Linux Audio

Check our new training course

Loading...
v6.2
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2008 Oracle.  All rights reserved.
  4 */
  5
  6#ifndef BTRFS_DELAYED_REF_H
  7#define BTRFS_DELAYED_REF_H
  8
  9#include <linux/refcount.h>
 10
 11/* these are the possible values of struct btrfs_delayed_ref_node->action */
 12#define BTRFS_ADD_DELAYED_REF    1 /* add one backref to the tree */
 13#define BTRFS_DROP_DELAYED_REF   2 /* delete one backref from the tree */
 14#define BTRFS_ADD_DELAYED_EXTENT 3 /* record a full extent allocation */
 15#define BTRFS_UPDATE_DELAYED_HEAD 4 /* not changing ref count on head ref */
 16
 17struct btrfs_delayed_ref_node {
 18	struct rb_node ref_node;
 19	/*
 20	 * If action is BTRFS_ADD_DELAYED_REF, also link this node to
 21	 * ref_head->ref_add_list, then we do not need to iterate the
 22	 * whole ref_head->ref_list to find BTRFS_ADD_DELAYED_REF nodes.
 23	 */
 24	struct list_head add_list;
 25
 26	/* the starting bytenr of the extent */
 27	u64 bytenr;
 28
 29	/* the size of the extent */
 30	u64 num_bytes;
 31
 32	/* seq number to keep track of insertion order */
 33	u64 seq;
 34
 35	/* ref count on this data structure */
 36	refcount_t refs;
 37
 38	/*
 39	 * how many refs is this entry adding or deleting.  For
 40	 * head refs, this may be a negative number because it is keeping
 41	 * track of the total mods done to the reference count.
 42	 * For individual refs, this will always be a positive number
 43	 *
 44	 * It may be more than one, since it is possible for a single
 45	 * parent to have more than one ref on an extent
 46	 */
 47	int ref_mod;
 48
 49	unsigned int action:8;
 50	unsigned int type:8;
 51	/* is this node still in the rbtree? */
 52	unsigned int is_head:1;
 53	unsigned int in_tree:1;
 54};
 55
 56struct btrfs_delayed_extent_op {
 57	struct btrfs_disk_key key;
 58	u8 level;
 59	bool update_key;
 60	bool update_flags;
 
 61	u64 flags_to_set;
 62};
 63
 64/*
 65 * the head refs are used to hold a lock on a given extent, which allows us
 66 * to make sure that only one process is running the delayed refs
 67 * at a time for a single extent.  They also store the sum of all the
 68 * reference count modifications we've queued up.
 69 */
 70struct btrfs_delayed_ref_head {
 71	u64 bytenr;
 72	u64 num_bytes;
 73	refcount_t refs;
 74	/*
 75	 * the mutex is held while running the refs, and it is also
 76	 * held when checking the sum of reference modifications.
 77	 */
 78	struct mutex mutex;
 79
 80	spinlock_t lock;
 81	struct rb_root_cached ref_tree;
 82	/* accumulate add BTRFS_ADD_DELAYED_REF nodes to this ref_add_list. */
 83	struct list_head ref_add_list;
 84
 85	struct rb_node href_node;
 86
 87	struct btrfs_delayed_extent_op *extent_op;
 88
 89	/*
 90	 * This is used to track the final ref_mod from all the refs associated
 91	 * with this head ref, this is not adjusted as delayed refs are run,
 92	 * this is meant to track if we need to do the csum accounting or not.
 93	 */
 94	int total_ref_mod;
 95
 96	/*
 97	 * This is the current outstanding mod references for this bytenr.  This
 98	 * is used with lookup_extent_info to get an accurate reference count
 99	 * for a bytenr, so it is adjusted as delayed refs are run so that any
100	 * on disk reference count + ref_mod is accurate.
101	 */
102	int ref_mod;
103
104	/*
 
 
 
 
 
 
 
 
 
 
 
105	 * when a new extent is allocated, it is just reserved in memory
106	 * The actual extent isn't inserted into the extent allocation tree
107	 * until the delayed ref is processed.  must_insert_reserved is
108	 * used to flag a delayed ref so the accounting can be updated
109	 * when a full insert is done.
110	 *
111	 * It is possible the extent will be freed before it is ever
112	 * inserted into the extent allocation tree.  In this case
113	 * we need to update the in ram accounting to properly reflect
114	 * the free has happened.
115	 */
116	unsigned int must_insert_reserved:1;
117	unsigned int is_data:1;
118	unsigned int is_system:1;
119	unsigned int processing:1;
120};
121
122struct btrfs_delayed_tree_ref {
123	struct btrfs_delayed_ref_node node;
124	u64 root;
125	u64 parent;
126	int level;
127};
128
129struct btrfs_delayed_data_ref {
130	struct btrfs_delayed_ref_node node;
131	u64 root;
132	u64 parent;
133	u64 objectid;
134	u64 offset;
135};
136
137enum btrfs_delayed_ref_flags {
138	/* Indicate that we are flushing delayed refs for the commit */
139	BTRFS_DELAYED_REFS_FLUSHING,
140};
141
142struct btrfs_delayed_ref_root {
143	/* head ref rbtree */
144	struct rb_root_cached href_root;
145
146	/* dirty extent records */
147	struct rb_root dirty_extent_root;
148
149	/* this spin lock protects the rbtree and the entries inside */
150	spinlock_t lock;
151
152	/* how many delayed ref updates we've queued, used by the
153	 * throttling code
154	 */
155	atomic_t num_entries;
156
157	/* total number of head nodes in tree */
158	unsigned long num_heads;
159
160	/* total number of head nodes ready for processing */
161	unsigned long num_heads_ready;
162
163	u64 pending_csums;
164
165	unsigned long flags;
 
 
 
 
 
166
167	u64 run_delayed_start;
168
169	/*
170	 * To make qgroup to skip given root.
171	 * This is for snapshot, as btrfs_qgroup_inherit() will manually
172	 * modify counters for snapshot and its source, so we should skip
173	 * the snapshot in new_root/old_roots or it will get calculated twice
174	 */
175	u64 qgroup_to_skip;
176};
177
178enum btrfs_ref_type {
179	BTRFS_REF_NOT_SET,
180	BTRFS_REF_DATA,
181	BTRFS_REF_METADATA,
182	BTRFS_REF_LAST,
183};
184
185struct btrfs_data_ref {
186	/* For EXTENT_DATA_REF */
187
188	/* Original root this data extent belongs to */
189	u64 owning_root;
190
191	/* Inode which refers to this data extent */
192	u64 ino;
193
194	/*
195	 * file_offset - extent_offset
196	 *
197	 * file_offset is the key.offset of the EXTENT_DATA key.
198	 * extent_offset is btrfs_file_extent_offset() of the EXTENT_DATA data.
199	 */
200	u64 offset;
201};
202
203struct btrfs_tree_ref {
204	/*
205	 * Level of this tree block
206	 *
207	 * Shared for skinny (TREE_BLOCK_REF) and normal tree ref.
208	 */
209	int level;
210
211	/*
212	 * Root which owns this tree block.
213	 *
214	 * For TREE_BLOCK_REF (skinny metadata, either inline or keyed)
215	 */
216	u64 owning_root;
217
218	/* For non-skinny metadata, no special member needed */
219};
220
221struct btrfs_ref {
222	enum btrfs_ref_type type;
223	int action;
224
225	/*
226	 * Whether this extent should go through qgroup record.
227	 *
228	 * Normally false, but for certain cases like delayed subtree scan,
229	 * setting this flag can hugely reduce qgroup overhead.
230	 */
231	bool skip_qgroup;
232
233#ifdef CONFIG_BTRFS_FS_REF_VERIFY
234	/* Through which root is this modification. */
235	u64 real_root;
236#endif
237	u64 bytenr;
238	u64 len;
239
240	/* Bytenr of the parent tree block */
241	u64 parent;
242	union {
243		struct btrfs_data_ref data_ref;
244		struct btrfs_tree_ref tree_ref;
245	};
246};
247
248extern struct kmem_cache *btrfs_delayed_ref_head_cachep;
249extern struct kmem_cache *btrfs_delayed_tree_ref_cachep;
250extern struct kmem_cache *btrfs_delayed_data_ref_cachep;
251extern struct kmem_cache *btrfs_delayed_extent_op_cachep;
252
253int __init btrfs_delayed_ref_init(void);
254void __cold btrfs_delayed_ref_exit(void);
255
256static inline void btrfs_init_generic_ref(struct btrfs_ref *generic_ref,
257				int action, u64 bytenr, u64 len, u64 parent)
258{
259	generic_ref->action = action;
260	generic_ref->bytenr = bytenr;
261	generic_ref->len = len;
262	generic_ref->parent = parent;
263}
264
265static inline void btrfs_init_tree_ref(struct btrfs_ref *generic_ref,
266				int level, u64 root, u64 mod_root, bool skip_qgroup)
267{
268#ifdef CONFIG_BTRFS_FS_REF_VERIFY
269	/* If @real_root not set, use @root as fallback */
270	generic_ref->real_root = mod_root ?: root;
271#endif
272	generic_ref->tree_ref.level = level;
273	generic_ref->tree_ref.owning_root = root;
274	generic_ref->type = BTRFS_REF_METADATA;
275	if (skip_qgroup || !(is_fstree(root) &&
276			     (!mod_root || is_fstree(mod_root))))
277		generic_ref->skip_qgroup = true;
278	else
279		generic_ref->skip_qgroup = false;
280
281}
282
283static inline void btrfs_init_data_ref(struct btrfs_ref *generic_ref,
284				u64 ref_root, u64 ino, u64 offset, u64 mod_root,
285				bool skip_qgroup)
286{
287#ifdef CONFIG_BTRFS_FS_REF_VERIFY
288	/* If @real_root not set, use @root as fallback */
289	generic_ref->real_root = mod_root ?: ref_root;
290#endif
291	generic_ref->data_ref.owning_root = ref_root;
292	generic_ref->data_ref.ino = ino;
293	generic_ref->data_ref.offset = offset;
294	generic_ref->type = BTRFS_REF_DATA;
295	if (skip_qgroup || !(is_fstree(ref_root) &&
296			     (!mod_root || is_fstree(mod_root))))
297		generic_ref->skip_qgroup = true;
298	else
299		generic_ref->skip_qgroup = false;
300}
301
302static inline struct btrfs_delayed_extent_op *
303btrfs_alloc_delayed_extent_op(void)
304{
305	return kmem_cache_alloc(btrfs_delayed_extent_op_cachep, GFP_NOFS);
306}
307
308static inline void
309btrfs_free_delayed_extent_op(struct btrfs_delayed_extent_op *op)
310{
311	if (op)
312		kmem_cache_free(btrfs_delayed_extent_op_cachep, op);
313}
314
315static inline void btrfs_put_delayed_ref(struct btrfs_delayed_ref_node *ref)
316{
317	WARN_ON(refcount_read(&ref->refs) == 0);
318	if (refcount_dec_and_test(&ref->refs)) {
319		WARN_ON(ref->in_tree);
320		switch (ref->type) {
321		case BTRFS_TREE_BLOCK_REF_KEY:
322		case BTRFS_SHARED_BLOCK_REF_KEY:
323			kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
324			break;
325		case BTRFS_EXTENT_DATA_REF_KEY:
326		case BTRFS_SHARED_DATA_REF_KEY:
327			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
328			break;
329		default:
330			BUG();
331		}
332	}
333}
334
335static inline u64 btrfs_ref_head_to_space_flags(
336				struct btrfs_delayed_ref_head *head_ref)
337{
338	if (head_ref->is_data)
339		return BTRFS_BLOCK_GROUP_DATA;
340	else if (head_ref->is_system)
341		return BTRFS_BLOCK_GROUP_SYSTEM;
342	return BTRFS_BLOCK_GROUP_METADATA;
343}
344
345static inline void btrfs_put_delayed_ref_head(struct btrfs_delayed_ref_head *head)
346{
347	if (refcount_dec_and_test(&head->refs))
348		kmem_cache_free(btrfs_delayed_ref_head_cachep, head);
349}
350
351int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
352			       struct btrfs_ref *generic_ref,
353			       struct btrfs_delayed_extent_op *extent_op);
354int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
355			       struct btrfs_ref *generic_ref,
356			       u64 reserved);
357int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
 
 
 
 
 
 
 
358				u64 bytenr, u64 num_bytes,
359				struct btrfs_delayed_extent_op *extent_op);
360void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
 
361			      struct btrfs_delayed_ref_root *delayed_refs,
362			      struct btrfs_delayed_ref_head *head);
363
364struct btrfs_delayed_ref_head *
365btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
366			    u64 bytenr);
367int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
368			   struct btrfs_delayed_ref_head *head);
369static inline void btrfs_delayed_ref_unlock(struct btrfs_delayed_ref_head *head)
370{
371	mutex_unlock(&head->mutex);
372}
373void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
374			   struct btrfs_delayed_ref_head *head);
375
376struct btrfs_delayed_ref_head *btrfs_select_ref_head(
377		struct btrfs_delayed_ref_root *delayed_refs);
378
379int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq);
 
380
381void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr);
382void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans);
383int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
384				  enum btrfs_reserve_flush_enum flush);
385void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
386				       struct btrfs_block_rsv *src,
387				       u64 num_bytes);
388int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans);
389bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info);
390
391/*
392 * helper functions to cast a node into its container
393 */
394static inline struct btrfs_delayed_tree_ref *
395btrfs_delayed_node_to_tree_ref(struct btrfs_delayed_ref_node *node)
396{
397	return container_of(node, struct btrfs_delayed_tree_ref, node);
398}
399
400static inline struct btrfs_delayed_data_ref *
401btrfs_delayed_node_to_data_ref(struct btrfs_delayed_ref_node *node)
402{
403	return container_of(node, struct btrfs_delayed_data_ref, node);
404}
405
406#endif
v4.17
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2008 Oracle.  All rights reserved.
  4 */
  5
  6#ifndef BTRFS_DELAYED_REF_H
  7#define BTRFS_DELAYED_REF_H
  8
  9#include <linux/refcount.h>
 10
 11/* these are the possible values of struct btrfs_delayed_ref_node->action */
 12#define BTRFS_ADD_DELAYED_REF    1 /* add one backref to the tree */
 13#define BTRFS_DROP_DELAYED_REF   2 /* delete one backref from the tree */
 14#define BTRFS_ADD_DELAYED_EXTENT 3 /* record a full extent allocation */
 15#define BTRFS_UPDATE_DELAYED_HEAD 4 /* not changing ref count on head ref */
 16
 17struct btrfs_delayed_ref_node {
 18	struct rb_node ref_node;
 19	/*
 20	 * If action is BTRFS_ADD_DELAYED_REF, also link this node to
 21	 * ref_head->ref_add_list, then we do not need to iterate the
 22	 * whole ref_head->ref_list to find BTRFS_ADD_DELAYED_REF nodes.
 23	 */
 24	struct list_head add_list;
 25
 26	/* the starting bytenr of the extent */
 27	u64 bytenr;
 28
 29	/* the size of the extent */
 30	u64 num_bytes;
 31
 32	/* seq number to keep track of insertion order */
 33	u64 seq;
 34
 35	/* ref count on this data structure */
 36	refcount_t refs;
 37
 38	/*
 39	 * how many refs is this entry adding or deleting.  For
 40	 * head refs, this may be a negative number because it is keeping
 41	 * track of the total mods done to the reference count.
 42	 * For individual refs, this will always be a positive number
 43	 *
 44	 * It may be more than one, since it is possible for a single
 45	 * parent to have more than one ref on an extent
 46	 */
 47	int ref_mod;
 48
 49	unsigned int action:8;
 50	unsigned int type:8;
 51	/* is this node still in the rbtree? */
 52	unsigned int is_head:1;
 53	unsigned int in_tree:1;
 54};
 55
 56struct btrfs_delayed_extent_op {
 57	struct btrfs_disk_key key;
 58	u8 level;
 59	bool update_key;
 60	bool update_flags;
 61	bool is_data;
 62	u64 flags_to_set;
 63};
 64
 65/*
 66 * the head refs are used to hold a lock on a given extent, which allows us
 67 * to make sure that only one process is running the delayed refs
 68 * at a time for a single extent.  They also store the sum of all the
 69 * reference count modifications we've queued up.
 70 */
 71struct btrfs_delayed_ref_head {
 72	u64 bytenr;
 73	u64 num_bytes;
 74	refcount_t refs;
 75	/*
 76	 * the mutex is held while running the refs, and it is also
 77	 * held when checking the sum of reference modifications.
 78	 */
 79	struct mutex mutex;
 80
 81	spinlock_t lock;
 82	struct rb_root ref_tree;
 83	/* accumulate add BTRFS_ADD_DELAYED_REF nodes to this ref_add_list. */
 84	struct list_head ref_add_list;
 85
 86	struct rb_node href_node;
 87
 88	struct btrfs_delayed_extent_op *extent_op;
 89
 90	/*
 91	 * This is used to track the final ref_mod from all the refs associated
 92	 * with this head ref, this is not adjusted as delayed refs are run,
 93	 * this is meant to track if we need to do the csum accounting or not.
 94	 */
 95	int total_ref_mod;
 96
 97	/*
 98	 * This is the current outstanding mod references for this bytenr.  This
 99	 * is used with lookup_extent_info to get an accurate reference count
100	 * for a bytenr, so it is adjusted as delayed refs are run so that any
101	 * on disk reference count + ref_mod is accurate.
102	 */
103	int ref_mod;
104
105	/*
106	 * For qgroup reserved space freeing.
107	 *
108	 * ref_root and reserved will be recorded after
109	 * BTRFS_ADD_DELAYED_EXTENT is called.
110	 * And will be used to free reserved qgroup space at
111	 * run_delayed_refs() time.
112	 */
113	u64 qgroup_ref_root;
114	u64 qgroup_reserved;
115
116	/*
117	 * when a new extent is allocated, it is just reserved in memory
118	 * The actual extent isn't inserted into the extent allocation tree
119	 * until the delayed ref is processed.  must_insert_reserved is
120	 * used to flag a delayed ref so the accounting can be updated
121	 * when a full insert is done.
122	 *
123	 * It is possible the extent will be freed before it is ever
124	 * inserted into the extent allocation tree.  In this case
125	 * we need to update the in ram accounting to properly reflect
126	 * the free has happened.
127	 */
128	unsigned int must_insert_reserved:1;
129	unsigned int is_data:1;
130	unsigned int is_system:1;
131	unsigned int processing:1;
132};
133
134struct btrfs_delayed_tree_ref {
135	struct btrfs_delayed_ref_node node;
136	u64 root;
137	u64 parent;
138	int level;
139};
140
141struct btrfs_delayed_data_ref {
142	struct btrfs_delayed_ref_node node;
143	u64 root;
144	u64 parent;
145	u64 objectid;
146	u64 offset;
147};
148
 
 
 
 
 
149struct btrfs_delayed_ref_root {
150	/* head ref rbtree */
151	struct rb_root href_root;
152
153	/* dirty extent records */
154	struct rb_root dirty_extent_root;
155
156	/* this spin lock protects the rbtree and the entries inside */
157	spinlock_t lock;
158
159	/* how many delayed ref updates we've queued, used by the
160	 * throttling code
161	 */
162	atomic_t num_entries;
163
164	/* total number of head nodes in tree */
165	unsigned long num_heads;
166
167	/* total number of head nodes ready for processing */
168	unsigned long num_heads_ready;
169
170	u64 pending_csums;
171
172	/*
173	 * set when the tree is flushing before a transaction commit,
174	 * used by the throttling code to decide if new updates need
175	 * to be run right away
176	 */
177	int flushing;
178
179	u64 run_delayed_start;
180
181	/*
182	 * To make qgroup to skip given root.
183	 * This is for snapshot, as btrfs_qgroup_inherit() will manually
184	 * modify counters for snapshot and its source, so we should skip
185	 * the snapshot in new_root/old_roots or it will get calculated twice
186	 */
187	u64 qgroup_to_skip;
188};
189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
190extern struct kmem_cache *btrfs_delayed_ref_head_cachep;
191extern struct kmem_cache *btrfs_delayed_tree_ref_cachep;
192extern struct kmem_cache *btrfs_delayed_data_ref_cachep;
193extern struct kmem_cache *btrfs_delayed_extent_op_cachep;
194
195int __init btrfs_delayed_ref_init(void);
196void __cold btrfs_delayed_ref_exit(void);
197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198static inline struct btrfs_delayed_extent_op *
199btrfs_alloc_delayed_extent_op(void)
200{
201	return kmem_cache_alloc(btrfs_delayed_extent_op_cachep, GFP_NOFS);
202}
203
204static inline void
205btrfs_free_delayed_extent_op(struct btrfs_delayed_extent_op *op)
206{
207	if (op)
208		kmem_cache_free(btrfs_delayed_extent_op_cachep, op);
209}
210
211static inline void btrfs_put_delayed_ref(struct btrfs_delayed_ref_node *ref)
212{
213	WARN_ON(refcount_read(&ref->refs) == 0);
214	if (refcount_dec_and_test(&ref->refs)) {
215		WARN_ON(ref->in_tree);
216		switch (ref->type) {
217		case BTRFS_TREE_BLOCK_REF_KEY:
218		case BTRFS_SHARED_BLOCK_REF_KEY:
219			kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
220			break;
221		case BTRFS_EXTENT_DATA_REF_KEY:
222		case BTRFS_SHARED_DATA_REF_KEY:
223			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
224			break;
225		default:
226			BUG();
227		}
228	}
229}
230
 
 
 
 
 
 
 
 
 
 
231static inline void btrfs_put_delayed_ref_head(struct btrfs_delayed_ref_head *head)
232{
233	if (refcount_dec_and_test(&head->refs))
234		kmem_cache_free(btrfs_delayed_ref_head_cachep, head);
235}
236
237int btrfs_add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
238			       struct btrfs_trans_handle *trans,
239			       u64 bytenr, u64 num_bytes, u64 parent,
240			       u64 ref_root, int level, int action,
241			       struct btrfs_delayed_extent_op *extent_op,
242			       int *old_ref_mod, int *new_ref_mod);
243int btrfs_add_delayed_data_ref(struct btrfs_fs_info *fs_info,
244			       struct btrfs_trans_handle *trans,
245			       u64 bytenr, u64 num_bytes,
246			       u64 parent, u64 ref_root,
247			       u64 owner, u64 offset, u64 reserved, int action,
248			       int *old_ref_mod, int *new_ref_mod);
249int btrfs_add_delayed_extent_op(struct btrfs_fs_info *fs_info,
250				struct btrfs_trans_handle *trans,
251				u64 bytenr, u64 num_bytes,
252				struct btrfs_delayed_extent_op *extent_op);
253void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
254			      struct btrfs_fs_info *fs_info,
255			      struct btrfs_delayed_ref_root *delayed_refs,
256			      struct btrfs_delayed_ref_head *head);
257
258struct btrfs_delayed_ref_head *
259btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
260			    u64 bytenr);
261int btrfs_delayed_ref_lock(struct btrfs_trans_handle *trans,
262			   struct btrfs_delayed_ref_head *head);
263static inline void btrfs_delayed_ref_unlock(struct btrfs_delayed_ref_head *head)
264{
265	mutex_unlock(&head->mutex);
266}
 
 
267
 
 
268
269struct btrfs_delayed_ref_head *
270btrfs_select_ref_head(struct btrfs_trans_handle *trans);
271
272int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info,
273			    struct btrfs_delayed_ref_root *delayed_refs,
274			    u64 seq);
 
 
 
 
 
 
275
276/*
277 * helper functions to cast a node into its container
278 */
279static inline struct btrfs_delayed_tree_ref *
280btrfs_delayed_node_to_tree_ref(struct btrfs_delayed_ref_node *node)
281{
282	return container_of(node, struct btrfs_delayed_tree_ref, node);
283}
284
285static inline struct btrfs_delayed_data_ref *
286btrfs_delayed_node_to_data_ref(struct btrfs_delayed_ref_node *node)
287{
288	return container_of(node, struct btrfs_delayed_data_ref, node);
289}
290
291#endif