Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Procedures for creating, accessing and interpreting the device tree.
   4 *
   5 * Paul Mackerras	August 1996.
   6 * Copyright (C) 1996-2005 Paul Mackerras.
   7 *
   8 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
   9 *    {engebret|bergner}@us.ibm.com
  10 *
  11 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
  12 *
  13 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
  14 *  Grant Likely.
 
 
 
 
 
  15 */
  16
  17#define pr_fmt(fmt)	"OF: " fmt
  18
  19#include <linux/console.h>
  20#include <linux/ctype.h>
  21#include <linux/cpu.h>
  22#include <linux/module.h>
  23#include <linux/of.h>
  24#include <linux/of_device.h>
  25#include <linux/of_graph.h>
  26#include <linux/spinlock.h>
  27#include <linux/slab.h>
  28#include <linux/string.h>
  29#include <linux/proc_fs.h>
  30
  31#include "of_private.h"
  32
  33LIST_HEAD(aliases_lookup);
  34
  35struct device_node *of_root;
  36EXPORT_SYMBOL(of_root);
  37struct device_node *of_chosen;
  38EXPORT_SYMBOL(of_chosen);
  39struct device_node *of_aliases;
  40struct device_node *of_stdout;
  41static const char *of_stdout_options;
  42
  43struct kset *of_kset;
  44
  45/*
  46 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
  47 * This mutex must be held whenever modifications are being made to the
  48 * device tree. The of_{attach,detach}_node() and
  49 * of_{add,remove,update}_property() helpers make sure this happens.
  50 */
  51DEFINE_MUTEX(of_mutex);
  52
  53/* use when traversing tree through the child, sibling,
  54 * or parent members of struct device_node.
  55 */
  56DEFINE_RAW_SPINLOCK(devtree_lock);
  57
  58bool of_node_name_eq(const struct device_node *np, const char *name)
  59{
  60	const char *node_name;
  61	size_t len;
  62
  63	if (!np)
  64		return false;
 
 
 
 
 
 
 
 
 
  65
  66	node_name = kbasename(np->full_name);
  67	len = strchrnul(node_name, '@') - node_name;
 
  68
  69	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
 
 
 
 
 
 
 
 
  70}
  71EXPORT_SYMBOL(of_node_name_eq);
  72
  73bool of_node_name_prefix(const struct device_node *np, const char *prefix)
 
  74{
  75	if (!np)
  76		return false;
  77
  78	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
  79}
  80EXPORT_SYMBOL(of_node_name_prefix);
  81
  82static bool __of_node_is_type(const struct device_node *np, const char *type)
 
 
 
 
 
 
 
 
  83{
  84	const char *match = __of_get_property(np, "device_type", NULL);
 
 
 
 
  85
  86	return np && match && type && !strcmp(match, type);
 
 
  87}
  88
  89int of_bus_n_addr_cells(struct device_node *np)
 
 
 
 
 
 
 
  90{
  91	u32 cells;
 
 
 
 
 
 
 
 
  92
  93	for (; np; np = np->parent)
  94		if (!of_property_read_u32(np, "#address-cells", &cells))
  95			return cells;
  96
  97	/* No #address-cells property for the root node */
  98	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
  99}
 100
 101int of_n_addr_cells(struct device_node *np)
 
 
 
 
 
 
 102{
 103	if (np->parent)
 104		np = np->parent;
 
 
 
 
 
 
 
 
 
 
 
 
 105
 106	return of_bus_n_addr_cells(np);
 
 
 
 
 
 107}
 108EXPORT_SYMBOL(of_n_addr_cells);
 109
 110int of_bus_n_size_cells(struct device_node *np)
 111{
 112	u32 cells;
 
 
 113
 114	for (; np; np = np->parent)
 115		if (!of_property_read_u32(np, "#size-cells", &cells))
 116			return cells;
 
 
 
 
 117
 118	/* No #size-cells property for the root node */
 119	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
 
 
 120}
 121
 122int of_n_size_cells(struct device_node *np)
 123{
 124	if (np->parent)
 125		np = np->parent;
 
 
 126
 127	return of_bus_n_size_cells(np);
 
 
 
 
 
 
 
 
 128}
 129EXPORT_SYMBOL(of_n_size_cells);
 130
 131#ifdef CONFIG_NUMA
 132int __weak of_node_to_nid(struct device_node *np)
 133{
 134	return NUMA_NO_NODE;
 135}
 136#endif
 
 
 
 
 
 
 
 
 
 137
 138#define OF_PHANDLE_CACHE_BITS	7
 139#define OF_PHANDLE_CACHE_SZ	BIT(OF_PHANDLE_CACHE_BITS)
 
 
 140
 141static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
 
 
 
 
 142
 143static u32 of_phandle_cache_hash(phandle handle)
 144{
 145	return hash_32(handle, OF_PHANDLE_CACHE_BITS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 146}
 147
 148/*
 149 * Caller must hold devtree_lock.
 150 */
 151void __of_phandle_cache_inv_entry(phandle handle)
 152{
 153	u32 handle_hash;
 154	struct device_node *np;
 155
 156	if (!handle)
 157		return;
 158
 159	handle_hash = of_phandle_cache_hash(handle);
 
 
 
 
 
 160
 161	np = phandle_cache[handle_hash];
 162	if (np && handle == np->phandle)
 163		phandle_cache[handle_hash] = NULL;
 164}
 
 165
 166void __init of_core_init(void)
 167{
 168	struct device_node *np;
 169
 170
 171	/* Create the kset, and register existing nodes */
 172	mutex_lock(&of_mutex);
 173	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
 174	if (!of_kset) {
 175		mutex_unlock(&of_mutex);
 176		pr_err("failed to register existing nodes\n");
 177		return;
 178	}
 179	for_each_of_allnodes(np) {
 180		__of_attach_node_sysfs(np);
 181		if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
 182			phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
 183	}
 184	mutex_unlock(&of_mutex);
 
 
 185
 186	/* Symlink in /proc as required by userspace ABI */
 187	if (of_root)
 188		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
 
 
 189}
 
 190
 191static struct property *__of_find_property(const struct device_node *np,
 192					   const char *name, int *lenp)
 193{
 194	struct property *pp;
 195
 196	if (!np)
 197		return NULL;
 198
 199	for (pp = np->properties; pp; pp = pp->next) {
 200		if (of_prop_cmp(pp->name, name) == 0) {
 201			if (lenp)
 202				*lenp = pp->length;
 203			break;
 204		}
 205	}
 206
 207	return pp;
 208}
 209
 210struct property *of_find_property(const struct device_node *np,
 211				  const char *name,
 212				  int *lenp)
 213{
 214	struct property *pp;
 215	unsigned long flags;
 216
 217	raw_spin_lock_irqsave(&devtree_lock, flags);
 218	pp = __of_find_property(np, name, lenp);
 219	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 220
 221	return pp;
 222}
 223EXPORT_SYMBOL(of_find_property);
 224
 225struct device_node *__of_find_all_nodes(struct device_node *prev)
 226{
 227	struct device_node *np;
 228	if (!prev) {
 229		np = of_root;
 230	} else if (prev->child) {
 231		np = prev->child;
 232	} else {
 233		/* Walk back up looking for a sibling, or the end of the structure */
 234		np = prev;
 235		while (np->parent && !np->sibling)
 236			np = np->parent;
 237		np = np->sibling; /* Might be null at the end of the tree */
 238	}
 239	return np;
 240}
 241
 242/**
 243 * of_find_all_nodes - Get next node in global list
 244 * @prev:	Previous node or NULL to start iteration
 245 *		of_node_put() will be called on it
 246 *
 247 * Return: A node pointer with refcount incremented, use
 248 * of_node_put() on it when done.
 249 */
 250struct device_node *of_find_all_nodes(struct device_node *prev)
 251{
 252	struct device_node *np;
 253	unsigned long flags;
 254
 255	raw_spin_lock_irqsave(&devtree_lock, flags);
 256	np = __of_find_all_nodes(prev);
 257	of_node_get(np);
 
 
 258	of_node_put(prev);
 259	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 260	return np;
 261}
 262EXPORT_SYMBOL(of_find_all_nodes);
 263
 264/*
 265 * Find a property with a given name for a given node
 266 * and return the value.
 267 */
 268const void *__of_get_property(const struct device_node *np,
 269			      const char *name, int *lenp)
 270{
 271	struct property *pp = __of_find_property(np, name, lenp);
 272
 273	return pp ? pp->value : NULL;
 274}
 275
 276/*
 277 * Find a property with a given name for a given node
 278 * and return the value.
 279 */
 280const void *of_get_property(const struct device_node *np, const char *name,
 281			    int *lenp)
 282{
 283	struct property *pp = of_find_property(np, name, lenp);
 284
 285	return pp ? pp->value : NULL;
 286}
 287EXPORT_SYMBOL(of_get_property);
 288
 289/**
 290 * of_get_cpu_hwid - Get the hardware ID from a CPU device node
 291 *
 292 * @cpun: CPU number(logical index) for which device node is required
 293 * @thread: The local thread number to get the hardware ID for.
 294 *
 295 * Return: The hardware ID for the CPU node or ~0ULL if not found.
 296 */
 297u64 of_get_cpu_hwid(struct device_node *cpun, unsigned int thread)
 298{
 299	const __be32 *cell;
 300	int ac, len;
 301
 302	ac = of_n_addr_cells(cpun);
 303	cell = of_get_property(cpun, "reg", &len);
 304	if (!cell || !ac || ((sizeof(*cell) * ac * (thread + 1)) > len))
 305		return ~0ULL;
 306
 307	cell += ac * thread;
 308	return of_read_number(cell, ac);
 309}
 310
 311/*
 312 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
 313 *
 314 * @cpu: logical cpu index of a core/thread
 315 * @phys_id: physical identifier of a core/thread
 316 *
 317 * CPU logical to physical index mapping is architecture specific.
 318 * However this __weak function provides a default match of physical
 319 * id to logical cpu index. phys_id provided here is usually values read
 320 * from the device tree which must match the hardware internal registers.
 321 *
 322 * Returns true if the physical identifier and the logical cpu index
 323 * correspond to the same core/thread, false otherwise.
 324 */
 325bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
 326{
 327	return (u32)phys_id == cpu;
 328}
 329
 330/*
 331 * Checks if the given "prop_name" property holds the physical id of the
 332 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
 333 * NULL, local thread number within the core is returned in it.
 334 */
 335static bool __of_find_n_match_cpu_property(struct device_node *cpun,
 336			const char *prop_name, int cpu, unsigned int *thread)
 337{
 338	const __be32 *cell;
 339	int ac, prop_len, tid;
 340	u64 hwid;
 341
 342	ac = of_n_addr_cells(cpun);
 343	cell = of_get_property(cpun, prop_name, &prop_len);
 344	if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
 345		return true;
 346	if (!cell || !ac)
 347		return false;
 348	prop_len /= sizeof(*cell) * ac;
 349	for (tid = 0; tid < prop_len; tid++) {
 350		hwid = of_read_number(cell, ac);
 351		if (arch_match_cpu_phys_id(cpu, hwid)) {
 352			if (thread)
 353				*thread = tid;
 354			return true;
 355		}
 356		cell += ac;
 357	}
 358	return false;
 359}
 360
 361/*
 362 * arch_find_n_match_cpu_physical_id - See if the given device node is
 363 * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
 364 * else false.  If 'thread' is non-NULL, the local thread number within the
 365 * core is returned in it.
 366 */
 367bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
 368					      int cpu, unsigned int *thread)
 369{
 370	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
 371	 * for thread ids on PowerPC. If it doesn't exist fallback to
 372	 * standard "reg" property.
 373	 */
 374	if (IS_ENABLED(CONFIG_PPC) &&
 375	    __of_find_n_match_cpu_property(cpun,
 376					   "ibm,ppc-interrupt-server#s",
 377					   cpu, thread))
 378		return true;
 379
 380	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
 
 
 
 381}
 382
 383/**
 384 * of_get_cpu_node - Get device node associated with the given logical CPU
 385 *
 386 * @cpu: CPU number(logical index) for which device node is required
 387 * @thread: if not NULL, local thread number within the physical core is
 388 *          returned
 389 *
 390 * The main purpose of this function is to retrieve the device node for the
 391 * given logical CPU index. It should be used to initialize the of_node in
 392 * cpu device. Once of_node in cpu device is populated, all the further
 393 * references can use that instead.
 394 *
 395 * CPU logical to physical index mapping is architecture specific and is built
 396 * before booting secondary cores. This function uses arch_match_cpu_phys_id
 397 * which can be overridden by architecture specific implementation.
 398 *
 399 * Return: A node pointer for the logical cpu with refcount incremented, use
 400 * of_node_put() on it when done. Returns NULL if not found.
 401 */
 402struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
 403{
 404	struct device_node *cpun;
 405
 406	for_each_of_cpu_node(cpun) {
 407		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
 408			return cpun;
 409	}
 410	return NULL;
 411}
 412EXPORT_SYMBOL(of_get_cpu_node);
 413
 414/**
 415 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
 416 *
 417 * @cpu_node: Pointer to the device_node for CPU.
 418 *
 419 * Return: The logical CPU number of the given CPU device_node or -ENODEV if the
 420 * CPU is not found.
 421 */
 422int of_cpu_node_to_id(struct device_node *cpu_node)
 423{
 424	int cpu;
 425	bool found = false;
 426	struct device_node *np;
 427
 428	for_each_possible_cpu(cpu) {
 429		np = of_cpu_device_node_get(cpu);
 430		found = (cpu_node == np);
 431		of_node_put(np);
 432		if (found)
 433			return cpu;
 434	}
 435
 436	return -ENODEV;
 437}
 438EXPORT_SYMBOL(of_cpu_node_to_id);
 439
 440/**
 441 * of_get_cpu_state_node - Get CPU's idle state node at the given index
 442 *
 443 * @cpu_node: The device node for the CPU
 444 * @index: The index in the list of the idle states
 445 *
 446 * Two generic methods can be used to describe a CPU's idle states, either via
 447 * a flattened description through the "cpu-idle-states" binding or via the
 448 * hierarchical layout, using the "power-domains" and the "domain-idle-states"
 449 * bindings. This function check for both and returns the idle state node for
 450 * the requested index.
 451 *
 452 * Return: An idle state node if found at @index. The refcount is incremented
 453 * for it, so call of_node_put() on it when done. Returns NULL if not found.
 454 */
 455struct device_node *of_get_cpu_state_node(struct device_node *cpu_node,
 456					  int index)
 457{
 458	struct of_phandle_args args;
 459	int err;
 460
 461	err = of_parse_phandle_with_args(cpu_node, "power-domains",
 462					"#power-domain-cells", 0, &args);
 463	if (!err) {
 464		struct device_node *state_node =
 465			of_parse_phandle(args.np, "domain-idle-states", index);
 466
 467		of_node_put(args.np);
 468		if (state_node)
 469			return state_node;
 470	}
 471
 472	return of_parse_phandle(cpu_node, "cpu-idle-states", index);
 473}
 474EXPORT_SYMBOL(of_get_cpu_state_node);
 475
 476/**
 477 * __of_device_is_compatible() - Check if the node matches given constraints
 478 * @device: pointer to node
 479 * @compat: required compatible string, NULL or "" for any match
 480 * @type: required device_type value, NULL or "" for any match
 481 * @name: required node name, NULL or "" for any match
 482 *
 483 * Checks if the given @compat, @type and @name strings match the
 484 * properties of the given @device. A constraints can be skipped by
 485 * passing NULL or an empty string as the constraint.
 486 *
 487 * Returns 0 for no match, and a positive integer on match. The return
 488 * value is a relative score with larger values indicating better
 489 * matches. The score is weighted for the most specific compatible value
 490 * to get the highest score. Matching type is next, followed by matching
 491 * name. Practically speaking, this results in the following priority
 492 * order for matches:
 493 *
 494 * 1. specific compatible && type && name
 495 * 2. specific compatible && type
 496 * 3. specific compatible && name
 497 * 4. specific compatible
 498 * 5. general compatible && type && name
 499 * 6. general compatible && type
 500 * 7. general compatible && name
 501 * 8. general compatible
 502 * 9. type && name
 503 * 10. type
 504 * 11. name
 505 */
 506static int __of_device_is_compatible(const struct device_node *device,
 507				     const char *compat, const char *type, const char *name)
 508{
 509	struct property *prop;
 510	const char *cp;
 511	int index = 0, score = 0;
 512
 513	/* Compatible match has highest priority */
 514	if (compat && compat[0]) {
 515		prop = __of_find_property(device, "compatible", NULL);
 516		for (cp = of_prop_next_string(prop, NULL); cp;
 517		     cp = of_prop_next_string(prop, cp), index++) {
 518			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
 519				score = INT_MAX/2 - (index << 2);
 520				break;
 521			}
 522		}
 523		if (!score)
 524			return 0;
 525	}
 526
 527	/* Matching type is better than matching name */
 528	if (type && type[0]) {
 529		if (!__of_node_is_type(device, type))
 530			return 0;
 531		score += 2;
 532	}
 533
 534	/* Matching name is a bit better than not */
 535	if (name && name[0]) {
 536		if (!of_node_name_eq(device, name))
 537			return 0;
 538		score++;
 539	}
 540
 541	return score;
 542}
 543
 544/** Checks if the given "compat" string matches one of the strings in
 545 * the device's "compatible" property
 546 */
 547int of_device_is_compatible(const struct device_node *device,
 548		const char *compat)
 549{
 550	unsigned long flags;
 551	int res;
 552
 553	raw_spin_lock_irqsave(&devtree_lock, flags);
 554	res = __of_device_is_compatible(device, compat, NULL, NULL);
 555	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 556	return res;
 557}
 558EXPORT_SYMBOL(of_device_is_compatible);
 559
 560/** Checks if the device is compatible with any of the entries in
 561 *  a NULL terminated array of strings. Returns the best match
 562 *  score or 0.
 563 */
 564int of_device_compatible_match(const struct device_node *device,
 565			       const char *const *compat)
 566{
 567	unsigned int tmp, score = 0;
 568
 569	if (!compat)
 570		return 0;
 571
 572	while (*compat) {
 573		tmp = of_device_is_compatible(device, *compat);
 574		if (tmp > score)
 575			score = tmp;
 576		compat++;
 577	}
 578
 579	return score;
 580}
 581EXPORT_SYMBOL_GPL(of_device_compatible_match);
 582
 583/**
 584 * of_machine_is_compatible - Test root of device tree for a given compatible value
 585 * @compat: compatible string to look for in root node's compatible property.
 586 *
 587 * Return: A positive integer if the root node has the given value in its
 588 * compatible property.
 589 */
 590int of_machine_is_compatible(const char *compat)
 591{
 592	struct device_node *root;
 593	int rc = 0;
 594
 595	root = of_find_node_by_path("/");
 596	if (root) {
 597		rc = of_device_is_compatible(root, compat);
 598		of_node_put(root);
 599	}
 600	return rc;
 601}
 602EXPORT_SYMBOL(of_machine_is_compatible);
 603
 604/**
 605 *  __of_device_is_available - check if a device is available for use
 606 *
 607 *  @device: Node to check for availability, with locks already held
 608 *
 609 *  Return: True if the status property is absent or set to "okay" or "ok",
 610 *  false otherwise
 611 */
 612static bool __of_device_is_available(const struct device_node *device)
 613{
 614	const char *status;
 615	int statlen;
 616
 617	if (!device)
 618		return false;
 619
 620	status = __of_get_property(device, "status", &statlen);
 621	if (status == NULL)
 622		return true;
 623
 624	if (statlen > 0) {
 625		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
 626			return true;
 627	}
 628
 629	return false;
 630}
 631
 632/**
 633 *  of_device_is_available - check if a device is available for use
 634 *
 635 *  @device: Node to check for availability
 636 *
 637 *  Return: True if the status property is absent or set to "okay" or "ok",
 638 *  false otherwise
 639 */
 640bool of_device_is_available(const struct device_node *device)
 641{
 642	unsigned long flags;
 643	bool res;
 644
 645	raw_spin_lock_irqsave(&devtree_lock, flags);
 646	res = __of_device_is_available(device);
 647	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 648	return res;
 649
 650}
 651EXPORT_SYMBOL(of_device_is_available);
 652
 653/**
 654 *  __of_device_is_fail - check if a device has status "fail" or "fail-..."
 655 *
 656 *  @device: Node to check status for, with locks already held
 657 *
 658 *  Return: True if the status property is set to "fail" or "fail-..." (for any
 659 *  error code suffix), false otherwise
 660 */
 661static bool __of_device_is_fail(const struct device_node *device)
 662{
 663	const char *status;
 664
 665	if (!device)
 666		return false;
 667
 668	status = __of_get_property(device, "status", NULL);
 669	if (status == NULL)
 670		return false;
 671
 672	return !strcmp(status, "fail") || !strncmp(status, "fail-", 5);
 673}
 674
 675/**
 676 *  of_device_is_big_endian - check if a device has BE registers
 677 *
 678 *  @device: Node to check for endianness
 679 *
 680 *  Return: True if the device has a "big-endian" property, or if the kernel
 681 *  was compiled for BE *and* the device has a "native-endian" property.
 682 *  Returns false otherwise.
 683 *
 684 *  Callers would nominally use ioread32be/iowrite32be if
 685 *  of_device_is_big_endian() == true, or readl/writel otherwise.
 686 */
 687bool of_device_is_big_endian(const struct device_node *device)
 688{
 689	if (of_property_read_bool(device, "big-endian"))
 690		return true;
 691	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
 692	    of_property_read_bool(device, "native-endian"))
 693		return true;
 694	return false;
 695}
 696EXPORT_SYMBOL(of_device_is_big_endian);
 697
 698/**
 699 * of_get_parent - Get a node's parent if any
 700 * @node:	Node to get parent
 701 *
 702 * Return: A node pointer with refcount incremented, use
 703 * of_node_put() on it when done.
 704 */
 705struct device_node *of_get_parent(const struct device_node *node)
 706{
 707	struct device_node *np;
 708	unsigned long flags;
 709
 710	if (!node)
 711		return NULL;
 712
 713	raw_spin_lock_irqsave(&devtree_lock, flags);
 714	np = of_node_get(node->parent);
 715	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 716	return np;
 717}
 718EXPORT_SYMBOL(of_get_parent);
 719
 720/**
 721 * of_get_next_parent - Iterate to a node's parent
 722 * @node:	Node to get parent of
 723 *
 724 * This is like of_get_parent() except that it drops the
 725 * refcount on the passed node, making it suitable for iterating
 726 * through a node's parents.
 727 *
 728 * Return: A node pointer with refcount incremented, use
 729 * of_node_put() on it when done.
 730 */
 731struct device_node *of_get_next_parent(struct device_node *node)
 732{
 733	struct device_node *parent;
 734	unsigned long flags;
 735
 736	if (!node)
 737		return NULL;
 738
 739	raw_spin_lock_irqsave(&devtree_lock, flags);
 740	parent = of_node_get(node->parent);
 741	of_node_put(node);
 742	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 743	return parent;
 744}
 745EXPORT_SYMBOL(of_get_next_parent);
 746
 747static struct device_node *__of_get_next_child(const struct device_node *node,
 748						struct device_node *prev)
 749{
 750	struct device_node *next;
 751
 752	if (!node)
 753		return NULL;
 754
 755	next = prev ? prev->sibling : node->child;
 756	of_node_get(next);
 757	of_node_put(prev);
 758	return next;
 759}
 760#define __for_each_child_of_node(parent, child) \
 761	for (child = __of_get_next_child(parent, NULL); child != NULL; \
 762	     child = __of_get_next_child(parent, child))
 763
 764/**
 765 * of_get_next_child - Iterate a node childs
 766 * @node:	parent node
 767 * @prev:	previous child of the parent node, or NULL to get first
 768 *
 769 * Return: A node pointer with refcount incremented, use of_node_put() on
 770 * it when done. Returns NULL when prev is the last child. Decrements the
 771 * refcount of prev.
 772 */
 773struct device_node *of_get_next_child(const struct device_node *node,
 774	struct device_node *prev)
 775{
 776	struct device_node *next;
 777	unsigned long flags;
 778
 779	raw_spin_lock_irqsave(&devtree_lock, flags);
 780	next = __of_get_next_child(node, prev);
 
 
 
 
 781	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 782	return next;
 783}
 784EXPORT_SYMBOL(of_get_next_child);
 785
 786/**
 787 * of_get_next_available_child - Find the next available child node
 788 * @node:	parent node
 789 * @prev:	previous child of the parent node, or NULL to get first
 790 *
 791 * This function is like of_get_next_child(), except that it
 792 * automatically skips any disabled nodes (i.e. status = "disabled").
 793 */
 794struct device_node *of_get_next_available_child(const struct device_node *node,
 795	struct device_node *prev)
 796{
 797	struct device_node *next;
 798	unsigned long flags;
 799
 800	if (!node)
 801		return NULL;
 802
 803	raw_spin_lock_irqsave(&devtree_lock, flags);
 804	next = prev ? prev->sibling : node->child;
 805	for (; next; next = next->sibling) {
 806		if (!__of_device_is_available(next))
 807			continue;
 808		if (of_node_get(next))
 809			break;
 810	}
 811	of_node_put(prev);
 812	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 813	return next;
 814}
 815EXPORT_SYMBOL(of_get_next_available_child);
 816
 817/**
 818 * of_get_next_cpu_node - Iterate on cpu nodes
 819 * @prev:	previous child of the /cpus node, or NULL to get first
 820 *
 821 * Unusable CPUs (those with the status property set to "fail" or "fail-...")
 822 * will be skipped.
 823 *
 824 * Return: A cpu node pointer with refcount incremented, use of_node_put()
 825 * on it when done. Returns NULL when prev is the last child. Decrements
 826 * the refcount of prev.
 827 */
 828struct device_node *of_get_next_cpu_node(struct device_node *prev)
 829{
 830	struct device_node *next = NULL;
 831	unsigned long flags;
 832	struct device_node *node;
 833
 834	if (!prev)
 835		node = of_find_node_by_path("/cpus");
 836
 837	raw_spin_lock_irqsave(&devtree_lock, flags);
 838	if (prev)
 839		next = prev->sibling;
 840	else if (node) {
 841		next = node->child;
 842		of_node_put(node);
 843	}
 844	for (; next; next = next->sibling) {
 845		if (__of_device_is_fail(next))
 846			continue;
 847		if (!(of_node_name_eq(next, "cpu") ||
 848		      __of_node_is_type(next, "cpu")))
 849			continue;
 850		if (of_node_get(next))
 851			break;
 852	}
 853	of_node_put(prev);
 854	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 855	return next;
 856}
 857EXPORT_SYMBOL(of_get_next_cpu_node);
 858
 859/**
 860 * of_get_compatible_child - Find compatible child node
 861 * @parent:	parent node
 862 * @compatible:	compatible string
 863 *
 864 * Lookup child node whose compatible property contains the given compatible
 865 * string.
 866 *
 867 * Return: a node pointer with refcount incremented, use of_node_put() on it
 868 * when done; or NULL if not found.
 869 */
 870struct device_node *of_get_compatible_child(const struct device_node *parent,
 871				const char *compatible)
 872{
 873	struct device_node *child;
 874
 875	for_each_child_of_node(parent, child) {
 876		if (of_device_is_compatible(child, compatible))
 877			break;
 878	}
 879
 880	return child;
 881}
 882EXPORT_SYMBOL(of_get_compatible_child);
 883
 884/**
 885 * of_get_child_by_name - Find the child node by name for a given parent
 886 * @node:	parent node
 887 * @name:	child name to look for.
 888 *
 889 * This function looks for child node for given matching name
 890 *
 891 * Return: A node pointer if found, with refcount incremented, use
 892 * of_node_put() on it when done.
 893 * Returns NULL if node is not found.
 894 */
 895struct device_node *of_get_child_by_name(const struct device_node *node,
 896				const char *name)
 897{
 898	struct device_node *child;
 899
 900	for_each_child_of_node(node, child)
 901		if (of_node_name_eq(child, name))
 902			break;
 903	return child;
 904}
 905EXPORT_SYMBOL(of_get_child_by_name);
 906
 907struct device_node *__of_find_node_by_path(struct device_node *parent,
 908						const char *path)
 909{
 910	struct device_node *child;
 911	int len;
 912
 913	len = strcspn(path, "/:");
 914	if (!len)
 915		return NULL;
 916
 917	__for_each_child_of_node(parent, child) {
 918		const char *name = kbasename(child->full_name);
 919		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
 920			return child;
 921	}
 922	return NULL;
 923}
 924
 925struct device_node *__of_find_node_by_full_path(struct device_node *node,
 926						const char *path)
 927{
 928	const char *separator = strchr(path, ':');
 929
 930	while (node && *path == '/') {
 931		struct device_node *tmp = node;
 932
 933		path++; /* Increment past '/' delimiter */
 934		node = __of_find_node_by_path(node, path);
 935		of_node_put(tmp);
 936		path = strchrnul(path, '/');
 937		if (separator && separator < path)
 938			break;
 939	}
 940	return node;
 941}
 942
 943/**
 944 * of_find_node_opts_by_path - Find a node matching a full OF path
 945 * @path: Either the full path to match, or if the path does not
 946 *       start with '/', the name of a property of the /aliases
 947 *       node (an alias).  In the case of an alias, the node
 948 *       matching the alias' value will be returned.
 949 * @opts: Address of a pointer into which to store the start of
 950 *       an options string appended to the end of the path with
 951 *       a ':' separator.
 952 *
 953 * Valid paths:
 954 *  * /foo/bar	Full path
 955 *  * foo	Valid alias
 956 *  * foo/bar	Valid alias + relative path
 957 *
 958 * Return: A node pointer with refcount incremented, use
 959 * of_node_put() on it when done.
 960 */
 961struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
 962{
 963	struct device_node *np = NULL;
 964	struct property *pp;
 965	unsigned long flags;
 966	const char *separator = strchr(path, ':');
 967
 968	if (opts)
 969		*opts = separator ? separator + 1 : NULL;
 970
 971	if (strcmp(path, "/") == 0)
 972		return of_node_get(of_root);
 973
 974	/* The path could begin with an alias */
 975	if (*path != '/') {
 976		int len;
 977		const char *p = separator;
 978
 979		if (!p)
 980			p = strchrnul(path, '/');
 981		len = p - path;
 982
 983		/* of_aliases must not be NULL */
 984		if (!of_aliases)
 985			return NULL;
 986
 987		for_each_property_of_node(of_aliases, pp) {
 988			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
 989				np = of_find_node_by_path(pp->value);
 990				break;
 991			}
 992		}
 993		if (!np)
 994			return NULL;
 995		path = p;
 996	}
 997
 998	/* Step down the tree matching path components */
 999	raw_spin_lock_irqsave(&devtree_lock, flags);
1000	if (!np)
1001		np = of_node_get(of_root);
1002	np = __of_find_node_by_full_path(np, path);
 
 
1003	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1004	return np;
1005}
1006EXPORT_SYMBOL(of_find_node_opts_by_path);
1007
1008/**
1009 * of_find_node_by_name - Find a node by its "name" property
1010 * @from:	The node to start searching from or NULL; the node
1011 *		you pass will not be searched, only the next one
1012 *		will. Typically, you pass what the previous call
1013 *		returned. of_node_put() will be called on @from.
1014 * @name:	The name string to match against
1015 *
1016 * Return: A node pointer with refcount incremented, use
1017 * of_node_put() on it when done.
1018 */
1019struct device_node *of_find_node_by_name(struct device_node *from,
1020	const char *name)
1021{
1022	struct device_node *np;
1023	unsigned long flags;
1024
1025	raw_spin_lock_irqsave(&devtree_lock, flags);
1026	for_each_of_allnodes_from(from, np)
1027		if (of_node_name_eq(np, name) && of_node_get(np))
 
 
1028			break;
1029	of_node_put(from);
1030	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1031	return np;
1032}
1033EXPORT_SYMBOL(of_find_node_by_name);
1034
1035/**
1036 * of_find_node_by_type - Find a node by its "device_type" property
1037 * @from:	The node to start searching from, or NULL to start searching
1038 *		the entire device tree. The node you pass will not be
1039 *		searched, only the next one will; typically, you pass
1040 *		what the previous call returned. of_node_put() will be
1041 *		called on from for you.
1042 * @type:	The type string to match against
1043 *
1044 * Return: A node pointer with refcount incremented, use
1045 * of_node_put() on it when done.
1046 */
1047struct device_node *of_find_node_by_type(struct device_node *from,
1048	const char *type)
1049{
1050	struct device_node *np;
1051	unsigned long flags;
1052
1053	raw_spin_lock_irqsave(&devtree_lock, flags);
1054	for_each_of_allnodes_from(from, np)
1055		if (__of_node_is_type(np, type) && of_node_get(np))
 
 
1056			break;
1057	of_node_put(from);
1058	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1059	return np;
1060}
1061EXPORT_SYMBOL(of_find_node_by_type);
1062
1063/**
1064 * of_find_compatible_node - Find a node based on type and one of the
1065 *                                tokens in its "compatible" property
1066 * @from:	The node to start searching from or NULL, the node
1067 *		you pass will not be searched, only the next one
1068 *		will; typically, you pass what the previous call
1069 *		returned. of_node_put() will be called on it
1070 * @type:	The type string to match "device_type" or NULL to ignore
1071 * @compatible:	The string to match to one of the tokens in the device
1072 *		"compatible" list.
1073 *
1074 * Return: A node pointer with refcount incremented, use
1075 * of_node_put() on it when done.
1076 */
1077struct device_node *of_find_compatible_node(struct device_node *from,
1078	const char *type, const char *compatible)
1079{
1080	struct device_node *np;
1081	unsigned long flags;
1082
1083	raw_spin_lock_irqsave(&devtree_lock, flags);
1084	for_each_of_allnodes_from(from, np)
 
1085		if (__of_device_is_compatible(np, compatible, type, NULL) &&
1086		    of_node_get(np))
1087			break;
 
1088	of_node_put(from);
1089	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1090	return np;
1091}
1092EXPORT_SYMBOL(of_find_compatible_node);
1093
1094/**
1095 * of_find_node_with_property - Find a node which has a property with
1096 *                              the given name.
1097 * @from:	The node to start searching from or NULL, the node
1098 *		you pass will not be searched, only the next one
1099 *		will; typically, you pass what the previous call
1100 *		returned. of_node_put() will be called on it
1101 * @prop_name:	The name of the property to look for.
1102 *
1103 * Return: A node pointer with refcount incremented, use
1104 * of_node_put() on it when done.
1105 */
1106struct device_node *of_find_node_with_property(struct device_node *from,
1107	const char *prop_name)
1108{
1109	struct device_node *np;
1110	struct property *pp;
1111	unsigned long flags;
1112
1113	raw_spin_lock_irqsave(&devtree_lock, flags);
1114	for_each_of_allnodes_from(from, np) {
 
1115		for (pp = np->properties; pp; pp = pp->next) {
1116			if (of_prop_cmp(pp->name, prop_name) == 0) {
1117				of_node_get(np);
1118				goto out;
1119			}
1120		}
1121	}
1122out:
1123	of_node_put(from);
1124	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1125	return np;
1126}
1127EXPORT_SYMBOL(of_find_node_with_property);
1128
1129static
1130const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1131					   const struct device_node *node)
1132{
1133	const struct of_device_id *best_match = NULL;
1134	int score, best_score = 0;
1135
1136	if (!matches)
1137		return NULL;
1138
1139	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1140		score = __of_device_is_compatible(node, matches->compatible,
1141						  matches->type, matches->name);
1142		if (score > best_score) {
1143			best_match = matches;
1144			best_score = score;
1145		}
1146	}
1147
1148	return best_match;
1149}
1150
1151/**
1152 * of_match_node - Tell if a device_node has a matching of_match structure
1153 * @matches:	array of of device match structures to search in
1154 * @node:	the of device structure to match against
1155 *
1156 * Low level utility function used by device matching.
1157 */
1158const struct of_device_id *of_match_node(const struct of_device_id *matches,
1159					 const struct device_node *node)
1160{
1161	const struct of_device_id *match;
1162	unsigned long flags;
1163
1164	raw_spin_lock_irqsave(&devtree_lock, flags);
1165	match = __of_match_node(matches, node);
1166	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1167	return match;
1168}
1169EXPORT_SYMBOL(of_match_node);
1170
1171/**
1172 * of_find_matching_node_and_match - Find a node based on an of_device_id
1173 *				     match table.
1174 * @from:	The node to start searching from or NULL, the node
1175 *		you pass will not be searched, only the next one
1176 *		will; typically, you pass what the previous call
1177 *		returned. of_node_put() will be called on it
1178 * @matches:	array of of device match structures to search in
1179 * @match:	Updated to point at the matches entry which matched
1180 *
1181 * Return: A node pointer with refcount incremented, use
1182 * of_node_put() on it when done.
1183 */
1184struct device_node *of_find_matching_node_and_match(struct device_node *from,
1185					const struct of_device_id *matches,
1186					const struct of_device_id **match)
1187{
1188	struct device_node *np;
1189	const struct of_device_id *m;
1190	unsigned long flags;
1191
1192	if (match)
1193		*match = NULL;
1194
1195	raw_spin_lock_irqsave(&devtree_lock, flags);
1196	for_each_of_allnodes_from(from, np) {
 
1197		m = __of_match_node(matches, np);
1198		if (m && of_node_get(np)) {
1199			if (match)
1200				*match = m;
1201			break;
1202		}
1203	}
1204	of_node_put(from);
1205	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1206	return np;
1207}
1208EXPORT_SYMBOL(of_find_matching_node_and_match);
1209
1210/**
1211 * of_modalias_node - Lookup appropriate modalias for a device node
1212 * @node:	pointer to a device tree node
1213 * @modalias:	Pointer to buffer that modalias value will be copied into
1214 * @len:	Length of modalias value
1215 *
1216 * Based on the value of the compatible property, this routine will attempt
1217 * to choose an appropriate modalias value for a particular device tree node.
1218 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1219 * from the first entry in the compatible list property.
1220 *
1221 * Return: This routine returns 0 on success, <0 on failure.
1222 */
1223int of_modalias_node(struct device_node *node, char *modalias, int len)
1224{
1225	const char *compatible, *p;
1226	int cplen;
1227
1228	compatible = of_get_property(node, "compatible", &cplen);
1229	if (!compatible || strlen(compatible) > cplen)
1230		return -ENODEV;
1231	p = strchr(compatible, ',');
1232	strscpy(modalias, p ? p + 1 : compatible, len);
1233	return 0;
1234}
1235EXPORT_SYMBOL_GPL(of_modalias_node);
1236
1237/**
1238 * of_find_node_by_phandle - Find a node given a phandle
1239 * @handle:	phandle of the node to find
1240 *
1241 * Return: A node pointer with refcount incremented, use
1242 * of_node_put() on it when done.
1243 */
1244struct device_node *of_find_node_by_phandle(phandle handle)
1245{
1246	struct device_node *np = NULL;
1247	unsigned long flags;
1248	u32 handle_hash;
1249
1250	if (!handle)
1251		return NULL;
1252
1253	handle_hash = of_phandle_cache_hash(handle);
1254
1255	raw_spin_lock_irqsave(&devtree_lock, flags);
1256
1257	if (phandle_cache[handle_hash] &&
1258	    handle == phandle_cache[handle_hash]->phandle)
1259		np = phandle_cache[handle_hash];
1260
1261	if (!np) {
1262		for_each_of_allnodes(np)
1263			if (np->phandle == handle &&
1264			    !of_node_check_flag(np, OF_DETACHED)) {
1265				phandle_cache[handle_hash] = np;
1266				break;
1267			}
1268	}
1269
1270	of_node_get(np);
1271	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1272	return np;
1273}
1274EXPORT_SYMBOL(of_find_node_by_phandle);
1275
1276void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
 
 
 
 
 
 
 
 
 
 
 
 
 
1277{
1278	int i;
1279	printk("%s %pOF", msg, args->np);
1280	for (i = 0; i < args->args_count; i++) {
1281		const char delim = i ? ',' : ':';
1282
1283		pr_cont("%c%08x", delim, args->args[i]);
 
 
 
 
 
 
 
 
1284	}
1285	pr_cont("\n");
 
1286}
 
1287
1288int of_phandle_iterator_init(struct of_phandle_iterator *it,
1289		const struct device_node *np,
1290		const char *list_name,
1291		const char *cells_name,
1292		int cell_count)
 
 
 
 
 
 
 
 
 
 
1293{
1294	const __be32 *list;
1295	int size;
1296
1297	memset(it, 0, sizeof(*it));
 
 
 
 
 
1298
1299	/*
1300	 * one of cell_count or cells_name must be provided to determine the
1301	 * argument length.
1302	 */
1303	if (cell_count < 0 && !cells_name)
1304		return -EINVAL;
1305
1306	list = of_get_property(np, list_name, &size);
1307	if (!list)
1308		return -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1309
1310	it->cells_name = cells_name;
1311	it->cell_count = cell_count;
1312	it->parent = np;
1313	it->list_end = list + size / sizeof(*list);
1314	it->phandle_end = list;
1315	it->cur = list;
1316
 
1317	return 0;
1318}
1319EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1320
1321int of_phandle_iterator_next(struct of_phandle_iterator *it)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1322{
1323	uint32_t count = 0;
 
1324
1325	if (it->node) {
1326		of_node_put(it->node);
1327		it->node = NULL;
1328	}
1329
1330	if (!it->cur || it->phandle_end >= it->list_end)
1331		return -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1332
1333	it->cur = it->phandle_end;
 
1334
1335	/* If phandle is 0, then it is an empty entry with no arguments. */
1336	it->phandle = be32_to_cpup(it->cur++);
 
 
 
1337
1338	if (it->phandle) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1339
1340		/*
1341		 * Find the provider node and parse the #*-cells property to
1342		 * determine the argument length.
1343		 */
1344		it->node = of_find_node_by_phandle(it->phandle);
1345
1346		if (it->cells_name) {
1347			if (!it->node) {
1348				pr_err("%pOF: could not find phandle %d\n",
1349				       it->parent, it->phandle);
1350				goto err;
1351			}
1352
1353			if (of_property_read_u32(it->node, it->cells_name,
1354						 &count)) {
1355				/*
1356				 * If both cell_count and cells_name is given,
1357				 * fall back to cell_count in absence
1358				 * of the cells_name property
1359				 */
1360				if (it->cell_count >= 0) {
1361					count = it->cell_count;
1362				} else {
1363					pr_err("%pOF: could not get %s for %pOF\n",
1364					       it->parent,
1365					       it->cells_name,
1366					       it->node);
1367					goto err;
1368				}
1369			}
1370		} else {
1371			count = it->cell_count;
1372		}
1373
1374		/*
1375		 * Make sure that the arguments actually fit in the remaining
1376		 * property data length
1377		 */
1378		if (it->cur + count > it->list_end) {
1379			if (it->cells_name)
1380				pr_err("%pOF: %s = %d found %td\n",
1381					it->parent, it->cells_name,
1382					count, it->list_end - it->cur);
1383			else
1384				pr_err("%pOF: phandle %s needs %d, found %td\n",
1385					it->parent, of_node_full_name(it->node),
1386					count, it->list_end - it->cur);
1387			goto err;
1388		}
1389	}
1390
1391	it->phandle_end = it->cur + count;
1392	it->cur_count = count;
 
 
1393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1394	return 0;
 
 
1395
1396err:
1397	if (it->node) {
1398		of_node_put(it->node);
1399		it->node = NULL;
1400	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1401
1402	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1403}
1404EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1405
1406int of_phandle_iterator_args(struct of_phandle_iterator *it,
1407			     uint32_t *args,
1408			     int size)
 
 
 
 
 
 
 
 
1409{
1410	int i, count;
 
 
 
 
 
 
 
 
 
 
 
1411
1412	count = it->cur_count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1413
1414	if (WARN_ON(size < count))
1415		count = size;
 
 
 
 
 
 
1416
1417	for (i = 0; i < count; i++)
1418		args[i] = be32_to_cpup(it->cur++);
1419
1420	return count;
1421}
 
1422
1423int __of_parse_phandle_with_args(const struct device_node *np,
1424				 const char *list_name,
1425				 const char *cells_name,
1426				 int cell_count, int index,
1427				 struct of_phandle_args *out_args)
1428{
1429	struct of_phandle_iterator it;
1430	int rc, cur_index = 0;
 
 
 
 
1431
1432	if (index < 0)
1433		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1434
1435	/* Loop over the phandles until all the requested entry is found */
1436	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1437		/*
1438		 * All of the error cases bail out of the loop, so at
1439		 * this point, the parsing is successful. If the requested
1440		 * index matches, then fill the out_args structure and return,
1441		 * or return -ENOENT for an empty entry.
1442		 */
1443		rc = -ENOENT;
1444		if (cur_index == index) {
1445			if (!it.phandle)
1446				goto err;
1447
1448			if (out_args) {
1449				int c;
1450
1451				c = of_phandle_iterator_args(&it,
1452							     out_args->args,
1453							     MAX_PHANDLE_ARGS);
1454				out_args->np = it.node;
1455				out_args->args_count = c;
1456			} else {
1457				of_node_put(it.node);
1458			}
1459
1460			/* Found it! return success */
1461			return 0;
1462		}
1463
 
 
 
1464		cur_index++;
1465	}
1466
1467	/*
1468	 * Unlock node before returning result; will be one of:
1469	 * -ENOENT : index is for empty phandle
1470	 * -EINVAL : parsing error on data
 
1471	 */
1472
1473 err:
1474	of_node_put(it.node);
 
1475	return rc;
1476}
1477EXPORT_SYMBOL(__of_parse_phandle_with_args);
1478
1479/**
1480 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1481 * @np:		pointer to a device tree node containing a list
1482 * @list_name:	property name that contains a list
1483 * @stem_name:	stem of property names that specify phandles' arguments count
1484 * @index:	index of a phandle to parse out
1485 * @out_args:	optional pointer to output arguments structure (will be filled)
1486 *
1487 * This function is useful to parse lists of phandles and their arguments.
1488 * Returns 0 on success and fills out_args, on error returns appropriate errno
1489 * value. The difference between this function and of_parse_phandle_with_args()
1490 * is that this API remaps a phandle if the node the phandle points to has
1491 * a <@stem_name>-map property.
1492 *
1493 * Caller is responsible to call of_node_put() on the returned out_args->np
1494 * pointer.
1495 *
1496 * Example::
1497 *
1498 *  phandle1: node1 {
1499 *  	#list-cells = <2>;
1500 *  };
1501 *
1502 *  phandle2: node2 {
1503 *  	#list-cells = <1>;
1504 *  };
1505 *
1506 *  phandle3: node3 {
1507 *  	#list-cells = <1>;
1508 *  	list-map = <0 &phandle2 3>,
1509 *  		   <1 &phandle2 2>,
1510 *  		   <2 &phandle1 5 1>;
1511 *  	list-map-mask = <0x3>;
1512 *  };
1513 *
1514 *  node4 {
1515 *  	list = <&phandle1 1 2 &phandle3 0>;
1516 *  };
1517 *
1518 * To get a device_node of the ``node2`` node you may call this:
1519 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1520 */
1521int of_parse_phandle_with_args_map(const struct device_node *np,
1522				   const char *list_name,
1523				   const char *stem_name,
1524				   int index, struct of_phandle_args *out_args)
1525{
1526	char *cells_name, *map_name = NULL, *mask_name = NULL;
1527	char *pass_name = NULL;
1528	struct device_node *cur, *new = NULL;
1529	const __be32 *map, *mask, *pass;
1530	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1531	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1532	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1533	const __be32 *match_array = initial_match_array;
1534	int i, ret, map_len, match;
1535	u32 list_size, new_size;
1536
1537	if (index < 0)
1538		return -EINVAL;
 
 
 
 
1539
1540	cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1541	if (!cells_name)
1542		return -ENOMEM;
1543
1544	ret = -ENOMEM;
1545	map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1546	if (!map_name)
1547		goto free;
1548
1549	mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1550	if (!mask_name)
1551		goto free;
1552
1553	pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1554	if (!pass_name)
1555		goto free;
1556
1557	ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1558					   out_args);
1559	if (ret)
1560		goto free;
1561
1562	/* Get the #<list>-cells property */
1563	cur = out_args->np;
1564	ret = of_property_read_u32(cur, cells_name, &list_size);
1565	if (ret < 0)
1566		goto put;
1567
1568	/* Precalculate the match array - this simplifies match loop */
1569	for (i = 0; i < list_size; i++)
1570		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1571
1572	ret = -EINVAL;
1573	while (cur) {
1574		/* Get the <list>-map property */
1575		map = of_get_property(cur, map_name, &map_len);
1576		if (!map) {
1577			ret = 0;
1578			goto free;
1579		}
1580		map_len /= sizeof(u32);
1581
1582		/* Get the <list>-map-mask property (optional) */
1583		mask = of_get_property(cur, mask_name, NULL);
1584		if (!mask)
1585			mask = dummy_mask;
1586		/* Iterate through <list>-map property */
1587		match = 0;
1588		while (map_len > (list_size + 1) && !match) {
1589			/* Compare specifiers */
1590			match = 1;
1591			for (i = 0; i < list_size; i++, map_len--)
1592				match &= !((match_array[i] ^ *map++) & mask[i]);
1593
1594			of_node_put(new);
1595			new = of_find_node_by_phandle(be32_to_cpup(map));
1596			map++;
1597			map_len--;
1598
1599			/* Check if not found */
1600			if (!new)
1601				goto put;
1602
1603			if (!of_device_is_available(new))
1604				match = 0;
1605
1606			ret = of_property_read_u32(new, cells_name, &new_size);
1607			if (ret)
1608				goto put;
1609
1610			/* Check for malformed properties */
1611			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1612				goto put;
1613			if (map_len < new_size)
1614				goto put;
1615
1616			/* Move forward by new node's #<list>-cells amount */
1617			map += new_size;
1618			map_len -= new_size;
1619		}
1620		if (!match)
1621			goto put;
1622
1623		/* Get the <list>-map-pass-thru property (optional) */
1624		pass = of_get_property(cur, pass_name, NULL);
1625		if (!pass)
1626			pass = dummy_pass;
1627
1628		/*
1629		 * Successfully parsed a <list>-map translation; copy new
1630		 * specifier into the out_args structure, keeping the
1631		 * bits specified in <list>-map-pass-thru.
1632		 */
1633		match_array = map - new_size;
1634		for (i = 0; i < new_size; i++) {
1635			__be32 val = *(map - new_size + i);
1636
1637			if (i < list_size) {
1638				val &= ~pass[i];
1639				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1640			}
1641
1642			out_args->args[i] = be32_to_cpu(val);
1643		}
1644		out_args->args_count = list_size = new_size;
1645		/* Iterate again with new provider */
1646		out_args->np = new;
1647		of_node_put(cur);
1648		cur = new;
1649	}
1650put:
1651	of_node_put(cur);
1652	of_node_put(new);
1653free:
1654	kfree(mask_name);
1655	kfree(map_name);
1656	kfree(cells_name);
1657	kfree(pass_name);
1658
1659	return ret;
1660}
1661EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1662
1663/**
1664 * of_count_phandle_with_args() - Find the number of phandles references in a property
1665 * @np:		pointer to a device tree node containing a list
1666 * @list_name:	property name that contains a list
1667 * @cells_name:	property name that specifies phandles' arguments count
1668 *
1669 * Return: The number of phandle + argument tuples within a property. It
1670 * is a typical pattern to encode a list of phandle and variable
1671 * arguments into a single property. The number of arguments is encoded
1672 * by a property in the phandle-target node. For example, a gpios
1673 * property would contain a list of GPIO specifies consisting of a
1674 * phandle and 1 or more arguments. The number of arguments are
1675 * determined by the #gpio-cells property in the node pointed to by the
1676 * phandle.
1677 */
1678int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1679				const char *cells_name)
1680{
1681	struct of_phandle_iterator it;
1682	int rc, cur_index = 0;
1683
1684	/*
1685	 * If cells_name is NULL we assume a cell count of 0. This makes
1686	 * counting the phandles trivial as each 32bit word in the list is a
1687	 * phandle and no arguments are to consider. So we don't iterate through
1688	 * the list but just use the length to determine the phandle count.
1689	 */
1690	if (!cells_name) {
1691		const __be32 *list;
1692		int size;
1693
1694		list = of_get_property(np, list_name, &size);
1695		if (!list)
1696			return -ENOENT;
1697
1698		return size / sizeof(*list);
1699	}
1700
1701	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1702	if (rc)
1703		return rc;
1704
1705	while ((rc = of_phandle_iterator_next(&it)) == 0)
1706		cur_index += 1;
 
 
 
1707
1708	if (rc != -ENOENT)
1709		return rc;
 
1710
1711	return cur_index;
 
 
 
 
 
 
 
 
1712}
1713EXPORT_SYMBOL(of_count_phandle_with_args);
1714
1715/**
1716 * __of_add_property - Add a property to a node without lock operations
1717 * @np:		Caller's Device Node
1718 * @prop:	Property to add
1719 */
1720int __of_add_property(struct device_node *np, struct property *prop)
1721{
1722	struct property **next;
1723
1724	prop->next = NULL;
1725	next = &np->properties;
1726	while (*next) {
1727		if (strcmp(prop->name, (*next)->name) == 0)
1728			/* duplicate ! don't insert it */
1729			return -EEXIST;
1730
1731		next = &(*next)->next;
1732	}
1733	*next = prop;
1734
1735	return 0;
1736}
1737
1738/**
1739 * of_add_property - Add a property to a node
1740 * @np:		Caller's Device Node
1741 * @prop:	Property to add
1742 */
1743int of_add_property(struct device_node *np, struct property *prop)
1744{
1745	unsigned long flags;
1746	int rc;
1747
1748	mutex_lock(&of_mutex);
 
 
1749
1750	raw_spin_lock_irqsave(&devtree_lock, flags);
1751	rc = __of_add_property(np, prop);
1752	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 
 
1753
1754	if (!rc)
1755		__of_add_property_sysfs(np, prop);
1756
1757	mutex_unlock(&of_mutex);
1758
1759	if (!rc)
1760		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1761
1762	return rc;
1763}
1764EXPORT_SYMBOL_GPL(of_add_property);
1765
1766int __of_remove_property(struct device_node *np, struct property *prop)
1767{
1768	struct property **next;
1769
1770	for (next = &np->properties; *next; next = &(*next)->next) {
1771		if (*next == prop)
1772			break;
1773	}
1774	if (*next == NULL)
1775		return -ENODEV;
1776
1777	/* found the node */
1778	*next = prop->next;
1779	prop->next = np->deadprops;
1780	np->deadprops = prop;
1781
1782	return 0;
1783}
1784
1785/**
1786 * of_remove_property - Remove a property from a node.
1787 * @np:		Caller's Device Node
1788 * @prop:	Property to remove
1789 *
1790 * Note that we don't actually remove it, since we have given out
1791 * who-knows-how-many pointers to the data using get-property.
1792 * Instead we just move the property to the "dead properties"
1793 * list, so it won't be found any more.
1794 */
1795int of_remove_property(struct device_node *np, struct property *prop)
1796{
 
1797	unsigned long flags;
 
1798	int rc;
1799
1800	if (!prop)
1801		return -ENODEV;
1802
1803	mutex_lock(&of_mutex);
1804
1805	raw_spin_lock_irqsave(&devtree_lock, flags);
1806	rc = __of_remove_property(np, prop);
 
 
 
 
 
 
 
 
 
 
 
1807	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1808
1809	if (!rc)
1810		__of_remove_property_sysfs(np, prop);
1811
1812	mutex_unlock(&of_mutex);
1813
1814	if (!rc)
1815		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1816
1817	return rc;
1818}
1819EXPORT_SYMBOL_GPL(of_remove_property);
1820
1821int __of_update_property(struct device_node *np, struct property *newprop,
1822		struct property **oldpropp)
1823{
1824	struct property **next, *oldprop;
1825
1826	for (next = &np->properties; *next; next = &(*next)->next) {
1827		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1828			break;
1829	}
1830	*oldpropp = oldprop = *next;
1831
1832	if (oldprop) {
1833		/* replace the node */
1834		newprop->next = oldprop->next;
1835		*next = newprop;
1836		oldprop->next = np->deadprops;
1837		np->deadprops = oldprop;
1838	} else {
1839		/* new node */
1840		newprop->next = NULL;
1841		*next = newprop;
1842	}
1843
1844	return 0;
1845}
1846
1847/*
1848 * of_update_property - Update a property in a node, if the property does
1849 * not exist, add it.
1850 *
1851 * Note that we don't actually remove it, since we have given out
1852 * who-knows-how-many pointers to the data using get-property.
1853 * Instead we just move the property to the "dead properties" list,
1854 * and add the new property to the property list
1855 */
1856int of_update_property(struct device_node *np, struct property *newprop)
1857{
1858	struct property *oldprop;
1859	unsigned long flags;
1860	int rc;
 
 
 
 
1861
1862	if (!newprop->name)
1863		return -EINVAL;
1864
1865	mutex_lock(&of_mutex);
 
 
1866
1867	raw_spin_lock_irqsave(&devtree_lock, flags);
1868	rc = __of_update_property(np, newprop, &oldprop);
 
 
 
 
 
 
 
 
 
 
 
 
1869	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 
 
1870
1871	if (!rc)
1872		__of_update_property_sysfs(np, newprop, oldprop);
 
 
 
 
 
1873
1874	mutex_unlock(&of_mutex);
 
 
 
 
 
 
 
 
 
 
1875
1876	if (!rc)
1877		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1878
 
1879	return rc;
1880}
 
1881
1882static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1883			 int id, const char *stem, int stem_len)
1884{
1885	ap->np = np;
1886	ap->id = id;
1887	strncpy(ap->stem, stem, stem_len);
1888	ap->stem[stem_len] = 0;
1889	list_add_tail(&ap->link, &aliases_lookup);
1890	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1891		 ap->alias, ap->stem, ap->id, np);
1892}
1893
1894/**
1895 * of_alias_scan - Scan all properties of the 'aliases' node
1896 * @dt_alloc:	An allocator that provides a virtual address to memory
1897 *		for storing the resulting tree
 
 
1898 *
1899 * The function scans all the properties of the 'aliases' node and populates
1900 * the global lookup table with the properties.  It returns the
1901 * number of alias properties found, or an error code in case of failure.
1902 */
1903void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1904{
1905	struct property *pp;
1906
1907	of_aliases = of_find_node_by_path("/aliases");
1908	of_chosen = of_find_node_by_path("/chosen");
1909	if (of_chosen == NULL)
1910		of_chosen = of_find_node_by_path("/chosen@0");
1911
1912	if (of_chosen) {
1913		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1914		const char *name = NULL;
1915
1916		if (of_property_read_string(of_chosen, "stdout-path", &name))
1917			of_property_read_string(of_chosen, "linux,stdout-path",
1918						&name);
1919		if (IS_ENABLED(CONFIG_PPC) && !name)
1920			of_property_read_string(of_aliases, "stdout", &name);
1921		if (name)
1922			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1923		if (of_stdout)
1924			of_stdout->fwnode.flags |= FWNODE_FLAG_BEST_EFFORT;
1925	}
1926
 
1927	if (!of_aliases)
1928		return;
1929
1930	for_each_property_of_node(of_aliases, pp) {
1931		const char *start = pp->name;
1932		const char *end = start + strlen(start);
1933		struct device_node *np;
1934		struct alias_prop *ap;
1935		int id, len;
1936
1937		/* Skip those we do not want to proceed */
1938		if (!strcmp(pp->name, "name") ||
1939		    !strcmp(pp->name, "phandle") ||
1940		    !strcmp(pp->name, "linux,phandle"))
1941			continue;
1942
1943		np = of_find_node_by_path(pp->value);
1944		if (!np)
1945			continue;
1946
1947		/* walk the alias backwards to extract the id and work out
1948		 * the 'stem' string */
1949		while (isdigit(*(end-1)) && end > start)
1950			end--;
1951		len = end - start;
1952
1953		if (kstrtoint(end, 10, &id) < 0)
1954			continue;
1955
1956		/* Allocate an alias_prop with enough space for the stem */
1957		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1958		if (!ap)
1959			continue;
1960		memset(ap, 0, sizeof(*ap) + len + 1);
1961		ap->alias = start;
1962		of_alias_add(ap, np, id, start, len);
1963	}
1964}
1965
1966/**
1967 * of_alias_get_id - Get alias id for the given device_node
1968 * @np:		Pointer to the given device_node
1969 * @stem:	Alias stem of the given device_node
1970 *
1971 * The function travels the lookup table to get the alias id for the given
1972 * device_node and alias stem.
1973 *
1974 * Return: The alias id if found.
1975 */
1976int of_alias_get_id(struct device_node *np, const char *stem)
1977{
1978	struct alias_prop *app;
1979	int id = -ENODEV;
1980
1981	mutex_lock(&of_mutex);
1982	list_for_each_entry(app, &aliases_lookup, link) {
1983		if (strcmp(app->stem, stem) != 0)
1984			continue;
1985
1986		if (np == app->np) {
1987			id = app->id;
1988			break;
1989		}
1990	}
1991	mutex_unlock(&of_mutex);
1992
1993	return id;
1994}
1995EXPORT_SYMBOL_GPL(of_alias_get_id);
1996
1997/**
1998 * of_alias_get_highest_id - Get highest alias id for the given stem
1999 * @stem:	Alias stem to be examined
2000 *
2001 * The function travels the lookup table to get the highest alias id for the
2002 * given alias stem.  It returns the alias id if found.
2003 */
2004int of_alias_get_highest_id(const char *stem)
2005{
2006	struct alias_prop *app;
2007	int id = -ENODEV;
2008
2009	mutex_lock(&of_mutex);
2010	list_for_each_entry(app, &aliases_lookup, link) {
2011		if (strcmp(app->stem, stem) != 0)
2012			continue;
2013
2014		if (app->id > id)
2015			id = app->id;
 
2016	}
2017	mutex_unlock(&of_mutex);
2018
2019	return id;
 
 
 
 
 
 
2020}
2021EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2022
2023/**
2024 * of_console_check() - Test and setup console for DT setup
2025 * @dn: Pointer to device node
2026 * @name: Name to use for preferred console without index. ex. "ttyS"
2027 * @index: Index to use for preferred console.
2028 *
2029 * Check if the given device node matches the stdout-path property in the
2030 * /chosen node. If it does then register it as the preferred console.
2031 *
2032 * Return: TRUE if console successfully setup. Otherwise return FALSE.
 
2033 */
2034bool of_console_check(struct device_node *dn, char *name, int index)
2035{
2036	if (!dn || dn != of_stdout || console_set_on_cmdline)
2037		return false;
2038
2039	/*
2040	 * XXX: cast `options' to char pointer to suppress complication
2041	 * warnings: printk, UART and console drivers expect char pointer.
2042	 */
2043	return !add_preferred_console(name, index, (char *)of_stdout_options);
2044}
2045EXPORT_SYMBOL_GPL(of_console_check);
2046
2047/**
2048 * of_find_next_cache_node - Find a node's subsidiary cache
2049 * @np:	node of type "cpu" or "cache"
2050 *
2051 * Return: A node pointer with refcount incremented, use
2052 * of_node_put() on it when done.  Caller should hold a reference
2053 * to np.
2054 */
2055struct device_node *of_find_next_cache_node(const struct device_node *np)
2056{
2057	struct device_node *child, *cache_node;
 
2058
2059	cache_node = of_parse_phandle(np, "l2-cache", 0);
2060	if (!cache_node)
2061		cache_node = of_parse_phandle(np, "next-level-cache", 0);
2062
2063	if (cache_node)
2064		return cache_node;
2065
2066	/* OF on pmac has nodes instead of properties named "l2-cache"
2067	 * beneath CPU nodes.
2068	 */
2069	if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2070		for_each_child_of_node(np, child)
2071			if (of_node_is_type(child, "cache"))
2072				return child;
2073
2074	return NULL;
2075}
2076
2077/**
2078 * of_find_last_cache_level - Find the level at which the last cache is
2079 * 		present for the given logical cpu
2080 *
2081 * @cpu: cpu number(logical index) for which the last cache level is needed
2082 *
2083 * Return: The level at which the last cache is present. It is exactly
2084 * same as  the total number of cache levels for the given logical cpu.
2085 */
2086int of_find_last_cache_level(unsigned int cpu)
 
2087{
2088	u32 cache_level = 0;
2089	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2090
2091	while (np) {
2092		of_node_put(prev);
2093		prev = np;
2094		np = of_find_next_cache_node(np);
2095	}
2096
2097	of_property_read_u32(prev, "cache-level", &cache_level);
2098	of_node_put(prev);
2099
2100	return cache_level;
 
 
 
 
 
 
 
 
 
 
2101}
 
2102
2103/**
2104 * of_map_id - Translate an ID through a downstream mapping.
2105 * @np: root complex device node.
2106 * @id: device ID to map.
2107 * @map_name: property name of the map to use.
2108 * @map_mask_name: optional property name of the mask to use.
2109 * @target: optional pointer to a target device node.
2110 * @id_out: optional pointer to receive the translated ID.
2111 *
2112 * Given a device ID, look up the appropriate implementation-defined
2113 * platform ID and/or the target device which receives transactions on that
2114 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2115 * @id_out may be NULL if only the other is required. If @target points to
2116 * a non-NULL device node pointer, only entries targeting that node will be
2117 * matched; if it points to a NULL value, it will receive the device node of
2118 * the first matching target phandle, with a reference held.
2119 *
2120 * Return: 0 on success or a standard error code on failure.
 
 
2121 */
2122int of_map_id(struct device_node *np, u32 id,
2123	       const char *map_name, const char *map_mask_name,
2124	       struct device_node **target, u32 *id_out)
2125{
2126	u32 map_mask, masked_id;
2127	int map_len;
2128	const __be32 *map = NULL;
2129
2130	if (!np || !map_name || (!target && !id_out))
2131		return -EINVAL;
2132
2133	map = of_get_property(np, map_name, &map_len);
2134	if (!map) {
2135		if (target)
2136			return -ENODEV;
2137		/* Otherwise, no map implies no translation */
2138		*id_out = id;
2139		return 0;
2140	}
2141
2142	if (!map_len || map_len % (4 * sizeof(*map))) {
2143		pr_err("%pOF: Error: Bad %s length: %d\n", np,
2144			map_name, map_len);
2145		return -EINVAL;
2146	}
 
2147
2148	/* The default is to select all bits. */
2149	map_mask = 0xffffffff;
 
 
 
 
 
 
 
 
2150
2151	/*
2152	 * Can be overridden by "{iommu,msi}-map-mask" property.
2153	 * If of_property_read_u32() fails, the default is used.
2154	 */
2155	if (map_mask_name)
2156		of_property_read_u32(np, map_mask_name, &map_mask);
2157
2158	masked_id = map_mask & id;
2159	for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2160		struct device_node *phandle_node;
2161		u32 id_base = be32_to_cpup(map + 0);
2162		u32 phandle = be32_to_cpup(map + 1);
2163		u32 out_base = be32_to_cpup(map + 2);
2164		u32 id_len = be32_to_cpup(map + 3);
2165
2166		if (id_base & ~map_mask) {
2167			pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2168				np, map_name, map_name,
2169				map_mask, id_base);
2170			return -EFAULT;
2171		}
2172
2173		if (masked_id < id_base || masked_id >= id_base + id_len)
2174			continue;
2175
2176		phandle_node = of_find_node_by_phandle(phandle);
2177		if (!phandle_node)
2178			return -ENODEV;
2179
2180		if (target) {
2181			if (*target)
2182				of_node_put(phandle_node);
2183			else
2184				*target = phandle_node;
2185
2186			if (*target != phandle_node)
2187				continue;
2188		}
 
 
 
 
 
 
 
 
 
2189
2190		if (id_out)
2191			*id_out = masked_id - id_base + out_base;
2192
2193		pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2194			np, map_name, map_mask, id_base, out_base,
2195			id_len, id, masked_id - id_base + out_base);
2196		return 0;
 
2197	}
 
 
 
2198
2199	pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2200		id, target && *target ? *target : NULL);
 
 
 
 
 
 
 
 
2201
2202	/* Bypasses translation */
2203	if (id_out)
2204		*id_out = id;
2205	return 0;
 
2206}
2207EXPORT_SYMBOL_GPL(of_map_id);
v3.15
 
   1/*
   2 * Procedures for creating, accessing and interpreting the device tree.
   3 *
   4 * Paul Mackerras	August 1996.
   5 * Copyright (C) 1996-2005 Paul Mackerras.
   6 *
   7 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
   8 *    {engebret|bergner}@us.ibm.com
   9 *
  10 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
  11 *
  12 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
  13 *  Grant Likely.
  14 *
  15 *      This program is free software; you can redistribute it and/or
  16 *      modify it under the terms of the GNU General Public License
  17 *      as published by the Free Software Foundation; either version
  18 *      2 of the License, or (at your option) any later version.
  19 */
 
 
 
 
  20#include <linux/ctype.h>
  21#include <linux/cpu.h>
  22#include <linux/module.h>
  23#include <linux/of.h>
 
  24#include <linux/of_graph.h>
  25#include <linux/spinlock.h>
  26#include <linux/slab.h>
  27#include <linux/string.h>
  28#include <linux/proc_fs.h>
  29
  30#include "of_private.h"
  31
  32LIST_HEAD(aliases_lookup);
  33
  34struct device_node *of_allnodes;
  35EXPORT_SYMBOL(of_allnodes);
  36struct device_node *of_chosen;
 
  37struct device_node *of_aliases;
  38static struct device_node *of_stdout;
 
  39
  40static struct kset *of_kset;
  41
  42/*
  43 * Used to protect the of_aliases; but also overloaded to hold off addition of
  44 * nodes to sysfs
 
 
  45 */
  46DEFINE_MUTEX(of_aliases_mutex);
  47
  48/* use when traversing tree through the allnext, child, sibling,
  49 * or parent members of struct device_node.
  50 */
  51DEFINE_RAW_SPINLOCK(devtree_lock);
  52
  53int of_n_addr_cells(struct device_node *np)
  54{
  55	const __be32 *ip;
 
  56
  57	do {
  58		if (np->parent)
  59			np = np->parent;
  60		ip = of_get_property(np, "#address-cells", NULL);
  61		if (ip)
  62			return be32_to_cpup(ip);
  63	} while (np->parent);
  64	/* No #address-cells property for the root node */
  65	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
  66}
  67EXPORT_SYMBOL(of_n_addr_cells);
  68
  69int of_n_size_cells(struct device_node *np)
  70{
  71	const __be32 *ip;
  72
  73	do {
  74		if (np->parent)
  75			np = np->parent;
  76		ip = of_get_property(np, "#size-cells", NULL);
  77		if (ip)
  78			return be32_to_cpup(ip);
  79	} while (np->parent);
  80	/* No #size-cells property for the root node */
  81	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
  82}
  83EXPORT_SYMBOL(of_n_size_cells);
  84
  85#ifdef CONFIG_NUMA
  86int __weak of_node_to_nid(struct device_node *np)
  87{
  88	return numa_node_id();
 
 
 
  89}
  90#endif
  91
  92#if defined(CONFIG_OF_DYNAMIC)
  93/**
  94 *	of_node_get - Increment refcount of a node
  95 *	@node:	Node to inc refcount, NULL is supported to
  96 *		simplify writing of callers
  97 *
  98 *	Returns node.
  99 */
 100struct device_node *of_node_get(struct device_node *node)
 101{
 102	if (node)
 103		kobject_get(&node->kobj);
 104	return node;
 105}
 106EXPORT_SYMBOL(of_node_get);
 107
 108static inline struct device_node *kobj_to_device_node(struct kobject *kobj)
 109{
 110	return container_of(kobj, struct device_node, kobj);
 111}
 112
 113/**
 114 *	of_node_release - release a dynamically allocated node
 115 *	@kref:  kref element of the node to be released
 116 *
 117 *	In of_node_put() this function is passed to kref_put()
 118 *	as the destructor.
 119 */
 120static void of_node_release(struct kobject *kobj)
 121{
 122	struct device_node *node = kobj_to_device_node(kobj);
 123	struct property *prop = node->properties;
 124
 125	/* We should never be releasing nodes that haven't been detached. */
 126	if (!of_node_check_flag(node, OF_DETACHED)) {
 127		pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
 128		dump_stack();
 129		return;
 130	}
 131
 132	if (!of_node_check_flag(node, OF_DYNAMIC))
 133		return;
 
 134
 135	while (prop) {
 136		struct property *next = prop->next;
 137		kfree(prop->name);
 138		kfree(prop->value);
 139		kfree(prop);
 140		prop = next;
 141
 142		if (!prop) {
 143			prop = node->deadprops;
 144			node->deadprops = NULL;
 145		}
 146	}
 147	kfree(node->full_name);
 148	kfree(node->data);
 149	kfree(node);
 150}
 151
 152/**
 153 *	of_node_put - Decrement refcount of a node
 154 *	@node:	Node to dec refcount, NULL is supported to
 155 *		simplify writing of callers
 156 *
 157 */
 158void of_node_put(struct device_node *node)
 159{
 160	if (node)
 161		kobject_put(&node->kobj);
 162}
 163EXPORT_SYMBOL(of_node_put);
 164#else
 165static void of_node_release(struct kobject *kobj)
 166{
 167	/* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
 168}
 169#endif /* CONFIG_OF_DYNAMIC */
 170
 171struct kobj_type of_node_ktype = {
 172	.release = of_node_release,
 173};
 174
 175static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
 176				struct bin_attribute *bin_attr, char *buf,
 177				loff_t offset, size_t count)
 178{
 179	struct property *pp = container_of(bin_attr, struct property, attr);
 180	return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
 181}
 
 182
 183static const char *safe_name(struct kobject *kobj, const char *orig_name)
 184{
 185	const char *name = orig_name;
 186	struct kernfs_node *kn;
 187	int i = 0;
 188
 189	/* don't be a hero. After 16 tries give up */
 190	while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
 191		sysfs_put(kn);
 192		if (name != orig_name)
 193			kfree(name);
 194		name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
 195	}
 196
 197	if (name != orig_name)
 198		pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n",
 199			kobject_name(kobj), name);
 200	return name;
 201}
 202
 203static int __of_add_property_sysfs(struct device_node *np, struct property *pp)
 204{
 205	int rc;
 206
 207	/* Important: Don't leak passwords */
 208	bool secure = strncmp(pp->name, "security-", 9) == 0;
 209
 210	sysfs_bin_attr_init(&pp->attr);
 211	pp->attr.attr.name = safe_name(&np->kobj, pp->name);
 212	pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
 213	pp->attr.size = secure ? 0 : pp->length;
 214	pp->attr.read = of_node_property_read;
 215
 216	rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
 217	WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
 218	return rc;
 219}
 
 220
 221static int __of_node_add(struct device_node *np)
 
 222{
 223	const char *name;
 224	struct property *pp;
 225	int rc;
 226
 227	np->kobj.kset = of_kset;
 228	if (!np->parent) {
 229		/* Nodes without parents are new top level trees */
 230		rc = kobject_add(&np->kobj, NULL, safe_name(&of_kset->kobj, "base"));
 231	} else {
 232		name = safe_name(&np->parent->kobj, kbasename(np->full_name));
 233		if (!name || !name[0])
 234			return -EINVAL;
 235
 236		rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name);
 237	}
 238	if (rc)
 239		return rc;
 240
 241	for_each_property_of_node(np, pp)
 242		__of_add_property_sysfs(np, pp);
 243
 244	return 0;
 245}
 246
 247int of_node_add(struct device_node *np)
 248{
 249	int rc = 0;
 250
 251	BUG_ON(!of_node_is_initialized(np));
 252
 253	/*
 254	 * Grab the mutex here so that in a race condition between of_init() and
 255	 * of_node_add(), node addition will still be consistent.
 256	 */
 257	mutex_lock(&of_aliases_mutex);
 258	if (of_kset)
 259		rc = __of_node_add(np);
 260	else
 261		/* This scenario may be perfectly valid, but report it anyway */
 262		pr_info("of_node_add(%s) before of_init()\n", np->full_name);
 263	mutex_unlock(&of_aliases_mutex);
 264	return rc;
 265}
 266
 267#if defined(CONFIG_OF_DYNAMIC)
 268static void of_node_remove(struct device_node *np)
 
 
 269{
 270	struct property *pp;
 
 271
 272	BUG_ON(!of_node_is_initialized(np));
 
 273
 274	/* only remove properties if on sysfs */
 275	if (of_node_is_attached(np)) {
 276		for_each_property_of_node(np, pp)
 277			sysfs_remove_bin_file(&np->kobj, &pp->attr);
 278		kobject_del(&np->kobj);
 279	}
 280
 281	/* finally remove the kobj_init ref */
 282	of_node_put(np);
 
 283}
 284#endif
 285
 286static int __init of_init(void)
 287{
 288	struct device_node *np;
 289
 
 290	/* Create the kset, and register existing nodes */
 291	mutex_lock(&of_aliases_mutex);
 292	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
 293	if (!of_kset) {
 294		mutex_unlock(&of_aliases_mutex);
 295		return -ENOMEM;
 
 
 
 
 
 
 296	}
 297	for_each_of_allnodes(np)
 298		__of_node_add(np);
 299	mutex_unlock(&of_aliases_mutex);
 300
 301	/* Symlink in /proc as required by userspace ABI */
 302	if (of_allnodes)
 303		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
 304
 305	return 0;
 306}
 307core_initcall(of_init);
 308
 309static struct property *__of_find_property(const struct device_node *np,
 310					   const char *name, int *lenp)
 311{
 312	struct property *pp;
 313
 314	if (!np)
 315		return NULL;
 316
 317	for (pp = np->properties; pp; pp = pp->next) {
 318		if (of_prop_cmp(pp->name, name) == 0) {
 319			if (lenp)
 320				*lenp = pp->length;
 321			break;
 322		}
 323	}
 324
 325	return pp;
 326}
 327
 328struct property *of_find_property(const struct device_node *np,
 329				  const char *name,
 330				  int *lenp)
 331{
 332	struct property *pp;
 333	unsigned long flags;
 334
 335	raw_spin_lock_irqsave(&devtree_lock, flags);
 336	pp = __of_find_property(np, name, lenp);
 337	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 338
 339	return pp;
 340}
 341EXPORT_SYMBOL(of_find_property);
 342
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 343/**
 344 * of_find_all_nodes - Get next node in global list
 345 * @prev:	Previous node or NULL to start iteration
 346 *		of_node_put() will be called on it
 347 *
 348 * Returns a node pointer with refcount incremented, use
 349 * of_node_put() on it when done.
 350 */
 351struct device_node *of_find_all_nodes(struct device_node *prev)
 352{
 353	struct device_node *np;
 354	unsigned long flags;
 355
 356	raw_spin_lock_irqsave(&devtree_lock, flags);
 357	np = prev ? prev->allnext : of_allnodes;
 358	for (; np != NULL; np = np->allnext)
 359		if (of_node_get(np))
 360			break;
 361	of_node_put(prev);
 362	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 363	return np;
 364}
 365EXPORT_SYMBOL(of_find_all_nodes);
 366
 367/*
 368 * Find a property with a given name for a given node
 369 * and return the value.
 370 */
 371static const void *__of_get_property(const struct device_node *np,
 372				     const char *name, int *lenp)
 373{
 374	struct property *pp = __of_find_property(np, name, lenp);
 375
 376	return pp ? pp->value : NULL;
 377}
 378
 379/*
 380 * Find a property with a given name for a given node
 381 * and return the value.
 382 */
 383const void *of_get_property(const struct device_node *np, const char *name,
 384			    int *lenp)
 385{
 386	struct property *pp = of_find_property(np, name, lenp);
 387
 388	return pp ? pp->value : NULL;
 389}
 390EXPORT_SYMBOL(of_get_property);
 391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 392/*
 393 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
 394 *
 395 * @cpu: logical cpu index of a core/thread
 396 * @phys_id: physical identifier of a core/thread
 397 *
 398 * CPU logical to physical index mapping is architecture specific.
 399 * However this __weak function provides a default match of physical
 400 * id to logical cpu index. phys_id provided here is usually values read
 401 * from the device tree which must match the hardware internal registers.
 402 *
 403 * Returns true if the physical identifier and the logical cpu index
 404 * correspond to the same core/thread, false otherwise.
 405 */
 406bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
 407{
 408	return (u32)phys_id == cpu;
 409}
 410
 411/**
 412 * Checks if the given "prop_name" property holds the physical id of the
 413 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
 414 * NULL, local thread number within the core is returned in it.
 415 */
 416static bool __of_find_n_match_cpu_property(struct device_node *cpun,
 417			const char *prop_name, int cpu, unsigned int *thread)
 418{
 419	const __be32 *cell;
 420	int ac, prop_len, tid;
 421	u64 hwid;
 422
 423	ac = of_n_addr_cells(cpun);
 424	cell = of_get_property(cpun, prop_name, &prop_len);
 
 
 425	if (!cell || !ac)
 426		return false;
 427	prop_len /= sizeof(*cell) * ac;
 428	for (tid = 0; tid < prop_len; tid++) {
 429		hwid = of_read_number(cell, ac);
 430		if (arch_match_cpu_phys_id(cpu, hwid)) {
 431			if (thread)
 432				*thread = tid;
 433			return true;
 434		}
 435		cell += ac;
 436	}
 437	return false;
 438}
 439
 440/*
 441 * arch_find_n_match_cpu_physical_id - See if the given device node is
 442 * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
 443 * else false.  If 'thread' is non-NULL, the local thread number within the
 444 * core is returned in it.
 445 */
 446bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
 447					      int cpu, unsigned int *thread)
 448{
 449	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
 450	 * for thread ids on PowerPC. If it doesn't exist fallback to
 451	 * standard "reg" property.
 452	 */
 453	if (IS_ENABLED(CONFIG_PPC) &&
 454	    __of_find_n_match_cpu_property(cpun,
 455					   "ibm,ppc-interrupt-server#s",
 456					   cpu, thread))
 457		return true;
 458
 459	if (__of_find_n_match_cpu_property(cpun, "reg", cpu, thread))
 460		return true;
 461
 462	return false;
 463}
 464
 465/**
 466 * of_get_cpu_node - Get device node associated with the given logical CPU
 467 *
 468 * @cpu: CPU number(logical index) for which device node is required
 469 * @thread: if not NULL, local thread number within the physical core is
 470 *          returned
 471 *
 472 * The main purpose of this function is to retrieve the device node for the
 473 * given logical CPU index. It should be used to initialize the of_node in
 474 * cpu device. Once of_node in cpu device is populated, all the further
 475 * references can use that instead.
 476 *
 477 * CPU logical to physical index mapping is architecture specific and is built
 478 * before booting secondary cores. This function uses arch_match_cpu_phys_id
 479 * which can be overridden by architecture specific implementation.
 480 *
 481 * Returns a node pointer for the logical cpu if found, else NULL.
 
 482 */
 483struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
 484{
 485	struct device_node *cpun;
 486
 487	for_each_node_by_type(cpun, "cpu") {
 488		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
 489			return cpun;
 490	}
 491	return NULL;
 492}
 493EXPORT_SYMBOL(of_get_cpu_node);
 494
 495/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 496 * __of_device_is_compatible() - Check if the node matches given constraints
 497 * @device: pointer to node
 498 * @compat: required compatible string, NULL or "" for any match
 499 * @type: required device_type value, NULL or "" for any match
 500 * @name: required node name, NULL or "" for any match
 501 *
 502 * Checks if the given @compat, @type and @name strings match the
 503 * properties of the given @device. A constraints can be skipped by
 504 * passing NULL or an empty string as the constraint.
 505 *
 506 * Returns 0 for no match, and a positive integer on match. The return
 507 * value is a relative score with larger values indicating better
 508 * matches. The score is weighted for the most specific compatible value
 509 * to get the highest score. Matching type is next, followed by matching
 510 * name. Practically speaking, this results in the following priority
 511 * order for matches:
 512 *
 513 * 1. specific compatible && type && name
 514 * 2. specific compatible && type
 515 * 3. specific compatible && name
 516 * 4. specific compatible
 517 * 5. general compatible && type && name
 518 * 6. general compatible && type
 519 * 7. general compatible && name
 520 * 8. general compatible
 521 * 9. type && name
 522 * 10. type
 523 * 11. name
 524 */
 525static int __of_device_is_compatible(const struct device_node *device,
 526				     const char *compat, const char *type, const char *name)
 527{
 528	struct property *prop;
 529	const char *cp;
 530	int index = 0, score = 0;
 531
 532	/* Compatible match has highest priority */
 533	if (compat && compat[0]) {
 534		prop = __of_find_property(device, "compatible", NULL);
 535		for (cp = of_prop_next_string(prop, NULL); cp;
 536		     cp = of_prop_next_string(prop, cp), index++) {
 537			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
 538				score = INT_MAX/2 - (index << 2);
 539				break;
 540			}
 541		}
 542		if (!score)
 543			return 0;
 544	}
 545
 546	/* Matching type is better than matching name */
 547	if (type && type[0]) {
 548		if (!device->type || of_node_cmp(type, device->type))
 549			return 0;
 550		score += 2;
 551	}
 552
 553	/* Matching name is a bit better than not */
 554	if (name && name[0]) {
 555		if (!device->name || of_node_cmp(name, device->name))
 556			return 0;
 557		score++;
 558	}
 559
 560	return score;
 561}
 562
 563/** Checks if the given "compat" string matches one of the strings in
 564 * the device's "compatible" property
 565 */
 566int of_device_is_compatible(const struct device_node *device,
 567		const char *compat)
 568{
 569	unsigned long flags;
 570	int res;
 571
 572	raw_spin_lock_irqsave(&devtree_lock, flags);
 573	res = __of_device_is_compatible(device, compat, NULL, NULL);
 574	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 575	return res;
 576}
 577EXPORT_SYMBOL(of_device_is_compatible);
 578
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 579/**
 580 * of_machine_is_compatible - Test root of device tree for a given compatible value
 581 * @compat: compatible string to look for in root node's compatible property.
 582 *
 583 * Returns true if the root node has the given value in its
 584 * compatible property.
 585 */
 586int of_machine_is_compatible(const char *compat)
 587{
 588	struct device_node *root;
 589	int rc = 0;
 590
 591	root = of_find_node_by_path("/");
 592	if (root) {
 593		rc = of_device_is_compatible(root, compat);
 594		of_node_put(root);
 595	}
 596	return rc;
 597}
 598EXPORT_SYMBOL(of_machine_is_compatible);
 599
 600/**
 601 *  __of_device_is_available - check if a device is available for use
 602 *
 603 *  @device: Node to check for availability, with locks already held
 604 *
 605 *  Returns 1 if the status property is absent or set to "okay" or "ok",
 606 *  0 otherwise
 607 */
 608static int __of_device_is_available(const struct device_node *device)
 609{
 610	const char *status;
 611	int statlen;
 612
 613	if (!device)
 614		return 0;
 615
 616	status = __of_get_property(device, "status", &statlen);
 617	if (status == NULL)
 618		return 1;
 619
 620	if (statlen > 0) {
 621		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
 622			return 1;
 623	}
 624
 625	return 0;
 626}
 627
 628/**
 629 *  of_device_is_available - check if a device is available for use
 630 *
 631 *  @device: Node to check for availability
 632 *
 633 *  Returns 1 if the status property is absent or set to "okay" or "ok",
 634 *  0 otherwise
 635 */
 636int of_device_is_available(const struct device_node *device)
 637{
 638	unsigned long flags;
 639	int res;
 640
 641	raw_spin_lock_irqsave(&devtree_lock, flags);
 642	res = __of_device_is_available(device);
 643	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 644	return res;
 645
 646}
 647EXPORT_SYMBOL(of_device_is_available);
 648
 649/**
 650 *	of_get_parent - Get a node's parent if any
 651 *	@node:	Node to get parent
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 652 *
 653 *	Returns a node pointer with refcount incremented, use
 654 *	of_node_put() on it when done.
 655 */
 656struct device_node *of_get_parent(const struct device_node *node)
 657{
 658	struct device_node *np;
 659	unsigned long flags;
 660
 661	if (!node)
 662		return NULL;
 663
 664	raw_spin_lock_irqsave(&devtree_lock, flags);
 665	np = of_node_get(node->parent);
 666	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 667	return np;
 668}
 669EXPORT_SYMBOL(of_get_parent);
 670
 671/**
 672 *	of_get_next_parent - Iterate to a node's parent
 673 *	@node:	Node to get parent of
 674 *
 675 * 	This is like of_get_parent() except that it drops the
 676 * 	refcount on the passed node, making it suitable for iterating
 677 * 	through a node's parents.
 678 *
 679 *	Returns a node pointer with refcount incremented, use
 680 *	of_node_put() on it when done.
 681 */
 682struct device_node *of_get_next_parent(struct device_node *node)
 683{
 684	struct device_node *parent;
 685	unsigned long flags;
 686
 687	if (!node)
 688		return NULL;
 689
 690	raw_spin_lock_irqsave(&devtree_lock, flags);
 691	parent = of_node_get(node->parent);
 692	of_node_put(node);
 693	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 694	return parent;
 695}
 696EXPORT_SYMBOL(of_get_next_parent);
 697
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 698/**
 699 *	of_get_next_child - Iterate a node childs
 700 *	@node:	parent node
 701 *	@prev:	previous child of the parent node, or NULL to get first
 702 *
 703 *	Returns a node pointer with refcount incremented, use
 704 *	of_node_put() on it when done.
 
 705 */
 706struct device_node *of_get_next_child(const struct device_node *node,
 707	struct device_node *prev)
 708{
 709	struct device_node *next;
 710	unsigned long flags;
 711
 712	raw_spin_lock_irqsave(&devtree_lock, flags);
 713	next = prev ? prev->sibling : node->child;
 714	for (; next; next = next->sibling)
 715		if (of_node_get(next))
 716			break;
 717	of_node_put(prev);
 718	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 719	return next;
 720}
 721EXPORT_SYMBOL(of_get_next_child);
 722
 723/**
 724 *	of_get_next_available_child - Find the next available child node
 725 *	@node:	parent node
 726 *	@prev:	previous child of the parent node, or NULL to get first
 727 *
 728 *      This function is like of_get_next_child(), except that it
 729 *      automatically skips any disabled nodes (i.e. status = "disabled").
 730 */
 731struct device_node *of_get_next_available_child(const struct device_node *node,
 732	struct device_node *prev)
 733{
 734	struct device_node *next;
 735	unsigned long flags;
 736
 
 
 
 737	raw_spin_lock_irqsave(&devtree_lock, flags);
 738	next = prev ? prev->sibling : node->child;
 739	for (; next; next = next->sibling) {
 740		if (!__of_device_is_available(next))
 741			continue;
 742		if (of_node_get(next))
 743			break;
 744	}
 745	of_node_put(prev);
 746	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 747	return next;
 748}
 749EXPORT_SYMBOL(of_get_next_available_child);
 750
 751/**
 752 *	of_get_child_by_name - Find the child node by name for a given parent
 753 *	@node:	parent node
 754 *	@name:	child name to look for.
 755 *
 756 *      This function looks for child node for given matching name
 757 *
 758 *	Returns a node pointer if found, with refcount incremented, use
 759 *	of_node_put() on it when done.
 760 *	Returns NULL if node is not found.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 761 */
 762struct device_node *of_get_child_by_name(const struct device_node *node,
 763				const char *name)
 764{
 765	struct device_node *child;
 766
 767	for_each_child_of_node(node, child)
 768		if (child->name && (of_node_cmp(child->name, name) == 0))
 769			break;
 770	return child;
 771}
 772EXPORT_SYMBOL(of_get_child_by_name);
 773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 774/**
 775 *	of_find_node_by_path - Find a node matching a full OF path
 776 *	@path:	The full path to match
 
 
 
 
 
 
 
 
 
 
 
 777 *
 778 *	Returns a node pointer with refcount incremented, use
 779 *	of_node_put() on it when done.
 780 */
 781struct device_node *of_find_node_by_path(const char *path)
 782{
 783	struct device_node *np = of_allnodes;
 
 784	unsigned long flags;
 
 
 
 
 785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 786	raw_spin_lock_irqsave(&devtree_lock, flags);
 787	for (; np; np = np->allnext) {
 788		if (np->full_name && (of_node_cmp(np->full_name, path) == 0)
 789		    && of_node_get(np))
 790			break;
 791	}
 792	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 793	return np;
 794}
 795EXPORT_SYMBOL(of_find_node_by_path);
 796
 797/**
 798 *	of_find_node_by_name - Find a node by its "name" property
 799 *	@from:	The node to start searching from or NULL, the node
 800 *		you pass will not be searched, only the next one
 801 *		will; typically, you pass what the previous call
 802 *		returned. of_node_put() will be called on it
 803 *	@name:	The name string to match against
 804 *
 805 *	Returns a node pointer with refcount incremented, use
 806 *	of_node_put() on it when done.
 807 */
 808struct device_node *of_find_node_by_name(struct device_node *from,
 809	const char *name)
 810{
 811	struct device_node *np;
 812	unsigned long flags;
 813
 814	raw_spin_lock_irqsave(&devtree_lock, flags);
 815	np = from ? from->allnext : of_allnodes;
 816	for (; np; np = np->allnext)
 817		if (np->name && (of_node_cmp(np->name, name) == 0)
 818		    && of_node_get(np))
 819			break;
 820	of_node_put(from);
 821	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 822	return np;
 823}
 824EXPORT_SYMBOL(of_find_node_by_name);
 825
 826/**
 827 *	of_find_node_by_type - Find a node by its "device_type" property
 828 *	@from:	The node to start searching from, or NULL to start searching
 829 *		the entire device tree. The node you pass will not be
 830 *		searched, only the next one will; typically, you pass
 831 *		what the previous call returned. of_node_put() will be
 832 *		called on from for you.
 833 *	@type:	The type string to match against
 834 *
 835 *	Returns a node pointer with refcount incremented, use
 836 *	of_node_put() on it when done.
 837 */
 838struct device_node *of_find_node_by_type(struct device_node *from,
 839	const char *type)
 840{
 841	struct device_node *np;
 842	unsigned long flags;
 843
 844	raw_spin_lock_irqsave(&devtree_lock, flags);
 845	np = from ? from->allnext : of_allnodes;
 846	for (; np; np = np->allnext)
 847		if (np->type && (of_node_cmp(np->type, type) == 0)
 848		    && of_node_get(np))
 849			break;
 850	of_node_put(from);
 851	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 852	return np;
 853}
 854EXPORT_SYMBOL(of_find_node_by_type);
 855
 856/**
 857 *	of_find_compatible_node - Find a node based on type and one of the
 858 *                                tokens in its "compatible" property
 859 *	@from:		The node to start searching from or NULL, the node
 860 *			you pass will not be searched, only the next one
 861 *			will; typically, you pass what the previous call
 862 *			returned. of_node_put() will be called on it
 863 *	@type:		The type string to match "device_type" or NULL to ignore
 864 *	@compatible:	The string to match to one of the tokens in the device
 865 *			"compatible" list.
 866 *
 867 *	Returns a node pointer with refcount incremented, use
 868 *	of_node_put() on it when done.
 869 */
 870struct device_node *of_find_compatible_node(struct device_node *from,
 871	const char *type, const char *compatible)
 872{
 873	struct device_node *np;
 874	unsigned long flags;
 875
 876	raw_spin_lock_irqsave(&devtree_lock, flags);
 877	np = from ? from->allnext : of_allnodes;
 878	for (; np; np = np->allnext) {
 879		if (__of_device_is_compatible(np, compatible, type, NULL) &&
 880		    of_node_get(np))
 881			break;
 882	}
 883	of_node_put(from);
 884	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 885	return np;
 886}
 887EXPORT_SYMBOL(of_find_compatible_node);
 888
 889/**
 890 *	of_find_node_with_property - Find a node which has a property with
 891 *                                   the given name.
 892 *	@from:		The node to start searching from or NULL, the node
 893 *			you pass will not be searched, only the next one
 894 *			will; typically, you pass what the previous call
 895 *			returned. of_node_put() will be called on it
 896 *	@prop_name:	The name of the property to look for.
 897 *
 898 *	Returns a node pointer with refcount incremented, use
 899 *	of_node_put() on it when done.
 900 */
 901struct device_node *of_find_node_with_property(struct device_node *from,
 902	const char *prop_name)
 903{
 904	struct device_node *np;
 905	struct property *pp;
 906	unsigned long flags;
 907
 908	raw_spin_lock_irqsave(&devtree_lock, flags);
 909	np = from ? from->allnext : of_allnodes;
 910	for (; np; np = np->allnext) {
 911		for (pp = np->properties; pp; pp = pp->next) {
 912			if (of_prop_cmp(pp->name, prop_name) == 0) {
 913				of_node_get(np);
 914				goto out;
 915			}
 916		}
 917	}
 918out:
 919	of_node_put(from);
 920	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 921	return np;
 922}
 923EXPORT_SYMBOL(of_find_node_with_property);
 924
 925static
 926const struct of_device_id *__of_match_node(const struct of_device_id *matches,
 927					   const struct device_node *node)
 928{
 929	const struct of_device_id *best_match = NULL;
 930	int score, best_score = 0;
 931
 932	if (!matches)
 933		return NULL;
 934
 935	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
 936		score = __of_device_is_compatible(node, matches->compatible,
 937						  matches->type, matches->name);
 938		if (score > best_score) {
 939			best_match = matches;
 940			best_score = score;
 941		}
 942	}
 943
 944	return best_match;
 945}
 946
 947/**
 948 * of_match_node - Tell if an device_node has a matching of_match structure
 949 *	@matches:	array of of device match structures to search in
 950 *	@node:		the of device structure to match against
 951 *
 952 *	Low level utility function used by device matching.
 953 */
 954const struct of_device_id *of_match_node(const struct of_device_id *matches,
 955					 const struct device_node *node)
 956{
 957	const struct of_device_id *match;
 958	unsigned long flags;
 959
 960	raw_spin_lock_irqsave(&devtree_lock, flags);
 961	match = __of_match_node(matches, node);
 962	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 963	return match;
 964}
 965EXPORT_SYMBOL(of_match_node);
 966
 967/**
 968 *	of_find_matching_node_and_match - Find a node based on an of_device_id
 969 *					  match table.
 970 *	@from:		The node to start searching from or NULL, the node
 971 *			you pass will not be searched, only the next one
 972 *			will; typically, you pass what the previous call
 973 *			returned. of_node_put() will be called on it
 974 *	@matches:	array of of device match structures to search in
 975 *	@match		Updated to point at the matches entry which matched
 976 *
 977 *	Returns a node pointer with refcount incremented, use
 978 *	of_node_put() on it when done.
 979 */
 980struct device_node *of_find_matching_node_and_match(struct device_node *from,
 981					const struct of_device_id *matches,
 982					const struct of_device_id **match)
 983{
 984	struct device_node *np;
 985	const struct of_device_id *m;
 986	unsigned long flags;
 987
 988	if (match)
 989		*match = NULL;
 990
 991	raw_spin_lock_irqsave(&devtree_lock, flags);
 992	np = from ? from->allnext : of_allnodes;
 993	for (; np; np = np->allnext) {
 994		m = __of_match_node(matches, np);
 995		if (m && of_node_get(np)) {
 996			if (match)
 997				*match = m;
 998			break;
 999		}
1000	}
1001	of_node_put(from);
1002	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1003	return np;
1004}
1005EXPORT_SYMBOL(of_find_matching_node_and_match);
1006
1007/**
1008 * of_modalias_node - Lookup appropriate modalias for a device node
1009 * @node:	pointer to a device tree node
1010 * @modalias:	Pointer to buffer that modalias value will be copied into
1011 * @len:	Length of modalias value
1012 *
1013 * Based on the value of the compatible property, this routine will attempt
1014 * to choose an appropriate modalias value for a particular device tree node.
1015 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1016 * from the first entry in the compatible list property.
1017 *
1018 * This routine returns 0 on success, <0 on failure.
1019 */
1020int of_modalias_node(struct device_node *node, char *modalias, int len)
1021{
1022	const char *compatible, *p;
1023	int cplen;
1024
1025	compatible = of_get_property(node, "compatible", &cplen);
1026	if (!compatible || strlen(compatible) > cplen)
1027		return -ENODEV;
1028	p = strchr(compatible, ',');
1029	strlcpy(modalias, p ? p + 1 : compatible, len);
1030	return 0;
1031}
1032EXPORT_SYMBOL_GPL(of_modalias_node);
1033
1034/**
1035 * of_find_node_by_phandle - Find a node given a phandle
1036 * @handle:	phandle of the node to find
1037 *
1038 * Returns a node pointer with refcount incremented, use
1039 * of_node_put() on it when done.
1040 */
1041struct device_node *of_find_node_by_phandle(phandle handle)
1042{
1043	struct device_node *np;
1044	unsigned long flags;
 
 
 
 
 
 
1045
1046	raw_spin_lock_irqsave(&devtree_lock, flags);
1047	for (np = of_allnodes; np; np = np->allnext)
1048		if (np->phandle == handle)
1049			break;
 
 
 
 
 
 
 
 
 
 
 
1050	of_node_get(np);
1051	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1052	return np;
1053}
1054EXPORT_SYMBOL(of_find_node_by_phandle);
1055
1056/**
1057 * of_property_count_elems_of_size - Count the number of elements in a property
1058 *
1059 * @np:		device node from which the property value is to be read.
1060 * @propname:	name of the property to be searched.
1061 * @elem_size:	size of the individual element
1062 *
1063 * Search for a property in a device node and count the number of elements of
1064 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1065 * property does not exist or its length does not match a multiple of elem_size
1066 * and -ENODATA if the property does not have a value.
1067 */
1068int of_property_count_elems_of_size(const struct device_node *np,
1069				const char *propname, int elem_size)
1070{
1071	struct property *prop = of_find_property(np, propname, NULL);
 
 
 
1072
1073	if (!prop)
1074		return -EINVAL;
1075	if (!prop->value)
1076		return -ENODATA;
1077
1078	if (prop->length % elem_size != 0) {
1079		pr_err("size of %s in node %s is not a multiple of %d\n",
1080		       propname, np->full_name, elem_size);
1081		return -EINVAL;
1082	}
1083
1084	return prop->length / elem_size;
1085}
1086EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1087
1088/**
1089 * of_find_property_value_of_size
1090 *
1091 * @np:		device node from which the property value is to be read.
1092 * @propname:	name of the property to be searched.
1093 * @len:	requested length of property value
1094 *
1095 * Search for a property in a device node and valid the requested size.
1096 * Returns the property value on success, -EINVAL if the property does not
1097 *  exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1098 * property data isn't large enough.
1099 *
1100 */
1101static void *of_find_property_value_of_size(const struct device_node *np,
1102			const char *propname, u32 len)
1103{
1104	struct property *prop = of_find_property(np, propname, NULL);
 
1105
1106	if (!prop)
1107		return ERR_PTR(-EINVAL);
1108	if (!prop->value)
1109		return ERR_PTR(-ENODATA);
1110	if (len > prop->length)
1111		return ERR_PTR(-EOVERFLOW);
1112
1113	return prop->value;
1114}
 
 
 
 
1115
1116/**
1117 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1118 *
1119 * @np:		device node from which the property value is to be read.
1120 * @propname:	name of the property to be searched.
1121 * @index:	index of the u32 in the list of values
1122 * @out_value:	pointer to return value, modified only if no error.
1123 *
1124 * Search for a property in a device node and read nth 32-bit value from
1125 * it. Returns 0 on success, -EINVAL if the property does not exist,
1126 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1127 * property data isn't large enough.
1128 *
1129 * The out_value is modified only if a valid u32 value can be decoded.
1130 */
1131int of_property_read_u32_index(const struct device_node *np,
1132				       const char *propname,
1133				       u32 index, u32 *out_value)
1134{
1135	const u32 *val = of_find_property_value_of_size(np, propname,
1136					((index + 1) * sizeof(*out_value)));
1137
1138	if (IS_ERR(val))
1139		return PTR_ERR(val);
 
 
 
 
1140
1141	*out_value = be32_to_cpup(((__be32 *)val) + index);
1142	return 0;
1143}
1144EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1145
1146/**
1147 * of_property_read_u8_array - Find and read an array of u8 from a property.
1148 *
1149 * @np:		device node from which the property value is to be read.
1150 * @propname:	name of the property to be searched.
1151 * @out_values:	pointer to return value, modified only if return value is 0.
1152 * @sz:		number of array elements to read
1153 *
1154 * Search for a property in a device node and read 8-bit value(s) from
1155 * it. Returns 0 on success, -EINVAL if the property does not exist,
1156 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1157 * property data isn't large enough.
1158 *
1159 * dts entry of array should be like:
1160 *	property = /bits/ 8 <0x50 0x60 0x70>;
1161 *
1162 * The out_values is modified only if a valid u8 value can be decoded.
1163 */
1164int of_property_read_u8_array(const struct device_node *np,
1165			const char *propname, u8 *out_values, size_t sz)
1166{
1167	const u8 *val = of_find_property_value_of_size(np, propname,
1168						(sz * sizeof(*out_values)));
1169
1170	if (IS_ERR(val))
1171		return PTR_ERR(val);
 
 
1172
1173	while (sz--)
1174		*out_values++ = *val++;
1175	return 0;
1176}
1177EXPORT_SYMBOL_GPL(of_property_read_u8_array);
1178
1179/**
1180 * of_property_read_u16_array - Find and read an array of u16 from a property.
1181 *
1182 * @np:		device node from which the property value is to be read.
1183 * @propname:	name of the property to be searched.
1184 * @out_values:	pointer to return value, modified only if return value is 0.
1185 * @sz:		number of array elements to read
1186 *
1187 * Search for a property in a device node and read 16-bit value(s) from
1188 * it. Returns 0 on success, -EINVAL if the property does not exist,
1189 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1190 * property data isn't large enough.
1191 *
1192 * dts entry of array should be like:
1193 *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
1194 *
1195 * The out_values is modified only if a valid u16 value can be decoded.
1196 */
1197int of_property_read_u16_array(const struct device_node *np,
1198			const char *propname, u16 *out_values, size_t sz)
1199{
1200	const __be16 *val = of_find_property_value_of_size(np, propname,
1201						(sz * sizeof(*out_values)));
1202
1203	if (IS_ERR(val))
1204		return PTR_ERR(val);
1205
1206	while (sz--)
1207		*out_values++ = be16_to_cpup(val++);
1208	return 0;
1209}
1210EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1211
1212/**
1213 * of_property_read_u32_array - Find and read an array of 32 bit integers
1214 * from a property.
1215 *
1216 * @np:		device node from which the property value is to be read.
1217 * @propname:	name of the property to be searched.
1218 * @out_values:	pointer to return value, modified only if return value is 0.
1219 * @sz:		number of array elements to read
1220 *
1221 * Search for a property in a device node and read 32-bit value(s) from
1222 * it. Returns 0 on success, -EINVAL if the property does not exist,
1223 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1224 * property data isn't large enough.
1225 *
1226 * The out_values is modified only if a valid u32 value can be decoded.
1227 */
1228int of_property_read_u32_array(const struct device_node *np,
1229			       const char *propname, u32 *out_values,
1230			       size_t sz)
1231{
1232	const __be32 *val = of_find_property_value_of_size(np, propname,
1233						(sz * sizeof(*out_values)));
1234
1235	if (IS_ERR(val))
1236		return PTR_ERR(val);
 
 
 
1237
1238	while (sz--)
1239		*out_values++ = be32_to_cpup(val++);
1240	return 0;
1241}
1242EXPORT_SYMBOL_GPL(of_property_read_u32_array);
 
1243
1244/**
1245 * of_property_read_u64 - Find and read a 64 bit integer from a property
1246 * @np:		device node from which the property value is to be read.
1247 * @propname:	name of the property to be searched.
1248 * @out_value:	pointer to return value, modified only if return value is 0.
1249 *
1250 * Search for a property in a device node and read a 64-bit value from
1251 * it. Returns 0 on success, -EINVAL if the property does not exist,
1252 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1253 * property data isn't large enough.
1254 *
1255 * The out_value is modified only if a valid u64 value can be decoded.
1256 */
1257int of_property_read_u64(const struct device_node *np, const char *propname,
1258			 u64 *out_value)
1259{
1260	const __be32 *val = of_find_property_value_of_size(np, propname,
1261						sizeof(*out_value));
 
 
1262
1263	if (IS_ERR(val))
1264		return PTR_ERR(val);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1265
1266	*out_value = of_read_number(val, 2);
1267	return 0;
1268}
1269EXPORT_SYMBOL_GPL(of_property_read_u64);
1270
1271/**
1272 * of_property_read_string - Find and read a string from a property
1273 * @np:		device node from which the property value is to be read.
1274 * @propname:	name of the property to be searched.
1275 * @out_string:	pointer to null terminated return string, modified only if
1276 *		return value is 0.
1277 *
1278 * Search for a property in a device tree node and retrieve a null
1279 * terminated string value (pointer to data, not a copy). Returns 0 on
1280 * success, -EINVAL if the property does not exist, -ENODATA if property
1281 * does not have a value, and -EILSEQ if the string is not null-terminated
1282 * within the length of the property data.
1283 *
1284 * The out_string pointer is modified only if a valid string can be decoded.
1285 */
1286int of_property_read_string(struct device_node *np, const char *propname,
1287				const char **out_string)
1288{
1289	struct property *prop = of_find_property(np, propname, NULL);
1290	if (!prop)
1291		return -EINVAL;
1292	if (!prop->value)
1293		return -ENODATA;
1294	if (strnlen(prop->value, prop->length) >= prop->length)
1295		return -EILSEQ;
1296	*out_string = prop->value;
1297	return 0;
1298}
1299EXPORT_SYMBOL_GPL(of_property_read_string);
1300
1301/**
1302 * of_property_read_string_index - Find and read a string from a multiple
1303 * strings property.
1304 * @np:		device node from which the property value is to be read.
1305 * @propname:	name of the property to be searched.
1306 * @index:	index of the string in the list of strings
1307 * @out_string:	pointer to null terminated return string, modified only if
1308 *		return value is 0.
1309 *
1310 * Search for a property in a device tree node and retrieve a null
1311 * terminated string value (pointer to data, not a copy) in the list of strings
1312 * contained in that property.
1313 * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
1314 * property does not have a value, and -EILSEQ if the string is not
1315 * null-terminated within the length of the property data.
1316 *
1317 * The out_string pointer is modified only if a valid string can be decoded.
1318 */
1319int of_property_read_string_index(struct device_node *np, const char *propname,
1320				  int index, const char **output)
1321{
1322	struct property *prop = of_find_property(np, propname, NULL);
1323	int i = 0;
1324	size_t l = 0, total = 0;
1325	const char *p;
1326
1327	if (!prop)
1328		return -EINVAL;
1329	if (!prop->value)
1330		return -ENODATA;
1331	if (strnlen(prop->value, prop->length) >= prop->length)
1332		return -EILSEQ;
1333
1334	p = prop->value;
1335
1336	for (i = 0; total < prop->length; total += l, p += l) {
1337		l = strlen(p) + 1;
1338		if (i++ == index) {
1339			*output = p;
1340			return 0;
1341		}
1342	}
1343	return -ENODATA;
1344}
1345EXPORT_SYMBOL_GPL(of_property_read_string_index);
1346
1347/**
1348 * of_property_match_string() - Find string in a list and return index
1349 * @np: pointer to node containing string list property
1350 * @propname: string list property name
1351 * @string: pointer to string to search for in string list
1352 *
1353 * This function searches a string list property and returns the index
1354 * of a specific string value.
1355 */
1356int of_property_match_string(struct device_node *np, const char *propname,
1357			     const char *string)
1358{
1359	struct property *prop = of_find_property(np, propname, NULL);
1360	size_t l;
1361	int i;
1362	const char *p, *end;
1363
1364	if (!prop)
1365		return -EINVAL;
1366	if (!prop->value)
1367		return -ENODATA;
1368
1369	p = prop->value;
1370	end = p + prop->length;
1371
1372	for (i = 0; p < end; i++, p += l) {
1373		l = strlen(p) + 1;
1374		if (p + l > end)
1375			return -EILSEQ;
1376		pr_debug("comparing %s with %s\n", string, p);
1377		if (strcmp(string, p) == 0)
1378			return i; /* Found it; return index */
1379	}
1380	return -ENODATA;
1381}
1382EXPORT_SYMBOL_GPL(of_property_match_string);
1383
1384/**
1385 * of_property_count_strings - Find and return the number of strings from a
1386 * multiple strings property.
1387 * @np:		device node from which the property value is to be read.
1388 * @propname:	name of the property to be searched.
1389 *
1390 * Search for a property in a device tree node and retrieve the number of null
1391 * terminated string contain in it. Returns the number of strings on
1392 * success, -EINVAL if the property does not exist, -ENODATA if property
1393 * does not have a value, and -EILSEQ if the string is not null-terminated
1394 * within the length of the property data.
1395 */
1396int of_property_count_strings(struct device_node *np, const char *propname)
1397{
1398	struct property *prop = of_find_property(np, propname, NULL);
1399	int i = 0;
1400	size_t l = 0, total = 0;
1401	const char *p;
1402
1403	if (!prop)
1404		return -EINVAL;
1405	if (!prop->value)
1406		return -ENODATA;
1407	if (strnlen(prop->value, prop->length) >= prop->length)
1408		return -EILSEQ;
1409
1410	p = prop->value;
1411
1412	for (i = 0; total < prop->length; total += l, p += l, i++)
1413		l = strlen(p) + 1;
1414
1415	return i;
1416}
1417EXPORT_SYMBOL_GPL(of_property_count_strings);
1418
1419void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
 
 
 
 
1420{
1421	int i;
1422	printk("%s %s", msg, of_node_full_name(args->np));
1423	for (i = 0; i < args->args_count; i++)
1424		printk(i ? ",%08x" : ":%08x", args->args[i]);
1425	printk("\n");
1426}
1427
1428static int __of_parse_phandle_with_args(const struct device_node *np,
1429					const char *list_name,
1430					const char *cells_name,
1431					int cell_count, int index,
1432					struct of_phandle_args *out_args)
1433{
1434	const __be32 *list, *list_end;
1435	int rc = 0, size, cur_index = 0;
1436	uint32_t count = 0;
1437	struct device_node *node = NULL;
1438	phandle phandle;
1439
1440	/* Retrieve the phandle list property */
1441	list = of_get_property(np, list_name, &size);
1442	if (!list)
1443		return -ENOENT;
1444	list_end = list + size / sizeof(*list);
1445
1446	/* Loop over the phandles until all the requested entry is found */
1447	while (list < list_end) {
1448		rc = -EINVAL;
1449		count = 0;
1450
1451		/*
1452		 * If phandle is 0, then it is an empty entry with no
1453		 * arguments.  Skip forward to the next entry.
1454		 */
1455		phandle = be32_to_cpup(list++);
1456		if (phandle) {
1457			/*
1458			 * Find the provider node and parse the #*-cells
1459			 * property to determine the argument length.
1460			 *
1461			 * This is not needed if the cell count is hard-coded
1462			 * (i.e. cells_name not set, but cell_count is set),
1463			 * except when we're going to return the found node
1464			 * below.
1465			 */
1466			if (cells_name || cur_index == index) {
1467				node = of_find_node_by_phandle(phandle);
1468				if (!node) {
1469					pr_err("%s: could not find phandle\n",
1470						np->full_name);
1471					goto err;
1472				}
1473			}
1474
1475			if (cells_name) {
1476				if (of_property_read_u32(node, cells_name,
1477							 &count)) {
1478					pr_err("%s: could not get %s for %s\n",
1479						np->full_name, cells_name,
1480						node->full_name);
1481					goto err;
1482				}
1483			} else {
1484				count = cell_count;
1485			}
1486
1487			/*
1488			 * Make sure that the arguments actually fit in the
1489			 * remaining property data length
1490			 */
1491			if (list + count > list_end) {
1492				pr_err("%s: arguments longer than property\n",
1493					 np->full_name);
1494				goto err;
1495			}
1496		}
1497
1498		/*
1499		 * All of the error cases above bail out of the loop, so at
1500		 * this point, the parsing is successful. If the requested
1501		 * index matches, then fill the out_args structure and return,
1502		 * or return -ENOENT for an empty entry.
1503		 */
1504		rc = -ENOENT;
1505		if (cur_index == index) {
1506			if (!phandle)
1507				goto err;
1508
1509			if (out_args) {
1510				int i;
1511				if (WARN_ON(count > MAX_PHANDLE_ARGS))
1512					count = MAX_PHANDLE_ARGS;
1513				out_args->np = node;
1514				out_args->args_count = count;
1515				for (i = 0; i < count; i++)
1516					out_args->args[i] = be32_to_cpup(list++);
1517			} else {
1518				of_node_put(node);
1519			}
1520
1521			/* Found it! return success */
1522			return 0;
1523		}
1524
1525		of_node_put(node);
1526		node = NULL;
1527		list += count;
1528		cur_index++;
1529	}
1530
1531	/*
1532	 * Unlock node before returning result; will be one of:
1533	 * -ENOENT : index is for empty phandle
1534	 * -EINVAL : parsing error on data
1535	 * [1..n]  : Number of phandle (count mode; when index = -1)
1536	 */
1537	rc = index < 0 ? cur_index : -ENOENT;
1538 err:
1539	if (node)
1540		of_node_put(node);
1541	return rc;
1542}
 
1543
1544/**
1545 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1546 * @np: Pointer to device node holding phandle property
1547 * @phandle_name: Name of property holding a phandle value
1548 * @index: For properties holding a table of phandles, this is the index into
1549 *         the table
1550 *
1551 * Returns the device_node pointer with refcount incremented.  Use
1552 * of_node_put() on it when done.
1553 */
1554struct device_node *of_parse_phandle(const struct device_node *np,
1555				     const char *phandle_name, int index)
1556{
1557	struct of_phandle_args args;
1558
1559	if (index < 0)
1560		return NULL;
1561
1562	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1563					 index, &args))
1564		return NULL;
1565
1566	return args.np;
1567}
1568EXPORT_SYMBOL(of_parse_phandle);
1569
1570/**
1571 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1572 * @np:		pointer to a device tree node containing a list
1573 * @list_name:	property name that contains a list
1574 * @cells_name:	property name that specifies phandles' arguments count
1575 * @index:	index of a phandle to parse out
1576 * @out_args:	optional pointer to output arguments structure (will be filled)
1577 *
1578 * This function is useful to parse lists of phandles and their arguments.
1579 * Returns 0 on success and fills out_args, on error returns appropriate
1580 * errno value.
 
 
1581 *
1582 * Caller is responsible to call of_node_put() on the returned out_args->node
1583 * pointer.
1584 *
1585 * Example:
1586 *
1587 * phandle1: node1 {
1588 * 	#list-cells = <2>;
1589 * }
1590 *
1591 * phandle2: node2 {
1592 * 	#list-cells = <1>;
1593 * }
1594 *
1595 * node3 {
1596 * 	list = <&phandle1 1 2 &phandle2 3>;
1597 * }
1598 *
1599 * To get a device_node of the `node2' node you may call this:
1600 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1601 */
1602int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1603				const char *cells_name, int index,
1604				struct of_phandle_args *out_args)
1605{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1606	if (index < 0)
1607		return -EINVAL;
1608	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1609					    index, out_args);
1610}
1611EXPORT_SYMBOL(of_parse_phandle_with_args);
1612
1613/**
1614 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1615 * @np:		pointer to a device tree node containing a list
1616 * @list_name:	property name that contains a list
1617 * @cell_count: number of argument cells following the phandle
1618 * @index:	index of a phandle to parse out
1619 * @out_args:	optional pointer to output arguments structure (will be filled)
1620 *
1621 * This function is useful to parse lists of phandles and their arguments.
1622 * Returns 0 on success and fills out_args, on error returns appropriate
1623 * errno value.
1624 *
1625 * Caller is responsible to call of_node_put() on the returned out_args->node
1626 * pointer.
1627 *
1628 * Example:
1629 *
1630 * phandle1: node1 {
1631 * }
1632 *
1633 * phandle2: node2 {
1634 * }
1635 *
1636 * node3 {
1637 * 	list = <&phandle1 0 2 &phandle2 2 3>;
1638 * }
1639 *
1640 * To get a device_node of the `node2' node you may call this:
1641 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1642 */
1643int of_parse_phandle_with_fixed_args(const struct device_node *np,
1644				const char *list_name, int cell_count,
1645				int index, struct of_phandle_args *out_args)
1646{
1647	if (index < 0)
1648		return -EINVAL;
1649	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1650					   index, out_args);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1651}
1652EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1653
1654/**
1655 * of_count_phandle_with_args() - Find the number of phandles references in a property
1656 * @np:		pointer to a device tree node containing a list
1657 * @list_name:	property name that contains a list
1658 * @cells_name:	property name that specifies phandles' arguments count
1659 *
1660 * Returns the number of phandle + argument tuples within a property. It
1661 * is a typical pattern to encode a list of phandle and variable
1662 * arguments into a single property. The number of arguments is encoded
1663 * by a property in the phandle-target node. For example, a gpios
1664 * property would contain a list of GPIO specifies consisting of a
1665 * phandle and 1 or more arguments. The number of arguments are
1666 * determined by the #gpio-cells property in the node pointed to by the
1667 * phandle.
1668 */
1669int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1670				const char *cells_name)
1671{
1672	return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1673					    NULL);
1674}
1675EXPORT_SYMBOL(of_count_phandle_with_args);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1676
1677#if defined(CONFIG_OF_DYNAMIC)
1678static int of_property_notify(int action, struct device_node *np,
1679			      struct property *prop)
1680{
1681	struct of_prop_reconfig pr;
1682
1683	/* only call notifiers if the node is attached */
1684	if (!of_node_is_attached(np))
1685		return 0;
1686
1687	pr.dn = np;
1688	pr.prop = prop;
1689	return of_reconfig_notify(action, &pr);
1690}
1691#else
1692static int of_property_notify(int action, struct device_node *np,
1693			      struct property *prop)
1694{
1695	return 0;
1696}
1697#endif
1698
1699/**
1700 * __of_add_property - Add a property to a node without lock operations
 
 
1701 */
1702static int __of_add_property(struct device_node *np, struct property *prop)
1703{
1704	struct property **next;
1705
1706	prop->next = NULL;
1707	next = &np->properties;
1708	while (*next) {
1709		if (strcmp(prop->name, (*next)->name) == 0)
1710			/* duplicate ! don't insert it */
1711			return -EEXIST;
1712
1713		next = &(*next)->next;
1714	}
1715	*next = prop;
1716
1717	return 0;
1718}
1719
1720/**
1721 * of_add_property - Add a property to a node
 
 
1722 */
1723int of_add_property(struct device_node *np, struct property *prop)
1724{
1725	unsigned long flags;
1726	int rc;
1727
1728	rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop);
1729	if (rc)
1730		return rc;
1731
1732	raw_spin_lock_irqsave(&devtree_lock, flags);
1733	rc = __of_add_property(np, prop);
1734	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1735	if (rc)
1736		return rc;
1737
1738	if (of_node_is_attached(np))
1739		__of_add_property_sysfs(np, prop);
1740
 
 
 
 
 
1741	return rc;
1742}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1743
1744/**
1745 * of_remove_property - Remove a property from a node.
 
 
1746 *
1747 * Note that we don't actually remove it, since we have given out
1748 * who-knows-how-many pointers to the data using get-property.
1749 * Instead we just move the property to the "dead properties"
1750 * list, so it won't be found any more.
1751 */
1752int of_remove_property(struct device_node *np, struct property *prop)
1753{
1754	struct property **next;
1755	unsigned long flags;
1756	int found = 0;
1757	int rc;
1758
1759	rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop);
1760	if (rc)
1761		return rc;
 
1762
1763	raw_spin_lock_irqsave(&devtree_lock, flags);
1764	next = &np->properties;
1765	while (*next) {
1766		if (*next == prop) {
1767			/* found the node */
1768			*next = prop->next;
1769			prop->next = np->deadprops;
1770			np->deadprops = prop;
1771			found = 1;
1772			break;
1773		}
1774		next = &(*next)->next;
1775	}
1776	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1777
1778	if (!found)
1779		return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1780
1781	/* at early boot, bail hear and defer setup to of_init() */
1782	if (!of_kset)
1783		return 0;
 
 
1784
1785	sysfs_remove_bin_file(&np->kobj, &prop->attr);
 
 
 
 
 
 
 
 
 
 
1786
1787	return 0;
1788}
1789
1790/*
1791 * of_update_property - Update a property in a node, if the property does
1792 * not exist, add it.
1793 *
1794 * Note that we don't actually remove it, since we have given out
1795 * who-knows-how-many pointers to the data using get-property.
1796 * Instead we just move the property to the "dead properties" list,
1797 * and add the new property to the property list
1798 */
1799int of_update_property(struct device_node *np, struct property *newprop)
1800{
1801	struct property **next, *oldprop;
1802	unsigned long flags;
1803	int rc, found = 0;
1804
1805	rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop);
1806	if (rc)
1807		return rc;
1808
1809	if (!newprop->name)
1810		return -EINVAL;
1811
1812	oldprop = of_find_property(np, newprop->name, NULL);
1813	if (!oldprop)
1814		return of_add_property(np, newprop);
1815
1816	raw_spin_lock_irqsave(&devtree_lock, flags);
1817	next = &np->properties;
1818	while (*next) {
1819		if (*next == oldprop) {
1820			/* found the node */
1821			newprop->next = oldprop->next;
1822			*next = newprop;
1823			oldprop->next = np->deadprops;
1824			np->deadprops = oldprop;
1825			found = 1;
1826			break;
1827		}
1828		next = &(*next)->next;
1829	}
1830	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1831	if (!found)
1832		return -ENODEV;
1833
1834	/* At early boot, bail out and defer setup to of_init() */
1835	if (!of_kset)
1836		return found ? 0 : -ENODEV;
1837
1838	/* Update the sysfs attribute */
1839	sysfs_remove_bin_file(&np->kobj, &oldprop->attr);
1840	__of_add_property_sysfs(np, newprop);
1841
1842	return 0;
1843}
1844
1845#if defined(CONFIG_OF_DYNAMIC)
1846/*
1847 * Support for dynamic device trees.
1848 *
1849 * On some platforms, the device tree can be manipulated at runtime.
1850 * The routines in this section support adding, removing and changing
1851 * device tree nodes.
1852 */
1853
1854static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain);
1855
1856int of_reconfig_notifier_register(struct notifier_block *nb)
1857{
1858	return blocking_notifier_chain_register(&of_reconfig_chain, nb);
1859}
1860EXPORT_SYMBOL_GPL(of_reconfig_notifier_register);
1861
1862int of_reconfig_notifier_unregister(struct notifier_block *nb)
1863{
1864	return blocking_notifier_chain_unregister(&of_reconfig_chain, nb);
1865}
1866EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister);
1867
1868int of_reconfig_notify(unsigned long action, void *p)
1869{
1870	int rc;
1871
1872	rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p);
1873	return notifier_to_errno(rc);
1874}
1875
1876/**
1877 * of_attach_node - Plug a device node into the tree and global list.
1878 */
1879int of_attach_node(struct device_node *np)
1880{
1881	unsigned long flags;
1882	int rc;
1883
1884	rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np);
1885	if (rc)
1886		return rc;
1887
1888	raw_spin_lock_irqsave(&devtree_lock, flags);
1889	np->sibling = np->parent->child;
1890	np->allnext = of_allnodes;
1891	np->parent->child = np;
1892	of_allnodes = np;
1893	of_node_clear_flag(np, OF_DETACHED);
1894	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1895
1896	of_node_add(np);
1897	return 0;
1898}
1899
1900/**
1901 * of_detach_node - "Unplug" a node from the device tree.
1902 *
1903 * The caller must hold a reference to the node.  The memory associated with
1904 * the node is not freed until its refcount goes to zero.
1905 */
1906int of_detach_node(struct device_node *np)
1907{
1908	struct device_node *parent;
1909	unsigned long flags;
1910	int rc = 0;
1911
1912	rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np);
1913	if (rc)
1914		return rc;
1915
1916	raw_spin_lock_irqsave(&devtree_lock, flags);
1917
1918	if (of_node_check_flag(np, OF_DETACHED)) {
1919		/* someone already detached it */
1920		raw_spin_unlock_irqrestore(&devtree_lock, flags);
1921		return rc;
1922	}
1923
1924	parent = np->parent;
1925	if (!parent) {
1926		raw_spin_unlock_irqrestore(&devtree_lock, flags);
1927		return rc;
1928	}
1929
1930	if (of_allnodes == np)
1931		of_allnodes = np->allnext;
1932	else {
1933		struct device_node *prev;
1934		for (prev = of_allnodes;
1935		     prev->allnext != np;
1936		     prev = prev->allnext)
1937			;
1938		prev->allnext = np->allnext;
1939	}
1940
1941	if (parent->child == np)
1942		parent->child = np->sibling;
1943	else {
1944		struct device_node *prevsib;
1945		for (prevsib = np->parent->child;
1946		     prevsib->sibling != np;
1947		     prevsib = prevsib->sibling)
1948			;
1949		prevsib->sibling = np->sibling;
1950	}
1951
1952	of_node_set_flag(np, OF_DETACHED);
1953	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1954
1955	of_node_remove(np);
1956	return rc;
1957}
1958#endif /* defined(CONFIG_OF_DYNAMIC) */
1959
1960static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1961			 int id, const char *stem, int stem_len)
1962{
1963	ap->np = np;
1964	ap->id = id;
1965	strncpy(ap->stem, stem, stem_len);
1966	ap->stem[stem_len] = 0;
1967	list_add_tail(&ap->link, &aliases_lookup);
1968	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1969		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1970}
1971
1972/**
1973 * of_alias_scan - Scan all properties of 'aliases' node
1974 *
1975 * The function scans all the properties of 'aliases' node and populate
1976 * the the global lookup table with the properties.  It returns the
1977 * number of alias_prop found, or error code in error case.
1978 *
1979 * @dt_alloc:	An allocator that provides a virtual address to memory
1980 *		for the resulting tree
 
1981 */
1982void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1983{
1984	struct property *pp;
1985
 
1986	of_chosen = of_find_node_by_path("/chosen");
1987	if (of_chosen == NULL)
1988		of_chosen = of_find_node_by_path("/chosen@0");
1989
1990	if (of_chosen) {
1991		const char *name = of_get_property(of_chosen, "stdout-path", NULL);
1992		if (!name)
1993			name = of_get_property(of_chosen, "linux,stdout-path", NULL);
 
 
 
 
 
1994		if (name)
1995			of_stdout = of_find_node_by_path(name);
 
 
1996	}
1997
1998	of_aliases = of_find_node_by_path("/aliases");
1999	if (!of_aliases)
2000		return;
2001
2002	for_each_property_of_node(of_aliases, pp) {
2003		const char *start = pp->name;
2004		const char *end = start + strlen(start);
2005		struct device_node *np;
2006		struct alias_prop *ap;
2007		int id, len;
2008
2009		/* Skip those we do not want to proceed */
2010		if (!strcmp(pp->name, "name") ||
2011		    !strcmp(pp->name, "phandle") ||
2012		    !strcmp(pp->name, "linux,phandle"))
2013			continue;
2014
2015		np = of_find_node_by_path(pp->value);
2016		if (!np)
2017			continue;
2018
2019		/* walk the alias backwards to extract the id and work out
2020		 * the 'stem' string */
2021		while (isdigit(*(end-1)) && end > start)
2022			end--;
2023		len = end - start;
2024
2025		if (kstrtoint(end, 10, &id) < 0)
2026			continue;
2027
2028		/* Allocate an alias_prop with enough space for the stem */
2029		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
2030		if (!ap)
2031			continue;
2032		memset(ap, 0, sizeof(*ap) + len + 1);
2033		ap->alias = start;
2034		of_alias_add(ap, np, id, start, len);
2035	}
2036}
2037
2038/**
2039 * of_alias_get_id - Get alias id for the given device_node
2040 * @np:		Pointer to the given device_node
2041 * @stem:	Alias stem of the given device_node
2042 *
2043 * The function travels the lookup table to get alias id for the given
2044 * device_node and alias stem.  It returns the alias id if find it.
 
 
2045 */
2046int of_alias_get_id(struct device_node *np, const char *stem)
2047{
2048	struct alias_prop *app;
2049	int id = -ENODEV;
2050
2051	mutex_lock(&of_aliases_mutex);
2052	list_for_each_entry(app, &aliases_lookup, link) {
2053		if (strcmp(app->stem, stem) != 0)
2054			continue;
2055
2056		if (np == app->np) {
2057			id = app->id;
2058			break;
2059		}
2060	}
2061	mutex_unlock(&of_aliases_mutex);
2062
2063	return id;
2064}
2065EXPORT_SYMBOL_GPL(of_alias_get_id);
2066
2067const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
2068			       u32 *pu)
 
 
 
 
 
 
2069{
2070	const void *curv = cur;
 
2071
2072	if (!prop)
2073		return NULL;
 
 
2074
2075	if (!cur) {
2076		curv = prop->value;
2077		goto out_val;
2078	}
 
2079
2080	curv += sizeof(*cur);
2081	if (curv >= prop->value + prop->length)
2082		return NULL;
2083
2084out_val:
2085	*pu = be32_to_cpup(curv);
2086	return curv;
2087}
2088EXPORT_SYMBOL_GPL(of_prop_next_u32);
2089
2090const char *of_prop_next_string(struct property *prop, const char *cur)
2091{
2092	const void *curv = cur;
2093
2094	if (!prop)
2095		return NULL;
2096
2097	if (!cur)
2098		return prop->value;
2099
2100	curv += strlen(cur) + 1;
2101	if (curv >= prop->value + prop->length)
2102		return NULL;
2103
2104	return curv;
2105}
2106EXPORT_SYMBOL_GPL(of_prop_next_string);
2107
2108/**
2109 * of_device_is_stdout_path - check if a device node matches the
2110 *                            linux,stdout-path property
 
 
 
 
 
2111 *
2112 * Check if this device node matches the linux,stdout-path property
2113 * in the chosen node. return true if yes, false otherwise.
2114 */
2115int of_device_is_stdout_path(struct device_node *dn)
2116{
2117	if (!of_stdout)
2118		return false;
2119
2120	return of_stdout == dn;
 
 
 
 
2121}
2122EXPORT_SYMBOL_GPL(of_device_is_stdout_path);
2123
2124/**
2125 *	of_find_next_cache_node - Find a node's subsidiary cache
2126 *	@np:	node of type "cpu" or "cache"
2127 *
2128 *	Returns a node pointer with refcount incremented, use
2129 *	of_node_put() on it when done.  Caller should hold a reference
2130 *	to np.
2131 */
2132struct device_node *of_find_next_cache_node(const struct device_node *np)
2133{
2134	struct device_node *child;
2135	const phandle *handle;
2136
2137	handle = of_get_property(np, "l2-cache", NULL);
2138	if (!handle)
2139		handle = of_get_property(np, "next-level-cache", NULL);
2140
2141	if (handle)
2142		return of_find_node_by_phandle(be32_to_cpup(handle));
2143
2144	/* OF on pmac has nodes instead of properties named "l2-cache"
2145	 * beneath CPU nodes.
2146	 */
2147	if (!strcmp(np->type, "cpu"))
2148		for_each_child_of_node(np, child)
2149			if (!strcmp(child->type, "cache"))
2150				return child;
2151
2152	return NULL;
2153}
2154
2155/**
2156 * of_graph_parse_endpoint() - parse common endpoint node properties
2157 * @node: pointer to endpoint device_node
2158 * @endpoint: pointer to the OF endpoint data structure
 
2159 *
2160 * The caller should hold a reference to @node.
 
2161 */
2162int of_graph_parse_endpoint(const struct device_node *node,
2163			    struct of_endpoint *endpoint)
2164{
2165	struct device_node *port_node = of_get_parent(node);
 
2166
2167	WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2168		  __func__, node->full_name);
 
 
 
2169
2170	memset(endpoint, 0, sizeof(*endpoint));
 
2171
2172	endpoint->local_node = node;
2173	/*
2174	 * It doesn't matter whether the two calls below succeed.
2175	 * If they don't then the default value 0 is used.
2176	 */
2177	of_property_read_u32(port_node, "reg", &endpoint->port);
2178	of_property_read_u32(node, "reg", &endpoint->id);
2179
2180	of_node_put(port_node);
2181
2182	return 0;
2183}
2184EXPORT_SYMBOL(of_graph_parse_endpoint);
2185
2186/**
2187 * of_graph_get_next_endpoint() - get next endpoint node
2188 * @parent: pointer to the parent device node
2189 * @prev: previous endpoint node, or NULL to get first
 
 
 
 
 
 
 
 
 
 
 
 
2190 *
2191 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2192 * of the passed @prev node is not decremented, the caller have to use
2193 * of_node_put() on it when done.
2194 */
2195struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2196					struct device_node *prev)
 
2197{
2198	struct device_node *endpoint;
2199	struct device_node *port;
 
2200
2201	if (!parent)
2202		return NULL;
2203
2204	/*
2205	 * Start by locating the port node. If no previous endpoint is specified
2206	 * search for the first port node, otherwise get the previous endpoint
2207	 * parent port node.
2208	 */
2209	if (!prev) {
2210		struct device_node *node;
 
2211
2212		node = of_get_child_by_name(parent, "ports");
2213		if (node)
2214			parent = node;
2215
2216		port = of_get_child_by_name(parent, "port");
2217		of_node_put(node);
2218
2219		if (!port) {
2220			pr_err("%s(): no port node found in %s\n",
2221			       __func__, parent->full_name);
2222			return NULL;
2223		}
2224	} else {
2225		port = of_get_parent(prev);
2226		if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2227			      __func__, prev->full_name))
2228			return NULL;
2229
2230		/*
2231		 * Avoid dropping prev node refcount to 0 when getting the next
2232		 * child below.
2233		 */
2234		of_node_get(prev);
2235	}
2236
2237	while (1) {
2238		/*
2239		 * Now that we have a port node, get the next endpoint by
2240		 * getting the next child. If the previous endpoint is NULL this
2241		 * will return the first child.
2242		 */
2243		endpoint = of_get_next_child(port, prev);
2244		if (endpoint) {
2245			of_node_put(port);
2246			return endpoint;
 
 
 
2247		}
2248
2249		/* No more endpoints under this port, try the next one. */
2250		prev = NULL;
2251
2252		do {
2253			port = of_get_next_child(parent, port);
2254			if (!port)
2255				return NULL;
2256		} while (of_node_cmp(port->name, "port"));
2257	}
2258}
2259EXPORT_SYMBOL(of_graph_get_next_endpoint);
 
2260
2261/**
2262 * of_graph_get_remote_port_parent() - get remote port's parent node
2263 * @node: pointer to a local endpoint device_node
2264 *
2265 * Return: Remote device node associated with remote endpoint node linked
2266 *	   to @node. Use of_node_put() on it when done.
2267 */
2268struct device_node *of_graph_get_remote_port_parent(
2269			       const struct device_node *node)
2270{
2271	struct device_node *np;
2272	unsigned int depth;
2273
2274	/* Get remote endpoint node. */
2275	np = of_parse_phandle(node, "remote-endpoint", 0);
2276
2277	/* Walk 3 levels up only if there is 'ports' node. */
2278	for (depth = 3; depth && np; depth--) {
2279		np = of_get_next_parent(np);
2280		if (depth == 2 && of_node_cmp(np->name, "ports"))
2281			break;
2282	}
2283	return np;
2284}
2285EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2286
2287/**
2288 * of_graph_get_remote_port() - get remote port node
2289 * @node: pointer to a local endpoint device_node
2290 *
2291 * Return: Remote port node associated with remote endpoint node linked
2292 *	   to @node. Use of_node_put() on it when done.
2293 */
2294struct device_node *of_graph_get_remote_port(const struct device_node *node)
2295{
2296	struct device_node *np;
2297
2298	/* Get remote endpoint node. */
2299	np = of_parse_phandle(node, "remote-endpoint", 0);
2300	if (!np)
2301		return NULL;
2302	return of_get_next_parent(np);
2303}
2304EXPORT_SYMBOL(of_graph_get_remote_port);