2_iomap_page_prepare,
988 .page_done = gfs2_iomap_page_done,
989};
990
991static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos,
992 loff_t length, unsigned flags,
993 struct iomap *iomap,
994 struct metapath *mp)
995{
996 struct gfs2_inode *ip = GFS2_I(inode);
997 struct gfs2_sbd *sdp = GFS2_SB(inode);
998 bool unstuff;
999 int ret;
1000
1001 unstuff = gfs2_is_stuffed(ip) &&
1002 pos + length > gfs2_max_stuffed_size(ip);
1003
1004 if (unstuff || iomap->type == IOMAP_HOLE) {
1005 unsigned int data_blocks, ind_blocks;
1006 struct gfs2_alloc_parms ap = {};
1007 unsigned int rblocks;
1008 struct gfs2_trans *tr;
1009
1010 gfs2_write_calc_reserv(ip, iomap->length, &data_blocks,
1011 &ind_blocks);
1012 ap.target = data_blocks + ind_blocks;
1013 ret = gfs2_quota_lock_check(ip, &ap);
1014 if (ret)
1015 return ret;
1016
1017 ret = gfs2_inplace_reserve(ip, &ap);
1018 if (ret)
1019 goto out_qunlock;
1020
1021 rblocks = RES_DINODE + ind_blocks;
1022 if (gfs2_is_jdata(ip))
1023 rblocks += data_blocks;
1024 if (ind_blocks || data_blocks)
1025 rblocks += RES_STATFS + RES_QUOTA;
1026 if (inode == sdp->sd_rindex)
1027 rblocks += 2 * RES_STATFS;
1028 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1029
1030 ret = gfs2_trans_begin(sdp, rblocks,
1031 iomap->length >> inode->i_blkbits);
1032 if (ret)
1033 goto out_trans_fail;
1034
1035 if (unstuff) {
1036 ret = gfs2_unstuff_dinode(ip);
1037 if (ret)
1038 goto out_trans_end;
1039 release_metapath(mp);
1040 ret = __gfs2_iomap_get(inode, iomap->offset,
1041 iomap->length, flags, iomap, mp);
1042 if (ret)
1043 goto out_trans_end;
1044 }
1045
1046 if (iomap->type == IOMAP_HOLE) {
1047 ret = __gfs2_iomap_alloc(inode, iomap, mp);
1048 if (ret) {
1049 gfs2_trans_end(sdp);
1050 gfs2_inplace_release(ip);
1051 punch_hole(ip, iomap->offset, iomap->length);
1052 goto out_qunlock;
1053 }
1054 }
1055
1056 tr = current->journal_info;
1057 if (tr->tr_num_buf_new)
1058 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1059
1060 gfs2_trans_end(sdp);
1061 }
1062
1063 if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip))
1064 iomap->page_ops = &gfs2_iomap_page_ops;
1065 return 0;
1066
1067out_trans_end:
1068 gfs2_trans_end(sdp);
1069out_trans_fail:
1070 gfs2_inplace_release(ip);
1071out_qunlock:
1072 gfs2_quota_unlock(ip);
1073 return ret;
1074}
1075
1076static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length,
1077 unsigned flags, struct iomap *iomap,
1078 struct iomap *srcmap)
1079{
1080 struct gfs2_inode *ip = GFS2_I(inode);
1081 struct metapath mp = { .mp_aheight = 1, };
1082 int ret;
1083
1084 if (gfs2_is_jdata(ip))
1085 iomap->flags |= IOMAP_F_BUFFER_HEAD;
1086
1087 trace_gfs2_iomap_start(ip, pos, length, flags);
1088 ret = __gfs2_iomap_get(inode, pos, length, flags, iomap, &mp);
1089 if (ret)
1090 goto out_unlock;
1091
1092 switch(flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1093 case IOMAP_WRITE:
1094 if (flags & IOMAP_DIRECT) {
1095 /*
1096 * Silently fall back to buffered I/O for stuffed files
1097 * or if we've got a hole (see gfs2_file_direct_write).
1098 */
1099 if (iomap->type != IOMAP_MAPPED)
1100 ret = -ENOTBLK;
1101 goto out_unlock;
1102 }
1103 break;
1104 case IOMAP_ZERO:
1105 if (iomap->type == IOMAP_HOLE)
1106 goto out_unlock;
1107 break;
1108 default:
1109 goto out_unlock;
1110 }
1111
1112 ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp);
1113
1114out_unlock:
1115 release_metapath(&mp);
1116 trace_gfs2_iomap_end(ip, iomap, ret);
1117 return ret;
1118}
1119
1120static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length,
1121 ssize_t written, unsigned flags, struct iomap *iomap)
1122{
1123 struct gfs2_inode *ip = GFS2_I(inode);
1124 struct gfs2_sbd *sdp = GFS2_SB(inode);
1125
1126 switch (flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1127 case IOMAP_WRITE:
1128 if (flags & IOMAP_DIRECT)
1129 return 0;
1130 break;
1131 case IOMAP_ZERO:
1132 if (iomap->type == IOMAP_HOLE)
1133 return 0;
1134 break;
1135 default:
1136 return 0;
1137 }
1138
1139 if (!gfs2_is_stuffed(ip))
1140 gfs2_ordered_add_inode(ip);
1141
1142 if (inode == sdp->sd_rindex)
1143 adjust_fs_space(inode);
1144
1145 gfs2_inplace_release(ip);
1146
1147 if (ip->i_qadata && ip->i_qadata->qa_qd_num)
1148 gfs2_quota_unlock(ip);
1149
1150 if (length != written && (iomap->flags & IOMAP_F_NEW)) {
1151 /* Deallocate blocks that were just allocated. */
1152 loff_t hstart = round_up(pos + written, i_blocksize(inode));
1153 loff_t hend = iomap->offset + iomap->length;
1154
1155 if (hstart < hend) {
1156 truncate_pagecache_range(inode, hstart, hend - 1);
1157 punch_hole(ip, hstart, hend - hstart);
1158 }
1159 }
1160
1161 if (unlikely(!written))
1162 return 0;
1163
1164 if (iomap->flags & IOMAP_F_SIZE_CHANGED)
1165 mark_inode_dirty(inode);
1166 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
1167 return 0;
1168}
1169
1170const struct iomap_ops gfs2_iomap_ops = {
1171 .iomap_begin = gfs2_iomap_begin,
1172 .iomap_end = gfs2_iomap_end,
1173};
1174
1175/**
1176 * gfs2_block_map - Map one or more blocks of an inode to a disk block
1177 * @inode: The inode
1178 * @lblock: The logical block number
1179 * @bh_map: The bh to be mapped
1180 * @create: True if its ok to alloc blocks to satify the request
1181 *
1182 * The size of the requested mapping is defined in bh_map->b_size.
1183 *
1184 * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged
1185 * when @lblock is not mapped. Sets buffer_mapped(bh_map) and
1186 * bh_map->b_size to indicate the size of the mapping when @lblock and
1187 * successive blocks are mapped, up to the requested size.
1188 *
1189 * Sets buffer_boundary() if a read of metadata will be required
1190 * before the next block can be mapped. Sets buffer_new() if new
1191 * blocks were allocated.
1192 *
1193 * Returns: errno
1194 */
1195
1196int gfs2_block_map(struct inode *inode, sector_t lblock,
1197 struct buffer_head *bh_map, int create)
1198{
1199 struct gfs2_inode *ip = GFS2_I(inode);
1200 loff_t pos = (loff_t)lblock << inode->i_blkbits;
1201 loff_t length = bh_map->b_size;
1202 struct iomap iomap = { };
1203 int ret;
1204
1205 clear_buffer_mapped(bh_map);
1206 clear_buffer_new(bh_map);
1207 clear_buffer_boundary(bh_map);
1208 trace_gfs2_bmap(ip, bh_map, lblock, create, 1);
1209
1210 if (!create)
1211 ret = gfs2_iomap_get(inode, pos, length, &iomap);
1212 else
1213 ret = gfs2_iomap_alloc(inode, pos, length, &iomap);
1214 if (ret)
1215 goto out;
1216
1217 if (iomap.length > bh_map->b_size) {
1218 iomap.length = bh_map->b_size;
1219 iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY;
1220 }
1221 if (iomap.addr != IOMAP_NULL_ADDR)
1222 map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits);
1223 bh_map->b_size = iomap.length;
1224 if (iomap.flags & IOMAP_F_GFS2_BOUNDARY)
1225 set_buffer_boundary(bh_map);
1226 if (iomap.flags & IOMAP_F_NEW)
1227 set_buffer_new(bh_map);
1228
1229out:
1230 trace_gfs2_bmap(ip, bh_map, lblock, create, ret);
1231 return ret;
1232}
1233
1234int gfs2_get_extent(struct inode *inode, u64 lblock, u64 *dblock,
1235 unsigned int *extlen)
1236{
1237 unsigned int blkbits = inode->i_blkbits;
1238 struct iomap iomap = { };
1239 unsigned int len;
1240 int ret;
1241
1242 ret = gfs2_iomap_get(inode, lblock << blkbits, *extlen << blkbits,
1243 &iomap);
1244 if (ret)
1245 return ret;
1246 if (iomap.type != IOMAP_MAPPED)
1247 return -EIO;
1248 *dblock = iomap.addr >> blkbits;
1249 len = iomap.length >> blkbits;
1250 if (len < *extlen)
1251 *extlen = len;
1252 return 0;
1253}
1254
1255int gfs2_alloc_extent(struct inode *inode, u64 lblock, u64 *dblock,
1256 unsigned int *extlen, bool *new)
1257{
1258 unsigned int blkbits = inode->i_blkbits;
1259 struct iomap iomap = { };
1260 unsigned int len;
1261 int ret;
1262
1263 ret = gfs2_iomap_alloc(inode, lblock << blkbits, *extlen << blkbits,
1264 &iomap);
1265 if (ret)
1266 return ret;
1267 if (iomap.type != IOMAP_MAPPED)
1268 return -EIO;
1269 *dblock = iomap.addr >> blkbits;
1270 len = iomap.length >> blkbits;
1271 if (len < *extlen)
1272 *extlen = len;
1273 *new = iomap.flags & IOMAP_F_NEW;
1274 return 0;
1275}
1276
1277/*
1278 * NOTE: Never call gfs2_block_zero_range with an open transaction because it
1279 * uses iomap write to perform its actions, which begin their own transactions
1280 * (iomap_begin, page_prepare, etc.)
1281 */
1282static int gfs2_block_zero_range(struct inode *inode, loff_t from,
1283 unsigned int length)
1284{
1285 BUG_ON(current->journal_info);
1286 return iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops);
1287}
1288
1289#define GFS2_JTRUNC_REVOKES 8192
1290
1291/**
1292 * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files
1293 * @inode: The inode being truncated
1294 * @oldsize: The original (larger) size
1295 * @newsize: The new smaller size
1296 *
1297 * With jdata files, we have to journal a revoke for each block which is
1298 * truncated. As a result, we need to split this into separate transactions
1299 * if the number of pages being truncated gets too large.
1300 */
1301
1302static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize)
1303{
1304 struct gfs2_sbd *sdp = GFS2_SB(inode);
1305 u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
1306 u64 chunk;
1307 int error;
1308
1309 while (oldsize != newsize) {
1310 struct gfs2_trans *tr;
1311 unsigned int offs;
1312
1313 chunk = oldsize - newsize;
1314 if (chunk > max_chunk)
1315 chunk = max_chunk;
1316
1317 offs = oldsize & ~PAGE_MASK;
1318 if (offs && chunk > PAGE_SIZE)
1319 chunk = offs + ((chunk - offs) & PAGE_MASK);
1320
1321 truncate_pagecache(inode, oldsize - chunk);
1322 oldsize -= chunk;
1323
1324 tr = current->journal_info;
1325 if (!test_bit(TR_TOUCHED, &tr->tr_flags))
1326 continue;
1327
1328 gfs2_trans_end(sdp);
1329 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
1330 if (error)
1331 return error;
1332 }
1333
1334 return 0;
1335}
1336
1337static int trunc_start(struct inode *inode, u64 newsize)
1338{
1339 struct gfs2_inode *ip = GFS2_I(inode);
1340 struct gfs2_sbd *sdp = GFS2_SB(inode);
1341 struct buffer_head *dibh = NULL;
1342 int journaled = gfs2_is_jdata(ip);
1343 u64 oldsize = inode->i_size;
1344 int error;
1345
1346 if (!gfs2_is_stuffed(ip)) {
1347 unsigned int blocksize = i_blocksize(inode);
1348 unsigned int offs = newsize & (blocksize - 1);
1349 if (offs) {
1350 error = gfs2_block_zero_range(inode, newsize,
1351 blocksize - offs);
1352 if (error)
1353 return error;
1354 }
1355 }
1356 if (journaled)
1357 error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES);
1358 else
1359 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1360 if (error)
1361 return error;
1362
1363 error = gfs2_meta_inode_buffer(ip, &dibh);
1364 if (error)
1365 goto out;
1366
1367 gfs2_trans_add_meta(ip->i_gl, dibh);
1368
1369 if (gfs2_is_stuffed(ip))
1370 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize);
1371 else
1372 ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG;
1373
1374 i_size_write(inode, newsize);
1375 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1376 gfs2_dinode_out(ip, dibh->b_data);
1377
1378 if (journaled)
1379 error = gfs2_journaled_truncate(inode, oldsize, newsize);
1380 else
1381 truncate_pagecache(inode, newsize);
1382
1383out:
1384 brelse(dibh);
1385 if (current->journal_info)
1386 gfs2_trans_end(sdp);
1387 return error;
1388}
1389
1390int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
1391 struct iomap *iomap)
1392{
1393 struct metapath mp = { .mp_aheight = 1, };
1394 int ret;
1395
1396 ret = __gfs2_iomap_get(inode, pos, length, 0, iomap, &mp);
1397 release_metapath(&mp);
1398 return ret;
1399}
1400
1401int gfs2_iomap_alloc(struct inode *inode, loff_t pos, loff_t length,
1402 struct iomap *iomap)
1403{
1404 struct metapath mp = { .mp_aheight = 1, };
1405 int ret;
1406
1407 ret = __gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp);
1408 if (!ret && iomap->type == IOMAP_HOLE)
1409 ret = __gfs2_iomap_alloc(inode, iomap, &mp);
1410 release_metapath(&mp);
1411 return ret;
1412}
1413
1414/**
1415 * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein
1416 * @ip: inode
1417 * @rd_gh: holder of resource group glock
1418 * @bh: buffer head to sweep
1419 * @start: starting point in bh
1420 * @end: end point in bh
1421 * @meta: true if bh points to metadata (rather than data)
1422 * @btotal: place to keep count of total blocks freed
1423 *
1424 * We sweep a metadata buffer (provided by the metapath) for blocks we need to
1425 * free, and free them all. However, we do it one rgrp at a time. If this
1426 * block has references to multiple rgrps, we break it into individual
1427 * transactions. This allows other processes to use the rgrps while we're
1428 * focused on a single one, for better concurrency / performance.
1429 * At every transaction boundary, we rewrite the inode into the journal.
1430 * That way the bitmaps are kept consistent with the inode and we can recover
1431 * if we're interrupted by power-outages.
1432 *
1433 * Returns: 0, or return code if an error occurred.
1434 * *btotal has the total number of blocks freed
1435 */
1436static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh,
1437 struct buffer_head *bh, __be64 *start, __be64 *end,
1438 bool meta, u32 *btotal)
1439{
1440 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1441 struct gfs2_rgrpd *rgd;
1442 struct gfs2_trans *tr;
1443 __be64 *p;
1444 int blks_outside_rgrp;
1445 u64 bn, bstart, isize_blks;
1446 s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */
1447 int ret = 0;
1448 bool buf_in_tr = false; /* buffer was added to transaction */
1449
1450more_rgrps:
1451 rgd = NULL;
1452 if (gfs2_holder_initialized(rd_gh)) {
1453 rgd = gfs2_glock2rgrp(rd_gh->gh_gl);
1454 gfs2_assert_withdraw(sdp,
1455 gfs2_glock_is_locked_by_me(rd_gh->gh_gl));
1456 }
1457 blks_outside_rgrp = 0;
1458 bstart = 0;
1459 blen = 0;
1460
1461 for (p = start; p < end; p++) {
1462 if (!*p)
1463 continue;
1464 bn = be64_to_cpu(*p);
1465
1466 if (rgd) {
1467 if (!rgrp_contains_block(rgd, bn)) {
1468 blks_outside_rgrp++;
1469 continue;
1470 }
1471 } else {
1472 rgd = gfs2_blk2rgrpd(sdp, bn, true);
1473 if (unlikely(!rgd)) {
1474 ret = -EIO;
1475 goto out;
1476 }
1477 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1478 LM_FLAG_NODE_SCOPE, rd_gh);
1479 if (ret)
1480 goto out;
1481
1482 /* Must be done with the rgrp glock held: */
1483 if (gfs2_rs_active(&ip->i_res) &&
1484 rgd == ip->i_res.rs_rgd)
1485 gfs2_rs_deltree(&ip->i_res);
1486 }
1487
1488 /* The size of our transactions will be unknown until we
1489 actually process all the metadata blocks that relate to
1490 the rgrp. So we estimate. We know it can't be more than
1491 the dinode's i_blocks and we don't want to exceed the
1492 journal flush threshold, sd_log_thresh2. */
1493 if (current->journal_info == NULL) {
1494 unsigned int jblocks_rqsted, revokes;
1495
1496 jblocks_rqsted = rgd->rd_length + RES_DINODE +
1497 RES_INDIRECT;
1498 isize_blks = gfs2_get_inode_blocks(&ip->i_inode);
1499 if (isize_blks > atomic_read(&sdp->sd_log_thresh2))
1500 jblocks_rqsted +=
1501 atomic_read(&sdp->sd_log_thresh2);
1502 else
1503 jblocks_rqsted += isize_blks;
1504 revokes = jblocks_rqsted;
1505 if (meta)
1506 revokes += end - start;
1507 else if (ip->i_depth)
1508 revokes += sdp->sd_inptrs;
1509 ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes);
1510 if (ret)
1511 goto out_unlock;
1512 down_write(&ip->i_rw_mutex);
1513 }
1514 /* check if we will exceed the transaction blocks requested */
1515 tr = current->journal_info;
1516 if (tr->tr_num_buf_new + RES_STATFS +
1517 RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) {
1518 /* We set blks_outside_rgrp to ensure the loop will
1519 be repeated for the same rgrp, but with a new
1520 transaction. */
1521 blks_outside_rgrp++;
1522 /* This next part is tricky. If the buffer was added
1523 to the transaction, we've already set some block
1524 pointers to 0, so we better follow through and free
1525 them, or we will introduce corruption (so break).
1526 This may be impossible, or at least rare, but I
1527 decided to cover the case regardless.
1528
1529 If the buffer was not added to the transaction
1530 (this call), doing so would exceed our transaction
1531 size, so we need to end the transaction and start a
1532 new one (so goto). */
1533
1534 if (buf_in_tr)
1535 break;
1536 goto out_unlock;
1537 }
1538
1539 gfs2_trans_add_meta(ip->i_gl, bh);
1540 buf_in_tr = true;
1541 *p = 0;
1542 if (bstart + blen == bn) {
1543 blen++;
1544 continue;
1545 }
1546 if (bstart) {
1547 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1548 (*btotal) += blen;
1549 gfs2_add_inode_blocks(&ip->i_inode, -blen);
1550 }
1551 bstart = bn;
1552 blen = 1;
1553 }
1554 if (bstart) {
1555 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1556 (*btotal) += blen;
1557 gfs2_add_inode_blocks(&ip->i_inode, -blen);
1558 }
1559out_unlock:
1560 if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks
1561 outside the rgrp we just processed,
1562 do it all over again. */
1563 if (current->journal_info) {
1564 struct buffer_head *dibh;
1565
1566 ret = gfs2_meta_inode_buffer(ip, &dibh);
1567 if (ret)
1568 goto out;
1569
1570 /* Every transaction boundary, we rewrite the dinode
1571 to keep its di_blocks current in case of failure. */
1572 ip->i_inode.i_mtime = ip->i_inode.i_ctime =
1573 current_time(&ip->i_inode);
1574 gfs2_trans_add_meta(ip->i_gl, dibh);
1575 gfs2_dinode_out(ip, dibh->b_data);
1576 brelse(dibh);
1577 up_write(&ip->i_rw_mutex);
1578 gfs2_trans_end(sdp);
1579 buf_in_tr = false;
1580 }
1581 gfs2_glock_dq_uninit(rd_gh);
1582 cond_resched();
1583 goto more_rgrps;
1584 }
1585out:
1586 return ret;
1587}
1588
1589static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h)
1590{
1591 if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0])))
1592 return false;
1593 return true;
1594}
1595
1596/**
1597 * find_nonnull_ptr - find a non-null pointer given a metapath and height
1598 * @sdp: The superblock
1599 * @mp: starting metapath
1600 * @h: desired height to search
1601 * @end_list: See punch_hole().
1602 * @end_aligned: See punch_hole().
1603 *
1604 * Assumes the metapath is valid (with buffers) out to height h.
1605 * Returns: true if a non-null pointer was found in the metapath buffer
1606 * false if all remaining pointers are NULL in the buffer
1607 */
1608static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp,
1609 unsigned int h,
1610 __u16 *end_list, unsigned int end_aligned)
1611{
1612 struct buffer_head *bh = mp->mp_bh[h];
1613 __be64 *first, *ptr, *end;
1614
1615 first = metaptr1(h, mp);
1616 ptr = first + mp->mp_list[h];
1617 end = (__be64 *)(bh->b_data + bh->b_size);
1618 if (end_list && mp_eq_to_hgt(mp, end_list, h)) {
1619 bool keep_end = h < end_aligned;
1620 end = first + end_list[h] + keep_end;
1621 }
1622
1623 while (ptr < end) {
1624 if (*ptr) { /* if we have a non-null pointer */
1625 mp->mp_list[h] = ptr - first;
1626 h++;
1627 if (h < GFS2_MAX_META_HEIGHT)
1628 mp->mp_list[h] = 0;
1629 return true;
1630 }
1631 ptr++;
1632 }
1633 return false;
1634}
1635
1636enum dealloc_states {
1637 DEALLOC_MP_FULL = 0, /* Strip a metapath with all buffers read in */
1638 DEALLOC_MP_LOWER = 1, /* lower the metapath strip height */
1639 DEALLOC_FILL_MP = 2, /* Fill in the metapath to the given height. */
1640 DEALLOC_DONE = 3, /* process complete */
1641};
1642
1643static inline void
1644metapointer_range(struct metapath *mp, int height,
1645 __u16 *start_list, unsigned int start_aligned,
1646 __u16 *end_list, unsigned int end_aligned,
1647 __be64 **start, __be64 **end)
1648{
1649 struct buffer_head *bh = mp->mp_bh[height];
1650 __be64 *first;
1651
1652 first = metaptr1(height, mp);
1653 *start = first;
1654 if (mp_eq_to_hgt(mp, start_list, height)) {
1655 bool keep_start = height < start_aligned;
1656 *start = first + start_list[height] + keep_start;
1657 }
1658 *end = (__be64 *)(bh->b_data + bh->b_size);
1659 if (end_list && mp_eq_to_hgt(mp, end_list, height)) {
1660 bool keep_end = height < end_aligned;
1661 *end = first + end_list[height] + keep_end;
1662 }
1663}
1664
1665static inline bool walk_done(struct gfs2_sbd *sdp,
1666 struct metapath *mp, int height,
1667 __u16 *end_list, unsigned int end_aligned)
1668{
1669 __u16 end;
1670
1671 if (end_list) {
1672 bool keep_end = height < end_aligned;
1673 if (!mp_eq_to_hgt(mp, end_list, height))
1674 return false;
1675 end = end_list[height] + keep_end;
1676 } else
1677 end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs;
1678 return mp->mp_list[height] >= end;
1679}
1680
1681/**
1682 * punch_hole - deallocate blocks in a file
1683 * @ip: inode to truncate
1684 * @offset: the start of the hole
1685 * @length: the size of the hole (or 0 for truncate)
1686 *
1687 * Punch a hole into a file or truncate a file at a given position. This
1688 * function operates in whole blocks (@offset and @length are rounded
1689 * accordingly); partially filled blocks must be cleared otherwise.
1690 *
1691 * This function works from the bottom up, and from the right to the left. In
1692 * other words, it strips off the highest layer (data) before stripping any of
1693 * the metadata. Doing it this way is best in case the operation is interrupted
1694 * by power failure, etc. The dinode is rewritten in every transaction to
1695 * guarantee integrity.
1696 */
1697static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length)
1698{
1699 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1700 u64 maxsize = sdp->sd_heightsize[ip->i_height];
1701 struct metapath mp = {};
1702 struct buffer_head *dibh, *bh;
1703 struct gfs2_holder rd_gh;
1704 unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift;
1705 u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift;
1706 __u16 start_list[GFS2_MAX_META_HEIGHT];
1707 __u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL;
1708 unsigned int start_aligned, end_aligned;
1709 unsigned int strip_h = ip->i_height - 1;
1710 u32 btotal = 0;
1711 int ret, state;
1712 int mp_h; /* metapath buffers are read in to this height */
1713 u64 prev_bnr = 0;
1714 __be64 *start, *end;
1715
1716 if (offset >= maxsize) {
1717 /*
1718 * The starting point lies beyond the allocated meta-data;
1719 * there are no blocks do deallocate.
1720 */
1721 return 0;
1722 }
1723
1724 /*
1725 * The start position of the hole is defined by lblock, start_list, and
1726 * start_aligned. The end position of the hole is defined by lend,
1727 * end_list, and end_aligned.
1728 *
1729 * start_aligned and end_aligned define down to which height the start
1730 * and end positions are aligned to the metadata tree (i.e., the
1731 * position is a multiple of the metadata granularity at the height
1732 * above). This determines at which heights additional meta pointers
1733 * needs to be preserved for the remaining data.
1734 */
1735
1736 if (length) {
1737 u64 end_offset = offset + length;
1738 u64 lend;
1739
1740 /*
1741 * Clip the end at the maximum file size for the given height:
1742 * that's how far the metadata goes; files bigger than that
1743 * will have additional layers of indirection.
1744 */
1745 if (end_offset > maxsize)
1746 end_offset = maxsize;
1747 lend = end_offset >> bsize_shift;
1748
1749 if (lblock >= lend)
1750 return 0;
1751
1752 find_metapath(sdp, lend, &mp, ip->i_height);
1753 end_list = __end_list;
1754 memcpy(end_list, mp.mp_list, sizeof(mp.mp_list));
1755
1756 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1757 if (end_list[mp_h])
1758 break;
1759 }
1760 end_aligned = mp_h;
1761 }
1762
1763 find_metapath(sdp, lblock, &mp, ip->i_height);
1764 memcpy(start_list, mp.mp_list, sizeof(start_list));
1765
1766 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1767 if (start_list[mp_h])
1768 break;
1769 }
1770 start_aligned = mp_h;
1771
1772 ret = gfs2_meta_inode_buffer(ip, &dibh);
1773 if (ret)
1774 return ret;
1775
1776 mp.mp_bh[0] = dibh;
1777 ret = lookup_metapath(ip, &mp);
1778 if (ret)
1779 goto out_metapath;
1780
1781 /* issue read-ahead on metadata */
1782 for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) {
1783 metapointer_range(&mp, mp_h, start_list, start_aligned,
1784 end_list, end_aligned, &start, &end);
1785 gfs2_metapath_ra(ip->i_gl, start, end);
1786 }
1787
1788 if (mp.mp_aheight == ip->i_height)
1789 state = DEALLOC_MP_FULL; /* We have a complete metapath */
1790 else
1791 state = DEALLOC_FILL_MP; /* deal with partial metapath */
1792
1793 ret = gfs2_rindex_update(sdp);
1794 if (ret)
1795 goto out_metapath;
1796
1797 ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE);
1798 if (ret)
1799 goto out_metapath;
1800 gfs2_holder_mark_uninitialized(&rd_gh);
1801
1802 mp_h = strip_h;
1803
1804 while (state != DEALLOC_DONE) {
1805 switch (state) {
1806 /* Truncate a full metapath at the given strip height.
1807 * Note that strip_h == mp_h in order to be in this state. */
1808 case DEALLOC_MP_FULL:
1809 bh = mp.mp_bh[mp_h];
1810 gfs2_assert_withdraw(sdp, bh);
1811 if (gfs2_assert_withdraw(sdp,
1812 prev_bnr != bh->b_blocknr)) {
1813 fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u,"
1814 "s_h:%u, mp_h:%u\n",
1815 (unsigned long long)ip->i_no_addr,
1816 prev_bnr, ip->i_height, strip_h, mp_h);
1817 }
1818 prev_bnr = bh->b_blocknr;
1819
1820 if (gfs2_metatype_check(sdp, bh,
1821 (mp_h ? GFS2_METATYPE_IN :
1822 GFS2_METATYPE_DI))) {
1823 ret = -EIO;
1824 goto out;
1825 }
1826
1827 /*
1828 * Below, passing end_aligned as 0 gives us the
1829 * metapointer range excluding the end point: the end
1830 * point is the first metapath we must not deallocate!
1831 */
1832
1833 metapointer_range(&mp, mp_h, start_list, start_aligned,
1834 end_list, 0 /* end_aligned */,
1835 &start, &end);
1836 ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h],
1837 start, end,
1838 mp_h != ip->i_height - 1,
1839 &btotal);
1840
1841 /* If we hit an error or just swept dinode buffer,
1842 just exit. */
1843 if (ret || !mp_h) {
1844 state = DEALLOC_DONE;
1845 break;
1846 }
1847 state = DEALLOC_MP_LOWER;
1848 break;
1849
1850 /* lower the metapath strip height */
1851 case DEALLOC_MP_LOWER:
1852 /* We're done with the current buffer, so release it,
1853 unless it's the dinode buffer. Then back up to the
1854 previous pointer. */
1855 if (mp_h) {
1856 brelse(mp.mp_bh[mp_h]);
1857 mp.mp_bh[mp_h] = NULL;
1858 }
1859 /* If we can't get any lower in height, we've stripped
1860 off all we can. Next step is to back up and start
1861 stripping the previous level of metadata. */
1862 if (mp_h == 0) {
1863 strip_h--;
1864 memcpy(mp.mp_list, start_list, sizeof(start_list));
1865 mp_h = strip_h;
1866 state = DEALLOC_FILL_MP;
1867 break;
1868 }
1869 mp.mp_list[mp_h] = 0;
1870 mp_h--; /* search one metadata height down */
1871 mp.mp_list[mp_h]++;
1872 if (walk_done(sdp, &mp, mp_h, end_list, end_aligned))
1873 break;
1874 /* Here we've found a part of the metapath that is not
1875 * allocated. We need to search at that height for the
1876 * next non-null pointer. */
1877 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) {
1878 state = DEALLOC_FILL_MP;
1879 mp_h++;
1880 }
1881 /* No more non-null pointers at this height. Back up
1882 to the previous height and try again. */
1883 break; /* loop around in the same state */
1884
1885 /* Fill the metapath with buffers to the given height. */
1886 case DEALLOC_FILL_MP:
1887 /* Fill the buffers out to the current height. */
1888 ret = fillup_metapath(ip, &mp, mp_h);
1889 if (ret < 0)
1890 goto out;
1891
1892 /* On the first pass, issue read-ahead on metadata. */
1893 if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) {
1894 unsigned int height = mp.mp_aheight - 1;
1895
1896 /* No read-ahead for data blocks. */
1897 if (mp.mp_aheight - 1 == strip_h)
1898 height--;
1899
1900 for (; height >= mp.mp_aheight - ret; height--) {
1901 metapointer_range(&mp, height,
1902 start_list, start_aligned,
1903 end_list, end_aligned,
1904 &start, &end);
1905 gfs2_metapath_ra(ip->i_gl, start, end);
1906 }
1907 }
1908
1909 /* If buffers found for the entire strip height */
1910 if (mp.mp_aheight - 1 == strip_h) {
1911 state = DEALLOC_MP_FULL;
1912 break;
1913 }
1914 if (mp.mp_aheight < ip->i_height) /* We have a partial height */
1915 mp_h = mp.mp_aheight - 1;
1916
1917 /* If we find a non-null block pointer, crawl a bit
1918 higher up in the metapath and try again, otherwise
1919 we need to look lower for a new starting point. */
1920 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned))
1921 mp_h++;
1922 else
1923 state = DEALLOC_MP_LOWER;
1924 break;
1925 }
1926 }
1927
1928 if (btotal) {
1929 if (current->journal_info == NULL) {
1930 ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS +
1931 RES_QUOTA, 0);
1932 if (ret)
1933 goto out;
1934 down_write(&ip->i_rw_mutex);
1935 }
1936 gfs2_statfs_change(sdp, 0, +btotal, 0);
1937 gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid,
1938 ip->i_inode.i_gid);
1939 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1940 gfs2_trans_add_meta(ip->i_gl, dibh);
1941 gfs2_dinode_out(ip, dibh->b_data);
1942 up_write(&ip->i_rw_mutex);
1943 gfs2_trans_end(sdp);
1944 }
1945
1946out:
1947 if (gfs2_holder_initialized(&rd_gh))
1948 gfs2_glock_dq_uninit(&rd_gh);
1949 if (current->journal_info) {
1950 up_write(&ip->i_rw_mutex);
1951 gfs2_trans_end(sdp);
1952 cond_resched();
1953 }
1954 gfs2_quota_unhold(ip);
1955out_metapath:
1956 release_metapath(&mp);
1957 return ret;
1958}
1959
1960static int trunc_end(struct gfs2_inode *ip)
1961{
1962 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1963 struct buffer_head *dibh;
1964 int error;
1965
1966 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1967 if (error)
1968 return error;
1969
1970 down_write(&ip->i_rw_mutex);
1971
1972 error = gfs2_meta_inode_buffer(ip, &dibh);
1973 if (error)
1974 goto out;
1975
1976 if (!i_size_read(&ip->i_inode)) {
1977 ip->i_height = 0;
1978 ip->i_goal = ip->i_no_addr;
1979 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
1980 gfs2_ordered_del_inode(ip);
1981 }
1982 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1983 ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG;
1984
1985 gfs2_trans_add_meta(ip->i_gl, dibh);
1986 gfs2_dinode_out(ip, dibh->b_data);
1987 brelse(dibh);
1988
1989out:
1990 up_write(&ip->i_rw_mutex);
1991 gfs2_trans_end(sdp);
1992 return error;
1993}
1994
1995/**
1996 * do_shrink - make a file smaller
1997 * @inode: the inode
1998 * @newsize: the size to make the file
1999 *
2000 * Called with an exclusive lock on @inode. The @size must
2001 * be equal to or smaller than the current inode size.
2002 *
2003 * Returns: errno
2004 */
2005
2006static int do_shrink(struct inode *inode, u64 newsize)
2007{
2008 struct gfs2_inode *ip = GFS2_I(inode);
2009 int error;
2010
2011 error = trunc_start(inode, newsize);
2012 if (error < 0)
2013 return error;
2014 if (gfs2_is_stuffed(ip))
2015 return 0;
2016
2017 error = punch_hole(ip, newsize, 0);
2018 if (error == 0)
2019 error = trunc_end(ip);
2020
2021 return error;
2022}
2023
2024void gfs2_trim_blocks(struct inode *inode)
2025{
2026 int ret;
2027
2028 ret = do_shrink(inode, inode->i_size);
2029 WARN_ON(ret != 0);
2030}
2031
2032/**
2033 * do_grow - Touch and update inode size
2034 * @inode: The inode
2035 * @size: The new size
2036 *
2037 * This function updates the timestamps on the inode and
2038 * may also increase the size of the inode. This function
2039 * must not be called with @size any smaller than the current
2040 * inode size.
2041 *
2042 * Although it is not strictly required to unstuff files here,
2043 * earlier versions of GFS2 have a bug in the stuffed file reading
2044 * code which will result in a buffer overrun if the size is larger
2045 * than the max stuffed file size. In order to prevent this from
2046 * occurring, such files are unstuffed, but in other cases we can
2047 * just update the inode size directly.
2048 *
2049 * Returns: 0 on success, or -ve on error
2050 */
2051
2052static int do_grow(struct inode *inode, u64 size)
2053{
2054 struct gfs2_inode *ip = GFS2_I(inode);
2055 struct gfs2_sbd *sdp = GFS2_SB(inode);
2056 struct gfs2_alloc_parms ap = { .target = 1, };
2057 struct buffer_head *dibh;
2058 int error;
2059 int unstuff = 0;
2060
2061 if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) {
2062 error = gfs2_quota_lock_check(ip, &ap);
2063 if (error)
2064 return error;
2065
2066 error = gfs2_inplace_reserve(ip, &ap);
2067 if (error)
2068 goto do_grow_qunlock;
2069 unstuff = 1;
2070 }
2071
2072 error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT +
2073 (unstuff &&
2074 gfs2_is_jdata(ip) ? RES_JDATA : 0) +
2075 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ?
2076 0 : RES_QUOTA), 0);
2077 if (error)
2078 goto do_grow_release;
2079
2080 if (unstuff) {
2081 error = gfs2_unstuff_dinode(ip);
2082 if (error)
2083 goto do_end_trans;
2084 }
2085
2086 error = gfs2_meta_inode_buffer(ip, &dibh);
2087 if (error)
2088 goto do_end_trans;
2089
2090 truncate_setsize(inode, size);
2091 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2092 gfs2_trans_add_meta(ip->i_gl, dibh);
2093 gfs2_dinode_out(ip, dibh->b_data);
2094 brelse(dibh);
2095
2096do_end_trans:
2097 gfs2_trans_end(sdp);
2098do_grow_release:
2099 if (unstuff) {
2100 gfs2_inplace_release(ip);
2101do_grow_qunlock:
2102 gfs2_quota_unlock(ip);
2103 }
2104 return error;
2105}
2106
2107/**
2108 * gfs2_setattr_size - make a file a given size
2109 * @inode: the inode
2110 * @newsize: the size to make the file
2111 *
2112 * The file size can grow, shrink, or stay the same size. This
2113 * is called holding i_rwsem and an exclusive glock on the inode
2114 * in question.
2115 *
2116 * Returns: errno
2117 */
2118
2119int gfs2_setattr_size(struct inode *inode, u64 newsize)
2120{
2121 struct gfs2_inode *ip = GFS2_I(inode);
2122 int ret;
2123
2124 BUG_ON(!S_ISREG(inode->i_mode));
2125
2126 ret = inode_newsize_ok(inode, newsize);
2127 if (ret)
2128 return ret;
2129
2130 inode_dio_wait(inode);
2131
2132 ret = gfs2_qa_get(ip);
2133 if (ret)
2134 goto out;
2135
2136 if (newsize >= inode->i_size) {
2137 ret = do_grow(inode, newsize);
2138 goto out;
2139 }
2140
2141 ret = do_shrink(inode, newsize);
2142out:
2143 gfs2_rs_delete(ip);
2144 gfs2_qa_put(ip);
2145 return ret;
2146}
2147
2148int gfs2_truncatei_resume(struct gfs2_inode *ip)
2149{
2150 int error;
2151 error = punch_hole(ip, i_size_read(&ip->i_inode), 0);
2152 if (!error)
2153 error = trunc_end(ip);
2154 return error;
2155}
2156
2157int gfs2_file_dealloc(struct gfs2_inode *ip)
2158{
2159 return punch_hole(ip, 0, 0);
2160}
2161
2162/**
2163 * gfs2_free_journal_extents - Free cached journal bmap info
2164 * @jd: The journal
2165 *
2166 */
2167
2168void gfs2_free_journal_extents(struct gfs2_jdesc *jd)
2169{
2170 struct gfs2_journal_extent *jext;
2171
2172 while(!list_empty(&jd->extent_list)) {
2173 jext = list_first_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2174 list_del(&jext->list);
2175 kfree(jext);
2176 }
2177}
2178
2179/**
2180 * gfs2_add_jextent - Add or merge a new extent to extent cache
2181 * @jd: The journal descriptor
2182 * @lblock: The logical block at start of new extent
2183 * @dblock: The physical block at start of new extent
2184 * @blocks: Size of extent in fs blocks
2185 *
2186 * Returns: 0 on success or -ENOMEM
2187 */
2188
2189static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks)
2190{
2191 struct gfs2_journal_extent *jext;
2192
2193 if (!list_empty(&jd->extent_list)) {
2194 jext = list_last_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2195 if ((jext->dblock + jext->blocks) == dblock) {
2196 jext->blocks += blocks;
2197 return 0;
2198 }
2199 }
2200
2201 jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS);
2202 if (jext == NULL)
2203 return -ENOMEM;
2204 jext->dblock = dblock;
2205 jext->lblock = lblock;
2206 jext->blocks = blocks;
2207 list_add_tail(&jext->list, &jd->extent_list);
2208 jd->nr_extents++;
2209 return 0;
2210}
2211
2212/**
2213 * gfs2_map_journal_extents - Cache journal bmap info
2214 * @sdp: The super block
2215 * @jd: The journal to map
2216 *
2217 * Create a reusable "extent" mapping from all logical
2218 * blocks to all physical blocks for the given journal. This will save
2219 * us time when writing journal blocks. Most journals will have only one
2220 * extent that maps all their logical blocks. That's because gfs2.mkfs
2221 * arranges the journal blocks sequentially to maximize performance.
2222 * So the extent would map the first block for the entire file length.
2223 * However, gfs2_jadd can happen while file activity is happening, so
2224 * those journals may not be sequential. Less likely is the case where
2225 * the users created their own journals by mounting the metafs and
2226 * laying it out. But it's still possible. These journals might have
2227 * several extents.
2228 *
2229 * Returns: 0 on success, or error on failure
2230 */
2231
2232int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd)
2233{
2234 u64 lblock = 0;
2235 u64 lblock_stop;
2236 struct gfs2_inode *ip = GFS2_I(jd->jd_inode);
2237 struct buffer_head bh;
2238 unsigned int shift = sdp->sd_sb.sb_bsize_shift;
2239 u64 size;
2240 int rc;
2241 ktime_t start, end;
2242
2243 start = ktime_get();
2244 lblock_stop = i_size_read(jd->jd_inode) >> shift;
2245 size = (lblock_stop - lblock) << shift;
2246 jd->nr_extents = 0;
2247 WARN_ON(!list_empty(&jd->extent_list));
2248
2249 do {
2250 bh.b_state = 0;
2251 bh.b_blocknr = 0;
2252 bh.b_size = size;
2253 rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0);
2254 if (rc || !buffer_mapped(&bh))
2255 goto fail;
2256 rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift);
2257 if (rc)
2258 goto fail;
2259 size -= bh.b_size;
2260 lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2261 } while(size > 0);
2262
2263 end = ktime_get();
2264 fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid,
2265 jd->nr_extents, ktime_ms_delta(end, start));
2266 return 0;
2267
2268fail:
2269 fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n",
2270 rc, jd->jd_jid,
2271 (unsigned long long)(i_size_read(jd->jd_inode) - size),
2272 jd->nr_extents);
2273 fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n",
2274 rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr,
2275 bh.b_state, (unsigned long long)bh.b_size);
2276 gfs2_free_journal_extents(jd);
2277 return rc;
2278}
2279
2280/**
2281 * gfs2_write_alloc_required - figure out if a write will require an allocation
2282 * @ip: the file being written to
2283 * @offset: the offset to write to
2284 * @len: the number of bytes being written
2285 *
2286 * Returns: 1 if an alloc is required, 0 otherwise
2287 */
2288
2289int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset,
2290 unsigned int len)
2291{
2292 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2293 struct buffer_head bh;
2294 unsigned int shift;
2295 u64 lblock, lblock_stop, size;
2296 u64 end_of_file;
2297
2298 if (!len)
2299 return 0;
2300
2301 if (gfs2_is_stuffed(ip)) {
2302 if (offset + len > gfs2_max_stuffed_size(ip))
2303 return 1;
2304 return 0;
2305 }
2306
2307 shift = sdp->sd_sb.sb_bsize_shift;
2308 BUG_ON(gfs2_is_dir(ip));
2309 end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift;
2310 lblock = offset >> shift;
2311 lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift;
2312 if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex))
2313 return 1;
2314
2315 size = (lblock_stop - lblock) << shift;
2316 do {
2317 bh.b_state = 0;
2318 bh.b_size = size;
2319 gfs2_block_map(&ip->i_inode, lblock, &bh, 0);
2320 if (!buffer_mapped(&bh))
2321 return 1;
2322 size -= bh.b_size;
2323 lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2324 } while(size > 0);
2325
2326 return 0;
2327}
2328
2329static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length)
2330{
2331 struct gfs2_inode *ip = GFS2_I(inode);
2332 struct buffer_head *dibh;
2333 int error;
2334
2335 if (offset >= inode->i_size)
2336 return 0;
2337 if (offset + length > inode->i_size)
2338 length = inode->i_size - offset;
2339
2340 error = gfs2_meta_inode_buffer(ip, &dibh);
2341 if (error)
2342 return error;
2343 gfs2_trans_add_meta(ip->i_gl, dibh);
2344 memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0,
2345 length);
2346 brelse(dibh);
2347 return 0;
2348}
2349
2350static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset,
2351 loff_t length)
2352{
2353 struct gfs2_sbd *sdp = GFS2_SB(inode);
2354 loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
2355 int error;
2356
2357 while (length) {
2358 struct gfs2_trans *tr;
2359 loff_t chunk;
2360 unsigned int offs;
2361
2362 chunk = length;
2363 if (chunk > max_chunk)
2364 chunk = max_chunk;
2365
2366 offs = offset & ~PAGE_MASK;
2367 if (offs && chunk > PAGE_SIZE)
2368 chunk = offs + ((chunk - offs) & PAGE_MASK);
2369
2370 truncate_pagecache_range(inode, offset, chunk);
2371 offset += chunk;
2372 length -= chunk;
2373
2374 tr = current->journal_info;
2375 if (!test_bit(TR_TOUCHED, &tr->tr_flags))
2376 continue;
2377
2378 gfs2_trans_end(sdp);
2379 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
2380 if (error)
2381 return error;
2382 }
2383 return 0;
2384}
2385
2386int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length)
2387{
2388 struct inode *inode = file_inode(file);
2389 struct gfs2_inode *ip = GFS2_I(inode);
2390 struct gfs2_sbd *sdp = GFS2_SB(inode);
2391 unsigned int blocksize = i_blocksize(inode);
2392 loff_t start, end;
2393 int error;
2394
2395 if (!gfs2_is_stuffed(ip)) {
2396 unsigned int start_off, end_len;
2397
2398 start_off = offset & (blocksize - 1);
2399 end_len = (offset + length) & (blocksize - 1);
2400 if (start_off) {
2401 unsigned int len = length;
2402 if (length > blocksize - start_off)
2403 len = blocksize - start_off;
2404 error = gfs2_block_zero_range(inode, offset, len);
2405 if (error)
2406 goto out;
2407 if (start_off + length < blocksize)
2408 end_len = 0;
2409 }
2410 if (end_len) {
2411 error = gfs2_block_zero_range(inode,
2412 offset + length - end_len, end_len);
2413 if (error)
2414 goto out;
2415 }
2416 }
2417
2418 start = round_down(offset, blocksize);
2419 end = round_up(offset + length, blocksize) - 1;
2420 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
2421 if (error)
2422 return error;
2423
2424 if (gfs2_is_jdata(ip))
2425 error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA,
2426 GFS2_JTRUNC_REVOKES);
2427 else
2428 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2429 if (error)
2430 return error;
2431
2432 if (gfs2_is_stuffed(ip)) {
2433 error = stuffed_zero_range(inode, offset, length);
2434 if (error)
2435 goto out;
2436 }
2437
2438 if (gfs2_is_jdata(ip)) {
2439 BUG_ON(!current->journal_info);
2440 gfs2_journaled_truncate_range(inode, offset, length);
2441 } else
2442 truncate_pagecache_range(inode, offset, offset + length - 1);
2443
2444 file_update_time(file);
2445 mark_inode_dirty(inode);
2446
2447 if (current->journal_info)
2448 gfs2_trans_end(sdp);
2449
2450 if (!gfs2_is_stuffed(ip))
2451 error = punch_hole(ip, offset, length);
2452
2453out:
2454 if (current->journal_info)
2455 gfs2_trans_end(sdp);
2456 return error;
2457}
2458
2459static int gfs2_map_blocks(struct iomap_writepage_ctx *wpc, struct inode *inode,
2460 loff_t offset)
2461{
2462 int ret;
2463
2464 if (WARN_ON_ONCE(gfs2_is_stuffed(GFS2_I(inode))))
2465 return -EIO;
2466
2467 if (offset >= wpc->iomap.offset &&
2468 offset < wpc->iomap.offset + wpc->iomap.length)
2469 return 0;
2470
2471 memset(&wpc->iomap, 0, sizeof(wpc->iomap));
2472 ret = gfs2_iomap_get(inode, offset, INT_MAX, &wpc->iomap);
2473 return ret;
2474}
2475
2476const struct iomap_writeback_ops gfs2_writeback_ops = {
2477 .map_blocks = gfs2_map_blocks,
2478};
1/*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10#include <linux/spinlock.h>
11#include <linux/completion.h>
12#include <linux/buffer_head.h>
13#include <linux/blkdev.h>
14#include <linux/gfs2_ondisk.h>
15#include <linux/crc32.h>
16#include <linux/iomap.h>
17
18#include "gfs2.h"
19#include "incore.h"
20#include "bmap.h"
21#include "glock.h"
22#include "inode.h"
23#include "meta_io.h"
24#include "quota.h"
25#include "rgrp.h"
26#include "log.h"
27#include "super.h"
28#include "trans.h"
29#include "dir.h"
30#include "util.h"
31#include "trace_gfs2.h"
32
33/* This doesn't need to be that large as max 64 bit pointers in a 4k
34 * block is 512, so __u16 is fine for that. It saves stack space to
35 * keep it small.
36 */
37struct metapath {
38 struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT];
39 __u16 mp_list[GFS2_MAX_META_HEIGHT];
40 int mp_fheight; /* find_metapath height */
41 int mp_aheight; /* actual height (lookup height) */
42};
43
44/**
45 * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page
46 * @ip: the inode
47 * @dibh: the dinode buffer
48 * @block: the block number that was allocated
49 * @page: The (optional) page. This is looked up if @page is NULL
50 *
51 * Returns: errno
52 */
53
54static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh,
55 u64 block, struct page *page)
56{
57 struct inode *inode = &ip->i_inode;
58 struct buffer_head *bh;
59 int release = 0;
60
61 if (!page || page->index) {
62 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
63 if (!page)
64 return -ENOMEM;
65 release = 1;
66 }
67
68 if (!PageUptodate(page)) {
69 void *kaddr = kmap(page);
70 u64 dsize = i_size_read(inode);
71
72 if (dsize > gfs2_max_stuffed_size(ip))
73 dsize = gfs2_max_stuffed_size(ip);
74
75 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
76 memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
77 kunmap(page);
78
79 SetPageUptodate(page);
80 }
81
82 if (!page_has_buffers(page))
83 create_empty_buffers(page, BIT(inode->i_blkbits),
84 BIT(BH_Uptodate));
85
86 bh = page_buffers(page);
87
88 if (!buffer_mapped(bh))
89 map_bh(bh, inode->i_sb, block);
90
91 set_buffer_uptodate(bh);
92 if (!gfs2_is_jdata(ip))
93 mark_buffer_dirty(bh);
94 if (!gfs2_is_writeback(ip))
95 gfs2_trans_add_data(ip->i_gl, bh);
96
97 if (release) {
98 unlock_page(page);
99 put_page(page);
100 }
101
102 return 0;
103}
104
105/**
106 * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big
107 * @ip: The GFS2 inode to unstuff
108 * @page: The (optional) page. This is looked up if the @page is NULL
109 *
110 * This routine unstuffs a dinode and returns it to a "normal" state such
111 * that the height can be grown in the traditional way.
112 *
113 * Returns: errno
114 */
115
116int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page)
117{
118 struct buffer_head *bh, *dibh;
119 struct gfs2_dinode *di;
120 u64 block = 0;
121 int isdir = gfs2_is_dir(ip);
122 int error;
123
124 down_write(&ip->i_rw_mutex);
125
126 error = gfs2_meta_inode_buffer(ip, &dibh);
127 if (error)
128 goto out;
129
130 if (i_size_read(&ip->i_inode)) {
131 /* Get a free block, fill it with the stuffed data,
132 and write it out to disk */
133
134 unsigned int n = 1;
135 error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL);
136 if (error)
137 goto out_brelse;
138 if (isdir) {
139 gfs2_trans_add_unrevoke(GFS2_SB(&ip->i_inode), block, 1);
140 error = gfs2_dir_get_new_buffer(ip, block, &bh);
141 if (error)
142 goto out_brelse;
143 gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header),
144 dibh, sizeof(struct gfs2_dinode));
145 brelse(bh);
146 } else {
147 error = gfs2_unstuffer_page(ip, dibh, block, page);
148 if (error)
149 goto out_brelse;
150 }
151 }
152
153 /* Set up the pointer to the new block */
154
155 gfs2_trans_add_meta(ip->i_gl, dibh);
156 di = (struct gfs2_dinode *)dibh->b_data;
157 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
158
159 if (i_size_read(&ip->i_inode)) {
160 *(__be64 *)(di + 1) = cpu_to_be64(block);
161 gfs2_add_inode_blocks(&ip->i_inode, 1);
162 di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode));
163 }
164
165 ip->i_height = 1;
166 di->di_height = cpu_to_be16(1);
167
168out_brelse:
169 brelse(dibh);
170out:
171 up_write(&ip->i_rw_mutex);
172 return error;
173}
174
175
176/**
177 * find_metapath - Find path through the metadata tree
178 * @sdp: The superblock
179 * @mp: The metapath to return the result in
180 * @block: The disk block to look up
181 * @height: The pre-calculated height of the metadata tree
182 *
183 * This routine returns a struct metapath structure that defines a path
184 * through the metadata of inode "ip" to get to block "block".
185 *
186 * Example:
187 * Given: "ip" is a height 3 file, "offset" is 101342453, and this is a
188 * filesystem with a blocksize of 4096.
189 *
190 * find_metapath() would return a struct metapath structure set to:
191 * mp_offset = 101342453, mp_height = 3, mp_list[0] = 0, mp_list[1] = 48,
192 * and mp_list[2] = 165.
193 *
194 * That means that in order to get to the block containing the byte at
195 * offset 101342453, we would load the indirect block pointed to by pointer
196 * 0 in the dinode. We would then load the indirect block pointed to by
197 * pointer 48 in that indirect block. We would then load the data block
198 * pointed to by pointer 165 in that indirect block.
199 *
200 * ----------------------------------------
201 * | Dinode | |
202 * | | 4|
203 * | |0 1 2 3 4 5 9|
204 * | | 6|
205 * ----------------------------------------
206 * |
207 * |
208 * V
209 * ----------------------------------------
210 * | Indirect Block |
211 * | 5|
212 * | 4 4 4 4 4 5 5 1|
213 * |0 5 6 7 8 9 0 1 2|
214 * ----------------------------------------
215 * |
216 * |
217 * V
218 * ----------------------------------------
219 * | Indirect Block |
220 * | 1 1 1 1 1 5|
221 * | 6 6 6 6 6 1|
222 * |0 3 4 5 6 7 2|
223 * ----------------------------------------
224 * |
225 * |
226 * V
227 * ----------------------------------------
228 * | Data block containing offset |
229 * | 101342453 |
230 * | |
231 * | |
232 * ----------------------------------------
233 *
234 */
235
236static void find_metapath(const struct gfs2_sbd *sdp, u64 block,
237 struct metapath *mp, unsigned int height)
238{
239 unsigned int i;
240
241 mp->mp_fheight = height;
242 for (i = height; i--;)
243 mp->mp_list[i] = do_div(block, sdp->sd_inptrs);
244}
245
246static inline unsigned int metapath_branch_start(const struct metapath *mp)
247{
248 if (mp->mp_list[0] == 0)
249 return 2;
250 return 1;
251}
252
253/**
254 * metaptr1 - Return the first possible metadata pointer in a metapath buffer
255 * @height: The metadata height (0 = dinode)
256 * @mp: The metapath
257 */
258static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp)
259{
260 struct buffer_head *bh = mp->mp_bh[height];
261 if (height == 0)
262 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode)));
263 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header)));
264}
265
266/**
267 * metapointer - Return pointer to start of metadata in a buffer
268 * @height: The metadata height (0 = dinode)
269 * @mp: The metapath
270 *
271 * Return a pointer to the block number of the next height of the metadata
272 * tree given a buffer containing the pointer to the current height of the
273 * metadata tree.
274 */
275
276static inline __be64 *metapointer(unsigned int height, const struct metapath *mp)
277{
278 __be64 *p = metaptr1(height, mp);
279 return p + mp->mp_list[height];
280}
281
282static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end)
283{
284 const __be64 *t;
285
286 for (t = start; t < end; t++) {
287 struct buffer_head *rabh;
288
289 if (!*t)
290 continue;
291
292 rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE);
293 if (trylock_buffer(rabh)) {
294 if (!buffer_uptodate(rabh)) {
295 rabh->b_end_io = end_buffer_read_sync;
296 submit_bh(REQ_OP_READ,
297 REQ_RAHEAD | REQ_META | REQ_PRIO,
298 rabh);
299 continue;
300 }
301 unlock_buffer(rabh);
302 }
303 brelse(rabh);
304 }
305}
306
307static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp,
308 unsigned int x, unsigned int h)
309{
310 for (; x < h; x++) {
311 __be64 *ptr = metapointer(x, mp);
312 u64 dblock = be64_to_cpu(*ptr);
313 int ret;
314
315 if (!dblock)
316 break;
317 ret = gfs2_meta_indirect_buffer(ip, x + 1, dblock, &mp->mp_bh[x + 1]);
318 if (ret)
319 return ret;
320 }
321 mp->mp_aheight = x + 1;
322 return 0;
323}
324
325/**
326 * lookup_metapath - Walk the metadata tree to a specific point
327 * @ip: The inode
328 * @mp: The metapath
329 *
330 * Assumes that the inode's buffer has already been looked up and
331 * hooked onto mp->mp_bh[0] and that the metapath has been initialised
332 * by find_metapath().
333 *
334 * If this function encounters part of the tree which has not been
335 * allocated, it returns the current height of the tree at the point
336 * at which it found the unallocated block. Blocks which are found are
337 * added to the mp->mp_bh[] list.
338 *
339 * Returns: error
340 */
341
342static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp)
343{
344 return __fillup_metapath(ip, mp, 0, ip->i_height - 1);
345}
346
347/**
348 * fillup_metapath - fill up buffers for the metadata path to a specific height
349 * @ip: The inode
350 * @mp: The metapath
351 * @h: The height to which it should be mapped
352 *
353 * Similar to lookup_metapath, but does lookups for a range of heights
354 *
355 * Returns: error or the number of buffers filled
356 */
357
358static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h)
359{
360 unsigned int x = 0;
361 int ret;
362
363 if (h) {
364 /* find the first buffer we need to look up. */
365 for (x = h - 1; x > 0; x--) {
366 if (mp->mp_bh[x])
367 break;
368 }
369 }
370 ret = __fillup_metapath(ip, mp, x, h);
371 if (ret)
372 return ret;
373 return mp->mp_aheight - x - 1;
374}
375
376static inline void release_metapath(struct metapath *mp)
377{
378 int i;
379
380 for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) {
381 if (mp->mp_bh[i] == NULL)
382 break;
383 brelse(mp->mp_bh[i]);
384 }
385}
386
387/**
388 * gfs2_extent_length - Returns length of an extent of blocks
389 * @start: Start of the buffer
390 * @len: Length of the buffer in bytes
391 * @ptr: Current position in the buffer
392 * @limit: Max extent length to return (0 = unlimited)
393 * @eob: Set to 1 if we hit "end of block"
394 *
395 * If the first block is zero (unallocated) it will return the number of
396 * unallocated blocks in the extent, otherwise it will return the number
397 * of contiguous blocks in the extent.
398 *
399 * Returns: The length of the extent (minimum of one block)
400 */
401
402static inline unsigned int gfs2_extent_length(void *start, unsigned int len, __be64 *ptr, size_t limit, int *eob)
403{
404 const __be64 *end = (start + len);
405 const __be64 *first = ptr;
406 u64 d = be64_to_cpu(*ptr);
407
408 *eob = 0;
409 do {
410 ptr++;
411 if (ptr >= end)
412 break;
413 if (limit && --limit == 0)
414 break;
415 if (d)
416 d++;
417 } while(be64_to_cpu(*ptr) == d);
418 if (ptr >= end)
419 *eob = 1;
420 return (ptr - first);
421}
422
423static inline void bmap_lock(struct gfs2_inode *ip, int create)
424{
425 if (create)
426 down_write(&ip->i_rw_mutex);
427 else
428 down_read(&ip->i_rw_mutex);
429}
430
431static inline void bmap_unlock(struct gfs2_inode *ip, int create)
432{
433 if (create)
434 up_write(&ip->i_rw_mutex);
435 else
436 up_read(&ip->i_rw_mutex);
437}
438
439static inline __be64 *gfs2_indirect_init(struct metapath *mp,
440 struct gfs2_glock *gl, unsigned int i,
441 unsigned offset, u64 bn)
442{
443 __be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data +
444 ((i > 1) ? sizeof(struct gfs2_meta_header) :
445 sizeof(struct gfs2_dinode)));
446 BUG_ON(i < 1);
447 BUG_ON(mp->mp_bh[i] != NULL);
448 mp->mp_bh[i] = gfs2_meta_new(gl, bn);
449 gfs2_trans_add_meta(gl, mp->mp_bh[i]);
450 gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN);
451 gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header));
452 ptr += offset;
453 *ptr = cpu_to_be64(bn);
454 return ptr;
455}
456
457enum alloc_state {
458 ALLOC_DATA = 0,
459 ALLOC_GROW_DEPTH = 1,
460 ALLOC_GROW_HEIGHT = 2,
461 /* ALLOC_UNSTUFF = 3, TBD and rather complicated */
462};
463
464/**
465 * gfs2_bmap_alloc - Build a metadata tree of the requested height
466 * @inode: The GFS2 inode
467 * @lblock: The logical starting block of the extent
468 * @bh_map: This is used to return the mapping details
469 * @zero_new: True if newly allocated blocks should be zeroed
470 * @mp: The metapath, with proper height information calculated
471 * @maxlen: The max number of data blocks to alloc
472 * @dblock: Pointer to return the resulting new block
473 * @dblks: Pointer to return the number of blocks allocated
474 *
475 * In this routine we may have to alloc:
476 * i) Indirect blocks to grow the metadata tree height
477 * ii) Indirect blocks to fill in lower part of the metadata tree
478 * iii) Data blocks
479 *
480 * The function is in two parts. The first part works out the total
481 * number of blocks which we need. The second part does the actual
482 * allocation asking for an extent at a time (if enough contiguous free
483 * blocks are available, there will only be one request per bmap call)
484 * and uses the state machine to initialise the blocks in order.
485 *
486 * Returns: errno on error
487 */
488
489static int gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap,
490 unsigned flags, struct metapath *mp)
491{
492 struct gfs2_inode *ip = GFS2_I(inode);
493 struct gfs2_sbd *sdp = GFS2_SB(inode);
494 struct buffer_head *dibh = mp->mp_bh[0];
495 u64 bn;
496 unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0;
497 unsigned dblks = 0;
498 unsigned ptrs_per_blk;
499 const unsigned end_of_metadata = mp->mp_fheight - 1;
500 enum alloc_state state;
501 __be64 *ptr;
502 __be64 zero_bn = 0;
503 size_t maxlen = iomap->length >> inode->i_blkbits;
504
505 BUG_ON(mp->mp_aheight < 1);
506 BUG_ON(dibh == NULL);
507
508 gfs2_trans_add_meta(ip->i_gl, dibh);
509
510 if (mp->mp_fheight == mp->mp_aheight) {
511 struct buffer_head *bh;
512 int eob;
513
514 /* Bottom indirect block exists, find unalloced extent size */
515 ptr = metapointer(end_of_metadata, mp);
516 bh = mp->mp_bh[end_of_metadata];
517 dblks = gfs2_extent_length(bh->b_data, bh->b_size, ptr,
518 maxlen, &eob);
519 BUG_ON(dblks < 1);
520 state = ALLOC_DATA;
521 } else {
522 /* Need to allocate indirect blocks */
523 ptrs_per_blk = mp->mp_fheight > 1 ? sdp->sd_inptrs :
524 sdp->sd_diptrs;
525 dblks = min(maxlen, (size_t)(ptrs_per_blk -
526 mp->mp_list[end_of_metadata]));
527 if (mp->mp_fheight == ip->i_height) {
528 /* Writing into existing tree, extend tree down */
529 iblks = mp->mp_fheight - mp->mp_aheight;
530 state = ALLOC_GROW_DEPTH;
531 } else {
532 /* Building up tree height */
533 state = ALLOC_GROW_HEIGHT;
534 iblks = mp->mp_fheight - ip->i_height;
535 branch_start = metapath_branch_start(mp);
536 iblks += (mp->mp_fheight - branch_start);
537 }
538 }
539
540 /* start of the second part of the function (state machine) */
541
542 blks = dblks + iblks;
543 i = mp->mp_aheight;
544 do {
545 int error;
546 n = blks - alloced;
547 error = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL);
548 if (error)
549 return error;
550 alloced += n;
551 if (state != ALLOC_DATA || gfs2_is_jdata(ip))
552 gfs2_trans_add_unrevoke(sdp, bn, n);
553 switch (state) {
554 /* Growing height of tree */
555 case ALLOC_GROW_HEIGHT:
556 if (i == 1) {
557 ptr = (__be64 *)(dibh->b_data +
558 sizeof(struct gfs2_dinode));
559 zero_bn = *ptr;
560 }
561 for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0;
562 i++, n--)
563 gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++);
564 if (i - 1 == mp->mp_fheight - ip->i_height) {
565 i--;
566 gfs2_buffer_copy_tail(mp->mp_bh[i],
567 sizeof(struct gfs2_meta_header),
568 dibh, sizeof(struct gfs2_dinode));
569 gfs2_buffer_clear_tail(dibh,
570 sizeof(struct gfs2_dinode) +
571 sizeof(__be64));
572 ptr = (__be64 *)(mp->mp_bh[i]->b_data +
573 sizeof(struct gfs2_meta_header));
574 *ptr = zero_bn;
575 state = ALLOC_GROW_DEPTH;
576 for(i = branch_start; i < mp->mp_fheight; i++) {
577 if (mp->mp_bh[i] == NULL)
578 break;
579 brelse(mp->mp_bh[i]);
580 mp->mp_bh[i] = NULL;
581 }
582 i = branch_start;
583 }
584 if (n == 0)
585 break;
586 /* Branching from existing tree */
587 case ALLOC_GROW_DEPTH:
588 if (i > 1 && i < mp->mp_fheight)
589 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]);
590 for (; i < mp->mp_fheight && n > 0; i++, n--)
591 gfs2_indirect_init(mp, ip->i_gl, i,
592 mp->mp_list[i-1], bn++);
593 if (i == mp->mp_fheight)
594 state = ALLOC_DATA;
595 if (n == 0)
596 break;
597 /* Tree complete, adding data blocks */
598 case ALLOC_DATA:
599 BUG_ON(n > dblks);
600 BUG_ON(mp->mp_bh[end_of_metadata] == NULL);
601 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]);
602 dblks = n;
603 ptr = metapointer(end_of_metadata, mp);
604 iomap->addr = bn << inode->i_blkbits;
605 iomap->flags |= IOMAP_F_NEW;
606 while (n-- > 0)
607 *ptr++ = cpu_to_be64(bn++);
608 break;
609 }
610 } while (iomap->addr == IOMAP_NULL_ADDR);
611
612 iomap->length = (u64)dblks << inode->i_blkbits;
613 ip->i_height = mp->mp_fheight;
614 gfs2_add_inode_blocks(&ip->i_inode, alloced);
615 gfs2_dinode_out(ip, mp->mp_bh[0]->b_data);
616 return 0;
617}
618
619/**
620 * hole_size - figure out the size of a hole
621 * @inode: The inode
622 * @lblock: The logical starting block number
623 * @mp: The metapath
624 *
625 * Returns: The hole size in bytes
626 *
627 */
628static u64 hole_size(struct inode *inode, sector_t lblock, struct metapath *mp)
629{
630 struct gfs2_inode *ip = GFS2_I(inode);
631 struct gfs2_sbd *sdp = GFS2_SB(inode);
632 struct metapath mp_eof;
633 u64 factor = 1;
634 int hgt;
635 u64 holesz = 0;
636 const __be64 *first, *end, *ptr;
637 const struct buffer_head *bh;
638 u64 lblock_stop = (i_size_read(inode) - 1) >> inode->i_blkbits;
639 int zeroptrs;
640 bool done = false;
641
642 /* Get another metapath, to the very last byte */
643 find_metapath(sdp, lblock_stop, &mp_eof, ip->i_height);
644 for (hgt = ip->i_height - 1; hgt >= 0 && !done; hgt--) {
645 bh = mp->mp_bh[hgt];
646 if (bh) {
647 zeroptrs = 0;
648 first = metapointer(hgt, mp);
649 end = (const __be64 *)(bh->b_data + bh->b_size);
650
651 for (ptr = first; ptr < end; ptr++) {
652 if (*ptr) {
653 done = true;
654 break;
655 } else {
656 zeroptrs++;
657 }
658 }
659 } else {
660 zeroptrs = sdp->sd_inptrs;
661 }
662 if (factor * zeroptrs >= lblock_stop - lblock + 1) {
663 holesz = lblock_stop - lblock + 1;
664 break;
665 }
666 holesz += factor * zeroptrs;
667
668 factor *= sdp->sd_inptrs;
669 if (hgt && (mp->mp_list[hgt - 1] < mp_eof.mp_list[hgt - 1]))
670 (mp->mp_list[hgt - 1])++;
671 }
672 return holesz << inode->i_blkbits;
673}
674
675static void gfs2_stuffed_iomap(struct inode *inode, struct iomap *iomap)
676{
677 struct gfs2_inode *ip = GFS2_I(inode);
678
679 iomap->addr = (ip->i_no_addr << inode->i_blkbits) +
680 sizeof(struct gfs2_dinode);
681 iomap->offset = 0;
682 iomap->length = i_size_read(inode);
683 iomap->type = IOMAP_MAPPED;
684 iomap->flags = IOMAP_F_DATA_INLINE;
685}
686
687/**
688 * gfs2_iomap_begin - Map blocks from an inode to disk blocks
689 * @inode: The inode
690 * @pos: Starting position in bytes
691 * @length: Length to map, in bytes
692 * @flags: iomap flags
693 * @iomap: The iomap structure
694 *
695 * Returns: errno
696 */
697int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length,
698 unsigned flags, struct iomap *iomap)
699{
700 struct gfs2_inode *ip = GFS2_I(inode);
701 struct gfs2_sbd *sdp = GFS2_SB(inode);
702 struct metapath mp = { .mp_aheight = 1, };
703 unsigned int factor = sdp->sd_sb.sb_bsize;
704 const u64 *arr = sdp->sd_heightsize;
705 __be64 *ptr;
706 sector_t lblock;
707 sector_t lend;
708 int ret = 0;
709 int eob;
710 unsigned int len;
711 struct buffer_head *bh;
712 u8 height;
713
714 trace_gfs2_iomap_start(ip, pos, length, flags);
715 if (!length) {
716 ret = -EINVAL;
717 goto out;
718 }
719
720 if (gfs2_is_stuffed(ip)) {
721 if (flags & IOMAP_REPORT) {
722 gfs2_stuffed_iomap(inode, iomap);
723 if (pos >= iomap->length)
724 ret = -ENOENT;
725 goto out;
726 }
727 BUG_ON(!(flags & IOMAP_WRITE));
728 }
729
730 lblock = pos >> inode->i_blkbits;
731 lend = (pos + length + sdp->sd_sb.sb_bsize - 1) >> inode->i_blkbits;
732
733 iomap->offset = lblock << inode->i_blkbits;
734 iomap->addr = IOMAP_NULL_ADDR;
735 iomap->type = IOMAP_HOLE;
736 iomap->length = (u64)(lend - lblock) << inode->i_blkbits;
737 iomap->flags = IOMAP_F_MERGED;
738 bmap_lock(ip, flags & IOMAP_WRITE);
739
740 /*
741 * Directory data blocks have a struct gfs2_meta_header header, so the
742 * remaining size is smaller than the filesystem block size. Logical
743 * block numbers for directories are in units of this remaining size!
744 */
745 if (gfs2_is_dir(ip)) {
746 factor = sdp->sd_jbsize;
747 arr = sdp->sd_jheightsize;
748 }
749
750 ret = gfs2_meta_inode_buffer(ip, &mp.mp_bh[0]);
751 if (ret)
752 goto out_release;
753
754 height = ip->i_height;
755 while ((lblock + 1) * factor > arr[height])
756 height++;
757 find_metapath(sdp, lblock, &mp, height);
758 if (height > ip->i_height || gfs2_is_stuffed(ip))
759 goto do_alloc;
760
761 ret = lookup_metapath(ip, &mp);
762 if (ret)
763 goto out_release;
764
765 if (mp.mp_aheight != ip->i_height)
766 goto do_alloc;
767
768 ptr = metapointer(ip->i_height - 1, &mp);
769 if (*ptr == 0)
770 goto do_alloc;
771
772 iomap->type = IOMAP_MAPPED;
773 iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits;
774
775 bh = mp.mp_bh[ip->i_height - 1];
776 len = gfs2_extent_length(bh->b_data, bh->b_size, ptr, lend - lblock, &eob);
777 if (eob)
778 iomap->flags |= IOMAP_F_BOUNDARY;
779 iomap->length = (u64)len << inode->i_blkbits;
780
781out_release:
782 release_metapath(&mp);
783 bmap_unlock(ip, flags & IOMAP_WRITE);
784out:
785 trace_gfs2_iomap_end(ip, iomap, ret);
786 return ret;
787
788do_alloc:
789 if (flags & IOMAP_WRITE) {
790 ret = gfs2_iomap_alloc(inode, iomap, flags, &mp);
791 } else if (flags & IOMAP_REPORT) {
792 loff_t size = i_size_read(inode);
793 if (pos >= size)
794 ret = -ENOENT;
795 else if (height <= ip->i_height)
796 iomap->length = hole_size(inode, lblock, &mp);
797 else
798 iomap->length = size - pos;
799 }
800 goto out_release;
801}
802
803/**
804 * gfs2_block_map - Map one or more blocks of an inode to a disk block
805 * @inode: The inode
806 * @lblock: The logical block number
807 * @bh_map: The bh to be mapped
808 * @create: True if its ok to alloc blocks to satify the request
809 *
810 * The size of the requested mapping is defined in bh_map->b_size.
811 *
812 * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged
813 * when @lblock is not mapped. Sets buffer_mapped(bh_map) and
814 * bh_map->b_size to indicate the size of the mapping when @lblock and
815 * successive blocks are mapped, up to the requested size.
816 *
817 * Sets buffer_boundary() if a read of metadata will be required
818 * before the next block can be mapped. Sets buffer_new() if new
819 * blocks were allocated.
820 *
821 * Returns: errno
822 */
823
824int gfs2_block_map(struct inode *inode, sector_t lblock,
825 struct buffer_head *bh_map, int create)
826{
827 struct gfs2_inode *ip = GFS2_I(inode);
828 struct iomap iomap;
829 int ret, flags = 0;
830
831 clear_buffer_mapped(bh_map);
832 clear_buffer_new(bh_map);
833 clear_buffer_boundary(bh_map);
834 trace_gfs2_bmap(ip, bh_map, lblock, create, 1);
835
836 if (create)
837 flags |= IOMAP_WRITE;
838 ret = gfs2_iomap_begin(inode, (loff_t)lblock << inode->i_blkbits,
839 bh_map->b_size, flags, &iomap);
840 if (ret) {
841 if (!create && ret == -ENOENT) {
842 /* Return unmapped buffer beyond the end of file. */
843 ret = 0;
844 }
845 goto out;
846 }
847
848 if (iomap.length > bh_map->b_size) {
849 iomap.length = bh_map->b_size;
850 iomap.flags &= ~IOMAP_F_BOUNDARY;
851 }
852 if (iomap.addr != IOMAP_NULL_ADDR)
853 map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits);
854 bh_map->b_size = iomap.length;
855 if (iomap.flags & IOMAP_F_BOUNDARY)
856 set_buffer_boundary(bh_map);
857 if (iomap.flags & IOMAP_F_NEW)
858 set_buffer_new(bh_map);
859
860out:
861 trace_gfs2_bmap(ip, bh_map, lblock, create, ret);
862 return ret;
863}
864
865/*
866 * Deprecated: do not use in new code
867 */
868int gfs2_extent_map(struct inode *inode, u64 lblock, int *new, u64 *dblock, unsigned *extlen)
869{
870 struct buffer_head bh = { .b_state = 0, .b_blocknr = 0 };
871 int ret;
872 int create = *new;
873
874 BUG_ON(!extlen);
875 BUG_ON(!dblock);
876 BUG_ON(!new);
877
878 bh.b_size = BIT(inode->i_blkbits + (create ? 0 : 5));
879 ret = gfs2_block_map(inode, lblock, &bh, create);
880 *extlen = bh.b_size >> inode->i_blkbits;
881 *dblock = bh.b_blocknr;
882 if (buffer_new(&bh))
883 *new = 1;
884 else
885 *new = 0;
886 return ret;
887}
888
889/**
890 * gfs2_block_zero_range - Deal with zeroing out data
891 *
892 * This is partly borrowed from ext3.
893 */
894static int gfs2_block_zero_range(struct inode *inode, loff_t from,
895 unsigned int length)
896{
897 struct address_space *mapping = inode->i_mapping;
898 struct gfs2_inode *ip = GFS2_I(inode);
899 unsigned long index = from >> PAGE_SHIFT;
900 unsigned offset = from & (PAGE_SIZE-1);
901 unsigned blocksize, iblock, pos;
902 struct buffer_head *bh;
903 struct page *page;
904 int err;
905
906 page = find_or_create_page(mapping, index, GFP_NOFS);
907 if (!page)
908 return 0;
909
910 blocksize = inode->i_sb->s_blocksize;
911 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
912
913 if (!page_has_buffers(page))
914 create_empty_buffers(page, blocksize, 0);
915
916 /* Find the buffer that contains "offset" */
917 bh = page_buffers(page);
918 pos = blocksize;
919 while (offset >= pos) {
920 bh = bh->b_this_page;
921 iblock++;
922 pos += blocksize;
923 }
924
925 err = 0;
926
927 if (!buffer_mapped(bh)) {
928 gfs2_block_map(inode, iblock, bh, 0);
929 /* unmapped? It's a hole - nothing to do */
930 if (!buffer_mapped(bh))
931 goto unlock;
932 }
933
934 /* Ok, it's mapped. Make sure it's up-to-date */
935 if (PageUptodate(page))
936 set_buffer_uptodate(bh);
937
938 if (!buffer_uptodate(bh)) {
939 err = -EIO;
940 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
941 wait_on_buffer(bh);
942 /* Uhhuh. Read error. Complain and punt. */
943 if (!buffer_uptodate(bh))
944 goto unlock;
945 err = 0;
946 }
947
948 if (!gfs2_is_writeback(ip))
949 gfs2_trans_add_data(ip->i_gl, bh);
950
951 zero_user(page, offset, length);
952 mark_buffer_dirty(bh);
953unlock:
954 unlock_page(page);
955 put_page(page);
956 return err;
957}
958
959#define GFS2_JTRUNC_REVOKES 8192
960
961/**
962 * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files
963 * @inode: The inode being truncated
964 * @oldsize: The original (larger) size
965 * @newsize: The new smaller size
966 *
967 * With jdata files, we have to journal a revoke for each block which is
968 * truncated. As a result, we need to split this into separate transactions
969 * if the number of pages being truncated gets too large.
970 */
971
972static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize)
973{
974 struct gfs2_sbd *sdp = GFS2_SB(inode);
975 u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
976 u64 chunk;
977 int error;
978
979 while (oldsize != newsize) {
980 struct gfs2_trans *tr;
981 unsigned int offs;
982
983 chunk = oldsize - newsize;
984 if (chunk > max_chunk)
985 chunk = max_chunk;
986
987 offs = oldsize & ~PAGE_MASK;
988 if (offs && chunk > PAGE_SIZE)
989 chunk = offs + ((chunk - offs) & PAGE_MASK);
990
991 truncate_pagecache(inode, oldsize - chunk);
992 oldsize -= chunk;
993
994 tr = current->journal_info;
995 if (!test_bit(TR_TOUCHED, &tr->tr_flags))
996 continue;
997
998 gfs2_trans_end(sdp);
999 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
1000 if (error)
1001 return error;
1002 }
1003
1004 return 0;
1005}
1006
1007static int trunc_start(struct inode *inode, u64 newsize)
1008{
1009 struct gfs2_inode *ip = GFS2_I(inode);
1010 struct gfs2_sbd *sdp = GFS2_SB(inode);
1011 struct buffer_head *dibh = NULL;
1012 int journaled = gfs2_is_jdata(ip);
1013 u64 oldsize = inode->i_size;
1014 int error;
1015
1016 if (journaled)
1017 error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES);
1018 else
1019 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1020 if (error)
1021 return error;
1022
1023 error = gfs2_meta_inode_buffer(ip, &dibh);
1024 if (error)
1025 goto out;
1026
1027 gfs2_trans_add_meta(ip->i_gl, dibh);
1028
1029 if (gfs2_is_stuffed(ip)) {
1030 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize);
1031 } else {
1032 unsigned int blocksize = i_blocksize(inode);
1033 unsigned int offs = newsize & (blocksize - 1);
1034 if (offs) {
1035 error = gfs2_block_zero_range(inode, newsize,
1036 blocksize - offs);
1037 if (error)
1038 goto out;
1039 }
1040 ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG;
1041 }
1042
1043 i_size_write(inode, newsize);
1044 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1045 gfs2_dinode_out(ip, dibh->b_data);
1046
1047 if (journaled)
1048 error = gfs2_journaled_truncate(inode, oldsize, newsize);
1049 else
1050 truncate_pagecache(inode, newsize);
1051
1052out:
1053 brelse(dibh);
1054 if (current->journal_info)
1055 gfs2_trans_end(sdp);
1056 return error;
1057}
1058
1059/**
1060 * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein
1061 * @ip: inode
1062 * @rg_gh: holder of resource group glock
1063 * @bh: buffer head to sweep
1064 * @start: starting point in bh
1065 * @end: end point in bh
1066 * @meta: true if bh points to metadata (rather than data)
1067 * @btotal: place to keep count of total blocks freed
1068 *
1069 * We sweep a metadata buffer (provided by the metapath) for blocks we need to
1070 * free, and free them all. However, we do it one rgrp at a time. If this
1071 * block has references to multiple rgrps, we break it into individual
1072 * transactions. This allows other processes to use the rgrps while we're
1073 * focused on a single one, for better concurrency / performance.
1074 * At every transaction boundary, we rewrite the inode into the journal.
1075 * That way the bitmaps are kept consistent with the inode and we can recover
1076 * if we're interrupted by power-outages.
1077 *
1078 * Returns: 0, or return code if an error occurred.
1079 * *btotal has the total number of blocks freed
1080 */
1081static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh,
1082 struct buffer_head *bh, __be64 *start, __be64 *end,
1083 bool meta, u32 *btotal)
1084{
1085 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1086 struct gfs2_rgrpd *rgd;
1087 struct gfs2_trans *tr;
1088 __be64 *p;
1089 int blks_outside_rgrp;
1090 u64 bn, bstart, isize_blks;
1091 s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */
1092 int ret = 0;
1093 bool buf_in_tr = false; /* buffer was added to transaction */
1094
1095more_rgrps:
1096 rgd = NULL;
1097 if (gfs2_holder_initialized(rd_gh)) {
1098 rgd = gfs2_glock2rgrp(rd_gh->gh_gl);
1099 gfs2_assert_withdraw(sdp,
1100 gfs2_glock_is_locked_by_me(rd_gh->gh_gl));
1101 }
1102 blks_outside_rgrp = 0;
1103 bstart = 0;
1104 blen = 0;
1105
1106 for (p = start; p < end; p++) {
1107 if (!*p)
1108 continue;
1109 bn = be64_to_cpu(*p);
1110
1111 if (rgd) {
1112 if (!rgrp_contains_block(rgd, bn)) {
1113 blks_outside_rgrp++;
1114 continue;
1115 }
1116 } else {
1117 rgd = gfs2_blk2rgrpd(sdp, bn, true);
1118 if (unlikely(!rgd)) {
1119 ret = -EIO;
1120 goto out;
1121 }
1122 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1123 0, rd_gh);
1124 if (ret)
1125 goto out;
1126
1127 /* Must be done with the rgrp glock held: */
1128 if (gfs2_rs_active(&ip->i_res) &&
1129 rgd == ip->i_res.rs_rbm.rgd)
1130 gfs2_rs_deltree(&ip->i_res);
1131 }
1132
1133 /* The size of our transactions will be unknown until we
1134 actually process all the metadata blocks that relate to
1135 the rgrp. So we estimate. We know it can't be more than
1136 the dinode's i_blocks and we don't want to exceed the
1137 journal flush threshold, sd_log_thresh2. */
1138 if (current->journal_info == NULL) {
1139 unsigned int jblocks_rqsted, revokes;
1140
1141 jblocks_rqsted = rgd->rd_length + RES_DINODE +
1142 RES_INDIRECT;
1143 isize_blks = gfs2_get_inode_blocks(&ip->i_inode);
1144 if (isize_blks > atomic_read(&sdp->sd_log_thresh2))
1145 jblocks_rqsted +=
1146 atomic_read(&sdp->sd_log_thresh2);
1147 else
1148 jblocks_rqsted += isize_blks;
1149 revokes = jblocks_rqsted;
1150 if (meta)
1151 revokes += end - start;
1152 else if (ip->i_depth)
1153 revokes += sdp->sd_inptrs;
1154 ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes);
1155 if (ret)
1156 goto out_unlock;
1157 down_write(&ip->i_rw_mutex);
1158 }
1159 /* check if we will exceed the transaction blocks requested */
1160 tr = current->journal_info;
1161 if (tr->tr_num_buf_new + RES_STATFS +
1162 RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) {
1163 /* We set blks_outside_rgrp to ensure the loop will
1164 be repeated for the same rgrp, but with a new
1165 transaction. */
1166 blks_outside_rgrp++;
1167 /* This next part is tricky. If the buffer was added
1168 to the transaction, we've already set some block
1169 pointers to 0, so we better follow through and free
1170 them, or we will introduce corruption (so break).
1171 This may be impossible, or at least rare, but I
1172 decided to cover the case regardless.
1173
1174 If the buffer was not added to the transaction
1175 (this call), doing so would exceed our transaction
1176 size, so we need to end the transaction and start a
1177 new one (so goto). */
1178
1179 if (buf_in_tr)
1180 break;
1181 goto out_unlock;
1182 }
1183
1184 gfs2_trans_add_meta(ip->i_gl, bh);
1185 buf_in_tr = true;
1186 *p = 0;
1187 if (bstart + blen == bn) {
1188 blen++;
1189 continue;
1190 }
1191 if (bstart) {
1192 __gfs2_free_blocks(ip, bstart, (u32)blen, meta);
1193 (*btotal) += blen;
1194 gfs2_add_inode_blocks(&ip->i_inode, -blen);
1195 }
1196 bstart = bn;
1197 blen = 1;
1198 }
1199 if (bstart) {
1200 __gfs2_free_blocks(ip, bstart, (u32)blen, meta);
1201 (*btotal) += blen;
1202 gfs2_add_inode_blocks(&ip->i_inode, -blen);
1203 }
1204out_unlock:
1205 if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks
1206 outside the rgrp we just processed,
1207 do it all over again. */
1208 if (current->journal_info) {
1209 struct buffer_head *dibh;
1210
1211 ret = gfs2_meta_inode_buffer(ip, &dibh);
1212 if (ret)
1213 goto out;
1214
1215 /* Every transaction boundary, we rewrite the dinode
1216 to keep its di_blocks current in case of failure. */
1217 ip->i_inode.i_mtime = ip->i_inode.i_ctime =
1218 current_time(&ip->i_inode);
1219 gfs2_trans_add_meta(ip->i_gl, dibh);
1220 gfs2_dinode_out(ip, dibh->b_data);
1221 brelse(dibh);
1222 up_write(&ip->i_rw_mutex);
1223 gfs2_trans_end(sdp);
1224 }
1225 gfs2_glock_dq_uninit(rd_gh);
1226 cond_resched();
1227 goto more_rgrps;
1228 }
1229out:
1230 return ret;
1231}
1232
1233static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h)
1234{
1235 if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0])))
1236 return false;
1237 return true;
1238}
1239
1240/**
1241 * find_nonnull_ptr - find a non-null pointer given a metapath and height
1242 * @mp: starting metapath
1243 * @h: desired height to search
1244 *
1245 * Assumes the metapath is valid (with buffers) out to height h.
1246 * Returns: true if a non-null pointer was found in the metapath buffer
1247 * false if all remaining pointers are NULL in the buffer
1248 */
1249static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp,
1250 unsigned int h,
1251 __u16 *end_list, unsigned int end_aligned)
1252{
1253 struct buffer_head *bh = mp->mp_bh[h];
1254 __be64 *first, *ptr, *end;
1255
1256 first = metaptr1(h, mp);
1257 ptr = first + mp->mp_list[h];
1258 end = (__be64 *)(bh->b_data + bh->b_size);
1259 if (end_list && mp_eq_to_hgt(mp, end_list, h)) {
1260 bool keep_end = h < end_aligned;
1261 end = first + end_list[h] + keep_end;
1262 }
1263
1264 while (ptr < end) {
1265 if (*ptr) { /* if we have a non-null pointer */
1266 mp->mp_list[h] = ptr - first;
1267 h++;
1268 if (h < GFS2_MAX_META_HEIGHT)
1269 mp->mp_list[h] = 0;
1270 return true;
1271 }
1272 ptr++;
1273 }
1274 return false;
1275}
1276
1277enum dealloc_states {
1278 DEALLOC_MP_FULL = 0, /* Strip a metapath with all buffers read in */
1279 DEALLOC_MP_LOWER = 1, /* lower the metapath strip height */
1280 DEALLOC_FILL_MP = 2, /* Fill in the metapath to the given height. */
1281 DEALLOC_DONE = 3, /* process complete */
1282};
1283
1284static inline void
1285metapointer_range(struct metapath *mp, int height,
1286 __u16 *start_list, unsigned int start_aligned,
1287 __u16 *end_list, unsigned int end_aligned,
1288 __be64 **start, __be64 **end)
1289{
1290 struct buffer_head *bh = mp->mp_bh[height];
1291 __be64 *first;
1292
1293 first = metaptr1(height, mp);
1294 *start = first;
1295 if (mp_eq_to_hgt(mp, start_list, height)) {
1296 bool keep_start = height < start_aligned;
1297 *start = first + start_list[height] + keep_start;
1298 }
1299 *end = (__be64 *)(bh->b_data + bh->b_size);
1300 if (end_list && mp_eq_to_hgt(mp, end_list, height)) {
1301 bool keep_end = height < end_aligned;
1302 *end = first + end_list[height] + keep_end;
1303 }
1304}
1305
1306static inline bool walk_done(struct gfs2_sbd *sdp,
1307 struct metapath *mp, int height,
1308 __u16 *end_list, unsigned int end_aligned)
1309{
1310 __u16 end;
1311
1312 if (end_list) {
1313 bool keep_end = height < end_aligned;
1314 if (!mp_eq_to_hgt(mp, end_list, height))
1315 return false;
1316 end = end_list[height] + keep_end;
1317 } else
1318 end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs;
1319 return mp->mp_list[height] >= end;
1320}
1321
1322/**
1323 * punch_hole - deallocate blocks in a file
1324 * @ip: inode to truncate
1325 * @offset: the start of the hole
1326 * @length: the size of the hole (or 0 for truncate)
1327 *
1328 * Punch a hole into a file or truncate a file at a given position. This
1329 * function operates in whole blocks (@offset and @length are rounded
1330 * accordingly); partially filled blocks must be cleared otherwise.
1331 *
1332 * This function works from the bottom up, and from the right to the left. In
1333 * other words, it strips off the highest layer (data) before stripping any of
1334 * the metadata. Doing it this way is best in case the operation is interrupted
1335 * by power failure, etc. The dinode is rewritten in every transaction to
1336 * guarantee integrity.
1337 */
1338static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length)
1339{
1340 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1341 u64 maxsize = sdp->sd_heightsize[ip->i_height];
1342 struct metapath mp = {};
1343 struct buffer_head *dibh, *bh;
1344 struct gfs2_holder rd_gh;
1345 unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift;
1346 u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift;
1347 __u16 start_list[GFS2_MAX_META_HEIGHT];
1348 __u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL;
1349 unsigned int start_aligned, uninitialized_var(end_aligned);
1350 unsigned int strip_h = ip->i_height - 1;
1351 u32 btotal = 0;
1352 int ret, state;
1353 int mp_h; /* metapath buffers are read in to this height */
1354 u64 prev_bnr = 0;
1355 __be64 *start, *end;
1356
1357 if (offset >= maxsize) {
1358 /*
1359 * The starting point lies beyond the allocated meta-data;
1360 * there are no blocks do deallocate.
1361 */
1362 return 0;
1363 }
1364
1365 /*
1366 * The start position of the hole is defined by lblock, start_list, and
1367 * start_aligned. The end position of the hole is defined by lend,
1368 * end_list, and end_aligned.
1369 *
1370 * start_aligned and end_aligned define down to which height the start
1371 * and end positions are aligned to the metadata tree (i.e., the
1372 * position is a multiple of the metadata granularity at the height
1373 * above). This determines at which heights additional meta pointers
1374 * needs to be preserved for the remaining data.
1375 */
1376
1377 if (length) {
1378 u64 end_offset = offset + length;
1379 u64 lend;
1380
1381 /*
1382 * Clip the end at the maximum file size for the given height:
1383 * that's how far the metadata goes; files bigger than that
1384 * will have additional layers of indirection.
1385 */
1386 if (end_offset > maxsize)
1387 end_offset = maxsize;
1388 lend = end_offset >> bsize_shift;
1389
1390 if (lblock >= lend)
1391 return 0;
1392
1393 find_metapath(sdp, lend, &mp, ip->i_height);
1394 end_list = __end_list;
1395 memcpy(end_list, mp.mp_list, sizeof(mp.mp_list));
1396
1397 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1398 if (end_list[mp_h])
1399 break;
1400 }
1401 end_aligned = mp_h;
1402 }
1403
1404 find_metapath(sdp, lblock, &mp, ip->i_height);
1405 memcpy(start_list, mp.mp_list, sizeof(start_list));
1406
1407 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1408 if (start_list[mp_h])
1409 break;
1410 }
1411 start_aligned = mp_h;
1412
1413 ret = gfs2_meta_inode_buffer(ip, &dibh);
1414 if (ret)
1415 return ret;
1416
1417 mp.mp_bh[0] = dibh;
1418 ret = lookup_metapath(ip, &mp);
1419 if (ret)
1420 goto out_metapath;
1421
1422 /* issue read-ahead on metadata */
1423 for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) {
1424 metapointer_range(&mp, mp_h, start_list, start_aligned,
1425 end_list, end_aligned, &start, &end);
1426 gfs2_metapath_ra(ip->i_gl, start, end);
1427 }
1428
1429 if (mp.mp_aheight == ip->i_height)
1430 state = DEALLOC_MP_FULL; /* We have a complete metapath */
1431 else
1432 state = DEALLOC_FILL_MP; /* deal with partial metapath */
1433
1434 ret = gfs2_rindex_update(sdp);
1435 if (ret)
1436 goto out_metapath;
1437
1438 ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE);
1439 if (ret)
1440 goto out_metapath;
1441 gfs2_holder_mark_uninitialized(&rd_gh);
1442
1443 mp_h = strip_h;
1444
1445 while (state != DEALLOC_DONE) {
1446 switch (state) {
1447 /* Truncate a full metapath at the given strip height.
1448 * Note that strip_h == mp_h in order to be in this state. */
1449 case DEALLOC_MP_FULL:
1450 bh = mp.mp_bh[mp_h];
1451 gfs2_assert_withdraw(sdp, bh);
1452 if (gfs2_assert_withdraw(sdp,
1453 prev_bnr != bh->b_blocknr)) {
1454 printk(KERN_EMERG "GFS2: fsid=%s:inode %llu, "
1455 "block:%llu, i_h:%u, s_h:%u, mp_h:%u\n",
1456 sdp->sd_fsname,
1457 (unsigned long long)ip->i_no_addr,
1458 prev_bnr, ip->i_height, strip_h, mp_h);
1459 }
1460 prev_bnr = bh->b_blocknr;
1461
1462 if (gfs2_metatype_check(sdp, bh,
1463 (mp_h ? GFS2_METATYPE_IN :
1464 GFS2_METATYPE_DI))) {
1465 ret = -EIO;
1466 goto out;
1467 }
1468
1469 /*
1470 * Below, passing end_aligned as 0 gives us the
1471 * metapointer range excluding the end point: the end
1472 * point is the first metapath we must not deallocate!
1473 */
1474
1475 metapointer_range(&mp, mp_h, start_list, start_aligned,
1476 end_list, 0 /* end_aligned */,
1477 &start, &end);
1478 ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h],
1479 start, end,
1480 mp_h != ip->i_height - 1,
1481 &btotal);
1482
1483 /* If we hit an error or just swept dinode buffer,
1484 just exit. */
1485 if (ret || !mp_h) {
1486 state = DEALLOC_DONE;
1487 break;
1488 }
1489 state = DEALLOC_MP_LOWER;
1490 break;
1491
1492 /* lower the metapath strip height */
1493 case DEALLOC_MP_LOWER:
1494 /* We're done with the current buffer, so release it,
1495 unless it's the dinode buffer. Then back up to the
1496 previous pointer. */
1497 if (mp_h) {
1498 brelse(mp.mp_bh[mp_h]);
1499 mp.mp_bh[mp_h] = NULL;
1500 }
1501 /* If we can't get any lower in height, we've stripped
1502 off all we can. Next step is to back up and start
1503 stripping the previous level of metadata. */
1504 if (mp_h == 0) {
1505 strip_h--;
1506 memcpy(mp.mp_list, start_list, sizeof(start_list));
1507 mp_h = strip_h;
1508 state = DEALLOC_FILL_MP;
1509 break;
1510 }
1511 mp.mp_list[mp_h] = 0;
1512 mp_h--; /* search one metadata height down */
1513 mp.mp_list[mp_h]++;
1514 if (walk_done(sdp, &mp, mp_h, end_list, end_aligned))
1515 break;
1516 /* Here we've found a part of the metapath that is not
1517 * allocated. We need to search at that height for the
1518 * next non-null pointer. */
1519 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) {
1520 state = DEALLOC_FILL_MP;
1521 mp_h++;
1522 }
1523 /* No more non-null pointers at this height. Back up
1524 to the previous height and try again. */
1525 break; /* loop around in the same state */
1526
1527 /* Fill the metapath with buffers to the given height. */
1528 case DEALLOC_FILL_MP:
1529 /* Fill the buffers out to the current height. */
1530 ret = fillup_metapath(ip, &mp, mp_h);
1531 if (ret < 0)
1532 goto out;
1533
1534 /* issue read-ahead on metadata */
1535 if (mp.mp_aheight > 1) {
1536 for (; ret > 1; ret--) {
1537 metapointer_range(&mp, mp.mp_aheight - ret,
1538 start_list, start_aligned,
1539 end_list, end_aligned,
1540 &start, &end);
1541 gfs2_metapath_ra(ip->i_gl, start, end);
1542 }
1543 }
1544
1545 /* If buffers found for the entire strip height */
1546 if (mp.mp_aheight - 1 == strip_h) {
1547 state = DEALLOC_MP_FULL;
1548 break;
1549 }
1550 if (mp.mp_aheight < ip->i_height) /* We have a partial height */
1551 mp_h = mp.mp_aheight - 1;
1552
1553 /* If we find a non-null block pointer, crawl a bit
1554 higher up in the metapath and try again, otherwise
1555 we need to look lower for a new starting point. */
1556 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned))
1557 mp_h++;
1558 else
1559 state = DEALLOC_MP_LOWER;
1560 break;
1561 }
1562 }
1563
1564 if (btotal) {
1565 if (current->journal_info == NULL) {
1566 ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS +
1567 RES_QUOTA, 0);
1568 if (ret)
1569 goto out;
1570 down_write(&ip->i_rw_mutex);
1571 }
1572 gfs2_statfs_change(sdp, 0, +btotal, 0);
1573 gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid,
1574 ip->i_inode.i_gid);
1575 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1576 gfs2_trans_add_meta(ip->i_gl, dibh);
1577 gfs2_dinode_out(ip, dibh->b_data);
1578 up_write(&ip->i_rw_mutex);
1579 gfs2_trans_end(sdp);
1580 }
1581
1582out:
1583 if (gfs2_holder_initialized(&rd_gh))
1584 gfs2_glock_dq_uninit(&rd_gh);
1585 if (current->journal_info) {
1586 up_write(&ip->i_rw_mutex);
1587 gfs2_trans_end(sdp);
1588 cond_resched();
1589 }
1590 gfs2_quota_unhold(ip);
1591out_metapath:
1592 release_metapath(&mp);
1593 return ret;
1594}
1595
1596static int trunc_end(struct gfs2_inode *ip)
1597{
1598 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1599 struct buffer_head *dibh;
1600 int error;
1601
1602 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1603 if (error)
1604 return error;
1605
1606 down_write(&ip->i_rw_mutex);
1607
1608 error = gfs2_meta_inode_buffer(ip, &dibh);
1609 if (error)
1610 goto out;
1611
1612 if (!i_size_read(&ip->i_inode)) {
1613 ip->i_height = 0;
1614 ip->i_goal = ip->i_no_addr;
1615 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
1616 gfs2_ordered_del_inode(ip);
1617 }
1618 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1619 ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG;
1620
1621 gfs2_trans_add_meta(ip->i_gl, dibh);
1622 gfs2_dinode_out(ip, dibh->b_data);
1623 brelse(dibh);
1624
1625out:
1626 up_write(&ip->i_rw_mutex);
1627 gfs2_trans_end(sdp);
1628 return error;
1629}
1630
1631/**
1632 * do_shrink - make a file smaller
1633 * @inode: the inode
1634 * @newsize: the size to make the file
1635 *
1636 * Called with an exclusive lock on @inode. The @size must
1637 * be equal to or smaller than the current inode size.
1638 *
1639 * Returns: errno
1640 */
1641
1642static int do_shrink(struct inode *inode, u64 newsize)
1643{
1644 struct gfs2_inode *ip = GFS2_I(inode);
1645 int error;
1646
1647 error = trunc_start(inode, newsize);
1648 if (error < 0)
1649 return error;
1650 if (gfs2_is_stuffed(ip))
1651 return 0;
1652
1653 error = punch_hole(ip, newsize, 0);
1654 if (error == 0)
1655 error = trunc_end(ip);
1656
1657 return error;
1658}
1659
1660void gfs2_trim_blocks(struct inode *inode)
1661{
1662 int ret;
1663
1664 ret = do_shrink(inode, inode->i_size);
1665 WARN_ON(ret != 0);
1666}
1667
1668/**
1669 * do_grow - Touch and update inode size
1670 * @inode: The inode
1671 * @size: The new size
1672 *
1673 * This function updates the timestamps on the inode and
1674 * may also increase the size of the inode. This function
1675 * must not be called with @size any smaller than the current
1676 * inode size.
1677 *
1678 * Although it is not strictly required to unstuff files here,
1679 * earlier versions of GFS2 have a bug in the stuffed file reading
1680 * code which will result in a buffer overrun if the size is larger
1681 * than the max stuffed file size. In order to prevent this from
1682 * occurring, such files are unstuffed, but in other cases we can
1683 * just update the inode size directly.
1684 *
1685 * Returns: 0 on success, or -ve on error
1686 */
1687
1688static int do_grow(struct inode *inode, u64 size)
1689{
1690 struct gfs2_inode *ip = GFS2_I(inode);
1691 struct gfs2_sbd *sdp = GFS2_SB(inode);
1692 struct gfs2_alloc_parms ap = { .target = 1, };
1693 struct buffer_head *dibh;
1694 int error;
1695 int unstuff = 0;
1696
1697 if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) {
1698 error = gfs2_quota_lock_check(ip, &ap);
1699 if (error)
1700 return error;
1701
1702 error = gfs2_inplace_reserve(ip, &ap);
1703 if (error)
1704 goto do_grow_qunlock;
1705 unstuff = 1;
1706 }
1707
1708 error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT +
1709 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ?
1710 0 : RES_QUOTA), 0);
1711 if (error)
1712 goto do_grow_release;
1713
1714 if (unstuff) {
1715 error = gfs2_unstuff_dinode(ip, NULL);
1716 if (error)
1717 goto do_end_trans;
1718 }
1719
1720 error = gfs2_meta_inode_buffer(ip, &dibh);
1721 if (error)
1722 goto do_end_trans;
1723
1724 i_size_write(inode, size);
1725 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1726 gfs2_trans_add_meta(ip->i_gl, dibh);
1727 gfs2_dinode_out(ip, dibh->b_data);
1728 brelse(dibh);
1729
1730do_end_trans:
1731 gfs2_trans_end(sdp);
1732do_grow_release:
1733 if (unstuff) {
1734 gfs2_inplace_release(ip);
1735do_grow_qunlock:
1736 gfs2_quota_unlock(ip);
1737 }
1738 return error;
1739}
1740
1741/**
1742 * gfs2_setattr_size - make a file a given size
1743 * @inode: the inode
1744 * @newsize: the size to make the file
1745 *
1746 * The file size can grow, shrink, or stay the same size. This
1747 * is called holding i_rwsem and an exclusive glock on the inode
1748 * in question.
1749 *
1750 * Returns: errno
1751 */
1752
1753int gfs2_setattr_size(struct inode *inode, u64 newsize)
1754{
1755 struct gfs2_inode *ip = GFS2_I(inode);
1756 int ret;
1757
1758 BUG_ON(!S_ISREG(inode->i_mode));
1759
1760 ret = inode_newsize_ok(inode, newsize);
1761 if (ret)
1762 return ret;
1763
1764 inode_dio_wait(inode);
1765
1766 ret = gfs2_rsqa_alloc(ip);
1767 if (ret)
1768 goto out;
1769
1770 if (newsize >= inode->i_size) {
1771 ret = do_grow(inode, newsize);
1772 goto out;
1773 }
1774
1775 ret = do_shrink(inode, newsize);
1776out:
1777 gfs2_rsqa_delete(ip, NULL);
1778 return ret;
1779}
1780
1781int gfs2_truncatei_resume(struct gfs2_inode *ip)
1782{
1783 int error;
1784 error = punch_hole(ip, i_size_read(&ip->i_inode), 0);
1785 if (!error)
1786 error = trunc_end(ip);
1787 return error;
1788}
1789
1790int gfs2_file_dealloc(struct gfs2_inode *ip)
1791{
1792 return punch_hole(ip, 0, 0);
1793}
1794
1795/**
1796 * gfs2_free_journal_extents - Free cached journal bmap info
1797 * @jd: The journal
1798 *
1799 */
1800
1801void gfs2_free_journal_extents(struct gfs2_jdesc *jd)
1802{
1803 struct gfs2_journal_extent *jext;
1804
1805 while(!list_empty(&jd->extent_list)) {
1806 jext = list_entry(jd->extent_list.next, struct gfs2_journal_extent, list);
1807 list_del(&jext->list);
1808 kfree(jext);
1809 }
1810}
1811
1812/**
1813 * gfs2_add_jextent - Add or merge a new extent to extent cache
1814 * @jd: The journal descriptor
1815 * @lblock: The logical block at start of new extent
1816 * @dblock: The physical block at start of new extent
1817 * @blocks: Size of extent in fs blocks
1818 *
1819 * Returns: 0 on success or -ENOMEM
1820 */
1821
1822static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks)
1823{
1824 struct gfs2_journal_extent *jext;
1825
1826 if (!list_empty(&jd->extent_list)) {
1827 jext = list_entry(jd->extent_list.prev, struct gfs2_journal_extent, list);
1828 if ((jext->dblock + jext->blocks) == dblock) {
1829 jext->blocks += blocks;
1830 return 0;
1831 }
1832 }
1833
1834 jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS);
1835 if (jext == NULL)
1836 return -ENOMEM;
1837 jext->dblock = dblock;
1838 jext->lblock = lblock;
1839 jext->blocks = blocks;
1840 list_add_tail(&jext->list, &jd->extent_list);
1841 jd->nr_extents++;
1842 return 0;
1843}
1844
1845/**
1846 * gfs2_map_journal_extents - Cache journal bmap info
1847 * @sdp: The super block
1848 * @jd: The journal to map
1849 *
1850 * Create a reusable "extent" mapping from all logical
1851 * blocks to all physical blocks for the given journal. This will save
1852 * us time when writing journal blocks. Most journals will have only one
1853 * extent that maps all their logical blocks. That's because gfs2.mkfs
1854 * arranges the journal blocks sequentially to maximize performance.
1855 * So the extent would map the first block for the entire file length.
1856 * However, gfs2_jadd can happen while file activity is happening, so
1857 * those journals may not be sequential. Less likely is the case where
1858 * the users created their own journals by mounting the metafs and
1859 * laying it out. But it's still possible. These journals might have
1860 * several extents.
1861 *
1862 * Returns: 0 on success, or error on failure
1863 */
1864
1865int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd)
1866{
1867 u64 lblock = 0;
1868 u64 lblock_stop;
1869 struct gfs2_inode *ip = GFS2_I(jd->jd_inode);
1870 struct buffer_head bh;
1871 unsigned int shift = sdp->sd_sb.sb_bsize_shift;
1872 u64 size;
1873 int rc;
1874
1875 lblock_stop = i_size_read(jd->jd_inode) >> shift;
1876 size = (lblock_stop - lblock) << shift;
1877 jd->nr_extents = 0;
1878 WARN_ON(!list_empty(&jd->extent_list));
1879
1880 do {
1881 bh.b_state = 0;
1882 bh.b_blocknr = 0;
1883 bh.b_size = size;
1884 rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0);
1885 if (rc || !buffer_mapped(&bh))
1886 goto fail;
1887 rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift);
1888 if (rc)
1889 goto fail;
1890 size -= bh.b_size;
1891 lblock += (bh.b_size >> ip->i_inode.i_blkbits);
1892 } while(size > 0);
1893
1894 fs_info(sdp, "journal %d mapped with %u extents\n", jd->jd_jid,
1895 jd->nr_extents);
1896 return 0;
1897
1898fail:
1899 fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n",
1900 rc, jd->jd_jid,
1901 (unsigned long long)(i_size_read(jd->jd_inode) - size),
1902 jd->nr_extents);
1903 fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n",
1904 rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr,
1905 bh.b_state, (unsigned long long)bh.b_size);
1906 gfs2_free_journal_extents(jd);
1907 return rc;
1908}
1909
1910/**
1911 * gfs2_write_alloc_required - figure out if a write will require an allocation
1912 * @ip: the file being written to
1913 * @offset: the offset to write to
1914 * @len: the number of bytes being written
1915 *
1916 * Returns: 1 if an alloc is required, 0 otherwise
1917 */
1918
1919int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset,
1920 unsigned int len)
1921{
1922 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1923 struct buffer_head bh;
1924 unsigned int shift;
1925 u64 lblock, lblock_stop, size;
1926 u64 end_of_file;
1927
1928 if (!len)
1929 return 0;
1930
1931 if (gfs2_is_stuffed(ip)) {
1932 if (offset + len > gfs2_max_stuffed_size(ip))
1933 return 1;
1934 return 0;
1935 }
1936
1937 shift = sdp->sd_sb.sb_bsize_shift;
1938 BUG_ON(gfs2_is_dir(ip));
1939 end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift;
1940 lblock = offset >> shift;
1941 lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift;
1942 if (lblock_stop > end_of_file)
1943 return 1;
1944
1945 size = (lblock_stop - lblock) << shift;
1946 do {
1947 bh.b_state = 0;
1948 bh.b_size = size;
1949 gfs2_block_map(&ip->i_inode, lblock, &bh, 0);
1950 if (!buffer_mapped(&bh))
1951 return 1;
1952 size -= bh.b_size;
1953 lblock += (bh.b_size >> ip->i_inode.i_blkbits);
1954 } while(size > 0);
1955
1956 return 0;
1957}
1958
1959static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length)
1960{
1961 struct gfs2_inode *ip = GFS2_I(inode);
1962 struct buffer_head *dibh;
1963 int error;
1964
1965 if (offset >= inode->i_size)
1966 return 0;
1967 if (offset + length > inode->i_size)
1968 length = inode->i_size - offset;
1969
1970 error = gfs2_meta_inode_buffer(ip, &dibh);
1971 if (error)
1972 return error;
1973 gfs2_trans_add_meta(ip->i_gl, dibh);
1974 memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0,
1975 length);
1976 brelse(dibh);
1977 return 0;
1978}
1979
1980static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset,
1981 loff_t length)
1982{
1983 struct gfs2_sbd *sdp = GFS2_SB(inode);
1984 loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
1985 int error;
1986
1987 while (length) {
1988 struct gfs2_trans *tr;
1989 loff_t chunk;
1990 unsigned int offs;
1991
1992 chunk = length;
1993 if (chunk > max_chunk)
1994 chunk = max_chunk;
1995
1996 offs = offset & ~PAGE_MASK;
1997 if (offs && chunk > PAGE_SIZE)
1998 chunk = offs + ((chunk - offs) & PAGE_MASK);
1999
2000 truncate_pagecache_range(inode, offset, chunk);
2001 offset += chunk;
2002 length -= chunk;
2003
2004 tr = current->journal_info;
2005 if (!test_bit(TR_TOUCHED, &tr->tr_flags))
2006 continue;
2007
2008 gfs2_trans_end(sdp);
2009 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
2010 if (error)
2011 return error;
2012 }
2013 return 0;
2014}
2015
2016int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length)
2017{
2018 struct inode *inode = file_inode(file);
2019 struct gfs2_inode *ip = GFS2_I(inode);
2020 struct gfs2_sbd *sdp = GFS2_SB(inode);
2021 int error;
2022
2023 if (gfs2_is_jdata(ip))
2024 error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA,
2025 GFS2_JTRUNC_REVOKES);
2026 else
2027 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2028 if (error)
2029 return error;
2030
2031 if (gfs2_is_stuffed(ip)) {
2032 error = stuffed_zero_range(inode, offset, length);
2033 if (error)
2034 goto out;
2035 } else {
2036 unsigned int start_off, end_off, blocksize;
2037
2038 blocksize = i_blocksize(inode);
2039 start_off = offset & (blocksize - 1);
2040 end_off = (offset + length) & (blocksize - 1);
2041 if (start_off) {
2042 unsigned int len = length;
2043 if (length > blocksize - start_off)
2044 len = blocksize - start_off;
2045 error = gfs2_block_zero_range(inode, offset, len);
2046 if (error)
2047 goto out;
2048 if (start_off + length < blocksize)
2049 end_off = 0;
2050 }
2051 if (end_off) {
2052 error = gfs2_block_zero_range(inode,
2053 offset + length - end_off, end_off);
2054 if (error)
2055 goto out;
2056 }
2057 }
2058
2059 if (gfs2_is_jdata(ip)) {
2060 BUG_ON(!current->journal_info);
2061 gfs2_journaled_truncate_range(inode, offset, length);
2062 } else
2063 truncate_pagecache_range(inode, offset, offset + length - 1);
2064
2065 file_update_time(file);
2066 mark_inode_dirty(inode);
2067
2068 if (current->journal_info)
2069 gfs2_trans_end(sdp);
2070
2071 if (!gfs2_is_stuffed(ip))
2072 error = punch_hole(ip, offset, length);
2073
2074out:
2075 if (current->journal_info)
2076 gfs2_trans_end(sdp);
2077 return error;
2078}