Linux Audio

Check our new training course

Loading...
v6.2
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2008 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4 */
 
 
  5
  6#ifndef BTRFS_DELAYED_REF_H
  7#define BTRFS_DELAYED_REF_H
  8
  9#include <linux/refcount.h>
 10
 11/* these are the possible values of struct btrfs_delayed_ref_node->action */
 12#define BTRFS_ADD_DELAYED_REF    1 /* add one backref to the tree */
 13#define BTRFS_DROP_DELAYED_REF   2 /* delete one backref from the tree */
 14#define BTRFS_ADD_DELAYED_EXTENT 3 /* record a full extent allocation */
 15#define BTRFS_UPDATE_DELAYED_HEAD 4 /* not changing ref count on head ref */
 16
 17struct btrfs_delayed_ref_node {
 18	struct rb_node ref_node;
 19	/*
 20	 * If action is BTRFS_ADD_DELAYED_REF, also link this node to
 21	 * ref_head->ref_add_list, then we do not need to iterate the
 22	 * whole ref_head->ref_list to find BTRFS_ADD_DELAYED_REF nodes.
 23	 */
 24	struct list_head add_list;
 25
 26	/* the starting bytenr of the extent */
 27	u64 bytenr;
 28
 29	/* the size of the extent */
 30	u64 num_bytes;
 31
 32	/* seq number to keep track of insertion order */
 33	u64 seq;
 34
 35	/* ref count on this data structure */
 36	refcount_t refs;
 37
 38	/*
 39	 * how many refs is this entry adding or deleting.  For
 40	 * head refs, this may be a negative number because it is keeping
 41	 * track of the total mods done to the reference count.
 42	 * For individual refs, this will always be a positive number
 43	 *
 44	 * It may be more than one, since it is possible for a single
 45	 * parent to have more than one ref on an extent
 46	 */
 47	int ref_mod;
 48
 49	unsigned int action:8;
 50	unsigned int type:8;
 51	/* is this node still in the rbtree? */
 52	unsigned int is_head:1;
 53	unsigned int in_tree:1;
 54};
 55
 56struct btrfs_delayed_extent_op {
 57	struct btrfs_disk_key key;
 58	u8 level;
 59	bool update_key;
 60	bool update_flags;
 61	u64 flags_to_set;
 
 
 
 62};
 63
 64/*
 65 * the head refs are used to hold a lock on a given extent, which allows us
 66 * to make sure that only one process is running the delayed refs
 67 * at a time for a single extent.  They also store the sum of all the
 68 * reference count modifications we've queued up.
 69 */
 70struct btrfs_delayed_ref_head {
 71	u64 bytenr;
 72	u64 num_bytes;
 73	refcount_t refs;
 74	/*
 75	 * the mutex is held while running the refs, and it is also
 76	 * held when checking the sum of reference modifications.
 77	 */
 78	struct mutex mutex;
 79
 80	spinlock_t lock;
 81	struct rb_root_cached ref_tree;
 82	/* accumulate add BTRFS_ADD_DELAYED_REF nodes to this ref_add_list. */
 83	struct list_head ref_add_list;
 84
 85	struct rb_node href_node;
 86
 87	struct btrfs_delayed_extent_op *extent_op;
 88
 89	/*
 90	 * This is used to track the final ref_mod from all the refs associated
 91	 * with this head ref, this is not adjusted as delayed refs are run,
 92	 * this is meant to track if we need to do the csum accounting or not.
 93	 */
 94	int total_ref_mod;
 95
 96	/*
 97	 * This is the current outstanding mod references for this bytenr.  This
 98	 * is used with lookup_extent_info to get an accurate reference count
 99	 * for a bytenr, so it is adjusted as delayed refs are run so that any
100	 * on disk reference count + ref_mod is accurate.
101	 */
102	int ref_mod;
103
104	/*
105	 * when a new extent is allocated, it is just reserved in memory
106	 * The actual extent isn't inserted into the extent allocation tree
107	 * until the delayed ref is processed.  must_insert_reserved is
108	 * used to flag a delayed ref so the accounting can be updated
109	 * when a full insert is done.
110	 *
111	 * It is possible the extent will be freed before it is ever
112	 * inserted into the extent allocation tree.  In this case
113	 * we need to update the in ram accounting to properly reflect
114	 * the free has happened.
115	 */
116	unsigned int must_insert_reserved:1;
117	unsigned int is_data:1;
118	unsigned int is_system:1;
119	unsigned int processing:1;
120};
121
122struct btrfs_delayed_tree_ref {
123	struct btrfs_delayed_ref_node node;
124	u64 root;
125	u64 parent;
126	int level;
127};
128
129struct btrfs_delayed_data_ref {
130	struct btrfs_delayed_ref_node node;
131	u64 root;
132	u64 parent;
133	u64 objectid;
134	u64 offset;
135};
136
137enum btrfs_delayed_ref_flags {
138	/* Indicate that we are flushing delayed refs for the commit */
139	BTRFS_DELAYED_REFS_FLUSHING,
140};
141
142struct btrfs_delayed_ref_root {
143	/* head ref rbtree */
144	struct rb_root_cached href_root;
145
146	/* dirty extent records */
147	struct rb_root dirty_extent_root;
148
149	/* this spin lock protects the rbtree and the entries inside */
150	spinlock_t lock;
151
152	/* how many delayed ref updates we've queued, used by the
153	 * throttling code
154	 */
155	atomic_t num_entries;
156
157	/* total number of head nodes in tree */
158	unsigned long num_heads;
159
160	/* total number of head nodes ready for processing */
161	unsigned long num_heads_ready;
162
163	u64 pending_csums;
164
165	unsigned long flags;
166
167	u64 run_delayed_start;
168
169	/*
170	 * To make qgroup to skip given root.
171	 * This is for snapshot, as btrfs_qgroup_inherit() will manually
172	 * modify counters for snapshot and its source, so we should skip
173	 * the snapshot in new_root/old_roots or it will get calculated twice
174	 */
175	u64 qgroup_to_skip;
176};
177
178enum btrfs_ref_type {
179	BTRFS_REF_NOT_SET,
180	BTRFS_REF_DATA,
181	BTRFS_REF_METADATA,
182	BTRFS_REF_LAST,
183};
184
185struct btrfs_data_ref {
186	/* For EXTENT_DATA_REF */
187
188	/* Original root this data extent belongs to */
189	u64 owning_root;
190
191	/* Inode which refers to this data extent */
192	u64 ino;
193
194	/*
195	 * file_offset - extent_offset
196	 *
197	 * file_offset is the key.offset of the EXTENT_DATA key.
198	 * extent_offset is btrfs_file_extent_offset() of the EXTENT_DATA data.
199	 */
200	u64 offset;
201};
202
203struct btrfs_tree_ref {
204	/*
205	 * Level of this tree block
206	 *
207	 * Shared for skinny (TREE_BLOCK_REF) and normal tree ref.
208	 */
209	int level;
210
211	/*
212	 * Root which owns this tree block.
213	 *
214	 * For TREE_BLOCK_REF (skinny metadata, either inline or keyed)
 
215	 */
216	u64 owning_root;
217
218	/* For non-skinny metadata, no special member needed */
219};
220
221struct btrfs_ref {
222	enum btrfs_ref_type type;
223	int action;
224
225	/*
226	 * Whether this extent should go through qgroup record.
227	 *
228	 * Normally false, but for certain cases like delayed subtree scan,
229	 * setting this flag can hugely reduce qgroup overhead.
230	 */
231	bool skip_qgroup;
232
233#ifdef CONFIG_BTRFS_FS_REF_VERIFY
234	/* Through which root is this modification. */
235	u64 real_root;
236#endif
237	u64 bytenr;
238	u64 len;
239
240	/* Bytenr of the parent tree block */
241	u64 parent;
242	union {
243		struct btrfs_data_ref data_ref;
244		struct btrfs_tree_ref tree_ref;
245	};
246};
247
248extern struct kmem_cache *btrfs_delayed_ref_head_cachep;
249extern struct kmem_cache *btrfs_delayed_tree_ref_cachep;
250extern struct kmem_cache *btrfs_delayed_data_ref_cachep;
251extern struct kmem_cache *btrfs_delayed_extent_op_cachep;
252
253int __init btrfs_delayed_ref_init(void);
254void __cold btrfs_delayed_ref_exit(void);
255
256static inline void btrfs_init_generic_ref(struct btrfs_ref *generic_ref,
257				int action, u64 bytenr, u64 len, u64 parent)
258{
259	generic_ref->action = action;
260	generic_ref->bytenr = bytenr;
261	generic_ref->len = len;
262	generic_ref->parent = parent;
 
263}
264
265static inline void btrfs_init_tree_ref(struct btrfs_ref *generic_ref,
266				int level, u64 root, u64 mod_root, bool skip_qgroup)
267{
268#ifdef CONFIG_BTRFS_FS_REF_VERIFY
269	/* If @real_root not set, use @root as fallback */
270	generic_ref->real_root = mod_root ?: root;
271#endif
272	generic_ref->tree_ref.level = level;
273	generic_ref->tree_ref.owning_root = root;
274	generic_ref->type = BTRFS_REF_METADATA;
275	if (skip_qgroup || !(is_fstree(root) &&
276			     (!mod_root || is_fstree(mod_root))))
277		generic_ref->skip_qgroup = true;
278	else
279		generic_ref->skip_qgroup = false;
280
281}
282
283static inline void btrfs_init_data_ref(struct btrfs_ref *generic_ref,
284				u64 ref_root, u64 ino, u64 offset, u64 mod_root,
285				bool skip_qgroup)
286{
287#ifdef CONFIG_BTRFS_FS_REF_VERIFY
288	/* If @real_root not set, use @root as fallback */
289	generic_ref->real_root = mod_root ?: ref_root;
290#endif
291	generic_ref->data_ref.owning_root = ref_root;
292	generic_ref->data_ref.ino = ino;
293	generic_ref->data_ref.offset = offset;
294	generic_ref->type = BTRFS_REF_DATA;
295	if (skip_qgroup || !(is_fstree(ref_root) &&
296			     (!mod_root || is_fstree(mod_root))))
297		generic_ref->skip_qgroup = true;
298	else
299		generic_ref->skip_qgroup = false;
300}
301
302static inline struct btrfs_delayed_extent_op *
303btrfs_alloc_delayed_extent_op(void)
304{
305	return kmem_cache_alloc(btrfs_delayed_extent_op_cachep, GFP_NOFS);
 
 
306}
307
308static inline void
309btrfs_free_delayed_extent_op(struct btrfs_delayed_extent_op *op)
 
310{
311	if (op)
312		kmem_cache_free(btrfs_delayed_extent_op_cachep, op);
 
313}
314
315static inline void btrfs_put_delayed_ref(struct btrfs_delayed_ref_node *ref)
316{
317	WARN_ON(refcount_read(&ref->refs) == 0);
318	if (refcount_dec_and_test(&ref->refs)) {
319		WARN_ON(ref->in_tree);
320		switch (ref->type) {
321		case BTRFS_TREE_BLOCK_REF_KEY:
322		case BTRFS_SHARED_BLOCK_REF_KEY:
323			kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
324			break;
325		case BTRFS_EXTENT_DATA_REF_KEY:
326		case BTRFS_SHARED_DATA_REF_KEY:
327			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
328			break;
329		default:
330			BUG();
331		}
332	}
333}
334
335static inline u64 btrfs_ref_head_to_space_flags(
336				struct btrfs_delayed_ref_head *head_ref)
337{
338	if (head_ref->is_data)
339		return BTRFS_BLOCK_GROUP_DATA;
340	else if (head_ref->is_system)
341		return BTRFS_BLOCK_GROUP_SYSTEM;
342	return BTRFS_BLOCK_GROUP_METADATA;
343}
344
345static inline void btrfs_put_delayed_ref_head(struct btrfs_delayed_ref_head *head)
346{
347	if (refcount_dec_and_test(&head->refs))
348		kmem_cache_free(btrfs_delayed_ref_head_cachep, head);
 
 
349}
350
351int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
352			       struct btrfs_ref *generic_ref,
353			       struct btrfs_delayed_extent_op *extent_op);
354int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
355			       struct btrfs_ref *generic_ref,
356			       u64 reserved);
357int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
358				u64 bytenr, u64 num_bytes,
359				struct btrfs_delayed_extent_op *extent_op);
360void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
361			      struct btrfs_delayed_ref_root *delayed_refs,
362			      struct btrfs_delayed_ref_head *head);
363
364struct btrfs_delayed_ref_head *
365btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
366			    u64 bytenr);
367int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
368			   struct btrfs_delayed_ref_head *head);
369static inline void btrfs_delayed_ref_unlock(struct btrfs_delayed_ref_head *head)
370{
371	mutex_unlock(&head->mutex);
372}
373void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
374			   struct btrfs_delayed_ref_head *head);
375
376struct btrfs_delayed_ref_head *btrfs_select_ref_head(
377		struct btrfs_delayed_ref_root *delayed_refs);
378
379int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq);
380
381void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr);
382void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans);
383int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
384				  enum btrfs_reserve_flush_enum flush);
385void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
386				       struct btrfs_block_rsv *src,
387				       u64 num_bytes);
388int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans);
389bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info);
390
391/*
392 * helper functions to cast a node into its container
393 */
394static inline struct btrfs_delayed_tree_ref *
395btrfs_delayed_node_to_tree_ref(struct btrfs_delayed_ref_node *node)
396{
 
397	return container_of(node, struct btrfs_delayed_tree_ref, node);
398}
399
400static inline struct btrfs_delayed_data_ref *
401btrfs_delayed_node_to_data_ref(struct btrfs_delayed_ref_node *node)
402{
 
403	return container_of(node, struct btrfs_delayed_data_ref, node);
404}
405
 
 
 
 
 
 
406#endif
v3.5.6
 
  1/*
  2 * Copyright (C) 2008 Oracle.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18#ifndef __DELAYED_REF__
 19#define __DELAYED_REF__
 20
 21/* these are the possible values of struct btrfs_delayed_ref->action */
 
 
 
 
 
 22#define BTRFS_ADD_DELAYED_REF    1 /* add one backref to the tree */
 23#define BTRFS_DROP_DELAYED_REF   2 /* delete one backref from the tree */
 24#define BTRFS_ADD_DELAYED_EXTENT 3 /* record a full extent allocation */
 25#define BTRFS_UPDATE_DELAYED_HEAD 4 /* not changing ref count on head ref */
 26
 27struct btrfs_delayed_ref_node {
 28	struct rb_node rb_node;
 
 
 
 
 
 
 29
 30	/* the starting bytenr of the extent */
 31	u64 bytenr;
 32
 33	/* the size of the extent */
 34	u64 num_bytes;
 35
 36	/* seq number to keep track of insertion order */
 37	u64 seq;
 38
 39	/* ref count on this data structure */
 40	atomic_t refs;
 41
 42	/*
 43	 * how many refs is this entry adding or deleting.  For
 44	 * head refs, this may be a negative number because it is keeping
 45	 * track of the total mods done to the reference count.
 46	 * For individual refs, this will always be a positive number
 47	 *
 48	 * It may be more than one, since it is possible for a single
 49	 * parent to have more than one ref on an extent
 50	 */
 51	int ref_mod;
 52
 53	unsigned int action:8;
 54	unsigned int type:8;
 55	/* is this node still in the rbtree? */
 56	unsigned int is_head:1;
 57	unsigned int in_tree:1;
 58};
 59
 60struct btrfs_delayed_extent_op {
 61	struct btrfs_disk_key key;
 
 
 
 62	u64 flags_to_set;
 63	unsigned int update_key:1;
 64	unsigned int update_flags:1;
 65	unsigned int is_data:1;
 66};
 67
 68/*
 69 * the head refs are used to hold a lock on a given extent, which allows us
 70 * to make sure that only one process is running the delayed refs
 71 * at a time for a single extent.  They also store the sum of all the
 72 * reference count modifications we've queued up.
 73 */
 74struct btrfs_delayed_ref_head {
 75	struct btrfs_delayed_ref_node node;
 76
 
 77	/*
 78	 * the mutex is held while running the refs, and it is also
 79	 * held when checking the sum of reference modifications.
 80	 */
 81	struct mutex mutex;
 82
 83	struct list_head cluster;
 
 
 
 
 
 84
 85	struct btrfs_delayed_extent_op *extent_op;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 86	/*
 87	 * when a new extent is allocated, it is just reserved in memory
 88	 * The actual extent isn't inserted into the extent allocation tree
 89	 * until the delayed ref is processed.  must_insert_reserved is
 90	 * used to flag a delayed ref so the accounting can be updated
 91	 * when a full insert is done.
 92	 *
 93	 * It is possible the extent will be freed before it is ever
 94	 * inserted into the extent allocation tree.  In this case
 95	 * we need to update the in ram accounting to properly reflect
 96	 * the free has happened.
 97	 */
 98	unsigned int must_insert_reserved:1;
 99	unsigned int is_data:1;
 
 
100};
101
102struct btrfs_delayed_tree_ref {
103	struct btrfs_delayed_ref_node node;
104	u64 root;
105	u64 parent;
106	int level;
107};
108
109struct btrfs_delayed_data_ref {
110	struct btrfs_delayed_ref_node node;
111	u64 root;
112	u64 parent;
113	u64 objectid;
114	u64 offset;
115};
116
 
 
 
 
 
117struct btrfs_delayed_ref_root {
118	struct rb_root root;
 
 
 
 
119
120	/* this spin lock protects the rbtree and the entries inside */
121	spinlock_t lock;
122
123	/* how many delayed ref updates we've queued, used by the
124	 * throttling code
125	 */
126	unsigned long num_entries;
127
128	/* total number of head nodes in tree */
129	unsigned long num_heads;
130
131	/* total number of head nodes ready for processing */
132	unsigned long num_heads_ready;
133
 
 
 
 
 
 
134	/*
135	 * set when the tree is flushing before a transaction commit,
136	 * used by the throttling code to decide if new updates need
137	 * to be run right away
 
138	 */
139	int flushing;
 
140
141	u64 run_delayed_start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142
 
143	/*
144	 * seq number of delayed refs. We need to know if a backref was being
145	 * added before the currently processed ref or afterwards.
 
146	 */
147	u64 seq;
148
149	/*
150	 * seq_list holds a list of all seq numbers that are currently being
151	 * added to the list. While walking backrefs (btrfs_find_all_roots,
152	 * qgroups), which might take some time, no newer ref must be processed,
153	 * as it might influence the outcome of the walk.
154	 */
155	struct list_head seq_head;
 
 
 
 
 
 
 
156
157	/*
158	 * when the only refs we have in the list must not be processed, we want
159	 * to wait for more refs to show up or for the end of backref walking.
 
 
160	 */
161	wait_queue_head_t seq_wait;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162};
163
164static inline void btrfs_put_delayed_ref(struct btrfs_delayed_ref_node *ref)
 
 
 
 
 
 
 
 
 
165{
166	WARN_ON(atomic_read(&ref->refs) == 0);
167	if (atomic_dec_and_test(&ref->refs)) {
168		WARN_ON(ref->in_tree);
169		kfree(ref);
170	}
171}
172
173int btrfs_add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
174			       struct btrfs_trans_handle *trans,
175			       u64 bytenr, u64 num_bytes, u64 parent,
176			       u64 ref_root, int level, int action,
177			       struct btrfs_delayed_extent_op *extent_op,
178			       int for_cow);
179int btrfs_add_delayed_data_ref(struct btrfs_fs_info *fs_info,
180			       struct btrfs_trans_handle *trans,
181			       u64 bytenr, u64 num_bytes,
182			       u64 parent, u64 ref_root,
183			       u64 owner, u64 offset, int action,
184			       struct btrfs_delayed_extent_op *extent_op,
185			       int for_cow);
186int btrfs_add_delayed_extent_op(struct btrfs_fs_info *fs_info,
187				struct btrfs_trans_handle *trans,
188				u64 bytenr, u64 num_bytes,
189				struct btrfs_delayed_extent_op *extent_op);
190
191struct btrfs_delayed_ref_head *
192btrfs_find_delayed_ref_head(struct btrfs_trans_handle *trans, u64 bytenr);
193int btrfs_delayed_ref_lock(struct btrfs_trans_handle *trans,
194			   struct btrfs_delayed_ref_head *head);
195int btrfs_find_ref_cluster(struct btrfs_trans_handle *trans,
196			   struct list_head *cluster, u64 search_start);
 
 
 
 
 
 
 
 
 
 
 
 
197
198static inline u64 inc_delayed_seq(struct btrfs_delayed_ref_root *delayed_refs)
 
199{
200	assert_spin_locked(&delayed_refs->lock);
201	++delayed_refs->seq;
202	return delayed_refs->seq;
203}
204
205static inline void
206btrfs_get_delayed_seq(struct btrfs_delayed_ref_root *delayed_refs,
207		      struct seq_list *elem)
208{
209	assert_spin_locked(&delayed_refs->lock);
210	elem->seq = delayed_refs->seq;
211	list_add_tail(&elem->list, &delayed_refs->seq_head);
212}
213
214static inline void
215btrfs_put_delayed_seq(struct btrfs_delayed_ref_root *delayed_refs,
216		      struct seq_list *elem)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217{
218	spin_lock(&delayed_refs->lock);
219	list_del(&elem->list);
220	wake_up(&delayed_refs->seq_wait);
221	spin_unlock(&delayed_refs->lock);
222}
223
224int btrfs_check_delayed_seq(struct btrfs_delayed_ref_root *delayed_refs,
225			    u64 seq);
 
 
 
 
 
 
 
 
 
 
226
227/*
228 * a node might live in a head or a regular ref, this lets you
229 * test for the proper type to use.
230 */
231static int btrfs_delayed_ref_is_head(struct btrfs_delayed_ref_node *node)
 
232{
233	return node->is_head;
234}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235
236/*
237 * helper functions to cast a node into its container
238 */
239static inline struct btrfs_delayed_tree_ref *
240btrfs_delayed_node_to_tree_ref(struct btrfs_delayed_ref_node *node)
241{
242	WARN_ON(btrfs_delayed_ref_is_head(node));
243	return container_of(node, struct btrfs_delayed_tree_ref, node);
244}
245
246static inline struct btrfs_delayed_data_ref *
247btrfs_delayed_node_to_data_ref(struct btrfs_delayed_ref_node *node)
248{
249	WARN_ON(btrfs_delayed_ref_is_head(node));
250	return container_of(node, struct btrfs_delayed_data_ref, node);
251}
252
253static inline struct btrfs_delayed_ref_head *
254btrfs_delayed_node_to_head(struct btrfs_delayed_ref_node *node)
255{
256	WARN_ON(!btrfs_delayed_ref_is_head(node));
257	return container_of(node, struct btrfs_delayed_ref_head, node);
258}
259#endif