Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for Broadcom BRCMSTB, NSP,  NS2, Cygnus SPI Controllers
   4 *
   5 * Copyright 2016 Broadcom
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/clk.h>
   9#include <linux/delay.h>
  10#include <linux/device.h>
  11#include <linux/init.h>
  12#include <linux/interrupt.h>
  13#include <linux/io.h>
  14#include <linux/ioport.h>
  15#include <linux/kernel.h>
  16#include <linux/module.h>
 
  17#include <linux/of.h>
  18#include <linux/of_irq.h>
  19#include <linux/platform_device.h>
  20#include <linux/slab.h>
  21#include <linux/spi/spi.h>
  22#include <linux/spi/spi-mem.h>
  23#include <linux/sysfs.h>
  24#include <linux/types.h>
  25#include "spi-bcm-qspi.h"
  26
  27#define DRIVER_NAME "bcm_qspi"
  28
  29
  30/* BSPI register offsets */
  31#define BSPI_REVISION_ID			0x000
  32#define BSPI_SCRATCH				0x004
  33#define BSPI_MAST_N_BOOT_CTRL			0x008
  34#define BSPI_BUSY_STATUS			0x00c
  35#define BSPI_INTR_STATUS			0x010
  36#define BSPI_B0_STATUS				0x014
  37#define BSPI_B0_CTRL				0x018
  38#define BSPI_B1_STATUS				0x01c
  39#define BSPI_B1_CTRL				0x020
  40#define BSPI_STRAP_OVERRIDE_CTRL		0x024
  41#define BSPI_FLEX_MODE_ENABLE			0x028
  42#define BSPI_BITS_PER_CYCLE			0x02c
  43#define BSPI_BITS_PER_PHASE			0x030
  44#define BSPI_CMD_AND_MODE_BYTE			0x034
  45#define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE	0x038
  46#define BSPI_BSPI_XOR_VALUE			0x03c
  47#define BSPI_BSPI_XOR_ENABLE			0x040
  48#define BSPI_BSPI_PIO_MODE_ENABLE		0x044
  49#define BSPI_BSPI_PIO_IODIR			0x048
  50#define BSPI_BSPI_PIO_DATA			0x04c
  51
  52/* RAF register offsets */
  53#define BSPI_RAF_START_ADDR			0x100
  54#define BSPI_RAF_NUM_WORDS			0x104
  55#define BSPI_RAF_CTRL				0x108
  56#define BSPI_RAF_FULLNESS			0x10c
  57#define BSPI_RAF_WATERMARK			0x110
  58#define BSPI_RAF_STATUS			0x114
  59#define BSPI_RAF_READ_DATA			0x118
  60#define BSPI_RAF_WORD_CNT			0x11c
  61#define BSPI_RAF_CURR_ADDR			0x120
  62
  63/* Override mode masks */
  64#define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE	BIT(0)
  65#define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL	BIT(1)
  66#define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE	BIT(2)
  67#define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD	BIT(3)
  68#define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE	BIT(4)
  69
  70#define BSPI_ADDRLEN_3BYTES			3
  71#define BSPI_ADDRLEN_4BYTES			4
  72
  73#define BSPI_RAF_STATUS_FIFO_EMPTY_MASK	BIT(1)
  74
  75#define BSPI_RAF_CTRL_START_MASK		BIT(0)
  76#define BSPI_RAF_CTRL_CLEAR_MASK		BIT(1)
  77
  78#define BSPI_BPP_MODE_SELECT_MASK		BIT(8)
  79#define BSPI_BPP_ADDR_SELECT_MASK		BIT(16)
  80
  81#define BSPI_READ_LENGTH			256
  82
  83/* MSPI register offsets */
  84#define MSPI_SPCR0_LSB				0x000
  85#define MSPI_SPCR0_MSB				0x004
  86#define MSPI_SPCR0_MSB_CPHA			BIT(0)
  87#define MSPI_SPCR0_MSB_CPOL			BIT(1)
  88#define MSPI_SPCR0_MSB_BITS_SHIFT		0x2
  89#define MSPI_SPCR1_LSB				0x008
  90#define MSPI_SPCR1_MSB				0x00c
  91#define MSPI_NEWQP				0x010
  92#define MSPI_ENDQP				0x014
  93#define MSPI_SPCR2				0x018
  94#define MSPI_MSPI_STATUS			0x020
  95#define MSPI_CPTQP				0x024
  96#define MSPI_SPCR3				0x028
  97#define MSPI_REV				0x02c
  98#define MSPI_TXRAM				0x040
  99#define MSPI_RXRAM				0x0c0
 100#define MSPI_CDRAM				0x140
 101#define MSPI_WRITE_LOCK			0x180
 102
 103#define MSPI_MASTER_BIT			BIT(7)
 104
 105#define MSPI_NUM_CDRAM				16
 106#define MSPI_CDRAM_OUTP				BIT(8)
 107#define MSPI_CDRAM_CONT_BIT			BIT(7)
 108#define MSPI_CDRAM_BITSE_BIT			BIT(6)
 109#define MSPI_CDRAM_DT_BIT			BIT(5)
 110#define MSPI_CDRAM_PCS				0xf
 111
 112#define MSPI_SPCR2_SPE				BIT(6)
 113#define MSPI_SPCR2_CONT_AFTER_CMD		BIT(7)
 114
 115#define MSPI_SPCR3_FASTBR			BIT(0)
 116#define MSPI_SPCR3_FASTDT			BIT(1)
 117#define MSPI_SPCR3_SYSCLKSEL_MASK		GENMASK(11, 10)
 118#define MSPI_SPCR3_SYSCLKSEL_27			(MSPI_SPCR3_SYSCLKSEL_MASK & \
 119						 ~(BIT(10) | BIT(11)))
 120#define MSPI_SPCR3_SYSCLKSEL_108		(MSPI_SPCR3_SYSCLKSEL_MASK & \
 121						 BIT(11))
 122#define MSPI_SPCR3_TXRXDAM_MASK			GENMASK(4, 2)
 123#define MSPI_SPCR3_DAM_8BYTE			0
 124#define MSPI_SPCR3_DAM_16BYTE			(BIT(2) | BIT(4))
 125#define MSPI_SPCR3_DAM_32BYTE			(BIT(3) | BIT(5))
 126#define MSPI_SPCR3_HALFDUPLEX			BIT(6)
 127#define MSPI_SPCR3_HDOUTTYPE			BIT(7)
 128#define MSPI_SPCR3_DATA_REG_SZ			BIT(8)
 129#define MSPI_SPCR3_CPHARX			BIT(9)
 130
 131#define MSPI_MSPI_STATUS_SPIF			BIT(0)
 132
 133#define INTR_BASE_BIT_SHIFT			0x02
 134#define INTR_COUNT				0x07
 135
 136#define NUM_CHIPSELECT				4
 
 137#define QSPI_SPBR_MAX				255U
 138#define MSPI_BASE_FREQ				27000000UL
 139
 140#define OPCODE_DIOR				0xBB
 141#define OPCODE_QIOR				0xEB
 142#define OPCODE_DIOR_4B				0xBC
 143#define OPCODE_QIOR_4B				0xEC
 144
 145#define MAX_CMD_SIZE				6
 146
 147#define ADDR_4MB_MASK				GENMASK(22, 0)
 148
 149/* stop at end of transfer, no other reason */
 150#define TRANS_STATUS_BREAK_NONE		0
 151/* stop at end of spi_message */
 152#define TRANS_STATUS_BREAK_EOM			1
 153/* stop at end of spi_transfer if delay */
 154#define TRANS_STATUS_BREAK_DELAY		2
 155/* stop at end of spi_transfer if cs_change */
 156#define TRANS_STATUS_BREAK_CS_CHANGE		4
 157/* stop if we run out of bytes */
 158#define TRANS_STATUS_BREAK_NO_BYTES		8
 159
 160/* events that make us stop filling TX slots */
 161#define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM |		\
 162			       TRANS_STATUS_BREAK_DELAY |		\
 163			       TRANS_STATUS_BREAK_CS_CHANGE)
 164
 165/* events that make us deassert CS */
 166#define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM |		\
 167				     TRANS_STATUS_BREAK_CS_CHANGE)
 168
 169/*
 170 * Used for writing and reading data in the right order
 171 * to TXRAM and RXRAM when used as 32-bit registers respectively
 172 */
 173#define swap4bytes(__val) \
 174	((((__val) >> 24) & 0x000000FF) | (((__val) >>  8) & 0x0000FF00) | \
 175	 (((__val) <<  8) & 0x00FF0000) | (((__val) << 24) & 0xFF000000))
 176
 177struct bcm_qspi_parms {
 178	u32 speed_hz;
 179	u8 mode;
 180	u8 bits_per_word;
 181};
 182
 183struct bcm_xfer_mode {
 184	bool flex_mode;
 185	unsigned int width;
 186	unsigned int addrlen;
 187	unsigned int hp;
 188};
 189
 190enum base_type {
 191	MSPI,
 192	BSPI,
 193	CHIP_SELECT,
 194	BASEMAX,
 195};
 196
 197enum irq_source {
 198	SINGLE_L2,
 199	MUXED_L1,
 200};
 201
 202struct bcm_qspi_irq {
 203	const char *irq_name;
 204	const irq_handler_t irq_handler;
 205	int irq_source;
 206	u32 mask;
 207};
 208
 209struct bcm_qspi_dev_id {
 210	const struct bcm_qspi_irq *irqp;
 211	void *dev;
 212};
 213
 214
 215struct qspi_trans {
 216	struct spi_transfer *trans;
 217	int byte;
 218	bool mspi_last_trans;
 219};
 220
 221struct bcm_qspi {
 222	struct platform_device *pdev;
 223	struct spi_master *master;
 224	struct clk *clk;
 225	u32 base_clk;
 226	u32 max_speed_hz;
 227	void __iomem *base[BASEMAX];
 228
 229	/* Some SoCs provide custom interrupt status register(s) */
 230	struct bcm_qspi_soc_intc	*soc_intc;
 231
 232	struct bcm_qspi_parms last_parms;
 233	struct qspi_trans  trans_pos;
 234	int curr_cs;
 235	int bspi_maj_rev;
 236	int bspi_min_rev;
 237	int bspi_enabled;
 238	const struct spi_mem_op *bspi_rf_op;
 239	u32 bspi_rf_op_idx;
 240	u32 bspi_rf_op_len;
 241	u32 bspi_rf_op_status;
 242	struct bcm_xfer_mode xfer_mode;
 243	u32 s3_strap_override_ctrl;
 244	bool bspi_mode;
 245	bool big_endian;
 246	int num_irqs;
 247	struct bcm_qspi_dev_id *dev_ids;
 248	struct completion mspi_done;
 249	struct completion bspi_done;
 250	u8 mspi_maj_rev;
 251	u8 mspi_min_rev;
 252	bool mspi_spcr3_sysclk;
 253};
 254
 255static inline bool has_bspi(struct bcm_qspi *qspi)
 256{
 257	return qspi->bspi_mode;
 258}
 259
 260/* hardware supports spcr3 and fast baud-rate  */
 261static inline bool bcm_qspi_has_fastbr(struct bcm_qspi *qspi)
 262{
 263	if (!has_bspi(qspi) &&
 264	    ((qspi->mspi_maj_rev >= 1) &&
 265	     (qspi->mspi_min_rev >= 5)))
 266		return true;
 267
 268	return false;
 269}
 270
 271/* hardware supports sys clk 108Mhz  */
 272static inline bool bcm_qspi_has_sysclk_108(struct bcm_qspi *qspi)
 273{
 274	if (!has_bspi(qspi) && (qspi->mspi_spcr3_sysclk ||
 275	    ((qspi->mspi_maj_rev >= 1) &&
 276	     (qspi->mspi_min_rev >= 6))))
 277		return true;
 278
 279	return false;
 280}
 281
 282static inline int bcm_qspi_spbr_min(struct bcm_qspi *qspi)
 283{
 284	if (bcm_qspi_has_fastbr(qspi))
 285		return (bcm_qspi_has_sysclk_108(qspi) ? 4 : 1);
 286	else
 287		return 8;
 288}
 289
 290static u32 bcm_qspi_calc_spbr(u32 clk_speed_hz,
 291			      const struct bcm_qspi_parms *xp)
 292{
 293	u32 spbr = 0;
 294
 295	/* SPBR = System Clock/(2 * SCK Baud Rate) */
 296	if (xp->speed_hz)
 297		spbr = clk_speed_hz / (xp->speed_hz * 2);
 298
 299	return spbr;
 300}
 301
 302/* Read qspi controller register*/
 303static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
 304				unsigned int offset)
 305{
 306	return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
 307}
 308
 309/* Write qspi controller register*/
 310static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
 311				  unsigned int offset, unsigned int data)
 312{
 313	bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
 314}
 315
 316/* BSPI helpers */
 317static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
 318{
 319	int i;
 320
 321	/* this should normally finish within 10us */
 322	for (i = 0; i < 1000; i++) {
 323		if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
 324			return 0;
 325		udelay(1);
 326	}
 327	dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
 328	return -EIO;
 329}
 330
 331static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
 332{
 333	if (qspi->bspi_maj_rev < 4)
 334		return true;
 335	return false;
 336}
 337
 338static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
 339{
 340	bcm_qspi_bspi_busy_poll(qspi);
 341	/* Force rising edge for the b0/b1 'flush' field */
 342	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
 343	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
 344	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
 345	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
 346}
 347
 348static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
 349{
 350	return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
 351				BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
 352}
 353
 354static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
 355{
 356	u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
 357
 358	/* BSPI v3 LR is LE only, convert data to host endianness */
 359	if (bcm_qspi_bspi_ver_three(qspi))
 360		data = le32_to_cpu(data);
 361
 362	return data;
 363}
 364
 365static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
 366{
 367	bcm_qspi_bspi_busy_poll(qspi);
 368	bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
 369		       BSPI_RAF_CTRL_START_MASK);
 370}
 371
 372static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
 373{
 374	bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
 375		       BSPI_RAF_CTRL_CLEAR_MASK);
 376	bcm_qspi_bspi_flush_prefetch_buffers(qspi);
 377}
 378
 379static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
 380{
 381	u32 *buf = (u32 *)qspi->bspi_rf_op->data.buf.in;
 382	u32 data = 0;
 383
 384	dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_op,
 385		qspi->bspi_rf_op->data.buf.in, qspi->bspi_rf_op_len);
 386	while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
 387		data = bcm_qspi_bspi_lr_read_fifo(qspi);
 388		if (likely(qspi->bspi_rf_op_len >= 4) &&
 389		    IS_ALIGNED((uintptr_t)buf, 4)) {
 390			buf[qspi->bspi_rf_op_idx++] = data;
 391			qspi->bspi_rf_op_len -= 4;
 392		} else {
 393			/* Read out remaining bytes, make sure*/
 394			u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_op_idx];
 395
 396			data = cpu_to_le32(data);
 397			while (qspi->bspi_rf_op_len) {
 398				*cbuf++ = (u8)data;
 399				data >>= 8;
 400				qspi->bspi_rf_op_len--;
 401			}
 402		}
 403	}
 404}
 405
 406static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
 407					  int bpp, int bpc, int flex_mode)
 408{
 409	bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
 410	bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
 411	bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
 412	bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
 413	bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
 414}
 415
 416static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi,
 417				       const struct spi_mem_op *op, int hp)
 418{
 419	int bpc = 0, bpp = 0;
 420	u8 command = op->cmd.opcode;
 421	int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
 422	int addrlen = op->addr.nbytes;
 423	int flex_mode = 1;
 424
 425	dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
 426		width, addrlen, hp);
 427
 428	if (addrlen == BSPI_ADDRLEN_4BYTES)
 429		bpp = BSPI_BPP_ADDR_SELECT_MASK;
 
 
 430
 431	if (op->dummy.nbytes)
 432		bpp |= (op->dummy.nbytes * 8) / op->dummy.buswidth;
 433
 434	switch (width) {
 435	case SPI_NBITS_SINGLE:
 436		if (addrlen == BSPI_ADDRLEN_3BYTES)
 437			/* default mode, does not need flex_cmd */
 438			flex_mode = 0;
 
 
 439		break;
 440	case SPI_NBITS_DUAL:
 441		bpc = 0x00000001;
 442		if (hp) {
 443			bpc |= 0x00010100; /* address and mode are 2-bit */
 444			bpp = BSPI_BPP_MODE_SELECT_MASK;
 
 
 
 
 
 
 
 445		}
 446		break;
 447	case SPI_NBITS_QUAD:
 448		bpc = 0x00000002;
 449		if (hp) {
 450			bpc |= 0x00020200; /* address and mode are 4-bit */
 451			bpp |= BSPI_BPP_MODE_SELECT_MASK;
 
 
 
 
 
 
 
 
 452		}
 453		break;
 454	default:
 455		return -EINVAL;
 
 456	}
 457
 458	bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc, flex_mode);
 
 
 459
 460	return 0;
 461}
 462
 463static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi,
 464				      const struct spi_mem_op *op, int hp)
 465{
 466	int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
 467	int addrlen = op->addr.nbytes;
 468	u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
 469
 470	dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
 471		width, addrlen, hp);
 472
 473	switch (width) {
 474	case SPI_NBITS_SINGLE:
 475		/* clear quad/dual mode */
 476		data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
 477			  BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
 478		break;
 
 479	case SPI_NBITS_QUAD:
 480		/* clear dual mode and set quad mode */
 481		data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
 482		data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
 483		break;
 484	case SPI_NBITS_DUAL:
 485		/* clear quad mode set dual mode */
 486		data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
 487		data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
 488		break;
 489	default:
 490		return -EINVAL;
 491	}
 492
 493	if (addrlen == BSPI_ADDRLEN_4BYTES)
 494		/* set 4byte mode*/
 495		data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
 496	else
 497		/* clear 4 byte mode */
 498		data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
 499
 500	/* set the override mode */
 501	data |=	BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
 502	bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
 503	bcm_qspi_bspi_set_xfer_params(qspi, op->cmd.opcode, 0, 0, 0);
 504
 505	return 0;
 506}
 507
 508static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
 509				  const struct spi_mem_op *op, int hp)
 510{
 511	int error = 0;
 512	int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
 513	int addrlen = op->addr.nbytes;
 514
 515	/* default mode */
 516	qspi->xfer_mode.flex_mode = true;
 517
 518	if (!bcm_qspi_bspi_ver_three(qspi)) {
 519		u32 val, mask;
 520
 521		val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
 522		mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
 523		if (val & mask || qspi->s3_strap_override_ctrl & mask) {
 524			qspi->xfer_mode.flex_mode = false;
 525			bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
 526			error = bcm_qspi_bspi_set_override(qspi, op, hp);
 
 
 
 
 
 
 
 
 
 
 527		}
 528	}
 529
 530	if (qspi->xfer_mode.flex_mode)
 531		error = bcm_qspi_bspi_set_flex_mode(qspi, op, hp);
 532
 533	if (error) {
 534		dev_warn(&qspi->pdev->dev,
 535			 "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
 536			 width, addrlen, hp);
 537	} else if (qspi->xfer_mode.width != width ||
 538		   qspi->xfer_mode.addrlen != addrlen ||
 539		   qspi->xfer_mode.hp != hp) {
 540		qspi->xfer_mode.width = width;
 541		qspi->xfer_mode.addrlen = addrlen;
 542		qspi->xfer_mode.hp = hp;
 543		dev_dbg(&qspi->pdev->dev,
 544			"cs:%d %d-lane output, %d-byte address%s\n",
 545			qspi->curr_cs,
 546			qspi->xfer_mode.width,
 547			qspi->xfer_mode.addrlen,
 548			qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
 549	}
 550
 551	return error;
 552}
 553
 554static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
 555{
 556	if (!has_bspi(qspi))
 557		return;
 558
 559	qspi->bspi_enabled = 1;
 560	if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
 561		return;
 562
 563	bcm_qspi_bspi_flush_prefetch_buffers(qspi);
 564	udelay(1);
 565	bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
 566	udelay(1);
 567}
 568
 569static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
 570{
 571	if (!has_bspi(qspi))
 572		return;
 573
 574	qspi->bspi_enabled = 0;
 575	if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
 576		return;
 577
 578	bcm_qspi_bspi_busy_poll(qspi);
 579	bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
 580	udelay(1);
 581}
 582
 583static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
 584{
 585	u32 rd = 0;
 586	u32 wr = 0;
 587
 588	if (cs >= 0 && qspi->base[CHIP_SELECT]) {
 589		rd = bcm_qspi_read(qspi, CHIP_SELECT, 0);
 590		wr = (rd & ~0xff) | (1 << cs);
 591		if (rd == wr)
 592			return;
 593		bcm_qspi_write(qspi, CHIP_SELECT, 0, wr);
 594		usleep_range(10, 20);
 595	}
 596
 597	dev_dbg(&qspi->pdev->dev, "using cs:%d\n", cs);
 598	qspi->curr_cs = cs;
 599}
 600
 601static bool bcmspi_parms_did_change(const struct bcm_qspi_parms * const cur,
 602				    const struct bcm_qspi_parms * const prev)
 603{
 604	return (cur->speed_hz != prev->speed_hz) ||
 605		(cur->mode != prev->mode) ||
 606		(cur->bits_per_word != prev->bits_per_word);
 607}
 608
 609
 610/* MSPI helpers */
 611static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
 612				  const struct bcm_qspi_parms *xp)
 613{
 614	u32 spcr, spbr = 0;
 615
 616	if (!bcmspi_parms_did_change(xp, &qspi->last_parms))
 617		return;
 618
 619	if (!qspi->mspi_maj_rev)
 620		/* legacy controller */
 621		spcr = MSPI_MASTER_BIT;
 622	else
 623		spcr = 0;
 624
 625	/*
 626	 * Bits per transfer.  BITS determines the number of data bits
 627	 * transferred if the command control bit (BITSE of a
 628	 * CDRAM Register) is equal to 1.
 629	 * If CDRAM BITSE is equal to 0, 8 data bits are transferred
 630	 * regardless
 631	 */
 632	if (xp->bits_per_word != 16 && xp->bits_per_word != 64)
 633		spcr |= xp->bits_per_word << MSPI_SPCR0_MSB_BITS_SHIFT;
 634
 635	spcr |= xp->mode & (MSPI_SPCR0_MSB_CPHA | MSPI_SPCR0_MSB_CPOL);
 
 
 
 
 636	bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
 637
 638	if (bcm_qspi_has_fastbr(qspi)) {
 639		spcr = 0;
 640
 641		/* enable fastbr */
 642		spcr |=	MSPI_SPCR3_FASTBR;
 643
 644		if (xp->mode & SPI_3WIRE)
 645			spcr |= MSPI_SPCR3_HALFDUPLEX |  MSPI_SPCR3_HDOUTTYPE;
 646
 647		if (bcm_qspi_has_sysclk_108(qspi)) {
 648			/* check requested baud rate before moving to 108Mhz */
 649			spbr = bcm_qspi_calc_spbr(MSPI_BASE_FREQ * 4, xp);
 650			if (spbr > QSPI_SPBR_MAX) {
 651				/* use SYSCLK_27Mhz for slower baud rates */
 652				spcr &= ~MSPI_SPCR3_SYSCLKSEL_MASK;
 653				qspi->base_clk = MSPI_BASE_FREQ;
 654			} else {
 655				/* SYSCLK_108Mhz */
 656				spcr |= MSPI_SPCR3_SYSCLKSEL_108;
 657				qspi->base_clk = MSPI_BASE_FREQ * 4;
 658			}
 659		}
 660
 661		if (xp->bits_per_word > 16) {
 662			/* data_reg_size 1 (64bit) */
 663			spcr |=	MSPI_SPCR3_DATA_REG_SZ;
 664			/* TxRx RAM data access mode 2 for 32B and set fastdt */
 665			spcr |=	MSPI_SPCR3_DAM_32BYTE  | MSPI_SPCR3_FASTDT;
 666			/*
 667			 *  Set length of delay after transfer
 668			 *  DTL from 0(256) to 1
 669			 */
 670			bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 1);
 671		} else {
 672			/* data_reg_size[8] = 0 */
 673			spcr &=	~(MSPI_SPCR3_DATA_REG_SZ);
 674
 675			/*
 676			 * TxRx RAM access mode 8B
 677			 * and disable fastdt
 678			 */
 679			spcr &= ~(MSPI_SPCR3_DAM_32BYTE);
 680		}
 681		bcm_qspi_write(qspi, MSPI, MSPI_SPCR3, spcr);
 682	}
 683
 684	/* SCK Baud Rate = System Clock/(2 * SPBR) */
 685	qspi->max_speed_hz = qspi->base_clk / (bcm_qspi_spbr_min(qspi) * 2);
 686	spbr = bcm_qspi_calc_spbr(qspi->base_clk, xp);
 687	spbr = clamp_val(spbr, bcm_qspi_spbr_min(qspi), QSPI_SPBR_MAX);
 688	bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spbr);
 689
 690	qspi->last_parms = *xp;
 691}
 692
 693static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
 694				  struct spi_device *spi,
 695				  struct spi_transfer *trans)
 696{
 697	struct bcm_qspi_parms xp;
 698
 699	xp.speed_hz = trans->speed_hz;
 700	xp.bits_per_word = trans->bits_per_word;
 701	xp.mode = spi->mode;
 702
 703	bcm_qspi_hw_set_parms(qspi, &xp);
 704}
 705
 706static int bcm_qspi_setup(struct spi_device *spi)
 707{
 708	struct bcm_qspi_parms *xp;
 709
 710	if (spi->bits_per_word > 64)
 711		return -EINVAL;
 712
 713	xp = spi_get_ctldata(spi);
 714	if (!xp) {
 715		xp = kzalloc(sizeof(*xp), GFP_KERNEL);
 716		if (!xp)
 717			return -ENOMEM;
 718		spi_set_ctldata(spi, xp);
 719	}
 720	xp->speed_hz = spi->max_speed_hz;
 721	xp->mode = spi->mode;
 722
 723	if (spi->bits_per_word)
 724		xp->bits_per_word = spi->bits_per_word;
 725	else
 726		xp->bits_per_word = 8;
 727
 728	return 0;
 729}
 730
 731static bool bcm_qspi_mspi_transfer_is_last(struct bcm_qspi *qspi,
 732					   struct qspi_trans *qt)
 733{
 734	if (qt->mspi_last_trans &&
 735	    spi_transfer_is_last(qspi->master, qt->trans))
 736		return true;
 737	else
 738		return false;
 739}
 740
 741static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
 742					struct qspi_trans *qt, int flags)
 743{
 744	int ret = TRANS_STATUS_BREAK_NONE;
 745
 746	/* count the last transferred bytes */
 747	if (qt->trans->bits_per_word <= 8)
 748		qt->byte++;
 749	else if (qt->trans->bits_per_word <= 16)
 750		qt->byte += 2;
 751	else if (qt->trans->bits_per_word <= 32)
 752		qt->byte += 4;
 753	else if (qt->trans->bits_per_word <= 64)
 754		qt->byte += 8;
 755
 756	if (qt->byte >= qt->trans->len) {
 757		/* we're at the end of the spi_transfer */
 
 758		/* in TX mode, need to pause for a delay or CS change */
 759		if (qt->trans->delay.value &&
 760		    (flags & TRANS_STATUS_BREAK_DELAY))
 761			ret |= TRANS_STATUS_BREAK_DELAY;
 762		if (qt->trans->cs_change &&
 763		    (flags & TRANS_STATUS_BREAK_CS_CHANGE))
 764			ret |= TRANS_STATUS_BREAK_CS_CHANGE;
 
 
 765
 766		if (bcm_qspi_mspi_transfer_is_last(qspi, qt))
 767			ret |= TRANS_STATUS_BREAK_EOM;
 
 768		else
 769			ret |= TRANS_STATUS_BREAK_NO_BYTES;
 770
 771		qt->trans = NULL;
 772	}
 773
 
 774	dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
 775		qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
 776	return ret;
 777}
 778
 779static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
 780{
 781	u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
 782
 783	/* mask out reserved bits */
 784	return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
 785}
 786
 787static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
 788{
 789	u32 reg_offset = MSPI_RXRAM;
 790	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
 791	u32 msb_offset = reg_offset + (slot << 3);
 792
 793	return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
 794		((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
 795}
 796
 797static inline u32 read_rxram_slot_u32(struct bcm_qspi *qspi, int slot)
 798{
 799	u32 reg_offset = MSPI_RXRAM;
 800	u32 offset = reg_offset + (slot << 3);
 801	u32 val;
 802
 803	val = bcm_qspi_read(qspi, MSPI, offset);
 804	val = swap4bytes(val);
 805
 806	return val;
 807}
 808
 809static inline u64 read_rxram_slot_u64(struct bcm_qspi *qspi, int slot)
 810{
 811	u32 reg_offset = MSPI_RXRAM;
 812	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
 813	u32 msb_offset = reg_offset + (slot << 3);
 814	u32 msb, lsb;
 815
 816	msb = bcm_qspi_read(qspi, MSPI, msb_offset);
 817	msb = swap4bytes(msb);
 818	lsb = bcm_qspi_read(qspi, MSPI, lsb_offset);
 819	lsb = swap4bytes(lsb);
 820
 821	return ((u64)msb << 32 | lsb);
 822}
 823
 824static void read_from_hw(struct bcm_qspi *qspi, int slots)
 825{
 826	struct qspi_trans tp;
 827	int slot;
 828
 829	bcm_qspi_disable_bspi(qspi);
 830
 831	if (slots > MSPI_NUM_CDRAM) {
 832		/* should never happen */
 833		dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
 834		return;
 835	}
 836
 837	tp = qspi->trans_pos;
 838
 839	for (slot = 0; slot < slots; slot++) {
 840		if (tp.trans->bits_per_word <= 8) {
 841			u8 *buf = tp.trans->rx_buf;
 842
 843			if (buf)
 844				buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
 845			dev_dbg(&qspi->pdev->dev, "RD %02x\n",
 846				buf ? buf[tp.byte] : 0x0);
 847		} else if (tp.trans->bits_per_word <= 16) {
 848			u16 *buf = tp.trans->rx_buf;
 849
 850			if (buf)
 851				buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
 852								      slot);
 853			dev_dbg(&qspi->pdev->dev, "RD %04x\n",
 854				buf ? buf[tp.byte / 2] : 0x0);
 855		} else if (tp.trans->bits_per_word <= 32) {
 856			u32 *buf = tp.trans->rx_buf;
 857
 858			if (buf)
 859				buf[tp.byte / 4] = read_rxram_slot_u32(qspi,
 860								      slot);
 861			dev_dbg(&qspi->pdev->dev, "RD %08x\n",
 862				buf ? buf[tp.byte / 4] : 0x0);
 863
 864		} else if (tp.trans->bits_per_word <= 64) {
 865			u64 *buf = tp.trans->rx_buf;
 866
 867			if (buf)
 868				buf[tp.byte / 8] = read_rxram_slot_u64(qspi,
 869								      slot);
 870			dev_dbg(&qspi->pdev->dev, "RD %llx\n",
 871				buf ? buf[tp.byte / 8] : 0x0);
 872
 873
 874		}
 875
 876		update_qspi_trans_byte_count(qspi, &tp,
 877					     TRANS_STATUS_BREAK_NONE);
 878	}
 879
 880	qspi->trans_pos = tp;
 881}
 882
 883static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
 884				       u8 val)
 885{
 886	u32 reg_offset = MSPI_TXRAM + (slot << 3);
 887
 888	/* mask out reserved bits */
 889	bcm_qspi_write(qspi, MSPI, reg_offset, val);
 890}
 891
 892static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
 893					u16 val)
 894{
 895	u32 reg_offset = MSPI_TXRAM;
 896	u32 msb_offset = reg_offset + (slot << 3);
 897	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
 898
 899	bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
 900	bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
 901}
 902
 903static inline void write_txram_slot_u32(struct bcm_qspi *qspi, int slot,
 904					u32 val)
 905{
 906	u32 reg_offset = MSPI_TXRAM;
 907	u32 msb_offset = reg_offset + (slot << 3);
 908
 909	bcm_qspi_write(qspi, MSPI, msb_offset, swap4bytes(val));
 910}
 911
 912static inline void write_txram_slot_u64(struct bcm_qspi *qspi, int slot,
 913					u64 val)
 914{
 915	u32 reg_offset = MSPI_TXRAM;
 916	u32 msb_offset = reg_offset + (slot << 3);
 917	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
 918	u32 msb = upper_32_bits(val);
 919	u32 lsb = lower_32_bits(val);
 920
 921	bcm_qspi_write(qspi, MSPI, msb_offset, swap4bytes(msb));
 922	bcm_qspi_write(qspi, MSPI, lsb_offset, swap4bytes(lsb));
 923}
 924
 925static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
 926{
 927	return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
 928}
 929
 930static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
 931{
 932	bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
 933}
 934
 935/* Return number of slots written */
 936static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
 937{
 938	struct qspi_trans tp;
 939	int slot = 0, tstatus = 0;
 940	u32 mspi_cdram = 0;
 941
 942	bcm_qspi_disable_bspi(qspi);
 943	tp = qspi->trans_pos;
 944	bcm_qspi_update_parms(qspi, spi, tp.trans);
 945
 946	/* Run until end of transfer or reached the max data */
 947	while (!tstatus && slot < MSPI_NUM_CDRAM) {
 948		mspi_cdram = MSPI_CDRAM_CONT_BIT;
 949		if (tp.trans->bits_per_word <= 8) {
 950			const u8 *buf = tp.trans->tx_buf;
 951			u8 val = buf ? buf[tp.byte] : 0x00;
 952
 953			write_txram_slot_u8(qspi, slot, val);
 954			dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
 955		} else if (tp.trans->bits_per_word <= 16) {
 956			const u16 *buf = tp.trans->tx_buf;
 957			u16 val = buf ? buf[tp.byte / 2] : 0x0000;
 958
 959			write_txram_slot_u16(qspi, slot, val);
 960			dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
 961		} else if (tp.trans->bits_per_word <= 32) {
 962			const u32 *buf = tp.trans->tx_buf;
 963			u32 val = buf ? buf[tp.byte/4] : 0x0;
 964
 965			write_txram_slot_u32(qspi, slot, val);
 966			dev_dbg(&qspi->pdev->dev, "WR %08x\n", val);
 967		} else if (tp.trans->bits_per_word <= 64) {
 968			const u64 *buf = tp.trans->tx_buf;
 969			u64 val = (buf ? buf[tp.byte/8] : 0x0);
 970
 971			/* use the length of delay from SPCR1_LSB */
 972			if (bcm_qspi_has_fastbr(qspi))
 973				mspi_cdram |= MSPI_CDRAM_DT_BIT;
 974
 975			write_txram_slot_u64(qspi, slot, val);
 976			dev_dbg(&qspi->pdev->dev, "WR %llx\n", val);
 977		}
 978
 
 
 979		mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
 980			       MSPI_CDRAM_BITSE_BIT);
 981
 982		/* set 3wrire halfduplex mode data from master to slave */
 983		if ((spi->mode & SPI_3WIRE) && tp.trans->tx_buf)
 984			mspi_cdram |= MSPI_CDRAM_OUTP;
 985
 986		if (has_bspi(qspi))
 987			mspi_cdram &= ~1;
 988		else
 989			mspi_cdram |= (~(1 << spi->chip_select) &
 990				       MSPI_CDRAM_PCS);
 991
 992		write_cdram_slot(qspi, slot, mspi_cdram);
 993
 994		tstatus = update_qspi_trans_byte_count(qspi, &tp,
 995						       TRANS_STATUS_BREAK_TX);
 996		slot++;
 997	}
 998
 999	if (!slot) {
1000		dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
1001		goto done;
1002	}
1003
1004	dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
1005	bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1006	bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
1007
1008	/*
1009	 *  case 1) EOM =1, cs_change =0: SSb inactive
1010	 *  case 2) EOM =1, cs_change =1: SSb stay active
1011	 *  case 3) EOM =0, cs_change =0: SSb stay active
1012	 *  case 4) EOM =0, cs_change =1: SSb inactive
1013	 */
1014	if (((tstatus & TRANS_STATUS_BREAK_DESELECT)
1015	     == TRANS_STATUS_BREAK_CS_CHANGE) ||
1016	    ((tstatus & TRANS_STATUS_BREAK_DESELECT)
1017	     == TRANS_STATUS_BREAK_EOM)) {
1018		mspi_cdram = read_cdram_slot(qspi, slot - 1) &
1019			~MSPI_CDRAM_CONT_BIT;
1020		write_cdram_slot(qspi, slot - 1, mspi_cdram);
1021	}
1022
1023	if (has_bspi(qspi))
1024		bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
1025
1026	/* Must flush previous writes before starting MSPI operation */
1027	mb();
1028	/* Set cont | spe | spifie */
1029	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
1030
1031done:
1032	return slot;
1033}
1034
1035static int bcm_qspi_bspi_exec_mem_op(struct spi_device *spi,
1036				     const struct spi_mem_op *op)
1037{
1038	struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
1039	u32 addr = 0, len, rdlen, len_words, from = 0;
1040	int ret = 0;
1041	unsigned long timeo = msecs_to_jiffies(100);
1042	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1043
1044	if (bcm_qspi_bspi_ver_three(qspi))
1045		if (op->addr.nbytes == BSPI_ADDRLEN_4BYTES)
1046			return -EIO;
1047
1048	from = op->addr.val;
1049	if (!spi->cs_gpiod)
1050		bcm_qspi_chip_select(qspi, spi->chip_select);
1051	bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1052
1053	/*
1054	 * when using flex mode we need to send
1055	 * the upper address byte to bspi
1056	 */
1057	if (!bcm_qspi_bspi_ver_three(qspi)) {
1058		addr = from & 0xff000000;
1059		bcm_qspi_write(qspi, BSPI,
1060			       BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
1061	}
1062
1063	if (!qspi->xfer_mode.flex_mode)
1064		addr = from;
1065	else
1066		addr = from & 0x00ffffff;
 
 
 
 
 
1067
1068	if (bcm_qspi_bspi_ver_three(qspi) == true)
1069		addr = (addr + 0xc00000) & 0xffffff;
1070
1071	/*
1072	 * read into the entire buffer by breaking the reads
1073	 * into RAF buffer read lengths
1074	 */
1075	len = op->data.nbytes;
1076	qspi->bspi_rf_op_idx = 0;
1077
1078	do {
1079		if (len > BSPI_READ_LENGTH)
1080			rdlen = BSPI_READ_LENGTH;
1081		else
1082			rdlen = len;
1083
1084		reinit_completion(&qspi->bspi_done);
1085		bcm_qspi_enable_bspi(qspi);
1086		len_words = (rdlen + 3) >> 2;
1087		qspi->bspi_rf_op = op;
1088		qspi->bspi_rf_op_status = 0;
1089		qspi->bspi_rf_op_len = rdlen;
1090		dev_dbg(&qspi->pdev->dev,
1091			"bspi xfr addr 0x%x len 0x%x", addr, rdlen);
1092		bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
1093		bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
1094		bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
1095		if (qspi->soc_intc) {
1096			/*
1097			 * clear soc MSPI and BSPI interrupts and enable
1098			 * BSPI interrupts.
1099			 */
1100			soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
1101			soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
1102		}
1103
1104		/* Must flush previous writes before starting BSPI operation */
1105		mb();
1106		bcm_qspi_bspi_lr_start(qspi);
1107		if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
1108			dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
1109			ret = -ETIMEDOUT;
1110			break;
1111		}
1112
1113		/* set msg return length */
1114		addr += rdlen;
1115		len -= rdlen;
1116	} while (len);
1117
1118	return ret;
1119}
1120
1121static int bcm_qspi_transfer_one(struct spi_master *master,
1122				 struct spi_device *spi,
1123				 struct spi_transfer *trans)
1124{
1125	struct bcm_qspi *qspi = spi_master_get_devdata(master);
1126	int slots;
1127	unsigned long timeo = msecs_to_jiffies(100);
1128
1129	if (!spi->cs_gpiod)
1130		bcm_qspi_chip_select(qspi, spi->chip_select);
1131	qspi->trans_pos.trans = trans;
1132	qspi->trans_pos.byte = 0;
1133
1134	while (qspi->trans_pos.byte < trans->len) {
1135		reinit_completion(&qspi->mspi_done);
1136
1137		slots = write_to_hw(qspi, spi);
1138		if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
1139			dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
1140			return -ETIMEDOUT;
1141		}
1142
1143		read_from_hw(qspi, slots);
 
 
 
 
 
 
1144	}
1145	bcm_qspi_enable_bspi(qspi);
1146
1147	return 0;
1148}
1149
1150static int bcm_qspi_mspi_exec_mem_op(struct spi_device *spi,
1151				     const struct spi_mem_op *op)
1152{
1153	struct spi_master *master = spi->master;
1154	struct bcm_qspi *qspi = spi_master_get_devdata(master);
1155	struct spi_transfer t[2];
1156	u8 cmd[6] = { };
1157	int ret, i;
1158
1159	memset(cmd, 0, sizeof(cmd));
1160	memset(t, 0, sizeof(t));
1161
1162	/* tx */
1163	/* opcode is in cmd[0] */
1164	cmd[0] = op->cmd.opcode;
1165	for (i = 0; i < op->addr.nbytes; i++)
1166		cmd[1 + i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
1167
1168	t[0].tx_buf = cmd;
1169	t[0].len = op->addr.nbytes + op->dummy.nbytes + 1;
1170	t[0].bits_per_word = spi->bits_per_word;
1171	t[0].tx_nbits = op->cmd.buswidth;
1172	/* lets mspi know that this is not last transfer */
1173	qspi->trans_pos.mspi_last_trans = false;
1174	ret = bcm_qspi_transfer_one(master, spi, &t[0]);
1175
1176	/* rx */
1177	qspi->trans_pos.mspi_last_trans = true;
1178	if (!ret) {
1179		/* rx */
1180		t[1].rx_buf = op->data.buf.in;
1181		t[1].len = op->data.nbytes;
1182		t[1].rx_nbits =  op->data.buswidth;
1183		t[1].bits_per_word = spi->bits_per_word;
1184		ret = bcm_qspi_transfer_one(master, spi, &t[1]);
1185	}
1186
1187	return ret;
1188}
1189
1190static int bcm_qspi_exec_mem_op(struct spi_mem *mem,
1191				const struct spi_mem_op *op)
1192{
1193	struct spi_device *spi = mem->spi;
1194	struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
1195	int ret = 0;
1196	bool mspi_read = false;
1197	u32 addr = 0, len;
1198	u_char *buf;
1199
1200	if (!op->data.nbytes || !op->addr.nbytes || op->addr.nbytes > 4 ||
1201	    op->data.dir != SPI_MEM_DATA_IN)
1202		return -ENOTSUPP;
1203
1204	buf = op->data.buf.in;
1205	addr = op->addr.val;
1206	len = op->data.nbytes;
1207
1208	if (has_bspi(qspi) && bcm_qspi_bspi_ver_three(qspi) == true) {
1209		/*
1210		 * The address coming into this function is a raw flash offset.
1211		 * But for BSPI <= V3, we need to convert it to a remapped BSPI
1212		 * address. If it crosses a 4MB boundary, just revert back to
1213		 * using MSPI.
1214		 */
1215		addr = (addr + 0xc00000) & 0xffffff;
1216
1217		if ((~ADDR_4MB_MASK & addr) ^
1218		    (~ADDR_4MB_MASK & (addr + len - 1)))
1219			mspi_read = true;
1220	}
1221
1222	/* non-aligned and very short transfers are handled by MSPI */
1223	if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
1224	    len < 4)
1225		mspi_read = true;
1226
1227	if (!has_bspi(qspi) || mspi_read)
1228		return bcm_qspi_mspi_exec_mem_op(spi, op);
1229
1230	ret = bcm_qspi_bspi_set_mode(qspi, op, 0);
 
 
 
1231
1232	if (!ret)
1233		ret = bcm_qspi_bspi_exec_mem_op(spi, op);
1234
1235	return ret;
1236}
1237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1238static void bcm_qspi_cleanup(struct spi_device *spi)
1239{
1240	struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
1241
1242	kfree(xp);
1243}
1244
1245static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
1246{
1247	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1248	struct bcm_qspi *qspi = qspi_dev_id->dev;
1249	u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1250
1251	if (status & MSPI_MSPI_STATUS_SPIF) {
1252		struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1253		/* clear interrupt */
1254		status &= ~MSPI_MSPI_STATUS_SPIF;
1255		bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
1256		if (qspi->soc_intc)
1257			soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
1258		complete(&qspi->mspi_done);
1259		return IRQ_HANDLED;
1260	}
1261
1262	return IRQ_NONE;
1263}
1264
1265static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
1266{
1267	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1268	struct bcm_qspi *qspi = qspi_dev_id->dev;
1269	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1270	u32 status = qspi_dev_id->irqp->mask;
1271
1272	if (qspi->bspi_enabled && qspi->bspi_rf_op) {
1273		bcm_qspi_bspi_lr_data_read(qspi);
1274		if (qspi->bspi_rf_op_len == 0) {
1275			qspi->bspi_rf_op = NULL;
1276			if (qspi->soc_intc) {
1277				/* disable soc BSPI interrupt */
1278				soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
1279							   false);
1280				/* indicate done */
1281				status = INTR_BSPI_LR_SESSION_DONE_MASK;
1282			}
1283
1284			if (qspi->bspi_rf_op_status)
1285				bcm_qspi_bspi_lr_clear(qspi);
1286			else
1287				bcm_qspi_bspi_flush_prefetch_buffers(qspi);
1288		}
1289
1290		if (qspi->soc_intc)
1291			/* clear soc BSPI interrupt */
1292			soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
1293	}
1294
1295	status &= INTR_BSPI_LR_SESSION_DONE_MASK;
1296	if (qspi->bspi_enabled && status && qspi->bspi_rf_op_len == 0)
1297		complete(&qspi->bspi_done);
1298
1299	return IRQ_HANDLED;
1300}
1301
1302static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
1303{
1304	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1305	struct bcm_qspi *qspi = qspi_dev_id->dev;
1306	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1307
1308	dev_err(&qspi->pdev->dev, "BSPI INT error\n");
1309	qspi->bspi_rf_op_status = -EIO;
1310	if (qspi->soc_intc)
1311		/* clear soc interrupt */
1312		soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
1313
1314	complete(&qspi->bspi_done);
1315	return IRQ_HANDLED;
1316}
1317
1318static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
1319{
1320	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1321	struct bcm_qspi *qspi = qspi_dev_id->dev;
1322	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1323	irqreturn_t ret = IRQ_NONE;
1324
1325	if (soc_intc) {
1326		u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
1327
1328		if (status & MSPI_DONE)
1329			ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
1330		else if (status & BSPI_DONE)
1331			ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
1332		else if (status & BSPI_ERR)
1333			ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
1334	}
1335
1336	return ret;
1337}
1338
1339static const struct bcm_qspi_irq qspi_irq_tab[] = {
1340	{
1341		.irq_name = "spi_lr_fullness_reached",
1342		.irq_handler = bcm_qspi_bspi_lr_l2_isr,
1343		.mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
1344	},
1345	{
1346		.irq_name = "spi_lr_session_aborted",
1347		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1348		.mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
1349	},
1350	{
1351		.irq_name = "spi_lr_impatient",
1352		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1353		.mask = INTR_BSPI_LR_IMPATIENT_MASK,
1354	},
1355	{
1356		.irq_name = "spi_lr_session_done",
1357		.irq_handler = bcm_qspi_bspi_lr_l2_isr,
1358		.mask = INTR_BSPI_LR_SESSION_DONE_MASK,
1359	},
1360#ifdef QSPI_INT_DEBUG
1361	/* this interrupt is for debug purposes only, dont request irq */
1362	{
1363		.irq_name = "spi_lr_overread",
1364		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1365		.mask = INTR_BSPI_LR_OVERREAD_MASK,
1366	},
1367#endif
1368	{
1369		.irq_name = "mspi_done",
1370		.irq_handler = bcm_qspi_mspi_l2_isr,
1371		.mask = INTR_MSPI_DONE_MASK,
1372	},
1373	{
1374		.irq_name = "mspi_halted",
1375		.irq_handler = bcm_qspi_mspi_l2_isr,
1376		.mask = INTR_MSPI_HALTED_MASK,
1377	},
1378	{
1379		/* single muxed L1 interrupt source */
1380		.irq_name = "spi_l1_intr",
1381		.irq_handler = bcm_qspi_l1_isr,
1382		.irq_source = MUXED_L1,
1383		.mask = QSPI_INTERRUPTS_ALL,
1384	},
1385};
1386
1387static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
1388{
1389	u32 val = 0;
1390
1391	val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
1392	qspi->bspi_maj_rev = (val >> 8) & 0xff;
1393	qspi->bspi_min_rev = val & 0xff;
1394	if (!(bcm_qspi_bspi_ver_three(qspi))) {
1395		/* Force mapping of BSPI address -> flash offset */
1396		bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
1397		bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
1398	}
1399	qspi->bspi_enabled = 1;
1400	bcm_qspi_disable_bspi(qspi);
1401	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
1402	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
1403}
1404
1405static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
1406{
1407	struct bcm_qspi_parms parms;
1408
1409	bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
1410	bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
1411	bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1412	bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
1413	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
1414
1415	parms.mode = SPI_MODE_3;
1416	parms.bits_per_word = 8;
1417	parms.speed_hz = qspi->max_speed_hz;
1418	bcm_qspi_hw_set_parms(qspi, &parms);
1419
1420	if (has_bspi(qspi))
1421		bcm_qspi_bspi_init(qspi);
1422}
1423
1424static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
1425{
1426	u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1427
1428	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
1429	if (has_bspi(qspi))
1430		bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1431
1432	/* clear interrupt */
1433	bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status & ~1);
1434}
1435
1436static const struct spi_controller_mem_ops bcm_qspi_mem_ops = {
1437	.exec_op = bcm_qspi_exec_mem_op,
1438};
1439
1440struct bcm_qspi_data {
1441	bool	has_mspi_rev;
1442	bool	has_spcr3_sysclk;
1443};
1444
1445static const struct bcm_qspi_data bcm_qspi_no_rev_data = {
1446	.has_mspi_rev	= false,
1447	.has_spcr3_sysclk = false,
1448};
1449
1450static const struct bcm_qspi_data bcm_qspi_rev_data = {
1451	.has_mspi_rev	= true,
1452	.has_spcr3_sysclk = false,
1453};
1454
1455static const struct bcm_qspi_data bcm_qspi_spcr3_data = {
1456	.has_mspi_rev	= true,
1457	.has_spcr3_sysclk = true,
1458};
1459
1460static const struct of_device_id bcm_qspi_of_match[] = {
1461	{
1462		.compatible = "brcm,spi-bcm7445-qspi",
1463		.data = &bcm_qspi_rev_data,
1464
1465	},
1466	{
1467		.compatible = "brcm,spi-bcm-qspi",
1468		.data = &bcm_qspi_no_rev_data,
1469	},
1470	{
1471		.compatible = "brcm,spi-bcm7216-qspi",
1472		.data = &bcm_qspi_spcr3_data,
1473	},
1474	{
1475		.compatible = "brcm,spi-bcm7278-qspi",
1476		.data = &bcm_qspi_spcr3_data,
1477	},
1478	{},
1479};
1480MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
1481
1482int bcm_qspi_probe(struct platform_device *pdev,
1483		   struct bcm_qspi_soc_intc *soc_intc)
1484{
1485	const struct of_device_id *of_id = NULL;
1486	const struct bcm_qspi_data *data;
1487	struct device *dev = &pdev->dev;
1488	struct bcm_qspi *qspi;
1489	struct spi_master *master;
1490	struct resource *res;
1491	int irq, ret = 0, num_ints = 0;
1492	u32 val;
1493	u32 rev = 0;
1494	const char *name = NULL;
1495	int num_irqs = ARRAY_SIZE(qspi_irq_tab);
1496
1497	/* We only support device-tree instantiation */
1498	if (!dev->of_node)
1499		return -ENODEV;
1500
1501	of_id = of_match_node(bcm_qspi_of_match, dev->of_node);
1502	if (!of_id)
1503		return -ENODEV;
1504
1505	data = of_id->data;
1506
1507	master = devm_spi_alloc_master(dev, sizeof(struct bcm_qspi));
1508	if (!master) {
1509		dev_err(dev, "error allocating spi_master\n");
1510		return -ENOMEM;
1511	}
1512
1513	qspi = spi_master_get_devdata(master);
1514
1515	qspi->clk = devm_clk_get_optional(&pdev->dev, NULL);
1516	if (IS_ERR(qspi->clk))
1517		return PTR_ERR(qspi->clk);
1518
1519	qspi->pdev = pdev;
1520	qspi->trans_pos.trans = NULL;
1521	qspi->trans_pos.byte = 0;
1522	qspi->trans_pos.mspi_last_trans = true;
1523	qspi->master = master;
1524
1525	master->bus_num = -1;
1526	master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD |
1527				SPI_3WIRE;
1528	master->setup = bcm_qspi_setup;
1529	master->transfer_one = bcm_qspi_transfer_one;
1530	master->mem_ops = &bcm_qspi_mem_ops;
1531	master->cleanup = bcm_qspi_cleanup;
1532	master->dev.of_node = dev->of_node;
1533	master->num_chipselect = NUM_CHIPSELECT;
1534	master->use_gpio_descriptors = true;
1535
1536	qspi->big_endian = of_device_is_big_endian(dev->of_node);
1537
1538	if (!of_property_read_u32(dev->of_node, "num-cs", &val))
1539		master->num_chipselect = val;
1540
1541	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
1542	if (!res)
1543		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1544						   "mspi");
1545
1546	if (res) {
1547		qspi->base[MSPI]  = devm_ioremap_resource(dev, res);
1548		if (IS_ERR(qspi->base[MSPI]))
1549			return PTR_ERR(qspi->base[MSPI]);
 
 
1550	} else {
1551		return 0;
1552	}
1553
1554	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
1555	if (res) {
1556		qspi->base[BSPI]  = devm_ioremap_resource(dev, res);
1557		if (IS_ERR(qspi->base[BSPI]))
1558			return PTR_ERR(qspi->base[BSPI]);
 
 
1559		qspi->bspi_mode = true;
1560	} else {
1561		qspi->bspi_mode = false;
1562	}
1563
1564	dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
1565
1566	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
1567	if (res) {
1568		qspi->base[CHIP_SELECT]  = devm_ioremap_resource(dev, res);
1569		if (IS_ERR(qspi->base[CHIP_SELECT]))
1570			return PTR_ERR(qspi->base[CHIP_SELECT]);
1571	}
1572
1573	qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
1574				GFP_KERNEL);
1575	if (!qspi->dev_ids)
1576		return -ENOMEM;
1577
1578	/*
1579	 * Some SoCs integrate spi controller (e.g., its interrupt bits)
1580	 * in specific ways
1581	 */
1582	if (soc_intc) {
1583		qspi->soc_intc = soc_intc;
1584		soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
1585	} else {
1586		qspi->soc_intc = NULL;
1587	}
1588
1589	if (qspi->clk) {
1590		ret = clk_prepare_enable(qspi->clk);
1591		if (ret) {
1592			dev_err(dev, "failed to prepare clock\n");
1593			goto qspi_probe_err;
1594		}
1595		qspi->base_clk = clk_get_rate(qspi->clk);
1596	} else {
1597		qspi->base_clk = MSPI_BASE_FREQ;
1598	}
1599
1600	if (data->has_mspi_rev) {
1601		rev = bcm_qspi_read(qspi, MSPI, MSPI_REV);
1602		/* some older revs do not have a MSPI_REV register */
1603		if ((rev & 0xff) == 0xff)
1604			rev = 0;
1605	}
1606
1607	qspi->mspi_maj_rev = (rev >> 4) & 0xf;
1608	qspi->mspi_min_rev = rev & 0xf;
1609	qspi->mspi_spcr3_sysclk = data->has_spcr3_sysclk;
1610
1611	qspi->max_speed_hz = qspi->base_clk / (bcm_qspi_spbr_min(qspi) * 2);
1612
1613	/*
1614	 * On SW resets it is possible to have the mask still enabled
1615	 * Need to disable the mask and clear the status while we init
1616	 */
1617	bcm_qspi_hw_uninit(qspi);
1618
1619	for (val = 0; val < num_irqs; val++) {
1620		irq = -1;
1621		name = qspi_irq_tab[val].irq_name;
1622		if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
1623			/* get the l2 interrupts */
1624			irq = platform_get_irq_byname_optional(pdev, name);
1625		} else if (!num_ints && soc_intc) {
1626			/* all mspi, bspi intrs muxed to one L1 intr */
1627			irq = platform_get_irq(pdev, 0);
1628		}
1629
1630		if (irq  >= 0) {
1631			ret = devm_request_irq(&pdev->dev, irq,
1632					       qspi_irq_tab[val].irq_handler, 0,
1633					       name,
1634					       &qspi->dev_ids[val]);
1635			if (ret < 0) {
1636				dev_err(&pdev->dev, "IRQ %s not found\n", name);
1637				goto qspi_unprepare_err;
1638			}
1639
1640			qspi->dev_ids[val].dev = qspi;
1641			qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
1642			num_ints++;
1643			dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
1644				qspi_irq_tab[val].irq_name,
1645				irq);
1646		}
1647	}
1648
1649	if (!num_ints) {
1650		dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
1651		ret = -EINVAL;
1652		goto qspi_unprepare_err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1653	}
1654
 
 
 
 
 
 
 
 
 
1655	bcm_qspi_hw_init(qspi);
1656	init_completion(&qspi->mspi_done);
1657	init_completion(&qspi->bspi_done);
1658	qspi->curr_cs = -1;
1659
1660	platform_set_drvdata(pdev, qspi);
1661
1662	qspi->xfer_mode.width = -1;
1663	qspi->xfer_mode.addrlen = -1;
1664	qspi->xfer_mode.hp = -1;
1665
1666	ret = spi_register_master(master);
1667	if (ret < 0) {
1668		dev_err(dev, "can't register master\n");
1669		goto qspi_reg_err;
1670	}
1671
1672	return 0;
1673
1674qspi_reg_err:
1675	bcm_qspi_hw_uninit(qspi);
1676qspi_unprepare_err:
1677	clk_disable_unprepare(qspi->clk);
1678qspi_probe_err:
 
1679	kfree(qspi->dev_ids);
1680	return ret;
1681}
1682/* probe function to be called by SoC specific platform driver probe */
1683EXPORT_SYMBOL_GPL(bcm_qspi_probe);
1684
1685void bcm_qspi_remove(struct platform_device *pdev)
1686{
1687	struct bcm_qspi *qspi = platform_get_drvdata(pdev);
1688
1689	spi_unregister_master(qspi->master);
1690	bcm_qspi_hw_uninit(qspi);
1691	clk_disable_unprepare(qspi->clk);
1692	kfree(qspi->dev_ids);
1693}
1694
 
 
1695/* function to be called by SoC specific platform driver remove() */
1696EXPORT_SYMBOL_GPL(bcm_qspi_remove);
1697
1698static int __maybe_unused bcm_qspi_suspend(struct device *dev)
1699{
1700	struct bcm_qspi *qspi = dev_get_drvdata(dev);
1701
1702	/* store the override strap value */
1703	if (!bcm_qspi_bspi_ver_three(qspi))
1704		qspi->s3_strap_override_ctrl =
1705			bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
1706
1707	spi_master_suspend(qspi->master);
1708	clk_disable_unprepare(qspi->clk);
1709	bcm_qspi_hw_uninit(qspi);
1710
1711	return 0;
1712};
1713
1714static int __maybe_unused bcm_qspi_resume(struct device *dev)
1715{
1716	struct bcm_qspi *qspi = dev_get_drvdata(dev);
1717	int ret = 0;
1718
1719	bcm_qspi_hw_init(qspi);
1720	bcm_qspi_chip_select(qspi, qspi->curr_cs);
1721	if (qspi->soc_intc)
1722		/* enable MSPI interrupt */
1723		qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
1724						 true);
1725
1726	ret = clk_prepare_enable(qspi->clk);
1727	if (!ret)
1728		spi_master_resume(qspi->master);
1729
1730	return ret;
1731}
1732
1733SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
1734
1735/* pm_ops to be called by SoC specific platform driver */
1736EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
1737
1738MODULE_AUTHOR("Kamal Dasu");
1739MODULE_DESCRIPTION("Broadcom QSPI driver");
1740MODULE_LICENSE("GPL v2");
1741MODULE_ALIAS("platform:" DRIVER_NAME);
v4.10.11
 
   1/*
   2 * Driver for Broadcom BRCMSTB, NSP,  NS2, Cygnus SPI Controllers
   3 *
   4 * Copyright 2016 Broadcom
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License, version 2, as
   8 * published by the Free Software Foundation (the "GPL").
   9 *
  10 * This program is distributed in the hope that it will be useful, but
  11 * WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  13 * General Public License version 2 (GPLv2) for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * version 2 (GPLv2) along with this source code.
  17 */
  18
  19#include <linux/clk.h>
  20#include <linux/delay.h>
  21#include <linux/device.h>
  22#include <linux/init.h>
  23#include <linux/interrupt.h>
  24#include <linux/io.h>
  25#include <linux/ioport.h>
  26#include <linux/kernel.h>
  27#include <linux/module.h>
  28#include <linux/mtd/spi-nor.h>
  29#include <linux/of.h>
  30#include <linux/of_irq.h>
  31#include <linux/platform_device.h>
  32#include <linux/slab.h>
  33#include <linux/spi/spi.h>
 
  34#include <linux/sysfs.h>
  35#include <linux/types.h>
  36#include "spi-bcm-qspi.h"
  37
  38#define DRIVER_NAME "bcm_qspi"
  39
  40
  41/* BSPI register offsets */
  42#define BSPI_REVISION_ID			0x000
  43#define BSPI_SCRATCH				0x004
  44#define BSPI_MAST_N_BOOT_CTRL			0x008
  45#define BSPI_BUSY_STATUS			0x00c
  46#define BSPI_INTR_STATUS			0x010
  47#define BSPI_B0_STATUS				0x014
  48#define BSPI_B0_CTRL				0x018
  49#define BSPI_B1_STATUS				0x01c
  50#define BSPI_B1_CTRL				0x020
  51#define BSPI_STRAP_OVERRIDE_CTRL		0x024
  52#define BSPI_FLEX_MODE_ENABLE			0x028
  53#define BSPI_BITS_PER_CYCLE			0x02c
  54#define BSPI_BITS_PER_PHASE			0x030
  55#define BSPI_CMD_AND_MODE_BYTE			0x034
  56#define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE	0x038
  57#define BSPI_BSPI_XOR_VALUE			0x03c
  58#define BSPI_BSPI_XOR_ENABLE			0x040
  59#define BSPI_BSPI_PIO_MODE_ENABLE		0x044
  60#define BSPI_BSPI_PIO_IODIR			0x048
  61#define BSPI_BSPI_PIO_DATA			0x04c
  62
  63/* RAF register offsets */
  64#define BSPI_RAF_START_ADDR			0x100
  65#define BSPI_RAF_NUM_WORDS			0x104
  66#define BSPI_RAF_CTRL				0x108
  67#define BSPI_RAF_FULLNESS			0x10c
  68#define BSPI_RAF_WATERMARK			0x110
  69#define BSPI_RAF_STATUS			0x114
  70#define BSPI_RAF_READ_DATA			0x118
  71#define BSPI_RAF_WORD_CNT			0x11c
  72#define BSPI_RAF_CURR_ADDR			0x120
  73
  74/* Override mode masks */
  75#define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE	BIT(0)
  76#define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL	BIT(1)
  77#define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE	BIT(2)
  78#define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD	BIT(3)
  79#define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE	BIT(4)
  80
  81#define BSPI_ADDRLEN_3BYTES			3
  82#define BSPI_ADDRLEN_4BYTES			4
  83
  84#define BSPI_RAF_STATUS_FIFO_EMPTY_MASK	BIT(1)
  85
  86#define BSPI_RAF_CTRL_START_MASK		BIT(0)
  87#define BSPI_RAF_CTRL_CLEAR_MASK		BIT(1)
  88
  89#define BSPI_BPP_MODE_SELECT_MASK		BIT(8)
  90#define BSPI_BPP_ADDR_SELECT_MASK		BIT(16)
  91
  92#define BSPI_READ_LENGTH			256
  93
  94/* MSPI register offsets */
  95#define MSPI_SPCR0_LSB				0x000
  96#define MSPI_SPCR0_MSB				0x004
 
 
 
  97#define MSPI_SPCR1_LSB				0x008
  98#define MSPI_SPCR1_MSB				0x00c
  99#define MSPI_NEWQP				0x010
 100#define MSPI_ENDQP				0x014
 101#define MSPI_SPCR2				0x018
 102#define MSPI_MSPI_STATUS			0x020
 103#define MSPI_CPTQP				0x024
 104#define MSPI_SPCR3				0x028
 
 105#define MSPI_TXRAM				0x040
 106#define MSPI_RXRAM				0x0c0
 107#define MSPI_CDRAM				0x140
 108#define MSPI_WRITE_LOCK			0x180
 109
 110#define MSPI_MASTER_BIT			BIT(7)
 111
 112#define MSPI_NUM_CDRAM				16
 
 113#define MSPI_CDRAM_CONT_BIT			BIT(7)
 114#define MSPI_CDRAM_BITSE_BIT			BIT(6)
 
 115#define MSPI_CDRAM_PCS				0xf
 116
 117#define MSPI_SPCR2_SPE				BIT(6)
 118#define MSPI_SPCR2_CONT_AFTER_CMD		BIT(7)
 119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 120#define MSPI_MSPI_STATUS_SPIF			BIT(0)
 121
 122#define INTR_BASE_BIT_SHIFT			0x02
 123#define INTR_COUNT				0x07
 124
 125#define NUM_CHIPSELECT				4
 126#define QSPI_SPBR_MIN				8U
 127#define QSPI_SPBR_MAX				255U
 
 128
 129#define OPCODE_DIOR				0xBB
 130#define OPCODE_QIOR				0xEB
 131#define OPCODE_DIOR_4B				0xBC
 132#define OPCODE_QIOR_4B				0xEC
 133
 134#define MAX_CMD_SIZE				6
 135
 136#define ADDR_4MB_MASK				GENMASK(22, 0)
 137
 138/* stop at end of transfer, no other reason */
 139#define TRANS_STATUS_BREAK_NONE		0
 140/* stop at end of spi_message */
 141#define TRANS_STATUS_BREAK_EOM			1
 142/* stop at end of spi_transfer if delay */
 143#define TRANS_STATUS_BREAK_DELAY		2
 144/* stop at end of spi_transfer if cs_change */
 145#define TRANS_STATUS_BREAK_CS_CHANGE		4
 146/* stop if we run out of bytes */
 147#define TRANS_STATUS_BREAK_NO_BYTES		8
 148
 149/* events that make us stop filling TX slots */
 150#define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM |		\
 151			       TRANS_STATUS_BREAK_DELAY |		\
 152			       TRANS_STATUS_BREAK_CS_CHANGE)
 153
 154/* events that make us deassert CS */
 155#define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM |		\
 156				     TRANS_STATUS_BREAK_CS_CHANGE)
 157
 
 
 
 
 
 
 
 
 158struct bcm_qspi_parms {
 159	u32 speed_hz;
 160	u8 mode;
 161	u8 bits_per_word;
 162};
 163
 164struct bcm_xfer_mode {
 165	bool flex_mode;
 166	unsigned int width;
 167	unsigned int addrlen;
 168	unsigned int hp;
 169};
 170
 171enum base_type {
 172	MSPI,
 173	BSPI,
 174	CHIP_SELECT,
 175	BASEMAX,
 176};
 177
 178enum irq_source {
 179	SINGLE_L2,
 180	MUXED_L1,
 181};
 182
 183struct bcm_qspi_irq {
 184	const char *irq_name;
 185	const irq_handler_t irq_handler;
 186	int irq_source;
 187	u32 mask;
 188};
 189
 190struct bcm_qspi_dev_id {
 191	const struct bcm_qspi_irq *irqp;
 192	void *dev;
 193};
 194
 
 195struct qspi_trans {
 196	struct spi_transfer *trans;
 197	int byte;
 
 198};
 199
 200struct bcm_qspi {
 201	struct platform_device *pdev;
 202	struct spi_master *master;
 203	struct clk *clk;
 204	u32 base_clk;
 205	u32 max_speed_hz;
 206	void __iomem *base[BASEMAX];
 207
 208	/* Some SoCs provide custom interrupt status register(s) */
 209	struct bcm_qspi_soc_intc	*soc_intc;
 210
 211	struct bcm_qspi_parms last_parms;
 212	struct qspi_trans  trans_pos;
 213	int curr_cs;
 214	int bspi_maj_rev;
 215	int bspi_min_rev;
 216	int bspi_enabled;
 217	struct spi_flash_read_message *bspi_rf_msg;
 218	u32 bspi_rf_msg_idx;
 219	u32 bspi_rf_msg_len;
 220	u32 bspi_rf_msg_status;
 221	struct bcm_xfer_mode xfer_mode;
 222	u32 s3_strap_override_ctrl;
 223	bool bspi_mode;
 224	bool big_endian;
 225	int num_irqs;
 226	struct bcm_qspi_dev_id *dev_ids;
 227	struct completion mspi_done;
 228	struct completion bspi_done;
 
 
 
 229};
 230
 231static inline bool has_bspi(struct bcm_qspi *qspi)
 232{
 233	return qspi->bspi_mode;
 234}
 235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 236/* Read qspi controller register*/
 237static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
 238				unsigned int offset)
 239{
 240	return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
 241}
 242
 243/* Write qspi controller register*/
 244static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
 245				  unsigned int offset, unsigned int data)
 246{
 247	bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
 248}
 249
 250/* BSPI helpers */
 251static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
 252{
 253	int i;
 254
 255	/* this should normally finish within 10us */
 256	for (i = 0; i < 1000; i++) {
 257		if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
 258			return 0;
 259		udelay(1);
 260	}
 261	dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
 262	return -EIO;
 263}
 264
 265static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
 266{
 267	if (qspi->bspi_maj_rev < 4)
 268		return true;
 269	return false;
 270}
 271
 272static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
 273{
 274	bcm_qspi_bspi_busy_poll(qspi);
 275	/* Force rising edge for the b0/b1 'flush' field */
 276	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
 277	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
 278	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
 279	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
 280}
 281
 282static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
 283{
 284	return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
 285				BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
 286}
 287
 288static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
 289{
 290	u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
 291
 292	/* BSPI v3 LR is LE only, convert data to host endianness */
 293	if (bcm_qspi_bspi_ver_three(qspi))
 294		data = le32_to_cpu(data);
 295
 296	return data;
 297}
 298
 299static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
 300{
 301	bcm_qspi_bspi_busy_poll(qspi);
 302	bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
 303		       BSPI_RAF_CTRL_START_MASK);
 304}
 305
 306static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
 307{
 308	bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
 309		       BSPI_RAF_CTRL_CLEAR_MASK);
 310	bcm_qspi_bspi_flush_prefetch_buffers(qspi);
 311}
 312
 313static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
 314{
 315	u32 *buf = (u32 *)qspi->bspi_rf_msg->buf;
 316	u32 data = 0;
 317
 318	dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_msg,
 319		qspi->bspi_rf_msg->buf, qspi->bspi_rf_msg_len);
 320	while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
 321		data = bcm_qspi_bspi_lr_read_fifo(qspi);
 322		if (likely(qspi->bspi_rf_msg_len >= 4) &&
 323		    IS_ALIGNED((uintptr_t)buf, 4)) {
 324			buf[qspi->bspi_rf_msg_idx++] = data;
 325			qspi->bspi_rf_msg_len -= 4;
 326		} else {
 327			/* Read out remaining bytes, make sure*/
 328			u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_msg_idx];
 329
 330			data = cpu_to_le32(data);
 331			while (qspi->bspi_rf_msg_len) {
 332				*cbuf++ = (u8)data;
 333				data >>= 8;
 334				qspi->bspi_rf_msg_len--;
 335			}
 336		}
 337	}
 338}
 339
 340static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
 341					  int bpp, int bpc, int flex_mode)
 342{
 343	bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
 344	bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
 345	bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
 346	bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
 347	bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
 348}
 349
 350static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi, int width,
 351				       int addrlen, int hp)
 352{
 353	int bpc = 0, bpp = 0;
 354	u8 command = SPINOR_OP_READ_FAST;
 355	int flex_mode = 1, rv = 0;
 356	bool spans_4byte = false;
 
 357
 358	dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
 359		width, addrlen, hp);
 360
 361	if (addrlen == BSPI_ADDRLEN_4BYTES) {
 362		bpp = BSPI_BPP_ADDR_SELECT_MASK;
 363		spans_4byte = true;
 364	}
 365
 366	bpp |= 8;
 
 367
 368	switch (width) {
 369	case SPI_NBITS_SINGLE:
 370		if (addrlen == BSPI_ADDRLEN_3BYTES)
 371			/* default mode, does not need flex_cmd */
 372			flex_mode = 0;
 373		else
 374			command = SPINOR_OP_READ4_FAST;
 375		break;
 376	case SPI_NBITS_DUAL:
 377		bpc = 0x00000001;
 378		if (hp) {
 379			bpc |= 0x00010100; /* address and mode are 2-bit */
 380			bpp = BSPI_BPP_MODE_SELECT_MASK;
 381			command = OPCODE_DIOR;
 382			if (spans_4byte)
 383				command = OPCODE_DIOR_4B;
 384		} else {
 385			command = SPINOR_OP_READ_1_1_2;
 386			if (spans_4byte)
 387				command = SPINOR_OP_READ4_1_1_2;
 388		}
 389		break;
 390	case SPI_NBITS_QUAD:
 391		bpc = 0x00000002;
 392		if (hp) {
 393			bpc |= 0x00020200; /* address and mode are 4-bit */
 394			bpp = 4; /* dummy cycles */
 395			bpp |= BSPI_BPP_ADDR_SELECT_MASK;
 396			command = OPCODE_QIOR;
 397			if (spans_4byte)
 398				command = OPCODE_QIOR_4B;
 399		} else {
 400			command = SPINOR_OP_READ_1_1_4;
 401			if (spans_4byte)
 402				command = SPINOR_OP_READ4_1_1_4;
 403		}
 404		break;
 405	default:
 406		rv = -EINVAL;
 407		break;
 408	}
 409
 410	if (rv == 0)
 411		bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc,
 412					      flex_mode);
 413
 414	return rv;
 415}
 416
 417static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi, int width,
 418				      int addrlen, int hp)
 419{
 
 
 420	u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
 421
 422	dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
 423		width, addrlen, hp);
 424
 425	switch (width) {
 426	case SPI_NBITS_SINGLE:
 427		/* clear quad/dual mode */
 428		data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
 429			  BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
 430		break;
 431
 432	case SPI_NBITS_QUAD:
 433		/* clear dual mode and set quad mode */
 434		data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
 435		data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
 436		break;
 437	case SPI_NBITS_DUAL:
 438		/* clear quad mode set dual mode */
 439		data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
 440		data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
 441		break;
 442	default:
 443		return -EINVAL;
 444	}
 445
 446	if (addrlen == BSPI_ADDRLEN_4BYTES)
 447		/* set 4byte mode*/
 448		data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
 449	else
 450		/* clear 4 byte mode */
 451		data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
 452
 453	/* set the override mode */
 454	data |=	BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
 455	bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
 456	bcm_qspi_bspi_set_xfer_params(qspi, SPINOR_OP_READ_FAST, 0, 0, 0);
 457
 458	return 0;
 459}
 460
 461static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
 462				  int width, int addrlen, int hp)
 463{
 464	int error = 0;
 
 
 465
 466	/* default mode */
 467	qspi->xfer_mode.flex_mode = true;
 468
 469	if (!bcm_qspi_bspi_ver_three(qspi)) {
 470		u32 val, mask;
 471
 472		val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
 473		mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
 474		if (val & mask || qspi->s3_strap_override_ctrl & mask) {
 475			qspi->xfer_mode.flex_mode = false;
 476			bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE,
 477				       0);
 478
 479			if ((val | qspi->s3_strap_override_ctrl) &
 480			    BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL)
 481				width = SPI_NBITS_DUAL;
 482			else if ((val |  qspi->s3_strap_override_ctrl) &
 483				 BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD)
 484				width = SPI_NBITS_QUAD;
 485
 486			error = bcm_qspi_bspi_set_override(qspi, width, addrlen,
 487							   hp);
 488		}
 489	}
 490
 491	if (qspi->xfer_mode.flex_mode)
 492		error = bcm_qspi_bspi_set_flex_mode(qspi, width, addrlen, hp);
 493
 494	if (error) {
 495		dev_warn(&qspi->pdev->dev,
 496			 "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
 497			 width, addrlen, hp);
 498	} else if (qspi->xfer_mode.width != width ||
 499		   qspi->xfer_mode.addrlen != addrlen ||
 500		   qspi->xfer_mode.hp != hp) {
 501		qspi->xfer_mode.width = width;
 502		qspi->xfer_mode.addrlen = addrlen;
 503		qspi->xfer_mode.hp = hp;
 504		dev_dbg(&qspi->pdev->dev,
 505			"cs:%d %d-lane output, %d-byte address%s\n",
 506			qspi->curr_cs,
 507			qspi->xfer_mode.width,
 508			qspi->xfer_mode.addrlen,
 509			qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
 510	}
 511
 512	return error;
 513}
 514
 515static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
 516{
 517	if (!has_bspi(qspi) || (qspi->bspi_enabled))
 518		return;
 519
 520	qspi->bspi_enabled = 1;
 521	if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
 522		return;
 523
 524	bcm_qspi_bspi_flush_prefetch_buffers(qspi);
 525	udelay(1);
 526	bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
 527	udelay(1);
 528}
 529
 530static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
 531{
 532	if (!has_bspi(qspi) || (!qspi->bspi_enabled))
 533		return;
 534
 535	qspi->bspi_enabled = 0;
 536	if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
 537		return;
 538
 539	bcm_qspi_bspi_busy_poll(qspi);
 540	bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
 541	udelay(1);
 542}
 543
 544static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
 545{
 546	u32 data = 0;
 
 547
 548	if (qspi->curr_cs == cs)
 549		return;
 550	if (qspi->base[CHIP_SELECT]) {
 551		data = bcm_qspi_read(qspi, CHIP_SELECT, 0);
 552		data = (data & ~0xff) | (1 << cs);
 553		bcm_qspi_write(qspi, CHIP_SELECT, 0, data);
 554		usleep_range(10, 20);
 555	}
 
 
 556	qspi->curr_cs = cs;
 557}
 558
 
 
 
 
 
 
 
 
 
 559/* MSPI helpers */
 560static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
 561				  const struct bcm_qspi_parms *xp)
 562{
 563	u32 spcr, spbr = 0;
 564
 565	if (xp->speed_hz)
 566		spbr = qspi->base_clk / (2 * xp->speed_hz);
 
 
 
 
 
 
 567
 568	spcr = clamp_val(spbr, QSPI_SPBR_MIN, QSPI_SPBR_MAX);
 569	bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spcr);
 
 
 
 
 
 
 
 570
 571	spcr = MSPI_MASTER_BIT;
 572	/* for 16 bit the data should be zero */
 573	if (xp->bits_per_word != 16)
 574		spcr |= xp->bits_per_word << 2;
 575	spcr |= xp->mode & 3;
 576	bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
 577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 578	qspi->last_parms = *xp;
 579}
 580
 581static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
 582				  struct spi_device *spi,
 583				  struct spi_transfer *trans)
 584{
 585	struct bcm_qspi_parms xp;
 586
 587	xp.speed_hz = trans->speed_hz;
 588	xp.bits_per_word = trans->bits_per_word;
 589	xp.mode = spi->mode;
 590
 591	bcm_qspi_hw_set_parms(qspi, &xp);
 592}
 593
 594static int bcm_qspi_setup(struct spi_device *spi)
 595{
 596	struct bcm_qspi_parms *xp;
 597
 598	if (spi->bits_per_word > 16)
 599		return -EINVAL;
 600
 601	xp = spi_get_ctldata(spi);
 602	if (!xp) {
 603		xp = kzalloc(sizeof(*xp), GFP_KERNEL);
 604		if (!xp)
 605			return -ENOMEM;
 606		spi_set_ctldata(spi, xp);
 607	}
 608	xp->speed_hz = spi->max_speed_hz;
 609	xp->mode = spi->mode;
 610
 611	if (spi->bits_per_word)
 612		xp->bits_per_word = spi->bits_per_word;
 613	else
 614		xp->bits_per_word = 8;
 615
 616	return 0;
 617}
 618
 
 
 
 
 
 
 
 
 
 
 619static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
 620					struct qspi_trans *qt, int flags)
 621{
 622	int ret = TRANS_STATUS_BREAK_NONE;
 623
 624	/* count the last transferred bytes */
 625	if (qt->trans->bits_per_word <= 8)
 626		qt->byte++;
 627	else
 628		qt->byte += 2;
 
 
 
 
 629
 630	if (qt->byte >= qt->trans->len) {
 631		/* we're at the end of the spi_transfer */
 632
 633		/* in TX mode, need to pause for a delay or CS change */
 634		if (qt->trans->delay_usecs &&
 635		    (flags & TRANS_STATUS_BREAK_DELAY))
 636			ret |= TRANS_STATUS_BREAK_DELAY;
 637		if (qt->trans->cs_change &&
 638		    (flags & TRANS_STATUS_BREAK_CS_CHANGE))
 639			ret |= TRANS_STATUS_BREAK_CS_CHANGE;
 640		if (ret)
 641			goto done;
 642
 643		dev_dbg(&qspi->pdev->dev, "advance msg exit\n");
 644		if (spi_transfer_is_last(qspi->master, qt->trans))
 645			ret = TRANS_STATUS_BREAK_EOM;
 646		else
 647			ret = TRANS_STATUS_BREAK_NO_BYTES;
 648
 649		qt->trans = NULL;
 650	}
 651
 652done:
 653	dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
 654		qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
 655	return ret;
 656}
 657
 658static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
 659{
 660	u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
 661
 662	/* mask out reserved bits */
 663	return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
 664}
 665
 666static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
 667{
 668	u32 reg_offset = MSPI_RXRAM;
 669	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
 670	u32 msb_offset = reg_offset + (slot << 3);
 671
 672	return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
 673		((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
 674}
 675
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 676static void read_from_hw(struct bcm_qspi *qspi, int slots)
 677{
 678	struct qspi_trans tp;
 679	int slot;
 680
 681	bcm_qspi_disable_bspi(qspi);
 682
 683	if (slots > MSPI_NUM_CDRAM) {
 684		/* should never happen */
 685		dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
 686		return;
 687	}
 688
 689	tp = qspi->trans_pos;
 690
 691	for (slot = 0; slot < slots; slot++) {
 692		if (tp.trans->bits_per_word <= 8) {
 693			u8 *buf = tp.trans->rx_buf;
 694
 695			if (buf)
 696				buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
 697			dev_dbg(&qspi->pdev->dev, "RD %02x\n",
 698				buf ? buf[tp.byte] : 0xff);
 699		} else {
 700			u16 *buf = tp.trans->rx_buf;
 701
 702			if (buf)
 703				buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
 704								      slot);
 705			dev_dbg(&qspi->pdev->dev, "RD %04x\n",
 706				buf ? buf[tp.byte] : 0xffff);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 707		}
 708
 709		update_qspi_trans_byte_count(qspi, &tp,
 710					     TRANS_STATUS_BREAK_NONE);
 711	}
 712
 713	qspi->trans_pos = tp;
 714}
 715
 716static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
 717				       u8 val)
 718{
 719	u32 reg_offset = MSPI_TXRAM + (slot << 3);
 720
 721	/* mask out reserved bits */
 722	bcm_qspi_write(qspi, MSPI, reg_offset, val);
 723}
 724
 725static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
 726					u16 val)
 727{
 728	u32 reg_offset = MSPI_TXRAM;
 729	u32 msb_offset = reg_offset + (slot << 3);
 730	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
 731
 732	bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
 733	bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
 734}
 735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 736static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
 737{
 738	return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
 739}
 740
 741static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
 742{
 743	bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
 744}
 745
 746/* Return number of slots written */
 747static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
 748{
 749	struct qspi_trans tp;
 750	int slot = 0, tstatus = 0;
 751	u32 mspi_cdram = 0;
 752
 753	bcm_qspi_disable_bspi(qspi);
 754	tp = qspi->trans_pos;
 755	bcm_qspi_update_parms(qspi, spi, tp.trans);
 756
 757	/* Run until end of transfer or reached the max data */
 758	while (!tstatus && slot < MSPI_NUM_CDRAM) {
 
 759		if (tp.trans->bits_per_word <= 8) {
 760			const u8 *buf = tp.trans->tx_buf;
 761			u8 val = buf ? buf[tp.byte] : 0xff;
 762
 763			write_txram_slot_u8(qspi, slot, val);
 764			dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
 765		} else {
 766			const u16 *buf = tp.trans->tx_buf;
 767			u16 val = buf ? buf[tp.byte / 2] : 0xffff;
 768
 769			write_txram_slot_u16(qspi, slot, val);
 770			dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 771		}
 772		mspi_cdram = MSPI_CDRAM_CONT_BIT;
 773		mspi_cdram |= (~(1 << spi->chip_select) &
 774			       MSPI_CDRAM_PCS);
 775		mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
 776				MSPI_CDRAM_BITSE_BIT);
 
 
 
 
 
 
 
 
 
 
 777
 778		write_cdram_slot(qspi, slot, mspi_cdram);
 779
 780		tstatus = update_qspi_trans_byte_count(qspi, &tp,
 781						       TRANS_STATUS_BREAK_TX);
 782		slot++;
 783	}
 784
 785	if (!slot) {
 786		dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
 787		goto done;
 788	}
 789
 790	dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
 791	bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
 792	bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
 793
 794	if (tstatus & TRANS_STATUS_BREAK_DESELECT) {
 
 
 
 
 
 
 
 
 
 795		mspi_cdram = read_cdram_slot(qspi, slot - 1) &
 796			~MSPI_CDRAM_CONT_BIT;
 797		write_cdram_slot(qspi, slot - 1, mspi_cdram);
 798	}
 799
 800	if (has_bspi(qspi))
 801		bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
 802
 803	/* Must flush previous writes before starting MSPI operation */
 804	mb();
 805	/* Set cont | spe | spifie */
 806	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
 807
 808done:
 809	return slot;
 810}
 811
 812static int bcm_qspi_bspi_flash_read(struct spi_device *spi,
 813				    struct spi_flash_read_message *msg)
 814{
 815	struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
 816	u32 addr = 0, len, len_words;
 817	int ret = 0;
 818	unsigned long timeo = msecs_to_jiffies(100);
 819	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
 820
 821	if (bcm_qspi_bspi_ver_three(qspi))
 822		if (msg->addr_width == BSPI_ADDRLEN_4BYTES)
 823			return -EIO;
 824
 825	bcm_qspi_chip_select(qspi, spi->chip_select);
 
 
 826	bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
 827
 828	/*
 829	 * when using flex mode mode we need to send
 830	 * the upper address byte to bspi
 831	 */
 832	if (bcm_qspi_bspi_ver_three(qspi) == false) {
 833		addr = msg->from & 0xff000000;
 834		bcm_qspi_write(qspi, BSPI,
 835			       BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
 836	}
 837
 838	if (!qspi->xfer_mode.flex_mode)
 839		addr = msg->from;
 840	else
 841		addr = msg->from & 0x00ffffff;
 842
 843	/* set BSPI RAF buffer max read length */
 844	len = msg->len;
 845	if (len > BSPI_READ_LENGTH)
 846		len = BSPI_READ_LENGTH;
 847
 848	if (bcm_qspi_bspi_ver_three(qspi) == true)
 849		addr = (addr + 0xc00000) & 0xffffff;
 850
 851	reinit_completion(&qspi->bspi_done);
 852	bcm_qspi_enable_bspi(qspi);
 853	len_words = (len + 3) >> 2;
 854	qspi->bspi_rf_msg = msg;
 855	qspi->bspi_rf_msg_status = 0;
 856	qspi->bspi_rf_msg_idx = 0;
 857	qspi->bspi_rf_msg_len = len;
 858	dev_dbg(&qspi->pdev->dev, "bspi xfr addr 0x%x len 0x%x", addr, len);
 859
 860	bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
 861	bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
 862	bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 863
 864	if (qspi->soc_intc) {
 865		/*
 866		 * clear soc MSPI and BSPI interrupts and enable
 867		 * BSPI interrupts.
 868		 */
 869		soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
 870		soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
 871	}
 
 872
 873	/* Must flush previous writes before starting BSPI operation */
 874	mb();
 875
 876	bcm_qspi_bspi_lr_start(qspi);
 877	if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
 878		dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
 879		ret = -ETIMEDOUT;
 880	} else {
 881		/* set the return length for the caller */
 882		msg->retlen = len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 883	}
 884
 885	return ret;
 886}
 887
 888static int bcm_qspi_flash_read(struct spi_device *spi,
 889			       struct spi_flash_read_message *msg)
 890{
 
 891	struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
 892	int ret = 0;
 893	bool mspi_read = false;
 894	u32 io_width, addrlen, addr, len;
 895	u_char *buf;
 896
 897	buf = msg->buf;
 898	addr = msg->from;
 899	len = msg->len;
 
 
 
 
 900
 901	if (bcm_qspi_bspi_ver_three(qspi) == true) {
 902		/*
 903		 * The address coming into this function is a raw flash offset.
 904		 * But for BSPI <= V3, we need to convert it to a remapped BSPI
 905		 * address. If it crosses a 4MB boundary, just revert back to
 906		 * using MSPI.
 907		 */
 908		addr = (addr + 0xc00000) & 0xffffff;
 909
 910		if ((~ADDR_4MB_MASK & addr) ^
 911		    (~ADDR_4MB_MASK & (addr + len - 1)))
 912			mspi_read = true;
 913	}
 914
 915	/* non-aligned and very short transfers are handled by MSPI */
 916	if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
 917	    len < 4)
 918		mspi_read = true;
 919
 920	if (mspi_read)
 921		/* this will make the m25p80 read to fallback to mspi read */
 922		return -EAGAIN;
 923
 924	io_width = msg->data_nbits ? msg->data_nbits : SPI_NBITS_SINGLE;
 925	addrlen = msg->addr_width;
 926	ret = bcm_qspi_bspi_set_mode(qspi, io_width, addrlen, -1);
 927
 928	if (!ret)
 929		ret = bcm_qspi_bspi_flash_read(spi, msg);
 930
 931	return ret;
 932}
 933
 934static int bcm_qspi_transfer_one(struct spi_master *master,
 935				 struct spi_device *spi,
 936				 struct spi_transfer *trans)
 937{
 938	struct bcm_qspi *qspi = spi_master_get_devdata(master);
 939	int slots;
 940	unsigned long timeo = msecs_to_jiffies(100);
 941
 942	bcm_qspi_chip_select(qspi, spi->chip_select);
 943	qspi->trans_pos.trans = trans;
 944	qspi->trans_pos.byte = 0;
 945
 946	while (qspi->trans_pos.byte < trans->len) {
 947		reinit_completion(&qspi->mspi_done);
 948
 949		slots = write_to_hw(qspi, spi);
 950		if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
 951			dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
 952			return -ETIMEDOUT;
 953		}
 954
 955		read_from_hw(qspi, slots);
 956	}
 957
 958	return 0;
 959}
 960
 961static void bcm_qspi_cleanup(struct spi_device *spi)
 962{
 963	struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
 964
 965	kfree(xp);
 966}
 967
 968static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
 969{
 970	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
 971	struct bcm_qspi *qspi = qspi_dev_id->dev;
 972	u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
 973
 974	if (status & MSPI_MSPI_STATUS_SPIF) {
 975		struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
 976		/* clear interrupt */
 977		status &= ~MSPI_MSPI_STATUS_SPIF;
 978		bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
 979		if (qspi->soc_intc)
 980			soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
 981		complete(&qspi->mspi_done);
 982		return IRQ_HANDLED;
 983	}
 984
 985	return IRQ_NONE;
 986}
 987
 988static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
 989{
 990	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
 991	struct bcm_qspi *qspi = qspi_dev_id->dev;
 992	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
 993	u32 status = qspi_dev_id->irqp->mask;
 994
 995	if (qspi->bspi_enabled && qspi->bspi_rf_msg) {
 996		bcm_qspi_bspi_lr_data_read(qspi);
 997		if (qspi->bspi_rf_msg_len == 0) {
 998			qspi->bspi_rf_msg = NULL;
 999			if (qspi->soc_intc) {
1000				/* disable soc BSPI interrupt */
1001				soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
1002							   false);
1003				/* indicate done */
1004				status = INTR_BSPI_LR_SESSION_DONE_MASK;
1005			}
1006
1007			if (qspi->bspi_rf_msg_status)
1008				bcm_qspi_bspi_lr_clear(qspi);
1009			else
1010				bcm_qspi_bspi_flush_prefetch_buffers(qspi);
1011		}
1012
1013		if (qspi->soc_intc)
1014			/* clear soc BSPI interrupt */
1015			soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
1016	}
1017
1018	status &= INTR_BSPI_LR_SESSION_DONE_MASK;
1019	if (qspi->bspi_enabled && status && qspi->bspi_rf_msg_len == 0)
1020		complete(&qspi->bspi_done);
1021
1022	return IRQ_HANDLED;
1023}
1024
1025static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
1026{
1027	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1028	struct bcm_qspi *qspi = qspi_dev_id->dev;
1029	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1030
1031	dev_err(&qspi->pdev->dev, "BSPI INT error\n");
1032	qspi->bspi_rf_msg_status = -EIO;
1033	if (qspi->soc_intc)
1034		/* clear soc interrupt */
1035		soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
1036
1037	complete(&qspi->bspi_done);
1038	return IRQ_HANDLED;
1039}
1040
1041static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
1042{
1043	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1044	struct bcm_qspi *qspi = qspi_dev_id->dev;
1045	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1046	irqreturn_t ret = IRQ_NONE;
1047
1048	if (soc_intc) {
1049		u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
1050
1051		if (status & MSPI_DONE)
1052			ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
1053		else if (status & BSPI_DONE)
1054			ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
1055		else if (status & BSPI_ERR)
1056			ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
1057	}
1058
1059	return ret;
1060}
1061
1062static const struct bcm_qspi_irq qspi_irq_tab[] = {
1063	{
1064		.irq_name = "spi_lr_fullness_reached",
1065		.irq_handler = bcm_qspi_bspi_lr_l2_isr,
1066		.mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
1067	},
1068	{
1069		.irq_name = "spi_lr_session_aborted",
1070		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1071		.mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
1072	},
1073	{
1074		.irq_name = "spi_lr_impatient",
1075		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1076		.mask = INTR_BSPI_LR_IMPATIENT_MASK,
1077	},
1078	{
1079		.irq_name = "spi_lr_session_done",
1080		.irq_handler = bcm_qspi_bspi_lr_l2_isr,
1081		.mask = INTR_BSPI_LR_SESSION_DONE_MASK,
1082	},
1083#ifdef QSPI_INT_DEBUG
1084	/* this interrupt is for debug purposes only, dont request irq */
1085	{
1086		.irq_name = "spi_lr_overread",
1087		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1088		.mask = INTR_BSPI_LR_OVERREAD_MASK,
1089	},
1090#endif
1091	{
1092		.irq_name = "mspi_done",
1093		.irq_handler = bcm_qspi_mspi_l2_isr,
1094		.mask = INTR_MSPI_DONE_MASK,
1095	},
1096	{
1097		.irq_name = "mspi_halted",
1098		.irq_handler = bcm_qspi_mspi_l2_isr,
1099		.mask = INTR_MSPI_HALTED_MASK,
1100	},
1101	{
1102		/* single muxed L1 interrupt source */
1103		.irq_name = "spi_l1_intr",
1104		.irq_handler = bcm_qspi_l1_isr,
1105		.irq_source = MUXED_L1,
1106		.mask = QSPI_INTERRUPTS_ALL,
1107	},
1108};
1109
1110static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
1111{
1112	u32 val = 0;
1113
1114	val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
1115	qspi->bspi_maj_rev = (val >> 8) & 0xff;
1116	qspi->bspi_min_rev = val & 0xff;
1117	if (!(bcm_qspi_bspi_ver_three(qspi))) {
1118		/* Force mapping of BSPI address -> flash offset */
1119		bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
1120		bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
1121	}
1122	qspi->bspi_enabled = 1;
1123	bcm_qspi_disable_bspi(qspi);
1124	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
1125	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
1126}
1127
1128static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
1129{
1130	struct bcm_qspi_parms parms;
1131
1132	bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
1133	bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
1134	bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1135	bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
1136	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
1137
1138	parms.mode = SPI_MODE_3;
1139	parms.bits_per_word = 8;
1140	parms.speed_hz = qspi->max_speed_hz;
1141	bcm_qspi_hw_set_parms(qspi, &parms);
1142
1143	if (has_bspi(qspi))
1144		bcm_qspi_bspi_init(qspi);
1145}
1146
1147static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
1148{
 
 
1149	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
1150	if (has_bspi(qspi))
1151		bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1152
 
 
1153}
1154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1155static const struct of_device_id bcm_qspi_of_match[] = {
1156	{ .compatible = "brcm,spi-bcm-qspi" },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1157	{},
1158};
1159MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
1160
1161int bcm_qspi_probe(struct platform_device *pdev,
1162		   struct bcm_qspi_soc_intc *soc_intc)
1163{
 
 
1164	struct device *dev = &pdev->dev;
1165	struct bcm_qspi *qspi;
1166	struct spi_master *master;
1167	struct resource *res;
1168	int irq, ret = 0, num_ints = 0;
1169	u32 val;
 
1170	const char *name = NULL;
1171	int num_irqs = ARRAY_SIZE(qspi_irq_tab);
1172
1173	/* We only support device-tree instantiation */
1174	if (!dev->of_node)
1175		return -ENODEV;
1176
1177	if (!of_match_node(bcm_qspi_of_match, dev->of_node))
 
1178		return -ENODEV;
1179
1180	master = spi_alloc_master(dev, sizeof(struct bcm_qspi));
 
 
1181	if (!master) {
1182		dev_err(dev, "error allocating spi_master\n");
1183		return -ENOMEM;
1184	}
1185
1186	qspi = spi_master_get_devdata(master);
 
 
 
 
 
1187	qspi->pdev = pdev;
1188	qspi->trans_pos.trans = NULL;
1189	qspi->trans_pos.byte = 0;
 
1190	qspi->master = master;
1191
1192	master->bus_num = -1;
1193	master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD;
 
1194	master->setup = bcm_qspi_setup;
1195	master->transfer_one = bcm_qspi_transfer_one;
1196	master->spi_flash_read = bcm_qspi_flash_read;
1197	master->cleanup = bcm_qspi_cleanup;
1198	master->dev.of_node = dev->of_node;
1199	master->num_chipselect = NUM_CHIPSELECT;
 
1200
1201	qspi->big_endian = of_device_is_big_endian(dev->of_node);
1202
1203	if (!of_property_read_u32(dev->of_node, "num-cs", &val))
1204		master->num_chipselect = val;
1205
1206	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
1207	if (!res)
1208		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1209						   "mspi");
1210
1211	if (res) {
1212		qspi->base[MSPI]  = devm_ioremap_resource(dev, res);
1213		if (IS_ERR(qspi->base[MSPI])) {
1214			ret = PTR_ERR(qspi->base[MSPI]);
1215			goto qspi_probe_err;
1216		}
1217	} else {
1218		goto qspi_probe_err;
1219	}
1220
1221	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
1222	if (res) {
1223		qspi->base[BSPI]  = devm_ioremap_resource(dev, res);
1224		if (IS_ERR(qspi->base[BSPI])) {
1225			ret = PTR_ERR(qspi->base[BSPI]);
1226			goto qspi_probe_err;
1227		}
1228		qspi->bspi_mode = true;
1229	} else {
1230		qspi->bspi_mode = false;
1231	}
1232
1233	dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
1234
1235	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
1236	if (res) {
1237		qspi->base[CHIP_SELECT]  = devm_ioremap_resource(dev, res);
1238		if (IS_ERR(qspi->base[CHIP_SELECT])) {
1239			ret = PTR_ERR(qspi->base[CHIP_SELECT]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1240			goto qspi_probe_err;
1241		}
 
 
 
1242	}
1243
1244	qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
1245				GFP_KERNEL);
1246	if (!qspi->dev_ids) {
1247		ret = -ENOMEM;
1248		goto qspi_probe_err;
1249	}
1250
 
 
 
 
 
 
 
 
 
 
 
 
1251	for (val = 0; val < num_irqs; val++) {
1252		irq = -1;
1253		name = qspi_irq_tab[val].irq_name;
1254		if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
1255			/* get the l2 interrupts */
1256			irq = platform_get_irq_byname(pdev, name);
1257		} else if (!num_ints && soc_intc) {
1258			/* all mspi, bspi intrs muxed to one L1 intr */
1259			irq = platform_get_irq(pdev, 0);
1260		}
1261
1262		if (irq  >= 0) {
1263			ret = devm_request_irq(&pdev->dev, irq,
1264					       qspi_irq_tab[val].irq_handler, 0,
1265					       name,
1266					       &qspi->dev_ids[val]);
1267			if (ret < 0) {
1268				dev_err(&pdev->dev, "IRQ %s not found\n", name);
1269				goto qspi_probe_err;
1270			}
1271
1272			qspi->dev_ids[val].dev = qspi;
1273			qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
1274			num_ints++;
1275			dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
1276				qspi_irq_tab[val].irq_name,
1277				irq);
1278		}
1279	}
1280
1281	if (!num_ints) {
1282		dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
1283		ret = -EINVAL;
1284		goto qspi_probe_err;
1285	}
1286
1287	/*
1288	 * Some SoCs integrate spi controller (e.g., its interrupt bits)
1289	 * in specific ways
1290	 */
1291	if (soc_intc) {
1292		qspi->soc_intc = soc_intc;
1293		soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
1294	} else {
1295		qspi->soc_intc = NULL;
1296	}
1297
1298	qspi->clk = devm_clk_get(&pdev->dev, NULL);
1299	if (IS_ERR(qspi->clk)) {
1300		dev_warn(dev, "unable to get clock\n");
1301		ret = PTR_ERR(qspi->clk);
1302		goto qspi_probe_err;
1303	}
1304
1305	ret = clk_prepare_enable(qspi->clk);
1306	if (ret) {
1307		dev_err(dev, "failed to prepare clock\n");
1308		goto qspi_probe_err;
1309	}
1310
1311	qspi->base_clk = clk_get_rate(qspi->clk);
1312	qspi->max_speed_hz = qspi->base_clk / (QSPI_SPBR_MIN * 2);
1313
1314	bcm_qspi_hw_init(qspi);
1315	init_completion(&qspi->mspi_done);
1316	init_completion(&qspi->bspi_done);
1317	qspi->curr_cs = -1;
1318
1319	platform_set_drvdata(pdev, qspi);
1320
1321	qspi->xfer_mode.width = -1;
1322	qspi->xfer_mode.addrlen = -1;
1323	qspi->xfer_mode.hp = -1;
1324
1325	ret = devm_spi_register_master(&pdev->dev, master);
1326	if (ret < 0) {
1327		dev_err(dev, "can't register master\n");
1328		goto qspi_reg_err;
1329	}
1330
1331	return 0;
1332
1333qspi_reg_err:
1334	bcm_qspi_hw_uninit(qspi);
 
1335	clk_disable_unprepare(qspi->clk);
1336qspi_probe_err:
1337	spi_master_put(master);
1338	kfree(qspi->dev_ids);
1339	return ret;
1340}
1341/* probe function to be called by SoC specific platform driver probe */
1342EXPORT_SYMBOL_GPL(bcm_qspi_probe);
1343
1344int bcm_qspi_remove(struct platform_device *pdev)
1345{
1346	struct bcm_qspi *qspi = platform_get_drvdata(pdev);
1347
1348	platform_set_drvdata(pdev, NULL);
1349	bcm_qspi_hw_uninit(qspi);
1350	clk_disable_unprepare(qspi->clk);
1351	kfree(qspi->dev_ids);
1352	spi_unregister_master(qspi->master);
1353
1354	return 0;
1355}
1356/* function to be called by SoC specific platform driver remove() */
1357EXPORT_SYMBOL_GPL(bcm_qspi_remove);
1358
1359static int __maybe_unused bcm_qspi_suspend(struct device *dev)
1360{
1361	struct bcm_qspi *qspi = dev_get_drvdata(dev);
1362
 
 
 
 
 
1363	spi_master_suspend(qspi->master);
1364	clk_disable(qspi->clk);
1365	bcm_qspi_hw_uninit(qspi);
1366
1367	return 0;
1368};
1369
1370static int __maybe_unused bcm_qspi_resume(struct device *dev)
1371{
1372	struct bcm_qspi *qspi = dev_get_drvdata(dev);
1373	int ret = 0;
1374
1375	bcm_qspi_hw_init(qspi);
1376	bcm_qspi_chip_select(qspi, qspi->curr_cs);
1377	if (qspi->soc_intc)
1378		/* enable MSPI interrupt */
1379		qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
1380						 true);
1381
1382	ret = clk_enable(qspi->clk);
1383	if (!ret)
1384		spi_master_resume(qspi->master);
1385
1386	return ret;
1387}
1388
1389SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
1390
1391/* pm_ops to be called by SoC specific platform driver */
1392EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
1393
1394MODULE_AUTHOR("Kamal Dasu");
1395MODULE_DESCRIPTION("Broadcom QSPI driver");
1396MODULE_LICENSE("GPL v2");
1397MODULE_ALIAS("platform:" DRIVER_NAME);