Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Procedures for creating, accessing and interpreting the device tree.
   4 *
   5 * Paul Mackerras	August 1996.
   6 * Copyright (C) 1996-2005 Paul Mackerras.
   7 *
   8 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
   9 *    {engebret|bergner}@us.ibm.com
  10 *
  11 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
  12 *
  13 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
  14 *  Grant Likely.
  15 */
  16
  17#define pr_fmt(fmt)	"OF: " fmt
  18
  19#include <linux/console.h>
  20#include <linux/ctype.h>
  21#include <linux/cpu.h>
  22#include <linux/module.h>
  23#include <linux/of.h>
  24#include <linux/of_device.h>
  25#include <linux/of_graph.h>
  26#include <linux/spinlock.h>
  27#include <linux/slab.h>
  28#include <linux/string.h>
  29#include <linux/proc_fs.h>
  30
  31#include "of_private.h"
  32
  33LIST_HEAD(aliases_lookup);
  34
  35struct device_node *of_root;
  36EXPORT_SYMBOL(of_root);
  37struct device_node *of_chosen;
  38EXPORT_SYMBOL(of_chosen);
  39struct device_node *of_aliases;
  40struct device_node *of_stdout;
  41static const char *of_stdout_options;
  42
  43struct kset *of_kset;
  44
  45/*
  46 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
  47 * This mutex must be held whenever modifications are being made to the
  48 * device tree. The of_{attach,detach}_node() and
  49 * of_{add,remove,update}_property() helpers make sure this happens.
  50 */
  51DEFINE_MUTEX(of_mutex);
  52
  53/* use when traversing tree through the child, sibling,
  54 * or parent members of struct device_node.
  55 */
  56DEFINE_RAW_SPINLOCK(devtree_lock);
  57
  58bool of_node_name_eq(const struct device_node *np, const char *name)
  59{
  60	const char *node_name;
  61	size_t len;
  62
  63	if (!np)
  64		return false;
  65
  66	node_name = kbasename(np->full_name);
  67	len = strchrnul(node_name, '@') - node_name;
  68
  69	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
  70}
  71EXPORT_SYMBOL(of_node_name_eq);
  72
  73bool of_node_name_prefix(const struct device_node *np, const char *prefix)
  74{
  75	if (!np)
  76		return false;
  77
  78	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
  79}
  80EXPORT_SYMBOL(of_node_name_prefix);
  81
  82static bool __of_node_is_type(const struct device_node *np, const char *type)
  83{
  84	const char *match = __of_get_property(np, "device_type", NULL);
  85
  86	return np && match && type && !strcmp(match, type);
  87}
  88
  89int of_bus_n_addr_cells(struct device_node *np)
  90{
  91	u32 cells;
  92
  93	for (; np; np = np->parent)
 
 
  94		if (!of_property_read_u32(np, "#address-cells", &cells))
  95			return cells;
  96
  97	/* No #address-cells property for the root node */
  98	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
  99}
 100
 101int of_n_addr_cells(struct device_node *np)
 102{
 103	if (np->parent)
 104		np = np->parent;
 105
 106	return of_bus_n_addr_cells(np);
 107}
 108EXPORT_SYMBOL(of_n_addr_cells);
 109
 110int of_bus_n_size_cells(struct device_node *np)
 111{
 112	u32 cells;
 113
 114	for (; np; np = np->parent)
 
 
 115		if (!of_property_read_u32(np, "#size-cells", &cells))
 116			return cells;
 117
 118	/* No #size-cells property for the root node */
 119	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
 120}
 121
 122int of_n_size_cells(struct device_node *np)
 123{
 124	if (np->parent)
 125		np = np->parent;
 126
 127	return of_bus_n_size_cells(np);
 128}
 129EXPORT_SYMBOL(of_n_size_cells);
 130
 131#ifdef CONFIG_NUMA
 132int __weak of_node_to_nid(struct device_node *np)
 133{
 134	return NUMA_NO_NODE;
 135}
 136#endif
 137
 138#define OF_PHANDLE_CACHE_BITS	7
 139#define OF_PHANDLE_CACHE_SZ	BIT(OF_PHANDLE_CACHE_BITS)
 140
 141static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
 142
 143static u32 of_phandle_cache_hash(phandle handle)
 144{
 145	return hash_32(handle, OF_PHANDLE_CACHE_BITS);
 146}
 147
 148/*
 149 * Caller must hold devtree_lock.
 
 
 
 
 
 150 */
 151void __of_phandle_cache_inv_entry(phandle handle)
 152{
 153	u32 handle_hash;
 
 154	struct device_node *np;
 
 155
 156	if (!handle)
 157		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 158
 159	handle_hash = of_phandle_cache_hash(handle);
 
 
 
 
 
 160
 161	np = phandle_cache[handle_hash];
 162	if (np && handle == np->phandle)
 163		phandle_cache[handle_hash] = NULL;
 
 
 
 164}
 
 
 165
 166void __init of_core_init(void)
 167{
 168	struct device_node *np;
 169
 
 170
 171	/* Create the kset, and register existing nodes */
 172	mutex_lock(&of_mutex);
 173	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
 174	if (!of_kset) {
 175		mutex_unlock(&of_mutex);
 176		pr_err("failed to register existing nodes\n");
 177		return;
 178	}
 179	for_each_of_allnodes(np) {
 180		__of_attach_node_sysfs(np);
 181		if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
 182			phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
 183	}
 184	mutex_unlock(&of_mutex);
 185
 186	/* Symlink in /proc as required by userspace ABI */
 187	if (of_root)
 188		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
 189}
 190
 191static struct property *__of_find_property(const struct device_node *np,
 192					   const char *name, int *lenp)
 193{
 194	struct property *pp;
 195
 196	if (!np)
 197		return NULL;
 198
 199	for (pp = np->properties; pp; pp = pp->next) {
 200		if (of_prop_cmp(pp->name, name) == 0) {
 201			if (lenp)
 202				*lenp = pp->length;
 203			break;
 204		}
 205	}
 206
 207	return pp;
 208}
 209
 210struct property *of_find_property(const struct device_node *np,
 211				  const char *name,
 212				  int *lenp)
 213{
 214	struct property *pp;
 215	unsigned long flags;
 216
 217	raw_spin_lock_irqsave(&devtree_lock, flags);
 218	pp = __of_find_property(np, name, lenp);
 219	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 220
 221	return pp;
 222}
 223EXPORT_SYMBOL(of_find_property);
 224
 225struct device_node *__of_find_all_nodes(struct device_node *prev)
 226{
 227	struct device_node *np;
 228	if (!prev) {
 229		np = of_root;
 230	} else if (prev->child) {
 231		np = prev->child;
 232	} else {
 233		/* Walk back up looking for a sibling, or the end of the structure */
 234		np = prev;
 235		while (np->parent && !np->sibling)
 236			np = np->parent;
 237		np = np->sibling; /* Might be null at the end of the tree */
 238	}
 239	return np;
 240}
 241
 242/**
 243 * of_find_all_nodes - Get next node in global list
 244 * @prev:	Previous node or NULL to start iteration
 245 *		of_node_put() will be called on it
 246 *
 247 * Return: A node pointer with refcount incremented, use
 248 * of_node_put() on it when done.
 249 */
 250struct device_node *of_find_all_nodes(struct device_node *prev)
 251{
 252	struct device_node *np;
 253	unsigned long flags;
 254
 255	raw_spin_lock_irqsave(&devtree_lock, flags);
 256	np = __of_find_all_nodes(prev);
 257	of_node_get(np);
 258	of_node_put(prev);
 259	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 260	return np;
 261}
 262EXPORT_SYMBOL(of_find_all_nodes);
 263
 264/*
 265 * Find a property with a given name for a given node
 266 * and return the value.
 267 */
 268const void *__of_get_property(const struct device_node *np,
 269			      const char *name, int *lenp)
 270{
 271	struct property *pp = __of_find_property(np, name, lenp);
 272
 273	return pp ? pp->value : NULL;
 274}
 275
 276/*
 277 * Find a property with a given name for a given node
 278 * and return the value.
 279 */
 280const void *of_get_property(const struct device_node *np, const char *name,
 281			    int *lenp)
 282{
 283	struct property *pp = of_find_property(np, name, lenp);
 284
 285	return pp ? pp->value : NULL;
 286}
 287EXPORT_SYMBOL(of_get_property);
 288
 289/**
 290 * of_get_cpu_hwid - Get the hardware ID from a CPU device node
 291 *
 292 * @cpun: CPU number(logical index) for which device node is required
 293 * @thread: The local thread number to get the hardware ID for.
 294 *
 295 * Return: The hardware ID for the CPU node or ~0ULL if not found.
 296 */
 297u64 of_get_cpu_hwid(struct device_node *cpun, unsigned int thread)
 298{
 299	const __be32 *cell;
 300	int ac, len;
 301
 302	ac = of_n_addr_cells(cpun);
 303	cell = of_get_property(cpun, "reg", &len);
 304	if (!cell || !ac || ((sizeof(*cell) * ac * (thread + 1)) > len))
 305		return ~0ULL;
 306
 307	cell += ac * thread;
 308	return of_read_number(cell, ac);
 309}
 310
 311/*
 312 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
 313 *
 314 * @cpu: logical cpu index of a core/thread
 315 * @phys_id: physical identifier of a core/thread
 316 *
 317 * CPU logical to physical index mapping is architecture specific.
 318 * However this __weak function provides a default match of physical
 319 * id to logical cpu index. phys_id provided here is usually values read
 320 * from the device tree which must match the hardware internal registers.
 321 *
 322 * Returns true if the physical identifier and the logical cpu index
 323 * correspond to the same core/thread, false otherwise.
 324 */
 325bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
 326{
 327	return (u32)phys_id == cpu;
 328}
 329
 330/*
 331 * Checks if the given "prop_name" property holds the physical id of the
 332 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
 333 * NULL, local thread number within the core is returned in it.
 334 */
 335static bool __of_find_n_match_cpu_property(struct device_node *cpun,
 336			const char *prop_name, int cpu, unsigned int *thread)
 337{
 338	const __be32 *cell;
 339	int ac, prop_len, tid;
 340	u64 hwid;
 341
 342	ac = of_n_addr_cells(cpun);
 343	cell = of_get_property(cpun, prop_name, &prop_len);
 344	if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
 345		return true;
 346	if (!cell || !ac)
 347		return false;
 348	prop_len /= sizeof(*cell) * ac;
 349	for (tid = 0; tid < prop_len; tid++) {
 350		hwid = of_read_number(cell, ac);
 351		if (arch_match_cpu_phys_id(cpu, hwid)) {
 352			if (thread)
 353				*thread = tid;
 354			return true;
 355		}
 356		cell += ac;
 357	}
 358	return false;
 359}
 360
 361/*
 362 * arch_find_n_match_cpu_physical_id - See if the given device node is
 363 * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
 364 * else false.  If 'thread' is non-NULL, the local thread number within the
 365 * core is returned in it.
 366 */
 367bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
 368					      int cpu, unsigned int *thread)
 369{
 370	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
 371	 * for thread ids on PowerPC. If it doesn't exist fallback to
 372	 * standard "reg" property.
 373	 */
 374	if (IS_ENABLED(CONFIG_PPC) &&
 375	    __of_find_n_match_cpu_property(cpun,
 376					   "ibm,ppc-interrupt-server#s",
 377					   cpu, thread))
 378		return true;
 379
 380	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
 381}
 382
 383/**
 384 * of_get_cpu_node - Get device node associated with the given logical CPU
 385 *
 386 * @cpu: CPU number(logical index) for which device node is required
 387 * @thread: if not NULL, local thread number within the physical core is
 388 *          returned
 389 *
 390 * The main purpose of this function is to retrieve the device node for the
 391 * given logical CPU index. It should be used to initialize the of_node in
 392 * cpu device. Once of_node in cpu device is populated, all the further
 393 * references can use that instead.
 394 *
 395 * CPU logical to physical index mapping is architecture specific and is built
 396 * before booting secondary cores. This function uses arch_match_cpu_phys_id
 397 * which can be overridden by architecture specific implementation.
 398 *
 399 * Return: A node pointer for the logical cpu with refcount incremented, use
 400 * of_node_put() on it when done. Returns NULL if not found.
 401 */
 402struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
 403{
 404	struct device_node *cpun;
 405
 406	for_each_of_cpu_node(cpun) {
 407		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
 408			return cpun;
 409	}
 410	return NULL;
 411}
 412EXPORT_SYMBOL(of_get_cpu_node);
 413
 414/**
 415 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
 416 *
 417 * @cpu_node: Pointer to the device_node for CPU.
 418 *
 419 * Return: The logical CPU number of the given CPU device_node or -ENODEV if the
 420 * CPU is not found.
 421 */
 422int of_cpu_node_to_id(struct device_node *cpu_node)
 423{
 424	int cpu;
 425	bool found = false;
 426	struct device_node *np;
 427
 428	for_each_possible_cpu(cpu) {
 429		np = of_cpu_device_node_get(cpu);
 430		found = (cpu_node == np);
 431		of_node_put(np);
 432		if (found)
 433			return cpu;
 434	}
 435
 436	return -ENODEV;
 437}
 438EXPORT_SYMBOL(of_cpu_node_to_id);
 439
 440/**
 441 * of_get_cpu_state_node - Get CPU's idle state node at the given index
 442 *
 443 * @cpu_node: The device node for the CPU
 444 * @index: The index in the list of the idle states
 445 *
 446 * Two generic methods can be used to describe a CPU's idle states, either via
 447 * a flattened description through the "cpu-idle-states" binding or via the
 448 * hierarchical layout, using the "power-domains" and the "domain-idle-states"
 449 * bindings. This function check for both and returns the idle state node for
 450 * the requested index.
 451 *
 452 * Return: An idle state node if found at @index. The refcount is incremented
 453 * for it, so call of_node_put() on it when done. Returns NULL if not found.
 454 */
 455struct device_node *of_get_cpu_state_node(struct device_node *cpu_node,
 456					  int index)
 457{
 458	struct of_phandle_args args;
 459	int err;
 460
 461	err = of_parse_phandle_with_args(cpu_node, "power-domains",
 462					"#power-domain-cells", 0, &args);
 463	if (!err) {
 464		struct device_node *state_node =
 465			of_parse_phandle(args.np, "domain-idle-states", index);
 466
 467		of_node_put(args.np);
 468		if (state_node)
 469			return state_node;
 470	}
 471
 472	return of_parse_phandle(cpu_node, "cpu-idle-states", index);
 473}
 474EXPORT_SYMBOL(of_get_cpu_state_node);
 475
 476/**
 477 * __of_device_is_compatible() - Check if the node matches given constraints
 478 * @device: pointer to node
 479 * @compat: required compatible string, NULL or "" for any match
 480 * @type: required device_type value, NULL or "" for any match
 481 * @name: required node name, NULL or "" for any match
 482 *
 483 * Checks if the given @compat, @type and @name strings match the
 484 * properties of the given @device. A constraints can be skipped by
 485 * passing NULL or an empty string as the constraint.
 486 *
 487 * Returns 0 for no match, and a positive integer on match. The return
 488 * value is a relative score with larger values indicating better
 489 * matches. The score is weighted for the most specific compatible value
 490 * to get the highest score. Matching type is next, followed by matching
 491 * name. Practically speaking, this results in the following priority
 492 * order for matches:
 493 *
 494 * 1. specific compatible && type && name
 495 * 2. specific compatible && type
 496 * 3. specific compatible && name
 497 * 4. specific compatible
 498 * 5. general compatible && type && name
 499 * 6. general compatible && type
 500 * 7. general compatible && name
 501 * 8. general compatible
 502 * 9. type && name
 503 * 10. type
 504 * 11. name
 505 */
 506static int __of_device_is_compatible(const struct device_node *device,
 507				     const char *compat, const char *type, const char *name)
 508{
 509	struct property *prop;
 510	const char *cp;
 511	int index = 0, score = 0;
 512
 513	/* Compatible match has highest priority */
 514	if (compat && compat[0]) {
 515		prop = __of_find_property(device, "compatible", NULL);
 516		for (cp = of_prop_next_string(prop, NULL); cp;
 517		     cp = of_prop_next_string(prop, cp), index++) {
 518			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
 519				score = INT_MAX/2 - (index << 2);
 520				break;
 521			}
 522		}
 523		if (!score)
 524			return 0;
 525	}
 526
 527	/* Matching type is better than matching name */
 528	if (type && type[0]) {
 529		if (!__of_node_is_type(device, type))
 530			return 0;
 531		score += 2;
 532	}
 533
 534	/* Matching name is a bit better than not */
 535	if (name && name[0]) {
 536		if (!of_node_name_eq(device, name))
 537			return 0;
 538		score++;
 539	}
 540
 541	return score;
 542}
 543
 544/** Checks if the given "compat" string matches one of the strings in
 545 * the device's "compatible" property
 546 */
 547int of_device_is_compatible(const struct device_node *device,
 548		const char *compat)
 549{
 550	unsigned long flags;
 551	int res;
 552
 553	raw_spin_lock_irqsave(&devtree_lock, flags);
 554	res = __of_device_is_compatible(device, compat, NULL, NULL);
 555	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 556	return res;
 557}
 558EXPORT_SYMBOL(of_device_is_compatible);
 559
 560/** Checks if the device is compatible with any of the entries in
 561 *  a NULL terminated array of strings. Returns the best match
 562 *  score or 0.
 563 */
 564int of_device_compatible_match(const struct device_node *device,
 565			       const char *const *compat)
 566{
 567	unsigned int tmp, score = 0;
 568
 569	if (!compat)
 570		return 0;
 571
 572	while (*compat) {
 573		tmp = of_device_is_compatible(device, *compat);
 574		if (tmp > score)
 575			score = tmp;
 576		compat++;
 577	}
 578
 579	return score;
 580}
 581EXPORT_SYMBOL_GPL(of_device_compatible_match);
 582
 583/**
 584 * of_machine_is_compatible - Test root of device tree for a given compatible value
 585 * @compat: compatible string to look for in root node's compatible property.
 586 *
 587 * Return: A positive integer if the root node has the given value in its
 588 * compatible property.
 589 */
 590int of_machine_is_compatible(const char *compat)
 591{
 592	struct device_node *root;
 593	int rc = 0;
 594
 595	root = of_find_node_by_path("/");
 596	if (root) {
 597		rc = of_device_is_compatible(root, compat);
 598		of_node_put(root);
 599	}
 600	return rc;
 601}
 602EXPORT_SYMBOL(of_machine_is_compatible);
 603
 604/**
 605 *  __of_device_is_available - check if a device is available for use
 606 *
 607 *  @device: Node to check for availability, with locks already held
 608 *
 609 *  Return: True if the status property is absent or set to "okay" or "ok",
 610 *  false otherwise
 611 */
 612static bool __of_device_is_available(const struct device_node *device)
 613{
 614	const char *status;
 615	int statlen;
 616
 617	if (!device)
 618		return false;
 619
 620	status = __of_get_property(device, "status", &statlen);
 621	if (status == NULL)
 622		return true;
 623
 624	if (statlen > 0) {
 625		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
 626			return true;
 627	}
 628
 629	return false;
 630}
 631
 632/**
 633 *  of_device_is_available - check if a device is available for use
 634 *
 635 *  @device: Node to check for availability
 636 *
 637 *  Return: True if the status property is absent or set to "okay" or "ok",
 638 *  false otherwise
 639 */
 640bool of_device_is_available(const struct device_node *device)
 641{
 642	unsigned long flags;
 643	bool res;
 644
 645	raw_spin_lock_irqsave(&devtree_lock, flags);
 646	res = __of_device_is_available(device);
 647	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 648	return res;
 649
 650}
 651EXPORT_SYMBOL(of_device_is_available);
 652
 653/**
 654 *  __of_device_is_fail - check if a device has status "fail" or "fail-..."
 655 *
 656 *  @device: Node to check status for, with locks already held
 657 *
 658 *  Return: True if the status property is set to "fail" or "fail-..." (for any
 659 *  error code suffix), false otherwise
 660 */
 661static bool __of_device_is_fail(const struct device_node *device)
 662{
 663	const char *status;
 664
 665	if (!device)
 666		return false;
 667
 668	status = __of_get_property(device, "status", NULL);
 669	if (status == NULL)
 670		return false;
 671
 672	return !strcmp(status, "fail") || !strncmp(status, "fail-", 5);
 673}
 674
 675/**
 676 *  of_device_is_big_endian - check if a device has BE registers
 677 *
 678 *  @device: Node to check for endianness
 679 *
 680 *  Return: True if the device has a "big-endian" property, or if the kernel
 681 *  was compiled for BE *and* the device has a "native-endian" property.
 682 *  Returns false otherwise.
 683 *
 684 *  Callers would nominally use ioread32be/iowrite32be if
 685 *  of_device_is_big_endian() == true, or readl/writel otherwise.
 686 */
 687bool of_device_is_big_endian(const struct device_node *device)
 688{
 689	if (of_property_read_bool(device, "big-endian"))
 690		return true;
 691	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
 692	    of_property_read_bool(device, "native-endian"))
 693		return true;
 694	return false;
 695}
 696EXPORT_SYMBOL(of_device_is_big_endian);
 697
 698/**
 699 * of_get_parent - Get a node's parent if any
 700 * @node:	Node to get parent
 701 *
 702 * Return: A node pointer with refcount incremented, use
 703 * of_node_put() on it when done.
 704 */
 705struct device_node *of_get_parent(const struct device_node *node)
 706{
 707	struct device_node *np;
 708	unsigned long flags;
 709
 710	if (!node)
 711		return NULL;
 712
 713	raw_spin_lock_irqsave(&devtree_lock, flags);
 714	np = of_node_get(node->parent);
 715	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 716	return np;
 717}
 718EXPORT_SYMBOL(of_get_parent);
 719
 720/**
 721 * of_get_next_parent - Iterate to a node's parent
 722 * @node:	Node to get parent of
 723 *
 724 * This is like of_get_parent() except that it drops the
 725 * refcount on the passed node, making it suitable for iterating
 726 * through a node's parents.
 727 *
 728 * Return: A node pointer with refcount incremented, use
 729 * of_node_put() on it when done.
 730 */
 731struct device_node *of_get_next_parent(struct device_node *node)
 732{
 733	struct device_node *parent;
 734	unsigned long flags;
 735
 736	if (!node)
 737		return NULL;
 738
 739	raw_spin_lock_irqsave(&devtree_lock, flags);
 740	parent = of_node_get(node->parent);
 741	of_node_put(node);
 742	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 743	return parent;
 744}
 745EXPORT_SYMBOL(of_get_next_parent);
 746
 747static struct device_node *__of_get_next_child(const struct device_node *node,
 748						struct device_node *prev)
 749{
 750	struct device_node *next;
 751
 752	if (!node)
 753		return NULL;
 754
 755	next = prev ? prev->sibling : node->child;
 756	of_node_get(next);
 
 
 757	of_node_put(prev);
 758	return next;
 759}
 760#define __for_each_child_of_node(parent, child) \
 761	for (child = __of_get_next_child(parent, NULL); child != NULL; \
 762	     child = __of_get_next_child(parent, child))
 763
 764/**
 765 * of_get_next_child - Iterate a node childs
 766 * @node:	parent node
 767 * @prev:	previous child of the parent node, or NULL to get first
 768 *
 769 * Return: A node pointer with refcount incremented, use of_node_put() on
 770 * it when done. Returns NULL when prev is the last child. Decrements the
 771 * refcount of prev.
 772 */
 773struct device_node *of_get_next_child(const struct device_node *node,
 774	struct device_node *prev)
 775{
 776	struct device_node *next;
 777	unsigned long flags;
 778
 779	raw_spin_lock_irqsave(&devtree_lock, flags);
 780	next = __of_get_next_child(node, prev);
 781	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 782	return next;
 783}
 784EXPORT_SYMBOL(of_get_next_child);
 785
 786/**
 787 * of_get_next_available_child - Find the next available child node
 788 * @node:	parent node
 789 * @prev:	previous child of the parent node, or NULL to get first
 790 *
 791 * This function is like of_get_next_child(), except that it
 792 * automatically skips any disabled nodes (i.e. status = "disabled").
 793 */
 794struct device_node *of_get_next_available_child(const struct device_node *node,
 795	struct device_node *prev)
 796{
 797	struct device_node *next;
 798	unsigned long flags;
 799
 800	if (!node)
 801		return NULL;
 802
 803	raw_spin_lock_irqsave(&devtree_lock, flags);
 804	next = prev ? prev->sibling : node->child;
 805	for (; next; next = next->sibling) {
 806		if (!__of_device_is_available(next))
 807			continue;
 808		if (of_node_get(next))
 809			break;
 810	}
 811	of_node_put(prev);
 812	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 813	return next;
 814}
 815EXPORT_SYMBOL(of_get_next_available_child);
 816
 817/**
 818 * of_get_next_cpu_node - Iterate on cpu nodes
 819 * @prev:	previous child of the /cpus node, or NULL to get first
 820 *
 821 * Unusable CPUs (those with the status property set to "fail" or "fail-...")
 822 * will be skipped.
 823 *
 824 * Return: A cpu node pointer with refcount incremented, use of_node_put()
 825 * on it when done. Returns NULL when prev is the last child. Decrements
 826 * the refcount of prev.
 827 */
 828struct device_node *of_get_next_cpu_node(struct device_node *prev)
 829{
 830	struct device_node *next = NULL;
 831	unsigned long flags;
 832	struct device_node *node;
 833
 834	if (!prev)
 835		node = of_find_node_by_path("/cpus");
 836
 837	raw_spin_lock_irqsave(&devtree_lock, flags);
 838	if (prev)
 839		next = prev->sibling;
 840	else if (node) {
 841		next = node->child;
 842		of_node_put(node);
 843	}
 844	for (; next; next = next->sibling) {
 845		if (__of_device_is_fail(next))
 846			continue;
 847		if (!(of_node_name_eq(next, "cpu") ||
 848		      __of_node_is_type(next, "cpu")))
 849			continue;
 850		if (of_node_get(next))
 851			break;
 852	}
 853	of_node_put(prev);
 854	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 855	return next;
 856}
 857EXPORT_SYMBOL(of_get_next_cpu_node);
 858
 859/**
 860 * of_get_compatible_child - Find compatible child node
 861 * @parent:	parent node
 862 * @compatible:	compatible string
 863 *
 864 * Lookup child node whose compatible property contains the given compatible
 865 * string.
 866 *
 867 * Return: a node pointer with refcount incremented, use of_node_put() on it
 868 * when done; or NULL if not found.
 869 */
 870struct device_node *of_get_compatible_child(const struct device_node *parent,
 871				const char *compatible)
 872{
 873	struct device_node *child;
 874
 875	for_each_child_of_node(parent, child) {
 876		if (of_device_is_compatible(child, compatible))
 877			break;
 878	}
 879
 880	return child;
 881}
 882EXPORT_SYMBOL(of_get_compatible_child);
 883
 884/**
 885 * of_get_child_by_name - Find the child node by name for a given parent
 886 * @node:	parent node
 887 * @name:	child name to look for.
 888 *
 889 * This function looks for child node for given matching name
 890 *
 891 * Return: A node pointer if found, with refcount incremented, use
 892 * of_node_put() on it when done.
 893 * Returns NULL if node is not found.
 894 */
 895struct device_node *of_get_child_by_name(const struct device_node *node,
 896				const char *name)
 897{
 898	struct device_node *child;
 899
 900	for_each_child_of_node(node, child)
 901		if (of_node_name_eq(child, name))
 902			break;
 903	return child;
 904}
 905EXPORT_SYMBOL(of_get_child_by_name);
 906
 907struct device_node *__of_find_node_by_path(struct device_node *parent,
 908						const char *path)
 909{
 910	struct device_node *child;
 911	int len;
 912
 913	len = strcspn(path, "/:");
 914	if (!len)
 915		return NULL;
 916
 917	__for_each_child_of_node(parent, child) {
 918		const char *name = kbasename(child->full_name);
 919		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
 920			return child;
 921	}
 922	return NULL;
 923}
 924
 925struct device_node *__of_find_node_by_full_path(struct device_node *node,
 926						const char *path)
 927{
 928	const char *separator = strchr(path, ':');
 929
 930	while (node && *path == '/') {
 931		struct device_node *tmp = node;
 932
 933		path++; /* Increment past '/' delimiter */
 934		node = __of_find_node_by_path(node, path);
 935		of_node_put(tmp);
 936		path = strchrnul(path, '/');
 937		if (separator && separator < path)
 938			break;
 939	}
 940	return node;
 941}
 942
 943/**
 944 * of_find_node_opts_by_path - Find a node matching a full OF path
 945 * @path: Either the full path to match, or if the path does not
 946 *       start with '/', the name of a property of the /aliases
 947 *       node (an alias).  In the case of an alias, the node
 948 *       matching the alias' value will be returned.
 949 * @opts: Address of a pointer into which to store the start of
 950 *       an options string appended to the end of the path with
 951 *       a ':' separator.
 952 *
 953 * Valid paths:
 954 *  * /foo/bar	Full path
 955 *  * foo	Valid alias
 956 *  * foo/bar	Valid alias + relative path
 957 *
 958 * Return: A node pointer with refcount incremented, use
 959 * of_node_put() on it when done.
 960 */
 961struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
 962{
 963	struct device_node *np = NULL;
 964	struct property *pp;
 965	unsigned long flags;
 966	const char *separator = strchr(path, ':');
 967
 968	if (opts)
 969		*opts = separator ? separator + 1 : NULL;
 970
 971	if (strcmp(path, "/") == 0)
 972		return of_node_get(of_root);
 973
 974	/* The path could begin with an alias */
 975	if (*path != '/') {
 976		int len;
 977		const char *p = separator;
 978
 979		if (!p)
 980			p = strchrnul(path, '/');
 981		len = p - path;
 982
 983		/* of_aliases must not be NULL */
 984		if (!of_aliases)
 985			return NULL;
 986
 987		for_each_property_of_node(of_aliases, pp) {
 988			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
 989				np = of_find_node_by_path(pp->value);
 990				break;
 991			}
 992		}
 993		if (!np)
 994			return NULL;
 995		path = p;
 996	}
 997
 998	/* Step down the tree matching path components */
 999	raw_spin_lock_irqsave(&devtree_lock, flags);
1000	if (!np)
1001		np = of_node_get(of_root);
1002	np = __of_find_node_by_full_path(np, path);
1003	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1004	return np;
1005}
1006EXPORT_SYMBOL(of_find_node_opts_by_path);
1007
1008/**
1009 * of_find_node_by_name - Find a node by its "name" property
1010 * @from:	The node to start searching from or NULL; the node
1011 *		you pass will not be searched, only the next one
1012 *		will. Typically, you pass what the previous call
1013 *		returned. of_node_put() will be called on @from.
1014 * @name:	The name string to match against
1015 *
1016 * Return: A node pointer with refcount incremented, use
1017 * of_node_put() on it when done.
1018 */
1019struct device_node *of_find_node_by_name(struct device_node *from,
1020	const char *name)
1021{
1022	struct device_node *np;
1023	unsigned long flags;
1024
1025	raw_spin_lock_irqsave(&devtree_lock, flags);
1026	for_each_of_allnodes_from(from, np)
1027		if (of_node_name_eq(np, name) && of_node_get(np))
 
1028			break;
1029	of_node_put(from);
1030	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1031	return np;
1032}
1033EXPORT_SYMBOL(of_find_node_by_name);
1034
1035/**
1036 * of_find_node_by_type - Find a node by its "device_type" property
1037 * @from:	The node to start searching from, or NULL to start searching
1038 *		the entire device tree. The node you pass will not be
1039 *		searched, only the next one will; typically, you pass
1040 *		what the previous call returned. of_node_put() will be
1041 *		called on from for you.
1042 * @type:	The type string to match against
1043 *
1044 * Return: A node pointer with refcount incremented, use
1045 * of_node_put() on it when done.
1046 */
1047struct device_node *of_find_node_by_type(struct device_node *from,
1048	const char *type)
1049{
1050	struct device_node *np;
1051	unsigned long flags;
1052
1053	raw_spin_lock_irqsave(&devtree_lock, flags);
1054	for_each_of_allnodes_from(from, np)
1055		if (__of_node_is_type(np, type) && of_node_get(np))
 
1056			break;
1057	of_node_put(from);
1058	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1059	return np;
1060}
1061EXPORT_SYMBOL(of_find_node_by_type);
1062
1063/**
1064 * of_find_compatible_node - Find a node based on type and one of the
1065 *                                tokens in its "compatible" property
1066 * @from:	The node to start searching from or NULL, the node
1067 *		you pass will not be searched, only the next one
1068 *		will; typically, you pass what the previous call
1069 *		returned. of_node_put() will be called on it
1070 * @type:	The type string to match "device_type" or NULL to ignore
1071 * @compatible:	The string to match to one of the tokens in the device
1072 *		"compatible" list.
1073 *
1074 * Return: A node pointer with refcount incremented, use
1075 * of_node_put() on it when done.
1076 */
1077struct device_node *of_find_compatible_node(struct device_node *from,
1078	const char *type, const char *compatible)
1079{
1080	struct device_node *np;
1081	unsigned long flags;
1082
1083	raw_spin_lock_irqsave(&devtree_lock, flags);
1084	for_each_of_allnodes_from(from, np)
1085		if (__of_device_is_compatible(np, compatible, type, NULL) &&
1086		    of_node_get(np))
1087			break;
1088	of_node_put(from);
1089	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1090	return np;
1091}
1092EXPORT_SYMBOL(of_find_compatible_node);
1093
1094/**
1095 * of_find_node_with_property - Find a node which has a property with
1096 *                              the given name.
1097 * @from:	The node to start searching from or NULL, the node
1098 *		you pass will not be searched, only the next one
1099 *		will; typically, you pass what the previous call
1100 *		returned. of_node_put() will be called on it
1101 * @prop_name:	The name of the property to look for.
1102 *
1103 * Return: A node pointer with refcount incremented, use
1104 * of_node_put() on it when done.
1105 */
1106struct device_node *of_find_node_with_property(struct device_node *from,
1107	const char *prop_name)
1108{
1109	struct device_node *np;
1110	struct property *pp;
1111	unsigned long flags;
1112
1113	raw_spin_lock_irqsave(&devtree_lock, flags);
1114	for_each_of_allnodes_from(from, np) {
1115		for (pp = np->properties; pp; pp = pp->next) {
1116			if (of_prop_cmp(pp->name, prop_name) == 0) {
1117				of_node_get(np);
1118				goto out;
1119			}
1120		}
1121	}
1122out:
1123	of_node_put(from);
1124	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1125	return np;
1126}
1127EXPORT_SYMBOL(of_find_node_with_property);
1128
1129static
1130const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1131					   const struct device_node *node)
1132{
1133	const struct of_device_id *best_match = NULL;
1134	int score, best_score = 0;
1135
1136	if (!matches)
1137		return NULL;
1138
1139	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1140		score = __of_device_is_compatible(node, matches->compatible,
1141						  matches->type, matches->name);
1142		if (score > best_score) {
1143			best_match = matches;
1144			best_score = score;
1145		}
1146	}
1147
1148	return best_match;
1149}
1150
1151/**
1152 * of_match_node - Tell if a device_node has a matching of_match structure
1153 * @matches:	array of of device match structures to search in
1154 * @node:	the of device structure to match against
1155 *
1156 * Low level utility function used by device matching.
1157 */
1158const struct of_device_id *of_match_node(const struct of_device_id *matches,
1159					 const struct device_node *node)
1160{
1161	const struct of_device_id *match;
1162	unsigned long flags;
1163
1164	raw_spin_lock_irqsave(&devtree_lock, flags);
1165	match = __of_match_node(matches, node);
1166	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1167	return match;
1168}
1169EXPORT_SYMBOL(of_match_node);
1170
1171/**
1172 * of_find_matching_node_and_match - Find a node based on an of_device_id
1173 *				     match table.
1174 * @from:	The node to start searching from or NULL, the node
1175 *		you pass will not be searched, only the next one
1176 *		will; typically, you pass what the previous call
1177 *		returned. of_node_put() will be called on it
1178 * @matches:	array of of device match structures to search in
1179 * @match:	Updated to point at the matches entry which matched
1180 *
1181 * Return: A node pointer with refcount incremented, use
1182 * of_node_put() on it when done.
1183 */
1184struct device_node *of_find_matching_node_and_match(struct device_node *from,
1185					const struct of_device_id *matches,
1186					const struct of_device_id **match)
1187{
1188	struct device_node *np;
1189	const struct of_device_id *m;
1190	unsigned long flags;
1191
1192	if (match)
1193		*match = NULL;
1194
1195	raw_spin_lock_irqsave(&devtree_lock, flags);
1196	for_each_of_allnodes_from(from, np) {
1197		m = __of_match_node(matches, np);
1198		if (m && of_node_get(np)) {
1199			if (match)
1200				*match = m;
1201			break;
1202		}
1203	}
1204	of_node_put(from);
1205	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1206	return np;
1207}
1208EXPORT_SYMBOL(of_find_matching_node_and_match);
1209
1210/**
1211 * of_modalias_node - Lookup appropriate modalias for a device node
1212 * @node:	pointer to a device tree node
1213 * @modalias:	Pointer to buffer that modalias value will be copied into
1214 * @len:	Length of modalias value
1215 *
1216 * Based on the value of the compatible property, this routine will attempt
1217 * to choose an appropriate modalias value for a particular device tree node.
1218 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1219 * from the first entry in the compatible list property.
1220 *
1221 * Return: This routine returns 0 on success, <0 on failure.
1222 */
1223int of_modalias_node(struct device_node *node, char *modalias, int len)
1224{
1225	const char *compatible, *p;
1226	int cplen;
1227
1228	compatible = of_get_property(node, "compatible", &cplen);
1229	if (!compatible || strlen(compatible) > cplen)
1230		return -ENODEV;
1231	p = strchr(compatible, ',');
1232	strscpy(modalias, p ? p + 1 : compatible, len);
1233	return 0;
1234}
1235EXPORT_SYMBOL_GPL(of_modalias_node);
1236
1237/**
1238 * of_find_node_by_phandle - Find a node given a phandle
1239 * @handle:	phandle of the node to find
1240 *
1241 * Return: A node pointer with refcount incremented, use
1242 * of_node_put() on it when done.
1243 */
1244struct device_node *of_find_node_by_phandle(phandle handle)
1245{
1246	struct device_node *np = NULL;
1247	unsigned long flags;
1248	u32 handle_hash;
1249
1250	if (!handle)
1251		return NULL;
1252
1253	handle_hash = of_phandle_cache_hash(handle);
1254
1255	raw_spin_lock_irqsave(&devtree_lock, flags);
1256
1257	if (phandle_cache[handle_hash] &&
1258	    handle == phandle_cache[handle_hash]->phandle)
1259		np = phandle_cache[handle_hash];
 
 
 
 
1260
1261	if (!np) {
1262		for_each_of_allnodes(np)
1263			if (np->phandle == handle &&
1264			    !of_node_check_flag(np, OF_DETACHED)) {
1265				phandle_cache[handle_hash] = np;
1266				break;
1267			}
1268	}
1269
1270	of_node_get(np);
1271	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1272	return np;
1273}
1274EXPORT_SYMBOL(of_find_node_by_phandle);
1275
1276void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1277{
1278	int i;
1279	printk("%s %pOF", msg, args->np);
1280	for (i = 0; i < args->args_count; i++) {
1281		const char delim = i ? ',' : ':';
1282
1283		pr_cont("%c%08x", delim, args->args[i]);
1284	}
1285	pr_cont("\n");
1286}
1287
1288int of_phandle_iterator_init(struct of_phandle_iterator *it,
1289		const struct device_node *np,
1290		const char *list_name,
1291		const char *cells_name,
1292		int cell_count)
1293{
1294	const __be32 *list;
1295	int size;
1296
1297	memset(it, 0, sizeof(*it));
1298
1299	/*
1300	 * one of cell_count or cells_name must be provided to determine the
1301	 * argument length.
1302	 */
1303	if (cell_count < 0 && !cells_name)
1304		return -EINVAL;
1305
1306	list = of_get_property(np, list_name, &size);
1307	if (!list)
1308		return -ENOENT;
1309
1310	it->cells_name = cells_name;
1311	it->cell_count = cell_count;
1312	it->parent = np;
1313	it->list_end = list + size / sizeof(*list);
1314	it->phandle_end = list;
1315	it->cur = list;
1316
1317	return 0;
1318}
1319EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1320
1321int of_phandle_iterator_next(struct of_phandle_iterator *it)
1322{
1323	uint32_t count = 0;
1324
1325	if (it->node) {
1326		of_node_put(it->node);
1327		it->node = NULL;
1328	}
1329
1330	if (!it->cur || it->phandle_end >= it->list_end)
1331		return -ENOENT;
1332
1333	it->cur = it->phandle_end;
1334
1335	/* If phandle is 0, then it is an empty entry with no arguments. */
1336	it->phandle = be32_to_cpup(it->cur++);
1337
1338	if (it->phandle) {
1339
1340		/*
1341		 * Find the provider node and parse the #*-cells property to
1342		 * determine the argument length.
1343		 */
1344		it->node = of_find_node_by_phandle(it->phandle);
1345
1346		if (it->cells_name) {
1347			if (!it->node) {
1348				pr_err("%pOF: could not find phandle %d\n",
1349				       it->parent, it->phandle);
1350				goto err;
1351			}
1352
1353			if (of_property_read_u32(it->node, it->cells_name,
1354						 &count)) {
1355				/*
1356				 * If both cell_count and cells_name is given,
1357				 * fall back to cell_count in absence
1358				 * of the cells_name property
1359				 */
1360				if (it->cell_count >= 0) {
1361					count = it->cell_count;
1362				} else {
1363					pr_err("%pOF: could not get %s for %pOF\n",
1364					       it->parent,
1365					       it->cells_name,
1366					       it->node);
1367					goto err;
1368				}
1369			}
1370		} else {
1371			count = it->cell_count;
1372		}
1373
1374		/*
1375		 * Make sure that the arguments actually fit in the remaining
1376		 * property data length
1377		 */
1378		if (it->cur + count > it->list_end) {
1379			if (it->cells_name)
1380				pr_err("%pOF: %s = %d found %td\n",
1381					it->parent, it->cells_name,
1382					count, it->list_end - it->cur);
1383			else
1384				pr_err("%pOF: phandle %s needs %d, found %td\n",
1385					it->parent, of_node_full_name(it->node),
1386					count, it->list_end - it->cur);
1387			goto err;
1388		}
1389	}
1390
1391	it->phandle_end = it->cur + count;
1392	it->cur_count = count;
1393
1394	return 0;
1395
1396err:
1397	if (it->node) {
1398		of_node_put(it->node);
1399		it->node = NULL;
1400	}
1401
1402	return -EINVAL;
1403}
1404EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1405
1406int of_phandle_iterator_args(struct of_phandle_iterator *it,
1407			     uint32_t *args,
1408			     int size)
1409{
1410	int i, count;
1411
1412	count = it->cur_count;
1413
1414	if (WARN_ON(size < count))
1415		count = size;
1416
1417	for (i = 0; i < count; i++)
1418		args[i] = be32_to_cpup(it->cur++);
1419
1420	return count;
1421}
1422
1423int __of_parse_phandle_with_args(const struct device_node *np,
1424				 const char *list_name,
1425				 const char *cells_name,
1426				 int cell_count, int index,
1427				 struct of_phandle_args *out_args)
1428{
1429	struct of_phandle_iterator it;
1430	int rc, cur_index = 0;
1431
1432	if (index < 0)
1433		return -EINVAL;
1434
1435	/* Loop over the phandles until all the requested entry is found */
1436	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1437		/*
1438		 * All of the error cases bail out of the loop, so at
1439		 * this point, the parsing is successful. If the requested
1440		 * index matches, then fill the out_args structure and return,
1441		 * or return -ENOENT for an empty entry.
1442		 */
1443		rc = -ENOENT;
1444		if (cur_index == index) {
1445			if (!it.phandle)
1446				goto err;
1447
1448			if (out_args) {
1449				int c;
1450
1451				c = of_phandle_iterator_args(&it,
1452							     out_args->args,
1453							     MAX_PHANDLE_ARGS);
1454				out_args->np = it.node;
1455				out_args->args_count = c;
1456			} else {
1457				of_node_put(it.node);
1458			}
1459
1460			/* Found it! return success */
1461			return 0;
1462		}
1463
1464		cur_index++;
1465	}
1466
1467	/*
1468	 * Unlock node before returning result; will be one of:
1469	 * -ENOENT : index is for empty phandle
1470	 * -EINVAL : parsing error on data
1471	 */
1472
1473 err:
1474	of_node_put(it.node);
1475	return rc;
1476}
1477EXPORT_SYMBOL(__of_parse_phandle_with_args);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1478
1479/**
1480 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1481 * @np:		pointer to a device tree node containing a list
1482 * @list_name:	property name that contains a list
1483 * @stem_name:	stem of property names that specify phandles' arguments count
1484 * @index:	index of a phandle to parse out
1485 * @out_args:	optional pointer to output arguments structure (will be filled)
1486 *
1487 * This function is useful to parse lists of phandles and their arguments.
1488 * Returns 0 on success and fills out_args, on error returns appropriate errno
1489 * value. The difference between this function and of_parse_phandle_with_args()
1490 * is that this API remaps a phandle if the node the phandle points to has
1491 * a <@stem_name>-map property.
1492 *
1493 * Caller is responsible to call of_node_put() on the returned out_args->np
1494 * pointer.
1495 *
1496 * Example::
1497 *
1498 *  phandle1: node1 {
1499 *  	#list-cells = <2>;
1500 *  };
1501 *
1502 *  phandle2: node2 {
1503 *  	#list-cells = <1>;
1504 *  };
1505 *
1506 *  phandle3: node3 {
1507 *  	#list-cells = <1>;
1508 *  	list-map = <0 &phandle2 3>,
1509 *  		   <1 &phandle2 2>,
1510 *  		   <2 &phandle1 5 1>;
1511 *  	list-map-mask = <0x3>;
1512 *  };
1513 *
1514 *  node4 {
1515 *  	list = <&phandle1 1 2 &phandle3 0>;
1516 *  };
1517 *
1518 * To get a device_node of the ``node2`` node you may call this:
1519 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1520 */
1521int of_parse_phandle_with_args_map(const struct device_node *np,
1522				   const char *list_name,
1523				   const char *stem_name,
1524				   int index, struct of_phandle_args *out_args)
1525{
1526	char *cells_name, *map_name = NULL, *mask_name = NULL;
1527	char *pass_name = NULL;
1528	struct device_node *cur, *new = NULL;
1529	const __be32 *map, *mask, *pass;
1530	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1531	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1532	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1533	const __be32 *match_array = initial_match_array;
1534	int i, ret, map_len, match;
1535	u32 list_size, new_size;
1536
1537	if (index < 0)
1538		return -EINVAL;
1539
1540	cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1541	if (!cells_name)
1542		return -ENOMEM;
1543
1544	ret = -ENOMEM;
1545	map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1546	if (!map_name)
1547		goto free;
1548
1549	mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1550	if (!mask_name)
1551		goto free;
1552
1553	pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1554	if (!pass_name)
1555		goto free;
1556
1557	ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1558					   out_args);
1559	if (ret)
1560		goto free;
1561
1562	/* Get the #<list>-cells property */
1563	cur = out_args->np;
1564	ret = of_property_read_u32(cur, cells_name, &list_size);
1565	if (ret < 0)
1566		goto put;
1567
1568	/* Precalculate the match array - this simplifies match loop */
1569	for (i = 0; i < list_size; i++)
1570		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1571
1572	ret = -EINVAL;
1573	while (cur) {
1574		/* Get the <list>-map property */
1575		map = of_get_property(cur, map_name, &map_len);
1576		if (!map) {
1577			ret = 0;
1578			goto free;
1579		}
1580		map_len /= sizeof(u32);
1581
1582		/* Get the <list>-map-mask property (optional) */
1583		mask = of_get_property(cur, mask_name, NULL);
1584		if (!mask)
1585			mask = dummy_mask;
1586		/* Iterate through <list>-map property */
1587		match = 0;
1588		while (map_len > (list_size + 1) && !match) {
1589			/* Compare specifiers */
1590			match = 1;
1591			for (i = 0; i < list_size; i++, map_len--)
1592				match &= !((match_array[i] ^ *map++) & mask[i]);
1593
1594			of_node_put(new);
1595			new = of_find_node_by_phandle(be32_to_cpup(map));
1596			map++;
1597			map_len--;
1598
1599			/* Check if not found */
1600			if (!new)
1601				goto put;
1602
1603			if (!of_device_is_available(new))
1604				match = 0;
1605
1606			ret = of_property_read_u32(new, cells_name, &new_size);
1607			if (ret)
1608				goto put;
1609
1610			/* Check for malformed properties */
1611			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1612				goto put;
1613			if (map_len < new_size)
1614				goto put;
1615
1616			/* Move forward by new node's #<list>-cells amount */
1617			map += new_size;
1618			map_len -= new_size;
1619		}
1620		if (!match)
1621			goto put;
1622
1623		/* Get the <list>-map-pass-thru property (optional) */
1624		pass = of_get_property(cur, pass_name, NULL);
1625		if (!pass)
1626			pass = dummy_pass;
1627
1628		/*
1629		 * Successfully parsed a <list>-map translation; copy new
1630		 * specifier into the out_args structure, keeping the
1631		 * bits specified in <list>-map-pass-thru.
1632		 */
1633		match_array = map - new_size;
1634		for (i = 0; i < new_size; i++) {
1635			__be32 val = *(map - new_size + i);
1636
1637			if (i < list_size) {
1638				val &= ~pass[i];
1639				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1640			}
1641
1642			out_args->args[i] = be32_to_cpu(val);
1643		}
1644		out_args->args_count = list_size = new_size;
1645		/* Iterate again with new provider */
1646		out_args->np = new;
1647		of_node_put(cur);
1648		cur = new;
1649	}
1650put:
1651	of_node_put(cur);
1652	of_node_put(new);
1653free:
1654	kfree(mask_name);
1655	kfree(map_name);
1656	kfree(cells_name);
1657	kfree(pass_name);
1658
1659	return ret;
1660}
1661EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1662
1663/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1664 * of_count_phandle_with_args() - Find the number of phandles references in a property
1665 * @np:		pointer to a device tree node containing a list
1666 * @list_name:	property name that contains a list
1667 * @cells_name:	property name that specifies phandles' arguments count
1668 *
1669 * Return: The number of phandle + argument tuples within a property. It
1670 * is a typical pattern to encode a list of phandle and variable
1671 * arguments into a single property. The number of arguments is encoded
1672 * by a property in the phandle-target node. For example, a gpios
1673 * property would contain a list of GPIO specifies consisting of a
1674 * phandle and 1 or more arguments. The number of arguments are
1675 * determined by the #gpio-cells property in the node pointed to by the
1676 * phandle.
1677 */
1678int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1679				const char *cells_name)
1680{
1681	struct of_phandle_iterator it;
1682	int rc, cur_index = 0;
1683
1684	/*
1685	 * If cells_name is NULL we assume a cell count of 0. This makes
1686	 * counting the phandles trivial as each 32bit word in the list is a
1687	 * phandle and no arguments are to consider. So we don't iterate through
1688	 * the list but just use the length to determine the phandle count.
1689	 */
1690	if (!cells_name) {
1691		const __be32 *list;
1692		int size;
1693
1694		list = of_get_property(np, list_name, &size);
1695		if (!list)
1696			return -ENOENT;
1697
1698		return size / sizeof(*list);
1699	}
1700
1701	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1702	if (rc)
1703		return rc;
1704
1705	while ((rc = of_phandle_iterator_next(&it)) == 0)
1706		cur_index += 1;
1707
1708	if (rc != -ENOENT)
1709		return rc;
1710
1711	return cur_index;
1712}
1713EXPORT_SYMBOL(of_count_phandle_with_args);
1714
1715/**
1716 * __of_add_property - Add a property to a node without lock operations
1717 * @np:		Caller's Device Node
1718 * @prop:	Property to add
1719 */
1720int __of_add_property(struct device_node *np, struct property *prop)
1721{
1722	struct property **next;
1723
1724	prop->next = NULL;
1725	next = &np->properties;
1726	while (*next) {
1727		if (strcmp(prop->name, (*next)->name) == 0)
1728			/* duplicate ! don't insert it */
1729			return -EEXIST;
1730
1731		next = &(*next)->next;
1732	}
1733	*next = prop;
1734
1735	return 0;
1736}
1737
1738/**
1739 * of_add_property - Add a property to a node
1740 * @np:		Caller's Device Node
1741 * @prop:	Property to add
1742 */
1743int of_add_property(struct device_node *np, struct property *prop)
1744{
1745	unsigned long flags;
1746	int rc;
1747
1748	mutex_lock(&of_mutex);
1749
1750	raw_spin_lock_irqsave(&devtree_lock, flags);
1751	rc = __of_add_property(np, prop);
1752	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1753
1754	if (!rc)
1755		__of_add_property_sysfs(np, prop);
1756
1757	mutex_unlock(&of_mutex);
1758
1759	if (!rc)
1760		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1761
1762	return rc;
1763}
1764EXPORT_SYMBOL_GPL(of_add_property);
1765
1766int __of_remove_property(struct device_node *np, struct property *prop)
1767{
1768	struct property **next;
1769
1770	for (next = &np->properties; *next; next = &(*next)->next) {
1771		if (*next == prop)
1772			break;
1773	}
1774	if (*next == NULL)
1775		return -ENODEV;
1776
1777	/* found the node */
1778	*next = prop->next;
1779	prop->next = np->deadprops;
1780	np->deadprops = prop;
1781
1782	return 0;
1783}
1784
1785/**
1786 * of_remove_property - Remove a property from a node.
1787 * @np:		Caller's Device Node
1788 * @prop:	Property to remove
1789 *
1790 * Note that we don't actually remove it, since we have given out
1791 * who-knows-how-many pointers to the data using get-property.
1792 * Instead we just move the property to the "dead properties"
1793 * list, so it won't be found any more.
1794 */
1795int of_remove_property(struct device_node *np, struct property *prop)
1796{
1797	unsigned long flags;
1798	int rc;
1799
1800	if (!prop)
1801		return -ENODEV;
1802
1803	mutex_lock(&of_mutex);
1804
1805	raw_spin_lock_irqsave(&devtree_lock, flags);
1806	rc = __of_remove_property(np, prop);
1807	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1808
1809	if (!rc)
1810		__of_remove_property_sysfs(np, prop);
1811
1812	mutex_unlock(&of_mutex);
1813
1814	if (!rc)
1815		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1816
1817	return rc;
1818}
1819EXPORT_SYMBOL_GPL(of_remove_property);
1820
1821int __of_update_property(struct device_node *np, struct property *newprop,
1822		struct property **oldpropp)
1823{
1824	struct property **next, *oldprop;
1825
1826	for (next = &np->properties; *next; next = &(*next)->next) {
1827		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1828			break;
1829	}
1830	*oldpropp = oldprop = *next;
1831
1832	if (oldprop) {
1833		/* replace the node */
1834		newprop->next = oldprop->next;
1835		*next = newprop;
1836		oldprop->next = np->deadprops;
1837		np->deadprops = oldprop;
1838	} else {
1839		/* new node */
1840		newprop->next = NULL;
1841		*next = newprop;
1842	}
1843
1844	return 0;
1845}
1846
1847/*
1848 * of_update_property - Update a property in a node, if the property does
1849 * not exist, add it.
1850 *
1851 * Note that we don't actually remove it, since we have given out
1852 * who-knows-how-many pointers to the data using get-property.
1853 * Instead we just move the property to the "dead properties" list,
1854 * and add the new property to the property list
1855 */
1856int of_update_property(struct device_node *np, struct property *newprop)
1857{
1858	struct property *oldprop;
1859	unsigned long flags;
1860	int rc;
1861
1862	if (!newprop->name)
1863		return -EINVAL;
1864
1865	mutex_lock(&of_mutex);
1866
1867	raw_spin_lock_irqsave(&devtree_lock, flags);
1868	rc = __of_update_property(np, newprop, &oldprop);
1869	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1870
1871	if (!rc)
1872		__of_update_property_sysfs(np, newprop, oldprop);
1873
1874	mutex_unlock(&of_mutex);
1875
1876	if (!rc)
1877		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1878
1879	return rc;
1880}
1881
1882static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1883			 int id, const char *stem, int stem_len)
1884{
1885	ap->np = np;
1886	ap->id = id;
1887	strncpy(ap->stem, stem, stem_len);
1888	ap->stem[stem_len] = 0;
1889	list_add_tail(&ap->link, &aliases_lookup);
1890	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1891		 ap->alias, ap->stem, ap->id, np);
1892}
1893
1894/**
1895 * of_alias_scan - Scan all properties of the 'aliases' node
1896 * @dt_alloc:	An allocator that provides a virtual address to memory
1897 *		for storing the resulting tree
1898 *
1899 * The function scans all the properties of the 'aliases' node and populates
1900 * the global lookup table with the properties.  It returns the
1901 * number of alias properties found, or an error code in case of failure.
 
 
 
1902 */
1903void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1904{
1905	struct property *pp;
1906
1907	of_aliases = of_find_node_by_path("/aliases");
1908	of_chosen = of_find_node_by_path("/chosen");
1909	if (of_chosen == NULL)
1910		of_chosen = of_find_node_by_path("/chosen@0");
1911
1912	if (of_chosen) {
1913		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1914		const char *name = NULL;
1915
1916		if (of_property_read_string(of_chosen, "stdout-path", &name))
1917			of_property_read_string(of_chosen, "linux,stdout-path",
1918						&name);
1919		if (IS_ENABLED(CONFIG_PPC) && !name)
1920			of_property_read_string(of_aliases, "stdout", &name);
1921		if (name)
1922			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1923		if (of_stdout)
1924			of_stdout->fwnode.flags |= FWNODE_FLAG_BEST_EFFORT;
1925	}
1926
1927	if (!of_aliases)
1928		return;
1929
1930	for_each_property_of_node(of_aliases, pp) {
1931		const char *start = pp->name;
1932		const char *end = start + strlen(start);
1933		struct device_node *np;
1934		struct alias_prop *ap;
1935		int id, len;
1936
1937		/* Skip those we do not want to proceed */
1938		if (!strcmp(pp->name, "name") ||
1939		    !strcmp(pp->name, "phandle") ||
1940		    !strcmp(pp->name, "linux,phandle"))
1941			continue;
1942
1943		np = of_find_node_by_path(pp->value);
1944		if (!np)
1945			continue;
1946
1947		/* walk the alias backwards to extract the id and work out
1948		 * the 'stem' string */
1949		while (isdigit(*(end-1)) && end > start)
1950			end--;
1951		len = end - start;
1952
1953		if (kstrtoint(end, 10, &id) < 0)
1954			continue;
1955
1956		/* Allocate an alias_prop with enough space for the stem */
1957		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1958		if (!ap)
1959			continue;
1960		memset(ap, 0, sizeof(*ap) + len + 1);
1961		ap->alias = start;
1962		of_alias_add(ap, np, id, start, len);
1963	}
1964}
1965
1966/**
1967 * of_alias_get_id - Get alias id for the given device_node
1968 * @np:		Pointer to the given device_node
1969 * @stem:	Alias stem of the given device_node
1970 *
1971 * The function travels the lookup table to get the alias id for the given
1972 * device_node and alias stem.
1973 *
1974 * Return: The alias id if found.
1975 */
1976int of_alias_get_id(struct device_node *np, const char *stem)
1977{
1978	struct alias_prop *app;
1979	int id = -ENODEV;
1980
1981	mutex_lock(&of_mutex);
1982	list_for_each_entry(app, &aliases_lookup, link) {
1983		if (strcmp(app->stem, stem) != 0)
1984			continue;
1985
1986		if (np == app->np) {
1987			id = app->id;
1988			break;
1989		}
1990	}
1991	mutex_unlock(&of_mutex);
1992
1993	return id;
1994}
1995EXPORT_SYMBOL_GPL(of_alias_get_id);
1996
1997/**
1998 * of_alias_get_highest_id - Get highest alias id for the given stem
1999 * @stem:	Alias stem to be examined
2000 *
2001 * The function travels the lookup table to get the highest alias id for the
2002 * given alias stem.  It returns the alias id if found.
2003 */
2004int of_alias_get_highest_id(const char *stem)
2005{
2006	struct alias_prop *app;
2007	int id = -ENODEV;
2008
2009	mutex_lock(&of_mutex);
2010	list_for_each_entry(app, &aliases_lookup, link) {
2011		if (strcmp(app->stem, stem) != 0)
2012			continue;
2013
2014		if (app->id > id)
2015			id = app->id;
2016	}
2017	mutex_unlock(&of_mutex);
2018
2019	return id;
2020}
2021EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2022
2023/**
2024 * of_console_check() - Test and setup console for DT setup
2025 * @dn: Pointer to device node
2026 * @name: Name to use for preferred console without index. ex. "ttyS"
2027 * @index: Index to use for preferred console.
2028 *
2029 * Check if the given device node matches the stdout-path property in the
2030 * /chosen node. If it does then register it as the preferred console.
2031 *
2032 * Return: TRUE if console successfully setup. Otherwise return FALSE.
2033 */
2034bool of_console_check(struct device_node *dn, char *name, int index)
2035{
2036	if (!dn || dn != of_stdout || console_set_on_cmdline)
2037		return false;
2038
2039	/*
2040	 * XXX: cast `options' to char pointer to suppress complication
2041	 * warnings: printk, UART and console drivers expect char pointer.
2042	 */
2043	return !add_preferred_console(name, index, (char *)of_stdout_options);
2044}
2045EXPORT_SYMBOL_GPL(of_console_check);
2046
2047/**
2048 * of_find_next_cache_node - Find a node's subsidiary cache
2049 * @np:	node of type "cpu" or "cache"
2050 *
2051 * Return: A node pointer with refcount incremented, use
2052 * of_node_put() on it when done.  Caller should hold a reference
2053 * to np.
2054 */
2055struct device_node *of_find_next_cache_node(const struct device_node *np)
2056{
2057	struct device_node *child, *cache_node;
2058
2059	cache_node = of_parse_phandle(np, "l2-cache", 0);
2060	if (!cache_node)
2061		cache_node = of_parse_phandle(np, "next-level-cache", 0);
2062
2063	if (cache_node)
2064		return cache_node;
2065
2066	/* OF on pmac has nodes instead of properties named "l2-cache"
2067	 * beneath CPU nodes.
2068	 */
2069	if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2070		for_each_child_of_node(np, child)
2071			if (of_node_is_type(child, "cache"))
2072				return child;
2073
2074	return NULL;
2075}
2076
2077/**
2078 * of_find_last_cache_level - Find the level at which the last cache is
2079 * 		present for the given logical cpu
2080 *
2081 * @cpu: cpu number(logical index) for which the last cache level is needed
2082 *
2083 * Return: The level at which the last cache is present. It is exactly
2084 * same as  the total number of cache levels for the given logical cpu.
2085 */
2086int of_find_last_cache_level(unsigned int cpu)
2087{
2088	u32 cache_level = 0;
2089	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2090
2091	while (np) {
2092		of_node_put(prev);
2093		prev = np;
 
2094		np = of_find_next_cache_node(np);
2095	}
2096
2097	of_property_read_u32(prev, "cache-level", &cache_level);
2098	of_node_put(prev);
2099
2100	return cache_level;
2101}
2102
2103/**
2104 * of_map_id - Translate an ID through a downstream mapping.
2105 * @np: root complex device node.
2106 * @id: device ID to map.
2107 * @map_name: property name of the map to use.
2108 * @map_mask_name: optional property name of the mask to use.
2109 * @target: optional pointer to a target device node.
2110 * @id_out: optional pointer to receive the translated ID.
2111 *
2112 * Given a device ID, look up the appropriate implementation-defined
2113 * platform ID and/or the target device which receives transactions on that
2114 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2115 * @id_out may be NULL if only the other is required. If @target points to
2116 * a non-NULL device node pointer, only entries targeting that node will be
2117 * matched; if it points to a NULL value, it will receive the device node of
2118 * the first matching target phandle, with a reference held.
2119 *
2120 * Return: 0 on success or a standard error code on failure.
2121 */
2122int of_map_id(struct device_node *np, u32 id,
2123	       const char *map_name, const char *map_mask_name,
2124	       struct device_node **target, u32 *id_out)
2125{
2126	u32 map_mask, masked_id;
2127	int map_len;
2128	const __be32 *map = NULL;
2129
2130	if (!np || !map_name || (!target && !id_out))
2131		return -EINVAL;
2132
2133	map = of_get_property(np, map_name, &map_len);
2134	if (!map) {
2135		if (target)
2136			return -ENODEV;
2137		/* Otherwise, no map implies no translation */
2138		*id_out = id;
2139		return 0;
2140	}
2141
2142	if (!map_len || map_len % (4 * sizeof(*map))) {
2143		pr_err("%pOF: Error: Bad %s length: %d\n", np,
2144			map_name, map_len);
2145		return -EINVAL;
2146	}
2147
2148	/* The default is to select all bits. */
2149	map_mask = 0xffffffff;
2150
2151	/*
2152	 * Can be overridden by "{iommu,msi}-map-mask" property.
2153	 * If of_property_read_u32() fails, the default is used.
2154	 */
2155	if (map_mask_name)
2156		of_property_read_u32(np, map_mask_name, &map_mask);
2157
2158	masked_id = map_mask & id;
2159	for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2160		struct device_node *phandle_node;
2161		u32 id_base = be32_to_cpup(map + 0);
2162		u32 phandle = be32_to_cpup(map + 1);
2163		u32 out_base = be32_to_cpup(map + 2);
2164		u32 id_len = be32_to_cpup(map + 3);
2165
2166		if (id_base & ~map_mask) {
2167			pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2168				np, map_name, map_name,
2169				map_mask, id_base);
2170			return -EFAULT;
2171		}
2172
2173		if (masked_id < id_base || masked_id >= id_base + id_len)
2174			continue;
2175
2176		phandle_node = of_find_node_by_phandle(phandle);
2177		if (!phandle_node)
2178			return -ENODEV;
2179
2180		if (target) {
2181			if (*target)
2182				of_node_put(phandle_node);
2183			else
2184				*target = phandle_node;
2185
2186			if (*target != phandle_node)
2187				continue;
2188		}
2189
2190		if (id_out)
2191			*id_out = masked_id - id_base + out_base;
2192
2193		pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2194			np, map_name, map_mask, id_base, out_base,
2195			id_len, id, masked_id - id_base + out_base);
2196		return 0;
2197	}
2198
2199	pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2200		id, target && *target ? *target : NULL);
2201
2202	/* Bypasses translation */
2203	if (id_out)
2204		*id_out = id;
2205	return 0;
2206}
2207EXPORT_SYMBOL_GPL(of_map_id);
v4.17
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Procedures for creating, accessing and interpreting the device tree.
   4 *
   5 * Paul Mackerras	August 1996.
   6 * Copyright (C) 1996-2005 Paul Mackerras.
   7 *
   8 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
   9 *    {engebret|bergner}@us.ibm.com
  10 *
  11 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
  12 *
  13 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
  14 *  Grant Likely.
  15 */
  16
  17#define pr_fmt(fmt)	"OF: " fmt
  18
  19#include <linux/console.h>
  20#include <linux/ctype.h>
  21#include <linux/cpu.h>
  22#include <linux/module.h>
  23#include <linux/of.h>
  24#include <linux/of_device.h>
  25#include <linux/of_graph.h>
  26#include <linux/spinlock.h>
  27#include <linux/slab.h>
  28#include <linux/string.h>
  29#include <linux/proc_fs.h>
  30
  31#include "of_private.h"
  32
  33LIST_HEAD(aliases_lookup);
  34
  35struct device_node *of_root;
  36EXPORT_SYMBOL(of_root);
  37struct device_node *of_chosen;
 
  38struct device_node *of_aliases;
  39struct device_node *of_stdout;
  40static const char *of_stdout_options;
  41
  42struct kset *of_kset;
  43
  44/*
  45 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
  46 * This mutex must be held whenever modifications are being made to the
  47 * device tree. The of_{attach,detach}_node() and
  48 * of_{add,remove,update}_property() helpers make sure this happens.
  49 */
  50DEFINE_MUTEX(of_mutex);
  51
  52/* use when traversing tree through the child, sibling,
  53 * or parent members of struct device_node.
  54 */
  55DEFINE_RAW_SPINLOCK(devtree_lock);
  56
  57int of_n_addr_cells(struct device_node *np)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58{
  59	u32 cells;
  60
  61	do {
  62		if (np->parent)
  63			np = np->parent;
  64		if (!of_property_read_u32(np, "#address-cells", &cells))
  65			return cells;
  66	} while (np->parent);
  67	/* No #address-cells property for the root node */
  68	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
  69}
 
 
 
 
 
 
 
 
  70EXPORT_SYMBOL(of_n_addr_cells);
  71
  72int of_n_size_cells(struct device_node *np)
  73{
  74	u32 cells;
  75
  76	do {
  77		if (np->parent)
  78			np = np->parent;
  79		if (!of_property_read_u32(np, "#size-cells", &cells))
  80			return cells;
  81	} while (np->parent);
  82	/* No #size-cells property for the root node */
  83	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
  84}
 
 
 
 
 
 
 
 
  85EXPORT_SYMBOL(of_n_size_cells);
  86
  87#ifdef CONFIG_NUMA
  88int __weak of_node_to_nid(struct device_node *np)
  89{
  90	return NUMA_NO_NODE;
  91}
  92#endif
  93
  94static struct device_node **phandle_cache;
  95static u32 phandle_cache_mask;
 
 
 
 
 
 
 
  96
  97/*
  98 * Assumptions behind phandle_cache implementation:
  99 *   - phandle property values are in a contiguous range of 1..n
 100 *
 101 * If the assumptions do not hold, then
 102 *   - the phandle lookup overhead reduction provided by the cache
 103 *     will likely be less
 104 */
 105static void of_populate_phandle_cache(void)
 106{
 107	unsigned long flags;
 108	u32 cache_entries;
 109	struct device_node *np;
 110	u32 phandles = 0;
 111
 112	raw_spin_lock_irqsave(&devtree_lock, flags);
 113
 114	kfree(phandle_cache);
 115	phandle_cache = NULL;
 116
 117	for_each_of_allnodes(np)
 118		if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
 119			phandles++;
 120
 121	cache_entries = roundup_pow_of_two(phandles);
 122	phandle_cache_mask = cache_entries - 1;
 123
 124	phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache),
 125				GFP_ATOMIC);
 126	if (!phandle_cache)
 127		goto out;
 128
 129	for_each_of_allnodes(np)
 130		if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
 131			phandle_cache[np->phandle & phandle_cache_mask] = np;
 132
 133out:
 134	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 135}
 136
 137#ifndef CONFIG_MODULES
 138static int __init of_free_phandle_cache(void)
 139{
 140	unsigned long flags;
 141
 142	raw_spin_lock_irqsave(&devtree_lock, flags);
 143
 144	kfree(phandle_cache);
 145	phandle_cache = NULL;
 146
 147	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 148
 149	return 0;
 150}
 151late_initcall_sync(of_free_phandle_cache);
 152#endif
 153
 154void __init of_core_init(void)
 155{
 156	struct device_node *np;
 157
 158	of_populate_phandle_cache();
 159
 160	/* Create the kset, and register existing nodes */
 161	mutex_lock(&of_mutex);
 162	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
 163	if (!of_kset) {
 164		mutex_unlock(&of_mutex);
 165		pr_err("failed to register existing nodes\n");
 166		return;
 167	}
 168	for_each_of_allnodes(np)
 169		__of_attach_node_sysfs(np);
 
 
 
 170	mutex_unlock(&of_mutex);
 171
 172	/* Symlink in /proc as required by userspace ABI */
 173	if (of_root)
 174		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
 175}
 176
 177static struct property *__of_find_property(const struct device_node *np,
 178					   const char *name, int *lenp)
 179{
 180	struct property *pp;
 181
 182	if (!np)
 183		return NULL;
 184
 185	for (pp = np->properties; pp; pp = pp->next) {
 186		if (of_prop_cmp(pp->name, name) == 0) {
 187			if (lenp)
 188				*lenp = pp->length;
 189			break;
 190		}
 191	}
 192
 193	return pp;
 194}
 195
 196struct property *of_find_property(const struct device_node *np,
 197				  const char *name,
 198				  int *lenp)
 199{
 200	struct property *pp;
 201	unsigned long flags;
 202
 203	raw_spin_lock_irqsave(&devtree_lock, flags);
 204	pp = __of_find_property(np, name, lenp);
 205	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 206
 207	return pp;
 208}
 209EXPORT_SYMBOL(of_find_property);
 210
 211struct device_node *__of_find_all_nodes(struct device_node *prev)
 212{
 213	struct device_node *np;
 214	if (!prev) {
 215		np = of_root;
 216	} else if (prev->child) {
 217		np = prev->child;
 218	} else {
 219		/* Walk back up looking for a sibling, or the end of the structure */
 220		np = prev;
 221		while (np->parent && !np->sibling)
 222			np = np->parent;
 223		np = np->sibling; /* Might be null at the end of the tree */
 224	}
 225	return np;
 226}
 227
 228/**
 229 * of_find_all_nodes - Get next node in global list
 230 * @prev:	Previous node or NULL to start iteration
 231 *		of_node_put() will be called on it
 232 *
 233 * Returns a node pointer with refcount incremented, use
 234 * of_node_put() on it when done.
 235 */
 236struct device_node *of_find_all_nodes(struct device_node *prev)
 237{
 238	struct device_node *np;
 239	unsigned long flags;
 240
 241	raw_spin_lock_irqsave(&devtree_lock, flags);
 242	np = __of_find_all_nodes(prev);
 243	of_node_get(np);
 244	of_node_put(prev);
 245	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 246	return np;
 247}
 248EXPORT_SYMBOL(of_find_all_nodes);
 249
 250/*
 251 * Find a property with a given name for a given node
 252 * and return the value.
 253 */
 254const void *__of_get_property(const struct device_node *np,
 255			      const char *name, int *lenp)
 256{
 257	struct property *pp = __of_find_property(np, name, lenp);
 258
 259	return pp ? pp->value : NULL;
 260}
 261
 262/*
 263 * Find a property with a given name for a given node
 264 * and return the value.
 265 */
 266const void *of_get_property(const struct device_node *np, const char *name,
 267			    int *lenp)
 268{
 269	struct property *pp = of_find_property(np, name, lenp);
 270
 271	return pp ? pp->value : NULL;
 272}
 273EXPORT_SYMBOL(of_get_property);
 274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 275/*
 276 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
 277 *
 278 * @cpu: logical cpu index of a core/thread
 279 * @phys_id: physical identifier of a core/thread
 280 *
 281 * CPU logical to physical index mapping is architecture specific.
 282 * However this __weak function provides a default match of physical
 283 * id to logical cpu index. phys_id provided here is usually values read
 284 * from the device tree which must match the hardware internal registers.
 285 *
 286 * Returns true if the physical identifier and the logical cpu index
 287 * correspond to the same core/thread, false otherwise.
 288 */
 289bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
 290{
 291	return (u32)phys_id == cpu;
 292}
 293
 294/**
 295 * Checks if the given "prop_name" property holds the physical id of the
 296 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
 297 * NULL, local thread number within the core is returned in it.
 298 */
 299static bool __of_find_n_match_cpu_property(struct device_node *cpun,
 300			const char *prop_name, int cpu, unsigned int *thread)
 301{
 302	const __be32 *cell;
 303	int ac, prop_len, tid;
 304	u64 hwid;
 305
 306	ac = of_n_addr_cells(cpun);
 307	cell = of_get_property(cpun, prop_name, &prop_len);
 
 
 308	if (!cell || !ac)
 309		return false;
 310	prop_len /= sizeof(*cell) * ac;
 311	for (tid = 0; tid < prop_len; tid++) {
 312		hwid = of_read_number(cell, ac);
 313		if (arch_match_cpu_phys_id(cpu, hwid)) {
 314			if (thread)
 315				*thread = tid;
 316			return true;
 317		}
 318		cell += ac;
 319	}
 320	return false;
 321}
 322
 323/*
 324 * arch_find_n_match_cpu_physical_id - See if the given device node is
 325 * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
 326 * else false.  If 'thread' is non-NULL, the local thread number within the
 327 * core is returned in it.
 328 */
 329bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
 330					      int cpu, unsigned int *thread)
 331{
 332	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
 333	 * for thread ids on PowerPC. If it doesn't exist fallback to
 334	 * standard "reg" property.
 335	 */
 336	if (IS_ENABLED(CONFIG_PPC) &&
 337	    __of_find_n_match_cpu_property(cpun,
 338					   "ibm,ppc-interrupt-server#s",
 339					   cpu, thread))
 340		return true;
 341
 342	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
 343}
 344
 345/**
 346 * of_get_cpu_node - Get device node associated with the given logical CPU
 347 *
 348 * @cpu: CPU number(logical index) for which device node is required
 349 * @thread: if not NULL, local thread number within the physical core is
 350 *          returned
 351 *
 352 * The main purpose of this function is to retrieve the device node for the
 353 * given logical CPU index. It should be used to initialize the of_node in
 354 * cpu device. Once of_node in cpu device is populated, all the further
 355 * references can use that instead.
 356 *
 357 * CPU logical to physical index mapping is architecture specific and is built
 358 * before booting secondary cores. This function uses arch_match_cpu_phys_id
 359 * which can be overridden by architecture specific implementation.
 360 *
 361 * Returns a node pointer for the logical cpu with refcount incremented, use
 362 * of_node_put() on it when done. Returns NULL if not found.
 363 */
 364struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
 365{
 366	struct device_node *cpun;
 367
 368	for_each_node_by_type(cpun, "cpu") {
 369		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
 370			return cpun;
 371	}
 372	return NULL;
 373}
 374EXPORT_SYMBOL(of_get_cpu_node);
 375
 376/**
 377 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
 378 *
 379 * @cpu_node: Pointer to the device_node for CPU.
 380 *
 381 * Returns the logical CPU number of the given CPU device_node.
 382 * Returns -ENODEV if the CPU is not found.
 383 */
 384int of_cpu_node_to_id(struct device_node *cpu_node)
 385{
 386	int cpu;
 387	bool found = false;
 388	struct device_node *np;
 389
 390	for_each_possible_cpu(cpu) {
 391		np = of_cpu_device_node_get(cpu);
 392		found = (cpu_node == np);
 393		of_node_put(np);
 394		if (found)
 395			return cpu;
 396	}
 397
 398	return -ENODEV;
 399}
 400EXPORT_SYMBOL(of_cpu_node_to_id);
 401
 402/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 403 * __of_device_is_compatible() - Check if the node matches given constraints
 404 * @device: pointer to node
 405 * @compat: required compatible string, NULL or "" for any match
 406 * @type: required device_type value, NULL or "" for any match
 407 * @name: required node name, NULL or "" for any match
 408 *
 409 * Checks if the given @compat, @type and @name strings match the
 410 * properties of the given @device. A constraints can be skipped by
 411 * passing NULL or an empty string as the constraint.
 412 *
 413 * Returns 0 for no match, and a positive integer on match. The return
 414 * value is a relative score with larger values indicating better
 415 * matches. The score is weighted for the most specific compatible value
 416 * to get the highest score. Matching type is next, followed by matching
 417 * name. Practically speaking, this results in the following priority
 418 * order for matches:
 419 *
 420 * 1. specific compatible && type && name
 421 * 2. specific compatible && type
 422 * 3. specific compatible && name
 423 * 4. specific compatible
 424 * 5. general compatible && type && name
 425 * 6. general compatible && type
 426 * 7. general compatible && name
 427 * 8. general compatible
 428 * 9. type && name
 429 * 10. type
 430 * 11. name
 431 */
 432static int __of_device_is_compatible(const struct device_node *device,
 433				     const char *compat, const char *type, const char *name)
 434{
 435	struct property *prop;
 436	const char *cp;
 437	int index = 0, score = 0;
 438
 439	/* Compatible match has highest priority */
 440	if (compat && compat[0]) {
 441		prop = __of_find_property(device, "compatible", NULL);
 442		for (cp = of_prop_next_string(prop, NULL); cp;
 443		     cp = of_prop_next_string(prop, cp), index++) {
 444			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
 445				score = INT_MAX/2 - (index << 2);
 446				break;
 447			}
 448		}
 449		if (!score)
 450			return 0;
 451	}
 452
 453	/* Matching type is better than matching name */
 454	if (type && type[0]) {
 455		if (!device->type || of_node_cmp(type, device->type))
 456			return 0;
 457		score += 2;
 458	}
 459
 460	/* Matching name is a bit better than not */
 461	if (name && name[0]) {
 462		if (!device->name || of_node_cmp(name, device->name))
 463			return 0;
 464		score++;
 465	}
 466
 467	return score;
 468}
 469
 470/** Checks if the given "compat" string matches one of the strings in
 471 * the device's "compatible" property
 472 */
 473int of_device_is_compatible(const struct device_node *device,
 474		const char *compat)
 475{
 476	unsigned long flags;
 477	int res;
 478
 479	raw_spin_lock_irqsave(&devtree_lock, flags);
 480	res = __of_device_is_compatible(device, compat, NULL, NULL);
 481	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 482	return res;
 483}
 484EXPORT_SYMBOL(of_device_is_compatible);
 485
 486/** Checks if the device is compatible with any of the entries in
 487 *  a NULL terminated array of strings. Returns the best match
 488 *  score or 0.
 489 */
 490int of_device_compatible_match(struct device_node *device,
 491			       const char *const *compat)
 492{
 493	unsigned int tmp, score = 0;
 494
 495	if (!compat)
 496		return 0;
 497
 498	while (*compat) {
 499		tmp = of_device_is_compatible(device, *compat);
 500		if (tmp > score)
 501			score = tmp;
 502		compat++;
 503	}
 504
 505	return score;
 506}
 
 507
 508/**
 509 * of_machine_is_compatible - Test root of device tree for a given compatible value
 510 * @compat: compatible string to look for in root node's compatible property.
 511 *
 512 * Returns a positive integer if the root node has the given value in its
 513 * compatible property.
 514 */
 515int of_machine_is_compatible(const char *compat)
 516{
 517	struct device_node *root;
 518	int rc = 0;
 519
 520	root = of_find_node_by_path("/");
 521	if (root) {
 522		rc = of_device_is_compatible(root, compat);
 523		of_node_put(root);
 524	}
 525	return rc;
 526}
 527EXPORT_SYMBOL(of_machine_is_compatible);
 528
 529/**
 530 *  __of_device_is_available - check if a device is available for use
 531 *
 532 *  @device: Node to check for availability, with locks already held
 533 *
 534 *  Returns true if the status property is absent or set to "okay" or "ok",
 535 *  false otherwise
 536 */
 537static bool __of_device_is_available(const struct device_node *device)
 538{
 539	const char *status;
 540	int statlen;
 541
 542	if (!device)
 543		return false;
 544
 545	status = __of_get_property(device, "status", &statlen);
 546	if (status == NULL)
 547		return true;
 548
 549	if (statlen > 0) {
 550		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
 551			return true;
 552	}
 553
 554	return false;
 555}
 556
 557/**
 558 *  of_device_is_available - check if a device is available for use
 559 *
 560 *  @device: Node to check for availability
 561 *
 562 *  Returns true if the status property is absent or set to "okay" or "ok",
 563 *  false otherwise
 564 */
 565bool of_device_is_available(const struct device_node *device)
 566{
 567	unsigned long flags;
 568	bool res;
 569
 570	raw_spin_lock_irqsave(&devtree_lock, flags);
 571	res = __of_device_is_available(device);
 572	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 573	return res;
 574
 575}
 576EXPORT_SYMBOL(of_device_is_available);
 577
 578/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 579 *  of_device_is_big_endian - check if a device has BE registers
 580 *
 581 *  @device: Node to check for endianness
 582 *
 583 *  Returns true if the device has a "big-endian" property, or if the kernel
 584 *  was compiled for BE *and* the device has a "native-endian" property.
 585 *  Returns false otherwise.
 586 *
 587 *  Callers would nominally use ioread32be/iowrite32be if
 588 *  of_device_is_big_endian() == true, or readl/writel otherwise.
 589 */
 590bool of_device_is_big_endian(const struct device_node *device)
 591{
 592	if (of_property_read_bool(device, "big-endian"))
 593		return true;
 594	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
 595	    of_property_read_bool(device, "native-endian"))
 596		return true;
 597	return false;
 598}
 599EXPORT_SYMBOL(of_device_is_big_endian);
 600
 601/**
 602 *	of_get_parent - Get a node's parent if any
 603 *	@node:	Node to get parent
 604 *
 605 *	Returns a node pointer with refcount incremented, use
 606 *	of_node_put() on it when done.
 607 */
 608struct device_node *of_get_parent(const struct device_node *node)
 609{
 610	struct device_node *np;
 611	unsigned long flags;
 612
 613	if (!node)
 614		return NULL;
 615
 616	raw_spin_lock_irqsave(&devtree_lock, flags);
 617	np = of_node_get(node->parent);
 618	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 619	return np;
 620}
 621EXPORT_SYMBOL(of_get_parent);
 622
 623/**
 624 *	of_get_next_parent - Iterate to a node's parent
 625 *	@node:	Node to get parent of
 626 *
 627 *	This is like of_get_parent() except that it drops the
 628 *	refcount on the passed node, making it suitable for iterating
 629 *	through a node's parents.
 630 *
 631 *	Returns a node pointer with refcount incremented, use
 632 *	of_node_put() on it when done.
 633 */
 634struct device_node *of_get_next_parent(struct device_node *node)
 635{
 636	struct device_node *parent;
 637	unsigned long flags;
 638
 639	if (!node)
 640		return NULL;
 641
 642	raw_spin_lock_irqsave(&devtree_lock, flags);
 643	parent = of_node_get(node->parent);
 644	of_node_put(node);
 645	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 646	return parent;
 647}
 648EXPORT_SYMBOL(of_get_next_parent);
 649
 650static struct device_node *__of_get_next_child(const struct device_node *node,
 651						struct device_node *prev)
 652{
 653	struct device_node *next;
 654
 655	if (!node)
 656		return NULL;
 657
 658	next = prev ? prev->sibling : node->child;
 659	for (; next; next = next->sibling)
 660		if (of_node_get(next))
 661			break;
 662	of_node_put(prev);
 663	return next;
 664}
 665#define __for_each_child_of_node(parent, child) \
 666	for (child = __of_get_next_child(parent, NULL); child != NULL; \
 667	     child = __of_get_next_child(parent, child))
 668
 669/**
 670 *	of_get_next_child - Iterate a node childs
 671 *	@node:	parent node
 672 *	@prev:	previous child of the parent node, or NULL to get first
 673 *
 674 *	Returns a node pointer with refcount incremented, use of_node_put() on
 675 *	it when done. Returns NULL when prev is the last child. Decrements the
 676 *	refcount of prev.
 677 */
 678struct device_node *of_get_next_child(const struct device_node *node,
 679	struct device_node *prev)
 680{
 681	struct device_node *next;
 682	unsigned long flags;
 683
 684	raw_spin_lock_irqsave(&devtree_lock, flags);
 685	next = __of_get_next_child(node, prev);
 686	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 687	return next;
 688}
 689EXPORT_SYMBOL(of_get_next_child);
 690
 691/**
 692 *	of_get_next_available_child - Find the next available child node
 693 *	@node:	parent node
 694 *	@prev:	previous child of the parent node, or NULL to get first
 695 *
 696 *      This function is like of_get_next_child(), except that it
 697 *      automatically skips any disabled nodes (i.e. status = "disabled").
 698 */
 699struct device_node *of_get_next_available_child(const struct device_node *node,
 700	struct device_node *prev)
 701{
 702	struct device_node *next;
 703	unsigned long flags;
 704
 705	if (!node)
 706		return NULL;
 707
 708	raw_spin_lock_irqsave(&devtree_lock, flags);
 709	next = prev ? prev->sibling : node->child;
 710	for (; next; next = next->sibling) {
 711		if (!__of_device_is_available(next))
 712			continue;
 713		if (of_node_get(next))
 714			break;
 715	}
 716	of_node_put(prev);
 717	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 718	return next;
 719}
 720EXPORT_SYMBOL(of_get_next_available_child);
 721
 722/**
 723 *	of_get_child_by_name - Find the child node by name for a given parent
 724 *	@node:	parent node
 725 *	@name:	child name to look for.
 726 *
 727 *      This function looks for child node for given matching name
 728 *
 729 *	Returns a node pointer if found, with refcount incremented, use
 730 *	of_node_put() on it when done.
 731 *	Returns NULL if node is not found.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 732 */
 733struct device_node *of_get_child_by_name(const struct device_node *node,
 734				const char *name)
 735{
 736	struct device_node *child;
 737
 738	for_each_child_of_node(node, child)
 739		if (child->name && (of_node_cmp(child->name, name) == 0))
 740			break;
 741	return child;
 742}
 743EXPORT_SYMBOL(of_get_child_by_name);
 744
 745struct device_node *__of_find_node_by_path(struct device_node *parent,
 746						const char *path)
 747{
 748	struct device_node *child;
 749	int len;
 750
 751	len = strcspn(path, "/:");
 752	if (!len)
 753		return NULL;
 754
 755	__for_each_child_of_node(parent, child) {
 756		const char *name = kbasename(child->full_name);
 757		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
 758			return child;
 759	}
 760	return NULL;
 761}
 762
 763struct device_node *__of_find_node_by_full_path(struct device_node *node,
 764						const char *path)
 765{
 766	const char *separator = strchr(path, ':');
 767
 768	while (node && *path == '/') {
 769		struct device_node *tmp = node;
 770
 771		path++; /* Increment past '/' delimiter */
 772		node = __of_find_node_by_path(node, path);
 773		of_node_put(tmp);
 774		path = strchrnul(path, '/');
 775		if (separator && separator < path)
 776			break;
 777	}
 778	return node;
 779}
 780
 781/**
 782 *	of_find_node_opts_by_path - Find a node matching a full OF path
 783 *	@path: Either the full path to match, or if the path does not
 784 *	       start with '/', the name of a property of the /aliases
 785 *	       node (an alias).  In the case of an alias, the node
 786 *	       matching the alias' value will be returned.
 787 *	@opts: Address of a pointer into which to store the start of
 788 *	       an options string appended to the end of the path with
 789 *	       a ':' separator.
 790 *
 791 *	Valid paths:
 792 *		/foo/bar	Full path
 793 *		foo		Valid alias
 794 *		foo/bar		Valid alias + relative path
 795 *
 796 *	Returns a node pointer with refcount incremented, use
 797 *	of_node_put() on it when done.
 798 */
 799struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
 800{
 801	struct device_node *np = NULL;
 802	struct property *pp;
 803	unsigned long flags;
 804	const char *separator = strchr(path, ':');
 805
 806	if (opts)
 807		*opts = separator ? separator + 1 : NULL;
 808
 809	if (strcmp(path, "/") == 0)
 810		return of_node_get(of_root);
 811
 812	/* The path could begin with an alias */
 813	if (*path != '/') {
 814		int len;
 815		const char *p = separator;
 816
 817		if (!p)
 818			p = strchrnul(path, '/');
 819		len = p - path;
 820
 821		/* of_aliases must not be NULL */
 822		if (!of_aliases)
 823			return NULL;
 824
 825		for_each_property_of_node(of_aliases, pp) {
 826			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
 827				np = of_find_node_by_path(pp->value);
 828				break;
 829			}
 830		}
 831		if (!np)
 832			return NULL;
 833		path = p;
 834	}
 835
 836	/* Step down the tree matching path components */
 837	raw_spin_lock_irqsave(&devtree_lock, flags);
 838	if (!np)
 839		np = of_node_get(of_root);
 840	np = __of_find_node_by_full_path(np, path);
 841	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 842	return np;
 843}
 844EXPORT_SYMBOL(of_find_node_opts_by_path);
 845
 846/**
 847 *	of_find_node_by_name - Find a node by its "name" property
 848 *	@from:	The node to start searching from or NULL; the node
 849 *		you pass will not be searched, only the next one
 850 *		will. Typically, you pass what the previous call
 851 *		returned. of_node_put() will be called on @from.
 852 *	@name:	The name string to match against
 853 *
 854 *	Returns a node pointer with refcount incremented, use
 855 *	of_node_put() on it when done.
 856 */
 857struct device_node *of_find_node_by_name(struct device_node *from,
 858	const char *name)
 859{
 860	struct device_node *np;
 861	unsigned long flags;
 862
 863	raw_spin_lock_irqsave(&devtree_lock, flags);
 864	for_each_of_allnodes_from(from, np)
 865		if (np->name && (of_node_cmp(np->name, name) == 0)
 866		    && of_node_get(np))
 867			break;
 868	of_node_put(from);
 869	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 870	return np;
 871}
 872EXPORT_SYMBOL(of_find_node_by_name);
 873
 874/**
 875 *	of_find_node_by_type - Find a node by its "device_type" property
 876 *	@from:	The node to start searching from, or NULL to start searching
 877 *		the entire device tree. The node you pass will not be
 878 *		searched, only the next one will; typically, you pass
 879 *		what the previous call returned. of_node_put() will be
 880 *		called on from for you.
 881 *	@type:	The type string to match against
 882 *
 883 *	Returns a node pointer with refcount incremented, use
 884 *	of_node_put() on it when done.
 885 */
 886struct device_node *of_find_node_by_type(struct device_node *from,
 887	const char *type)
 888{
 889	struct device_node *np;
 890	unsigned long flags;
 891
 892	raw_spin_lock_irqsave(&devtree_lock, flags);
 893	for_each_of_allnodes_from(from, np)
 894		if (np->type && (of_node_cmp(np->type, type) == 0)
 895		    && of_node_get(np))
 896			break;
 897	of_node_put(from);
 898	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 899	return np;
 900}
 901EXPORT_SYMBOL(of_find_node_by_type);
 902
 903/**
 904 *	of_find_compatible_node - Find a node based on type and one of the
 905 *                                tokens in its "compatible" property
 906 *	@from:		The node to start searching from or NULL, the node
 907 *			you pass will not be searched, only the next one
 908 *			will; typically, you pass what the previous call
 909 *			returned. of_node_put() will be called on it
 910 *	@type:		The type string to match "device_type" or NULL to ignore
 911 *	@compatible:	The string to match to one of the tokens in the device
 912 *			"compatible" list.
 913 *
 914 *	Returns a node pointer with refcount incremented, use
 915 *	of_node_put() on it when done.
 916 */
 917struct device_node *of_find_compatible_node(struct device_node *from,
 918	const char *type, const char *compatible)
 919{
 920	struct device_node *np;
 921	unsigned long flags;
 922
 923	raw_spin_lock_irqsave(&devtree_lock, flags);
 924	for_each_of_allnodes_from(from, np)
 925		if (__of_device_is_compatible(np, compatible, type, NULL) &&
 926		    of_node_get(np))
 927			break;
 928	of_node_put(from);
 929	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 930	return np;
 931}
 932EXPORT_SYMBOL(of_find_compatible_node);
 933
 934/**
 935 *	of_find_node_with_property - Find a node which has a property with
 936 *                                   the given name.
 937 *	@from:		The node to start searching from or NULL, the node
 938 *			you pass will not be searched, only the next one
 939 *			will; typically, you pass what the previous call
 940 *			returned. of_node_put() will be called on it
 941 *	@prop_name:	The name of the property to look for.
 942 *
 943 *	Returns a node pointer with refcount incremented, use
 944 *	of_node_put() on it when done.
 945 */
 946struct device_node *of_find_node_with_property(struct device_node *from,
 947	const char *prop_name)
 948{
 949	struct device_node *np;
 950	struct property *pp;
 951	unsigned long flags;
 952
 953	raw_spin_lock_irqsave(&devtree_lock, flags);
 954	for_each_of_allnodes_from(from, np) {
 955		for (pp = np->properties; pp; pp = pp->next) {
 956			if (of_prop_cmp(pp->name, prop_name) == 0) {
 957				of_node_get(np);
 958				goto out;
 959			}
 960		}
 961	}
 962out:
 963	of_node_put(from);
 964	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 965	return np;
 966}
 967EXPORT_SYMBOL(of_find_node_with_property);
 968
 969static
 970const struct of_device_id *__of_match_node(const struct of_device_id *matches,
 971					   const struct device_node *node)
 972{
 973	const struct of_device_id *best_match = NULL;
 974	int score, best_score = 0;
 975
 976	if (!matches)
 977		return NULL;
 978
 979	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
 980		score = __of_device_is_compatible(node, matches->compatible,
 981						  matches->type, matches->name);
 982		if (score > best_score) {
 983			best_match = matches;
 984			best_score = score;
 985		}
 986	}
 987
 988	return best_match;
 989}
 990
 991/**
 992 * of_match_node - Tell if a device_node has a matching of_match structure
 993 *	@matches:	array of of device match structures to search in
 994 *	@node:		the of device structure to match against
 995 *
 996 *	Low level utility function used by device matching.
 997 */
 998const struct of_device_id *of_match_node(const struct of_device_id *matches,
 999					 const struct device_node *node)
1000{
1001	const struct of_device_id *match;
1002	unsigned long flags;
1003
1004	raw_spin_lock_irqsave(&devtree_lock, flags);
1005	match = __of_match_node(matches, node);
1006	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1007	return match;
1008}
1009EXPORT_SYMBOL(of_match_node);
1010
1011/**
1012 *	of_find_matching_node_and_match - Find a node based on an of_device_id
1013 *					  match table.
1014 *	@from:		The node to start searching from or NULL, the node
1015 *			you pass will not be searched, only the next one
1016 *			will; typically, you pass what the previous call
1017 *			returned. of_node_put() will be called on it
1018 *	@matches:	array of of device match structures to search in
1019 *	@match		Updated to point at the matches entry which matched
1020 *
1021 *	Returns a node pointer with refcount incremented, use
1022 *	of_node_put() on it when done.
1023 */
1024struct device_node *of_find_matching_node_and_match(struct device_node *from,
1025					const struct of_device_id *matches,
1026					const struct of_device_id **match)
1027{
1028	struct device_node *np;
1029	const struct of_device_id *m;
1030	unsigned long flags;
1031
1032	if (match)
1033		*match = NULL;
1034
1035	raw_spin_lock_irqsave(&devtree_lock, flags);
1036	for_each_of_allnodes_from(from, np) {
1037		m = __of_match_node(matches, np);
1038		if (m && of_node_get(np)) {
1039			if (match)
1040				*match = m;
1041			break;
1042		}
1043	}
1044	of_node_put(from);
1045	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1046	return np;
1047}
1048EXPORT_SYMBOL(of_find_matching_node_and_match);
1049
1050/**
1051 * of_modalias_node - Lookup appropriate modalias for a device node
1052 * @node:	pointer to a device tree node
1053 * @modalias:	Pointer to buffer that modalias value will be copied into
1054 * @len:	Length of modalias value
1055 *
1056 * Based on the value of the compatible property, this routine will attempt
1057 * to choose an appropriate modalias value for a particular device tree node.
1058 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1059 * from the first entry in the compatible list property.
1060 *
1061 * This routine returns 0 on success, <0 on failure.
1062 */
1063int of_modalias_node(struct device_node *node, char *modalias, int len)
1064{
1065	const char *compatible, *p;
1066	int cplen;
1067
1068	compatible = of_get_property(node, "compatible", &cplen);
1069	if (!compatible || strlen(compatible) > cplen)
1070		return -ENODEV;
1071	p = strchr(compatible, ',');
1072	strlcpy(modalias, p ? p + 1 : compatible, len);
1073	return 0;
1074}
1075EXPORT_SYMBOL_GPL(of_modalias_node);
1076
1077/**
1078 * of_find_node_by_phandle - Find a node given a phandle
1079 * @handle:	phandle of the node to find
1080 *
1081 * Returns a node pointer with refcount incremented, use
1082 * of_node_put() on it when done.
1083 */
1084struct device_node *of_find_node_by_phandle(phandle handle)
1085{
1086	struct device_node *np = NULL;
1087	unsigned long flags;
1088	phandle masked_handle;
1089
1090	if (!handle)
1091		return NULL;
1092
 
 
1093	raw_spin_lock_irqsave(&devtree_lock, flags);
1094
1095	masked_handle = handle & phandle_cache_mask;
1096
1097	if (phandle_cache) {
1098		if (phandle_cache[masked_handle] &&
1099		    handle == phandle_cache[masked_handle]->phandle)
1100			np = phandle_cache[masked_handle];
1101	}
1102
1103	if (!np) {
1104		for_each_of_allnodes(np)
1105			if (np->phandle == handle) {
1106				if (phandle_cache)
1107					phandle_cache[masked_handle] = np;
1108				break;
1109			}
1110	}
1111
1112	of_node_get(np);
1113	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1114	return np;
1115}
1116EXPORT_SYMBOL(of_find_node_by_phandle);
1117
1118void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1119{
1120	int i;
1121	printk("%s %pOF", msg, args->np);
1122	for (i = 0; i < args->args_count; i++) {
1123		const char delim = i ? ',' : ':';
1124
1125		pr_cont("%c%08x", delim, args->args[i]);
1126	}
1127	pr_cont("\n");
1128}
1129
1130int of_phandle_iterator_init(struct of_phandle_iterator *it,
1131		const struct device_node *np,
1132		const char *list_name,
1133		const char *cells_name,
1134		int cell_count)
1135{
1136	const __be32 *list;
1137	int size;
1138
1139	memset(it, 0, sizeof(*it));
1140
 
 
 
 
 
 
 
1141	list = of_get_property(np, list_name, &size);
1142	if (!list)
1143		return -ENOENT;
1144
1145	it->cells_name = cells_name;
1146	it->cell_count = cell_count;
1147	it->parent = np;
1148	it->list_end = list + size / sizeof(*list);
1149	it->phandle_end = list;
1150	it->cur = list;
1151
1152	return 0;
1153}
1154EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1155
1156int of_phandle_iterator_next(struct of_phandle_iterator *it)
1157{
1158	uint32_t count = 0;
1159
1160	if (it->node) {
1161		of_node_put(it->node);
1162		it->node = NULL;
1163	}
1164
1165	if (!it->cur || it->phandle_end >= it->list_end)
1166		return -ENOENT;
1167
1168	it->cur = it->phandle_end;
1169
1170	/* If phandle is 0, then it is an empty entry with no arguments. */
1171	it->phandle = be32_to_cpup(it->cur++);
1172
1173	if (it->phandle) {
1174
1175		/*
1176		 * Find the provider node and parse the #*-cells property to
1177		 * determine the argument length.
1178		 */
1179		it->node = of_find_node_by_phandle(it->phandle);
1180
1181		if (it->cells_name) {
1182			if (!it->node) {
1183				pr_err("%pOF: could not find phandle\n",
1184				       it->parent);
1185				goto err;
1186			}
1187
1188			if (of_property_read_u32(it->node, it->cells_name,
1189						 &count)) {
1190				pr_err("%pOF: could not get %s for %pOF\n",
1191				       it->parent,
1192				       it->cells_name,
1193				       it->node);
1194				goto err;
 
 
 
 
 
 
 
 
 
1195			}
1196		} else {
1197			count = it->cell_count;
1198		}
1199
1200		/*
1201		 * Make sure that the arguments actually fit in the remaining
1202		 * property data length
1203		 */
1204		if (it->cur + count > it->list_end) {
1205			pr_err("%pOF: arguments longer than property\n",
1206			       it->parent);
 
 
 
 
 
 
1207			goto err;
1208		}
1209	}
1210
1211	it->phandle_end = it->cur + count;
1212	it->cur_count = count;
1213
1214	return 0;
1215
1216err:
1217	if (it->node) {
1218		of_node_put(it->node);
1219		it->node = NULL;
1220	}
1221
1222	return -EINVAL;
1223}
1224EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1225
1226int of_phandle_iterator_args(struct of_phandle_iterator *it,
1227			     uint32_t *args,
1228			     int size)
1229{
1230	int i, count;
1231
1232	count = it->cur_count;
1233
1234	if (WARN_ON(size < count))
1235		count = size;
1236
1237	for (i = 0; i < count; i++)
1238		args[i] = be32_to_cpup(it->cur++);
1239
1240	return count;
1241}
1242
1243static int __of_parse_phandle_with_args(const struct device_node *np,
1244					const char *list_name,
1245					const char *cells_name,
1246					int cell_count, int index,
1247					struct of_phandle_args *out_args)
1248{
1249	struct of_phandle_iterator it;
1250	int rc, cur_index = 0;
1251
 
 
 
1252	/* Loop over the phandles until all the requested entry is found */
1253	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1254		/*
1255		 * All of the error cases bail out of the loop, so at
1256		 * this point, the parsing is successful. If the requested
1257		 * index matches, then fill the out_args structure and return,
1258		 * or return -ENOENT for an empty entry.
1259		 */
1260		rc = -ENOENT;
1261		if (cur_index == index) {
1262			if (!it.phandle)
1263				goto err;
1264
1265			if (out_args) {
1266				int c;
1267
1268				c = of_phandle_iterator_args(&it,
1269							     out_args->args,
1270							     MAX_PHANDLE_ARGS);
1271				out_args->np = it.node;
1272				out_args->args_count = c;
1273			} else {
1274				of_node_put(it.node);
1275			}
1276
1277			/* Found it! return success */
1278			return 0;
1279		}
1280
1281		cur_index++;
1282	}
1283
1284	/*
1285	 * Unlock node before returning result; will be one of:
1286	 * -ENOENT : index is for empty phandle
1287	 * -EINVAL : parsing error on data
1288	 */
1289
1290 err:
1291	of_node_put(it.node);
1292	return rc;
1293}
1294
1295/**
1296 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1297 * @np: Pointer to device node holding phandle property
1298 * @phandle_name: Name of property holding a phandle value
1299 * @index: For properties holding a table of phandles, this is the index into
1300 *         the table
1301 *
1302 * Returns the device_node pointer with refcount incremented.  Use
1303 * of_node_put() on it when done.
1304 */
1305struct device_node *of_parse_phandle(const struct device_node *np,
1306				     const char *phandle_name, int index)
1307{
1308	struct of_phandle_args args;
1309
1310	if (index < 0)
1311		return NULL;
1312
1313	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1314					 index, &args))
1315		return NULL;
1316
1317	return args.np;
1318}
1319EXPORT_SYMBOL(of_parse_phandle);
1320
1321/**
1322 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1323 * @np:		pointer to a device tree node containing a list
1324 * @list_name:	property name that contains a list
1325 * @cells_name:	property name that specifies phandles' arguments count
1326 * @index:	index of a phandle to parse out
1327 * @out_args:	optional pointer to output arguments structure (will be filled)
1328 *
1329 * This function is useful to parse lists of phandles and their arguments.
1330 * Returns 0 on success and fills out_args, on error returns appropriate
1331 * errno value.
1332 *
1333 * Caller is responsible to call of_node_put() on the returned out_args->np
1334 * pointer.
1335 *
1336 * Example:
1337 *
1338 * phandle1: node1 {
1339 *	#list-cells = <2>;
1340 * }
1341 *
1342 * phandle2: node2 {
1343 *	#list-cells = <1>;
1344 * }
1345 *
1346 * node3 {
1347 *	list = <&phandle1 1 2 &phandle2 3>;
1348 * }
1349 *
1350 * To get a device_node of the `node2' node you may call this:
1351 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1352 */
1353int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1354				const char *cells_name, int index,
1355				struct of_phandle_args *out_args)
1356{
1357	if (index < 0)
1358		return -EINVAL;
1359	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1360					    index, out_args);
1361}
1362EXPORT_SYMBOL(of_parse_phandle_with_args);
1363
1364/**
1365 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1366 * @np:		pointer to a device tree node containing a list
1367 * @list_name:	property name that contains a list
1368 * @stem_name:	stem of property names that specify phandles' arguments count
1369 * @index:	index of a phandle to parse out
1370 * @out_args:	optional pointer to output arguments structure (will be filled)
1371 *
1372 * This function is useful to parse lists of phandles and their arguments.
1373 * Returns 0 on success and fills out_args, on error returns appropriate errno
1374 * value. The difference between this function and of_parse_phandle_with_args()
1375 * is that this API remaps a phandle if the node the phandle points to has
1376 * a <@stem_name>-map property.
1377 *
1378 * Caller is responsible to call of_node_put() on the returned out_args->np
1379 * pointer.
1380 *
1381 * Example:
1382 *
1383 * phandle1: node1 {
1384 *	#list-cells = <2>;
1385 * }
1386 *
1387 * phandle2: node2 {
1388 *	#list-cells = <1>;
1389 * }
1390 *
1391 * phandle3: node3 {
1392 * 	#list-cells = <1>;
1393 * 	list-map = <0 &phandle2 3>,
1394 * 		   <1 &phandle2 2>,
1395 * 		   <2 &phandle1 5 1>;
1396 *	list-map-mask = <0x3>;
1397 * };
1398 *
1399 * node4 {
1400 *	list = <&phandle1 1 2 &phandle3 0>;
1401 * }
1402 *
1403 * To get a device_node of the `node2' node you may call this:
1404 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1405 */
1406int of_parse_phandle_with_args_map(const struct device_node *np,
1407				   const char *list_name,
1408				   const char *stem_name,
1409				   int index, struct of_phandle_args *out_args)
1410{
1411	char *cells_name, *map_name = NULL, *mask_name = NULL;
1412	char *pass_name = NULL;
1413	struct device_node *cur, *new = NULL;
1414	const __be32 *map, *mask, *pass;
1415	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1416	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1417	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1418	const __be32 *match_array = initial_match_array;
1419	int i, ret, map_len, match;
1420	u32 list_size, new_size;
1421
1422	if (index < 0)
1423		return -EINVAL;
1424
1425	cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1426	if (!cells_name)
1427		return -ENOMEM;
1428
1429	ret = -ENOMEM;
1430	map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1431	if (!map_name)
1432		goto free;
1433
1434	mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1435	if (!mask_name)
1436		goto free;
1437
1438	pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1439	if (!pass_name)
1440		goto free;
1441
1442	ret = __of_parse_phandle_with_args(np, list_name, cells_name, 0, index,
1443					   out_args);
1444	if (ret)
1445		goto free;
1446
1447	/* Get the #<list>-cells property */
1448	cur = out_args->np;
1449	ret = of_property_read_u32(cur, cells_name, &list_size);
1450	if (ret < 0)
1451		goto put;
1452
1453	/* Precalculate the match array - this simplifies match loop */
1454	for (i = 0; i < list_size; i++)
1455		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1456
1457	ret = -EINVAL;
1458	while (cur) {
1459		/* Get the <list>-map property */
1460		map = of_get_property(cur, map_name, &map_len);
1461		if (!map) {
1462			ret = 0;
1463			goto free;
1464		}
1465		map_len /= sizeof(u32);
1466
1467		/* Get the <list>-map-mask property (optional) */
1468		mask = of_get_property(cur, mask_name, NULL);
1469		if (!mask)
1470			mask = dummy_mask;
1471		/* Iterate through <list>-map property */
1472		match = 0;
1473		while (map_len > (list_size + 1) && !match) {
1474			/* Compare specifiers */
1475			match = 1;
1476			for (i = 0; i < list_size; i++, map_len--)
1477				match &= !((match_array[i] ^ *map++) & mask[i]);
1478
1479			of_node_put(new);
1480			new = of_find_node_by_phandle(be32_to_cpup(map));
1481			map++;
1482			map_len--;
1483
1484			/* Check if not found */
1485			if (!new)
1486				goto put;
1487
1488			if (!of_device_is_available(new))
1489				match = 0;
1490
1491			ret = of_property_read_u32(new, cells_name, &new_size);
1492			if (ret)
1493				goto put;
1494
1495			/* Check for malformed properties */
1496			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1497				goto put;
1498			if (map_len < new_size)
1499				goto put;
1500
1501			/* Move forward by new node's #<list>-cells amount */
1502			map += new_size;
1503			map_len -= new_size;
1504		}
1505		if (!match)
1506			goto put;
1507
1508		/* Get the <list>-map-pass-thru property (optional) */
1509		pass = of_get_property(cur, pass_name, NULL);
1510		if (!pass)
1511			pass = dummy_pass;
1512
1513		/*
1514		 * Successfully parsed a <list>-map translation; copy new
1515		 * specifier into the out_args structure, keeping the
1516		 * bits specified in <list>-map-pass-thru.
1517		 */
1518		match_array = map - new_size;
1519		for (i = 0; i < new_size; i++) {
1520			__be32 val = *(map - new_size + i);
1521
1522			if (i < list_size) {
1523				val &= ~pass[i];
1524				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1525			}
1526
1527			out_args->args[i] = be32_to_cpu(val);
1528		}
1529		out_args->args_count = list_size = new_size;
1530		/* Iterate again with new provider */
1531		out_args->np = new;
1532		of_node_put(cur);
1533		cur = new;
1534	}
1535put:
1536	of_node_put(cur);
1537	of_node_put(new);
1538free:
1539	kfree(mask_name);
1540	kfree(map_name);
1541	kfree(cells_name);
1542	kfree(pass_name);
1543
1544	return ret;
1545}
1546EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1547
1548/**
1549 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1550 * @np:		pointer to a device tree node containing a list
1551 * @list_name:	property name that contains a list
1552 * @cell_count: number of argument cells following the phandle
1553 * @index:	index of a phandle to parse out
1554 * @out_args:	optional pointer to output arguments structure (will be filled)
1555 *
1556 * This function is useful to parse lists of phandles and their arguments.
1557 * Returns 0 on success and fills out_args, on error returns appropriate
1558 * errno value.
1559 *
1560 * Caller is responsible to call of_node_put() on the returned out_args->np
1561 * pointer.
1562 *
1563 * Example:
1564 *
1565 * phandle1: node1 {
1566 * }
1567 *
1568 * phandle2: node2 {
1569 * }
1570 *
1571 * node3 {
1572 *	list = <&phandle1 0 2 &phandle2 2 3>;
1573 * }
1574 *
1575 * To get a device_node of the `node2' node you may call this:
1576 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1577 */
1578int of_parse_phandle_with_fixed_args(const struct device_node *np,
1579				const char *list_name, int cell_count,
1580				int index, struct of_phandle_args *out_args)
1581{
1582	if (index < 0)
1583		return -EINVAL;
1584	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1585					   index, out_args);
1586}
1587EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1588
1589/**
1590 * of_count_phandle_with_args() - Find the number of phandles references in a property
1591 * @np:		pointer to a device tree node containing a list
1592 * @list_name:	property name that contains a list
1593 * @cells_name:	property name that specifies phandles' arguments count
1594 *
1595 * Returns the number of phandle + argument tuples within a property. It
1596 * is a typical pattern to encode a list of phandle and variable
1597 * arguments into a single property. The number of arguments is encoded
1598 * by a property in the phandle-target node. For example, a gpios
1599 * property would contain a list of GPIO specifies consisting of a
1600 * phandle and 1 or more arguments. The number of arguments are
1601 * determined by the #gpio-cells property in the node pointed to by the
1602 * phandle.
1603 */
1604int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1605				const char *cells_name)
1606{
1607	struct of_phandle_iterator it;
1608	int rc, cur_index = 0;
1609
1610	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1611	if (rc)
1612		return rc;
1613
1614	while ((rc = of_phandle_iterator_next(&it)) == 0)
1615		cur_index += 1;
1616
1617	if (rc != -ENOENT)
1618		return rc;
1619
1620	return cur_index;
1621}
1622EXPORT_SYMBOL(of_count_phandle_with_args);
1623
1624/**
1625 * __of_add_property - Add a property to a node without lock operations
 
 
1626 */
1627int __of_add_property(struct device_node *np, struct property *prop)
1628{
1629	struct property **next;
1630
1631	prop->next = NULL;
1632	next = &np->properties;
1633	while (*next) {
1634		if (strcmp(prop->name, (*next)->name) == 0)
1635			/* duplicate ! don't insert it */
1636			return -EEXIST;
1637
1638		next = &(*next)->next;
1639	}
1640	*next = prop;
1641
1642	return 0;
1643}
1644
1645/**
1646 * of_add_property - Add a property to a node
 
 
1647 */
1648int of_add_property(struct device_node *np, struct property *prop)
1649{
1650	unsigned long flags;
1651	int rc;
1652
1653	mutex_lock(&of_mutex);
1654
1655	raw_spin_lock_irqsave(&devtree_lock, flags);
1656	rc = __of_add_property(np, prop);
1657	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1658
1659	if (!rc)
1660		__of_add_property_sysfs(np, prop);
1661
1662	mutex_unlock(&of_mutex);
1663
1664	if (!rc)
1665		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1666
1667	return rc;
1668}
 
1669
1670int __of_remove_property(struct device_node *np, struct property *prop)
1671{
1672	struct property **next;
1673
1674	for (next = &np->properties; *next; next = &(*next)->next) {
1675		if (*next == prop)
1676			break;
1677	}
1678	if (*next == NULL)
1679		return -ENODEV;
1680
1681	/* found the node */
1682	*next = prop->next;
1683	prop->next = np->deadprops;
1684	np->deadprops = prop;
1685
1686	return 0;
1687}
1688
1689/**
1690 * of_remove_property - Remove a property from a node.
 
 
1691 *
1692 * Note that we don't actually remove it, since we have given out
1693 * who-knows-how-many pointers to the data using get-property.
1694 * Instead we just move the property to the "dead properties"
1695 * list, so it won't be found any more.
1696 */
1697int of_remove_property(struct device_node *np, struct property *prop)
1698{
1699	unsigned long flags;
1700	int rc;
1701
1702	if (!prop)
1703		return -ENODEV;
1704
1705	mutex_lock(&of_mutex);
1706
1707	raw_spin_lock_irqsave(&devtree_lock, flags);
1708	rc = __of_remove_property(np, prop);
1709	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1710
1711	if (!rc)
1712		__of_remove_property_sysfs(np, prop);
1713
1714	mutex_unlock(&of_mutex);
1715
1716	if (!rc)
1717		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1718
1719	return rc;
1720}
 
1721
1722int __of_update_property(struct device_node *np, struct property *newprop,
1723		struct property **oldpropp)
1724{
1725	struct property **next, *oldprop;
1726
1727	for (next = &np->properties; *next; next = &(*next)->next) {
1728		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1729			break;
1730	}
1731	*oldpropp = oldprop = *next;
1732
1733	if (oldprop) {
1734		/* replace the node */
1735		newprop->next = oldprop->next;
1736		*next = newprop;
1737		oldprop->next = np->deadprops;
1738		np->deadprops = oldprop;
1739	} else {
1740		/* new node */
1741		newprop->next = NULL;
1742		*next = newprop;
1743	}
1744
1745	return 0;
1746}
1747
1748/*
1749 * of_update_property - Update a property in a node, if the property does
1750 * not exist, add it.
1751 *
1752 * Note that we don't actually remove it, since we have given out
1753 * who-knows-how-many pointers to the data using get-property.
1754 * Instead we just move the property to the "dead properties" list,
1755 * and add the new property to the property list
1756 */
1757int of_update_property(struct device_node *np, struct property *newprop)
1758{
1759	struct property *oldprop;
1760	unsigned long flags;
1761	int rc;
1762
1763	if (!newprop->name)
1764		return -EINVAL;
1765
1766	mutex_lock(&of_mutex);
1767
1768	raw_spin_lock_irqsave(&devtree_lock, flags);
1769	rc = __of_update_property(np, newprop, &oldprop);
1770	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1771
1772	if (!rc)
1773		__of_update_property_sysfs(np, newprop, oldprop);
1774
1775	mutex_unlock(&of_mutex);
1776
1777	if (!rc)
1778		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1779
1780	return rc;
1781}
1782
1783static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1784			 int id, const char *stem, int stem_len)
1785{
1786	ap->np = np;
1787	ap->id = id;
1788	strncpy(ap->stem, stem, stem_len);
1789	ap->stem[stem_len] = 0;
1790	list_add_tail(&ap->link, &aliases_lookup);
1791	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1792		 ap->alias, ap->stem, ap->id, np);
1793}
1794
1795/**
1796 * of_alias_scan - Scan all properties of the 'aliases' node
 
 
1797 *
1798 * The function scans all the properties of the 'aliases' node and populates
1799 * the global lookup table with the properties.  It returns the
1800 * number of alias properties found, or an error code in case of failure.
1801 *
1802 * @dt_alloc:	An allocator that provides a virtual address to memory
1803 *		for storing the resulting tree
1804 */
1805void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1806{
1807	struct property *pp;
1808
1809	of_aliases = of_find_node_by_path("/aliases");
1810	of_chosen = of_find_node_by_path("/chosen");
1811	if (of_chosen == NULL)
1812		of_chosen = of_find_node_by_path("/chosen@0");
1813
1814	if (of_chosen) {
1815		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1816		const char *name = NULL;
1817
1818		if (of_property_read_string(of_chosen, "stdout-path", &name))
1819			of_property_read_string(of_chosen, "linux,stdout-path",
1820						&name);
1821		if (IS_ENABLED(CONFIG_PPC) && !name)
1822			of_property_read_string(of_aliases, "stdout", &name);
1823		if (name)
1824			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
 
 
1825	}
1826
1827	if (!of_aliases)
1828		return;
1829
1830	for_each_property_of_node(of_aliases, pp) {
1831		const char *start = pp->name;
1832		const char *end = start + strlen(start);
1833		struct device_node *np;
1834		struct alias_prop *ap;
1835		int id, len;
1836
1837		/* Skip those we do not want to proceed */
1838		if (!strcmp(pp->name, "name") ||
1839		    !strcmp(pp->name, "phandle") ||
1840		    !strcmp(pp->name, "linux,phandle"))
1841			continue;
1842
1843		np = of_find_node_by_path(pp->value);
1844		if (!np)
1845			continue;
1846
1847		/* walk the alias backwards to extract the id and work out
1848		 * the 'stem' string */
1849		while (isdigit(*(end-1)) && end > start)
1850			end--;
1851		len = end - start;
1852
1853		if (kstrtoint(end, 10, &id) < 0)
1854			continue;
1855
1856		/* Allocate an alias_prop with enough space for the stem */
1857		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1858		if (!ap)
1859			continue;
1860		memset(ap, 0, sizeof(*ap) + len + 1);
1861		ap->alias = start;
1862		of_alias_add(ap, np, id, start, len);
1863	}
1864}
1865
1866/**
1867 * of_alias_get_id - Get alias id for the given device_node
1868 * @np:		Pointer to the given device_node
1869 * @stem:	Alias stem of the given device_node
1870 *
1871 * The function travels the lookup table to get the alias id for the given
1872 * device_node and alias stem.  It returns the alias id if found.
 
 
1873 */
1874int of_alias_get_id(struct device_node *np, const char *stem)
1875{
1876	struct alias_prop *app;
1877	int id = -ENODEV;
1878
1879	mutex_lock(&of_mutex);
1880	list_for_each_entry(app, &aliases_lookup, link) {
1881		if (strcmp(app->stem, stem) != 0)
1882			continue;
1883
1884		if (np == app->np) {
1885			id = app->id;
1886			break;
1887		}
1888	}
1889	mutex_unlock(&of_mutex);
1890
1891	return id;
1892}
1893EXPORT_SYMBOL_GPL(of_alias_get_id);
1894
1895/**
1896 * of_alias_get_highest_id - Get highest alias id for the given stem
1897 * @stem:	Alias stem to be examined
1898 *
1899 * The function travels the lookup table to get the highest alias id for the
1900 * given alias stem.  It returns the alias id if found.
1901 */
1902int of_alias_get_highest_id(const char *stem)
1903{
1904	struct alias_prop *app;
1905	int id = -ENODEV;
1906
1907	mutex_lock(&of_mutex);
1908	list_for_each_entry(app, &aliases_lookup, link) {
1909		if (strcmp(app->stem, stem) != 0)
1910			continue;
1911
1912		if (app->id > id)
1913			id = app->id;
1914	}
1915	mutex_unlock(&of_mutex);
1916
1917	return id;
1918}
1919EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
1920
1921/**
1922 * of_console_check() - Test and setup console for DT setup
1923 * @dn - Pointer to device node
1924 * @name - Name to use for preferred console without index. ex. "ttyS"
1925 * @index - Index to use for preferred console.
1926 *
1927 * Check if the given device node matches the stdout-path property in the
1928 * /chosen node. If it does then register it as the preferred console and return
1929 * TRUE. Otherwise return FALSE.
 
1930 */
1931bool of_console_check(struct device_node *dn, char *name, int index)
1932{
1933	if (!dn || dn != of_stdout || console_set_on_cmdline)
1934		return false;
1935
1936	/*
1937	 * XXX: cast `options' to char pointer to suppress complication
1938	 * warnings: printk, UART and console drivers expect char pointer.
1939	 */
1940	return !add_preferred_console(name, index, (char *)of_stdout_options);
1941}
1942EXPORT_SYMBOL_GPL(of_console_check);
1943
1944/**
1945 *	of_find_next_cache_node - Find a node's subsidiary cache
1946 *	@np:	node of type "cpu" or "cache"
1947 *
1948 *	Returns a node pointer with refcount incremented, use
1949 *	of_node_put() on it when done.  Caller should hold a reference
1950 *	to np.
1951 */
1952struct device_node *of_find_next_cache_node(const struct device_node *np)
1953{
1954	struct device_node *child, *cache_node;
1955
1956	cache_node = of_parse_phandle(np, "l2-cache", 0);
1957	if (!cache_node)
1958		cache_node = of_parse_phandle(np, "next-level-cache", 0);
1959
1960	if (cache_node)
1961		return cache_node;
1962
1963	/* OF on pmac has nodes instead of properties named "l2-cache"
1964	 * beneath CPU nodes.
1965	 */
1966	if (!strcmp(np->type, "cpu"))
1967		for_each_child_of_node(np, child)
1968			if (!strcmp(child->type, "cache"))
1969				return child;
1970
1971	return NULL;
1972}
1973
1974/**
1975 * of_find_last_cache_level - Find the level at which the last cache is
1976 * 		present for the given logical cpu
1977 *
1978 * @cpu: cpu number(logical index) for which the last cache level is needed
1979 *
1980 * Returns the the level at which the last cache is present. It is exactly
1981 * same as  the total number of cache levels for the given logical cpu.
1982 */
1983int of_find_last_cache_level(unsigned int cpu)
1984{
1985	u32 cache_level = 0;
1986	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
1987
1988	while (np) {
 
1989		prev = np;
1990		of_node_put(np);
1991		np = of_find_next_cache_node(np);
1992	}
1993
1994	of_property_read_u32(prev, "cache-level", &cache_level);
 
1995
1996	return cache_level;
1997}