Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for Broadcom BRCMSTB, NSP,  NS2, Cygnus SPI Controllers
   4 *
   5 * Copyright 2016 Broadcom
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/clk.h>
   9#include <linux/delay.h>
  10#include <linux/device.h>
  11#include <linux/init.h>
  12#include <linux/interrupt.h>
  13#include <linux/io.h>
  14#include <linux/ioport.h>
  15#include <linux/kernel.h>
  16#include <linux/module.h>
  17#include <linux/of.h>
  18#include <linux/of_irq.h>
  19#include <linux/platform_device.h>
  20#include <linux/slab.h>
  21#include <linux/spi/spi.h>
  22#include <linux/spi/spi-mem.h>
  23#include <linux/sysfs.h>
  24#include <linux/types.h>
  25#include "spi-bcm-qspi.h"
  26
  27#define DRIVER_NAME "bcm_qspi"
  28
  29
  30/* BSPI register offsets */
  31#define BSPI_REVISION_ID			0x000
  32#define BSPI_SCRATCH				0x004
  33#define BSPI_MAST_N_BOOT_CTRL			0x008
  34#define BSPI_BUSY_STATUS			0x00c
  35#define BSPI_INTR_STATUS			0x010
  36#define BSPI_B0_STATUS				0x014
  37#define BSPI_B0_CTRL				0x018
  38#define BSPI_B1_STATUS				0x01c
  39#define BSPI_B1_CTRL				0x020
  40#define BSPI_STRAP_OVERRIDE_CTRL		0x024
  41#define BSPI_FLEX_MODE_ENABLE			0x028
  42#define BSPI_BITS_PER_CYCLE			0x02c
  43#define BSPI_BITS_PER_PHASE			0x030
  44#define BSPI_CMD_AND_MODE_BYTE			0x034
  45#define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE	0x038
  46#define BSPI_BSPI_XOR_VALUE			0x03c
  47#define BSPI_BSPI_XOR_ENABLE			0x040
  48#define BSPI_BSPI_PIO_MODE_ENABLE		0x044
  49#define BSPI_BSPI_PIO_IODIR			0x048
  50#define BSPI_BSPI_PIO_DATA			0x04c
  51
  52/* RAF register offsets */
  53#define BSPI_RAF_START_ADDR			0x100
  54#define BSPI_RAF_NUM_WORDS			0x104
  55#define BSPI_RAF_CTRL				0x108
  56#define BSPI_RAF_FULLNESS			0x10c
  57#define BSPI_RAF_WATERMARK			0x110
  58#define BSPI_RAF_STATUS			0x114
  59#define BSPI_RAF_READ_DATA			0x118
  60#define BSPI_RAF_WORD_CNT			0x11c
  61#define BSPI_RAF_CURR_ADDR			0x120
  62
  63/* Override mode masks */
  64#define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE	BIT(0)
  65#define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL	BIT(1)
  66#define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE	BIT(2)
  67#define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD	BIT(3)
  68#define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE	BIT(4)
  69
  70#define BSPI_ADDRLEN_3BYTES			3
  71#define BSPI_ADDRLEN_4BYTES			4
  72
  73#define BSPI_RAF_STATUS_FIFO_EMPTY_MASK	BIT(1)
  74
  75#define BSPI_RAF_CTRL_START_MASK		BIT(0)
  76#define BSPI_RAF_CTRL_CLEAR_MASK		BIT(1)
  77
  78#define BSPI_BPP_MODE_SELECT_MASK		BIT(8)
  79#define BSPI_BPP_ADDR_SELECT_MASK		BIT(16)
  80
  81#define BSPI_READ_LENGTH			256
  82
  83/* MSPI register offsets */
  84#define MSPI_SPCR0_LSB				0x000
  85#define MSPI_SPCR0_MSB				0x004
  86#define MSPI_SPCR0_MSB_CPHA			BIT(0)
  87#define MSPI_SPCR0_MSB_CPOL			BIT(1)
  88#define MSPI_SPCR0_MSB_BITS_SHIFT		0x2
  89#define MSPI_SPCR1_LSB				0x008
  90#define MSPI_SPCR1_MSB				0x00c
  91#define MSPI_NEWQP				0x010
  92#define MSPI_ENDQP				0x014
  93#define MSPI_SPCR2				0x018
  94#define MSPI_MSPI_STATUS			0x020
  95#define MSPI_CPTQP				0x024
  96#define MSPI_SPCR3				0x028
  97#define MSPI_REV				0x02c
  98#define MSPI_TXRAM				0x040
  99#define MSPI_RXRAM				0x0c0
 100#define MSPI_CDRAM				0x140
 101#define MSPI_WRITE_LOCK			0x180
 102
 103#define MSPI_MASTER_BIT			BIT(7)
 104
 105#define MSPI_NUM_CDRAM				16
 106#define MSPI_CDRAM_OUTP				BIT(8)
 107#define MSPI_CDRAM_CONT_BIT			BIT(7)
 108#define MSPI_CDRAM_BITSE_BIT			BIT(6)
 109#define MSPI_CDRAM_DT_BIT			BIT(5)
 110#define MSPI_CDRAM_PCS				0xf
 111
 112#define MSPI_SPCR2_SPE				BIT(6)
 113#define MSPI_SPCR2_CONT_AFTER_CMD		BIT(7)
 114
 115#define MSPI_SPCR3_FASTBR			BIT(0)
 116#define MSPI_SPCR3_FASTDT			BIT(1)
 117#define MSPI_SPCR3_SYSCLKSEL_MASK		GENMASK(11, 10)
 118#define MSPI_SPCR3_SYSCLKSEL_27			(MSPI_SPCR3_SYSCLKSEL_MASK & \
 119						 ~(BIT(10) | BIT(11)))
 120#define MSPI_SPCR3_SYSCLKSEL_108		(MSPI_SPCR3_SYSCLKSEL_MASK & \
 121						 BIT(11))
 122#define MSPI_SPCR3_TXRXDAM_MASK			GENMASK(4, 2)
 123#define MSPI_SPCR3_DAM_8BYTE			0
 124#define MSPI_SPCR3_DAM_16BYTE			(BIT(2) | BIT(4))
 125#define MSPI_SPCR3_DAM_32BYTE			(BIT(3) | BIT(5))
 126#define MSPI_SPCR3_HALFDUPLEX			BIT(6)
 127#define MSPI_SPCR3_HDOUTTYPE			BIT(7)
 128#define MSPI_SPCR3_DATA_REG_SZ			BIT(8)
 129#define MSPI_SPCR3_CPHARX			BIT(9)
 130
 131#define MSPI_MSPI_STATUS_SPIF			BIT(0)
 132
 133#define INTR_BASE_BIT_SHIFT			0x02
 134#define INTR_COUNT				0x07
 135
 136#define NUM_CHIPSELECT				4
 
 137#define QSPI_SPBR_MAX				255U
 138#define MSPI_BASE_FREQ				27000000UL
 139
 140#define OPCODE_DIOR				0xBB
 141#define OPCODE_QIOR				0xEB
 142#define OPCODE_DIOR_4B				0xBC
 143#define OPCODE_QIOR_4B				0xEC
 144
 145#define MAX_CMD_SIZE				6
 146
 147#define ADDR_4MB_MASK				GENMASK(22, 0)
 148
 149/* stop at end of transfer, no other reason */
 150#define TRANS_STATUS_BREAK_NONE		0
 151/* stop at end of spi_message */
 152#define TRANS_STATUS_BREAK_EOM			1
 153/* stop at end of spi_transfer if delay */
 154#define TRANS_STATUS_BREAK_DELAY		2
 155/* stop at end of spi_transfer if cs_change */
 156#define TRANS_STATUS_BREAK_CS_CHANGE		4
 157/* stop if we run out of bytes */
 158#define TRANS_STATUS_BREAK_NO_BYTES		8
 159
 160/* events that make us stop filling TX slots */
 161#define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM |		\
 162			       TRANS_STATUS_BREAK_DELAY |		\
 163			       TRANS_STATUS_BREAK_CS_CHANGE)
 164
 165/* events that make us deassert CS */
 166#define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM |		\
 167				     TRANS_STATUS_BREAK_CS_CHANGE)
 168
 169/*
 170 * Used for writing and reading data in the right order
 171 * to TXRAM and RXRAM when used as 32-bit registers respectively
 172 */
 173#define swap4bytes(__val) \
 174	((((__val) >> 24) & 0x000000FF) | (((__val) >>  8) & 0x0000FF00) | \
 175	 (((__val) <<  8) & 0x00FF0000) | (((__val) << 24) & 0xFF000000))
 176
 177struct bcm_qspi_parms {
 178	u32 speed_hz;
 179	u8 mode;
 180	u8 bits_per_word;
 181};
 182
 183struct bcm_xfer_mode {
 184	bool flex_mode;
 185	unsigned int width;
 186	unsigned int addrlen;
 187	unsigned int hp;
 188};
 189
 190enum base_type {
 191	MSPI,
 192	BSPI,
 193	CHIP_SELECT,
 194	BASEMAX,
 195};
 196
 197enum irq_source {
 198	SINGLE_L2,
 199	MUXED_L1,
 200};
 201
 202struct bcm_qspi_irq {
 203	const char *irq_name;
 204	const irq_handler_t irq_handler;
 205	int irq_source;
 206	u32 mask;
 207};
 208
 209struct bcm_qspi_dev_id {
 210	const struct bcm_qspi_irq *irqp;
 211	void *dev;
 212};
 213
 214
 215struct qspi_trans {
 216	struct spi_transfer *trans;
 217	int byte;
 218	bool mspi_last_trans;
 219};
 220
 221struct bcm_qspi {
 222	struct platform_device *pdev;
 223	struct spi_master *master;
 224	struct clk *clk;
 225	u32 base_clk;
 226	u32 max_speed_hz;
 227	void __iomem *base[BASEMAX];
 228
 229	/* Some SoCs provide custom interrupt status register(s) */
 230	struct bcm_qspi_soc_intc	*soc_intc;
 231
 232	struct bcm_qspi_parms last_parms;
 233	struct qspi_trans  trans_pos;
 234	int curr_cs;
 235	int bspi_maj_rev;
 236	int bspi_min_rev;
 237	int bspi_enabled;
 238	const struct spi_mem_op *bspi_rf_op;
 239	u32 bspi_rf_op_idx;
 240	u32 bspi_rf_op_len;
 241	u32 bspi_rf_op_status;
 242	struct bcm_xfer_mode xfer_mode;
 243	u32 s3_strap_override_ctrl;
 244	bool bspi_mode;
 245	bool big_endian;
 246	int num_irqs;
 247	struct bcm_qspi_dev_id *dev_ids;
 248	struct completion mspi_done;
 249	struct completion bspi_done;
 250	u8 mspi_maj_rev;
 251	u8 mspi_min_rev;
 252	bool mspi_spcr3_sysclk;
 253};
 254
 255static inline bool has_bspi(struct bcm_qspi *qspi)
 256{
 257	return qspi->bspi_mode;
 258}
 259
 260/* hardware supports spcr3 and fast baud-rate  */
 261static inline bool bcm_qspi_has_fastbr(struct bcm_qspi *qspi)
 262{
 263	if (!has_bspi(qspi) &&
 264	    ((qspi->mspi_maj_rev >= 1) &&
 265	     (qspi->mspi_min_rev >= 5)))
 266		return true;
 267
 268	return false;
 269}
 270
 271/* hardware supports sys clk 108Mhz  */
 272static inline bool bcm_qspi_has_sysclk_108(struct bcm_qspi *qspi)
 273{
 274	if (!has_bspi(qspi) && (qspi->mspi_spcr3_sysclk ||
 275	    ((qspi->mspi_maj_rev >= 1) &&
 276	     (qspi->mspi_min_rev >= 6))))
 277		return true;
 278
 279	return false;
 280}
 281
 282static inline int bcm_qspi_spbr_min(struct bcm_qspi *qspi)
 283{
 284	if (bcm_qspi_has_fastbr(qspi))
 285		return (bcm_qspi_has_sysclk_108(qspi) ? 4 : 1);
 286	else
 287		return 8;
 288}
 289
 290static u32 bcm_qspi_calc_spbr(u32 clk_speed_hz,
 291			      const struct bcm_qspi_parms *xp)
 292{
 293	u32 spbr = 0;
 294
 295	/* SPBR = System Clock/(2 * SCK Baud Rate) */
 296	if (xp->speed_hz)
 297		spbr = clk_speed_hz / (xp->speed_hz * 2);
 298
 299	return spbr;
 300}
 301
 302/* Read qspi controller register*/
 303static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
 304				unsigned int offset)
 305{
 306	return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
 307}
 308
 309/* Write qspi controller register*/
 310static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
 311				  unsigned int offset, unsigned int data)
 312{
 313	bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
 314}
 315
 316/* BSPI helpers */
 317static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
 318{
 319	int i;
 320
 321	/* this should normally finish within 10us */
 322	for (i = 0; i < 1000; i++) {
 323		if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
 324			return 0;
 325		udelay(1);
 326	}
 327	dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
 328	return -EIO;
 329}
 330
 331static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
 332{
 333	if (qspi->bspi_maj_rev < 4)
 334		return true;
 335	return false;
 336}
 337
 338static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
 339{
 340	bcm_qspi_bspi_busy_poll(qspi);
 341	/* Force rising edge for the b0/b1 'flush' field */
 342	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
 343	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
 344	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
 345	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
 346}
 347
 348static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
 349{
 350	return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
 351				BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
 352}
 353
 354static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
 355{
 356	u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
 357
 358	/* BSPI v3 LR is LE only, convert data to host endianness */
 359	if (bcm_qspi_bspi_ver_three(qspi))
 360		data = le32_to_cpu(data);
 361
 362	return data;
 363}
 364
 365static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
 366{
 367	bcm_qspi_bspi_busy_poll(qspi);
 368	bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
 369		       BSPI_RAF_CTRL_START_MASK);
 370}
 371
 372static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
 373{
 374	bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
 375		       BSPI_RAF_CTRL_CLEAR_MASK);
 376	bcm_qspi_bspi_flush_prefetch_buffers(qspi);
 377}
 378
 379static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
 380{
 381	u32 *buf = (u32 *)qspi->bspi_rf_op->data.buf.in;
 382	u32 data = 0;
 383
 384	dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_op,
 385		qspi->bspi_rf_op->data.buf.in, qspi->bspi_rf_op_len);
 386	while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
 387		data = bcm_qspi_bspi_lr_read_fifo(qspi);
 388		if (likely(qspi->bspi_rf_op_len >= 4) &&
 389		    IS_ALIGNED((uintptr_t)buf, 4)) {
 390			buf[qspi->bspi_rf_op_idx++] = data;
 391			qspi->bspi_rf_op_len -= 4;
 392		} else {
 393			/* Read out remaining bytes, make sure*/
 394			u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_op_idx];
 395
 396			data = cpu_to_le32(data);
 397			while (qspi->bspi_rf_op_len) {
 398				*cbuf++ = (u8)data;
 399				data >>= 8;
 400				qspi->bspi_rf_op_len--;
 401			}
 402		}
 403	}
 404}
 405
 406static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
 407					  int bpp, int bpc, int flex_mode)
 408{
 409	bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
 410	bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
 411	bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
 412	bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
 413	bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
 414}
 415
 416static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi,
 417				       const struct spi_mem_op *op, int hp)
 
 418{
 419	int bpc = 0, bpp = 0;
 420	u8 command = op->cmd.opcode;
 421	int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
 422	int addrlen = op->addr.nbytes;
 
 423	int flex_mode = 1;
 424
 425	dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
 426		width, addrlen, hp);
 427
 428	if (addrlen == BSPI_ADDRLEN_4BYTES)
 429		bpp = BSPI_BPP_ADDR_SELECT_MASK;
 430
 431	if (op->dummy.nbytes)
 432		bpp |= (op->dummy.nbytes * 8) / op->dummy.buswidth;
 433
 434	switch (width) {
 435	case SPI_NBITS_SINGLE:
 436		if (addrlen == BSPI_ADDRLEN_3BYTES)
 437			/* default mode, does not need flex_cmd */
 438			flex_mode = 0;
 439		break;
 440	case SPI_NBITS_DUAL:
 441		bpc = 0x00000001;
 442		if (hp) {
 443			bpc |= 0x00010100; /* address and mode are 2-bit */
 444			bpp = BSPI_BPP_MODE_SELECT_MASK;
 445		}
 446		break;
 447	case SPI_NBITS_QUAD:
 448		bpc = 0x00000002;
 449		if (hp) {
 450			bpc |= 0x00020200; /* address and mode are 4-bit */
 451			bpp |= BSPI_BPP_MODE_SELECT_MASK;
 452		}
 453		break;
 454	default:
 455		return -EINVAL;
 456	}
 457
 458	bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc, flex_mode);
 459
 460	return 0;
 461}
 462
 463static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi,
 464				      const struct spi_mem_op *op, int hp)
 
 465{
 466	int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
 467	int addrlen = op->addr.nbytes;
 468	u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
 469
 470	dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
 471		width, addrlen, hp);
 472
 473	switch (width) {
 474	case SPI_NBITS_SINGLE:
 475		/* clear quad/dual mode */
 476		data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
 477			  BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
 478		break;
 479	case SPI_NBITS_QUAD:
 480		/* clear dual mode and set quad mode */
 481		data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
 482		data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
 483		break;
 484	case SPI_NBITS_DUAL:
 485		/* clear quad mode set dual mode */
 486		data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
 487		data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
 488		break;
 489	default:
 490		return -EINVAL;
 491	}
 492
 493	if (addrlen == BSPI_ADDRLEN_4BYTES)
 494		/* set 4byte mode*/
 495		data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
 496	else
 497		/* clear 4 byte mode */
 498		data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
 499
 500	/* set the override mode */
 501	data |=	BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
 502	bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
 503	bcm_qspi_bspi_set_xfer_params(qspi, op->cmd.opcode, 0, 0, 0);
 504
 505	return 0;
 506}
 507
 508static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
 509				  const struct spi_mem_op *op, int hp)
 510{
 511	int error = 0;
 512	int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
 513	int addrlen = op->addr.nbytes;
 514
 515	/* default mode */
 516	qspi->xfer_mode.flex_mode = true;
 517
 518	if (!bcm_qspi_bspi_ver_three(qspi)) {
 519		u32 val, mask;
 520
 521		val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
 522		mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
 523		if (val & mask || qspi->s3_strap_override_ctrl & mask) {
 524			qspi->xfer_mode.flex_mode = false;
 525			bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
 526			error = bcm_qspi_bspi_set_override(qspi, op, hp);
 527		}
 528	}
 529
 530	if (qspi->xfer_mode.flex_mode)
 531		error = bcm_qspi_bspi_set_flex_mode(qspi, op, hp);
 532
 533	if (error) {
 534		dev_warn(&qspi->pdev->dev,
 535			 "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
 536			 width, addrlen, hp);
 537	} else if (qspi->xfer_mode.width != width ||
 538		   qspi->xfer_mode.addrlen != addrlen ||
 539		   qspi->xfer_mode.hp != hp) {
 540		qspi->xfer_mode.width = width;
 541		qspi->xfer_mode.addrlen = addrlen;
 542		qspi->xfer_mode.hp = hp;
 543		dev_dbg(&qspi->pdev->dev,
 544			"cs:%d %d-lane output, %d-byte address%s\n",
 545			qspi->curr_cs,
 546			qspi->xfer_mode.width,
 547			qspi->xfer_mode.addrlen,
 548			qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
 549	}
 550
 551	return error;
 552}
 553
 554static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
 555{
 556	if (!has_bspi(qspi))
 557		return;
 558
 559	qspi->bspi_enabled = 1;
 560	if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
 561		return;
 562
 563	bcm_qspi_bspi_flush_prefetch_buffers(qspi);
 564	udelay(1);
 565	bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
 566	udelay(1);
 567}
 568
 569static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
 570{
 571	if (!has_bspi(qspi))
 572		return;
 573
 574	qspi->bspi_enabled = 0;
 575	if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
 576		return;
 577
 578	bcm_qspi_bspi_busy_poll(qspi);
 579	bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
 580	udelay(1);
 581}
 582
 583static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
 584{
 585	u32 rd = 0;
 586	u32 wr = 0;
 587
 588	if (cs >= 0 && qspi->base[CHIP_SELECT]) {
 589		rd = bcm_qspi_read(qspi, CHIP_SELECT, 0);
 590		wr = (rd & ~0xff) | (1 << cs);
 591		if (rd == wr)
 592			return;
 593		bcm_qspi_write(qspi, CHIP_SELECT, 0, wr);
 594		usleep_range(10, 20);
 595	}
 596
 597	dev_dbg(&qspi->pdev->dev, "using cs:%d\n", cs);
 598	qspi->curr_cs = cs;
 599}
 600
 601static bool bcmspi_parms_did_change(const struct bcm_qspi_parms * const cur,
 602				    const struct bcm_qspi_parms * const prev)
 603{
 604	return (cur->speed_hz != prev->speed_hz) ||
 605		(cur->mode != prev->mode) ||
 606		(cur->bits_per_word != prev->bits_per_word);
 607}
 608
 609
 610/* MSPI helpers */
 611static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
 612				  const struct bcm_qspi_parms *xp)
 613{
 614	u32 spcr, spbr = 0;
 615
 616	if (!bcmspi_parms_did_change(xp, &qspi->last_parms))
 617		return;
 618
 619	if (!qspi->mspi_maj_rev)
 620		/* legacy controller */
 621		spcr = MSPI_MASTER_BIT;
 622	else
 623		spcr = 0;
 624
 625	/*
 626	 * Bits per transfer.  BITS determines the number of data bits
 627	 * transferred if the command control bit (BITSE of a
 628	 * CDRAM Register) is equal to 1.
 629	 * If CDRAM BITSE is equal to 0, 8 data bits are transferred
 630	 * regardless
 631	 */
 632	if (xp->bits_per_word != 16 && xp->bits_per_word != 64)
 633		spcr |= xp->bits_per_word << MSPI_SPCR0_MSB_BITS_SHIFT;
 634
 635	spcr |= xp->mode & (MSPI_SPCR0_MSB_CPHA | MSPI_SPCR0_MSB_CPOL);
 
 
 
 
 636	bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
 637
 638	if (bcm_qspi_has_fastbr(qspi)) {
 639		spcr = 0;
 640
 641		/* enable fastbr */
 642		spcr |=	MSPI_SPCR3_FASTBR;
 643
 644		if (xp->mode & SPI_3WIRE)
 645			spcr |= MSPI_SPCR3_HALFDUPLEX |  MSPI_SPCR3_HDOUTTYPE;
 646
 647		if (bcm_qspi_has_sysclk_108(qspi)) {
 648			/* check requested baud rate before moving to 108Mhz */
 649			spbr = bcm_qspi_calc_spbr(MSPI_BASE_FREQ * 4, xp);
 650			if (spbr > QSPI_SPBR_MAX) {
 651				/* use SYSCLK_27Mhz for slower baud rates */
 652				spcr &= ~MSPI_SPCR3_SYSCLKSEL_MASK;
 653				qspi->base_clk = MSPI_BASE_FREQ;
 654			} else {
 655				/* SYSCLK_108Mhz */
 656				spcr |= MSPI_SPCR3_SYSCLKSEL_108;
 657				qspi->base_clk = MSPI_BASE_FREQ * 4;
 658			}
 659		}
 660
 661		if (xp->bits_per_word > 16) {
 662			/* data_reg_size 1 (64bit) */
 663			spcr |=	MSPI_SPCR3_DATA_REG_SZ;
 664			/* TxRx RAM data access mode 2 for 32B and set fastdt */
 665			spcr |=	MSPI_SPCR3_DAM_32BYTE  | MSPI_SPCR3_FASTDT;
 666			/*
 667			 *  Set length of delay after transfer
 668			 *  DTL from 0(256) to 1
 669			 */
 670			bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 1);
 671		} else {
 672			/* data_reg_size[8] = 0 */
 673			spcr &=	~(MSPI_SPCR3_DATA_REG_SZ);
 674
 675			/*
 676			 * TxRx RAM access mode 8B
 677			 * and disable fastdt
 678			 */
 679			spcr &= ~(MSPI_SPCR3_DAM_32BYTE);
 680		}
 681		bcm_qspi_write(qspi, MSPI, MSPI_SPCR3, spcr);
 682	}
 683
 684	/* SCK Baud Rate = System Clock/(2 * SPBR) */
 685	qspi->max_speed_hz = qspi->base_clk / (bcm_qspi_spbr_min(qspi) * 2);
 686	spbr = bcm_qspi_calc_spbr(qspi->base_clk, xp);
 687	spbr = clamp_val(spbr, bcm_qspi_spbr_min(qspi), QSPI_SPBR_MAX);
 688	bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spbr);
 689
 690	qspi->last_parms = *xp;
 691}
 692
 693static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
 694				  struct spi_device *spi,
 695				  struct spi_transfer *trans)
 696{
 697	struct bcm_qspi_parms xp;
 698
 699	xp.speed_hz = trans->speed_hz;
 700	xp.bits_per_word = trans->bits_per_word;
 701	xp.mode = spi->mode;
 702
 703	bcm_qspi_hw_set_parms(qspi, &xp);
 704}
 705
 706static int bcm_qspi_setup(struct spi_device *spi)
 707{
 708	struct bcm_qspi_parms *xp;
 709
 710	if (spi->bits_per_word > 64)
 711		return -EINVAL;
 712
 713	xp = spi_get_ctldata(spi);
 714	if (!xp) {
 715		xp = kzalloc(sizeof(*xp), GFP_KERNEL);
 716		if (!xp)
 717			return -ENOMEM;
 718		spi_set_ctldata(spi, xp);
 719	}
 720	xp->speed_hz = spi->max_speed_hz;
 721	xp->mode = spi->mode;
 722
 723	if (spi->bits_per_word)
 724		xp->bits_per_word = spi->bits_per_word;
 725	else
 726		xp->bits_per_word = 8;
 727
 728	return 0;
 729}
 730
 731static bool bcm_qspi_mspi_transfer_is_last(struct bcm_qspi *qspi,
 732					   struct qspi_trans *qt)
 733{
 734	if (qt->mspi_last_trans &&
 735	    spi_transfer_is_last(qspi->master, qt->trans))
 736		return true;
 737	else
 738		return false;
 739}
 740
 741static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
 742					struct qspi_trans *qt, int flags)
 743{
 744	int ret = TRANS_STATUS_BREAK_NONE;
 745
 746	/* count the last transferred bytes */
 747	if (qt->trans->bits_per_word <= 8)
 748		qt->byte++;
 749	else if (qt->trans->bits_per_word <= 16)
 750		qt->byte += 2;
 751	else if (qt->trans->bits_per_word <= 32)
 752		qt->byte += 4;
 753	else if (qt->trans->bits_per_word <= 64)
 754		qt->byte += 8;
 755
 756	if (qt->byte >= qt->trans->len) {
 757		/* we're at the end of the spi_transfer */
 758		/* in TX mode, need to pause for a delay or CS change */
 759		if (qt->trans->delay.value &&
 760		    (flags & TRANS_STATUS_BREAK_DELAY))
 761			ret |= TRANS_STATUS_BREAK_DELAY;
 762		if (qt->trans->cs_change &&
 763		    (flags & TRANS_STATUS_BREAK_CS_CHANGE))
 764			ret |= TRANS_STATUS_BREAK_CS_CHANGE;
 
 
 765
 
 766		if (bcm_qspi_mspi_transfer_is_last(qspi, qt))
 767			ret |= TRANS_STATUS_BREAK_EOM;
 768		else
 769			ret |= TRANS_STATUS_BREAK_NO_BYTES;
 770
 771		qt->trans = NULL;
 772	}
 773
 
 774	dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
 775		qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
 776	return ret;
 777}
 778
 779static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
 780{
 781	u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
 782
 783	/* mask out reserved bits */
 784	return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
 785}
 786
 787static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
 788{
 789	u32 reg_offset = MSPI_RXRAM;
 790	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
 791	u32 msb_offset = reg_offset + (slot << 3);
 792
 793	return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
 794		((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
 795}
 796
 797static inline u32 read_rxram_slot_u32(struct bcm_qspi *qspi, int slot)
 798{
 799	u32 reg_offset = MSPI_RXRAM;
 800	u32 offset = reg_offset + (slot << 3);
 801	u32 val;
 802
 803	val = bcm_qspi_read(qspi, MSPI, offset);
 804	val = swap4bytes(val);
 805
 806	return val;
 807}
 808
 809static inline u64 read_rxram_slot_u64(struct bcm_qspi *qspi, int slot)
 810{
 811	u32 reg_offset = MSPI_RXRAM;
 812	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
 813	u32 msb_offset = reg_offset + (slot << 3);
 814	u32 msb, lsb;
 815
 816	msb = bcm_qspi_read(qspi, MSPI, msb_offset);
 817	msb = swap4bytes(msb);
 818	lsb = bcm_qspi_read(qspi, MSPI, lsb_offset);
 819	lsb = swap4bytes(lsb);
 820
 821	return ((u64)msb << 32 | lsb);
 822}
 823
 824static void read_from_hw(struct bcm_qspi *qspi, int slots)
 825{
 826	struct qspi_trans tp;
 827	int slot;
 828
 829	bcm_qspi_disable_bspi(qspi);
 830
 831	if (slots > MSPI_NUM_CDRAM) {
 832		/* should never happen */
 833		dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
 834		return;
 835	}
 836
 837	tp = qspi->trans_pos;
 838
 839	for (slot = 0; slot < slots; slot++) {
 840		if (tp.trans->bits_per_word <= 8) {
 841			u8 *buf = tp.trans->rx_buf;
 842
 843			if (buf)
 844				buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
 845			dev_dbg(&qspi->pdev->dev, "RD %02x\n",
 846				buf ? buf[tp.byte] : 0x0);
 847		} else if (tp.trans->bits_per_word <= 16) {
 848			u16 *buf = tp.trans->rx_buf;
 849
 850			if (buf)
 851				buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
 852								      slot);
 853			dev_dbg(&qspi->pdev->dev, "RD %04x\n",
 854				buf ? buf[tp.byte / 2] : 0x0);
 855		} else if (tp.trans->bits_per_word <= 32) {
 856			u32 *buf = tp.trans->rx_buf;
 857
 858			if (buf)
 859				buf[tp.byte / 4] = read_rxram_slot_u32(qspi,
 860								      slot);
 861			dev_dbg(&qspi->pdev->dev, "RD %08x\n",
 862				buf ? buf[tp.byte / 4] : 0x0);
 863
 864		} else if (tp.trans->bits_per_word <= 64) {
 865			u64 *buf = tp.trans->rx_buf;
 866
 867			if (buf)
 868				buf[tp.byte / 8] = read_rxram_slot_u64(qspi,
 869								      slot);
 870			dev_dbg(&qspi->pdev->dev, "RD %llx\n",
 871				buf ? buf[tp.byte / 8] : 0x0);
 872
 873
 874		}
 875
 876		update_qspi_trans_byte_count(qspi, &tp,
 877					     TRANS_STATUS_BREAK_NONE);
 878	}
 879
 880	qspi->trans_pos = tp;
 881}
 882
 883static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
 884				       u8 val)
 885{
 886	u32 reg_offset = MSPI_TXRAM + (slot << 3);
 887
 888	/* mask out reserved bits */
 889	bcm_qspi_write(qspi, MSPI, reg_offset, val);
 890}
 891
 892static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
 893					u16 val)
 894{
 895	u32 reg_offset = MSPI_TXRAM;
 896	u32 msb_offset = reg_offset + (slot << 3);
 897	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
 898
 899	bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
 900	bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
 901}
 902
 903static inline void write_txram_slot_u32(struct bcm_qspi *qspi, int slot,
 904					u32 val)
 905{
 906	u32 reg_offset = MSPI_TXRAM;
 907	u32 msb_offset = reg_offset + (slot << 3);
 908
 909	bcm_qspi_write(qspi, MSPI, msb_offset, swap4bytes(val));
 910}
 911
 912static inline void write_txram_slot_u64(struct bcm_qspi *qspi, int slot,
 913					u64 val)
 914{
 915	u32 reg_offset = MSPI_TXRAM;
 916	u32 msb_offset = reg_offset + (slot << 3);
 917	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
 918	u32 msb = upper_32_bits(val);
 919	u32 lsb = lower_32_bits(val);
 920
 921	bcm_qspi_write(qspi, MSPI, msb_offset, swap4bytes(msb));
 922	bcm_qspi_write(qspi, MSPI, lsb_offset, swap4bytes(lsb));
 923}
 924
 925static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
 926{
 927	return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
 928}
 929
 930static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
 931{
 932	bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
 933}
 934
 935/* Return number of slots written */
 936static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
 937{
 938	struct qspi_trans tp;
 939	int slot = 0, tstatus = 0;
 940	u32 mspi_cdram = 0;
 941
 942	bcm_qspi_disable_bspi(qspi);
 943	tp = qspi->trans_pos;
 944	bcm_qspi_update_parms(qspi, spi, tp.trans);
 945
 946	/* Run until end of transfer or reached the max data */
 947	while (!tstatus && slot < MSPI_NUM_CDRAM) {
 948		mspi_cdram = MSPI_CDRAM_CONT_BIT;
 949		if (tp.trans->bits_per_word <= 8) {
 950			const u8 *buf = tp.trans->tx_buf;
 951			u8 val = buf ? buf[tp.byte] : 0x00;
 952
 953			write_txram_slot_u8(qspi, slot, val);
 954			dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
 955		} else if (tp.trans->bits_per_word <= 16) {
 956			const u16 *buf = tp.trans->tx_buf;
 957			u16 val = buf ? buf[tp.byte / 2] : 0x0000;
 958
 959			write_txram_slot_u16(qspi, slot, val);
 960			dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
 961		} else if (tp.trans->bits_per_word <= 32) {
 962			const u32 *buf = tp.trans->tx_buf;
 963			u32 val = buf ? buf[tp.byte/4] : 0x0;
 964
 965			write_txram_slot_u32(qspi, slot, val);
 966			dev_dbg(&qspi->pdev->dev, "WR %08x\n", val);
 967		} else if (tp.trans->bits_per_word <= 64) {
 968			const u64 *buf = tp.trans->tx_buf;
 969			u64 val = (buf ? buf[tp.byte/8] : 0x0);
 970
 971			/* use the length of delay from SPCR1_LSB */
 972			if (bcm_qspi_has_fastbr(qspi))
 973				mspi_cdram |= MSPI_CDRAM_DT_BIT;
 974
 975			write_txram_slot_u64(qspi, slot, val);
 976			dev_dbg(&qspi->pdev->dev, "WR %llx\n", val);
 977		}
 978
 979		mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
 980			       MSPI_CDRAM_BITSE_BIT);
 981
 982		/* set 3wrire halfduplex mode data from master to slave */
 983		if ((spi->mode & SPI_3WIRE) && tp.trans->tx_buf)
 984			mspi_cdram |= MSPI_CDRAM_OUTP;
 985
 986		if (has_bspi(qspi))
 987			mspi_cdram &= ~1;
 988		else
 989			mspi_cdram |= (~(1 << spi->chip_select) &
 990				       MSPI_CDRAM_PCS);
 991
 
 
 
 992		write_cdram_slot(qspi, slot, mspi_cdram);
 993
 994		tstatus = update_qspi_trans_byte_count(qspi, &tp,
 995						       TRANS_STATUS_BREAK_TX);
 996		slot++;
 997	}
 998
 999	if (!slot) {
1000		dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
1001		goto done;
1002	}
1003
1004	dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
1005	bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1006	bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
1007
1008	/*
1009	 *  case 1) EOM =1, cs_change =0: SSb inactive
1010	 *  case 2) EOM =1, cs_change =1: SSb stay active
1011	 *  case 3) EOM =0, cs_change =0: SSb stay active
1012	 *  case 4) EOM =0, cs_change =1: SSb inactive
1013	 */
1014	if (((tstatus & TRANS_STATUS_BREAK_DESELECT)
1015	     == TRANS_STATUS_BREAK_CS_CHANGE) ||
1016	    ((tstatus & TRANS_STATUS_BREAK_DESELECT)
1017	     == TRANS_STATUS_BREAK_EOM)) {
1018		mspi_cdram = read_cdram_slot(qspi, slot - 1) &
1019			~MSPI_CDRAM_CONT_BIT;
1020		write_cdram_slot(qspi, slot - 1, mspi_cdram);
1021	}
1022
1023	if (has_bspi(qspi))
1024		bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
1025
1026	/* Must flush previous writes before starting MSPI operation */
1027	mb();
1028	/* Set cont | spe | spifie */
1029	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
1030
1031done:
1032	return slot;
1033}
1034
1035static int bcm_qspi_bspi_exec_mem_op(struct spi_device *spi,
1036				     const struct spi_mem_op *op)
1037{
1038	struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
1039	u32 addr = 0, len, rdlen, len_words, from = 0;
1040	int ret = 0;
1041	unsigned long timeo = msecs_to_jiffies(100);
1042	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1043
1044	if (bcm_qspi_bspi_ver_three(qspi))
1045		if (op->addr.nbytes == BSPI_ADDRLEN_4BYTES)
1046			return -EIO;
1047
1048	from = op->addr.val;
1049	if (!spi->cs_gpiod)
1050		bcm_qspi_chip_select(qspi, spi->chip_select);
1051	bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1052
1053	/*
1054	 * when using flex mode we need to send
1055	 * the upper address byte to bspi
1056	 */
1057	if (!bcm_qspi_bspi_ver_three(qspi)) {
1058		addr = from & 0xff000000;
1059		bcm_qspi_write(qspi, BSPI,
1060			       BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
1061	}
1062
1063	if (!qspi->xfer_mode.flex_mode)
1064		addr = from;
1065	else
1066		addr = from & 0x00ffffff;
1067
1068	if (bcm_qspi_bspi_ver_three(qspi) == true)
1069		addr = (addr + 0xc00000) & 0xffffff;
1070
1071	/*
1072	 * read into the entire buffer by breaking the reads
1073	 * into RAF buffer read lengths
1074	 */
1075	len = op->data.nbytes;
1076	qspi->bspi_rf_op_idx = 0;
1077
1078	do {
1079		if (len > BSPI_READ_LENGTH)
1080			rdlen = BSPI_READ_LENGTH;
1081		else
1082			rdlen = len;
1083
1084		reinit_completion(&qspi->bspi_done);
1085		bcm_qspi_enable_bspi(qspi);
1086		len_words = (rdlen + 3) >> 2;
1087		qspi->bspi_rf_op = op;
1088		qspi->bspi_rf_op_status = 0;
1089		qspi->bspi_rf_op_len = rdlen;
1090		dev_dbg(&qspi->pdev->dev,
1091			"bspi xfr addr 0x%x len 0x%x", addr, rdlen);
1092		bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
1093		bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
1094		bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
1095		if (qspi->soc_intc) {
1096			/*
1097			 * clear soc MSPI and BSPI interrupts and enable
1098			 * BSPI interrupts.
1099			 */
1100			soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
1101			soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
1102		}
1103
1104		/* Must flush previous writes before starting BSPI operation */
1105		mb();
1106		bcm_qspi_bspi_lr_start(qspi);
1107		if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
1108			dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
1109			ret = -ETIMEDOUT;
1110			break;
1111		}
1112
1113		/* set msg return length */
 
1114		addr += rdlen;
1115		len -= rdlen;
1116	} while (len);
1117
1118	return ret;
1119}
1120
1121static int bcm_qspi_transfer_one(struct spi_master *master,
1122				 struct spi_device *spi,
1123				 struct spi_transfer *trans)
1124{
1125	struct bcm_qspi *qspi = spi_master_get_devdata(master);
1126	int slots;
1127	unsigned long timeo = msecs_to_jiffies(100);
1128
1129	if (!spi->cs_gpiod)
1130		bcm_qspi_chip_select(qspi, spi->chip_select);
1131	qspi->trans_pos.trans = trans;
1132	qspi->trans_pos.byte = 0;
1133
1134	while (qspi->trans_pos.byte < trans->len) {
1135		reinit_completion(&qspi->mspi_done);
1136
1137		slots = write_to_hw(qspi, spi);
1138		if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
1139			dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
1140			return -ETIMEDOUT;
1141		}
1142
1143		read_from_hw(qspi, slots);
1144	}
1145	bcm_qspi_enable_bspi(qspi);
1146
1147	return 0;
1148}
1149
1150static int bcm_qspi_mspi_exec_mem_op(struct spi_device *spi,
1151				     const struct spi_mem_op *op)
1152{
1153	struct spi_master *master = spi->master;
1154	struct bcm_qspi *qspi = spi_master_get_devdata(master);
1155	struct spi_transfer t[2];
1156	u8 cmd[6] = { };
1157	int ret, i;
1158
1159	memset(cmd, 0, sizeof(cmd));
1160	memset(t, 0, sizeof(t));
1161
1162	/* tx */
1163	/* opcode is in cmd[0] */
1164	cmd[0] = op->cmd.opcode;
1165	for (i = 0; i < op->addr.nbytes; i++)
1166		cmd[1 + i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
1167
 
1168	t[0].tx_buf = cmd;
1169	t[0].len = op->addr.nbytes + op->dummy.nbytes + 1;
1170	t[0].bits_per_word = spi->bits_per_word;
1171	t[0].tx_nbits = op->cmd.buswidth;
1172	/* lets mspi know that this is not last transfer */
1173	qspi->trans_pos.mspi_last_trans = false;
1174	ret = bcm_qspi_transfer_one(master, spi, &t[0]);
1175
1176	/* rx */
1177	qspi->trans_pos.mspi_last_trans = true;
1178	if (!ret) {
1179		/* rx */
1180		t[1].rx_buf = op->data.buf.in;
1181		t[1].len = op->data.nbytes;
1182		t[1].rx_nbits =  op->data.buswidth;
1183		t[1].bits_per_word = spi->bits_per_word;
1184		ret = bcm_qspi_transfer_one(master, spi, &t[1]);
1185	}
1186
 
 
 
1187	return ret;
1188}
1189
1190static int bcm_qspi_exec_mem_op(struct spi_mem *mem,
1191				const struct spi_mem_op *op)
1192{
1193	struct spi_device *spi = mem->spi;
1194	struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
1195	int ret = 0;
1196	bool mspi_read = false;
1197	u32 addr = 0, len;
1198	u_char *buf;
1199
1200	if (!op->data.nbytes || !op->addr.nbytes || op->addr.nbytes > 4 ||
1201	    op->data.dir != SPI_MEM_DATA_IN)
1202		return -ENOTSUPP;
1203
1204	buf = op->data.buf.in;
1205	addr = op->addr.val;
1206	len = op->data.nbytes;
1207
1208	if (has_bspi(qspi) && bcm_qspi_bspi_ver_three(qspi) == true) {
1209		/*
1210		 * The address coming into this function is a raw flash offset.
1211		 * But for BSPI <= V3, we need to convert it to a remapped BSPI
1212		 * address. If it crosses a 4MB boundary, just revert back to
1213		 * using MSPI.
1214		 */
1215		addr = (addr + 0xc00000) & 0xffffff;
1216
1217		if ((~ADDR_4MB_MASK & addr) ^
1218		    (~ADDR_4MB_MASK & (addr + len - 1)))
1219			mspi_read = true;
1220	}
1221
1222	/* non-aligned and very short transfers are handled by MSPI */
1223	if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
1224	    len < 4)
1225		mspi_read = true;
1226
1227	if (!has_bspi(qspi) || mspi_read)
1228		return bcm_qspi_mspi_exec_mem_op(spi, op);
1229
1230	ret = bcm_qspi_bspi_set_mode(qspi, op, 0);
1231
1232	if (!ret)
1233		ret = bcm_qspi_bspi_exec_mem_op(spi, op);
1234
1235	return ret;
1236}
1237
1238static void bcm_qspi_cleanup(struct spi_device *spi)
1239{
1240	struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
1241
1242	kfree(xp);
1243}
1244
1245static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
1246{
1247	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1248	struct bcm_qspi *qspi = qspi_dev_id->dev;
1249	u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1250
1251	if (status & MSPI_MSPI_STATUS_SPIF) {
1252		struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1253		/* clear interrupt */
1254		status &= ~MSPI_MSPI_STATUS_SPIF;
1255		bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
1256		if (qspi->soc_intc)
1257			soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
1258		complete(&qspi->mspi_done);
1259		return IRQ_HANDLED;
1260	}
1261
1262	return IRQ_NONE;
1263}
1264
1265static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
1266{
1267	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1268	struct bcm_qspi *qspi = qspi_dev_id->dev;
1269	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1270	u32 status = qspi_dev_id->irqp->mask;
1271
1272	if (qspi->bspi_enabled && qspi->bspi_rf_op) {
1273		bcm_qspi_bspi_lr_data_read(qspi);
1274		if (qspi->bspi_rf_op_len == 0) {
1275			qspi->bspi_rf_op = NULL;
1276			if (qspi->soc_intc) {
1277				/* disable soc BSPI interrupt */
1278				soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
1279							   false);
1280				/* indicate done */
1281				status = INTR_BSPI_LR_SESSION_DONE_MASK;
1282			}
1283
1284			if (qspi->bspi_rf_op_status)
1285				bcm_qspi_bspi_lr_clear(qspi);
1286			else
1287				bcm_qspi_bspi_flush_prefetch_buffers(qspi);
1288		}
1289
1290		if (qspi->soc_intc)
1291			/* clear soc BSPI interrupt */
1292			soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
1293	}
1294
1295	status &= INTR_BSPI_LR_SESSION_DONE_MASK;
1296	if (qspi->bspi_enabled && status && qspi->bspi_rf_op_len == 0)
1297		complete(&qspi->bspi_done);
1298
1299	return IRQ_HANDLED;
1300}
1301
1302static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
1303{
1304	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1305	struct bcm_qspi *qspi = qspi_dev_id->dev;
1306	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1307
1308	dev_err(&qspi->pdev->dev, "BSPI INT error\n");
1309	qspi->bspi_rf_op_status = -EIO;
1310	if (qspi->soc_intc)
1311		/* clear soc interrupt */
1312		soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
1313
1314	complete(&qspi->bspi_done);
1315	return IRQ_HANDLED;
1316}
1317
1318static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
1319{
1320	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1321	struct bcm_qspi *qspi = qspi_dev_id->dev;
1322	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1323	irqreturn_t ret = IRQ_NONE;
1324
1325	if (soc_intc) {
1326		u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
1327
1328		if (status & MSPI_DONE)
1329			ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
1330		else if (status & BSPI_DONE)
1331			ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
1332		else if (status & BSPI_ERR)
1333			ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
1334	}
1335
1336	return ret;
1337}
1338
1339static const struct bcm_qspi_irq qspi_irq_tab[] = {
1340	{
1341		.irq_name = "spi_lr_fullness_reached",
1342		.irq_handler = bcm_qspi_bspi_lr_l2_isr,
1343		.mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
1344	},
1345	{
1346		.irq_name = "spi_lr_session_aborted",
1347		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1348		.mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
1349	},
1350	{
1351		.irq_name = "spi_lr_impatient",
1352		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1353		.mask = INTR_BSPI_LR_IMPATIENT_MASK,
1354	},
1355	{
1356		.irq_name = "spi_lr_session_done",
1357		.irq_handler = bcm_qspi_bspi_lr_l2_isr,
1358		.mask = INTR_BSPI_LR_SESSION_DONE_MASK,
1359	},
1360#ifdef QSPI_INT_DEBUG
1361	/* this interrupt is for debug purposes only, dont request irq */
1362	{
1363		.irq_name = "spi_lr_overread",
1364		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1365		.mask = INTR_BSPI_LR_OVERREAD_MASK,
1366	},
1367#endif
1368	{
1369		.irq_name = "mspi_done",
1370		.irq_handler = bcm_qspi_mspi_l2_isr,
1371		.mask = INTR_MSPI_DONE_MASK,
1372	},
1373	{
1374		.irq_name = "mspi_halted",
1375		.irq_handler = bcm_qspi_mspi_l2_isr,
1376		.mask = INTR_MSPI_HALTED_MASK,
1377	},
1378	{
1379		/* single muxed L1 interrupt source */
1380		.irq_name = "spi_l1_intr",
1381		.irq_handler = bcm_qspi_l1_isr,
1382		.irq_source = MUXED_L1,
1383		.mask = QSPI_INTERRUPTS_ALL,
1384	},
1385};
1386
1387static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
1388{
1389	u32 val = 0;
1390
1391	val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
1392	qspi->bspi_maj_rev = (val >> 8) & 0xff;
1393	qspi->bspi_min_rev = val & 0xff;
1394	if (!(bcm_qspi_bspi_ver_three(qspi))) {
1395		/* Force mapping of BSPI address -> flash offset */
1396		bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
1397		bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
1398	}
1399	qspi->bspi_enabled = 1;
1400	bcm_qspi_disable_bspi(qspi);
1401	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
1402	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
1403}
1404
1405static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
1406{
1407	struct bcm_qspi_parms parms;
1408
1409	bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
1410	bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
1411	bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1412	bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
1413	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
1414
1415	parms.mode = SPI_MODE_3;
1416	parms.bits_per_word = 8;
1417	parms.speed_hz = qspi->max_speed_hz;
1418	bcm_qspi_hw_set_parms(qspi, &parms);
1419
1420	if (has_bspi(qspi))
1421		bcm_qspi_bspi_init(qspi);
1422}
1423
1424static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
1425{
1426	u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1427
1428	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
1429	if (has_bspi(qspi))
1430		bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1431
1432	/* clear interrupt */
1433	bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status & ~1);
1434}
1435
1436static const struct spi_controller_mem_ops bcm_qspi_mem_ops = {
1437	.exec_op = bcm_qspi_exec_mem_op,
1438};
1439
1440struct bcm_qspi_data {
1441	bool	has_mspi_rev;
1442	bool	has_spcr3_sysclk;
1443};
1444
1445static const struct bcm_qspi_data bcm_qspi_no_rev_data = {
1446	.has_mspi_rev	= false,
1447	.has_spcr3_sysclk = false,
1448};
1449
1450static const struct bcm_qspi_data bcm_qspi_rev_data = {
1451	.has_mspi_rev	= true,
1452	.has_spcr3_sysclk = false,
1453};
1454
1455static const struct bcm_qspi_data bcm_qspi_spcr3_data = {
1456	.has_mspi_rev	= true,
1457	.has_spcr3_sysclk = true,
1458};
1459
1460static const struct of_device_id bcm_qspi_of_match[] = {
1461	{
1462		.compatible = "brcm,spi-bcm7445-qspi",
1463		.data = &bcm_qspi_rev_data,
1464
1465	},
1466	{
1467		.compatible = "brcm,spi-bcm-qspi",
1468		.data = &bcm_qspi_no_rev_data,
1469	},
1470	{
1471		.compatible = "brcm,spi-bcm7216-qspi",
1472		.data = &bcm_qspi_spcr3_data,
1473	},
1474	{
1475		.compatible = "brcm,spi-bcm7278-qspi",
1476		.data = &bcm_qspi_spcr3_data,
1477	},
1478	{},
1479};
1480MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
1481
1482int bcm_qspi_probe(struct platform_device *pdev,
1483		   struct bcm_qspi_soc_intc *soc_intc)
1484{
1485	const struct of_device_id *of_id = NULL;
1486	const struct bcm_qspi_data *data;
1487	struct device *dev = &pdev->dev;
1488	struct bcm_qspi *qspi;
1489	struct spi_master *master;
1490	struct resource *res;
1491	int irq, ret = 0, num_ints = 0;
1492	u32 val;
1493	u32 rev = 0;
1494	const char *name = NULL;
1495	int num_irqs = ARRAY_SIZE(qspi_irq_tab);
1496
1497	/* We only support device-tree instantiation */
1498	if (!dev->of_node)
1499		return -ENODEV;
1500
1501	of_id = of_match_node(bcm_qspi_of_match, dev->of_node);
1502	if (!of_id)
1503		return -ENODEV;
1504
1505	data = of_id->data;
1506
1507	master = devm_spi_alloc_master(dev, sizeof(struct bcm_qspi));
1508	if (!master) {
1509		dev_err(dev, "error allocating spi_master\n");
1510		return -ENOMEM;
1511	}
1512
1513	qspi = spi_master_get_devdata(master);
1514
1515	qspi->clk = devm_clk_get_optional(&pdev->dev, NULL);
1516	if (IS_ERR(qspi->clk))
1517		return PTR_ERR(qspi->clk);
1518
1519	qspi->pdev = pdev;
1520	qspi->trans_pos.trans = NULL;
1521	qspi->trans_pos.byte = 0;
1522	qspi->trans_pos.mspi_last_trans = true;
1523	qspi->master = master;
1524
1525	master->bus_num = -1;
1526	master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD |
1527				SPI_3WIRE;
1528	master->setup = bcm_qspi_setup;
1529	master->transfer_one = bcm_qspi_transfer_one;
1530	master->mem_ops = &bcm_qspi_mem_ops;
1531	master->cleanup = bcm_qspi_cleanup;
1532	master->dev.of_node = dev->of_node;
1533	master->num_chipselect = NUM_CHIPSELECT;
1534	master->use_gpio_descriptors = true;
1535
1536	qspi->big_endian = of_device_is_big_endian(dev->of_node);
1537
1538	if (!of_property_read_u32(dev->of_node, "num-cs", &val))
1539		master->num_chipselect = val;
1540
1541	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
1542	if (!res)
1543		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1544						   "mspi");
1545
1546	if (res) {
1547		qspi->base[MSPI]  = devm_ioremap_resource(dev, res);
1548		if (IS_ERR(qspi->base[MSPI]))
1549			return PTR_ERR(qspi->base[MSPI]);
 
 
1550	} else {
1551		return 0;
1552	}
1553
1554	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
1555	if (res) {
1556		qspi->base[BSPI]  = devm_ioremap_resource(dev, res);
1557		if (IS_ERR(qspi->base[BSPI]))
1558			return PTR_ERR(qspi->base[BSPI]);
 
 
1559		qspi->bspi_mode = true;
1560	} else {
1561		qspi->bspi_mode = false;
1562	}
1563
1564	dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
1565
1566	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
1567	if (res) {
1568		qspi->base[CHIP_SELECT]  = devm_ioremap_resource(dev, res);
1569		if (IS_ERR(qspi->base[CHIP_SELECT]))
1570			return PTR_ERR(qspi->base[CHIP_SELECT]);
 
 
1571	}
1572
1573	qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
1574				GFP_KERNEL);
1575	if (!qspi->dev_ids)
1576		return -ENOMEM;
1577
1578	/*
1579	 * Some SoCs integrate spi controller (e.g., its interrupt bits)
1580	 * in specific ways
1581	 */
1582	if (soc_intc) {
1583		qspi->soc_intc = soc_intc;
1584		soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
1585	} else {
1586		qspi->soc_intc = NULL;
1587	}
1588
1589	if (qspi->clk) {
1590		ret = clk_prepare_enable(qspi->clk);
1591		if (ret) {
1592			dev_err(dev, "failed to prepare clock\n");
1593			goto qspi_probe_err;
1594		}
1595		qspi->base_clk = clk_get_rate(qspi->clk);
1596	} else {
1597		qspi->base_clk = MSPI_BASE_FREQ;
1598	}
1599
1600	if (data->has_mspi_rev) {
1601		rev = bcm_qspi_read(qspi, MSPI, MSPI_REV);
1602		/* some older revs do not have a MSPI_REV register */
1603		if ((rev & 0xff) == 0xff)
1604			rev = 0;
1605	}
1606
1607	qspi->mspi_maj_rev = (rev >> 4) & 0xf;
1608	qspi->mspi_min_rev = rev & 0xf;
1609	qspi->mspi_spcr3_sysclk = data->has_spcr3_sysclk;
1610
1611	qspi->max_speed_hz = qspi->base_clk / (bcm_qspi_spbr_min(qspi) * 2);
1612
1613	/*
1614	 * On SW resets it is possible to have the mask still enabled
1615	 * Need to disable the mask and clear the status while we init
1616	 */
1617	bcm_qspi_hw_uninit(qspi);
1618
1619	for (val = 0; val < num_irqs; val++) {
1620		irq = -1;
1621		name = qspi_irq_tab[val].irq_name;
1622		if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
1623			/* get the l2 interrupts */
1624			irq = platform_get_irq_byname_optional(pdev, name);
1625		} else if (!num_ints && soc_intc) {
1626			/* all mspi, bspi intrs muxed to one L1 intr */
1627			irq = platform_get_irq(pdev, 0);
1628		}
1629
1630		if (irq  >= 0) {
1631			ret = devm_request_irq(&pdev->dev, irq,
1632					       qspi_irq_tab[val].irq_handler, 0,
1633					       name,
1634					       &qspi->dev_ids[val]);
1635			if (ret < 0) {
1636				dev_err(&pdev->dev, "IRQ %s not found\n", name);
1637				goto qspi_unprepare_err;
1638			}
1639
1640			qspi->dev_ids[val].dev = qspi;
1641			qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
1642			num_ints++;
1643			dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
1644				qspi_irq_tab[val].irq_name,
1645				irq);
1646		}
1647	}
1648
1649	if (!num_ints) {
1650		dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
1651		ret = -EINVAL;
1652		goto qspi_unprepare_err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1653	}
1654
 
 
 
 
 
 
 
 
 
1655	bcm_qspi_hw_init(qspi);
1656	init_completion(&qspi->mspi_done);
1657	init_completion(&qspi->bspi_done);
1658	qspi->curr_cs = -1;
1659
1660	platform_set_drvdata(pdev, qspi);
1661
1662	qspi->xfer_mode.width = -1;
1663	qspi->xfer_mode.addrlen = -1;
1664	qspi->xfer_mode.hp = -1;
1665
1666	ret = spi_register_master(master);
1667	if (ret < 0) {
1668		dev_err(dev, "can't register master\n");
1669		goto qspi_reg_err;
1670	}
1671
1672	return 0;
1673
1674qspi_reg_err:
1675	bcm_qspi_hw_uninit(qspi);
1676qspi_unprepare_err:
1677	clk_disable_unprepare(qspi->clk);
1678qspi_probe_err:
1679	kfree(qspi->dev_ids);
 
 
1680	return ret;
1681}
1682/* probe function to be called by SoC specific platform driver probe */
1683EXPORT_SYMBOL_GPL(bcm_qspi_probe);
1684
1685void bcm_qspi_remove(struct platform_device *pdev)
1686{
1687	struct bcm_qspi *qspi = platform_get_drvdata(pdev);
1688
1689	spi_unregister_master(qspi->master);
1690	bcm_qspi_hw_uninit(qspi);
1691	clk_disable_unprepare(qspi->clk);
1692	kfree(qspi->dev_ids);
1693}
1694
 
 
1695/* function to be called by SoC specific platform driver remove() */
1696EXPORT_SYMBOL_GPL(bcm_qspi_remove);
1697
1698static int __maybe_unused bcm_qspi_suspend(struct device *dev)
1699{
1700	struct bcm_qspi *qspi = dev_get_drvdata(dev);
1701
1702	/* store the override strap value */
1703	if (!bcm_qspi_bspi_ver_three(qspi))
1704		qspi->s3_strap_override_ctrl =
1705			bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
1706
1707	spi_master_suspend(qspi->master);
1708	clk_disable_unprepare(qspi->clk);
1709	bcm_qspi_hw_uninit(qspi);
1710
1711	return 0;
1712};
1713
1714static int __maybe_unused bcm_qspi_resume(struct device *dev)
1715{
1716	struct bcm_qspi *qspi = dev_get_drvdata(dev);
1717	int ret = 0;
1718
1719	bcm_qspi_hw_init(qspi);
1720	bcm_qspi_chip_select(qspi, qspi->curr_cs);
1721	if (qspi->soc_intc)
1722		/* enable MSPI interrupt */
1723		qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
1724						 true);
1725
1726	ret = clk_prepare_enable(qspi->clk);
1727	if (!ret)
1728		spi_master_resume(qspi->master);
1729
1730	return ret;
1731}
1732
1733SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
1734
1735/* pm_ops to be called by SoC specific platform driver */
1736EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
1737
1738MODULE_AUTHOR("Kamal Dasu");
1739MODULE_DESCRIPTION("Broadcom QSPI driver");
1740MODULE_LICENSE("GPL v2");
1741MODULE_ALIAS("platform:" DRIVER_NAME);
v4.17
 
   1/*
   2 * Driver for Broadcom BRCMSTB, NSP,  NS2, Cygnus SPI Controllers
   3 *
   4 * Copyright 2016 Broadcom
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License, version 2, as
   8 * published by the Free Software Foundation (the "GPL").
   9 *
  10 * This program is distributed in the hope that it will be useful, but
  11 * WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  13 * General Public License version 2 (GPLv2) for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * version 2 (GPLv2) along with this source code.
  17 */
  18
  19#include <linux/clk.h>
  20#include <linux/delay.h>
  21#include <linux/device.h>
  22#include <linux/init.h>
  23#include <linux/interrupt.h>
  24#include <linux/io.h>
  25#include <linux/ioport.h>
  26#include <linux/kernel.h>
  27#include <linux/module.h>
  28#include <linux/of.h>
  29#include <linux/of_irq.h>
  30#include <linux/platform_device.h>
  31#include <linux/slab.h>
  32#include <linux/spi/spi.h>
 
  33#include <linux/sysfs.h>
  34#include <linux/types.h>
  35#include "spi-bcm-qspi.h"
  36
  37#define DRIVER_NAME "bcm_qspi"
  38
  39
  40/* BSPI register offsets */
  41#define BSPI_REVISION_ID			0x000
  42#define BSPI_SCRATCH				0x004
  43#define BSPI_MAST_N_BOOT_CTRL			0x008
  44#define BSPI_BUSY_STATUS			0x00c
  45#define BSPI_INTR_STATUS			0x010
  46#define BSPI_B0_STATUS				0x014
  47#define BSPI_B0_CTRL				0x018
  48#define BSPI_B1_STATUS				0x01c
  49#define BSPI_B1_CTRL				0x020
  50#define BSPI_STRAP_OVERRIDE_CTRL		0x024
  51#define BSPI_FLEX_MODE_ENABLE			0x028
  52#define BSPI_BITS_PER_CYCLE			0x02c
  53#define BSPI_BITS_PER_PHASE			0x030
  54#define BSPI_CMD_AND_MODE_BYTE			0x034
  55#define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE	0x038
  56#define BSPI_BSPI_XOR_VALUE			0x03c
  57#define BSPI_BSPI_XOR_ENABLE			0x040
  58#define BSPI_BSPI_PIO_MODE_ENABLE		0x044
  59#define BSPI_BSPI_PIO_IODIR			0x048
  60#define BSPI_BSPI_PIO_DATA			0x04c
  61
  62/* RAF register offsets */
  63#define BSPI_RAF_START_ADDR			0x100
  64#define BSPI_RAF_NUM_WORDS			0x104
  65#define BSPI_RAF_CTRL				0x108
  66#define BSPI_RAF_FULLNESS			0x10c
  67#define BSPI_RAF_WATERMARK			0x110
  68#define BSPI_RAF_STATUS			0x114
  69#define BSPI_RAF_READ_DATA			0x118
  70#define BSPI_RAF_WORD_CNT			0x11c
  71#define BSPI_RAF_CURR_ADDR			0x120
  72
  73/* Override mode masks */
  74#define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE	BIT(0)
  75#define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL	BIT(1)
  76#define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE	BIT(2)
  77#define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD	BIT(3)
  78#define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE	BIT(4)
  79
  80#define BSPI_ADDRLEN_3BYTES			3
  81#define BSPI_ADDRLEN_4BYTES			4
  82
  83#define BSPI_RAF_STATUS_FIFO_EMPTY_MASK	BIT(1)
  84
  85#define BSPI_RAF_CTRL_START_MASK		BIT(0)
  86#define BSPI_RAF_CTRL_CLEAR_MASK		BIT(1)
  87
  88#define BSPI_BPP_MODE_SELECT_MASK		BIT(8)
  89#define BSPI_BPP_ADDR_SELECT_MASK		BIT(16)
  90
  91#define BSPI_READ_LENGTH			512
  92
  93/* MSPI register offsets */
  94#define MSPI_SPCR0_LSB				0x000
  95#define MSPI_SPCR0_MSB				0x004
 
 
 
  96#define MSPI_SPCR1_LSB				0x008
  97#define MSPI_SPCR1_MSB				0x00c
  98#define MSPI_NEWQP				0x010
  99#define MSPI_ENDQP				0x014
 100#define MSPI_SPCR2				0x018
 101#define MSPI_MSPI_STATUS			0x020
 102#define MSPI_CPTQP				0x024
 103#define MSPI_SPCR3				0x028
 
 104#define MSPI_TXRAM				0x040
 105#define MSPI_RXRAM				0x0c0
 106#define MSPI_CDRAM				0x140
 107#define MSPI_WRITE_LOCK			0x180
 108
 109#define MSPI_MASTER_BIT			BIT(7)
 110
 111#define MSPI_NUM_CDRAM				16
 
 112#define MSPI_CDRAM_CONT_BIT			BIT(7)
 113#define MSPI_CDRAM_BITSE_BIT			BIT(6)
 
 114#define MSPI_CDRAM_PCS				0xf
 115
 116#define MSPI_SPCR2_SPE				BIT(6)
 117#define MSPI_SPCR2_CONT_AFTER_CMD		BIT(7)
 118
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 119#define MSPI_MSPI_STATUS_SPIF			BIT(0)
 120
 121#define INTR_BASE_BIT_SHIFT			0x02
 122#define INTR_COUNT				0x07
 123
 124#define NUM_CHIPSELECT				4
 125#define QSPI_SPBR_MIN				8U
 126#define QSPI_SPBR_MAX				255U
 
 127
 128#define OPCODE_DIOR				0xBB
 129#define OPCODE_QIOR				0xEB
 130#define OPCODE_DIOR_4B				0xBC
 131#define OPCODE_QIOR_4B				0xEC
 132
 133#define MAX_CMD_SIZE				6
 134
 135#define ADDR_4MB_MASK				GENMASK(22, 0)
 136
 137/* stop at end of transfer, no other reason */
 138#define TRANS_STATUS_BREAK_NONE		0
 139/* stop at end of spi_message */
 140#define TRANS_STATUS_BREAK_EOM			1
 141/* stop at end of spi_transfer if delay */
 142#define TRANS_STATUS_BREAK_DELAY		2
 143/* stop at end of spi_transfer if cs_change */
 144#define TRANS_STATUS_BREAK_CS_CHANGE		4
 145/* stop if we run out of bytes */
 146#define TRANS_STATUS_BREAK_NO_BYTES		8
 147
 148/* events that make us stop filling TX slots */
 149#define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM |		\
 150			       TRANS_STATUS_BREAK_DELAY |		\
 151			       TRANS_STATUS_BREAK_CS_CHANGE)
 152
 153/* events that make us deassert CS */
 154#define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM |		\
 155				     TRANS_STATUS_BREAK_CS_CHANGE)
 156
 
 
 
 
 
 
 
 
 157struct bcm_qspi_parms {
 158	u32 speed_hz;
 159	u8 mode;
 160	u8 bits_per_word;
 161};
 162
 163struct bcm_xfer_mode {
 164	bool flex_mode;
 165	unsigned int width;
 166	unsigned int addrlen;
 167	unsigned int hp;
 168};
 169
 170enum base_type {
 171	MSPI,
 172	BSPI,
 173	CHIP_SELECT,
 174	BASEMAX,
 175};
 176
 177enum irq_source {
 178	SINGLE_L2,
 179	MUXED_L1,
 180};
 181
 182struct bcm_qspi_irq {
 183	const char *irq_name;
 184	const irq_handler_t irq_handler;
 185	int irq_source;
 186	u32 mask;
 187};
 188
 189struct bcm_qspi_dev_id {
 190	const struct bcm_qspi_irq *irqp;
 191	void *dev;
 192};
 193
 194
 195struct qspi_trans {
 196	struct spi_transfer *trans;
 197	int byte;
 198	bool mspi_last_trans;
 199};
 200
 201struct bcm_qspi {
 202	struct platform_device *pdev;
 203	struct spi_master *master;
 204	struct clk *clk;
 205	u32 base_clk;
 206	u32 max_speed_hz;
 207	void __iomem *base[BASEMAX];
 208
 209	/* Some SoCs provide custom interrupt status register(s) */
 210	struct bcm_qspi_soc_intc	*soc_intc;
 211
 212	struct bcm_qspi_parms last_parms;
 213	struct qspi_trans  trans_pos;
 214	int curr_cs;
 215	int bspi_maj_rev;
 216	int bspi_min_rev;
 217	int bspi_enabled;
 218	struct spi_flash_read_message *bspi_rf_msg;
 219	u32 bspi_rf_msg_idx;
 220	u32 bspi_rf_msg_len;
 221	u32 bspi_rf_msg_status;
 222	struct bcm_xfer_mode xfer_mode;
 223	u32 s3_strap_override_ctrl;
 224	bool bspi_mode;
 225	bool big_endian;
 226	int num_irqs;
 227	struct bcm_qspi_dev_id *dev_ids;
 228	struct completion mspi_done;
 229	struct completion bspi_done;
 
 
 
 230};
 231
 232static inline bool has_bspi(struct bcm_qspi *qspi)
 233{
 234	return qspi->bspi_mode;
 235}
 236
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 237/* Read qspi controller register*/
 238static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
 239				unsigned int offset)
 240{
 241	return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
 242}
 243
 244/* Write qspi controller register*/
 245static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
 246				  unsigned int offset, unsigned int data)
 247{
 248	bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
 249}
 250
 251/* BSPI helpers */
 252static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
 253{
 254	int i;
 255
 256	/* this should normally finish within 10us */
 257	for (i = 0; i < 1000; i++) {
 258		if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
 259			return 0;
 260		udelay(1);
 261	}
 262	dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
 263	return -EIO;
 264}
 265
 266static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
 267{
 268	if (qspi->bspi_maj_rev < 4)
 269		return true;
 270	return false;
 271}
 272
 273static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
 274{
 275	bcm_qspi_bspi_busy_poll(qspi);
 276	/* Force rising edge for the b0/b1 'flush' field */
 277	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
 278	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
 279	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
 280	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
 281}
 282
 283static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
 284{
 285	return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
 286				BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
 287}
 288
 289static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
 290{
 291	u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
 292
 293	/* BSPI v3 LR is LE only, convert data to host endianness */
 294	if (bcm_qspi_bspi_ver_three(qspi))
 295		data = le32_to_cpu(data);
 296
 297	return data;
 298}
 299
 300static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
 301{
 302	bcm_qspi_bspi_busy_poll(qspi);
 303	bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
 304		       BSPI_RAF_CTRL_START_MASK);
 305}
 306
 307static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
 308{
 309	bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
 310		       BSPI_RAF_CTRL_CLEAR_MASK);
 311	bcm_qspi_bspi_flush_prefetch_buffers(qspi);
 312}
 313
 314static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
 315{
 316	u32 *buf = (u32 *)qspi->bspi_rf_msg->buf;
 317	u32 data = 0;
 318
 319	dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_msg,
 320		qspi->bspi_rf_msg->buf, qspi->bspi_rf_msg_len);
 321	while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
 322		data = bcm_qspi_bspi_lr_read_fifo(qspi);
 323		if (likely(qspi->bspi_rf_msg_len >= 4) &&
 324		    IS_ALIGNED((uintptr_t)buf, 4)) {
 325			buf[qspi->bspi_rf_msg_idx++] = data;
 326			qspi->bspi_rf_msg_len -= 4;
 327		} else {
 328			/* Read out remaining bytes, make sure*/
 329			u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_msg_idx];
 330
 331			data = cpu_to_le32(data);
 332			while (qspi->bspi_rf_msg_len) {
 333				*cbuf++ = (u8)data;
 334				data >>= 8;
 335				qspi->bspi_rf_msg_len--;
 336			}
 337		}
 338	}
 339}
 340
 341static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
 342					  int bpp, int bpc, int flex_mode)
 343{
 344	bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
 345	bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
 346	bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
 347	bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
 348	bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
 349}
 350
 351static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi,
 352				       struct spi_flash_read_message *msg,
 353				       int hp)
 354{
 355	int bpc = 0, bpp = 0;
 356	u8 command = msg->read_opcode;
 357	int width  = msg->data_nbits ? msg->data_nbits : SPI_NBITS_SINGLE;
 358	int addrlen = msg->addr_width;
 359	int addr_nbits = msg->addr_nbits ? msg->addr_nbits : SPI_NBITS_SINGLE;
 360	int flex_mode = 1;
 361
 362	dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
 363		width, addrlen, hp);
 364
 365	if (addrlen == BSPI_ADDRLEN_4BYTES)
 366		bpp = BSPI_BPP_ADDR_SELECT_MASK;
 367
 368	bpp |= msg->dummy_bytes * (8/addr_nbits);
 
 369
 370	switch (width) {
 371	case SPI_NBITS_SINGLE:
 372		if (addrlen == BSPI_ADDRLEN_3BYTES)
 373			/* default mode, does not need flex_cmd */
 374			flex_mode = 0;
 375		break;
 376	case SPI_NBITS_DUAL:
 377		bpc = 0x00000001;
 378		if (hp) {
 379			bpc |= 0x00010100; /* address and mode are 2-bit */
 380			bpp = BSPI_BPP_MODE_SELECT_MASK;
 381		}
 382		break;
 383	case SPI_NBITS_QUAD:
 384		bpc = 0x00000002;
 385		if (hp) {
 386			bpc |= 0x00020200; /* address and mode are 4-bit */
 387			bpp |= BSPI_BPP_MODE_SELECT_MASK;
 388		}
 389		break;
 390	default:
 391		return -EINVAL;
 392	}
 393
 394	bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc, flex_mode);
 395
 396	return 0;
 397}
 398
 399static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi,
 400				      struct spi_flash_read_message *msg,
 401				      int hp)
 402{
 403	int width = msg->data_nbits ? msg->data_nbits : SPI_NBITS_SINGLE;
 404	int addrlen = msg->addr_width;
 405	u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
 406
 407	dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
 408		width, addrlen, hp);
 409
 410	switch (width) {
 411	case SPI_NBITS_SINGLE:
 412		/* clear quad/dual mode */
 413		data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
 414			  BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
 415		break;
 416	case SPI_NBITS_QUAD:
 417		/* clear dual mode and set quad mode */
 418		data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
 419		data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
 420		break;
 421	case SPI_NBITS_DUAL:
 422		/* clear quad mode set dual mode */
 423		data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
 424		data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
 425		break;
 426	default:
 427		return -EINVAL;
 428	}
 429
 430	if (addrlen == BSPI_ADDRLEN_4BYTES)
 431		/* set 4byte mode*/
 432		data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
 433	else
 434		/* clear 4 byte mode */
 435		data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
 436
 437	/* set the override mode */
 438	data |=	BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
 439	bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
 440	bcm_qspi_bspi_set_xfer_params(qspi, msg->read_opcode, 0, 0, 0);
 441
 442	return 0;
 443}
 444
 445static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
 446				  struct spi_flash_read_message *msg, int hp)
 447{
 448	int error = 0;
 449	int width = msg->data_nbits ? msg->data_nbits : SPI_NBITS_SINGLE;
 450	int addrlen = msg->addr_width;
 451
 452	/* default mode */
 453	qspi->xfer_mode.flex_mode = true;
 454
 455	if (!bcm_qspi_bspi_ver_three(qspi)) {
 456		u32 val, mask;
 457
 458		val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
 459		mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
 460		if (val & mask || qspi->s3_strap_override_ctrl & mask) {
 461			qspi->xfer_mode.flex_mode = false;
 462			bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
 463			error = bcm_qspi_bspi_set_override(qspi, msg, hp);
 464		}
 465	}
 466
 467	if (qspi->xfer_mode.flex_mode)
 468		error = bcm_qspi_bspi_set_flex_mode(qspi, msg, hp);
 469
 470	if (error) {
 471		dev_warn(&qspi->pdev->dev,
 472			 "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
 473			 width, addrlen, hp);
 474	} else if (qspi->xfer_mode.width != width ||
 475		   qspi->xfer_mode.addrlen != addrlen ||
 476		   qspi->xfer_mode.hp != hp) {
 477		qspi->xfer_mode.width = width;
 478		qspi->xfer_mode.addrlen = addrlen;
 479		qspi->xfer_mode.hp = hp;
 480		dev_dbg(&qspi->pdev->dev,
 481			"cs:%d %d-lane output, %d-byte address%s\n",
 482			qspi->curr_cs,
 483			qspi->xfer_mode.width,
 484			qspi->xfer_mode.addrlen,
 485			qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
 486	}
 487
 488	return error;
 489}
 490
 491static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
 492{
 493	if (!has_bspi(qspi))
 494		return;
 495
 496	qspi->bspi_enabled = 1;
 497	if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
 498		return;
 499
 500	bcm_qspi_bspi_flush_prefetch_buffers(qspi);
 501	udelay(1);
 502	bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
 503	udelay(1);
 504}
 505
 506static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
 507{
 508	if (!has_bspi(qspi))
 509		return;
 510
 511	qspi->bspi_enabled = 0;
 512	if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
 513		return;
 514
 515	bcm_qspi_bspi_busy_poll(qspi);
 516	bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
 517	udelay(1);
 518}
 519
 520static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
 521{
 522	u32 rd = 0;
 523	u32 wr = 0;
 524
 525	if (qspi->base[CHIP_SELECT]) {
 526		rd = bcm_qspi_read(qspi, CHIP_SELECT, 0);
 527		wr = (rd & ~0xff) | (1 << cs);
 528		if (rd == wr)
 529			return;
 530		bcm_qspi_write(qspi, CHIP_SELECT, 0, wr);
 531		usleep_range(10, 20);
 532	}
 533
 534	dev_dbg(&qspi->pdev->dev, "using cs:%d\n", cs);
 535	qspi->curr_cs = cs;
 536}
 537
 
 
 
 
 
 
 
 
 
 538/* MSPI helpers */
 539static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
 540				  const struct bcm_qspi_parms *xp)
 541{
 542	u32 spcr, spbr = 0;
 543
 544	if (xp->speed_hz)
 545		spbr = qspi->base_clk / (2 * xp->speed_hz);
 
 
 
 
 
 
 546
 547	spcr = clamp_val(spbr, QSPI_SPBR_MIN, QSPI_SPBR_MAX);
 548	bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spcr);
 
 
 
 
 
 
 
 549
 550	spcr = MSPI_MASTER_BIT;
 551	/* for 16 bit the data should be zero */
 552	if (xp->bits_per_word != 16)
 553		spcr |= xp->bits_per_word << 2;
 554	spcr |= xp->mode & 3;
 555	bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
 556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 557	qspi->last_parms = *xp;
 558}
 559
 560static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
 561				  struct spi_device *spi,
 562				  struct spi_transfer *trans)
 563{
 564	struct bcm_qspi_parms xp;
 565
 566	xp.speed_hz = trans->speed_hz;
 567	xp.bits_per_word = trans->bits_per_word;
 568	xp.mode = spi->mode;
 569
 570	bcm_qspi_hw_set_parms(qspi, &xp);
 571}
 572
 573static int bcm_qspi_setup(struct spi_device *spi)
 574{
 575	struct bcm_qspi_parms *xp;
 576
 577	if (spi->bits_per_word > 16)
 578		return -EINVAL;
 579
 580	xp = spi_get_ctldata(spi);
 581	if (!xp) {
 582		xp = kzalloc(sizeof(*xp), GFP_KERNEL);
 583		if (!xp)
 584			return -ENOMEM;
 585		spi_set_ctldata(spi, xp);
 586	}
 587	xp->speed_hz = spi->max_speed_hz;
 588	xp->mode = spi->mode;
 589
 590	if (spi->bits_per_word)
 591		xp->bits_per_word = spi->bits_per_word;
 592	else
 593		xp->bits_per_word = 8;
 594
 595	return 0;
 596}
 597
 598static bool bcm_qspi_mspi_transfer_is_last(struct bcm_qspi *qspi,
 599					   struct qspi_trans *qt)
 600{
 601	if (qt->mspi_last_trans &&
 602	    spi_transfer_is_last(qspi->master, qt->trans))
 603		return true;
 604	else
 605		return false;
 606}
 607
 608static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
 609					struct qspi_trans *qt, int flags)
 610{
 611	int ret = TRANS_STATUS_BREAK_NONE;
 612
 613	/* count the last transferred bytes */
 614	if (qt->trans->bits_per_word <= 8)
 615		qt->byte++;
 616	else
 617		qt->byte += 2;
 
 
 
 
 618
 619	if (qt->byte >= qt->trans->len) {
 620		/* we're at the end of the spi_transfer */
 621		/* in TX mode, need to pause for a delay or CS change */
 622		if (qt->trans->delay_usecs &&
 623		    (flags & TRANS_STATUS_BREAK_DELAY))
 624			ret |= TRANS_STATUS_BREAK_DELAY;
 625		if (qt->trans->cs_change &&
 626		    (flags & TRANS_STATUS_BREAK_CS_CHANGE))
 627			ret |= TRANS_STATUS_BREAK_CS_CHANGE;
 628		if (ret)
 629			goto done;
 630
 631		dev_dbg(&qspi->pdev->dev, "advance msg exit\n");
 632		if (bcm_qspi_mspi_transfer_is_last(qspi, qt))
 633			ret = TRANS_STATUS_BREAK_EOM;
 634		else
 635			ret = TRANS_STATUS_BREAK_NO_BYTES;
 636
 637		qt->trans = NULL;
 638	}
 639
 640done:
 641	dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
 642		qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
 643	return ret;
 644}
 645
 646static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
 647{
 648	u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
 649
 650	/* mask out reserved bits */
 651	return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
 652}
 653
 654static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
 655{
 656	u32 reg_offset = MSPI_RXRAM;
 657	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
 658	u32 msb_offset = reg_offset + (slot << 3);
 659
 660	return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
 661		((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
 662}
 663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 664static void read_from_hw(struct bcm_qspi *qspi, int slots)
 665{
 666	struct qspi_trans tp;
 667	int slot;
 668
 669	bcm_qspi_disable_bspi(qspi);
 670
 671	if (slots > MSPI_NUM_CDRAM) {
 672		/* should never happen */
 673		dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
 674		return;
 675	}
 676
 677	tp = qspi->trans_pos;
 678
 679	for (slot = 0; slot < slots; slot++) {
 680		if (tp.trans->bits_per_word <= 8) {
 681			u8 *buf = tp.trans->rx_buf;
 682
 683			if (buf)
 684				buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
 685			dev_dbg(&qspi->pdev->dev, "RD %02x\n",
 686				buf ? buf[tp.byte] : 0xff);
 687		} else {
 688			u16 *buf = tp.trans->rx_buf;
 689
 690			if (buf)
 691				buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
 692								      slot);
 693			dev_dbg(&qspi->pdev->dev, "RD %04x\n",
 694				buf ? buf[tp.byte] : 0xffff);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 695		}
 696
 697		update_qspi_trans_byte_count(qspi, &tp,
 698					     TRANS_STATUS_BREAK_NONE);
 699	}
 700
 701	qspi->trans_pos = tp;
 702}
 703
 704static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
 705				       u8 val)
 706{
 707	u32 reg_offset = MSPI_TXRAM + (slot << 3);
 708
 709	/* mask out reserved bits */
 710	bcm_qspi_write(qspi, MSPI, reg_offset, val);
 711}
 712
 713static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
 714					u16 val)
 715{
 716	u32 reg_offset = MSPI_TXRAM;
 717	u32 msb_offset = reg_offset + (slot << 3);
 718	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
 719
 720	bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
 721	bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
 722}
 723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 724static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
 725{
 726	return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
 727}
 728
 729static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
 730{
 731	bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
 732}
 733
 734/* Return number of slots written */
 735static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
 736{
 737	struct qspi_trans tp;
 738	int slot = 0, tstatus = 0;
 739	u32 mspi_cdram = 0;
 740
 741	bcm_qspi_disable_bspi(qspi);
 742	tp = qspi->trans_pos;
 743	bcm_qspi_update_parms(qspi, spi, tp.trans);
 744
 745	/* Run until end of transfer or reached the max data */
 746	while (!tstatus && slot < MSPI_NUM_CDRAM) {
 
 747		if (tp.trans->bits_per_word <= 8) {
 748			const u8 *buf = tp.trans->tx_buf;
 749			u8 val = buf ? buf[tp.byte] : 0xff;
 750
 751			write_txram_slot_u8(qspi, slot, val);
 752			dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
 753		} else {
 754			const u16 *buf = tp.trans->tx_buf;
 755			u16 val = buf ? buf[tp.byte / 2] : 0xffff;
 756
 757			write_txram_slot_u16(qspi, slot, val);
 758			dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 759		}
 760		mspi_cdram = MSPI_CDRAM_CONT_BIT;
 
 
 
 
 
 
 761
 762		if (has_bspi(qspi))
 763			mspi_cdram &= ~1;
 764		else
 765			mspi_cdram |= (~(1 << spi->chip_select) &
 766				       MSPI_CDRAM_PCS);
 767
 768		mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
 769				MSPI_CDRAM_BITSE_BIT);
 770
 771		write_cdram_slot(qspi, slot, mspi_cdram);
 772
 773		tstatus = update_qspi_trans_byte_count(qspi, &tp,
 774						       TRANS_STATUS_BREAK_TX);
 775		slot++;
 776	}
 777
 778	if (!slot) {
 779		dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
 780		goto done;
 781	}
 782
 783	dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
 784	bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
 785	bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
 786
 787	if (tstatus & TRANS_STATUS_BREAK_DESELECT) {
 
 
 
 
 
 
 
 
 
 788		mspi_cdram = read_cdram_slot(qspi, slot - 1) &
 789			~MSPI_CDRAM_CONT_BIT;
 790		write_cdram_slot(qspi, slot - 1, mspi_cdram);
 791	}
 792
 793	if (has_bspi(qspi))
 794		bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
 795
 796	/* Must flush previous writes before starting MSPI operation */
 797	mb();
 798	/* Set cont | spe | spifie */
 799	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
 800
 801done:
 802	return slot;
 803}
 804
 805static int bcm_qspi_bspi_flash_read(struct spi_device *spi,
 806				    struct spi_flash_read_message *msg)
 807{
 808	struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
 809	u32 addr = 0, len, rdlen, len_words;
 810	int ret = 0;
 811	unsigned long timeo = msecs_to_jiffies(100);
 812	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
 813
 814	if (bcm_qspi_bspi_ver_three(qspi))
 815		if (msg->addr_width == BSPI_ADDRLEN_4BYTES)
 816			return -EIO;
 817
 818	bcm_qspi_chip_select(qspi, spi->chip_select);
 
 
 819	bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
 820
 821	/*
 822	 * when using flex mode we need to send
 823	 * the upper address byte to bspi
 824	 */
 825	if (bcm_qspi_bspi_ver_three(qspi) == false) {
 826		addr = msg->from & 0xff000000;
 827		bcm_qspi_write(qspi, BSPI,
 828			       BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
 829	}
 830
 831	if (!qspi->xfer_mode.flex_mode)
 832		addr = msg->from;
 833	else
 834		addr = msg->from & 0x00ffffff;
 835
 836	if (bcm_qspi_bspi_ver_three(qspi) == true)
 837		addr = (addr + 0xc00000) & 0xffffff;
 838
 839	/*
 840	 * read into the entire buffer by breaking the reads
 841	 * into RAF buffer read lengths
 842	 */
 843	len = msg->len;
 844	qspi->bspi_rf_msg_idx = 0;
 845
 846	do {
 847		if (len > BSPI_READ_LENGTH)
 848			rdlen = BSPI_READ_LENGTH;
 849		else
 850			rdlen = len;
 851
 852		reinit_completion(&qspi->bspi_done);
 853		bcm_qspi_enable_bspi(qspi);
 854		len_words = (rdlen + 3) >> 2;
 855		qspi->bspi_rf_msg = msg;
 856		qspi->bspi_rf_msg_status = 0;
 857		qspi->bspi_rf_msg_len = rdlen;
 858		dev_dbg(&qspi->pdev->dev,
 859			"bspi xfr addr 0x%x len 0x%x", addr, rdlen);
 860		bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
 861		bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
 862		bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
 863		if (qspi->soc_intc) {
 864			/*
 865			 * clear soc MSPI and BSPI interrupts and enable
 866			 * BSPI interrupts.
 867			 */
 868			soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
 869			soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
 870		}
 871
 872		/* Must flush previous writes before starting BSPI operation */
 873		mb();
 874		bcm_qspi_bspi_lr_start(qspi);
 875		if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
 876			dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
 877			ret = -ETIMEDOUT;
 878			break;
 879		}
 880
 881		/* set msg return length */
 882		msg->retlen += rdlen;
 883		addr += rdlen;
 884		len -= rdlen;
 885	} while (len);
 886
 887	return ret;
 888}
 889
 890static int bcm_qspi_transfer_one(struct spi_master *master,
 891				 struct spi_device *spi,
 892				 struct spi_transfer *trans)
 893{
 894	struct bcm_qspi *qspi = spi_master_get_devdata(master);
 895	int slots;
 896	unsigned long timeo = msecs_to_jiffies(100);
 897
 898	bcm_qspi_chip_select(qspi, spi->chip_select);
 
 899	qspi->trans_pos.trans = trans;
 900	qspi->trans_pos.byte = 0;
 901
 902	while (qspi->trans_pos.byte < trans->len) {
 903		reinit_completion(&qspi->mspi_done);
 904
 905		slots = write_to_hw(qspi, spi);
 906		if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
 907			dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
 908			return -ETIMEDOUT;
 909		}
 910
 911		read_from_hw(qspi, slots);
 912	}
 
 913
 914	return 0;
 915}
 916
 917static int bcm_qspi_mspi_flash_read(struct spi_device *spi,
 918				    struct spi_flash_read_message *msg)
 919{
 920	struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
 
 921	struct spi_transfer t[2];
 922	u8 cmd[6];
 923	int ret;
 924
 925	memset(cmd, 0, sizeof(cmd));
 926	memset(t, 0, sizeof(t));
 927
 928	/* tx */
 929	/* opcode is in cmd[0] */
 930	cmd[0] = msg->read_opcode;
 931	cmd[1] = msg->from >> (msg->addr_width * 8 -  8);
 932	cmd[2] = msg->from >> (msg->addr_width * 8 - 16);
 933	cmd[3] = msg->from >> (msg->addr_width * 8 - 24);
 934	cmd[4] = msg->from >> (msg->addr_width * 8 - 32);
 935	t[0].tx_buf = cmd;
 936	t[0].len = msg->addr_width + msg->dummy_bytes + 1;
 937	t[0].bits_per_word = spi->bits_per_word;
 938	t[0].tx_nbits = msg->opcode_nbits;
 939	/* lets mspi know that this is not last transfer */
 940	qspi->trans_pos.mspi_last_trans = false;
 941	ret = bcm_qspi_transfer_one(spi->master, spi, &t[0]);
 942
 943	/* rx */
 944	qspi->trans_pos.mspi_last_trans = true;
 945	if (!ret) {
 946		/* rx */
 947		t[1].rx_buf = msg->buf;
 948		t[1].len = msg->len;
 949		t[1].rx_nbits =  msg->data_nbits;
 950		t[1].bits_per_word = spi->bits_per_word;
 951		ret = bcm_qspi_transfer_one(spi->master, spi, &t[1]);
 952	}
 953
 954	if (!ret)
 955		msg->retlen = msg->len;
 956
 957	return ret;
 958}
 959
 960static int bcm_qspi_flash_read(struct spi_device *spi,
 961			       struct spi_flash_read_message *msg)
 962{
 
 963	struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
 964	int ret = 0;
 965	bool mspi_read = false;
 966	u32 addr, len;
 967	u_char *buf;
 968
 969	buf = msg->buf;
 970	addr = msg->from;
 971	len = msg->len;
 
 
 
 
 972
 973	if (bcm_qspi_bspi_ver_three(qspi) == true) {
 974		/*
 975		 * The address coming into this function is a raw flash offset.
 976		 * But for BSPI <= V3, we need to convert it to a remapped BSPI
 977		 * address. If it crosses a 4MB boundary, just revert back to
 978		 * using MSPI.
 979		 */
 980		addr = (addr + 0xc00000) & 0xffffff;
 981
 982		if ((~ADDR_4MB_MASK & addr) ^
 983		    (~ADDR_4MB_MASK & (addr + len - 1)))
 984			mspi_read = true;
 985	}
 986
 987	/* non-aligned and very short transfers are handled by MSPI */
 988	if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
 989	    len < 4)
 990		mspi_read = true;
 991
 992	if (mspi_read)
 993		return bcm_qspi_mspi_flash_read(spi, msg);
 994
 995	ret = bcm_qspi_bspi_set_mode(qspi, msg, -1);
 996
 997	if (!ret)
 998		ret = bcm_qspi_bspi_flash_read(spi, msg);
 999
1000	return ret;
1001}
1002
1003static void bcm_qspi_cleanup(struct spi_device *spi)
1004{
1005	struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
1006
1007	kfree(xp);
1008}
1009
1010static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
1011{
1012	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1013	struct bcm_qspi *qspi = qspi_dev_id->dev;
1014	u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1015
1016	if (status & MSPI_MSPI_STATUS_SPIF) {
1017		struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1018		/* clear interrupt */
1019		status &= ~MSPI_MSPI_STATUS_SPIF;
1020		bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
1021		if (qspi->soc_intc)
1022			soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
1023		complete(&qspi->mspi_done);
1024		return IRQ_HANDLED;
1025	}
1026
1027	return IRQ_NONE;
1028}
1029
1030static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
1031{
1032	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1033	struct bcm_qspi *qspi = qspi_dev_id->dev;
1034	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1035	u32 status = qspi_dev_id->irqp->mask;
1036
1037	if (qspi->bspi_enabled && qspi->bspi_rf_msg) {
1038		bcm_qspi_bspi_lr_data_read(qspi);
1039		if (qspi->bspi_rf_msg_len == 0) {
1040			qspi->bspi_rf_msg = NULL;
1041			if (qspi->soc_intc) {
1042				/* disable soc BSPI interrupt */
1043				soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
1044							   false);
1045				/* indicate done */
1046				status = INTR_BSPI_LR_SESSION_DONE_MASK;
1047			}
1048
1049			if (qspi->bspi_rf_msg_status)
1050				bcm_qspi_bspi_lr_clear(qspi);
1051			else
1052				bcm_qspi_bspi_flush_prefetch_buffers(qspi);
1053		}
1054
1055		if (qspi->soc_intc)
1056			/* clear soc BSPI interrupt */
1057			soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
1058	}
1059
1060	status &= INTR_BSPI_LR_SESSION_DONE_MASK;
1061	if (qspi->bspi_enabled && status && qspi->bspi_rf_msg_len == 0)
1062		complete(&qspi->bspi_done);
1063
1064	return IRQ_HANDLED;
1065}
1066
1067static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
1068{
1069	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1070	struct bcm_qspi *qspi = qspi_dev_id->dev;
1071	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1072
1073	dev_err(&qspi->pdev->dev, "BSPI INT error\n");
1074	qspi->bspi_rf_msg_status = -EIO;
1075	if (qspi->soc_intc)
1076		/* clear soc interrupt */
1077		soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
1078
1079	complete(&qspi->bspi_done);
1080	return IRQ_HANDLED;
1081}
1082
1083static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
1084{
1085	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1086	struct bcm_qspi *qspi = qspi_dev_id->dev;
1087	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1088	irqreturn_t ret = IRQ_NONE;
1089
1090	if (soc_intc) {
1091		u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
1092
1093		if (status & MSPI_DONE)
1094			ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
1095		else if (status & BSPI_DONE)
1096			ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
1097		else if (status & BSPI_ERR)
1098			ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
1099	}
1100
1101	return ret;
1102}
1103
1104static const struct bcm_qspi_irq qspi_irq_tab[] = {
1105	{
1106		.irq_name = "spi_lr_fullness_reached",
1107		.irq_handler = bcm_qspi_bspi_lr_l2_isr,
1108		.mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
1109	},
1110	{
1111		.irq_name = "spi_lr_session_aborted",
1112		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1113		.mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
1114	},
1115	{
1116		.irq_name = "spi_lr_impatient",
1117		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1118		.mask = INTR_BSPI_LR_IMPATIENT_MASK,
1119	},
1120	{
1121		.irq_name = "spi_lr_session_done",
1122		.irq_handler = bcm_qspi_bspi_lr_l2_isr,
1123		.mask = INTR_BSPI_LR_SESSION_DONE_MASK,
1124	},
1125#ifdef QSPI_INT_DEBUG
1126	/* this interrupt is for debug purposes only, dont request irq */
1127	{
1128		.irq_name = "spi_lr_overread",
1129		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1130		.mask = INTR_BSPI_LR_OVERREAD_MASK,
1131	},
1132#endif
1133	{
1134		.irq_name = "mspi_done",
1135		.irq_handler = bcm_qspi_mspi_l2_isr,
1136		.mask = INTR_MSPI_DONE_MASK,
1137	},
1138	{
1139		.irq_name = "mspi_halted",
1140		.irq_handler = bcm_qspi_mspi_l2_isr,
1141		.mask = INTR_MSPI_HALTED_MASK,
1142	},
1143	{
1144		/* single muxed L1 interrupt source */
1145		.irq_name = "spi_l1_intr",
1146		.irq_handler = bcm_qspi_l1_isr,
1147		.irq_source = MUXED_L1,
1148		.mask = QSPI_INTERRUPTS_ALL,
1149	},
1150};
1151
1152static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
1153{
1154	u32 val = 0;
1155
1156	val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
1157	qspi->bspi_maj_rev = (val >> 8) & 0xff;
1158	qspi->bspi_min_rev = val & 0xff;
1159	if (!(bcm_qspi_bspi_ver_three(qspi))) {
1160		/* Force mapping of BSPI address -> flash offset */
1161		bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
1162		bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
1163	}
1164	qspi->bspi_enabled = 1;
1165	bcm_qspi_disable_bspi(qspi);
1166	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
1167	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
1168}
1169
1170static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
1171{
1172	struct bcm_qspi_parms parms;
1173
1174	bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
1175	bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
1176	bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1177	bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
1178	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
1179
1180	parms.mode = SPI_MODE_3;
1181	parms.bits_per_word = 8;
1182	parms.speed_hz = qspi->max_speed_hz;
1183	bcm_qspi_hw_set_parms(qspi, &parms);
1184
1185	if (has_bspi(qspi))
1186		bcm_qspi_bspi_init(qspi);
1187}
1188
1189static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
1190{
 
 
1191	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
1192	if (has_bspi(qspi))
1193		bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1194
 
 
1195}
1196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1197static const struct of_device_id bcm_qspi_of_match[] = {
1198	{ .compatible = "brcm,spi-bcm-qspi" },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1199	{},
1200};
1201MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
1202
1203int bcm_qspi_probe(struct platform_device *pdev,
1204		   struct bcm_qspi_soc_intc *soc_intc)
1205{
 
 
1206	struct device *dev = &pdev->dev;
1207	struct bcm_qspi *qspi;
1208	struct spi_master *master;
1209	struct resource *res;
1210	int irq, ret = 0, num_ints = 0;
1211	u32 val;
 
1212	const char *name = NULL;
1213	int num_irqs = ARRAY_SIZE(qspi_irq_tab);
1214
1215	/* We only support device-tree instantiation */
1216	if (!dev->of_node)
1217		return -ENODEV;
1218
1219	if (!of_match_node(bcm_qspi_of_match, dev->of_node))
 
1220		return -ENODEV;
1221
1222	master = spi_alloc_master(dev, sizeof(struct bcm_qspi));
 
 
1223	if (!master) {
1224		dev_err(dev, "error allocating spi_master\n");
1225		return -ENOMEM;
1226	}
1227
1228	qspi = spi_master_get_devdata(master);
 
 
 
 
 
1229	qspi->pdev = pdev;
1230	qspi->trans_pos.trans = NULL;
1231	qspi->trans_pos.byte = 0;
1232	qspi->trans_pos.mspi_last_trans = true;
1233	qspi->master = master;
1234
1235	master->bus_num = -1;
1236	master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD;
 
1237	master->setup = bcm_qspi_setup;
1238	master->transfer_one = bcm_qspi_transfer_one;
1239	master->spi_flash_read = bcm_qspi_flash_read;
1240	master->cleanup = bcm_qspi_cleanup;
1241	master->dev.of_node = dev->of_node;
1242	master->num_chipselect = NUM_CHIPSELECT;
 
1243
1244	qspi->big_endian = of_device_is_big_endian(dev->of_node);
1245
1246	if (!of_property_read_u32(dev->of_node, "num-cs", &val))
1247		master->num_chipselect = val;
1248
1249	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
1250	if (!res)
1251		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1252						   "mspi");
1253
1254	if (res) {
1255		qspi->base[MSPI]  = devm_ioremap_resource(dev, res);
1256		if (IS_ERR(qspi->base[MSPI])) {
1257			ret = PTR_ERR(qspi->base[MSPI]);
1258			goto qspi_resource_err;
1259		}
1260	} else {
1261		goto qspi_resource_err;
1262	}
1263
1264	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
1265	if (res) {
1266		qspi->base[BSPI]  = devm_ioremap_resource(dev, res);
1267		if (IS_ERR(qspi->base[BSPI])) {
1268			ret = PTR_ERR(qspi->base[BSPI]);
1269			goto qspi_resource_err;
1270		}
1271		qspi->bspi_mode = true;
1272	} else {
1273		qspi->bspi_mode = false;
1274	}
1275
1276	dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
1277
1278	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
1279	if (res) {
1280		qspi->base[CHIP_SELECT]  = devm_ioremap_resource(dev, res);
1281		if (IS_ERR(qspi->base[CHIP_SELECT])) {
1282			ret = PTR_ERR(qspi->base[CHIP_SELECT]);
1283			goto qspi_resource_err;
1284		}
1285	}
1286
1287	qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
1288				GFP_KERNEL);
1289	if (!qspi->dev_ids) {
1290		ret = -ENOMEM;
1291		goto qspi_resource_err;
 
 
 
 
 
 
 
 
 
1292	}
1293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1294	for (val = 0; val < num_irqs; val++) {
1295		irq = -1;
1296		name = qspi_irq_tab[val].irq_name;
1297		if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
1298			/* get the l2 interrupts */
1299			irq = platform_get_irq_byname(pdev, name);
1300		} else if (!num_ints && soc_intc) {
1301			/* all mspi, bspi intrs muxed to one L1 intr */
1302			irq = platform_get_irq(pdev, 0);
1303		}
1304
1305		if (irq  >= 0) {
1306			ret = devm_request_irq(&pdev->dev, irq,
1307					       qspi_irq_tab[val].irq_handler, 0,
1308					       name,
1309					       &qspi->dev_ids[val]);
1310			if (ret < 0) {
1311				dev_err(&pdev->dev, "IRQ %s not found\n", name);
1312				goto qspi_probe_err;
1313			}
1314
1315			qspi->dev_ids[val].dev = qspi;
1316			qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
1317			num_ints++;
1318			dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
1319				qspi_irq_tab[val].irq_name,
1320				irq);
1321		}
1322	}
1323
1324	if (!num_ints) {
1325		dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
1326		ret = -EINVAL;
1327		goto qspi_probe_err;
1328	}
1329
1330	/*
1331	 * Some SoCs integrate spi controller (e.g., its interrupt bits)
1332	 * in specific ways
1333	 */
1334	if (soc_intc) {
1335		qspi->soc_intc = soc_intc;
1336		soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
1337	} else {
1338		qspi->soc_intc = NULL;
1339	}
1340
1341	qspi->clk = devm_clk_get(&pdev->dev, NULL);
1342	if (IS_ERR(qspi->clk)) {
1343		dev_warn(dev, "unable to get clock\n");
1344		ret = PTR_ERR(qspi->clk);
1345		goto qspi_probe_err;
1346	}
1347
1348	ret = clk_prepare_enable(qspi->clk);
1349	if (ret) {
1350		dev_err(dev, "failed to prepare clock\n");
1351		goto qspi_probe_err;
1352	}
1353
1354	qspi->base_clk = clk_get_rate(qspi->clk);
1355	qspi->max_speed_hz = qspi->base_clk / (QSPI_SPBR_MIN * 2);
1356
1357	bcm_qspi_hw_init(qspi);
1358	init_completion(&qspi->mspi_done);
1359	init_completion(&qspi->bspi_done);
1360	qspi->curr_cs = -1;
1361
1362	platform_set_drvdata(pdev, qspi);
1363
1364	qspi->xfer_mode.width = -1;
1365	qspi->xfer_mode.addrlen = -1;
1366	qspi->xfer_mode.hp = -1;
1367
1368	ret = devm_spi_register_master(&pdev->dev, master);
1369	if (ret < 0) {
1370		dev_err(dev, "can't register master\n");
1371		goto qspi_reg_err;
1372	}
1373
1374	return 0;
1375
1376qspi_reg_err:
1377	bcm_qspi_hw_uninit(qspi);
 
1378	clk_disable_unprepare(qspi->clk);
1379qspi_probe_err:
1380	kfree(qspi->dev_ids);
1381qspi_resource_err:
1382	spi_master_put(master);
1383	return ret;
1384}
1385/* probe function to be called by SoC specific platform driver probe */
1386EXPORT_SYMBOL_GPL(bcm_qspi_probe);
1387
1388int bcm_qspi_remove(struct platform_device *pdev)
1389{
1390	struct bcm_qspi *qspi = platform_get_drvdata(pdev);
1391
 
1392	bcm_qspi_hw_uninit(qspi);
1393	clk_disable_unprepare(qspi->clk);
1394	kfree(qspi->dev_ids);
1395	spi_unregister_master(qspi->master);
1396
1397	return 0;
1398}
1399/* function to be called by SoC specific platform driver remove() */
1400EXPORT_SYMBOL_GPL(bcm_qspi_remove);
1401
1402static int __maybe_unused bcm_qspi_suspend(struct device *dev)
1403{
1404	struct bcm_qspi *qspi = dev_get_drvdata(dev);
1405
1406	/* store the override strap value */
1407	if (!bcm_qspi_bspi_ver_three(qspi))
1408		qspi->s3_strap_override_ctrl =
1409			bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
1410
1411	spi_master_suspend(qspi->master);
1412	clk_disable(qspi->clk);
1413	bcm_qspi_hw_uninit(qspi);
1414
1415	return 0;
1416};
1417
1418static int __maybe_unused bcm_qspi_resume(struct device *dev)
1419{
1420	struct bcm_qspi *qspi = dev_get_drvdata(dev);
1421	int ret = 0;
1422
1423	bcm_qspi_hw_init(qspi);
1424	bcm_qspi_chip_select(qspi, qspi->curr_cs);
1425	if (qspi->soc_intc)
1426		/* enable MSPI interrupt */
1427		qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
1428						 true);
1429
1430	ret = clk_enable(qspi->clk);
1431	if (!ret)
1432		spi_master_resume(qspi->master);
1433
1434	return ret;
1435}
1436
1437SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
1438
1439/* pm_ops to be called by SoC specific platform driver */
1440EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
1441
1442MODULE_AUTHOR("Kamal Dasu");
1443MODULE_DESCRIPTION("Broadcom QSPI driver");
1444MODULE_LICENSE("GPL v2");
1445MODULE_ALIAS("platform:" DRIVER_NAME);