Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
5 */
6
7#include <linux/spinlock.h>
8#include <linux/completion.h>
9#include <linux/buffer_head.h>
10#include <linux/blkdev.h>
11#include <linux/gfs2_ondisk.h>
12#include <linux/crc32.h>
13#include <linux/iomap.h>
14#include <linux/ktime.h>
15
16#include "gfs2.h"
17#include "incore.h"
18#include "bmap.h"
19#include "glock.h"
20#include "inode.h"
21#include "meta_io.h"
22#include "quota.h"
23#include "rgrp.h"
24#include "log.h"
25#include "super.h"
26#include "trans.h"
27#include "dir.h"
28#include "util.h"
29#include "aops.h"
30#include "trace_gfs2.h"
31
32/* This doesn't need to be that large as max 64 bit pointers in a 4k
33 * block is 512, so __u16 is fine for that. It saves stack space to
34 * keep it small.
35 */
36struct metapath {
37 struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT];
38 __u16 mp_list[GFS2_MAX_META_HEIGHT];
39 int mp_fheight; /* find_metapath height */
40 int mp_aheight; /* actual height (lookup height) */
41};
42
43static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length);
44
45/**
46 * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page
47 * @ip: the inode
48 * @dibh: the dinode buffer
49 * @block: the block number that was allocated
50 * @page: The (optional) page. This is looked up if @page is NULL
51 *
52 * Returns: errno
53 */
54
55static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh,
56 u64 block, struct page *page)
57{
58 struct inode *inode = &ip->i_inode;
59
60 if (!PageUptodate(page)) {
61 void *kaddr = kmap(page);
62 u64 dsize = i_size_read(inode);
63
64 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
65 memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
66 kunmap(page);
67
68 SetPageUptodate(page);
69 }
70
71 if (gfs2_is_jdata(ip)) {
72 struct buffer_head *bh;
73
74 if (!page_has_buffers(page))
75 create_empty_buffers(page, BIT(inode->i_blkbits),
76 BIT(BH_Uptodate));
77
78 bh = page_buffers(page);
79 if (!buffer_mapped(bh))
80 map_bh(bh, inode->i_sb, block);
81
82 set_buffer_uptodate(bh);
83 gfs2_trans_add_data(ip->i_gl, bh);
84 } else {
85 set_page_dirty(page);
86 gfs2_ordered_add_inode(ip);
87 }
88
89 return 0;
90}
91
92static int __gfs2_unstuff_inode(struct gfs2_inode *ip, struct page *page)
93{
94 struct buffer_head *bh, *dibh;
95 struct gfs2_dinode *di;
96 u64 block = 0;
97 int isdir = gfs2_is_dir(ip);
98 int error;
99
100 error = gfs2_meta_inode_buffer(ip, &dibh);
101 if (error)
102 return error;
103
104 if (i_size_read(&ip->i_inode)) {
105 /* Get a free block, fill it with the stuffed data,
106 and write it out to disk */
107
108 unsigned int n = 1;
109 error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL);
110 if (error)
111 goto out_brelse;
112 if (isdir) {
113 gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1);
114 error = gfs2_dir_get_new_buffer(ip, block, &bh);
115 if (error)
116 goto out_brelse;
117 gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header),
118 dibh, sizeof(struct gfs2_dinode));
119 brelse(bh);
120 } else {
121 error = gfs2_unstuffer_page(ip, dibh, block, page);
122 if (error)
123 goto out_brelse;
124 }
125 }
126
127 /* Set up the pointer to the new block */
128
129 gfs2_trans_add_meta(ip->i_gl, dibh);
130 di = (struct gfs2_dinode *)dibh->b_data;
131 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
132
133 if (i_size_read(&ip->i_inode)) {
134 *(__be64 *)(di + 1) = cpu_to_be64(block);
135 gfs2_add_inode_blocks(&ip->i_inode, 1);
136 di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode));
137 }
138
139 ip->i_height = 1;
140 di->di_height = cpu_to_be16(1);
141
142out_brelse:
143 brelse(dibh);
144 return error;
145}
146
147/**
148 * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big
149 * @ip: The GFS2 inode to unstuff
150 *
151 * This routine unstuffs a dinode and returns it to a "normal" state such
152 * that the height can be grown in the traditional way.
153 *
154 * Returns: errno
155 */
156
157int gfs2_unstuff_dinode(struct gfs2_inode *ip)
158{
159 struct inode *inode = &ip->i_inode;
160 struct page *page;
161 int error;
162
163 down_write(&ip->i_rw_mutex);
164 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
165 error = -ENOMEM;
166 if (!page)
167 goto out;
168 error = __gfs2_unstuff_inode(ip, page);
169 unlock_page(page);
170 put_page(page);
171out:
172 up_write(&ip->i_rw_mutex);
173 return error;
174}
175
176/**
177 * find_metapath - Find path through the metadata tree
178 * @sdp: The superblock
179 * @block: The disk block to look up
180 * @mp: The metapath to return the result in
181 * @height: The pre-calculated height of the metadata tree
182 *
183 * This routine returns a struct metapath structure that defines a path
184 * through the metadata of inode "ip" to get to block "block".
185 *
186 * Example:
187 * Given: "ip" is a height 3 file, "offset" is 101342453, and this is a
188 * filesystem with a blocksize of 4096.
189 *
190 * find_metapath() would return a struct metapath structure set to:
191 * mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165.
192 *
193 * That means that in order to get to the block containing the byte at
194 * offset 101342453, we would load the indirect block pointed to by pointer
195 * 0 in the dinode. We would then load the indirect block pointed to by
196 * pointer 48 in that indirect block. We would then load the data block
197 * pointed to by pointer 165 in that indirect block.
198 *
199 * ----------------------------------------
200 * | Dinode | |
201 * | | 4|
202 * | |0 1 2 3 4 5 9|
203 * | | 6|
204 * ----------------------------------------
205 * |
206 * |
207 * V
208 * ----------------------------------------
209 * | Indirect Block |
210 * | 5|
211 * | 4 4 4 4 4 5 5 1|
212 * |0 5 6 7 8 9 0 1 2|
213 * ----------------------------------------
214 * |
215 * |
216 * V
217 * ----------------------------------------
218 * | Indirect Block |
219 * | 1 1 1 1 1 5|
220 * | 6 6 6 6 6 1|
221 * |0 3 4 5 6 7 2|
222 * ----------------------------------------
223 * |
224 * |
225 * V
226 * ----------------------------------------
227 * | Data block containing offset |
228 * | 101342453 |
229 * | |
230 * | |
231 * ----------------------------------------
232 *
233 */
234
235static void find_metapath(const struct gfs2_sbd *sdp, u64 block,
236 struct metapath *mp, unsigned int height)
237{
238 unsigned int i;
239
240 mp->mp_fheight = height;
241 for (i = height; i--;)
242 mp->mp_list[i] = do_div(block, sdp->sd_inptrs);
243}
244
245static inline unsigned int metapath_branch_start(const struct metapath *mp)
246{
247 if (mp->mp_list[0] == 0)
248 return 2;
249 return 1;
250}
251
252/**
253 * metaptr1 - Return the first possible metadata pointer in a metapath buffer
254 * @height: The metadata height (0 = dinode)
255 * @mp: The metapath
256 */
257static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp)
258{
259 struct buffer_head *bh = mp->mp_bh[height];
260 if (height == 0)
261 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode)));
262 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header)));
263}
264
265/**
266 * metapointer - Return pointer to start of metadata in a buffer
267 * @height: The metadata height (0 = dinode)
268 * @mp: The metapath
269 *
270 * Return a pointer to the block number of the next height of the metadata
271 * tree given a buffer containing the pointer to the current height of the
272 * metadata tree.
273 */
274
275static inline __be64 *metapointer(unsigned int height, const struct metapath *mp)
276{
277 __be64 *p = metaptr1(height, mp);
278 return p + mp->mp_list[height];
279}
280
281static inline const __be64 *metaend(unsigned int height, const struct metapath *mp)
282{
283 const struct buffer_head *bh = mp->mp_bh[height];
284 return (const __be64 *)(bh->b_data + bh->b_size);
285}
286
287static void clone_metapath(struct metapath *clone, struct metapath *mp)
288{
289 unsigned int hgt;
290
291 *clone = *mp;
292 for (hgt = 0; hgt < mp->mp_aheight; hgt++)
293 get_bh(clone->mp_bh[hgt]);
294}
295
296static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end)
297{
298 const __be64 *t;
299
300 for (t = start; t < end; t++) {
301 struct buffer_head *rabh;
302
303 if (!*t)
304 continue;
305
306 rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE);
307 if (trylock_buffer(rabh)) {
308 if (!buffer_uptodate(rabh)) {
309 rabh->b_end_io = end_buffer_read_sync;
310 submit_bh(REQ_OP_READ | REQ_RAHEAD | REQ_META |
311 REQ_PRIO, rabh);
312 continue;
313 }
314 unlock_buffer(rabh);
315 }
316 brelse(rabh);
317 }
318}
319
320static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp,
321 unsigned int x, unsigned int h)
322{
323 for (; x < h; x++) {
324 __be64 *ptr = metapointer(x, mp);
325 u64 dblock = be64_to_cpu(*ptr);
326 int ret;
327
328 if (!dblock)
329 break;
330 ret = gfs2_meta_buffer(ip, GFS2_METATYPE_IN, dblock, &mp->mp_bh[x + 1]);
331 if (ret)
332 return ret;
333 }
334 mp->mp_aheight = x + 1;
335 return 0;
336}
337
338/**
339 * lookup_metapath - Walk the metadata tree to a specific point
340 * @ip: The inode
341 * @mp: The metapath
342 *
343 * Assumes that the inode's buffer has already been looked up and
344 * hooked onto mp->mp_bh[0] and that the metapath has been initialised
345 * by find_metapath().
346 *
347 * If this function encounters part of the tree which has not been
348 * allocated, it returns the current height of the tree at the point
349 * at which it found the unallocated block. Blocks which are found are
350 * added to the mp->mp_bh[] list.
351 *
352 * Returns: error
353 */
354
355static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp)
356{
357 return __fillup_metapath(ip, mp, 0, ip->i_height - 1);
358}
359
360/**
361 * fillup_metapath - fill up buffers for the metadata path to a specific height
362 * @ip: The inode
363 * @mp: The metapath
364 * @h: The height to which it should be mapped
365 *
366 * Similar to lookup_metapath, but does lookups for a range of heights
367 *
368 * Returns: error or the number of buffers filled
369 */
370
371static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h)
372{
373 unsigned int x = 0;
374 int ret;
375
376 if (h) {
377 /* find the first buffer we need to look up. */
378 for (x = h - 1; x > 0; x--) {
379 if (mp->mp_bh[x])
380 break;
381 }
382 }
383 ret = __fillup_metapath(ip, mp, x, h);
384 if (ret)
385 return ret;
386 return mp->mp_aheight - x - 1;
387}
388
389static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp)
390{
391 sector_t factor = 1, block = 0;
392 int hgt;
393
394 for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) {
395 if (hgt < mp->mp_aheight)
396 block += mp->mp_list[hgt] * factor;
397 factor *= sdp->sd_inptrs;
398 }
399 return block;
400}
401
402static void release_metapath(struct metapath *mp)
403{
404 int i;
405
406 for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) {
407 if (mp->mp_bh[i] == NULL)
408 break;
409 brelse(mp->mp_bh[i]);
410 mp->mp_bh[i] = NULL;
411 }
412}
413
414/**
415 * gfs2_extent_length - Returns length of an extent of blocks
416 * @bh: The metadata block
417 * @ptr: Current position in @bh
418 * @limit: Max extent length to return
419 * @eob: Set to 1 if we hit "end of block"
420 *
421 * Returns: The length of the extent (minimum of one block)
422 */
423
424static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, size_t limit, int *eob)
425{
426 const __be64 *end = (__be64 *)(bh->b_data + bh->b_size);
427 const __be64 *first = ptr;
428 u64 d = be64_to_cpu(*ptr);
429
430 *eob = 0;
431 do {
432 ptr++;
433 if (ptr >= end)
434 break;
435 d++;
436 } while(be64_to_cpu(*ptr) == d);
437 if (ptr >= end)
438 *eob = 1;
439 return ptr - first;
440}
441
442enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE };
443
444/*
445 * gfs2_metadata_walker - walk an indirect block
446 * @mp: Metapath to indirect block
447 * @ptrs: Number of pointers to look at
448 *
449 * When returning WALK_FOLLOW, the walker must update @mp to point at the right
450 * indirect block to follow.
451 */
452typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp,
453 unsigned int ptrs);
454
455/*
456 * gfs2_walk_metadata - walk a tree of indirect blocks
457 * @inode: The inode
458 * @mp: Starting point of walk
459 * @max_len: Maximum number of blocks to walk
460 * @walker: Called during the walk
461 *
462 * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or
463 * past the end of metadata, and a negative error code otherwise.
464 */
465
466static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp,
467 u64 max_len, gfs2_metadata_walker walker)
468{
469 struct gfs2_inode *ip = GFS2_I(inode);
470 struct gfs2_sbd *sdp = GFS2_SB(inode);
471 u64 factor = 1;
472 unsigned int hgt;
473 int ret;
474
475 /*
476 * The walk starts in the lowest allocated indirect block, which may be
477 * before the position indicated by @mp. Adjust @max_len accordingly
478 * to avoid a short walk.
479 */
480 for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) {
481 max_len += mp->mp_list[hgt] * factor;
482 mp->mp_list[hgt] = 0;
483 factor *= sdp->sd_inptrs;
484 }
485
486 for (;;) {
487 u16 start = mp->mp_list[hgt];
488 enum walker_status status;
489 unsigned int ptrs;
490 u64 len;
491
492 /* Walk indirect block. */
493 ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start;
494 len = ptrs * factor;
495 if (len > max_len)
496 ptrs = DIV_ROUND_UP_ULL(max_len, factor);
497 status = walker(mp, ptrs);
498 switch (status) {
499 case WALK_STOP:
500 return 1;
501 case WALK_FOLLOW:
502 BUG_ON(mp->mp_aheight == mp->mp_fheight);
503 ptrs = mp->mp_list[hgt] - start;
504 len = ptrs * factor;
505 break;
506 case WALK_CONTINUE:
507 break;
508 }
509 if (len >= max_len)
510 break;
511 max_len -= len;
512 if (status == WALK_FOLLOW)
513 goto fill_up_metapath;
514
515lower_metapath:
516 /* Decrease height of metapath. */
517 brelse(mp->mp_bh[hgt]);
518 mp->mp_bh[hgt] = NULL;
519 mp->mp_list[hgt] = 0;
520 if (!hgt)
521 break;
522 hgt--;
523 factor *= sdp->sd_inptrs;
524
525 /* Advance in metadata tree. */
526 (mp->mp_list[hgt])++;
527 if (hgt) {
528 if (mp->mp_list[hgt] >= sdp->sd_inptrs)
529 goto lower_metapath;
530 } else {
531 if (mp->mp_list[hgt] >= sdp->sd_diptrs)
532 break;
533 }
534
535fill_up_metapath:
536 /* Increase height of metapath. */
537 ret = fillup_metapath(ip, mp, ip->i_height - 1);
538 if (ret < 0)
539 return ret;
540 hgt += ret;
541 for (; ret; ret--)
542 do_div(factor, sdp->sd_inptrs);
543 mp->mp_aheight = hgt + 1;
544 }
545 return 0;
546}
547
548static enum walker_status gfs2_hole_walker(struct metapath *mp,
549 unsigned int ptrs)
550{
551 const __be64 *start, *ptr, *end;
552 unsigned int hgt;
553
554 hgt = mp->mp_aheight - 1;
555 start = metapointer(hgt, mp);
556 end = start + ptrs;
557
558 for (ptr = start; ptr < end; ptr++) {
559 if (*ptr) {
560 mp->mp_list[hgt] += ptr - start;
561 if (mp->mp_aheight == mp->mp_fheight)
562 return WALK_STOP;
563 return WALK_FOLLOW;
564 }
565 }
566 return WALK_CONTINUE;
567}
568
569/**
570 * gfs2_hole_size - figure out the size of a hole
571 * @inode: The inode
572 * @lblock: The logical starting block number
573 * @len: How far to look (in blocks)
574 * @mp: The metapath at lblock
575 * @iomap: The iomap to store the hole size in
576 *
577 * This function modifies @mp.
578 *
579 * Returns: errno on error
580 */
581static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len,
582 struct metapath *mp, struct iomap *iomap)
583{
584 struct metapath clone;
585 u64 hole_size;
586 int ret;
587
588 clone_metapath(&clone, mp);
589 ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker);
590 if (ret < 0)
591 goto out;
592
593 if (ret == 1)
594 hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock;
595 else
596 hole_size = len;
597 iomap->length = hole_size << inode->i_blkbits;
598 ret = 0;
599
600out:
601 release_metapath(&clone);
602 return ret;
603}
604
605static inline void gfs2_indirect_init(struct metapath *mp,
606 struct gfs2_glock *gl, unsigned int i,
607 unsigned offset, u64 bn)
608{
609 __be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data +
610 ((i > 1) ? sizeof(struct gfs2_meta_header) :
611 sizeof(struct gfs2_dinode)));
612 BUG_ON(i < 1);
613 BUG_ON(mp->mp_bh[i] != NULL);
614 mp->mp_bh[i] = gfs2_meta_new(gl, bn);
615 gfs2_trans_add_meta(gl, mp->mp_bh[i]);
616 gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN);
617 gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header));
618 ptr += offset;
619 *ptr = cpu_to_be64(bn);
620}
621
622enum alloc_state {
623 ALLOC_DATA = 0,
624 ALLOC_GROW_DEPTH = 1,
625 ALLOC_GROW_HEIGHT = 2,
626 /* ALLOC_UNSTUFF = 3, TBD and rather complicated */
627};
628
629/**
630 * __gfs2_iomap_alloc - Build a metadata tree of the requested height
631 * @inode: The GFS2 inode
632 * @iomap: The iomap structure
633 * @mp: The metapath, with proper height information calculated
634 *
635 * In this routine we may have to alloc:
636 * i) Indirect blocks to grow the metadata tree height
637 * ii) Indirect blocks to fill in lower part of the metadata tree
638 * iii) Data blocks
639 *
640 * This function is called after __gfs2_iomap_get, which works out the
641 * total number of blocks which we need via gfs2_alloc_size.
642 *
643 * We then do the actual allocation asking for an extent at a time (if
644 * enough contiguous free blocks are available, there will only be one
645 * allocation request per call) and uses the state machine to initialise
646 * the blocks in order.
647 *
648 * Right now, this function will allocate at most one indirect block
649 * worth of data -- with a default block size of 4K, that's slightly
650 * less than 2M. If this limitation is ever removed to allow huge
651 * allocations, we would probably still want to limit the iomap size we
652 * return to avoid stalling other tasks during huge writes; the next
653 * iomap iteration would then find the blocks already allocated.
654 *
655 * Returns: errno on error
656 */
657
658static int __gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap,
659 struct metapath *mp)
660{
661 struct gfs2_inode *ip = GFS2_I(inode);
662 struct gfs2_sbd *sdp = GFS2_SB(inode);
663 struct buffer_head *dibh = mp->mp_bh[0];
664 u64 bn;
665 unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0;
666 size_t dblks = iomap->length >> inode->i_blkbits;
667 const unsigned end_of_metadata = mp->mp_fheight - 1;
668 int ret;
669 enum alloc_state state;
670 __be64 *ptr;
671 __be64 zero_bn = 0;
672
673 BUG_ON(mp->mp_aheight < 1);
674 BUG_ON(dibh == NULL);
675 BUG_ON(dblks < 1);
676
677 gfs2_trans_add_meta(ip->i_gl, dibh);
678
679 down_write(&ip->i_rw_mutex);
680
681 if (mp->mp_fheight == mp->mp_aheight) {
682 /* Bottom indirect block exists */
683 state = ALLOC_DATA;
684 } else {
685 /* Need to allocate indirect blocks */
686 if (mp->mp_fheight == ip->i_height) {
687 /* Writing into existing tree, extend tree down */
688 iblks = mp->mp_fheight - mp->mp_aheight;
689 state = ALLOC_GROW_DEPTH;
690 } else {
691 /* Building up tree height */
692 state = ALLOC_GROW_HEIGHT;
693 iblks = mp->mp_fheight - ip->i_height;
694 branch_start = metapath_branch_start(mp);
695 iblks += (mp->mp_fheight - branch_start);
696 }
697 }
698
699 /* start of the second part of the function (state machine) */
700
701 blks = dblks + iblks;
702 i = mp->mp_aheight;
703 do {
704 n = blks - alloced;
705 ret = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL);
706 if (ret)
707 goto out;
708 alloced += n;
709 if (state != ALLOC_DATA || gfs2_is_jdata(ip))
710 gfs2_trans_remove_revoke(sdp, bn, n);
711 switch (state) {
712 /* Growing height of tree */
713 case ALLOC_GROW_HEIGHT:
714 if (i == 1) {
715 ptr = (__be64 *)(dibh->b_data +
716 sizeof(struct gfs2_dinode));
717 zero_bn = *ptr;
718 }
719 for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0;
720 i++, n--)
721 gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++);
722 if (i - 1 == mp->mp_fheight - ip->i_height) {
723 i--;
724 gfs2_buffer_copy_tail(mp->mp_bh[i],
725 sizeof(struct gfs2_meta_header),
726 dibh, sizeof(struct gfs2_dinode));
727 gfs2_buffer_clear_tail(dibh,
728 sizeof(struct gfs2_dinode) +
729 sizeof(__be64));
730 ptr = (__be64 *)(mp->mp_bh[i]->b_data +
731 sizeof(struct gfs2_meta_header));
732 *ptr = zero_bn;
733 state = ALLOC_GROW_DEPTH;
734 for(i = branch_start; i < mp->mp_fheight; i++) {
735 if (mp->mp_bh[i] == NULL)
736 break;
737 brelse(mp->mp_bh[i]);
738 mp->mp_bh[i] = NULL;
739 }
740 i = branch_start;
741 }
742 if (n == 0)
743 break;
744 fallthrough; /* To branching from existing tree */
745 case ALLOC_GROW_DEPTH:
746 if (i > 1 && i < mp->mp_fheight)
747 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]);
748 for (; i < mp->mp_fheight && n > 0; i++, n--)
749 gfs2_indirect_init(mp, ip->i_gl, i,
750 mp->mp_list[i-1], bn++);
751 if (i == mp->mp_fheight)
752 state = ALLOC_DATA;
753 if (n == 0)
754 break;
755 fallthrough; /* To tree complete, adding data blocks */
756 case ALLOC_DATA:
757 BUG_ON(n > dblks);
758 BUG_ON(mp->mp_bh[end_of_metadata] == NULL);
759 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]);
760 dblks = n;
761 ptr = metapointer(end_of_metadata, mp);
762 iomap->addr = bn << inode->i_blkbits;
763 iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW;
764 while (n-- > 0)
765 *ptr++ = cpu_to_be64(bn++);
766 break;
767 }
768 } while (iomap->addr == IOMAP_NULL_ADDR);
769
770 iomap->type = IOMAP_MAPPED;
771 iomap->length = (u64)dblks << inode->i_blkbits;
772 ip->i_height = mp->mp_fheight;
773 gfs2_add_inode_blocks(&ip->i_inode, alloced);
774 gfs2_dinode_out(ip, dibh->b_data);
775out:
776 up_write(&ip->i_rw_mutex);
777 return ret;
778}
779
780#define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE
781
782/**
783 * gfs2_alloc_size - Compute the maximum allocation size
784 * @inode: The inode
785 * @mp: The metapath
786 * @size: Requested size in blocks
787 *
788 * Compute the maximum size of the next allocation at @mp.
789 *
790 * Returns: size in blocks
791 */
792static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size)
793{
794 struct gfs2_inode *ip = GFS2_I(inode);
795 struct gfs2_sbd *sdp = GFS2_SB(inode);
796 const __be64 *first, *ptr, *end;
797
798 /*
799 * For writes to stuffed files, this function is called twice via
800 * __gfs2_iomap_get, before and after unstuffing. The size we return the
801 * first time needs to be large enough to get the reservation and
802 * allocation sizes right. The size we return the second time must
803 * be exact or else __gfs2_iomap_alloc won't do the right thing.
804 */
805
806 if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) {
807 unsigned int maxsize = mp->mp_fheight > 1 ?
808 sdp->sd_inptrs : sdp->sd_diptrs;
809 maxsize -= mp->mp_list[mp->mp_fheight - 1];
810 if (size > maxsize)
811 size = maxsize;
812 return size;
813 }
814
815 first = metapointer(ip->i_height - 1, mp);
816 end = metaend(ip->i_height - 1, mp);
817 if (end - first > size)
818 end = first + size;
819 for (ptr = first; ptr < end; ptr++) {
820 if (*ptr)
821 break;
822 }
823 return ptr - first;
824}
825
826/**
827 * __gfs2_iomap_get - Map blocks from an inode to disk blocks
828 * @inode: The inode
829 * @pos: Starting position in bytes
830 * @length: Length to map, in bytes
831 * @flags: iomap flags
832 * @iomap: The iomap structure
833 * @mp: The metapath
834 *
835 * Returns: errno
836 */
837static int __gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
838 unsigned flags, struct iomap *iomap,
839 struct metapath *mp)
840{
841 struct gfs2_inode *ip = GFS2_I(inode);
842 struct gfs2_sbd *sdp = GFS2_SB(inode);
843 loff_t size = i_size_read(inode);
844 __be64 *ptr;
845 sector_t lblock;
846 sector_t lblock_stop;
847 int ret;
848 int eob;
849 u64 len;
850 struct buffer_head *dibh = NULL, *bh;
851 u8 height;
852
853 if (!length)
854 return -EINVAL;
855
856 down_read(&ip->i_rw_mutex);
857
858 ret = gfs2_meta_inode_buffer(ip, &dibh);
859 if (ret)
860 goto unlock;
861 mp->mp_bh[0] = dibh;
862
863 if (gfs2_is_stuffed(ip)) {
864 if (flags & IOMAP_WRITE) {
865 loff_t max_size = gfs2_max_stuffed_size(ip);
866
867 if (pos + length > max_size)
868 goto unstuff;
869 iomap->length = max_size;
870 } else {
871 if (pos >= size) {
872 if (flags & IOMAP_REPORT) {
873 ret = -ENOENT;
874 goto unlock;
875 } else {
876 iomap->offset = pos;
877 iomap->length = length;
878 goto hole_found;
879 }
880 }
881 iomap->length = size;
882 }
883 iomap->addr = (ip->i_no_addr << inode->i_blkbits) +
884 sizeof(struct gfs2_dinode);
885 iomap->type = IOMAP_INLINE;
886 iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode);
887 goto out;
888 }
889
890unstuff:
891 lblock = pos >> inode->i_blkbits;
892 iomap->offset = lblock << inode->i_blkbits;
893 lblock_stop = (pos + length - 1) >> inode->i_blkbits;
894 len = lblock_stop - lblock + 1;
895 iomap->length = len << inode->i_blkbits;
896
897 height = ip->i_height;
898 while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height])
899 height++;
900 find_metapath(sdp, lblock, mp, height);
901 if (height > ip->i_height || gfs2_is_stuffed(ip))
902 goto do_alloc;
903
904 ret = lookup_metapath(ip, mp);
905 if (ret)
906 goto unlock;
907
908 if (mp->mp_aheight != ip->i_height)
909 goto do_alloc;
910
911 ptr = metapointer(ip->i_height - 1, mp);
912 if (*ptr == 0)
913 goto do_alloc;
914
915 bh = mp->mp_bh[ip->i_height - 1];
916 len = gfs2_extent_length(bh, ptr, len, &eob);
917
918 iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits;
919 iomap->length = len << inode->i_blkbits;
920 iomap->type = IOMAP_MAPPED;
921 iomap->flags |= IOMAP_F_MERGED;
922 if (eob)
923 iomap->flags |= IOMAP_F_GFS2_BOUNDARY;
924
925out:
926 iomap->bdev = inode->i_sb->s_bdev;
927unlock:
928 up_read(&ip->i_rw_mutex);
929 return ret;
930
931do_alloc:
932 if (flags & IOMAP_REPORT) {
933 if (pos >= size)
934 ret = -ENOENT;
935 else if (height == ip->i_height)
936 ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
937 else
938 iomap->length = size - iomap->offset;
939 } else if (flags & IOMAP_WRITE) {
940 u64 alloc_size;
941
942 if (flags & IOMAP_DIRECT)
943 goto out; /* (see gfs2_file_direct_write) */
944
945 len = gfs2_alloc_size(inode, mp, len);
946 alloc_size = len << inode->i_blkbits;
947 if (alloc_size < iomap->length)
948 iomap->length = alloc_size;
949 } else {
950 if (pos < size && height == ip->i_height)
951 ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
952 }
953hole_found:
954 iomap->addr = IOMAP_NULL_ADDR;
955 iomap->type = IOMAP_HOLE;
956 goto out;
957}
958
959static int gfs2_iomap_page_prepare(struct inode *inode, loff_t pos,
960 unsigned len)
961{
962 unsigned int blockmask = i_blocksize(inode) - 1;
963 struct gfs2_sbd *sdp = GFS2_SB(inode);
964 unsigned int blocks;
965
966 blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits;
967 return gfs2_trans_begin(sdp, RES_DINODE + blocks, 0);
968}
969
970static void gfs2_iomap_page_done(struct inode *inode, loff_t pos,
971 unsigned copied, struct page *page)
972{
973 struct gfs2_trans *tr = current->journal_info;
974 struct gfs2_inode *ip = GFS2_I(inode);
975 struct gfs2_sbd *sdp = GFS2_SB(inode);
976
977 if (page && !gfs2_is_stuffed(ip))
978 gfs2_page_add_databufs(ip, page, offset_in_page(pos), copied);
979
980 if (tr->tr_num_buf_new)
981 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
982
983 gfs2_trans_end(sdp);
984}
985
986static const struct iomap_page_ops gfs2_iomap_page_ops = {
987 .page_prepare = gfs2_iomap_page_prepare,
988 .page_done = gfs2_iomap_page_done,
989};
990
991static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos,
992 loff_t length, unsigned flags,
993 struct iomap *iomap,
994 struct metapath *mp)
995{
996 struct gfs2_inode *ip = GFS2_I(inode);
997 struct gfs2_sbd *sdp = GFS2_SB(inode);
998 bool unstuff;
999 int ret;
1000
1001 unstuff = gfs2_is_stuffed(ip) &&
1002 pos + length > gfs2_max_stuffed_size(ip);
1003
1004 if (unstuff || iomap->type == IOMAP_HOLE) {
1005 unsigned int data_blocks, ind_blocks;
1006 struct gfs2_alloc_parms ap = {};
1007 unsigned int rblocks;
1008 struct gfs2_trans *tr;
1009
1010 gfs2_write_calc_reserv(ip, iomap->length, &data_blocks,
1011 &ind_blocks);
1012 ap.target = data_blocks + ind_blocks;
1013 ret = gfs2_quota_lock_check(ip, &ap);
1014 if (ret)
1015 return ret;
1016
1017 ret = gfs2_inplace_reserve(ip, &ap);
1018 if (ret)
1019 goto out_qunlock;
1020
1021 rblocks = RES_DINODE + ind_blocks;
1022 if (gfs2_is_jdata(ip))
1023 rblocks += data_blocks;
1024 if (ind_blocks || data_blocks)
1025 rblocks += RES_STATFS + RES_QUOTA;
1026 if (inode == sdp->sd_rindex)
1027 rblocks += 2 * RES_STATFS;
1028 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1029
1030 ret = gfs2_trans_begin(sdp, rblocks,
1031 iomap->length >> inode->i_blkbits);
1032 if (ret)
1033 goto out_trans_fail;
1034
1035 if (unstuff) {
1036 ret = gfs2_unstuff_dinode(ip);
1037 if (ret)
1038 goto out_trans_end;
1039 release_metapath(mp);
1040 ret = __gfs2_iomap_get(inode, iomap->offset,
1041 iomap->length, flags, iomap, mp);
1042 if (ret)
1043 goto out_trans_end;
1044 }
1045
1046 if (iomap->type == IOMAP_HOLE) {
1047 ret = __gfs2_iomap_alloc(inode, iomap, mp);
1048 if (ret) {
1049 gfs2_trans_end(sdp);
1050 gfs2_inplace_release(ip);
1051 punch_hole(ip, iomap->offset, iomap->length);
1052 goto out_qunlock;
1053 }
1054 }
1055
1056 tr = current->journal_info;
1057 if (tr->tr_num_buf_new)
1058 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1059
1060 gfs2_trans_end(sdp);
1061 }
1062
1063 if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip))
1064 iomap->page_ops = &gfs2_iomap_page_ops;
1065 return 0;
1066
1067out_trans_end:
1068 gfs2_trans_end(sdp);
1069out_trans_fail:
1070 gfs2_inplace_release(ip);
1071out_qunlock:
1072 gfs2_quota_unlock(ip);
1073 return ret;
1074}
1075
1076static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length,
1077 unsigned flags, struct iomap *iomap,
1078 struct iomap *srcmap)
1079{
1080 struct gfs2_inode *ip = GFS2_I(inode);
1081 struct metapath mp = { .mp_aheight = 1, };
1082 int ret;
1083
1084 if (gfs2_is_jdata(ip))
1085 iomap->flags |= IOMAP_F_BUFFER_HEAD;
1086
1087 trace_gfs2_iomap_start(ip, pos, length, flags);
1088 ret = __gfs2_iomap_get(inode, pos, length, flags, iomap, &mp);
1089 if (ret)
1090 goto out_unlock;
1091
1092 switch(flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1093 case IOMAP_WRITE:
1094 if (flags & IOMAP_DIRECT) {
1095 /*
1096 * Silently fall back to buffered I/O for stuffed files
1097 * or if we've got a hole (see gfs2_file_direct_write).
1098 */
1099 if (iomap->type != IOMAP_MAPPED)
1100 ret = -ENOTBLK;
1101 goto out_unlock;
1102 }
1103 break;
1104 case IOMAP_ZERO:
1105 if (iomap->type == IOMAP_HOLE)
1106 goto out_unlock;
1107 break;
1108 default:
1109 goto out_unlock;
1110 }
1111
1112 ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp);
1113
1114out_unlock:
1115 release_metapath(&mp);
1116 trace_gfs2_iomap_end(ip, iomap, ret);
1117 return ret;
1118}
1119
1120static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length,
1121 ssize_t written, unsigned flags, struct iomap *iomap)
1122{
1123 struct gfs2_inode *ip = GFS2_I(inode);
1124 struct gfs2_sbd *sdp = GFS2_SB(inode);
1125
1126 switch (flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1127 case IOMAP_WRITE:
1128 if (flags & IOMAP_DIRECT)
1129 return 0;
1130 break;
1131 case IOMAP_ZERO:
1132 if (iomap->type == IOMAP_HOLE)
1133 return 0;
1134 break;
1135 default:
1136 return 0;
1137 }
1138
1139 if (!gfs2_is_stuffed(ip))
1140 gfs2_ordered_add_inode(ip);
1141
1142 if (inode == sdp->sd_rindex)
1143 adjust_fs_space(inode);
1144
1145 gfs2_inplace_release(ip);
1146
1147 if (ip->i_qadata && ip->i_qadata->qa_qd_num)
1148 gfs2_quota_unlock(ip);
1149
1150 if (length != written && (iomap->flags & IOMAP_F_NEW)) {
1151 /* Deallocate blocks that were just allocated. */
1152 loff_t hstart = round_up(pos + written, i_blocksize(inode));
1153 loff_t hend = iomap->offset + iomap->length;
1154
1155 if (hstart < hend) {
1156 truncate_pagecache_range(inode, hstart, hend - 1);
1157 punch_hole(ip, hstart, hend - hstart);
1158 }
1159 }
1160
1161 if (unlikely(!written))
1162 return 0;
1163
1164 if (iomap->flags & IOMAP_F_SIZE_CHANGED)
1165 mark_inode_dirty(inode);
1166 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
1167 return 0;
1168}
1169
1170const struct iomap_ops gfs2_iomap_ops = {
1171 .iomap_begin = gfs2_iomap_begin,
1172 .iomap_end = gfs2_iomap_end,
1173};
1174
1175/**
1176 * gfs2_block_map - Map one or more blocks of an inode to a disk block
1177 * @inode: The inode
1178 * @lblock: The logical block number
1179 * @bh_map: The bh to be mapped
1180 * @create: True if its ok to alloc blocks to satify the request
1181 *
1182 * The size of the requested mapping is defined in bh_map->b_size.
1183 *
1184 * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged
1185 * when @lblock is not mapped. Sets buffer_mapped(bh_map) and
1186 * bh_map->b_size to indicate the size of the mapping when @lblock and
1187 * successive blocks are mapped, up to the requested size.
1188 *
1189 * Sets buffer_boundary() if a read of metadata will be required
1190 * before the next block can be mapped. Sets buffer_new() if new
1191 * blocks were allocated.
1192 *
1193 * Returns: errno
1194 */
1195
1196int gfs2_block_map(struct inode *inode, sector_t lblock,
1197 struct buffer_head *bh_map, int create)
1198{
1199 struct gfs2_inode *ip = GFS2_I(inode);
1200 loff_t pos = (loff_t)lblock << inode->i_blkbits;
1201 loff_t length = bh_map->b_size;
1202 struct iomap iomap = { };
1203 int ret;
1204
1205 clear_buffer_mapped(bh_map);
1206 clear_buffer_new(bh_map);
1207 clear_buffer_boundary(bh_map);
1208 trace_gfs2_bmap(ip, bh_map, lblock, create, 1);
1209
1210 if (!create)
1211 ret = gfs2_iomap_get(inode, pos, length, &iomap);
1212 else
1213 ret = gfs2_iomap_alloc(inode, pos, length, &iomap);
1214 if (ret)
1215 goto out;
1216
1217 if (iomap.length > bh_map->b_size) {
1218 iomap.length = bh_map->b_size;
1219 iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY;
1220 }
1221 if (iomap.addr != IOMAP_NULL_ADDR)
1222 map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits);
1223 bh_map->b_size = iomap.length;
1224 if (iomap.flags & IOMAP_F_GFS2_BOUNDARY)
1225 set_buffer_boundary(bh_map);
1226 if (iomap.flags & IOMAP_F_NEW)
1227 set_buffer_new(bh_map);
1228
1229out:
1230 trace_gfs2_bmap(ip, bh_map, lblock, create, ret);
1231 return ret;
1232}
1233
1234int gfs2_get_extent(struct inode *inode, u64 lblock, u64 *dblock,
1235 unsigned int *extlen)
1236{
1237 unsigned int blkbits = inode->i_blkbits;
1238 struct iomap iomap = { };
1239 unsigned int len;
1240 int ret;
1241
1242 ret = gfs2_iomap_get(inode, lblock << blkbits, *extlen << blkbits,
1243 &iomap);
1244 if (ret)
1245 return ret;
1246 if (iomap.type != IOMAP_MAPPED)
1247 return -EIO;
1248 *dblock = iomap.addr >> blkbits;
1249 len = iomap.length >> blkbits;
1250 if (len < *extlen)
1251 *extlen = len;
1252 return 0;
1253}
1254
1255int gfs2_alloc_extent(struct inode *inode, u64 lblock, u64 *dblock,
1256 unsigned int *extlen, bool *new)
1257{
1258 unsigned int blkbits = inode->i_blkbits;
1259 struct iomap iomap = { };
1260 unsigned int len;
1261 int ret;
1262
1263 ret = gfs2_iomap_alloc(inode, lblock << blkbits, *extlen << blkbits,
1264 &iomap);
1265 if (ret)
1266 return ret;
1267 if (iomap.type != IOMAP_MAPPED)
1268 return -EIO;
1269 *dblock = iomap.addr >> blkbits;
1270 len = iomap.length >> blkbits;
1271 if (len < *extlen)
1272 *extlen = len;
1273 *new = iomap.flags & IOMAP_F_NEW;
1274 return 0;
1275}
1276
1277/*
1278 * NOTE: Never call gfs2_block_zero_range with an open transaction because it
1279 * uses iomap write to perform its actions, which begin their own transactions
1280 * (iomap_begin, page_prepare, etc.)
1281 */
1282static int gfs2_block_zero_range(struct inode *inode, loff_t from,
1283 unsigned int length)
1284{
1285 BUG_ON(current->journal_info);
1286 return iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops);
1287}
1288
1289#define GFS2_JTRUNC_REVOKES 8192
1290
1291/**
1292 * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files
1293 * @inode: The inode being truncated
1294 * @oldsize: The original (larger) size
1295 * @newsize: The new smaller size
1296 *
1297 * With jdata files, we have to journal a revoke for each block which is
1298 * truncated. As a result, we need to split this into separate transactions
1299 * if the number of pages being truncated gets too large.
1300 */
1301
1302static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize)
1303{
1304 struct gfs2_sbd *sdp = GFS2_SB(inode);
1305 u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
1306 u64 chunk;
1307 int error;
1308
1309 while (oldsize != newsize) {
1310 struct gfs2_trans *tr;
1311 unsigned int offs;
1312
1313 chunk = oldsize - newsize;
1314 if (chunk > max_chunk)
1315 chunk = max_chunk;
1316
1317 offs = oldsize & ~PAGE_MASK;
1318 if (offs && chunk > PAGE_SIZE)
1319 chunk = offs + ((chunk - offs) & PAGE_MASK);
1320
1321 truncate_pagecache(inode, oldsize - chunk);
1322 oldsize -= chunk;
1323
1324 tr = current->journal_info;
1325 if (!test_bit(TR_TOUCHED, &tr->tr_flags))
1326 continue;
1327
1328 gfs2_trans_end(sdp);
1329 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
1330 if (error)
1331 return error;
1332 }
1333
1334 return 0;
1335}
1336
1337static int trunc_start(struct inode *inode, u64 newsize)
1338{
1339 struct gfs2_inode *ip = GFS2_I(inode);
1340 struct gfs2_sbd *sdp = GFS2_SB(inode);
1341 struct buffer_head *dibh = NULL;
1342 int journaled = gfs2_is_jdata(ip);
1343 u64 oldsize = inode->i_size;
1344 int error;
1345
1346 if (!gfs2_is_stuffed(ip)) {
1347 unsigned int blocksize = i_blocksize(inode);
1348 unsigned int offs = newsize & (blocksize - 1);
1349 if (offs) {
1350 error = gfs2_block_zero_range(inode, newsize,
1351 blocksize - offs);
1352 if (error)
1353 return error;
1354 }
1355 }
1356 if (journaled)
1357 error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES);
1358 else
1359 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1360 if (error)
1361 return error;
1362
1363 error = gfs2_meta_inode_buffer(ip, &dibh);
1364 if (error)
1365 goto out;
1366
1367 gfs2_trans_add_meta(ip->i_gl, dibh);
1368
1369 if (gfs2_is_stuffed(ip))
1370 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize);
1371 else
1372 ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG;
1373
1374 i_size_write(inode, newsize);
1375 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1376 gfs2_dinode_out(ip, dibh->b_data);
1377
1378 if (journaled)
1379 error = gfs2_journaled_truncate(inode, oldsize, newsize);
1380 else
1381 truncate_pagecache(inode, newsize);
1382
1383out:
1384 brelse(dibh);
1385 if (current->journal_info)
1386 gfs2_trans_end(sdp);
1387 return error;
1388}
1389
1390int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
1391 struct iomap *iomap)
1392{
1393 struct metapath mp = { .mp_aheight = 1, };
1394 int ret;
1395
1396 ret = __gfs2_iomap_get(inode, pos, length, 0, iomap, &mp);
1397 release_metapath(&mp);
1398 return ret;
1399}
1400
1401int gfs2_iomap_alloc(struct inode *inode, loff_t pos, loff_t length,
1402 struct iomap *iomap)
1403{
1404 struct metapath mp = { .mp_aheight = 1, };
1405 int ret;
1406
1407 ret = __gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp);
1408 if (!ret && iomap->type == IOMAP_HOLE)
1409 ret = __gfs2_iomap_alloc(inode, iomap, &mp);
1410 release_metapath(&mp);
1411 return ret;
1412}
1413
1414/**
1415 * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein
1416 * @ip: inode
1417 * @rd_gh: holder of resource group glock
1418 * @bh: buffer head to sweep
1419 * @start: starting point in bh
1420 * @end: end point in bh
1421 * @meta: true if bh points to metadata (rather than data)
1422 * @btotal: place to keep count of total blocks freed
1423 *
1424 * We sweep a metadata buffer (provided by the metapath) for blocks we need to
1425 * free, and free them all. However, we do it one rgrp at a time. If this
1426 * block has references to multiple rgrps, we break it into individual
1427 * transactions. This allows other processes to use the rgrps while we're
1428 * focused on a single one, for better concurrency / performance.
1429 * At every transaction boundary, we rewrite the inode into the journal.
1430 * That way the bitmaps are kept consistent with the inode and we can recover
1431 * if we're interrupted by power-outages.
1432 *
1433 * Returns: 0, or return code if an error occurred.
1434 * *btotal has the total number of blocks freed
1435 */
1436static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh,
1437 struct buffer_head *bh, __be64 *start, __be64 *end,
1438 bool meta, u32 *btotal)
1439{
1440 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1441 struct gfs2_rgrpd *rgd;
1442 struct gfs2_trans *tr;
1443 __be64 *p;
1444 int blks_outside_rgrp;
1445 u64 bn, bstart, isize_blks;
1446 s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */
1447 int ret = 0;
1448 bool buf_in_tr = false; /* buffer was added to transaction */
1449
1450more_rgrps:
1451 rgd = NULL;
1452 if (gfs2_holder_initialized(rd_gh)) {
1453 rgd = gfs2_glock2rgrp(rd_gh->gh_gl);
1454 gfs2_assert_withdraw(sdp,
1455 gfs2_glock_is_locked_by_me(rd_gh->gh_gl));
1456 }
1457 blks_outside_rgrp = 0;
1458 bstart = 0;
1459 blen = 0;
1460
1461 for (p = start; p < end; p++) {
1462 if (!*p)
1463 continue;
1464 bn = be64_to_cpu(*p);
1465
1466 if (rgd) {
1467 if (!rgrp_contains_block(rgd, bn)) {
1468 blks_outside_rgrp++;
1469 continue;
1470 }
1471 } else {
1472 rgd = gfs2_blk2rgrpd(sdp, bn, true);
1473 if (unlikely(!rgd)) {
1474 ret = -EIO;
1475 goto out;
1476 }
1477 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1478 LM_FLAG_NODE_SCOPE, rd_gh);
1479 if (ret)
1480 goto out;
1481
1482 /* Must be done with the rgrp glock held: */
1483 if (gfs2_rs_active(&ip->i_res) &&
1484 rgd == ip->i_res.rs_rgd)
1485 gfs2_rs_deltree(&ip->i_res);
1486 }
1487
1488 /* The size of our transactions will be unknown until we
1489 actually process all the metadata blocks that relate to
1490 the rgrp. So we estimate. We know it can't be more than
1491 the dinode's i_blocks and we don't want to exceed the
1492 journal flush threshold, sd_log_thresh2. */
1493 if (current->journal_info == NULL) {
1494 unsigned int jblocks_rqsted, revokes;
1495
1496 jblocks_rqsted = rgd->rd_length + RES_DINODE +
1497 RES_INDIRECT;
1498 isize_blks = gfs2_get_inode_blocks(&ip->i_inode);
1499 if (isize_blks > atomic_read(&sdp->sd_log_thresh2))
1500 jblocks_rqsted +=
1501 atomic_read(&sdp->sd_log_thresh2);
1502 else
1503 jblocks_rqsted += isize_blks;
1504 revokes = jblocks_rqsted;
1505 if (meta)
1506 revokes += end - start;
1507 else if (ip->i_depth)
1508 revokes += sdp->sd_inptrs;
1509 ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes);
1510 if (ret)
1511 goto out_unlock;
1512 down_write(&ip->i_rw_mutex);
1513 }
1514 /* check if we will exceed the transaction blocks requested */
1515 tr = current->journal_info;
1516 if (tr->tr_num_buf_new + RES_STATFS +
1517 RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) {
1518 /* We set blks_outside_rgrp to ensure the loop will
1519 be repeated for the same rgrp, but with a new
1520 transaction. */
1521 blks_outside_rgrp++;
1522 /* This next part is tricky. If the buffer was added
1523 to the transaction, we've already set some block
1524 pointers to 0, so we better follow through and free
1525 them, or we will introduce corruption (so break).
1526 This may be impossible, or at least rare, but I
1527 decided to cover the case regardless.
1528
1529 If the buffer was not added to the transaction
1530 (this call), doing so would exceed our transaction
1531 size, so we need to end the transaction and start a
1532 new one (so goto). */
1533
1534 if (buf_in_tr)
1535 break;
1536 goto out_unlock;
1537 }
1538
1539 gfs2_trans_add_meta(ip->i_gl, bh);
1540 buf_in_tr = true;
1541 *p = 0;
1542 if (bstart + blen == bn) {
1543 blen++;
1544 continue;
1545 }
1546 if (bstart) {
1547 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1548 (*btotal) += blen;
1549 gfs2_add_inode_blocks(&ip->i_inode, -blen);
1550 }
1551 bstart = bn;
1552 blen = 1;
1553 }
1554 if (bstart) {
1555 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1556 (*btotal) += blen;
1557 gfs2_add_inode_blocks(&ip->i_inode, -blen);
1558 }
1559out_unlock:
1560 if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks
1561 outside the rgrp we just processed,
1562 do it all over again. */
1563 if (current->journal_info) {
1564 struct buffer_head *dibh;
1565
1566 ret = gfs2_meta_inode_buffer(ip, &dibh);
1567 if (ret)
1568 goto out;
1569
1570 /* Every transaction boundary, we rewrite the dinode
1571 to keep its di_blocks current in case of failure. */
1572 ip->i_inode.i_mtime = ip->i_inode.i_ctime =
1573 current_time(&ip->i_inode);
1574 gfs2_trans_add_meta(ip->i_gl, dibh);
1575 gfs2_dinode_out(ip, dibh->b_data);
1576 brelse(dibh);
1577 up_write(&ip->i_rw_mutex);
1578 gfs2_trans_end(sdp);
1579 buf_in_tr = false;
1580 }
1581 gfs2_glock_dq_uninit(rd_gh);
1582 cond_resched();
1583 goto more_rgrps;
1584 }
1585out:
1586 return ret;
1587}
1588
1589static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h)
1590{
1591 if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0])))
1592 return false;
1593 return true;
1594}
1595
1596/**
1597 * find_nonnull_ptr - find a non-null pointer given a metapath and height
1598 * @sdp: The superblock
1599 * @mp: starting metapath
1600 * @h: desired height to search
1601 * @end_list: See punch_hole().
1602 * @end_aligned: See punch_hole().
1603 *
1604 * Assumes the metapath is valid (with buffers) out to height h.
1605 * Returns: true if a non-null pointer was found in the metapath buffer
1606 * false if all remaining pointers are NULL in the buffer
1607 */
1608static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp,
1609 unsigned int h,
1610 __u16 *end_list, unsigned int end_aligned)
1611{
1612 struct buffer_head *bh = mp->mp_bh[h];
1613 __be64 *first, *ptr, *end;
1614
1615 first = metaptr1(h, mp);
1616 ptr = first + mp->mp_list[h];
1617 end = (__be64 *)(bh->b_data + bh->b_size);
1618 if (end_list && mp_eq_to_hgt(mp, end_list, h)) {
1619 bool keep_end = h < end_aligned;
1620 end = first + end_list[h] + keep_end;
1621 }
1622
1623 while (ptr < end) {
1624 if (*ptr) { /* if we have a non-null pointer */
1625 mp->mp_list[h] = ptr - first;
1626 h++;
1627 if (h < GFS2_MAX_META_HEIGHT)
1628 mp->mp_list[h] = 0;
1629 return true;
1630 }
1631 ptr++;
1632 }
1633 return false;
1634}
1635
1636enum dealloc_states {
1637 DEALLOC_MP_FULL = 0, /* Strip a metapath with all buffers read in */
1638 DEALLOC_MP_LOWER = 1, /* lower the metapath strip height */
1639 DEALLOC_FILL_MP = 2, /* Fill in the metapath to the given height. */
1640 DEALLOC_DONE = 3, /* process complete */
1641};
1642
1643static inline void
1644metapointer_range(struct metapath *mp, int height,
1645 __u16 *start_list, unsigned int start_aligned,
1646 __u16 *end_list, unsigned int end_aligned,
1647 __be64 **start, __be64 **end)
1648{
1649 struct buffer_head *bh = mp->mp_bh[height];
1650 __be64 *first;
1651
1652 first = metaptr1(height, mp);
1653 *start = first;
1654 if (mp_eq_to_hgt(mp, start_list, height)) {
1655 bool keep_start = height < start_aligned;
1656 *start = first + start_list[height] + keep_start;
1657 }
1658 *end = (__be64 *)(bh->b_data + bh->b_size);
1659 if (end_list && mp_eq_to_hgt(mp, end_list, height)) {
1660 bool keep_end = height < end_aligned;
1661 *end = first + end_list[height] + keep_end;
1662 }
1663}
1664
1665static inline bool walk_done(struct gfs2_sbd *sdp,
1666 struct metapath *mp, int height,
1667 __u16 *end_list, unsigned int end_aligned)
1668{
1669 __u16 end;
1670
1671 if (end_list) {
1672 bool keep_end = height < end_aligned;
1673 if (!mp_eq_to_hgt(mp, end_list, height))
1674 return false;
1675 end = end_list[height] + keep_end;
1676 } else
1677 end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs;
1678 return mp->mp_list[height] >= end;
1679}
1680
1681/**
1682 * punch_hole - deallocate blocks in a file
1683 * @ip: inode to truncate
1684 * @offset: the start of the hole
1685 * @length: the size of the hole (or 0 for truncate)
1686 *
1687 * Punch a hole into a file or truncate a file at a given position. This
1688 * function operates in whole blocks (@offset and @length are rounded
1689 * accordingly); partially filled blocks must be cleared otherwise.
1690 *
1691 * This function works from the bottom up, and from the right to the left. In
1692 * other words, it strips off the highest layer (data) before stripping any of
1693 * the metadata. Doing it this way is best in case the operation is interrupted
1694 * by power failure, etc. The dinode is rewritten in every transaction to
1695 * guarantee integrity.
1696 */
1697static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length)
1698{
1699 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1700 u64 maxsize = sdp->sd_heightsize[ip->i_height];
1701 struct metapath mp = {};
1702 struct buffer_head *dibh, *bh;
1703 struct gfs2_holder rd_gh;
1704 unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift;
1705 u64 lblock = (offset + (1 << bsize_shift) - 1) >> bsize_shift;
1706 __u16 start_list[GFS2_MAX_META_HEIGHT];
1707 __u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL;
1708 unsigned int start_aligned, end_aligned;
1709 unsigned int strip_h = ip->i_height - 1;
1710 u32 btotal = 0;
1711 int ret, state;
1712 int mp_h; /* metapath buffers are read in to this height */
1713 u64 prev_bnr = 0;
1714 __be64 *start, *end;
1715
1716 if (offset >= maxsize) {
1717 /*
1718 * The starting point lies beyond the allocated meta-data;
1719 * there are no blocks do deallocate.
1720 */
1721 return 0;
1722 }
1723
1724 /*
1725 * The start position of the hole is defined by lblock, start_list, and
1726 * start_aligned. The end position of the hole is defined by lend,
1727 * end_list, and end_aligned.
1728 *
1729 * start_aligned and end_aligned define down to which height the start
1730 * and end positions are aligned to the metadata tree (i.e., the
1731 * position is a multiple of the metadata granularity at the height
1732 * above). This determines at which heights additional meta pointers
1733 * needs to be preserved for the remaining data.
1734 */
1735
1736 if (length) {
1737 u64 end_offset = offset + length;
1738 u64 lend;
1739
1740 /*
1741 * Clip the end at the maximum file size for the given height:
1742 * that's how far the metadata goes; files bigger than that
1743 * will have additional layers of indirection.
1744 */
1745 if (end_offset > maxsize)
1746 end_offset = maxsize;
1747 lend = end_offset >> bsize_shift;
1748
1749 if (lblock >= lend)
1750 return 0;
1751
1752 find_metapath(sdp, lend, &mp, ip->i_height);
1753 end_list = __end_list;
1754 memcpy(end_list, mp.mp_list, sizeof(mp.mp_list));
1755
1756 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1757 if (end_list[mp_h])
1758 break;
1759 }
1760 end_aligned = mp_h;
1761 }
1762
1763 find_metapath(sdp, lblock, &mp, ip->i_height);
1764 memcpy(start_list, mp.mp_list, sizeof(start_list));
1765
1766 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1767 if (start_list[mp_h])
1768 break;
1769 }
1770 start_aligned = mp_h;
1771
1772 ret = gfs2_meta_inode_buffer(ip, &dibh);
1773 if (ret)
1774 return ret;
1775
1776 mp.mp_bh[0] = dibh;
1777 ret = lookup_metapath(ip, &mp);
1778 if (ret)
1779 goto out_metapath;
1780
1781 /* issue read-ahead on metadata */
1782 for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) {
1783 metapointer_range(&mp, mp_h, start_list, start_aligned,
1784 end_list, end_aligned, &start, &end);
1785 gfs2_metapath_ra(ip->i_gl, start, end);
1786 }
1787
1788 if (mp.mp_aheight == ip->i_height)
1789 state = DEALLOC_MP_FULL; /* We have a complete metapath */
1790 else
1791 state = DEALLOC_FILL_MP; /* deal with partial metapath */
1792
1793 ret = gfs2_rindex_update(sdp);
1794 if (ret)
1795 goto out_metapath;
1796
1797 ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE);
1798 if (ret)
1799 goto out_metapath;
1800 gfs2_holder_mark_uninitialized(&rd_gh);
1801
1802 mp_h = strip_h;
1803
1804 while (state != DEALLOC_DONE) {
1805 switch (state) {
1806 /* Truncate a full metapath at the given strip height.
1807 * Note that strip_h == mp_h in order to be in this state. */
1808 case DEALLOC_MP_FULL:
1809 bh = mp.mp_bh[mp_h];
1810 gfs2_assert_withdraw(sdp, bh);
1811 if (gfs2_assert_withdraw(sdp,
1812 prev_bnr != bh->b_blocknr)) {
1813 fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u,"
1814 "s_h:%u, mp_h:%u\n",
1815 (unsigned long long)ip->i_no_addr,
1816 prev_bnr, ip->i_height, strip_h, mp_h);
1817 }
1818 prev_bnr = bh->b_blocknr;
1819
1820 if (gfs2_metatype_check(sdp, bh,
1821 (mp_h ? GFS2_METATYPE_IN :
1822 GFS2_METATYPE_DI))) {
1823 ret = -EIO;
1824 goto out;
1825 }
1826
1827 /*
1828 * Below, passing end_aligned as 0 gives us the
1829 * metapointer range excluding the end point: the end
1830 * point is the first metapath we must not deallocate!
1831 */
1832
1833 metapointer_range(&mp, mp_h, start_list, start_aligned,
1834 end_list, 0 /* end_aligned */,
1835 &start, &end);
1836 ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h],
1837 start, end,
1838 mp_h != ip->i_height - 1,
1839 &btotal);
1840
1841 /* If we hit an error or just swept dinode buffer,
1842 just exit. */
1843 if (ret || !mp_h) {
1844 state = DEALLOC_DONE;
1845 break;
1846 }
1847 state = DEALLOC_MP_LOWER;
1848 break;
1849
1850 /* lower the metapath strip height */
1851 case DEALLOC_MP_LOWER:
1852 /* We're done with the current buffer, so release it,
1853 unless it's the dinode buffer. Then back up to the
1854 previous pointer. */
1855 if (mp_h) {
1856 brelse(mp.mp_bh[mp_h]);
1857 mp.mp_bh[mp_h] = NULL;
1858 }
1859 /* If we can't get any lower in height, we've stripped
1860 off all we can. Next step is to back up and start
1861 stripping the previous level of metadata. */
1862 if (mp_h == 0) {
1863 strip_h--;
1864 memcpy(mp.mp_list, start_list, sizeof(start_list));
1865 mp_h = strip_h;
1866 state = DEALLOC_FILL_MP;
1867 break;
1868 }
1869 mp.mp_list[mp_h] = 0;
1870 mp_h--; /* search one metadata height down */
1871 mp.mp_list[mp_h]++;
1872 if (walk_done(sdp, &mp, mp_h, end_list, end_aligned))
1873 break;
1874 /* Here we've found a part of the metapath that is not
1875 * allocated. We need to search at that height for the
1876 * next non-null pointer. */
1877 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) {
1878 state = DEALLOC_FILL_MP;
1879 mp_h++;
1880 }
1881 /* No more non-null pointers at this height. Back up
1882 to the previous height and try again. */
1883 break; /* loop around in the same state */
1884
1885 /* Fill the metapath with buffers to the given height. */
1886 case DEALLOC_FILL_MP:
1887 /* Fill the buffers out to the current height. */
1888 ret = fillup_metapath(ip, &mp, mp_h);
1889 if (ret < 0)
1890 goto out;
1891
1892 /* On the first pass, issue read-ahead on metadata. */
1893 if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) {
1894 unsigned int height = mp.mp_aheight - 1;
1895
1896 /* No read-ahead for data blocks. */
1897 if (mp.mp_aheight - 1 == strip_h)
1898 height--;
1899
1900 for (; height >= mp.mp_aheight - ret; height--) {
1901 metapointer_range(&mp, height,
1902 start_list, start_aligned,
1903 end_list, end_aligned,
1904 &start, &end);
1905 gfs2_metapath_ra(ip->i_gl, start, end);
1906 }
1907 }
1908
1909 /* If buffers found for the entire strip height */
1910 if (mp.mp_aheight - 1 == strip_h) {
1911 state = DEALLOC_MP_FULL;
1912 break;
1913 }
1914 if (mp.mp_aheight < ip->i_height) /* We have a partial height */
1915 mp_h = mp.mp_aheight - 1;
1916
1917 /* If we find a non-null block pointer, crawl a bit
1918 higher up in the metapath and try again, otherwise
1919 we need to look lower for a new starting point. */
1920 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned))
1921 mp_h++;
1922 else
1923 state = DEALLOC_MP_LOWER;
1924 break;
1925 }
1926 }
1927
1928 if (btotal) {
1929 if (current->journal_info == NULL) {
1930 ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS +
1931 RES_QUOTA, 0);
1932 if (ret)
1933 goto out;
1934 down_write(&ip->i_rw_mutex);
1935 }
1936 gfs2_statfs_change(sdp, 0, +btotal, 0);
1937 gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid,
1938 ip->i_inode.i_gid);
1939 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1940 gfs2_trans_add_meta(ip->i_gl, dibh);
1941 gfs2_dinode_out(ip, dibh->b_data);
1942 up_write(&ip->i_rw_mutex);
1943 gfs2_trans_end(sdp);
1944 }
1945
1946out:
1947 if (gfs2_holder_initialized(&rd_gh))
1948 gfs2_glock_dq_uninit(&rd_gh);
1949 if (current->journal_info) {
1950 up_write(&ip->i_rw_mutex);
1951 gfs2_trans_end(sdp);
1952 cond_resched();
1953 }
1954 gfs2_quota_unhold(ip);
1955out_metapath:
1956 release_metapath(&mp);
1957 return ret;
1958}
1959
1960static int trunc_end(struct gfs2_inode *ip)
1961{
1962 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1963 struct buffer_head *dibh;
1964 int error;
1965
1966 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1967 if (error)
1968 return error;
1969
1970 down_write(&ip->i_rw_mutex);
1971
1972 error = gfs2_meta_inode_buffer(ip, &dibh);
1973 if (error)
1974 goto out;
1975
1976 if (!i_size_read(&ip->i_inode)) {
1977 ip->i_height = 0;
1978 ip->i_goal = ip->i_no_addr;
1979 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
1980 gfs2_ordered_del_inode(ip);
1981 }
1982 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
1983 ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG;
1984
1985 gfs2_trans_add_meta(ip->i_gl, dibh);
1986 gfs2_dinode_out(ip, dibh->b_data);
1987 brelse(dibh);
1988
1989out:
1990 up_write(&ip->i_rw_mutex);
1991 gfs2_trans_end(sdp);
1992 return error;
1993}
1994
1995/**
1996 * do_shrink - make a file smaller
1997 * @inode: the inode
1998 * @newsize: the size to make the file
1999 *
2000 * Called with an exclusive lock on @inode. The @size must
2001 * be equal to or smaller than the current inode size.
2002 *
2003 * Returns: errno
2004 */
2005
2006static int do_shrink(struct inode *inode, u64 newsize)
2007{
2008 struct gfs2_inode *ip = GFS2_I(inode);
2009 int error;
2010
2011 error = trunc_start(inode, newsize);
2012 if (error < 0)
2013 return error;
2014 if (gfs2_is_stuffed(ip))
2015 return 0;
2016
2017 error = punch_hole(ip, newsize, 0);
2018 if (error == 0)
2019 error = trunc_end(ip);
2020
2021 return error;
2022}
2023
2024void gfs2_trim_blocks(struct inode *inode)
2025{
2026 int ret;
2027
2028 ret = do_shrink(inode, inode->i_size);
2029 WARN_ON(ret != 0);
2030}
2031
2032/**
2033 * do_grow - Touch and update inode size
2034 * @inode: The inode
2035 * @size: The new size
2036 *
2037 * This function updates the timestamps on the inode and
2038 * may also increase the size of the inode. This function
2039 * must not be called with @size any smaller than the current
2040 * inode size.
2041 *
2042 * Although it is not strictly required to unstuff files here,
2043 * earlier versions of GFS2 have a bug in the stuffed file reading
2044 * code which will result in a buffer overrun if the size is larger
2045 * than the max stuffed file size. In order to prevent this from
2046 * occurring, such files are unstuffed, but in other cases we can
2047 * just update the inode size directly.
2048 *
2049 * Returns: 0 on success, or -ve on error
2050 */
2051
2052static int do_grow(struct inode *inode, u64 size)
2053{
2054 struct gfs2_inode *ip = GFS2_I(inode);
2055 struct gfs2_sbd *sdp = GFS2_SB(inode);
2056 struct gfs2_alloc_parms ap = { .target = 1, };
2057 struct buffer_head *dibh;
2058 int error;
2059 int unstuff = 0;
2060
2061 if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) {
2062 error = gfs2_quota_lock_check(ip, &ap);
2063 if (error)
2064 return error;
2065
2066 error = gfs2_inplace_reserve(ip, &ap);
2067 if (error)
2068 goto do_grow_qunlock;
2069 unstuff = 1;
2070 }
2071
2072 error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT +
2073 (unstuff &&
2074 gfs2_is_jdata(ip) ? RES_JDATA : 0) +
2075 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ?
2076 0 : RES_QUOTA), 0);
2077 if (error)
2078 goto do_grow_release;
2079
2080 if (unstuff) {
2081 error = gfs2_unstuff_dinode(ip);
2082 if (error)
2083 goto do_end_trans;
2084 }
2085
2086 error = gfs2_meta_inode_buffer(ip, &dibh);
2087 if (error)
2088 goto do_end_trans;
2089
2090 truncate_setsize(inode, size);
2091 ip->i_inode.i_mtime = ip->i_inode.i_ctime = current_time(&ip->i_inode);
2092 gfs2_trans_add_meta(ip->i_gl, dibh);
2093 gfs2_dinode_out(ip, dibh->b_data);
2094 brelse(dibh);
2095
2096do_end_trans:
2097 gfs2_trans_end(sdp);
2098do_grow_release:
2099 if (unstuff) {
2100 gfs2_inplace_release(ip);
2101do_grow_qunlock:
2102 gfs2_quota_unlock(ip);
2103 }
2104 return error;
2105}
2106
2107/**
2108 * gfs2_setattr_size - make a file a given size
2109 * @inode: the inode
2110 * @newsize: the size to make the file
2111 *
2112 * The file size can grow, shrink, or stay the same size. This
2113 * is called holding i_rwsem and an exclusive glock on the inode
2114 * in question.
2115 *
2116 * Returns: errno
2117 */
2118
2119int gfs2_setattr_size(struct inode *inode, u64 newsize)
2120{
2121 struct gfs2_inode *ip = GFS2_I(inode);
2122 int ret;
2123
2124 BUG_ON(!S_ISREG(inode->i_mode));
2125
2126 ret = inode_newsize_ok(inode, newsize);
2127 if (ret)
2128 return ret;
2129
2130 inode_dio_wait(inode);
2131
2132 ret = gfs2_qa_get(ip);
2133 if (ret)
2134 goto out;
2135
2136 if (newsize >= inode->i_size) {
2137 ret = do_grow(inode, newsize);
2138 goto out;
2139 }
2140
2141 ret = do_shrink(inode, newsize);
2142out:
2143 gfs2_rs_delete(ip);
2144 gfs2_qa_put(ip);
2145 return ret;
2146}
2147
2148int gfs2_truncatei_resume(struct gfs2_inode *ip)
2149{
2150 int error;
2151 error = punch_hole(ip, i_size_read(&ip->i_inode), 0);
2152 if (!error)
2153 error = trunc_end(ip);
2154 return error;
2155}
2156
2157int gfs2_file_dealloc(struct gfs2_inode *ip)
2158{
2159 return punch_hole(ip, 0, 0);
2160}
2161
2162/**
2163 * gfs2_free_journal_extents - Free cached journal bmap info
2164 * @jd: The journal
2165 *
2166 */
2167
2168void gfs2_free_journal_extents(struct gfs2_jdesc *jd)
2169{
2170 struct gfs2_journal_extent *jext;
2171
2172 while(!list_empty(&jd->extent_list)) {
2173 jext = list_first_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2174 list_del(&jext->list);
2175 kfree(jext);
2176 }
2177}
2178
2179/**
2180 * gfs2_add_jextent - Add or merge a new extent to extent cache
2181 * @jd: The journal descriptor
2182 * @lblock: The logical block at start of new extent
2183 * @dblock: The physical block at start of new extent
2184 * @blocks: Size of extent in fs blocks
2185 *
2186 * Returns: 0 on success or -ENOMEM
2187 */
2188
2189static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks)
2190{
2191 struct gfs2_journal_extent *jext;
2192
2193 if (!list_empty(&jd->extent_list)) {
2194 jext = list_last_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2195 if ((jext->dblock + jext->blocks) == dblock) {
2196 jext->blocks += blocks;
2197 return 0;
2198 }
2199 }
2200
2201 jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS);
2202 if (jext == NULL)
2203 return -ENOMEM;
2204 jext->dblock = dblock;
2205 jext->lblock = lblock;
2206 jext->blocks = blocks;
2207 list_add_tail(&jext->list, &jd->extent_list);
2208 jd->nr_extents++;
2209 return 0;
2210}
2211
2212/**
2213 * gfs2_map_journal_extents - Cache journal bmap info
2214 * @sdp: The super block
2215 * @jd: The journal to map
2216 *
2217 * Create a reusable "extent" mapping from all logical
2218 * blocks to all physical blocks for the given journal. This will save
2219 * us time when writing journal blocks. Most journals will have only one
2220 * extent that maps all their logical blocks. That's because gfs2.mkfs
2221 * arranges the journal blocks sequentially to maximize performance.
2222 * So the extent would map the first block for the entire file length.
2223 * However, gfs2_jadd can happen while file activity is happening, so
2224 * those journals may not be sequential. Less likely is the case where
2225 * the users created their own journals by mounting the metafs and
2226 * laying it out. But it's still possible. These journals might have
2227 * several extents.
2228 *
2229 * Returns: 0 on success, or error on failure
2230 */
2231
2232int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd)
2233{
2234 u64 lblock = 0;
2235 u64 lblock_stop;
2236 struct gfs2_inode *ip = GFS2_I(jd->jd_inode);
2237 struct buffer_head bh;
2238 unsigned int shift = sdp->sd_sb.sb_bsize_shift;
2239 u64 size;
2240 int rc;
2241 ktime_t start, end;
2242
2243 start = ktime_get();
2244 lblock_stop = i_size_read(jd->jd_inode) >> shift;
2245 size = (lblock_stop - lblock) << shift;
2246 jd->nr_extents = 0;
2247 WARN_ON(!list_empty(&jd->extent_list));
2248
2249 do {
2250 bh.b_state = 0;
2251 bh.b_blocknr = 0;
2252 bh.b_size = size;
2253 rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0);
2254 if (rc || !buffer_mapped(&bh))
2255 goto fail;
2256 rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift);
2257 if (rc)
2258 goto fail;
2259 size -= bh.b_size;
2260 lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2261 } while(size > 0);
2262
2263 end = ktime_get();
2264 fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid,
2265 jd->nr_extents, ktime_ms_delta(end, start));
2266 return 0;
2267
2268fail:
2269 fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n",
2270 rc, jd->jd_jid,
2271 (unsigned long long)(i_size_read(jd->jd_inode) - size),
2272 jd->nr_extents);
2273 fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n",
2274 rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr,
2275 bh.b_state, (unsigned long long)bh.b_size);
2276 gfs2_free_journal_extents(jd);
2277 return rc;
2278}
2279
2280/**
2281 * gfs2_write_alloc_required - figure out if a write will require an allocation
2282 * @ip: the file being written to
2283 * @offset: the offset to write to
2284 * @len: the number of bytes being written
2285 *
2286 * Returns: 1 if an alloc is required, 0 otherwise
2287 */
2288
2289int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset,
2290 unsigned int len)
2291{
2292 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2293 struct buffer_head bh;
2294 unsigned int shift;
2295 u64 lblock, lblock_stop, size;
2296 u64 end_of_file;
2297
2298 if (!len)
2299 return 0;
2300
2301 if (gfs2_is_stuffed(ip)) {
2302 if (offset + len > gfs2_max_stuffed_size(ip))
2303 return 1;
2304 return 0;
2305 }
2306
2307 shift = sdp->sd_sb.sb_bsize_shift;
2308 BUG_ON(gfs2_is_dir(ip));
2309 end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift;
2310 lblock = offset >> shift;
2311 lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift;
2312 if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex))
2313 return 1;
2314
2315 size = (lblock_stop - lblock) << shift;
2316 do {
2317 bh.b_state = 0;
2318 bh.b_size = size;
2319 gfs2_block_map(&ip->i_inode, lblock, &bh, 0);
2320 if (!buffer_mapped(&bh))
2321 return 1;
2322 size -= bh.b_size;
2323 lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2324 } while(size > 0);
2325
2326 return 0;
2327}
2328
2329static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length)
2330{
2331 struct gfs2_inode *ip = GFS2_I(inode);
2332 struct buffer_head *dibh;
2333 int error;
2334
2335 if (offset >= inode->i_size)
2336 return 0;
2337 if (offset + length > inode->i_size)
2338 length = inode->i_size - offset;
2339
2340 error = gfs2_meta_inode_buffer(ip, &dibh);
2341 if (error)
2342 return error;
2343 gfs2_trans_add_meta(ip->i_gl, dibh);
2344 memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0,
2345 length);
2346 brelse(dibh);
2347 return 0;
2348}
2349
2350static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset,
2351 loff_t length)
2352{
2353 struct gfs2_sbd *sdp = GFS2_SB(inode);
2354 loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
2355 int error;
2356
2357 while (length) {
2358 struct gfs2_trans *tr;
2359 loff_t chunk;
2360 unsigned int offs;
2361
2362 chunk = length;
2363 if (chunk > max_chunk)
2364 chunk = max_chunk;
2365
2366 offs = offset & ~PAGE_MASK;
2367 if (offs && chunk > PAGE_SIZE)
2368 chunk = offs + ((chunk - offs) & PAGE_MASK);
2369
2370 truncate_pagecache_range(inode, offset, chunk);
2371 offset += chunk;
2372 length -= chunk;
2373
2374 tr = current->journal_info;
2375 if (!test_bit(TR_TOUCHED, &tr->tr_flags))
2376 continue;
2377
2378 gfs2_trans_end(sdp);
2379 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
2380 if (error)
2381 return error;
2382 }
2383 return 0;
2384}
2385
2386int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length)
2387{
2388 struct inode *inode = file_inode(file);
2389 struct gfs2_inode *ip = GFS2_I(inode);
2390 struct gfs2_sbd *sdp = GFS2_SB(inode);
2391 unsigned int blocksize = i_blocksize(inode);
2392 loff_t start, end;
2393 int error;
2394
2395 if (!gfs2_is_stuffed(ip)) {
2396 unsigned int start_off, end_len;
2397
2398 start_off = offset & (blocksize - 1);
2399 end_len = (offset + length) & (blocksize - 1);
2400 if (start_off) {
2401 unsigned int len = length;
2402 if (length > blocksize - start_off)
2403 len = blocksize - start_off;
2404 error = gfs2_block_zero_range(inode, offset, len);
2405 if (error)
2406 goto out;
2407 if (start_off + length < blocksize)
2408 end_len = 0;
2409 }
2410 if (end_len) {
2411 error = gfs2_block_zero_range(inode,
2412 offset + length - end_len, end_len);
2413 if (error)
2414 goto out;
2415 }
2416 }
2417
2418 start = round_down(offset, blocksize);
2419 end = round_up(offset + length, blocksize) - 1;
2420 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
2421 if (error)
2422 return error;
2423
2424 if (gfs2_is_jdata(ip))
2425 error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA,
2426 GFS2_JTRUNC_REVOKES);
2427 else
2428 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2429 if (error)
2430 return error;
2431
2432 if (gfs2_is_stuffed(ip)) {
2433 error = stuffed_zero_range(inode, offset, length);
2434 if (error)
2435 goto out;
2436 }
2437
2438 if (gfs2_is_jdata(ip)) {
2439 BUG_ON(!current->journal_info);
2440 gfs2_journaled_truncate_range(inode, offset, length);
2441 } else
2442 truncate_pagecache_range(inode, offset, offset + length - 1);
2443
2444 file_update_time(file);
2445 mark_inode_dirty(inode);
2446
2447 if (current->journal_info)
2448 gfs2_trans_end(sdp);
2449
2450 if (!gfs2_is_stuffed(ip))
2451 error = punch_hole(ip, offset, length);
2452
2453out:
2454 if (current->journal_info)
2455 gfs2_trans_end(sdp);
2456 return error;
2457}
2458
2459static int gfs2_map_blocks(struct iomap_writepage_ctx *wpc, struct inode *inode,
2460 loff_t offset)
2461{
2462 int ret;
2463
2464 if (WARN_ON_ONCE(gfs2_is_stuffed(GFS2_I(inode))))
2465 return -EIO;
2466
2467 if (offset >= wpc->iomap.offset &&
2468 offset < wpc->iomap.offset + wpc->iomap.length)
2469 return 0;
2470
2471 memset(&wpc->iomap, 0, sizeof(wpc->iomap));
2472 ret = gfs2_iomap_get(inode, offset, INT_MAX, &wpc->iomap);
2473 return ret;
2474}
2475
2476const struct iomap_writeback_ops gfs2_writeback_ops = {
2477 .map_blocks = gfs2_map_blocks,
2478};
1/*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10#include <linux/spinlock.h>
11#include <linux/completion.h>
12#include <linux/buffer_head.h>
13#include <linux/blkdev.h>
14#include <linux/gfs2_ondisk.h>
15#include <linux/crc32.h>
16
17#include "gfs2.h"
18#include "incore.h"
19#include "bmap.h"
20#include "glock.h"
21#include "inode.h"
22#include "meta_io.h"
23#include "quota.h"
24#include "rgrp.h"
25#include "log.h"
26#include "super.h"
27#include "trans.h"
28#include "dir.h"
29#include "util.h"
30#include "trace_gfs2.h"
31
32/* This doesn't need to be that large as max 64 bit pointers in a 4k
33 * block is 512, so __u16 is fine for that. It saves stack space to
34 * keep it small.
35 */
36struct metapath {
37 struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT];
38 __u16 mp_list[GFS2_MAX_META_HEIGHT];
39};
40
41struct strip_mine {
42 int sm_first;
43 unsigned int sm_height;
44};
45
46/**
47 * gfs2_unstuffer_page - unstuff a stuffed inode into a block cached by a page
48 * @ip: the inode
49 * @dibh: the dinode buffer
50 * @block: the block number that was allocated
51 * @page: The (optional) page. This is looked up if @page is NULL
52 *
53 * Returns: errno
54 */
55
56static int gfs2_unstuffer_page(struct gfs2_inode *ip, struct buffer_head *dibh,
57 u64 block, struct page *page)
58{
59 struct inode *inode = &ip->i_inode;
60 struct buffer_head *bh;
61 int release = 0;
62
63 if (!page || page->index) {
64 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
65 if (!page)
66 return -ENOMEM;
67 release = 1;
68 }
69
70 if (!PageUptodate(page)) {
71 void *kaddr = kmap(page);
72 u64 dsize = i_size_read(inode);
73
74 if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
75 dsize = dibh->b_size - sizeof(struct gfs2_dinode);
76
77 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
78 memset(kaddr + dsize, 0, PAGE_CACHE_SIZE - dsize);
79 kunmap(page);
80
81 SetPageUptodate(page);
82 }
83
84 if (!page_has_buffers(page))
85 create_empty_buffers(page, 1 << inode->i_blkbits,
86 (1 << BH_Uptodate));
87
88 bh = page_buffers(page);
89
90 if (!buffer_mapped(bh))
91 map_bh(bh, inode->i_sb, block);
92
93 set_buffer_uptodate(bh);
94 if (!gfs2_is_jdata(ip))
95 mark_buffer_dirty(bh);
96 if (!gfs2_is_writeback(ip))
97 gfs2_trans_add_data(ip->i_gl, bh);
98
99 if (release) {
100 unlock_page(page);
101 page_cache_release(page);
102 }
103
104 return 0;
105}
106
107/**
108 * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big
109 * @ip: The GFS2 inode to unstuff
110 * @page: The (optional) page. This is looked up if the @page is NULL
111 *
112 * This routine unstuffs a dinode and returns it to a "normal" state such
113 * that the height can be grown in the traditional way.
114 *
115 * Returns: errno
116 */
117
118int gfs2_unstuff_dinode(struct gfs2_inode *ip, struct page *page)
119{
120 struct buffer_head *bh, *dibh;
121 struct gfs2_dinode *di;
122 u64 block = 0;
123 int isdir = gfs2_is_dir(ip);
124 int error;
125
126 down_write(&ip->i_rw_mutex);
127
128 error = gfs2_meta_inode_buffer(ip, &dibh);
129 if (error)
130 goto out;
131
132 if (i_size_read(&ip->i_inode)) {
133 /* Get a free block, fill it with the stuffed data,
134 and write it out to disk */
135
136 unsigned int n = 1;
137 error = gfs2_alloc_blocks(ip, &block, &n, 0, NULL);
138 if (error)
139 goto out_brelse;
140 if (isdir) {
141 gfs2_trans_add_unrevoke(GFS2_SB(&ip->i_inode), block, 1);
142 error = gfs2_dir_get_new_buffer(ip, block, &bh);
143 if (error)
144 goto out_brelse;
145 gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header),
146 dibh, sizeof(struct gfs2_dinode));
147 brelse(bh);
148 } else {
149 error = gfs2_unstuffer_page(ip, dibh, block, page);
150 if (error)
151 goto out_brelse;
152 }
153 }
154
155 /* Set up the pointer to the new block */
156
157 gfs2_trans_add_meta(ip->i_gl, dibh);
158 di = (struct gfs2_dinode *)dibh->b_data;
159 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
160
161 if (i_size_read(&ip->i_inode)) {
162 *(__be64 *)(di + 1) = cpu_to_be64(block);
163 gfs2_add_inode_blocks(&ip->i_inode, 1);
164 di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode));
165 }
166
167 ip->i_height = 1;
168 di->di_height = cpu_to_be16(1);
169
170out_brelse:
171 brelse(dibh);
172out:
173 up_write(&ip->i_rw_mutex);
174 return error;
175}
176
177
178/**
179 * find_metapath - Find path through the metadata tree
180 * @sdp: The superblock
181 * @mp: The metapath to return the result in
182 * @block: The disk block to look up
183 * @height: The pre-calculated height of the metadata tree
184 *
185 * This routine returns a struct metapath structure that defines a path
186 * through the metadata of inode "ip" to get to block "block".
187 *
188 * Example:
189 * Given: "ip" is a height 3 file, "offset" is 101342453, and this is a
190 * filesystem with a blocksize of 4096.
191 *
192 * find_metapath() would return a struct metapath structure set to:
193 * mp_offset = 101342453, mp_height = 3, mp_list[0] = 0, mp_list[1] = 48,
194 * and mp_list[2] = 165.
195 *
196 * That means that in order to get to the block containing the byte at
197 * offset 101342453, we would load the indirect block pointed to by pointer
198 * 0 in the dinode. We would then load the indirect block pointed to by
199 * pointer 48 in that indirect block. We would then load the data block
200 * pointed to by pointer 165 in that indirect block.
201 *
202 * ----------------------------------------
203 * | Dinode | |
204 * | | 4|
205 * | |0 1 2 3 4 5 9|
206 * | | 6|
207 * ----------------------------------------
208 * |
209 * |
210 * V
211 * ----------------------------------------
212 * | Indirect Block |
213 * | 5|
214 * | 4 4 4 4 4 5 5 1|
215 * |0 5 6 7 8 9 0 1 2|
216 * ----------------------------------------
217 * |
218 * |
219 * V
220 * ----------------------------------------
221 * | Indirect Block |
222 * | 1 1 1 1 1 5|
223 * | 6 6 6 6 6 1|
224 * |0 3 4 5 6 7 2|
225 * ----------------------------------------
226 * |
227 * |
228 * V
229 * ----------------------------------------
230 * | Data block containing offset |
231 * | 101342453 |
232 * | |
233 * | |
234 * ----------------------------------------
235 *
236 */
237
238static void find_metapath(const struct gfs2_sbd *sdp, u64 block,
239 struct metapath *mp, unsigned int height)
240{
241 unsigned int i;
242
243 for (i = height; i--;)
244 mp->mp_list[i] = do_div(block, sdp->sd_inptrs);
245
246}
247
248static inline unsigned int metapath_branch_start(const struct metapath *mp)
249{
250 if (mp->mp_list[0] == 0)
251 return 2;
252 return 1;
253}
254
255/**
256 * metapointer - Return pointer to start of metadata in a buffer
257 * @height: The metadata height (0 = dinode)
258 * @mp: The metapath
259 *
260 * Return a pointer to the block number of the next height of the metadata
261 * tree given a buffer containing the pointer to the current height of the
262 * metadata tree.
263 */
264
265static inline __be64 *metapointer(unsigned int height, const struct metapath *mp)
266{
267 struct buffer_head *bh = mp->mp_bh[height];
268 unsigned int head_size = (height > 0) ?
269 sizeof(struct gfs2_meta_header) : sizeof(struct gfs2_dinode);
270 return ((__be64 *)(bh->b_data + head_size)) + mp->mp_list[height];
271}
272
273static void gfs2_metapath_ra(struct gfs2_glock *gl,
274 const struct buffer_head *bh, const __be64 *pos)
275{
276 struct buffer_head *rabh;
277 const __be64 *endp = (const __be64 *)(bh->b_data + bh->b_size);
278 const __be64 *t;
279
280 for (t = pos; t < endp; t++) {
281 if (!*t)
282 continue;
283
284 rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE);
285 if (trylock_buffer(rabh)) {
286 if (!buffer_uptodate(rabh)) {
287 rabh->b_end_io = end_buffer_read_sync;
288 submit_bh(READA | REQ_META, rabh);
289 continue;
290 }
291 unlock_buffer(rabh);
292 }
293 brelse(rabh);
294 }
295}
296
297/**
298 * lookup_metapath - Walk the metadata tree to a specific point
299 * @ip: The inode
300 * @mp: The metapath
301 *
302 * Assumes that the inode's buffer has already been looked up and
303 * hooked onto mp->mp_bh[0] and that the metapath has been initialised
304 * by find_metapath().
305 *
306 * If this function encounters part of the tree which has not been
307 * allocated, it returns the current height of the tree at the point
308 * at which it found the unallocated block. Blocks which are found are
309 * added to the mp->mp_bh[] list.
310 *
311 * Returns: error or height of metadata tree
312 */
313
314static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp)
315{
316 unsigned int end_of_metadata = ip->i_height - 1;
317 unsigned int x;
318 __be64 *ptr;
319 u64 dblock;
320 int ret;
321
322 for (x = 0; x < end_of_metadata; x++) {
323 ptr = metapointer(x, mp);
324 dblock = be64_to_cpu(*ptr);
325 if (!dblock)
326 return x + 1;
327
328 ret = gfs2_meta_indirect_buffer(ip, x+1, dblock, &mp->mp_bh[x+1]);
329 if (ret)
330 return ret;
331 }
332
333 return ip->i_height;
334}
335
336static inline void release_metapath(struct metapath *mp)
337{
338 int i;
339
340 for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) {
341 if (mp->mp_bh[i] == NULL)
342 break;
343 brelse(mp->mp_bh[i]);
344 }
345}
346
347/**
348 * gfs2_extent_length - Returns length of an extent of blocks
349 * @start: Start of the buffer
350 * @len: Length of the buffer in bytes
351 * @ptr: Current position in the buffer
352 * @limit: Max extent length to return (0 = unlimited)
353 * @eob: Set to 1 if we hit "end of block"
354 *
355 * If the first block is zero (unallocated) it will return the number of
356 * unallocated blocks in the extent, otherwise it will return the number
357 * of contiguous blocks in the extent.
358 *
359 * Returns: The length of the extent (minimum of one block)
360 */
361
362static inline unsigned int gfs2_extent_length(void *start, unsigned int len, __be64 *ptr, unsigned limit, int *eob)
363{
364 const __be64 *end = (start + len);
365 const __be64 *first = ptr;
366 u64 d = be64_to_cpu(*ptr);
367
368 *eob = 0;
369 do {
370 ptr++;
371 if (ptr >= end)
372 break;
373 if (limit && --limit == 0)
374 break;
375 if (d)
376 d++;
377 } while(be64_to_cpu(*ptr) == d);
378 if (ptr >= end)
379 *eob = 1;
380 return (ptr - first);
381}
382
383static inline void bmap_lock(struct gfs2_inode *ip, int create)
384{
385 if (create)
386 down_write(&ip->i_rw_mutex);
387 else
388 down_read(&ip->i_rw_mutex);
389}
390
391static inline void bmap_unlock(struct gfs2_inode *ip, int create)
392{
393 if (create)
394 up_write(&ip->i_rw_mutex);
395 else
396 up_read(&ip->i_rw_mutex);
397}
398
399static inline __be64 *gfs2_indirect_init(struct metapath *mp,
400 struct gfs2_glock *gl, unsigned int i,
401 unsigned offset, u64 bn)
402{
403 __be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data +
404 ((i > 1) ? sizeof(struct gfs2_meta_header) :
405 sizeof(struct gfs2_dinode)));
406 BUG_ON(i < 1);
407 BUG_ON(mp->mp_bh[i] != NULL);
408 mp->mp_bh[i] = gfs2_meta_new(gl, bn);
409 gfs2_trans_add_meta(gl, mp->mp_bh[i]);
410 gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN);
411 gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header));
412 ptr += offset;
413 *ptr = cpu_to_be64(bn);
414 return ptr;
415}
416
417enum alloc_state {
418 ALLOC_DATA = 0,
419 ALLOC_GROW_DEPTH = 1,
420 ALLOC_GROW_HEIGHT = 2,
421 /* ALLOC_UNSTUFF = 3, TBD and rather complicated */
422};
423
424/**
425 * gfs2_bmap_alloc - Build a metadata tree of the requested height
426 * @inode: The GFS2 inode
427 * @lblock: The logical starting block of the extent
428 * @bh_map: This is used to return the mapping details
429 * @mp: The metapath
430 * @sheight: The starting height (i.e. whats already mapped)
431 * @height: The height to build to
432 * @maxlen: The max number of data blocks to alloc
433 *
434 * In this routine we may have to alloc:
435 * i) Indirect blocks to grow the metadata tree height
436 * ii) Indirect blocks to fill in lower part of the metadata tree
437 * iii) Data blocks
438 *
439 * The function is in two parts. The first part works out the total
440 * number of blocks which we need. The second part does the actual
441 * allocation asking for an extent at a time (if enough contiguous free
442 * blocks are available, there will only be one request per bmap call)
443 * and uses the state machine to initialise the blocks in order.
444 *
445 * Returns: errno on error
446 */
447
448static int gfs2_bmap_alloc(struct inode *inode, const sector_t lblock,
449 struct buffer_head *bh_map, struct metapath *mp,
450 const unsigned int sheight,
451 const unsigned int height,
452 const unsigned int maxlen)
453{
454 struct gfs2_inode *ip = GFS2_I(inode);
455 struct gfs2_sbd *sdp = GFS2_SB(inode);
456 struct super_block *sb = sdp->sd_vfs;
457 struct buffer_head *dibh = mp->mp_bh[0];
458 u64 bn, dblock = 0;
459 unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0;
460 unsigned dblks = 0;
461 unsigned ptrs_per_blk;
462 const unsigned end_of_metadata = height - 1;
463 int ret;
464 int eob = 0;
465 enum alloc_state state;
466 __be64 *ptr;
467 __be64 zero_bn = 0;
468
469 BUG_ON(sheight < 1);
470 BUG_ON(dibh == NULL);
471
472 gfs2_trans_add_meta(ip->i_gl, dibh);
473
474 if (height == sheight) {
475 struct buffer_head *bh;
476 /* Bottom indirect block exists, find unalloced extent size */
477 ptr = metapointer(end_of_metadata, mp);
478 bh = mp->mp_bh[end_of_metadata];
479 dblks = gfs2_extent_length(bh->b_data, bh->b_size, ptr, maxlen,
480 &eob);
481 BUG_ON(dblks < 1);
482 state = ALLOC_DATA;
483 } else {
484 /* Need to allocate indirect blocks */
485 ptrs_per_blk = height > 1 ? sdp->sd_inptrs : sdp->sd_diptrs;
486 dblks = min(maxlen, ptrs_per_blk - mp->mp_list[end_of_metadata]);
487 if (height == ip->i_height) {
488 /* Writing into existing tree, extend tree down */
489 iblks = height - sheight;
490 state = ALLOC_GROW_DEPTH;
491 } else {
492 /* Building up tree height */
493 state = ALLOC_GROW_HEIGHT;
494 iblks = height - ip->i_height;
495 branch_start = metapath_branch_start(mp);
496 iblks += (height - branch_start);
497 }
498 }
499
500 /* start of the second part of the function (state machine) */
501
502 blks = dblks + iblks;
503 i = sheight;
504 do {
505 int error;
506 n = blks - alloced;
507 error = gfs2_alloc_blocks(ip, &bn, &n, 0, NULL);
508 if (error)
509 return error;
510 alloced += n;
511 if (state != ALLOC_DATA || gfs2_is_jdata(ip))
512 gfs2_trans_add_unrevoke(sdp, bn, n);
513 switch (state) {
514 /* Growing height of tree */
515 case ALLOC_GROW_HEIGHT:
516 if (i == 1) {
517 ptr = (__be64 *)(dibh->b_data +
518 sizeof(struct gfs2_dinode));
519 zero_bn = *ptr;
520 }
521 for (; i - 1 < height - ip->i_height && n > 0; i++, n--)
522 gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++);
523 if (i - 1 == height - ip->i_height) {
524 i--;
525 gfs2_buffer_copy_tail(mp->mp_bh[i],
526 sizeof(struct gfs2_meta_header),
527 dibh, sizeof(struct gfs2_dinode));
528 gfs2_buffer_clear_tail(dibh,
529 sizeof(struct gfs2_dinode) +
530 sizeof(__be64));
531 ptr = (__be64 *)(mp->mp_bh[i]->b_data +
532 sizeof(struct gfs2_meta_header));
533 *ptr = zero_bn;
534 state = ALLOC_GROW_DEPTH;
535 for(i = branch_start; i < height; i++) {
536 if (mp->mp_bh[i] == NULL)
537 break;
538 brelse(mp->mp_bh[i]);
539 mp->mp_bh[i] = NULL;
540 }
541 i = branch_start;
542 }
543 if (n == 0)
544 break;
545 /* Branching from existing tree */
546 case ALLOC_GROW_DEPTH:
547 if (i > 1 && i < height)
548 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]);
549 for (; i < height && n > 0; i++, n--)
550 gfs2_indirect_init(mp, ip->i_gl, i,
551 mp->mp_list[i-1], bn++);
552 if (i == height)
553 state = ALLOC_DATA;
554 if (n == 0)
555 break;
556 /* Tree complete, adding data blocks */
557 case ALLOC_DATA:
558 BUG_ON(n > dblks);
559 BUG_ON(mp->mp_bh[end_of_metadata] == NULL);
560 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]);
561 dblks = n;
562 ptr = metapointer(end_of_metadata, mp);
563 dblock = bn;
564 while (n-- > 0)
565 *ptr++ = cpu_to_be64(bn++);
566 if (buffer_zeronew(bh_map)) {
567 ret = sb_issue_zeroout(sb, dblock, dblks,
568 GFP_NOFS);
569 if (ret) {
570 fs_err(sdp,
571 "Failed to zero data buffers\n");
572 clear_buffer_zeronew(bh_map);
573 }
574 }
575 break;
576 }
577 } while ((state != ALLOC_DATA) || !dblock);
578
579 ip->i_height = height;
580 gfs2_add_inode_blocks(&ip->i_inode, alloced);
581 gfs2_dinode_out(ip, mp->mp_bh[0]->b_data);
582 map_bh(bh_map, inode->i_sb, dblock);
583 bh_map->b_size = dblks << inode->i_blkbits;
584 set_buffer_new(bh_map);
585 return 0;
586}
587
588/**
589 * gfs2_block_map - Map a block from an inode to a disk block
590 * @inode: The inode
591 * @lblock: The logical block number
592 * @bh_map: The bh to be mapped
593 * @create: True if its ok to alloc blocks to satify the request
594 *
595 * Sets buffer_mapped() if successful, sets buffer_boundary() if a
596 * read of metadata will be required before the next block can be
597 * mapped. Sets buffer_new() if new blocks were allocated.
598 *
599 * Returns: errno
600 */
601
602int gfs2_block_map(struct inode *inode, sector_t lblock,
603 struct buffer_head *bh_map, int create)
604{
605 struct gfs2_inode *ip = GFS2_I(inode);
606 struct gfs2_sbd *sdp = GFS2_SB(inode);
607 unsigned int bsize = sdp->sd_sb.sb_bsize;
608 const unsigned int maxlen = bh_map->b_size >> inode->i_blkbits;
609 const u64 *arr = sdp->sd_heightsize;
610 __be64 *ptr;
611 u64 size;
612 struct metapath mp;
613 int ret;
614 int eob;
615 unsigned int len;
616 struct buffer_head *bh;
617 u8 height;
618
619 BUG_ON(maxlen == 0);
620
621 memset(mp.mp_bh, 0, sizeof(mp.mp_bh));
622 bmap_lock(ip, create);
623 clear_buffer_mapped(bh_map);
624 clear_buffer_new(bh_map);
625 clear_buffer_boundary(bh_map);
626 trace_gfs2_bmap(ip, bh_map, lblock, create, 1);
627 if (gfs2_is_dir(ip)) {
628 bsize = sdp->sd_jbsize;
629 arr = sdp->sd_jheightsize;
630 }
631
632 ret = gfs2_meta_inode_buffer(ip, &mp.mp_bh[0]);
633 if (ret)
634 goto out;
635
636 height = ip->i_height;
637 size = (lblock + 1) * bsize;
638 while (size > arr[height])
639 height++;
640 find_metapath(sdp, lblock, &mp, height);
641 ret = 1;
642 if (height > ip->i_height || gfs2_is_stuffed(ip))
643 goto do_alloc;
644 ret = lookup_metapath(ip, &mp);
645 if (ret < 0)
646 goto out;
647 if (ret != ip->i_height)
648 goto do_alloc;
649 ptr = metapointer(ip->i_height - 1, &mp);
650 if (*ptr == 0)
651 goto do_alloc;
652 map_bh(bh_map, inode->i_sb, be64_to_cpu(*ptr));
653 bh = mp.mp_bh[ip->i_height - 1];
654 len = gfs2_extent_length(bh->b_data, bh->b_size, ptr, maxlen, &eob);
655 bh_map->b_size = (len << inode->i_blkbits);
656 if (eob)
657 set_buffer_boundary(bh_map);
658 ret = 0;
659out:
660 release_metapath(&mp);
661 trace_gfs2_bmap(ip, bh_map, lblock, create, ret);
662 bmap_unlock(ip, create);
663 return ret;
664
665do_alloc:
666 /* All allocations are done here, firstly check create flag */
667 if (!create) {
668 BUG_ON(gfs2_is_stuffed(ip));
669 ret = 0;
670 goto out;
671 }
672
673 /* At this point ret is the tree depth of already allocated blocks */
674 ret = gfs2_bmap_alloc(inode, lblock, bh_map, &mp, ret, height, maxlen);
675 goto out;
676}
677
678/*
679 * Deprecated: do not use in new code
680 */
681int gfs2_extent_map(struct inode *inode, u64 lblock, int *new, u64 *dblock, unsigned *extlen)
682{
683 struct buffer_head bh = { .b_state = 0, .b_blocknr = 0 };
684 int ret;
685 int create = *new;
686
687 BUG_ON(!extlen);
688 BUG_ON(!dblock);
689 BUG_ON(!new);
690
691 bh.b_size = 1 << (inode->i_blkbits + (create ? 0 : 5));
692 ret = gfs2_block_map(inode, lblock, &bh, create);
693 *extlen = bh.b_size >> inode->i_blkbits;
694 *dblock = bh.b_blocknr;
695 if (buffer_new(&bh))
696 *new = 1;
697 else
698 *new = 0;
699 return ret;
700}
701
702/**
703 * do_strip - Look for a layer a particular layer of the file and strip it off
704 * @ip: the inode
705 * @dibh: the dinode buffer
706 * @bh: A buffer of pointers
707 * @top: The first pointer in the buffer
708 * @bottom: One more than the last pointer
709 * @height: the height this buffer is at
710 * @data: a pointer to a struct strip_mine
711 *
712 * Returns: errno
713 */
714
715static int do_strip(struct gfs2_inode *ip, struct buffer_head *dibh,
716 struct buffer_head *bh, __be64 *top, __be64 *bottom,
717 unsigned int height, struct strip_mine *sm)
718{
719 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
720 struct gfs2_rgrp_list rlist;
721 u64 bn, bstart;
722 u32 blen, btotal;
723 __be64 *p;
724 unsigned int rg_blocks = 0;
725 int metadata;
726 unsigned int revokes = 0;
727 int x;
728 int error;
729
730 error = gfs2_rindex_update(sdp);
731 if (error)
732 return error;
733
734 if (!*top)
735 sm->sm_first = 0;
736
737 if (height != sm->sm_height)
738 return 0;
739
740 if (sm->sm_first) {
741 top++;
742 sm->sm_first = 0;
743 }
744
745 metadata = (height != ip->i_height - 1);
746 if (metadata)
747 revokes = (height) ? sdp->sd_inptrs : sdp->sd_diptrs;
748 else if (ip->i_depth)
749 revokes = sdp->sd_inptrs;
750
751 memset(&rlist, 0, sizeof(struct gfs2_rgrp_list));
752 bstart = 0;
753 blen = 0;
754
755 for (p = top; p < bottom; p++) {
756 if (!*p)
757 continue;
758
759 bn = be64_to_cpu(*p);
760
761 if (bstart + blen == bn)
762 blen++;
763 else {
764 if (bstart)
765 gfs2_rlist_add(ip, &rlist, bstart);
766
767 bstart = bn;
768 blen = 1;
769 }
770 }
771
772 if (bstart)
773 gfs2_rlist_add(ip, &rlist, bstart);
774 else
775 goto out; /* Nothing to do */
776
777 gfs2_rlist_alloc(&rlist, LM_ST_EXCLUSIVE);
778
779 for (x = 0; x < rlist.rl_rgrps; x++) {
780 struct gfs2_rgrpd *rgd;
781 rgd = rlist.rl_ghs[x].gh_gl->gl_object;
782 rg_blocks += rgd->rd_length;
783 }
784
785 error = gfs2_glock_nq_m(rlist.rl_rgrps, rlist.rl_ghs);
786 if (error)
787 goto out_rlist;
788
789 if (gfs2_rs_active(ip->i_res)) /* needs to be done with the rgrp glock held */
790 gfs2_rs_deltree(ip->i_res);
791
792 error = gfs2_trans_begin(sdp, rg_blocks + RES_DINODE +
793 RES_INDIRECT + RES_STATFS + RES_QUOTA,
794 revokes);
795 if (error)
796 goto out_rg_gunlock;
797
798 down_write(&ip->i_rw_mutex);
799
800 gfs2_trans_add_meta(ip->i_gl, dibh);
801 gfs2_trans_add_meta(ip->i_gl, bh);
802
803 bstart = 0;
804 blen = 0;
805 btotal = 0;
806
807 for (p = top; p < bottom; p++) {
808 if (!*p)
809 continue;
810
811 bn = be64_to_cpu(*p);
812
813 if (bstart + blen == bn)
814 blen++;
815 else {
816 if (bstart) {
817 __gfs2_free_blocks(ip, bstart, blen, metadata);
818 btotal += blen;
819 }
820
821 bstart = bn;
822 blen = 1;
823 }
824
825 *p = 0;
826 gfs2_add_inode_blocks(&ip->i_inode, -1);
827 }
828 if (bstart) {
829 __gfs2_free_blocks(ip, bstart, blen, metadata);
830 btotal += blen;
831 }
832
833 gfs2_statfs_change(sdp, 0, +btotal, 0);
834 gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid,
835 ip->i_inode.i_gid);
836
837 ip->i_inode.i_mtime = ip->i_inode.i_ctime = CURRENT_TIME;
838
839 gfs2_dinode_out(ip, dibh->b_data);
840
841 up_write(&ip->i_rw_mutex);
842
843 gfs2_trans_end(sdp);
844
845out_rg_gunlock:
846 gfs2_glock_dq_m(rlist.rl_rgrps, rlist.rl_ghs);
847out_rlist:
848 gfs2_rlist_free(&rlist);
849out:
850 return error;
851}
852
853/**
854 * recursive_scan - recursively scan through the end of a file
855 * @ip: the inode
856 * @dibh: the dinode buffer
857 * @mp: the path through the metadata to the point to start
858 * @height: the height the recursion is at
859 * @block: the indirect block to look at
860 * @first: 1 if this is the first block
861 * @sm: data opaque to this function to pass to @bc
862 *
863 * When this is first called @height and @block should be zero and
864 * @first should be 1.
865 *
866 * Returns: errno
867 */
868
869static int recursive_scan(struct gfs2_inode *ip, struct buffer_head *dibh,
870 struct metapath *mp, unsigned int height,
871 u64 block, int first, struct strip_mine *sm)
872{
873 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
874 struct buffer_head *bh = NULL;
875 __be64 *top, *bottom;
876 u64 bn;
877 int error;
878 int mh_size = sizeof(struct gfs2_meta_header);
879
880 if (!height) {
881 error = gfs2_meta_inode_buffer(ip, &bh);
882 if (error)
883 return error;
884 dibh = bh;
885
886 top = (__be64 *)(bh->b_data + sizeof(struct gfs2_dinode)) + mp->mp_list[0];
887 bottom = (__be64 *)(bh->b_data + sizeof(struct gfs2_dinode)) + sdp->sd_diptrs;
888 } else {
889 error = gfs2_meta_indirect_buffer(ip, height, block, &bh);
890 if (error)
891 return error;
892
893 top = (__be64 *)(bh->b_data + mh_size) +
894 (first ? mp->mp_list[height] : 0);
895
896 bottom = (__be64 *)(bh->b_data + mh_size) + sdp->sd_inptrs;
897 }
898
899 error = do_strip(ip, dibh, bh, top, bottom, height, sm);
900 if (error)
901 goto out;
902
903 if (height < ip->i_height - 1) {
904
905 gfs2_metapath_ra(ip->i_gl, bh, top);
906
907 for (; top < bottom; top++, first = 0) {
908 if (!*top)
909 continue;
910
911 bn = be64_to_cpu(*top);
912
913 error = recursive_scan(ip, dibh, mp, height + 1, bn,
914 first, sm);
915 if (error)
916 break;
917 }
918 }
919out:
920 brelse(bh);
921 return error;
922}
923
924
925/**
926 * gfs2_block_truncate_page - Deal with zeroing out data for truncate
927 *
928 * This is partly borrowed from ext3.
929 */
930static int gfs2_block_truncate_page(struct address_space *mapping, loff_t from)
931{
932 struct inode *inode = mapping->host;
933 struct gfs2_inode *ip = GFS2_I(inode);
934 unsigned long index = from >> PAGE_CACHE_SHIFT;
935 unsigned offset = from & (PAGE_CACHE_SIZE-1);
936 unsigned blocksize, iblock, length, pos;
937 struct buffer_head *bh;
938 struct page *page;
939 int err;
940
941 page = find_or_create_page(mapping, index, GFP_NOFS);
942 if (!page)
943 return 0;
944
945 blocksize = inode->i_sb->s_blocksize;
946 length = blocksize - (offset & (blocksize - 1));
947 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
948
949 if (!page_has_buffers(page))
950 create_empty_buffers(page, blocksize, 0);
951
952 /* Find the buffer that contains "offset" */
953 bh = page_buffers(page);
954 pos = blocksize;
955 while (offset >= pos) {
956 bh = bh->b_this_page;
957 iblock++;
958 pos += blocksize;
959 }
960
961 err = 0;
962
963 if (!buffer_mapped(bh)) {
964 gfs2_block_map(inode, iblock, bh, 0);
965 /* unmapped? It's a hole - nothing to do */
966 if (!buffer_mapped(bh))
967 goto unlock;
968 }
969
970 /* Ok, it's mapped. Make sure it's up-to-date */
971 if (PageUptodate(page))
972 set_buffer_uptodate(bh);
973
974 if (!buffer_uptodate(bh)) {
975 err = -EIO;
976 ll_rw_block(READ, 1, &bh);
977 wait_on_buffer(bh);
978 /* Uhhuh. Read error. Complain and punt. */
979 if (!buffer_uptodate(bh))
980 goto unlock;
981 err = 0;
982 }
983
984 if (!gfs2_is_writeback(ip))
985 gfs2_trans_add_data(ip->i_gl, bh);
986
987 zero_user(page, offset, length);
988 mark_buffer_dirty(bh);
989unlock:
990 unlock_page(page);
991 page_cache_release(page);
992 return err;
993}
994
995/**
996 * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files
997 * @inode: The inode being truncated
998 * @oldsize: The original (larger) size
999 * @newsize: The new smaller size
1000 *
1001 * With jdata files, we have to journal a revoke for each block which is
1002 * truncated. As a result, we need to split this into separate transactions
1003 * if the number of pages being truncated gets too large.
1004 */
1005
1006#define GFS2_JTRUNC_REVOKES 8192
1007
1008static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize)
1009{
1010 struct gfs2_sbd *sdp = GFS2_SB(inode);
1011 u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
1012 u64 chunk;
1013 int error;
1014
1015 while (oldsize != newsize) {
1016 chunk = oldsize - newsize;
1017 if (chunk > max_chunk)
1018 chunk = max_chunk;
1019 truncate_pagecache(inode, oldsize - chunk);
1020 oldsize -= chunk;
1021 gfs2_trans_end(sdp);
1022 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
1023 if (error)
1024 return error;
1025 }
1026
1027 return 0;
1028}
1029
1030static int trunc_start(struct inode *inode, u64 oldsize, u64 newsize)
1031{
1032 struct gfs2_inode *ip = GFS2_I(inode);
1033 struct gfs2_sbd *sdp = GFS2_SB(inode);
1034 struct address_space *mapping = inode->i_mapping;
1035 struct buffer_head *dibh;
1036 int journaled = gfs2_is_jdata(ip);
1037 int error;
1038
1039 if (journaled)
1040 error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES);
1041 else
1042 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1043 if (error)
1044 return error;
1045
1046 error = gfs2_meta_inode_buffer(ip, &dibh);
1047 if (error)
1048 goto out;
1049
1050 gfs2_trans_add_meta(ip->i_gl, dibh);
1051
1052 if (gfs2_is_stuffed(ip)) {
1053 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize);
1054 } else {
1055 if (newsize & (u64)(sdp->sd_sb.sb_bsize - 1)) {
1056 error = gfs2_block_truncate_page(mapping, newsize);
1057 if (error)
1058 goto out_brelse;
1059 }
1060 ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG;
1061 }
1062
1063 i_size_write(inode, newsize);
1064 ip->i_inode.i_mtime = ip->i_inode.i_ctime = CURRENT_TIME;
1065 gfs2_dinode_out(ip, dibh->b_data);
1066
1067 if (journaled)
1068 error = gfs2_journaled_truncate(inode, oldsize, newsize);
1069 else
1070 truncate_pagecache(inode, newsize);
1071
1072 if (error) {
1073 brelse(dibh);
1074 return error;
1075 }
1076
1077out_brelse:
1078 brelse(dibh);
1079out:
1080 gfs2_trans_end(sdp);
1081 return error;
1082}
1083
1084static int trunc_dealloc(struct gfs2_inode *ip, u64 size)
1085{
1086 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1087 unsigned int height = ip->i_height;
1088 u64 lblock;
1089 struct metapath mp;
1090 int error;
1091
1092 if (!size)
1093 lblock = 0;
1094 else
1095 lblock = (size - 1) >> sdp->sd_sb.sb_bsize_shift;
1096
1097 find_metapath(sdp, lblock, &mp, ip->i_height);
1098 error = gfs2_rindex_update(sdp);
1099 if (error)
1100 return error;
1101
1102 error = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE);
1103 if (error)
1104 return error;
1105
1106 while (height--) {
1107 struct strip_mine sm;
1108 sm.sm_first = !!size;
1109 sm.sm_height = height;
1110
1111 error = recursive_scan(ip, NULL, &mp, 0, 0, 1, &sm);
1112 if (error)
1113 break;
1114 }
1115
1116 gfs2_quota_unhold(ip);
1117
1118 return error;
1119}
1120
1121static int trunc_end(struct gfs2_inode *ip)
1122{
1123 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1124 struct buffer_head *dibh;
1125 int error;
1126
1127 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1128 if (error)
1129 return error;
1130
1131 down_write(&ip->i_rw_mutex);
1132
1133 error = gfs2_meta_inode_buffer(ip, &dibh);
1134 if (error)
1135 goto out;
1136
1137 if (!i_size_read(&ip->i_inode)) {
1138 ip->i_height = 0;
1139 ip->i_goal = ip->i_no_addr;
1140 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
1141 gfs2_ordered_del_inode(ip);
1142 }
1143 ip->i_inode.i_mtime = ip->i_inode.i_ctime = CURRENT_TIME;
1144 ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG;
1145
1146 gfs2_trans_add_meta(ip->i_gl, dibh);
1147 gfs2_dinode_out(ip, dibh->b_data);
1148 brelse(dibh);
1149
1150out:
1151 up_write(&ip->i_rw_mutex);
1152 gfs2_trans_end(sdp);
1153 return error;
1154}
1155
1156/**
1157 * do_shrink - make a file smaller
1158 * @inode: the inode
1159 * @oldsize: the current inode size
1160 * @newsize: the size to make the file
1161 *
1162 * Called with an exclusive lock on @inode. The @size must
1163 * be equal to or smaller than the current inode size.
1164 *
1165 * Returns: errno
1166 */
1167
1168static int do_shrink(struct inode *inode, u64 oldsize, u64 newsize)
1169{
1170 struct gfs2_inode *ip = GFS2_I(inode);
1171 int error;
1172
1173 error = trunc_start(inode, oldsize, newsize);
1174 if (error < 0)
1175 return error;
1176 if (gfs2_is_stuffed(ip))
1177 return 0;
1178
1179 error = trunc_dealloc(ip, newsize);
1180 if (error == 0)
1181 error = trunc_end(ip);
1182
1183 return error;
1184}
1185
1186void gfs2_trim_blocks(struct inode *inode)
1187{
1188 u64 size = inode->i_size;
1189 int ret;
1190
1191 ret = do_shrink(inode, size, size);
1192 WARN_ON(ret != 0);
1193}
1194
1195/**
1196 * do_grow - Touch and update inode size
1197 * @inode: The inode
1198 * @size: The new size
1199 *
1200 * This function updates the timestamps on the inode and
1201 * may also increase the size of the inode. This function
1202 * must not be called with @size any smaller than the current
1203 * inode size.
1204 *
1205 * Although it is not strictly required to unstuff files here,
1206 * earlier versions of GFS2 have a bug in the stuffed file reading
1207 * code which will result in a buffer overrun if the size is larger
1208 * than the max stuffed file size. In order to prevent this from
1209 * occurring, such files are unstuffed, but in other cases we can
1210 * just update the inode size directly.
1211 *
1212 * Returns: 0 on success, or -ve on error
1213 */
1214
1215static int do_grow(struct inode *inode, u64 size)
1216{
1217 struct gfs2_inode *ip = GFS2_I(inode);
1218 struct gfs2_sbd *sdp = GFS2_SB(inode);
1219 struct gfs2_alloc_parms ap = { .target = 1, };
1220 struct buffer_head *dibh;
1221 int error;
1222 int unstuff = 0;
1223
1224 if (gfs2_is_stuffed(ip) &&
1225 (size > (sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)))) {
1226 error = gfs2_quota_lock_check(ip);
1227 if (error)
1228 return error;
1229
1230 error = gfs2_inplace_reserve(ip, &ap);
1231 if (error)
1232 goto do_grow_qunlock;
1233 unstuff = 1;
1234 }
1235
1236 error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT +
1237 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ?
1238 0 : RES_QUOTA), 0);
1239 if (error)
1240 goto do_grow_release;
1241
1242 if (unstuff) {
1243 error = gfs2_unstuff_dinode(ip, NULL);
1244 if (error)
1245 goto do_end_trans;
1246 }
1247
1248 error = gfs2_meta_inode_buffer(ip, &dibh);
1249 if (error)
1250 goto do_end_trans;
1251
1252 i_size_write(inode, size);
1253 ip->i_inode.i_mtime = ip->i_inode.i_ctime = CURRENT_TIME;
1254 gfs2_trans_add_meta(ip->i_gl, dibh);
1255 gfs2_dinode_out(ip, dibh->b_data);
1256 brelse(dibh);
1257
1258do_end_trans:
1259 gfs2_trans_end(sdp);
1260do_grow_release:
1261 if (unstuff) {
1262 gfs2_inplace_release(ip);
1263do_grow_qunlock:
1264 gfs2_quota_unlock(ip);
1265 }
1266 return error;
1267}
1268
1269/**
1270 * gfs2_setattr_size - make a file a given size
1271 * @inode: the inode
1272 * @newsize: the size to make the file
1273 *
1274 * The file size can grow, shrink, or stay the same size. This
1275 * is called holding i_mutex and an exclusive glock on the inode
1276 * in question.
1277 *
1278 * Returns: errno
1279 */
1280
1281int gfs2_setattr_size(struct inode *inode, u64 newsize)
1282{
1283 struct gfs2_inode *ip = GFS2_I(inode);
1284 int ret;
1285 u64 oldsize;
1286
1287 BUG_ON(!S_ISREG(inode->i_mode));
1288
1289 ret = inode_newsize_ok(inode, newsize);
1290 if (ret)
1291 return ret;
1292
1293 ret = get_write_access(inode);
1294 if (ret)
1295 return ret;
1296
1297 inode_dio_wait(inode);
1298
1299 ret = gfs2_rs_alloc(ip);
1300 if (ret)
1301 goto out;
1302
1303 oldsize = inode->i_size;
1304 if (newsize >= oldsize) {
1305 ret = do_grow(inode, newsize);
1306 goto out;
1307 }
1308
1309 gfs2_rs_deltree(ip->i_res);
1310 ret = do_shrink(inode, oldsize, newsize);
1311out:
1312 put_write_access(inode);
1313 return ret;
1314}
1315
1316int gfs2_truncatei_resume(struct gfs2_inode *ip)
1317{
1318 int error;
1319 error = trunc_dealloc(ip, i_size_read(&ip->i_inode));
1320 if (!error)
1321 error = trunc_end(ip);
1322 return error;
1323}
1324
1325int gfs2_file_dealloc(struct gfs2_inode *ip)
1326{
1327 return trunc_dealloc(ip, 0);
1328}
1329
1330/**
1331 * gfs2_free_journal_extents - Free cached journal bmap info
1332 * @jd: The journal
1333 *
1334 */
1335
1336void gfs2_free_journal_extents(struct gfs2_jdesc *jd)
1337{
1338 struct gfs2_journal_extent *jext;
1339
1340 while(!list_empty(&jd->extent_list)) {
1341 jext = list_entry(jd->extent_list.next, struct gfs2_journal_extent, list);
1342 list_del(&jext->list);
1343 kfree(jext);
1344 }
1345}
1346
1347/**
1348 * gfs2_add_jextent - Add or merge a new extent to extent cache
1349 * @jd: The journal descriptor
1350 * @lblock: The logical block at start of new extent
1351 * @pblock: The physical block at start of new extent
1352 * @blocks: Size of extent in fs blocks
1353 *
1354 * Returns: 0 on success or -ENOMEM
1355 */
1356
1357static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks)
1358{
1359 struct gfs2_journal_extent *jext;
1360
1361 if (!list_empty(&jd->extent_list)) {
1362 jext = list_entry(jd->extent_list.prev, struct gfs2_journal_extent, list);
1363 if ((jext->dblock + jext->blocks) == dblock) {
1364 jext->blocks += blocks;
1365 return 0;
1366 }
1367 }
1368
1369 jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS);
1370 if (jext == NULL)
1371 return -ENOMEM;
1372 jext->dblock = dblock;
1373 jext->lblock = lblock;
1374 jext->blocks = blocks;
1375 list_add_tail(&jext->list, &jd->extent_list);
1376 jd->nr_extents++;
1377 return 0;
1378}
1379
1380/**
1381 * gfs2_map_journal_extents - Cache journal bmap info
1382 * @sdp: The super block
1383 * @jd: The journal to map
1384 *
1385 * Create a reusable "extent" mapping from all logical
1386 * blocks to all physical blocks for the given journal. This will save
1387 * us time when writing journal blocks. Most journals will have only one
1388 * extent that maps all their logical blocks. That's because gfs2.mkfs
1389 * arranges the journal blocks sequentially to maximize performance.
1390 * So the extent would map the first block for the entire file length.
1391 * However, gfs2_jadd can happen while file activity is happening, so
1392 * those journals may not be sequential. Less likely is the case where
1393 * the users created their own journals by mounting the metafs and
1394 * laying it out. But it's still possible. These journals might have
1395 * several extents.
1396 *
1397 * Returns: 0 on success, or error on failure
1398 */
1399
1400int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd)
1401{
1402 u64 lblock = 0;
1403 u64 lblock_stop;
1404 struct gfs2_inode *ip = GFS2_I(jd->jd_inode);
1405 struct buffer_head bh;
1406 unsigned int shift = sdp->sd_sb.sb_bsize_shift;
1407 u64 size;
1408 int rc;
1409
1410 lblock_stop = i_size_read(jd->jd_inode) >> shift;
1411 size = (lblock_stop - lblock) << shift;
1412 jd->nr_extents = 0;
1413 WARN_ON(!list_empty(&jd->extent_list));
1414
1415 do {
1416 bh.b_state = 0;
1417 bh.b_blocknr = 0;
1418 bh.b_size = size;
1419 rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0);
1420 if (rc || !buffer_mapped(&bh))
1421 goto fail;
1422 rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift);
1423 if (rc)
1424 goto fail;
1425 size -= bh.b_size;
1426 lblock += (bh.b_size >> ip->i_inode.i_blkbits);
1427 } while(size > 0);
1428
1429 fs_info(sdp, "journal %d mapped with %u extents\n", jd->jd_jid,
1430 jd->nr_extents);
1431 return 0;
1432
1433fail:
1434 fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n",
1435 rc, jd->jd_jid,
1436 (unsigned long long)(i_size_read(jd->jd_inode) - size),
1437 jd->nr_extents);
1438 fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n",
1439 rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr,
1440 bh.b_state, (unsigned long long)bh.b_size);
1441 gfs2_free_journal_extents(jd);
1442 return rc;
1443}
1444
1445/**
1446 * gfs2_write_alloc_required - figure out if a write will require an allocation
1447 * @ip: the file being written to
1448 * @offset: the offset to write to
1449 * @len: the number of bytes being written
1450 *
1451 * Returns: 1 if an alloc is required, 0 otherwise
1452 */
1453
1454int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset,
1455 unsigned int len)
1456{
1457 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1458 struct buffer_head bh;
1459 unsigned int shift;
1460 u64 lblock, lblock_stop, size;
1461 u64 end_of_file;
1462
1463 if (!len)
1464 return 0;
1465
1466 if (gfs2_is_stuffed(ip)) {
1467 if (offset + len >
1468 sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode))
1469 return 1;
1470 return 0;
1471 }
1472
1473 shift = sdp->sd_sb.sb_bsize_shift;
1474 BUG_ON(gfs2_is_dir(ip));
1475 end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift;
1476 lblock = offset >> shift;
1477 lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift;
1478 if (lblock_stop > end_of_file)
1479 return 1;
1480
1481 size = (lblock_stop - lblock) << shift;
1482 do {
1483 bh.b_state = 0;
1484 bh.b_size = size;
1485 gfs2_block_map(&ip->i_inode, lblock, &bh, 0);
1486 if (!buffer_mapped(&bh))
1487 return 1;
1488 size -= bh.b_size;
1489 lblock += (bh.b_size >> ip->i_inode.i_blkbits);
1490 } while(size > 0);
1491
1492 return 0;
1493}
1494