Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2009 - 2018 Intel Corporation. */
3
4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6#include <linux/module.h>
7#include <linux/types.h>
8#include <linux/init.h>
9#include <linux/pci.h>
10#include <linux/vmalloc.h>
11#include <linux/pagemap.h>
12#include <linux/delay.h>
13#include <linux/netdevice.h>
14#include <linux/tcp.h>
15#include <linux/ipv6.h>
16#include <linux/slab.h>
17#include <net/checksum.h>
18#include <net/ip6_checksum.h>
19#include <linux/mii.h>
20#include <linux/ethtool.h>
21#include <linux/if_vlan.h>
22#include <linux/prefetch.h>
23#include <linux/sctp.h>
24
25#include "igbvf.h"
26
27char igbvf_driver_name[] = "igbvf";
28static const char igbvf_driver_string[] =
29 "Intel(R) Gigabit Virtual Function Network Driver";
30static const char igbvf_copyright[] =
31 "Copyright (c) 2009 - 2012 Intel Corporation.";
32
33#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
34static int debug = -1;
35module_param(debug, int, 0);
36MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
37
38static int igbvf_poll(struct napi_struct *napi, int budget);
39static void igbvf_reset(struct igbvf_adapter *);
40static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
41static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
42
43static struct igbvf_info igbvf_vf_info = {
44 .mac = e1000_vfadapt,
45 .flags = 0,
46 .pba = 10,
47 .init_ops = e1000_init_function_pointers_vf,
48};
49
50static struct igbvf_info igbvf_i350_vf_info = {
51 .mac = e1000_vfadapt_i350,
52 .flags = 0,
53 .pba = 10,
54 .init_ops = e1000_init_function_pointers_vf,
55};
56
57static const struct igbvf_info *igbvf_info_tbl[] = {
58 [board_vf] = &igbvf_vf_info,
59 [board_i350_vf] = &igbvf_i350_vf_info,
60};
61
62/**
63 * igbvf_desc_unused - calculate if we have unused descriptors
64 * @ring: address of receive ring structure
65 **/
66static int igbvf_desc_unused(struct igbvf_ring *ring)
67{
68 if (ring->next_to_clean > ring->next_to_use)
69 return ring->next_to_clean - ring->next_to_use - 1;
70
71 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
72}
73
74/**
75 * igbvf_receive_skb - helper function to handle Rx indications
76 * @adapter: board private structure
77 * @netdev: pointer to netdev struct
78 * @skb: skb to indicate to stack
79 * @status: descriptor status field as written by hardware
80 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
81 * @skb: pointer to sk_buff to be indicated to stack
82 **/
83static void igbvf_receive_skb(struct igbvf_adapter *adapter,
84 struct net_device *netdev,
85 struct sk_buff *skb,
86 u32 status, __le16 vlan)
87{
88 u16 vid;
89
90 if (status & E1000_RXD_STAT_VP) {
91 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
92 (status & E1000_RXDEXT_STATERR_LB))
93 vid = be16_to_cpu((__force __be16)vlan) & E1000_RXD_SPC_VLAN_MASK;
94 else
95 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
96 if (test_bit(vid, adapter->active_vlans))
97 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
98 }
99
100 napi_gro_receive(&adapter->rx_ring->napi, skb);
101}
102
103static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
104 u32 status_err, struct sk_buff *skb)
105{
106 skb_checksum_none_assert(skb);
107
108 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
109 if ((status_err & E1000_RXD_STAT_IXSM) ||
110 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
111 return;
112
113 /* TCP/UDP checksum error bit is set */
114 if (status_err &
115 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
116 /* let the stack verify checksum errors */
117 adapter->hw_csum_err++;
118 return;
119 }
120
121 /* It must be a TCP or UDP packet with a valid checksum */
122 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
123 skb->ip_summed = CHECKSUM_UNNECESSARY;
124
125 adapter->hw_csum_good++;
126}
127
128/**
129 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
130 * @rx_ring: address of ring structure to repopulate
131 * @cleaned_count: number of buffers to repopulate
132 **/
133static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
134 int cleaned_count)
135{
136 struct igbvf_adapter *adapter = rx_ring->adapter;
137 struct net_device *netdev = adapter->netdev;
138 struct pci_dev *pdev = adapter->pdev;
139 union e1000_adv_rx_desc *rx_desc;
140 struct igbvf_buffer *buffer_info;
141 struct sk_buff *skb;
142 unsigned int i;
143 int bufsz;
144
145 i = rx_ring->next_to_use;
146 buffer_info = &rx_ring->buffer_info[i];
147
148 if (adapter->rx_ps_hdr_size)
149 bufsz = adapter->rx_ps_hdr_size;
150 else
151 bufsz = adapter->rx_buffer_len;
152
153 while (cleaned_count--) {
154 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
155
156 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
157 if (!buffer_info->page) {
158 buffer_info->page = alloc_page(GFP_ATOMIC);
159 if (!buffer_info->page) {
160 adapter->alloc_rx_buff_failed++;
161 goto no_buffers;
162 }
163 buffer_info->page_offset = 0;
164 } else {
165 buffer_info->page_offset ^= PAGE_SIZE / 2;
166 }
167 buffer_info->page_dma =
168 dma_map_page(&pdev->dev, buffer_info->page,
169 buffer_info->page_offset,
170 PAGE_SIZE / 2,
171 DMA_FROM_DEVICE);
172 if (dma_mapping_error(&pdev->dev,
173 buffer_info->page_dma)) {
174 __free_page(buffer_info->page);
175 buffer_info->page = NULL;
176 dev_err(&pdev->dev, "RX DMA map failed\n");
177 break;
178 }
179 }
180
181 if (!buffer_info->skb) {
182 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
183 if (!skb) {
184 adapter->alloc_rx_buff_failed++;
185 goto no_buffers;
186 }
187
188 buffer_info->skb = skb;
189 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
190 bufsz,
191 DMA_FROM_DEVICE);
192 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
193 dev_kfree_skb(buffer_info->skb);
194 buffer_info->skb = NULL;
195 dev_err(&pdev->dev, "RX DMA map failed\n");
196 goto no_buffers;
197 }
198 }
199 /* Refresh the desc even if buffer_addrs didn't change because
200 * each write-back erases this info.
201 */
202 if (adapter->rx_ps_hdr_size) {
203 rx_desc->read.pkt_addr =
204 cpu_to_le64(buffer_info->page_dma);
205 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
206 } else {
207 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
208 rx_desc->read.hdr_addr = 0;
209 }
210
211 i++;
212 if (i == rx_ring->count)
213 i = 0;
214 buffer_info = &rx_ring->buffer_info[i];
215 }
216
217no_buffers:
218 if (rx_ring->next_to_use != i) {
219 rx_ring->next_to_use = i;
220 if (i == 0)
221 i = (rx_ring->count - 1);
222 else
223 i--;
224
225 /* Force memory writes to complete before letting h/w
226 * know there are new descriptors to fetch. (Only
227 * applicable for weak-ordered memory model archs,
228 * such as IA-64).
229 */
230 wmb();
231 writel(i, adapter->hw.hw_addr + rx_ring->tail);
232 }
233}
234
235/**
236 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
237 * @adapter: board private structure
238 * @work_done: output parameter used to indicate completed work
239 * @work_to_do: input parameter setting limit of work
240 *
241 * the return value indicates whether actual cleaning was done, there
242 * is no guarantee that everything was cleaned
243 **/
244static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
245 int *work_done, int work_to_do)
246{
247 struct igbvf_ring *rx_ring = adapter->rx_ring;
248 struct net_device *netdev = adapter->netdev;
249 struct pci_dev *pdev = adapter->pdev;
250 union e1000_adv_rx_desc *rx_desc, *next_rxd;
251 struct igbvf_buffer *buffer_info, *next_buffer;
252 struct sk_buff *skb;
253 bool cleaned = false;
254 int cleaned_count = 0;
255 unsigned int total_bytes = 0, total_packets = 0;
256 unsigned int i;
257 u32 length, hlen, staterr;
258
259 i = rx_ring->next_to_clean;
260 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
261 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
262
263 while (staterr & E1000_RXD_STAT_DD) {
264 if (*work_done >= work_to_do)
265 break;
266 (*work_done)++;
267 rmb(); /* read descriptor and rx_buffer_info after status DD */
268
269 buffer_info = &rx_ring->buffer_info[i];
270
271 /* HW will not DMA in data larger than the given buffer, even
272 * if it parses the (NFS, of course) header to be larger. In
273 * that case, it fills the header buffer and spills the rest
274 * into the page.
275 */
276 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
277 & E1000_RXDADV_HDRBUFLEN_MASK) >>
278 E1000_RXDADV_HDRBUFLEN_SHIFT;
279 if (hlen > adapter->rx_ps_hdr_size)
280 hlen = adapter->rx_ps_hdr_size;
281
282 length = le16_to_cpu(rx_desc->wb.upper.length);
283 cleaned = true;
284 cleaned_count++;
285
286 skb = buffer_info->skb;
287 prefetch(skb->data - NET_IP_ALIGN);
288 buffer_info->skb = NULL;
289 if (!adapter->rx_ps_hdr_size) {
290 dma_unmap_single(&pdev->dev, buffer_info->dma,
291 adapter->rx_buffer_len,
292 DMA_FROM_DEVICE);
293 buffer_info->dma = 0;
294 skb_put(skb, length);
295 goto send_up;
296 }
297
298 if (!skb_shinfo(skb)->nr_frags) {
299 dma_unmap_single(&pdev->dev, buffer_info->dma,
300 adapter->rx_ps_hdr_size,
301 DMA_FROM_DEVICE);
302 buffer_info->dma = 0;
303 skb_put(skb, hlen);
304 }
305
306 if (length) {
307 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
308 PAGE_SIZE / 2,
309 DMA_FROM_DEVICE);
310 buffer_info->page_dma = 0;
311
312 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
313 buffer_info->page,
314 buffer_info->page_offset,
315 length);
316
317 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
318 (page_count(buffer_info->page) != 1))
319 buffer_info->page = NULL;
320 else
321 get_page(buffer_info->page);
322
323 skb->len += length;
324 skb->data_len += length;
325 skb->truesize += PAGE_SIZE / 2;
326 }
327send_up:
328 i++;
329 if (i == rx_ring->count)
330 i = 0;
331 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
332 prefetch(next_rxd);
333 next_buffer = &rx_ring->buffer_info[i];
334
335 if (!(staterr & E1000_RXD_STAT_EOP)) {
336 buffer_info->skb = next_buffer->skb;
337 buffer_info->dma = next_buffer->dma;
338 next_buffer->skb = skb;
339 next_buffer->dma = 0;
340 goto next_desc;
341 }
342
343 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
344 dev_kfree_skb_irq(skb);
345 goto next_desc;
346 }
347
348 total_bytes += skb->len;
349 total_packets++;
350
351 igbvf_rx_checksum_adv(adapter, staterr, skb);
352
353 skb->protocol = eth_type_trans(skb, netdev);
354
355 igbvf_receive_skb(adapter, netdev, skb, staterr,
356 rx_desc->wb.upper.vlan);
357
358next_desc:
359 rx_desc->wb.upper.status_error = 0;
360
361 /* return some buffers to hardware, one at a time is too slow */
362 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
363 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
364 cleaned_count = 0;
365 }
366
367 /* use prefetched values */
368 rx_desc = next_rxd;
369 buffer_info = next_buffer;
370
371 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
372 }
373
374 rx_ring->next_to_clean = i;
375 cleaned_count = igbvf_desc_unused(rx_ring);
376
377 if (cleaned_count)
378 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
379
380 adapter->total_rx_packets += total_packets;
381 adapter->total_rx_bytes += total_bytes;
382 netdev->stats.rx_bytes += total_bytes;
383 netdev->stats.rx_packets += total_packets;
384 return cleaned;
385}
386
387static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
388 struct igbvf_buffer *buffer_info)
389{
390 if (buffer_info->dma) {
391 if (buffer_info->mapped_as_page)
392 dma_unmap_page(&adapter->pdev->dev,
393 buffer_info->dma,
394 buffer_info->length,
395 DMA_TO_DEVICE);
396 else
397 dma_unmap_single(&adapter->pdev->dev,
398 buffer_info->dma,
399 buffer_info->length,
400 DMA_TO_DEVICE);
401 buffer_info->dma = 0;
402 }
403 if (buffer_info->skb) {
404 dev_kfree_skb_any(buffer_info->skb);
405 buffer_info->skb = NULL;
406 }
407 buffer_info->time_stamp = 0;
408}
409
410/**
411 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
412 * @adapter: board private structure
413 * @tx_ring: ring being initialized
414 *
415 * Return 0 on success, negative on failure
416 **/
417int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
418 struct igbvf_ring *tx_ring)
419{
420 struct pci_dev *pdev = adapter->pdev;
421 int size;
422
423 size = sizeof(struct igbvf_buffer) * tx_ring->count;
424 tx_ring->buffer_info = vzalloc(size);
425 if (!tx_ring->buffer_info)
426 goto err;
427
428 /* round up to nearest 4K */
429 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
430 tx_ring->size = ALIGN(tx_ring->size, 4096);
431
432 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
433 &tx_ring->dma, GFP_KERNEL);
434 if (!tx_ring->desc)
435 goto err;
436
437 tx_ring->adapter = adapter;
438 tx_ring->next_to_use = 0;
439 tx_ring->next_to_clean = 0;
440
441 return 0;
442err:
443 vfree(tx_ring->buffer_info);
444 dev_err(&adapter->pdev->dev,
445 "Unable to allocate memory for the transmit descriptor ring\n");
446 return -ENOMEM;
447}
448
449/**
450 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
451 * @adapter: board private structure
452 * @rx_ring: ring being initialized
453 *
454 * Returns 0 on success, negative on failure
455 **/
456int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
457 struct igbvf_ring *rx_ring)
458{
459 struct pci_dev *pdev = adapter->pdev;
460 int size, desc_len;
461
462 size = sizeof(struct igbvf_buffer) * rx_ring->count;
463 rx_ring->buffer_info = vzalloc(size);
464 if (!rx_ring->buffer_info)
465 goto err;
466
467 desc_len = sizeof(union e1000_adv_rx_desc);
468
469 /* Round up to nearest 4K */
470 rx_ring->size = rx_ring->count * desc_len;
471 rx_ring->size = ALIGN(rx_ring->size, 4096);
472
473 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
474 &rx_ring->dma, GFP_KERNEL);
475 if (!rx_ring->desc)
476 goto err;
477
478 rx_ring->next_to_clean = 0;
479 rx_ring->next_to_use = 0;
480
481 rx_ring->adapter = adapter;
482
483 return 0;
484
485err:
486 vfree(rx_ring->buffer_info);
487 rx_ring->buffer_info = NULL;
488 dev_err(&adapter->pdev->dev,
489 "Unable to allocate memory for the receive descriptor ring\n");
490 return -ENOMEM;
491}
492
493/**
494 * igbvf_clean_tx_ring - Free Tx Buffers
495 * @tx_ring: ring to be cleaned
496 **/
497static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
498{
499 struct igbvf_adapter *adapter = tx_ring->adapter;
500 struct igbvf_buffer *buffer_info;
501 unsigned long size;
502 unsigned int i;
503
504 if (!tx_ring->buffer_info)
505 return;
506
507 /* Free all the Tx ring sk_buffs */
508 for (i = 0; i < tx_ring->count; i++) {
509 buffer_info = &tx_ring->buffer_info[i];
510 igbvf_put_txbuf(adapter, buffer_info);
511 }
512
513 size = sizeof(struct igbvf_buffer) * tx_ring->count;
514 memset(tx_ring->buffer_info, 0, size);
515
516 /* Zero out the descriptor ring */
517 memset(tx_ring->desc, 0, tx_ring->size);
518
519 tx_ring->next_to_use = 0;
520 tx_ring->next_to_clean = 0;
521
522 writel(0, adapter->hw.hw_addr + tx_ring->head);
523 writel(0, adapter->hw.hw_addr + tx_ring->tail);
524}
525
526/**
527 * igbvf_free_tx_resources - Free Tx Resources per Queue
528 * @tx_ring: ring to free resources from
529 *
530 * Free all transmit software resources
531 **/
532void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
533{
534 struct pci_dev *pdev = tx_ring->adapter->pdev;
535
536 igbvf_clean_tx_ring(tx_ring);
537
538 vfree(tx_ring->buffer_info);
539 tx_ring->buffer_info = NULL;
540
541 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
542 tx_ring->dma);
543
544 tx_ring->desc = NULL;
545}
546
547/**
548 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
549 * @rx_ring: ring structure pointer to free buffers from
550 **/
551static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
552{
553 struct igbvf_adapter *adapter = rx_ring->adapter;
554 struct igbvf_buffer *buffer_info;
555 struct pci_dev *pdev = adapter->pdev;
556 unsigned long size;
557 unsigned int i;
558
559 if (!rx_ring->buffer_info)
560 return;
561
562 /* Free all the Rx ring sk_buffs */
563 for (i = 0; i < rx_ring->count; i++) {
564 buffer_info = &rx_ring->buffer_info[i];
565 if (buffer_info->dma) {
566 if (adapter->rx_ps_hdr_size) {
567 dma_unmap_single(&pdev->dev, buffer_info->dma,
568 adapter->rx_ps_hdr_size,
569 DMA_FROM_DEVICE);
570 } else {
571 dma_unmap_single(&pdev->dev, buffer_info->dma,
572 adapter->rx_buffer_len,
573 DMA_FROM_DEVICE);
574 }
575 buffer_info->dma = 0;
576 }
577
578 if (buffer_info->skb) {
579 dev_kfree_skb(buffer_info->skb);
580 buffer_info->skb = NULL;
581 }
582
583 if (buffer_info->page) {
584 if (buffer_info->page_dma)
585 dma_unmap_page(&pdev->dev,
586 buffer_info->page_dma,
587 PAGE_SIZE / 2,
588 DMA_FROM_DEVICE);
589 put_page(buffer_info->page);
590 buffer_info->page = NULL;
591 buffer_info->page_dma = 0;
592 buffer_info->page_offset = 0;
593 }
594 }
595
596 size = sizeof(struct igbvf_buffer) * rx_ring->count;
597 memset(rx_ring->buffer_info, 0, size);
598
599 /* Zero out the descriptor ring */
600 memset(rx_ring->desc, 0, rx_ring->size);
601
602 rx_ring->next_to_clean = 0;
603 rx_ring->next_to_use = 0;
604
605 writel(0, adapter->hw.hw_addr + rx_ring->head);
606 writel(0, adapter->hw.hw_addr + rx_ring->tail);
607}
608
609/**
610 * igbvf_free_rx_resources - Free Rx Resources
611 * @rx_ring: ring to clean the resources from
612 *
613 * Free all receive software resources
614 **/
615
616void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
617{
618 struct pci_dev *pdev = rx_ring->adapter->pdev;
619
620 igbvf_clean_rx_ring(rx_ring);
621
622 vfree(rx_ring->buffer_info);
623 rx_ring->buffer_info = NULL;
624
625 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
626 rx_ring->dma);
627 rx_ring->desc = NULL;
628}
629
630/**
631 * igbvf_update_itr - update the dynamic ITR value based on statistics
632 * @adapter: pointer to adapter
633 * @itr_setting: current adapter->itr
634 * @packets: the number of packets during this measurement interval
635 * @bytes: the number of bytes during this measurement interval
636 *
637 * Stores a new ITR value based on packets and byte counts during the last
638 * interrupt. The advantage of per interrupt computation is faster updates
639 * and more accurate ITR for the current traffic pattern. Constants in this
640 * function were computed based on theoretical maximum wire speed and thresholds
641 * were set based on testing data as well as attempting to minimize response
642 * time while increasing bulk throughput.
643 **/
644static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
645 enum latency_range itr_setting,
646 int packets, int bytes)
647{
648 enum latency_range retval = itr_setting;
649
650 if (packets == 0)
651 goto update_itr_done;
652
653 switch (itr_setting) {
654 case lowest_latency:
655 /* handle TSO and jumbo frames */
656 if (bytes/packets > 8000)
657 retval = bulk_latency;
658 else if ((packets < 5) && (bytes > 512))
659 retval = low_latency;
660 break;
661 case low_latency: /* 50 usec aka 20000 ints/s */
662 if (bytes > 10000) {
663 /* this if handles the TSO accounting */
664 if (bytes/packets > 8000)
665 retval = bulk_latency;
666 else if ((packets < 10) || ((bytes/packets) > 1200))
667 retval = bulk_latency;
668 else if ((packets > 35))
669 retval = lowest_latency;
670 } else if (bytes/packets > 2000) {
671 retval = bulk_latency;
672 } else if (packets <= 2 && bytes < 512) {
673 retval = lowest_latency;
674 }
675 break;
676 case bulk_latency: /* 250 usec aka 4000 ints/s */
677 if (bytes > 25000) {
678 if (packets > 35)
679 retval = low_latency;
680 } else if (bytes < 6000) {
681 retval = low_latency;
682 }
683 break;
684 default:
685 break;
686 }
687
688update_itr_done:
689 return retval;
690}
691
692static int igbvf_range_to_itr(enum latency_range current_range)
693{
694 int new_itr;
695
696 switch (current_range) {
697 /* counts and packets in update_itr are dependent on these numbers */
698 case lowest_latency:
699 new_itr = IGBVF_70K_ITR;
700 break;
701 case low_latency:
702 new_itr = IGBVF_20K_ITR;
703 break;
704 case bulk_latency:
705 new_itr = IGBVF_4K_ITR;
706 break;
707 default:
708 new_itr = IGBVF_START_ITR;
709 break;
710 }
711 return new_itr;
712}
713
714static void igbvf_set_itr(struct igbvf_adapter *adapter)
715{
716 u32 new_itr;
717
718 adapter->tx_ring->itr_range =
719 igbvf_update_itr(adapter,
720 adapter->tx_ring->itr_val,
721 adapter->total_tx_packets,
722 adapter->total_tx_bytes);
723
724 /* conservative mode (itr 3) eliminates the lowest_latency setting */
725 if (adapter->requested_itr == 3 &&
726 adapter->tx_ring->itr_range == lowest_latency)
727 adapter->tx_ring->itr_range = low_latency;
728
729 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
730
731 if (new_itr != adapter->tx_ring->itr_val) {
732 u32 current_itr = adapter->tx_ring->itr_val;
733 /* this attempts to bias the interrupt rate towards Bulk
734 * by adding intermediate steps when interrupt rate is
735 * increasing
736 */
737 new_itr = new_itr > current_itr ?
738 min(current_itr + (new_itr >> 2), new_itr) :
739 new_itr;
740 adapter->tx_ring->itr_val = new_itr;
741
742 adapter->tx_ring->set_itr = 1;
743 }
744
745 adapter->rx_ring->itr_range =
746 igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
747 adapter->total_rx_packets,
748 adapter->total_rx_bytes);
749 if (adapter->requested_itr == 3 &&
750 adapter->rx_ring->itr_range == lowest_latency)
751 adapter->rx_ring->itr_range = low_latency;
752
753 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
754
755 if (new_itr != adapter->rx_ring->itr_val) {
756 u32 current_itr = adapter->rx_ring->itr_val;
757
758 new_itr = new_itr > current_itr ?
759 min(current_itr + (new_itr >> 2), new_itr) :
760 new_itr;
761 adapter->rx_ring->itr_val = new_itr;
762
763 adapter->rx_ring->set_itr = 1;
764 }
765}
766
767/**
768 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
769 * @tx_ring: ring structure to clean descriptors from
770 *
771 * returns true if ring is completely cleaned
772 **/
773static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
774{
775 struct igbvf_adapter *adapter = tx_ring->adapter;
776 struct net_device *netdev = adapter->netdev;
777 struct igbvf_buffer *buffer_info;
778 struct sk_buff *skb;
779 union e1000_adv_tx_desc *tx_desc, *eop_desc;
780 unsigned int total_bytes = 0, total_packets = 0;
781 unsigned int i, count = 0;
782 bool cleaned = false;
783
784 i = tx_ring->next_to_clean;
785 buffer_info = &tx_ring->buffer_info[i];
786 eop_desc = buffer_info->next_to_watch;
787
788 do {
789 /* if next_to_watch is not set then there is no work pending */
790 if (!eop_desc)
791 break;
792
793 /* prevent any other reads prior to eop_desc */
794 smp_rmb();
795
796 /* if DD is not set pending work has not been completed */
797 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
798 break;
799
800 /* clear next_to_watch to prevent false hangs */
801 buffer_info->next_to_watch = NULL;
802
803 for (cleaned = false; !cleaned; count++) {
804 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
805 cleaned = (tx_desc == eop_desc);
806 skb = buffer_info->skb;
807
808 if (skb) {
809 unsigned int segs, bytecount;
810
811 /* gso_segs is currently only valid for tcp */
812 segs = skb_shinfo(skb)->gso_segs ?: 1;
813 /* multiply data chunks by size of headers */
814 bytecount = ((segs - 1) * skb_headlen(skb)) +
815 skb->len;
816 total_packets += segs;
817 total_bytes += bytecount;
818 }
819
820 igbvf_put_txbuf(adapter, buffer_info);
821 tx_desc->wb.status = 0;
822
823 i++;
824 if (i == tx_ring->count)
825 i = 0;
826
827 buffer_info = &tx_ring->buffer_info[i];
828 }
829
830 eop_desc = buffer_info->next_to_watch;
831 } while (count < tx_ring->count);
832
833 tx_ring->next_to_clean = i;
834
835 if (unlikely(count && netif_carrier_ok(netdev) &&
836 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
837 /* Make sure that anybody stopping the queue after this
838 * sees the new next_to_clean.
839 */
840 smp_mb();
841 if (netif_queue_stopped(netdev) &&
842 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
843 netif_wake_queue(netdev);
844 ++adapter->restart_queue;
845 }
846 }
847
848 netdev->stats.tx_bytes += total_bytes;
849 netdev->stats.tx_packets += total_packets;
850 return count < tx_ring->count;
851}
852
853static irqreturn_t igbvf_msix_other(int irq, void *data)
854{
855 struct net_device *netdev = data;
856 struct igbvf_adapter *adapter = netdev_priv(netdev);
857 struct e1000_hw *hw = &adapter->hw;
858
859 adapter->int_counter1++;
860
861 hw->mac.get_link_status = 1;
862 if (!test_bit(__IGBVF_DOWN, &adapter->state))
863 mod_timer(&adapter->watchdog_timer, jiffies + 1);
864
865 ew32(EIMS, adapter->eims_other);
866
867 return IRQ_HANDLED;
868}
869
870static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
871{
872 struct net_device *netdev = data;
873 struct igbvf_adapter *adapter = netdev_priv(netdev);
874 struct e1000_hw *hw = &adapter->hw;
875 struct igbvf_ring *tx_ring = adapter->tx_ring;
876
877 if (tx_ring->set_itr) {
878 writel(tx_ring->itr_val,
879 adapter->hw.hw_addr + tx_ring->itr_register);
880 adapter->tx_ring->set_itr = 0;
881 }
882
883 adapter->total_tx_bytes = 0;
884 adapter->total_tx_packets = 0;
885
886 /* auto mask will automatically re-enable the interrupt when we write
887 * EICS
888 */
889 if (!igbvf_clean_tx_irq(tx_ring))
890 /* Ring was not completely cleaned, so fire another interrupt */
891 ew32(EICS, tx_ring->eims_value);
892 else
893 ew32(EIMS, tx_ring->eims_value);
894
895 return IRQ_HANDLED;
896}
897
898static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
899{
900 struct net_device *netdev = data;
901 struct igbvf_adapter *adapter = netdev_priv(netdev);
902
903 adapter->int_counter0++;
904
905 /* Write the ITR value calculated at the end of the
906 * previous interrupt.
907 */
908 if (adapter->rx_ring->set_itr) {
909 writel(adapter->rx_ring->itr_val,
910 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
911 adapter->rx_ring->set_itr = 0;
912 }
913
914 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
915 adapter->total_rx_bytes = 0;
916 adapter->total_rx_packets = 0;
917 __napi_schedule(&adapter->rx_ring->napi);
918 }
919
920 return IRQ_HANDLED;
921}
922
923#define IGBVF_NO_QUEUE -1
924
925static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
926 int tx_queue, int msix_vector)
927{
928 struct e1000_hw *hw = &adapter->hw;
929 u32 ivar, index;
930
931 /* 82576 uses a table-based method for assigning vectors.
932 * Each queue has a single entry in the table to which we write
933 * a vector number along with a "valid" bit. Sadly, the layout
934 * of the table is somewhat counterintuitive.
935 */
936 if (rx_queue > IGBVF_NO_QUEUE) {
937 index = (rx_queue >> 1);
938 ivar = array_er32(IVAR0, index);
939 if (rx_queue & 0x1) {
940 /* vector goes into third byte of register */
941 ivar = ivar & 0xFF00FFFF;
942 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
943 } else {
944 /* vector goes into low byte of register */
945 ivar = ivar & 0xFFFFFF00;
946 ivar |= msix_vector | E1000_IVAR_VALID;
947 }
948 adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
949 array_ew32(IVAR0, index, ivar);
950 }
951 if (tx_queue > IGBVF_NO_QUEUE) {
952 index = (tx_queue >> 1);
953 ivar = array_er32(IVAR0, index);
954 if (tx_queue & 0x1) {
955 /* vector goes into high byte of register */
956 ivar = ivar & 0x00FFFFFF;
957 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
958 } else {
959 /* vector goes into second byte of register */
960 ivar = ivar & 0xFFFF00FF;
961 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
962 }
963 adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
964 array_ew32(IVAR0, index, ivar);
965 }
966}
967
968/**
969 * igbvf_configure_msix - Configure MSI-X hardware
970 * @adapter: board private structure
971 *
972 * igbvf_configure_msix sets up the hardware to properly
973 * generate MSI-X interrupts.
974 **/
975static void igbvf_configure_msix(struct igbvf_adapter *adapter)
976{
977 u32 tmp;
978 struct e1000_hw *hw = &adapter->hw;
979 struct igbvf_ring *tx_ring = adapter->tx_ring;
980 struct igbvf_ring *rx_ring = adapter->rx_ring;
981 int vector = 0;
982
983 adapter->eims_enable_mask = 0;
984
985 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
986 adapter->eims_enable_mask |= tx_ring->eims_value;
987 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
988 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
989 adapter->eims_enable_mask |= rx_ring->eims_value;
990 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
991
992 /* set vector for other causes, i.e. link changes */
993
994 tmp = (vector++ | E1000_IVAR_VALID);
995
996 ew32(IVAR_MISC, tmp);
997
998 adapter->eims_enable_mask = GENMASK(vector - 1, 0);
999 adapter->eims_other = BIT(vector - 1);
1000 e1e_flush();
1001}
1002
1003static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1004{
1005 if (adapter->msix_entries) {
1006 pci_disable_msix(adapter->pdev);
1007 kfree(adapter->msix_entries);
1008 adapter->msix_entries = NULL;
1009 }
1010}
1011
1012/**
1013 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1014 * @adapter: board private structure
1015 *
1016 * Attempt to configure interrupts using the best available
1017 * capabilities of the hardware and kernel.
1018 **/
1019static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1020{
1021 int err = -ENOMEM;
1022 int i;
1023
1024 /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1025 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1026 GFP_KERNEL);
1027 if (adapter->msix_entries) {
1028 for (i = 0; i < 3; i++)
1029 adapter->msix_entries[i].entry = i;
1030
1031 err = pci_enable_msix_range(adapter->pdev,
1032 adapter->msix_entries, 3, 3);
1033 }
1034
1035 if (err < 0) {
1036 /* MSI-X failed */
1037 dev_err(&adapter->pdev->dev,
1038 "Failed to initialize MSI-X interrupts.\n");
1039 igbvf_reset_interrupt_capability(adapter);
1040 }
1041}
1042
1043/**
1044 * igbvf_request_msix - Initialize MSI-X interrupts
1045 * @adapter: board private structure
1046 *
1047 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1048 * kernel.
1049 **/
1050static int igbvf_request_msix(struct igbvf_adapter *adapter)
1051{
1052 struct net_device *netdev = adapter->netdev;
1053 int err = 0, vector = 0;
1054
1055 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1056 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1057 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1058 } else {
1059 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1060 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1061 }
1062
1063 err = request_irq(adapter->msix_entries[vector].vector,
1064 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1065 netdev);
1066 if (err)
1067 goto out;
1068
1069 adapter->tx_ring->itr_register = E1000_EITR(vector);
1070 adapter->tx_ring->itr_val = adapter->current_itr;
1071 vector++;
1072
1073 err = request_irq(adapter->msix_entries[vector].vector,
1074 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1075 netdev);
1076 if (err)
1077 goto out;
1078
1079 adapter->rx_ring->itr_register = E1000_EITR(vector);
1080 adapter->rx_ring->itr_val = adapter->current_itr;
1081 vector++;
1082
1083 err = request_irq(adapter->msix_entries[vector].vector,
1084 igbvf_msix_other, 0, netdev->name, netdev);
1085 if (err)
1086 goto out;
1087
1088 igbvf_configure_msix(adapter);
1089 return 0;
1090out:
1091 return err;
1092}
1093
1094/**
1095 * igbvf_alloc_queues - Allocate memory for all rings
1096 * @adapter: board private structure to initialize
1097 **/
1098static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1099{
1100 struct net_device *netdev = adapter->netdev;
1101
1102 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1103 if (!adapter->tx_ring)
1104 return -ENOMEM;
1105
1106 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1107 if (!adapter->rx_ring) {
1108 kfree(adapter->tx_ring);
1109 return -ENOMEM;
1110 }
1111
1112 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll);
1113
1114 return 0;
1115}
1116
1117/**
1118 * igbvf_request_irq - initialize interrupts
1119 * @adapter: board private structure
1120 *
1121 * Attempts to configure interrupts using the best available
1122 * capabilities of the hardware and kernel.
1123 **/
1124static int igbvf_request_irq(struct igbvf_adapter *adapter)
1125{
1126 int err = -1;
1127
1128 /* igbvf supports msi-x only */
1129 if (adapter->msix_entries)
1130 err = igbvf_request_msix(adapter);
1131
1132 if (!err)
1133 return err;
1134
1135 dev_err(&adapter->pdev->dev,
1136 "Unable to allocate interrupt, Error: %d\n", err);
1137
1138 return err;
1139}
1140
1141static void igbvf_free_irq(struct igbvf_adapter *adapter)
1142{
1143 struct net_device *netdev = adapter->netdev;
1144 int vector;
1145
1146 if (adapter->msix_entries) {
1147 for (vector = 0; vector < 3; vector++)
1148 free_irq(adapter->msix_entries[vector].vector, netdev);
1149 }
1150}
1151
1152/**
1153 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1154 * @adapter: board private structure
1155 **/
1156static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1157{
1158 struct e1000_hw *hw = &adapter->hw;
1159
1160 ew32(EIMC, ~0);
1161
1162 if (adapter->msix_entries)
1163 ew32(EIAC, 0);
1164}
1165
1166/**
1167 * igbvf_irq_enable - Enable default interrupt generation settings
1168 * @adapter: board private structure
1169 **/
1170static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1171{
1172 struct e1000_hw *hw = &adapter->hw;
1173
1174 ew32(EIAC, adapter->eims_enable_mask);
1175 ew32(EIAM, adapter->eims_enable_mask);
1176 ew32(EIMS, adapter->eims_enable_mask);
1177}
1178
1179/**
1180 * igbvf_poll - NAPI Rx polling callback
1181 * @napi: struct associated with this polling callback
1182 * @budget: amount of packets driver is allowed to process this poll
1183 **/
1184static int igbvf_poll(struct napi_struct *napi, int budget)
1185{
1186 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1187 struct igbvf_adapter *adapter = rx_ring->adapter;
1188 struct e1000_hw *hw = &adapter->hw;
1189 int work_done = 0;
1190
1191 igbvf_clean_rx_irq(adapter, &work_done, budget);
1192
1193 if (work_done == budget)
1194 return budget;
1195
1196 /* Exit the polling mode, but don't re-enable interrupts if stack might
1197 * poll us due to busy-polling
1198 */
1199 if (likely(napi_complete_done(napi, work_done))) {
1200 if (adapter->requested_itr & 3)
1201 igbvf_set_itr(adapter);
1202
1203 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1204 ew32(EIMS, adapter->rx_ring->eims_value);
1205 }
1206
1207 return work_done;
1208}
1209
1210/**
1211 * igbvf_set_rlpml - set receive large packet maximum length
1212 * @adapter: board private structure
1213 *
1214 * Configure the maximum size of packets that will be received
1215 */
1216static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1217{
1218 int max_frame_size;
1219 struct e1000_hw *hw = &adapter->hw;
1220
1221 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1222
1223 spin_lock_bh(&hw->mbx_lock);
1224
1225 e1000_rlpml_set_vf(hw, max_frame_size);
1226
1227 spin_unlock_bh(&hw->mbx_lock);
1228}
1229
1230static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1231 __be16 proto, u16 vid)
1232{
1233 struct igbvf_adapter *adapter = netdev_priv(netdev);
1234 struct e1000_hw *hw = &adapter->hw;
1235
1236 spin_lock_bh(&hw->mbx_lock);
1237
1238 if (hw->mac.ops.set_vfta(hw, vid, true)) {
1239 dev_warn(&adapter->pdev->dev, "Vlan id %d\n is not added", vid);
1240 spin_unlock_bh(&hw->mbx_lock);
1241 return -EINVAL;
1242 }
1243
1244 spin_unlock_bh(&hw->mbx_lock);
1245
1246 set_bit(vid, adapter->active_vlans);
1247 return 0;
1248}
1249
1250static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1251 __be16 proto, u16 vid)
1252{
1253 struct igbvf_adapter *adapter = netdev_priv(netdev);
1254 struct e1000_hw *hw = &adapter->hw;
1255
1256 spin_lock_bh(&hw->mbx_lock);
1257
1258 if (hw->mac.ops.set_vfta(hw, vid, false)) {
1259 dev_err(&adapter->pdev->dev,
1260 "Failed to remove vlan id %d\n", vid);
1261 spin_unlock_bh(&hw->mbx_lock);
1262 return -EINVAL;
1263 }
1264
1265 spin_unlock_bh(&hw->mbx_lock);
1266
1267 clear_bit(vid, adapter->active_vlans);
1268 return 0;
1269}
1270
1271static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1272{
1273 u16 vid;
1274
1275 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1276 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1277}
1278
1279/**
1280 * igbvf_configure_tx - Configure Transmit Unit after Reset
1281 * @adapter: board private structure
1282 *
1283 * Configure the Tx unit of the MAC after a reset.
1284 **/
1285static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1286{
1287 struct e1000_hw *hw = &adapter->hw;
1288 struct igbvf_ring *tx_ring = adapter->tx_ring;
1289 u64 tdba;
1290 u32 txdctl, dca_txctrl;
1291
1292 /* disable transmits */
1293 txdctl = er32(TXDCTL(0));
1294 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1295 e1e_flush();
1296 msleep(10);
1297
1298 /* Setup the HW Tx Head and Tail descriptor pointers */
1299 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1300 tdba = tx_ring->dma;
1301 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1302 ew32(TDBAH(0), (tdba >> 32));
1303 ew32(TDH(0), 0);
1304 ew32(TDT(0), 0);
1305 tx_ring->head = E1000_TDH(0);
1306 tx_ring->tail = E1000_TDT(0);
1307
1308 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1309 * MUST be delivered in order or it will completely screw up
1310 * our bookkeeping.
1311 */
1312 dca_txctrl = er32(DCA_TXCTRL(0));
1313 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1314 ew32(DCA_TXCTRL(0), dca_txctrl);
1315
1316 /* enable transmits */
1317 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1318 ew32(TXDCTL(0), txdctl);
1319
1320 /* Setup Transmit Descriptor Settings for eop descriptor */
1321 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1322
1323 /* enable Report Status bit */
1324 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1325}
1326
1327/**
1328 * igbvf_setup_srrctl - configure the receive control registers
1329 * @adapter: Board private structure
1330 **/
1331static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1332{
1333 struct e1000_hw *hw = &adapter->hw;
1334 u32 srrctl = 0;
1335
1336 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1337 E1000_SRRCTL_BSIZEHDR_MASK |
1338 E1000_SRRCTL_BSIZEPKT_MASK);
1339
1340 /* Enable queue drop to avoid head of line blocking */
1341 srrctl |= E1000_SRRCTL_DROP_EN;
1342
1343 /* Setup buffer sizes */
1344 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1345 E1000_SRRCTL_BSIZEPKT_SHIFT;
1346
1347 if (adapter->rx_buffer_len < 2048) {
1348 adapter->rx_ps_hdr_size = 0;
1349 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1350 } else {
1351 adapter->rx_ps_hdr_size = 128;
1352 srrctl |= adapter->rx_ps_hdr_size <<
1353 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1354 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1355 }
1356
1357 ew32(SRRCTL(0), srrctl);
1358}
1359
1360/**
1361 * igbvf_configure_rx - Configure Receive Unit after Reset
1362 * @adapter: board private structure
1363 *
1364 * Configure the Rx unit of the MAC after a reset.
1365 **/
1366static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1367{
1368 struct e1000_hw *hw = &adapter->hw;
1369 struct igbvf_ring *rx_ring = adapter->rx_ring;
1370 u64 rdba;
1371 u32 rxdctl;
1372
1373 /* disable receives */
1374 rxdctl = er32(RXDCTL(0));
1375 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1376 e1e_flush();
1377 msleep(10);
1378
1379 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1380 * the Base and Length of the Rx Descriptor Ring
1381 */
1382 rdba = rx_ring->dma;
1383 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1384 ew32(RDBAH(0), (rdba >> 32));
1385 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1386 rx_ring->head = E1000_RDH(0);
1387 rx_ring->tail = E1000_RDT(0);
1388 ew32(RDH(0), 0);
1389 ew32(RDT(0), 0);
1390
1391 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1392 rxdctl &= 0xFFF00000;
1393 rxdctl |= IGBVF_RX_PTHRESH;
1394 rxdctl |= IGBVF_RX_HTHRESH << 8;
1395 rxdctl |= IGBVF_RX_WTHRESH << 16;
1396
1397 igbvf_set_rlpml(adapter);
1398
1399 /* enable receives */
1400 ew32(RXDCTL(0), rxdctl);
1401}
1402
1403/**
1404 * igbvf_set_multi - Multicast and Promiscuous mode set
1405 * @netdev: network interface device structure
1406 *
1407 * The set_multi entry point is called whenever the multicast address
1408 * list or the network interface flags are updated. This routine is
1409 * responsible for configuring the hardware for proper multicast,
1410 * promiscuous mode, and all-multi behavior.
1411 **/
1412static void igbvf_set_multi(struct net_device *netdev)
1413{
1414 struct igbvf_adapter *adapter = netdev_priv(netdev);
1415 struct e1000_hw *hw = &adapter->hw;
1416 struct netdev_hw_addr *ha;
1417 u8 *mta_list = NULL;
1418 int i;
1419
1420 if (!netdev_mc_empty(netdev)) {
1421 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1422 GFP_ATOMIC);
1423 if (!mta_list)
1424 return;
1425 }
1426
1427 /* prepare a packed array of only addresses. */
1428 i = 0;
1429 netdev_for_each_mc_addr(ha, netdev)
1430 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1431
1432 spin_lock_bh(&hw->mbx_lock);
1433
1434 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1435
1436 spin_unlock_bh(&hw->mbx_lock);
1437 kfree(mta_list);
1438}
1439
1440/**
1441 * igbvf_set_uni - Configure unicast MAC filters
1442 * @netdev: network interface device structure
1443 *
1444 * This routine is responsible for configuring the hardware for proper
1445 * unicast filters.
1446 **/
1447static int igbvf_set_uni(struct net_device *netdev)
1448{
1449 struct igbvf_adapter *adapter = netdev_priv(netdev);
1450 struct e1000_hw *hw = &adapter->hw;
1451
1452 if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1453 pr_err("Too many unicast filters - No Space\n");
1454 return -ENOSPC;
1455 }
1456
1457 spin_lock_bh(&hw->mbx_lock);
1458
1459 /* Clear all unicast MAC filters */
1460 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1461
1462 spin_unlock_bh(&hw->mbx_lock);
1463
1464 if (!netdev_uc_empty(netdev)) {
1465 struct netdev_hw_addr *ha;
1466
1467 /* Add MAC filters one by one */
1468 netdev_for_each_uc_addr(ha, netdev) {
1469 spin_lock_bh(&hw->mbx_lock);
1470
1471 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1472 ha->addr);
1473
1474 spin_unlock_bh(&hw->mbx_lock);
1475 udelay(200);
1476 }
1477 }
1478
1479 return 0;
1480}
1481
1482static void igbvf_set_rx_mode(struct net_device *netdev)
1483{
1484 igbvf_set_multi(netdev);
1485 igbvf_set_uni(netdev);
1486}
1487
1488/**
1489 * igbvf_configure - configure the hardware for Rx and Tx
1490 * @adapter: private board structure
1491 **/
1492static void igbvf_configure(struct igbvf_adapter *adapter)
1493{
1494 igbvf_set_rx_mode(adapter->netdev);
1495
1496 igbvf_restore_vlan(adapter);
1497
1498 igbvf_configure_tx(adapter);
1499 igbvf_setup_srrctl(adapter);
1500 igbvf_configure_rx(adapter);
1501 igbvf_alloc_rx_buffers(adapter->rx_ring,
1502 igbvf_desc_unused(adapter->rx_ring));
1503}
1504
1505/* igbvf_reset - bring the hardware into a known good state
1506 * @adapter: private board structure
1507 *
1508 * This function boots the hardware and enables some settings that
1509 * require a configuration cycle of the hardware - those cannot be
1510 * set/changed during runtime. After reset the device needs to be
1511 * properly configured for Rx, Tx etc.
1512 */
1513static void igbvf_reset(struct igbvf_adapter *adapter)
1514{
1515 struct e1000_mac_info *mac = &adapter->hw.mac;
1516 struct net_device *netdev = adapter->netdev;
1517 struct e1000_hw *hw = &adapter->hw;
1518
1519 spin_lock_bh(&hw->mbx_lock);
1520
1521 /* Allow time for pending master requests to run */
1522 if (mac->ops.reset_hw(hw))
1523 dev_info(&adapter->pdev->dev, "PF still resetting\n");
1524
1525 mac->ops.init_hw(hw);
1526
1527 spin_unlock_bh(&hw->mbx_lock);
1528
1529 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1530 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
1531 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1532 netdev->addr_len);
1533 }
1534
1535 adapter->last_reset = jiffies;
1536}
1537
1538int igbvf_up(struct igbvf_adapter *adapter)
1539{
1540 struct e1000_hw *hw = &adapter->hw;
1541
1542 /* hardware has been reset, we need to reload some things */
1543 igbvf_configure(adapter);
1544
1545 clear_bit(__IGBVF_DOWN, &adapter->state);
1546
1547 napi_enable(&adapter->rx_ring->napi);
1548 if (adapter->msix_entries)
1549 igbvf_configure_msix(adapter);
1550
1551 /* Clear any pending interrupts. */
1552 er32(EICR);
1553 igbvf_irq_enable(adapter);
1554
1555 /* start the watchdog */
1556 hw->mac.get_link_status = 1;
1557 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1558
1559 return 0;
1560}
1561
1562void igbvf_down(struct igbvf_adapter *adapter)
1563{
1564 struct net_device *netdev = adapter->netdev;
1565 struct e1000_hw *hw = &adapter->hw;
1566 u32 rxdctl, txdctl;
1567
1568 /* signal that we're down so the interrupt handler does not
1569 * reschedule our watchdog timer
1570 */
1571 set_bit(__IGBVF_DOWN, &adapter->state);
1572
1573 /* disable receives in the hardware */
1574 rxdctl = er32(RXDCTL(0));
1575 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1576
1577 netif_carrier_off(netdev);
1578 netif_stop_queue(netdev);
1579
1580 /* disable transmits in the hardware */
1581 txdctl = er32(TXDCTL(0));
1582 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1583
1584 /* flush both disables and wait for them to finish */
1585 e1e_flush();
1586 msleep(10);
1587
1588 napi_disable(&adapter->rx_ring->napi);
1589
1590 igbvf_irq_disable(adapter);
1591
1592 del_timer_sync(&adapter->watchdog_timer);
1593
1594 /* record the stats before reset*/
1595 igbvf_update_stats(adapter);
1596
1597 adapter->link_speed = 0;
1598 adapter->link_duplex = 0;
1599
1600 igbvf_reset(adapter);
1601 igbvf_clean_tx_ring(adapter->tx_ring);
1602 igbvf_clean_rx_ring(adapter->rx_ring);
1603}
1604
1605void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1606{
1607 might_sleep();
1608 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1609 usleep_range(1000, 2000);
1610 igbvf_down(adapter);
1611 igbvf_up(adapter);
1612 clear_bit(__IGBVF_RESETTING, &adapter->state);
1613}
1614
1615/**
1616 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1617 * @adapter: board private structure to initialize
1618 *
1619 * igbvf_sw_init initializes the Adapter private data structure.
1620 * Fields are initialized based on PCI device information and
1621 * OS network device settings (MTU size).
1622 **/
1623static int igbvf_sw_init(struct igbvf_adapter *adapter)
1624{
1625 struct net_device *netdev = adapter->netdev;
1626 s32 rc;
1627
1628 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1629 adapter->rx_ps_hdr_size = 0;
1630 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1631 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1632
1633 adapter->tx_int_delay = 8;
1634 adapter->tx_abs_int_delay = 32;
1635 adapter->rx_int_delay = 0;
1636 adapter->rx_abs_int_delay = 8;
1637 adapter->requested_itr = 3;
1638 adapter->current_itr = IGBVF_START_ITR;
1639
1640 /* Set various function pointers */
1641 adapter->ei->init_ops(&adapter->hw);
1642
1643 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1644 if (rc)
1645 return rc;
1646
1647 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1648 if (rc)
1649 return rc;
1650
1651 igbvf_set_interrupt_capability(adapter);
1652
1653 if (igbvf_alloc_queues(adapter))
1654 return -ENOMEM;
1655
1656 spin_lock_init(&adapter->tx_queue_lock);
1657
1658 /* Explicitly disable IRQ since the NIC can be in any state. */
1659 igbvf_irq_disable(adapter);
1660
1661 spin_lock_init(&adapter->stats_lock);
1662 spin_lock_init(&adapter->hw.mbx_lock);
1663
1664 set_bit(__IGBVF_DOWN, &adapter->state);
1665 return 0;
1666}
1667
1668static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1669{
1670 struct e1000_hw *hw = &adapter->hw;
1671
1672 adapter->stats.last_gprc = er32(VFGPRC);
1673 adapter->stats.last_gorc = er32(VFGORC);
1674 adapter->stats.last_gptc = er32(VFGPTC);
1675 adapter->stats.last_gotc = er32(VFGOTC);
1676 adapter->stats.last_mprc = er32(VFMPRC);
1677 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1678 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1679 adapter->stats.last_gorlbc = er32(VFGORLBC);
1680 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1681
1682 adapter->stats.base_gprc = er32(VFGPRC);
1683 adapter->stats.base_gorc = er32(VFGORC);
1684 adapter->stats.base_gptc = er32(VFGPTC);
1685 adapter->stats.base_gotc = er32(VFGOTC);
1686 adapter->stats.base_mprc = er32(VFMPRC);
1687 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1688 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1689 adapter->stats.base_gorlbc = er32(VFGORLBC);
1690 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1691}
1692
1693/**
1694 * igbvf_open - Called when a network interface is made active
1695 * @netdev: network interface device structure
1696 *
1697 * Returns 0 on success, negative value on failure
1698 *
1699 * The open entry point is called when a network interface is made
1700 * active by the system (IFF_UP). At this point all resources needed
1701 * for transmit and receive operations are allocated, the interrupt
1702 * handler is registered with the OS, the watchdog timer is started,
1703 * and the stack is notified that the interface is ready.
1704 **/
1705static int igbvf_open(struct net_device *netdev)
1706{
1707 struct igbvf_adapter *adapter = netdev_priv(netdev);
1708 struct e1000_hw *hw = &adapter->hw;
1709 int err;
1710
1711 /* disallow open during test */
1712 if (test_bit(__IGBVF_TESTING, &adapter->state))
1713 return -EBUSY;
1714
1715 /* allocate transmit descriptors */
1716 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1717 if (err)
1718 goto err_setup_tx;
1719
1720 /* allocate receive descriptors */
1721 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1722 if (err)
1723 goto err_setup_rx;
1724
1725 /* before we allocate an interrupt, we must be ready to handle it.
1726 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1727 * as soon as we call pci_request_irq, so we have to setup our
1728 * clean_rx handler before we do so.
1729 */
1730 igbvf_configure(adapter);
1731
1732 err = igbvf_request_irq(adapter);
1733 if (err)
1734 goto err_req_irq;
1735
1736 /* From here on the code is the same as igbvf_up() */
1737 clear_bit(__IGBVF_DOWN, &adapter->state);
1738
1739 napi_enable(&adapter->rx_ring->napi);
1740
1741 /* clear any pending interrupts */
1742 er32(EICR);
1743
1744 igbvf_irq_enable(adapter);
1745
1746 /* start the watchdog */
1747 hw->mac.get_link_status = 1;
1748 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1749
1750 return 0;
1751
1752err_req_irq:
1753 igbvf_free_rx_resources(adapter->rx_ring);
1754err_setup_rx:
1755 igbvf_free_tx_resources(adapter->tx_ring);
1756err_setup_tx:
1757 igbvf_reset(adapter);
1758
1759 return err;
1760}
1761
1762/**
1763 * igbvf_close - Disables a network interface
1764 * @netdev: network interface device structure
1765 *
1766 * Returns 0, this is not allowed to fail
1767 *
1768 * The close entry point is called when an interface is de-activated
1769 * by the OS. The hardware is still under the drivers control, but
1770 * needs to be disabled. A global MAC reset is issued to stop the
1771 * hardware, and all transmit and receive resources are freed.
1772 **/
1773static int igbvf_close(struct net_device *netdev)
1774{
1775 struct igbvf_adapter *adapter = netdev_priv(netdev);
1776
1777 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1778 igbvf_down(adapter);
1779
1780 igbvf_free_irq(adapter);
1781
1782 igbvf_free_tx_resources(adapter->tx_ring);
1783 igbvf_free_rx_resources(adapter->rx_ring);
1784
1785 return 0;
1786}
1787
1788/**
1789 * igbvf_set_mac - Change the Ethernet Address of the NIC
1790 * @netdev: network interface device structure
1791 * @p: pointer to an address structure
1792 *
1793 * Returns 0 on success, negative on failure
1794 **/
1795static int igbvf_set_mac(struct net_device *netdev, void *p)
1796{
1797 struct igbvf_adapter *adapter = netdev_priv(netdev);
1798 struct e1000_hw *hw = &adapter->hw;
1799 struct sockaddr *addr = p;
1800
1801 if (!is_valid_ether_addr(addr->sa_data))
1802 return -EADDRNOTAVAIL;
1803
1804 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1805
1806 spin_lock_bh(&hw->mbx_lock);
1807
1808 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1809
1810 spin_unlock_bh(&hw->mbx_lock);
1811
1812 if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1813 return -EADDRNOTAVAIL;
1814
1815 eth_hw_addr_set(netdev, addr->sa_data);
1816
1817 return 0;
1818}
1819
1820#define UPDATE_VF_COUNTER(reg, name) \
1821{ \
1822 u32 current_counter = er32(reg); \
1823 if (current_counter < adapter->stats.last_##name) \
1824 adapter->stats.name += 0x100000000LL; \
1825 adapter->stats.last_##name = current_counter; \
1826 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1827 adapter->stats.name |= current_counter; \
1828}
1829
1830/**
1831 * igbvf_update_stats - Update the board statistics counters
1832 * @adapter: board private structure
1833**/
1834void igbvf_update_stats(struct igbvf_adapter *adapter)
1835{
1836 struct e1000_hw *hw = &adapter->hw;
1837 struct pci_dev *pdev = adapter->pdev;
1838
1839 /* Prevent stats update while adapter is being reset, link is down
1840 * or if the pci connection is down.
1841 */
1842 if (adapter->link_speed == 0)
1843 return;
1844
1845 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1846 return;
1847
1848 if (pci_channel_offline(pdev))
1849 return;
1850
1851 UPDATE_VF_COUNTER(VFGPRC, gprc);
1852 UPDATE_VF_COUNTER(VFGORC, gorc);
1853 UPDATE_VF_COUNTER(VFGPTC, gptc);
1854 UPDATE_VF_COUNTER(VFGOTC, gotc);
1855 UPDATE_VF_COUNTER(VFMPRC, mprc);
1856 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1857 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1858 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1859 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1860
1861 /* Fill out the OS statistics structure */
1862 adapter->netdev->stats.multicast = adapter->stats.mprc;
1863}
1864
1865static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1866{
1867 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1868 adapter->link_speed,
1869 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1870}
1871
1872static bool igbvf_has_link(struct igbvf_adapter *adapter)
1873{
1874 struct e1000_hw *hw = &adapter->hw;
1875 s32 ret_val = E1000_SUCCESS;
1876 bool link_active;
1877
1878 /* If interface is down, stay link down */
1879 if (test_bit(__IGBVF_DOWN, &adapter->state))
1880 return false;
1881
1882 spin_lock_bh(&hw->mbx_lock);
1883
1884 ret_val = hw->mac.ops.check_for_link(hw);
1885
1886 spin_unlock_bh(&hw->mbx_lock);
1887
1888 link_active = !hw->mac.get_link_status;
1889
1890 /* if check for link returns error we will need to reset */
1891 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1892 schedule_work(&adapter->reset_task);
1893
1894 return link_active;
1895}
1896
1897/**
1898 * igbvf_watchdog - Timer Call-back
1899 * @t: timer list pointer containing private struct
1900 **/
1901static void igbvf_watchdog(struct timer_list *t)
1902{
1903 struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1904
1905 /* Do the rest outside of interrupt context */
1906 schedule_work(&adapter->watchdog_task);
1907}
1908
1909static void igbvf_watchdog_task(struct work_struct *work)
1910{
1911 struct igbvf_adapter *adapter = container_of(work,
1912 struct igbvf_adapter,
1913 watchdog_task);
1914 struct net_device *netdev = adapter->netdev;
1915 struct e1000_mac_info *mac = &adapter->hw.mac;
1916 struct igbvf_ring *tx_ring = adapter->tx_ring;
1917 struct e1000_hw *hw = &adapter->hw;
1918 u32 link;
1919 int tx_pending = 0;
1920
1921 link = igbvf_has_link(adapter);
1922
1923 if (link) {
1924 if (!netif_carrier_ok(netdev)) {
1925 mac->ops.get_link_up_info(&adapter->hw,
1926 &adapter->link_speed,
1927 &adapter->link_duplex);
1928 igbvf_print_link_info(adapter);
1929
1930 netif_carrier_on(netdev);
1931 netif_wake_queue(netdev);
1932 }
1933 } else {
1934 if (netif_carrier_ok(netdev)) {
1935 adapter->link_speed = 0;
1936 adapter->link_duplex = 0;
1937 dev_info(&adapter->pdev->dev, "Link is Down\n");
1938 netif_carrier_off(netdev);
1939 netif_stop_queue(netdev);
1940 }
1941 }
1942
1943 if (netif_carrier_ok(netdev)) {
1944 igbvf_update_stats(adapter);
1945 } else {
1946 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1947 tx_ring->count);
1948 if (tx_pending) {
1949 /* We've lost link, so the controller stops DMA,
1950 * but we've got queued Tx work that's never going
1951 * to get done, so reset controller to flush Tx.
1952 * (Do the reset outside of interrupt context).
1953 */
1954 adapter->tx_timeout_count++;
1955 schedule_work(&adapter->reset_task);
1956 }
1957 }
1958
1959 /* Cause software interrupt to ensure Rx ring is cleaned */
1960 ew32(EICS, adapter->rx_ring->eims_value);
1961
1962 /* Reset the timer */
1963 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1964 mod_timer(&adapter->watchdog_timer,
1965 round_jiffies(jiffies + (2 * HZ)));
1966}
1967
1968#define IGBVF_TX_FLAGS_CSUM 0x00000001
1969#define IGBVF_TX_FLAGS_VLAN 0x00000002
1970#define IGBVF_TX_FLAGS_TSO 0x00000004
1971#define IGBVF_TX_FLAGS_IPV4 0x00000008
1972#define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1973#define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1974
1975static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1976 u32 type_tucmd, u32 mss_l4len_idx)
1977{
1978 struct e1000_adv_tx_context_desc *context_desc;
1979 struct igbvf_buffer *buffer_info;
1980 u16 i = tx_ring->next_to_use;
1981
1982 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1983 buffer_info = &tx_ring->buffer_info[i];
1984
1985 i++;
1986 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1987
1988 /* set bits to identify this as an advanced context descriptor */
1989 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1990
1991 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1992 context_desc->seqnum_seed = 0;
1993 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1994 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1995
1996 buffer_info->time_stamp = jiffies;
1997 buffer_info->dma = 0;
1998}
1999
2000static int igbvf_tso(struct igbvf_ring *tx_ring,
2001 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2002{
2003 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
2004 union {
2005 struct iphdr *v4;
2006 struct ipv6hdr *v6;
2007 unsigned char *hdr;
2008 } ip;
2009 union {
2010 struct tcphdr *tcp;
2011 unsigned char *hdr;
2012 } l4;
2013 u32 paylen, l4_offset;
2014 int err;
2015
2016 if (skb->ip_summed != CHECKSUM_PARTIAL)
2017 return 0;
2018
2019 if (!skb_is_gso(skb))
2020 return 0;
2021
2022 err = skb_cow_head(skb, 0);
2023 if (err < 0)
2024 return err;
2025
2026 ip.hdr = skb_network_header(skb);
2027 l4.hdr = skb_checksum_start(skb);
2028
2029 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2030 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2031
2032 /* initialize outer IP header fields */
2033 if (ip.v4->version == 4) {
2034 unsigned char *csum_start = skb_checksum_start(skb);
2035 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
2036
2037 /* IP header will have to cancel out any data that
2038 * is not a part of the outer IP header
2039 */
2040 ip.v4->check = csum_fold(csum_partial(trans_start,
2041 csum_start - trans_start,
2042 0));
2043 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2044
2045 ip.v4->tot_len = 0;
2046 } else {
2047 ip.v6->payload_len = 0;
2048 }
2049
2050 /* determine offset of inner transport header */
2051 l4_offset = l4.hdr - skb->data;
2052
2053 /* compute length of segmentation header */
2054 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2055
2056 /* remove payload length from inner checksum */
2057 paylen = skb->len - l4_offset;
2058 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2059
2060 /* MSS L4LEN IDX */
2061 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2062 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2063
2064 /* VLAN MACLEN IPLEN */
2065 vlan_macip_lens = l4.hdr - ip.hdr;
2066 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2067 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2068
2069 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2070
2071 return 1;
2072}
2073
2074static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2075 u32 tx_flags, __be16 protocol)
2076{
2077 u32 vlan_macip_lens = 0;
2078 u32 type_tucmd = 0;
2079
2080 if (skb->ip_summed != CHECKSUM_PARTIAL) {
2081csum_failed:
2082 if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2083 return false;
2084 goto no_csum;
2085 }
2086
2087 switch (skb->csum_offset) {
2088 case offsetof(struct tcphdr, check):
2089 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2090 fallthrough;
2091 case offsetof(struct udphdr, check):
2092 break;
2093 case offsetof(struct sctphdr, checksum):
2094 /* validate that this is actually an SCTP request */
2095 if (skb_csum_is_sctp(skb)) {
2096 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2097 break;
2098 }
2099 fallthrough;
2100 default:
2101 skb_checksum_help(skb);
2102 goto csum_failed;
2103 }
2104
2105 vlan_macip_lens = skb_checksum_start_offset(skb) -
2106 skb_network_offset(skb);
2107no_csum:
2108 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2109 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2110
2111 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2112 return true;
2113}
2114
2115static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2116{
2117 struct igbvf_adapter *adapter = netdev_priv(netdev);
2118
2119 /* there is enough descriptors then we don't need to worry */
2120 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2121 return 0;
2122
2123 netif_stop_queue(netdev);
2124
2125 /* Herbert's original patch had:
2126 * smp_mb__after_netif_stop_queue();
2127 * but since that doesn't exist yet, just open code it.
2128 */
2129 smp_mb();
2130
2131 /* We need to check again just in case room has been made available */
2132 if (igbvf_desc_unused(adapter->tx_ring) < size)
2133 return -EBUSY;
2134
2135 netif_wake_queue(netdev);
2136
2137 ++adapter->restart_queue;
2138 return 0;
2139}
2140
2141#define IGBVF_MAX_TXD_PWR 16
2142#define IGBVF_MAX_DATA_PER_TXD (1u << IGBVF_MAX_TXD_PWR)
2143
2144static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2145 struct igbvf_ring *tx_ring,
2146 struct sk_buff *skb)
2147{
2148 struct igbvf_buffer *buffer_info;
2149 struct pci_dev *pdev = adapter->pdev;
2150 unsigned int len = skb_headlen(skb);
2151 unsigned int count = 0, i;
2152 unsigned int f;
2153
2154 i = tx_ring->next_to_use;
2155
2156 buffer_info = &tx_ring->buffer_info[i];
2157 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2158 buffer_info->length = len;
2159 /* set time_stamp *before* dma to help avoid a possible race */
2160 buffer_info->time_stamp = jiffies;
2161 buffer_info->mapped_as_page = false;
2162 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2163 DMA_TO_DEVICE);
2164 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2165 goto dma_error;
2166
2167 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2168 const skb_frag_t *frag;
2169
2170 count++;
2171 i++;
2172 if (i == tx_ring->count)
2173 i = 0;
2174
2175 frag = &skb_shinfo(skb)->frags[f];
2176 len = skb_frag_size(frag);
2177
2178 buffer_info = &tx_ring->buffer_info[i];
2179 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2180 buffer_info->length = len;
2181 buffer_info->time_stamp = jiffies;
2182 buffer_info->mapped_as_page = true;
2183 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2184 DMA_TO_DEVICE);
2185 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2186 goto dma_error;
2187 }
2188
2189 tx_ring->buffer_info[i].skb = skb;
2190
2191 return ++count;
2192
2193dma_error:
2194 dev_err(&pdev->dev, "TX DMA map failed\n");
2195
2196 /* clear timestamp and dma mappings for failed buffer_info mapping */
2197 buffer_info->dma = 0;
2198 buffer_info->time_stamp = 0;
2199 buffer_info->length = 0;
2200 buffer_info->mapped_as_page = false;
2201 if (count)
2202 count--;
2203
2204 /* clear timestamp and dma mappings for remaining portion of packet */
2205 while (count--) {
2206 if (i == 0)
2207 i += tx_ring->count;
2208 i--;
2209 buffer_info = &tx_ring->buffer_info[i];
2210 igbvf_put_txbuf(adapter, buffer_info);
2211 }
2212
2213 return 0;
2214}
2215
2216static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2217 struct igbvf_ring *tx_ring,
2218 int tx_flags, int count,
2219 unsigned int first, u32 paylen,
2220 u8 hdr_len)
2221{
2222 union e1000_adv_tx_desc *tx_desc = NULL;
2223 struct igbvf_buffer *buffer_info;
2224 u32 olinfo_status = 0, cmd_type_len;
2225 unsigned int i;
2226
2227 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2228 E1000_ADVTXD_DCMD_DEXT);
2229
2230 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2231 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2232
2233 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2234 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2235
2236 /* insert tcp checksum */
2237 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2238
2239 /* insert ip checksum */
2240 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2241 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2242
2243 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2244 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2245 }
2246
2247 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2248
2249 i = tx_ring->next_to_use;
2250 while (count--) {
2251 buffer_info = &tx_ring->buffer_info[i];
2252 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2253 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2254 tx_desc->read.cmd_type_len =
2255 cpu_to_le32(cmd_type_len | buffer_info->length);
2256 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2257 i++;
2258 if (i == tx_ring->count)
2259 i = 0;
2260 }
2261
2262 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2263 /* Force memory writes to complete before letting h/w
2264 * know there are new descriptors to fetch. (Only
2265 * applicable for weak-ordered memory model archs,
2266 * such as IA-64).
2267 */
2268 wmb();
2269
2270 tx_ring->buffer_info[first].next_to_watch = tx_desc;
2271 tx_ring->next_to_use = i;
2272 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2273}
2274
2275static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2276 struct net_device *netdev,
2277 struct igbvf_ring *tx_ring)
2278{
2279 struct igbvf_adapter *adapter = netdev_priv(netdev);
2280 unsigned int first, tx_flags = 0;
2281 u8 hdr_len = 0;
2282 int count = 0;
2283 int tso = 0;
2284 __be16 protocol = vlan_get_protocol(skb);
2285
2286 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2287 dev_kfree_skb_any(skb);
2288 return NETDEV_TX_OK;
2289 }
2290
2291 if (skb->len <= 0) {
2292 dev_kfree_skb_any(skb);
2293 return NETDEV_TX_OK;
2294 }
2295
2296 /* need: count + 4 desc gap to keep tail from touching
2297 * + 2 desc gap to keep tail from touching head,
2298 * + 1 desc for skb->data,
2299 * + 1 desc for context descriptor,
2300 * head, otherwise try next time
2301 */
2302 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2303 /* this is a hard error */
2304 return NETDEV_TX_BUSY;
2305 }
2306
2307 if (skb_vlan_tag_present(skb)) {
2308 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2309 tx_flags |= (skb_vlan_tag_get(skb) <<
2310 IGBVF_TX_FLAGS_VLAN_SHIFT);
2311 }
2312
2313 if (protocol == htons(ETH_P_IP))
2314 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2315
2316 first = tx_ring->next_to_use;
2317
2318 tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2319 if (unlikely(tso < 0)) {
2320 dev_kfree_skb_any(skb);
2321 return NETDEV_TX_OK;
2322 }
2323
2324 if (tso)
2325 tx_flags |= IGBVF_TX_FLAGS_TSO;
2326 else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2327 (skb->ip_summed == CHECKSUM_PARTIAL))
2328 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2329
2330 /* count reflects descriptors mapped, if 0 then mapping error
2331 * has occurred and we need to rewind the descriptor queue
2332 */
2333 count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2334
2335 if (count) {
2336 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2337 first, skb->len, hdr_len);
2338 /* Make sure there is space in the ring for the next send. */
2339 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2340 } else {
2341 dev_kfree_skb_any(skb);
2342 tx_ring->buffer_info[first].time_stamp = 0;
2343 tx_ring->next_to_use = first;
2344 }
2345
2346 return NETDEV_TX_OK;
2347}
2348
2349static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2350 struct net_device *netdev)
2351{
2352 struct igbvf_adapter *adapter = netdev_priv(netdev);
2353 struct igbvf_ring *tx_ring;
2354
2355 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2356 dev_kfree_skb_any(skb);
2357 return NETDEV_TX_OK;
2358 }
2359
2360 tx_ring = &adapter->tx_ring[0];
2361
2362 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2363}
2364
2365/**
2366 * igbvf_tx_timeout - Respond to a Tx Hang
2367 * @netdev: network interface device structure
2368 * @txqueue: queue timing out (unused)
2369 **/
2370static void igbvf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
2371{
2372 struct igbvf_adapter *adapter = netdev_priv(netdev);
2373
2374 /* Do the reset outside of interrupt context */
2375 adapter->tx_timeout_count++;
2376 schedule_work(&adapter->reset_task);
2377}
2378
2379static void igbvf_reset_task(struct work_struct *work)
2380{
2381 struct igbvf_adapter *adapter;
2382
2383 adapter = container_of(work, struct igbvf_adapter, reset_task);
2384
2385 igbvf_reinit_locked(adapter);
2386}
2387
2388/**
2389 * igbvf_change_mtu - Change the Maximum Transfer Unit
2390 * @netdev: network interface device structure
2391 * @new_mtu: new value for maximum frame size
2392 *
2393 * Returns 0 on success, negative on failure
2394 **/
2395static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2396{
2397 struct igbvf_adapter *adapter = netdev_priv(netdev);
2398 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2399
2400 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2401 usleep_range(1000, 2000);
2402 /* igbvf_down has a dependency on max_frame_size */
2403 adapter->max_frame_size = max_frame;
2404 if (netif_running(netdev))
2405 igbvf_down(adapter);
2406
2407 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2408 * means we reserve 2 more, this pushes us to allocate from the next
2409 * larger slab size.
2410 * i.e. RXBUFFER_2048 --> size-4096 slab
2411 * However with the new *_jumbo_rx* routines, jumbo receives will use
2412 * fragmented skbs
2413 */
2414
2415 if (max_frame <= 1024)
2416 adapter->rx_buffer_len = 1024;
2417 else if (max_frame <= 2048)
2418 adapter->rx_buffer_len = 2048;
2419 else
2420#if (PAGE_SIZE / 2) > 16384
2421 adapter->rx_buffer_len = 16384;
2422#else
2423 adapter->rx_buffer_len = PAGE_SIZE / 2;
2424#endif
2425
2426 /* adjust allocation if LPE protects us, and we aren't using SBP */
2427 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2428 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2429 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2430 ETH_FCS_LEN;
2431
2432 netdev_dbg(netdev, "changing MTU from %d to %d\n",
2433 netdev->mtu, new_mtu);
2434 netdev->mtu = new_mtu;
2435
2436 if (netif_running(netdev))
2437 igbvf_up(adapter);
2438 else
2439 igbvf_reset(adapter);
2440
2441 clear_bit(__IGBVF_RESETTING, &adapter->state);
2442
2443 return 0;
2444}
2445
2446static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2447{
2448 switch (cmd) {
2449 default:
2450 return -EOPNOTSUPP;
2451 }
2452}
2453
2454static int igbvf_suspend(struct device *dev_d)
2455{
2456 struct net_device *netdev = dev_get_drvdata(dev_d);
2457 struct igbvf_adapter *adapter = netdev_priv(netdev);
2458
2459 netif_device_detach(netdev);
2460
2461 if (netif_running(netdev)) {
2462 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2463 igbvf_down(adapter);
2464 igbvf_free_irq(adapter);
2465 }
2466
2467 return 0;
2468}
2469
2470static int __maybe_unused igbvf_resume(struct device *dev_d)
2471{
2472 struct pci_dev *pdev = to_pci_dev(dev_d);
2473 struct net_device *netdev = pci_get_drvdata(pdev);
2474 struct igbvf_adapter *adapter = netdev_priv(netdev);
2475 u32 err;
2476
2477 pci_set_master(pdev);
2478
2479 if (netif_running(netdev)) {
2480 err = igbvf_request_irq(adapter);
2481 if (err)
2482 return err;
2483 }
2484
2485 igbvf_reset(adapter);
2486
2487 if (netif_running(netdev))
2488 igbvf_up(adapter);
2489
2490 netif_device_attach(netdev);
2491
2492 return 0;
2493}
2494
2495static void igbvf_shutdown(struct pci_dev *pdev)
2496{
2497 igbvf_suspend(&pdev->dev);
2498}
2499
2500#ifdef CONFIG_NET_POLL_CONTROLLER
2501/* Polling 'interrupt' - used by things like netconsole to send skbs
2502 * without having to re-enable interrupts. It's not called while
2503 * the interrupt routine is executing.
2504 */
2505static void igbvf_netpoll(struct net_device *netdev)
2506{
2507 struct igbvf_adapter *adapter = netdev_priv(netdev);
2508
2509 disable_irq(adapter->pdev->irq);
2510
2511 igbvf_clean_tx_irq(adapter->tx_ring);
2512
2513 enable_irq(adapter->pdev->irq);
2514}
2515#endif
2516
2517/**
2518 * igbvf_io_error_detected - called when PCI error is detected
2519 * @pdev: Pointer to PCI device
2520 * @state: The current pci connection state
2521 *
2522 * This function is called after a PCI bus error affecting
2523 * this device has been detected.
2524 */
2525static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2526 pci_channel_state_t state)
2527{
2528 struct net_device *netdev = pci_get_drvdata(pdev);
2529 struct igbvf_adapter *adapter = netdev_priv(netdev);
2530
2531 netif_device_detach(netdev);
2532
2533 if (state == pci_channel_io_perm_failure)
2534 return PCI_ERS_RESULT_DISCONNECT;
2535
2536 if (netif_running(netdev))
2537 igbvf_down(adapter);
2538 pci_disable_device(pdev);
2539
2540 /* Request a slot reset. */
2541 return PCI_ERS_RESULT_NEED_RESET;
2542}
2543
2544/**
2545 * igbvf_io_slot_reset - called after the pci bus has been reset.
2546 * @pdev: Pointer to PCI device
2547 *
2548 * Restart the card from scratch, as if from a cold-boot. Implementation
2549 * resembles the first-half of the igbvf_resume routine.
2550 */
2551static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2552{
2553 struct net_device *netdev = pci_get_drvdata(pdev);
2554 struct igbvf_adapter *adapter = netdev_priv(netdev);
2555
2556 if (pci_enable_device_mem(pdev)) {
2557 dev_err(&pdev->dev,
2558 "Cannot re-enable PCI device after reset.\n");
2559 return PCI_ERS_RESULT_DISCONNECT;
2560 }
2561 pci_set_master(pdev);
2562
2563 igbvf_reset(adapter);
2564
2565 return PCI_ERS_RESULT_RECOVERED;
2566}
2567
2568/**
2569 * igbvf_io_resume - called when traffic can start flowing again.
2570 * @pdev: Pointer to PCI device
2571 *
2572 * This callback is called when the error recovery driver tells us that
2573 * its OK to resume normal operation. Implementation resembles the
2574 * second-half of the igbvf_resume routine.
2575 */
2576static void igbvf_io_resume(struct pci_dev *pdev)
2577{
2578 struct net_device *netdev = pci_get_drvdata(pdev);
2579 struct igbvf_adapter *adapter = netdev_priv(netdev);
2580
2581 if (netif_running(netdev)) {
2582 if (igbvf_up(adapter)) {
2583 dev_err(&pdev->dev,
2584 "can't bring device back up after reset\n");
2585 return;
2586 }
2587 }
2588
2589 netif_device_attach(netdev);
2590}
2591
2592static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2593{
2594 struct e1000_hw *hw = &adapter->hw;
2595 struct net_device *netdev = adapter->netdev;
2596 struct pci_dev *pdev = adapter->pdev;
2597
2598 if (hw->mac.type == e1000_vfadapt_i350)
2599 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2600 else
2601 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2602 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2603}
2604
2605static int igbvf_set_features(struct net_device *netdev,
2606 netdev_features_t features)
2607{
2608 struct igbvf_adapter *adapter = netdev_priv(netdev);
2609
2610 if (features & NETIF_F_RXCSUM)
2611 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2612 else
2613 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2614
2615 return 0;
2616}
2617
2618#define IGBVF_MAX_MAC_HDR_LEN 127
2619#define IGBVF_MAX_NETWORK_HDR_LEN 511
2620
2621static netdev_features_t
2622igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2623 netdev_features_t features)
2624{
2625 unsigned int network_hdr_len, mac_hdr_len;
2626
2627 /* Make certain the headers can be described by a context descriptor */
2628 mac_hdr_len = skb_network_header(skb) - skb->data;
2629 if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2630 return features & ~(NETIF_F_HW_CSUM |
2631 NETIF_F_SCTP_CRC |
2632 NETIF_F_HW_VLAN_CTAG_TX |
2633 NETIF_F_TSO |
2634 NETIF_F_TSO6);
2635
2636 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2637 if (unlikely(network_hdr_len > IGBVF_MAX_NETWORK_HDR_LEN))
2638 return features & ~(NETIF_F_HW_CSUM |
2639 NETIF_F_SCTP_CRC |
2640 NETIF_F_TSO |
2641 NETIF_F_TSO6);
2642
2643 /* We can only support IPV4 TSO in tunnels if we can mangle the
2644 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2645 */
2646 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2647 features &= ~NETIF_F_TSO;
2648
2649 return features;
2650}
2651
2652static const struct net_device_ops igbvf_netdev_ops = {
2653 .ndo_open = igbvf_open,
2654 .ndo_stop = igbvf_close,
2655 .ndo_start_xmit = igbvf_xmit_frame,
2656 .ndo_set_rx_mode = igbvf_set_rx_mode,
2657 .ndo_set_mac_address = igbvf_set_mac,
2658 .ndo_change_mtu = igbvf_change_mtu,
2659 .ndo_eth_ioctl = igbvf_ioctl,
2660 .ndo_tx_timeout = igbvf_tx_timeout,
2661 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2662 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2663#ifdef CONFIG_NET_POLL_CONTROLLER
2664 .ndo_poll_controller = igbvf_netpoll,
2665#endif
2666 .ndo_set_features = igbvf_set_features,
2667 .ndo_features_check = igbvf_features_check,
2668};
2669
2670/**
2671 * igbvf_probe - Device Initialization Routine
2672 * @pdev: PCI device information struct
2673 * @ent: entry in igbvf_pci_tbl
2674 *
2675 * Returns 0 on success, negative on failure
2676 *
2677 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2678 * The OS initialization, configuring of the adapter private structure,
2679 * and a hardware reset occur.
2680 **/
2681static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2682{
2683 struct net_device *netdev;
2684 struct igbvf_adapter *adapter;
2685 struct e1000_hw *hw;
2686 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2687 static int cards_found;
2688 int err;
2689
2690 err = pci_enable_device_mem(pdev);
2691 if (err)
2692 return err;
2693
2694 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2695 if (err) {
2696 dev_err(&pdev->dev,
2697 "No usable DMA configuration, aborting\n");
2698 goto err_dma;
2699 }
2700
2701 err = pci_request_regions(pdev, igbvf_driver_name);
2702 if (err)
2703 goto err_pci_reg;
2704
2705 pci_set_master(pdev);
2706
2707 err = -ENOMEM;
2708 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2709 if (!netdev)
2710 goto err_alloc_etherdev;
2711
2712 SET_NETDEV_DEV(netdev, &pdev->dev);
2713
2714 pci_set_drvdata(pdev, netdev);
2715 adapter = netdev_priv(netdev);
2716 hw = &adapter->hw;
2717 adapter->netdev = netdev;
2718 adapter->pdev = pdev;
2719 adapter->ei = ei;
2720 adapter->pba = ei->pba;
2721 adapter->flags = ei->flags;
2722 adapter->hw.back = adapter;
2723 adapter->hw.mac.type = ei->mac;
2724 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2725
2726 /* PCI config space info */
2727
2728 hw->vendor_id = pdev->vendor;
2729 hw->device_id = pdev->device;
2730 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2731 hw->subsystem_device_id = pdev->subsystem_device;
2732 hw->revision_id = pdev->revision;
2733
2734 err = -EIO;
2735 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2736 pci_resource_len(pdev, 0));
2737
2738 if (!adapter->hw.hw_addr)
2739 goto err_ioremap;
2740
2741 if (ei->get_variants) {
2742 err = ei->get_variants(adapter);
2743 if (err)
2744 goto err_get_variants;
2745 }
2746
2747 /* setup adapter struct */
2748 err = igbvf_sw_init(adapter);
2749 if (err)
2750 goto err_sw_init;
2751
2752 /* construct the net_device struct */
2753 netdev->netdev_ops = &igbvf_netdev_ops;
2754
2755 igbvf_set_ethtool_ops(netdev);
2756 netdev->watchdog_timeo = 5 * HZ;
2757 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2758
2759 adapter->bd_number = cards_found++;
2760
2761 netdev->hw_features = NETIF_F_SG |
2762 NETIF_F_TSO |
2763 NETIF_F_TSO6 |
2764 NETIF_F_RXCSUM |
2765 NETIF_F_HW_CSUM |
2766 NETIF_F_SCTP_CRC;
2767
2768#define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2769 NETIF_F_GSO_GRE_CSUM | \
2770 NETIF_F_GSO_IPXIP4 | \
2771 NETIF_F_GSO_IPXIP6 | \
2772 NETIF_F_GSO_UDP_TUNNEL | \
2773 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2774
2775 netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2776 netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2777 IGBVF_GSO_PARTIAL_FEATURES;
2778
2779 netdev->features = netdev->hw_features | NETIF_F_HIGHDMA;
2780
2781 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2782 netdev->mpls_features |= NETIF_F_HW_CSUM;
2783 netdev->hw_enc_features |= netdev->vlan_features;
2784
2785 /* set this bit last since it cannot be part of vlan_features */
2786 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2787 NETIF_F_HW_VLAN_CTAG_RX |
2788 NETIF_F_HW_VLAN_CTAG_TX;
2789
2790 /* MTU range: 68 - 9216 */
2791 netdev->min_mtu = ETH_MIN_MTU;
2792 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2793
2794 spin_lock_bh(&hw->mbx_lock);
2795
2796 /*reset the controller to put the device in a known good state */
2797 err = hw->mac.ops.reset_hw(hw);
2798 if (err) {
2799 dev_info(&pdev->dev,
2800 "PF still in reset state. Is the PF interface up?\n");
2801 } else {
2802 err = hw->mac.ops.read_mac_addr(hw);
2803 if (err)
2804 dev_info(&pdev->dev, "Error reading MAC address.\n");
2805 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2806 dev_info(&pdev->dev,
2807 "MAC address not assigned by administrator.\n");
2808 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2809 }
2810
2811 spin_unlock_bh(&hw->mbx_lock);
2812
2813 if (!is_valid_ether_addr(netdev->dev_addr)) {
2814 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2815 eth_hw_addr_random(netdev);
2816 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2817 netdev->addr_len);
2818 }
2819
2820 timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
2821
2822 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2823 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2824
2825 /* ring size defaults */
2826 adapter->rx_ring->count = 1024;
2827 adapter->tx_ring->count = 1024;
2828
2829 /* reset the hardware with the new settings */
2830 igbvf_reset(adapter);
2831
2832 /* set hardware-specific flags */
2833 if (adapter->hw.mac.type == e1000_vfadapt_i350)
2834 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2835
2836 strcpy(netdev->name, "eth%d");
2837 err = register_netdev(netdev);
2838 if (err)
2839 goto err_hw_init;
2840
2841 /* tell the stack to leave us alone until igbvf_open() is called */
2842 netif_carrier_off(netdev);
2843 netif_stop_queue(netdev);
2844
2845 igbvf_print_device_info(adapter);
2846
2847 igbvf_initialize_last_counter_stats(adapter);
2848
2849 return 0;
2850
2851err_hw_init:
2852 netif_napi_del(&adapter->rx_ring->napi);
2853 kfree(adapter->tx_ring);
2854 kfree(adapter->rx_ring);
2855err_sw_init:
2856 igbvf_reset_interrupt_capability(adapter);
2857err_get_variants:
2858 iounmap(adapter->hw.hw_addr);
2859err_ioremap:
2860 free_netdev(netdev);
2861err_alloc_etherdev:
2862 pci_release_regions(pdev);
2863err_pci_reg:
2864err_dma:
2865 pci_disable_device(pdev);
2866 return err;
2867}
2868
2869/**
2870 * igbvf_remove - Device Removal Routine
2871 * @pdev: PCI device information struct
2872 *
2873 * igbvf_remove is called by the PCI subsystem to alert the driver
2874 * that it should release a PCI device. The could be caused by a
2875 * Hot-Plug event, or because the driver is going to be removed from
2876 * memory.
2877 **/
2878static void igbvf_remove(struct pci_dev *pdev)
2879{
2880 struct net_device *netdev = pci_get_drvdata(pdev);
2881 struct igbvf_adapter *adapter = netdev_priv(netdev);
2882 struct e1000_hw *hw = &adapter->hw;
2883
2884 /* The watchdog timer may be rescheduled, so explicitly
2885 * disable it from being rescheduled.
2886 */
2887 set_bit(__IGBVF_DOWN, &adapter->state);
2888 del_timer_sync(&adapter->watchdog_timer);
2889
2890 cancel_work_sync(&adapter->reset_task);
2891 cancel_work_sync(&adapter->watchdog_task);
2892
2893 unregister_netdev(netdev);
2894
2895 igbvf_reset_interrupt_capability(adapter);
2896
2897 /* it is important to delete the NAPI struct prior to freeing the
2898 * Rx ring so that you do not end up with null pointer refs
2899 */
2900 netif_napi_del(&adapter->rx_ring->napi);
2901 kfree(adapter->tx_ring);
2902 kfree(adapter->rx_ring);
2903
2904 iounmap(hw->hw_addr);
2905 if (hw->flash_address)
2906 iounmap(hw->flash_address);
2907 pci_release_regions(pdev);
2908
2909 free_netdev(netdev);
2910
2911 pci_disable_device(pdev);
2912}
2913
2914/* PCI Error Recovery (ERS) */
2915static const struct pci_error_handlers igbvf_err_handler = {
2916 .error_detected = igbvf_io_error_detected,
2917 .slot_reset = igbvf_io_slot_reset,
2918 .resume = igbvf_io_resume,
2919};
2920
2921static const struct pci_device_id igbvf_pci_tbl[] = {
2922 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2923 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2924 { } /* terminate list */
2925};
2926MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2927
2928static SIMPLE_DEV_PM_OPS(igbvf_pm_ops, igbvf_suspend, igbvf_resume);
2929
2930/* PCI Device API Driver */
2931static struct pci_driver igbvf_driver = {
2932 .name = igbvf_driver_name,
2933 .id_table = igbvf_pci_tbl,
2934 .probe = igbvf_probe,
2935 .remove = igbvf_remove,
2936 .driver.pm = &igbvf_pm_ops,
2937 .shutdown = igbvf_shutdown,
2938 .err_handler = &igbvf_err_handler
2939};
2940
2941/**
2942 * igbvf_init_module - Driver Registration Routine
2943 *
2944 * igbvf_init_module is the first routine called when the driver is
2945 * loaded. All it does is register with the PCI subsystem.
2946 **/
2947static int __init igbvf_init_module(void)
2948{
2949 int ret;
2950
2951 pr_info("%s\n", igbvf_driver_string);
2952 pr_info("%s\n", igbvf_copyright);
2953
2954 ret = pci_register_driver(&igbvf_driver);
2955
2956 return ret;
2957}
2958module_init(igbvf_init_module);
2959
2960/**
2961 * igbvf_exit_module - Driver Exit Cleanup Routine
2962 *
2963 * igbvf_exit_module is called just before the driver is removed
2964 * from memory.
2965 **/
2966static void __exit igbvf_exit_module(void)
2967{
2968 pci_unregister_driver(&igbvf_driver);
2969}
2970module_exit(igbvf_exit_module);
2971
2972MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2973MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2974MODULE_LICENSE("GPL v2");
2975
2976/* netdev.c */
1// SPDX-License-Identifier: GPL-2.0
2/*******************************************************************************
3
4 Intel(R) 82576 Virtual Function Linux driver
5 Copyright(c) 2009 - 2012 Intel Corporation.
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, see <http://www.gnu.org/licenses/>.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
33#include <linux/pci.h>
34#include <linux/vmalloc.h>
35#include <linux/pagemap.h>
36#include <linux/delay.h>
37#include <linux/netdevice.h>
38#include <linux/tcp.h>
39#include <linux/ipv6.h>
40#include <linux/slab.h>
41#include <net/checksum.h>
42#include <net/ip6_checksum.h>
43#include <linux/mii.h>
44#include <linux/ethtool.h>
45#include <linux/if_vlan.h>
46#include <linux/prefetch.h>
47#include <linux/sctp.h>
48
49#include "igbvf.h"
50
51#define DRV_VERSION "2.4.0-k"
52char igbvf_driver_name[] = "igbvf";
53const char igbvf_driver_version[] = DRV_VERSION;
54static const char igbvf_driver_string[] =
55 "Intel(R) Gigabit Virtual Function Network Driver";
56static const char igbvf_copyright[] =
57 "Copyright (c) 2009 - 2012 Intel Corporation.";
58
59#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
60static int debug = -1;
61module_param(debug, int, 0);
62MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
63
64static int igbvf_poll(struct napi_struct *napi, int budget);
65static void igbvf_reset(struct igbvf_adapter *);
66static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
67static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
68
69static struct igbvf_info igbvf_vf_info = {
70 .mac = e1000_vfadapt,
71 .flags = 0,
72 .pba = 10,
73 .init_ops = e1000_init_function_pointers_vf,
74};
75
76static struct igbvf_info igbvf_i350_vf_info = {
77 .mac = e1000_vfadapt_i350,
78 .flags = 0,
79 .pba = 10,
80 .init_ops = e1000_init_function_pointers_vf,
81};
82
83static const struct igbvf_info *igbvf_info_tbl[] = {
84 [board_vf] = &igbvf_vf_info,
85 [board_i350_vf] = &igbvf_i350_vf_info,
86};
87
88/**
89 * igbvf_desc_unused - calculate if we have unused descriptors
90 * @rx_ring: address of receive ring structure
91 **/
92static int igbvf_desc_unused(struct igbvf_ring *ring)
93{
94 if (ring->next_to_clean > ring->next_to_use)
95 return ring->next_to_clean - ring->next_to_use - 1;
96
97 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
98}
99
100/**
101 * igbvf_receive_skb - helper function to handle Rx indications
102 * @adapter: board private structure
103 * @status: descriptor status field as written by hardware
104 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
105 * @skb: pointer to sk_buff to be indicated to stack
106 **/
107static void igbvf_receive_skb(struct igbvf_adapter *adapter,
108 struct net_device *netdev,
109 struct sk_buff *skb,
110 u32 status, u16 vlan)
111{
112 u16 vid;
113
114 if (status & E1000_RXD_STAT_VP) {
115 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
116 (status & E1000_RXDEXT_STATERR_LB))
117 vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
118 else
119 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
120 if (test_bit(vid, adapter->active_vlans))
121 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
122 }
123
124 napi_gro_receive(&adapter->rx_ring->napi, skb);
125}
126
127static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
128 u32 status_err, struct sk_buff *skb)
129{
130 skb_checksum_none_assert(skb);
131
132 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
133 if ((status_err & E1000_RXD_STAT_IXSM) ||
134 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
135 return;
136
137 /* TCP/UDP checksum error bit is set */
138 if (status_err &
139 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
140 /* let the stack verify checksum errors */
141 adapter->hw_csum_err++;
142 return;
143 }
144
145 /* It must be a TCP or UDP packet with a valid checksum */
146 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
147 skb->ip_summed = CHECKSUM_UNNECESSARY;
148
149 adapter->hw_csum_good++;
150}
151
152/**
153 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
154 * @rx_ring: address of ring structure to repopulate
155 * @cleaned_count: number of buffers to repopulate
156 **/
157static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
158 int cleaned_count)
159{
160 struct igbvf_adapter *adapter = rx_ring->adapter;
161 struct net_device *netdev = adapter->netdev;
162 struct pci_dev *pdev = adapter->pdev;
163 union e1000_adv_rx_desc *rx_desc;
164 struct igbvf_buffer *buffer_info;
165 struct sk_buff *skb;
166 unsigned int i;
167 int bufsz;
168
169 i = rx_ring->next_to_use;
170 buffer_info = &rx_ring->buffer_info[i];
171
172 if (adapter->rx_ps_hdr_size)
173 bufsz = adapter->rx_ps_hdr_size;
174 else
175 bufsz = adapter->rx_buffer_len;
176
177 while (cleaned_count--) {
178 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
179
180 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
181 if (!buffer_info->page) {
182 buffer_info->page = alloc_page(GFP_ATOMIC);
183 if (!buffer_info->page) {
184 adapter->alloc_rx_buff_failed++;
185 goto no_buffers;
186 }
187 buffer_info->page_offset = 0;
188 } else {
189 buffer_info->page_offset ^= PAGE_SIZE / 2;
190 }
191 buffer_info->page_dma =
192 dma_map_page(&pdev->dev, buffer_info->page,
193 buffer_info->page_offset,
194 PAGE_SIZE / 2,
195 DMA_FROM_DEVICE);
196 if (dma_mapping_error(&pdev->dev,
197 buffer_info->page_dma)) {
198 __free_page(buffer_info->page);
199 buffer_info->page = NULL;
200 dev_err(&pdev->dev, "RX DMA map failed\n");
201 break;
202 }
203 }
204
205 if (!buffer_info->skb) {
206 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
207 if (!skb) {
208 adapter->alloc_rx_buff_failed++;
209 goto no_buffers;
210 }
211
212 buffer_info->skb = skb;
213 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
214 bufsz,
215 DMA_FROM_DEVICE);
216 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
217 dev_kfree_skb(buffer_info->skb);
218 buffer_info->skb = NULL;
219 dev_err(&pdev->dev, "RX DMA map failed\n");
220 goto no_buffers;
221 }
222 }
223 /* Refresh the desc even if buffer_addrs didn't change because
224 * each write-back erases this info.
225 */
226 if (adapter->rx_ps_hdr_size) {
227 rx_desc->read.pkt_addr =
228 cpu_to_le64(buffer_info->page_dma);
229 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
230 } else {
231 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
232 rx_desc->read.hdr_addr = 0;
233 }
234
235 i++;
236 if (i == rx_ring->count)
237 i = 0;
238 buffer_info = &rx_ring->buffer_info[i];
239 }
240
241no_buffers:
242 if (rx_ring->next_to_use != i) {
243 rx_ring->next_to_use = i;
244 if (i == 0)
245 i = (rx_ring->count - 1);
246 else
247 i--;
248
249 /* Force memory writes to complete before letting h/w
250 * know there are new descriptors to fetch. (Only
251 * applicable for weak-ordered memory model archs,
252 * such as IA-64).
253 */
254 wmb();
255 writel(i, adapter->hw.hw_addr + rx_ring->tail);
256 }
257}
258
259/**
260 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
261 * @adapter: board private structure
262 *
263 * the return value indicates whether actual cleaning was done, there
264 * is no guarantee that everything was cleaned
265 **/
266static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
267 int *work_done, int work_to_do)
268{
269 struct igbvf_ring *rx_ring = adapter->rx_ring;
270 struct net_device *netdev = adapter->netdev;
271 struct pci_dev *pdev = adapter->pdev;
272 union e1000_adv_rx_desc *rx_desc, *next_rxd;
273 struct igbvf_buffer *buffer_info, *next_buffer;
274 struct sk_buff *skb;
275 bool cleaned = false;
276 int cleaned_count = 0;
277 unsigned int total_bytes = 0, total_packets = 0;
278 unsigned int i;
279 u32 length, hlen, staterr;
280
281 i = rx_ring->next_to_clean;
282 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
283 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
284
285 while (staterr & E1000_RXD_STAT_DD) {
286 if (*work_done >= work_to_do)
287 break;
288 (*work_done)++;
289 rmb(); /* read descriptor and rx_buffer_info after status DD */
290
291 buffer_info = &rx_ring->buffer_info[i];
292
293 /* HW will not DMA in data larger than the given buffer, even
294 * if it parses the (NFS, of course) header to be larger. In
295 * that case, it fills the header buffer and spills the rest
296 * into the page.
297 */
298 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
299 & E1000_RXDADV_HDRBUFLEN_MASK) >>
300 E1000_RXDADV_HDRBUFLEN_SHIFT;
301 if (hlen > adapter->rx_ps_hdr_size)
302 hlen = adapter->rx_ps_hdr_size;
303
304 length = le16_to_cpu(rx_desc->wb.upper.length);
305 cleaned = true;
306 cleaned_count++;
307
308 skb = buffer_info->skb;
309 prefetch(skb->data - NET_IP_ALIGN);
310 buffer_info->skb = NULL;
311 if (!adapter->rx_ps_hdr_size) {
312 dma_unmap_single(&pdev->dev, buffer_info->dma,
313 adapter->rx_buffer_len,
314 DMA_FROM_DEVICE);
315 buffer_info->dma = 0;
316 skb_put(skb, length);
317 goto send_up;
318 }
319
320 if (!skb_shinfo(skb)->nr_frags) {
321 dma_unmap_single(&pdev->dev, buffer_info->dma,
322 adapter->rx_ps_hdr_size,
323 DMA_FROM_DEVICE);
324 buffer_info->dma = 0;
325 skb_put(skb, hlen);
326 }
327
328 if (length) {
329 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
330 PAGE_SIZE / 2,
331 DMA_FROM_DEVICE);
332 buffer_info->page_dma = 0;
333
334 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
335 buffer_info->page,
336 buffer_info->page_offset,
337 length);
338
339 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
340 (page_count(buffer_info->page) != 1))
341 buffer_info->page = NULL;
342 else
343 get_page(buffer_info->page);
344
345 skb->len += length;
346 skb->data_len += length;
347 skb->truesize += PAGE_SIZE / 2;
348 }
349send_up:
350 i++;
351 if (i == rx_ring->count)
352 i = 0;
353 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
354 prefetch(next_rxd);
355 next_buffer = &rx_ring->buffer_info[i];
356
357 if (!(staterr & E1000_RXD_STAT_EOP)) {
358 buffer_info->skb = next_buffer->skb;
359 buffer_info->dma = next_buffer->dma;
360 next_buffer->skb = skb;
361 next_buffer->dma = 0;
362 goto next_desc;
363 }
364
365 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
366 dev_kfree_skb_irq(skb);
367 goto next_desc;
368 }
369
370 total_bytes += skb->len;
371 total_packets++;
372
373 igbvf_rx_checksum_adv(adapter, staterr, skb);
374
375 skb->protocol = eth_type_trans(skb, netdev);
376
377 igbvf_receive_skb(adapter, netdev, skb, staterr,
378 rx_desc->wb.upper.vlan);
379
380next_desc:
381 rx_desc->wb.upper.status_error = 0;
382
383 /* return some buffers to hardware, one at a time is too slow */
384 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
385 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
386 cleaned_count = 0;
387 }
388
389 /* use prefetched values */
390 rx_desc = next_rxd;
391 buffer_info = next_buffer;
392
393 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
394 }
395
396 rx_ring->next_to_clean = i;
397 cleaned_count = igbvf_desc_unused(rx_ring);
398
399 if (cleaned_count)
400 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
401
402 adapter->total_rx_packets += total_packets;
403 adapter->total_rx_bytes += total_bytes;
404 netdev->stats.rx_bytes += total_bytes;
405 netdev->stats.rx_packets += total_packets;
406 return cleaned;
407}
408
409static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
410 struct igbvf_buffer *buffer_info)
411{
412 if (buffer_info->dma) {
413 if (buffer_info->mapped_as_page)
414 dma_unmap_page(&adapter->pdev->dev,
415 buffer_info->dma,
416 buffer_info->length,
417 DMA_TO_DEVICE);
418 else
419 dma_unmap_single(&adapter->pdev->dev,
420 buffer_info->dma,
421 buffer_info->length,
422 DMA_TO_DEVICE);
423 buffer_info->dma = 0;
424 }
425 if (buffer_info->skb) {
426 dev_kfree_skb_any(buffer_info->skb);
427 buffer_info->skb = NULL;
428 }
429 buffer_info->time_stamp = 0;
430}
431
432/**
433 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
434 * @adapter: board private structure
435 *
436 * Return 0 on success, negative on failure
437 **/
438int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
439 struct igbvf_ring *tx_ring)
440{
441 struct pci_dev *pdev = adapter->pdev;
442 int size;
443
444 size = sizeof(struct igbvf_buffer) * tx_ring->count;
445 tx_ring->buffer_info = vzalloc(size);
446 if (!tx_ring->buffer_info)
447 goto err;
448
449 /* round up to nearest 4K */
450 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
451 tx_ring->size = ALIGN(tx_ring->size, 4096);
452
453 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
454 &tx_ring->dma, GFP_KERNEL);
455 if (!tx_ring->desc)
456 goto err;
457
458 tx_ring->adapter = adapter;
459 tx_ring->next_to_use = 0;
460 tx_ring->next_to_clean = 0;
461
462 return 0;
463err:
464 vfree(tx_ring->buffer_info);
465 dev_err(&adapter->pdev->dev,
466 "Unable to allocate memory for the transmit descriptor ring\n");
467 return -ENOMEM;
468}
469
470/**
471 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
472 * @adapter: board private structure
473 *
474 * Returns 0 on success, negative on failure
475 **/
476int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
477 struct igbvf_ring *rx_ring)
478{
479 struct pci_dev *pdev = adapter->pdev;
480 int size, desc_len;
481
482 size = sizeof(struct igbvf_buffer) * rx_ring->count;
483 rx_ring->buffer_info = vzalloc(size);
484 if (!rx_ring->buffer_info)
485 goto err;
486
487 desc_len = sizeof(union e1000_adv_rx_desc);
488
489 /* Round up to nearest 4K */
490 rx_ring->size = rx_ring->count * desc_len;
491 rx_ring->size = ALIGN(rx_ring->size, 4096);
492
493 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
494 &rx_ring->dma, GFP_KERNEL);
495 if (!rx_ring->desc)
496 goto err;
497
498 rx_ring->next_to_clean = 0;
499 rx_ring->next_to_use = 0;
500
501 rx_ring->adapter = adapter;
502
503 return 0;
504
505err:
506 vfree(rx_ring->buffer_info);
507 rx_ring->buffer_info = NULL;
508 dev_err(&adapter->pdev->dev,
509 "Unable to allocate memory for the receive descriptor ring\n");
510 return -ENOMEM;
511}
512
513/**
514 * igbvf_clean_tx_ring - Free Tx Buffers
515 * @tx_ring: ring to be cleaned
516 **/
517static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
518{
519 struct igbvf_adapter *adapter = tx_ring->adapter;
520 struct igbvf_buffer *buffer_info;
521 unsigned long size;
522 unsigned int i;
523
524 if (!tx_ring->buffer_info)
525 return;
526
527 /* Free all the Tx ring sk_buffs */
528 for (i = 0; i < tx_ring->count; i++) {
529 buffer_info = &tx_ring->buffer_info[i];
530 igbvf_put_txbuf(adapter, buffer_info);
531 }
532
533 size = sizeof(struct igbvf_buffer) * tx_ring->count;
534 memset(tx_ring->buffer_info, 0, size);
535
536 /* Zero out the descriptor ring */
537 memset(tx_ring->desc, 0, tx_ring->size);
538
539 tx_ring->next_to_use = 0;
540 tx_ring->next_to_clean = 0;
541
542 writel(0, adapter->hw.hw_addr + tx_ring->head);
543 writel(0, adapter->hw.hw_addr + tx_ring->tail);
544}
545
546/**
547 * igbvf_free_tx_resources - Free Tx Resources per Queue
548 * @tx_ring: ring to free resources from
549 *
550 * Free all transmit software resources
551 **/
552void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
553{
554 struct pci_dev *pdev = tx_ring->adapter->pdev;
555
556 igbvf_clean_tx_ring(tx_ring);
557
558 vfree(tx_ring->buffer_info);
559 tx_ring->buffer_info = NULL;
560
561 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
562 tx_ring->dma);
563
564 tx_ring->desc = NULL;
565}
566
567/**
568 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
569 * @adapter: board private structure
570 **/
571static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
572{
573 struct igbvf_adapter *adapter = rx_ring->adapter;
574 struct igbvf_buffer *buffer_info;
575 struct pci_dev *pdev = adapter->pdev;
576 unsigned long size;
577 unsigned int i;
578
579 if (!rx_ring->buffer_info)
580 return;
581
582 /* Free all the Rx ring sk_buffs */
583 for (i = 0; i < rx_ring->count; i++) {
584 buffer_info = &rx_ring->buffer_info[i];
585 if (buffer_info->dma) {
586 if (adapter->rx_ps_hdr_size) {
587 dma_unmap_single(&pdev->dev, buffer_info->dma,
588 adapter->rx_ps_hdr_size,
589 DMA_FROM_DEVICE);
590 } else {
591 dma_unmap_single(&pdev->dev, buffer_info->dma,
592 adapter->rx_buffer_len,
593 DMA_FROM_DEVICE);
594 }
595 buffer_info->dma = 0;
596 }
597
598 if (buffer_info->skb) {
599 dev_kfree_skb(buffer_info->skb);
600 buffer_info->skb = NULL;
601 }
602
603 if (buffer_info->page) {
604 if (buffer_info->page_dma)
605 dma_unmap_page(&pdev->dev,
606 buffer_info->page_dma,
607 PAGE_SIZE / 2,
608 DMA_FROM_DEVICE);
609 put_page(buffer_info->page);
610 buffer_info->page = NULL;
611 buffer_info->page_dma = 0;
612 buffer_info->page_offset = 0;
613 }
614 }
615
616 size = sizeof(struct igbvf_buffer) * rx_ring->count;
617 memset(rx_ring->buffer_info, 0, size);
618
619 /* Zero out the descriptor ring */
620 memset(rx_ring->desc, 0, rx_ring->size);
621
622 rx_ring->next_to_clean = 0;
623 rx_ring->next_to_use = 0;
624
625 writel(0, adapter->hw.hw_addr + rx_ring->head);
626 writel(0, adapter->hw.hw_addr + rx_ring->tail);
627}
628
629/**
630 * igbvf_free_rx_resources - Free Rx Resources
631 * @rx_ring: ring to clean the resources from
632 *
633 * Free all receive software resources
634 **/
635
636void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
637{
638 struct pci_dev *pdev = rx_ring->adapter->pdev;
639
640 igbvf_clean_rx_ring(rx_ring);
641
642 vfree(rx_ring->buffer_info);
643 rx_ring->buffer_info = NULL;
644
645 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
646 rx_ring->dma);
647 rx_ring->desc = NULL;
648}
649
650/**
651 * igbvf_update_itr - update the dynamic ITR value based on statistics
652 * @adapter: pointer to adapter
653 * @itr_setting: current adapter->itr
654 * @packets: the number of packets during this measurement interval
655 * @bytes: the number of bytes during this measurement interval
656 *
657 * Stores a new ITR value based on packets and byte counts during the last
658 * interrupt. The advantage of per interrupt computation is faster updates
659 * and more accurate ITR for the current traffic pattern. Constants in this
660 * function were computed based on theoretical maximum wire speed and thresholds
661 * were set based on testing data as well as attempting to minimize response
662 * time while increasing bulk throughput.
663 **/
664static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
665 enum latency_range itr_setting,
666 int packets, int bytes)
667{
668 enum latency_range retval = itr_setting;
669
670 if (packets == 0)
671 goto update_itr_done;
672
673 switch (itr_setting) {
674 case lowest_latency:
675 /* handle TSO and jumbo frames */
676 if (bytes/packets > 8000)
677 retval = bulk_latency;
678 else if ((packets < 5) && (bytes > 512))
679 retval = low_latency;
680 break;
681 case low_latency: /* 50 usec aka 20000 ints/s */
682 if (bytes > 10000) {
683 /* this if handles the TSO accounting */
684 if (bytes/packets > 8000)
685 retval = bulk_latency;
686 else if ((packets < 10) || ((bytes/packets) > 1200))
687 retval = bulk_latency;
688 else if ((packets > 35))
689 retval = lowest_latency;
690 } else if (bytes/packets > 2000) {
691 retval = bulk_latency;
692 } else if (packets <= 2 && bytes < 512) {
693 retval = lowest_latency;
694 }
695 break;
696 case bulk_latency: /* 250 usec aka 4000 ints/s */
697 if (bytes > 25000) {
698 if (packets > 35)
699 retval = low_latency;
700 } else if (bytes < 6000) {
701 retval = low_latency;
702 }
703 break;
704 default:
705 break;
706 }
707
708update_itr_done:
709 return retval;
710}
711
712static int igbvf_range_to_itr(enum latency_range current_range)
713{
714 int new_itr;
715
716 switch (current_range) {
717 /* counts and packets in update_itr are dependent on these numbers */
718 case lowest_latency:
719 new_itr = IGBVF_70K_ITR;
720 break;
721 case low_latency:
722 new_itr = IGBVF_20K_ITR;
723 break;
724 case bulk_latency:
725 new_itr = IGBVF_4K_ITR;
726 break;
727 default:
728 new_itr = IGBVF_START_ITR;
729 break;
730 }
731 return new_itr;
732}
733
734static void igbvf_set_itr(struct igbvf_adapter *adapter)
735{
736 u32 new_itr;
737
738 adapter->tx_ring->itr_range =
739 igbvf_update_itr(adapter,
740 adapter->tx_ring->itr_val,
741 adapter->total_tx_packets,
742 adapter->total_tx_bytes);
743
744 /* conservative mode (itr 3) eliminates the lowest_latency setting */
745 if (adapter->requested_itr == 3 &&
746 adapter->tx_ring->itr_range == lowest_latency)
747 adapter->tx_ring->itr_range = low_latency;
748
749 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
750
751 if (new_itr != adapter->tx_ring->itr_val) {
752 u32 current_itr = adapter->tx_ring->itr_val;
753 /* this attempts to bias the interrupt rate towards Bulk
754 * by adding intermediate steps when interrupt rate is
755 * increasing
756 */
757 new_itr = new_itr > current_itr ?
758 min(current_itr + (new_itr >> 2), new_itr) :
759 new_itr;
760 adapter->tx_ring->itr_val = new_itr;
761
762 adapter->tx_ring->set_itr = 1;
763 }
764
765 adapter->rx_ring->itr_range =
766 igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
767 adapter->total_rx_packets,
768 adapter->total_rx_bytes);
769 if (adapter->requested_itr == 3 &&
770 adapter->rx_ring->itr_range == lowest_latency)
771 adapter->rx_ring->itr_range = low_latency;
772
773 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
774
775 if (new_itr != adapter->rx_ring->itr_val) {
776 u32 current_itr = adapter->rx_ring->itr_val;
777
778 new_itr = new_itr > current_itr ?
779 min(current_itr + (new_itr >> 2), new_itr) :
780 new_itr;
781 adapter->rx_ring->itr_val = new_itr;
782
783 adapter->rx_ring->set_itr = 1;
784 }
785}
786
787/**
788 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
789 * @adapter: board private structure
790 *
791 * returns true if ring is completely cleaned
792 **/
793static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
794{
795 struct igbvf_adapter *adapter = tx_ring->adapter;
796 struct net_device *netdev = adapter->netdev;
797 struct igbvf_buffer *buffer_info;
798 struct sk_buff *skb;
799 union e1000_adv_tx_desc *tx_desc, *eop_desc;
800 unsigned int total_bytes = 0, total_packets = 0;
801 unsigned int i, count = 0;
802 bool cleaned = false;
803
804 i = tx_ring->next_to_clean;
805 buffer_info = &tx_ring->buffer_info[i];
806 eop_desc = buffer_info->next_to_watch;
807
808 do {
809 /* if next_to_watch is not set then there is no work pending */
810 if (!eop_desc)
811 break;
812
813 /* prevent any other reads prior to eop_desc */
814 smp_rmb();
815
816 /* if DD is not set pending work has not been completed */
817 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
818 break;
819
820 /* clear next_to_watch to prevent false hangs */
821 buffer_info->next_to_watch = NULL;
822
823 for (cleaned = false; !cleaned; count++) {
824 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
825 cleaned = (tx_desc == eop_desc);
826 skb = buffer_info->skb;
827
828 if (skb) {
829 unsigned int segs, bytecount;
830
831 /* gso_segs is currently only valid for tcp */
832 segs = skb_shinfo(skb)->gso_segs ?: 1;
833 /* multiply data chunks by size of headers */
834 bytecount = ((segs - 1) * skb_headlen(skb)) +
835 skb->len;
836 total_packets += segs;
837 total_bytes += bytecount;
838 }
839
840 igbvf_put_txbuf(adapter, buffer_info);
841 tx_desc->wb.status = 0;
842
843 i++;
844 if (i == tx_ring->count)
845 i = 0;
846
847 buffer_info = &tx_ring->buffer_info[i];
848 }
849
850 eop_desc = buffer_info->next_to_watch;
851 } while (count < tx_ring->count);
852
853 tx_ring->next_to_clean = i;
854
855 if (unlikely(count && netif_carrier_ok(netdev) &&
856 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
857 /* Make sure that anybody stopping the queue after this
858 * sees the new next_to_clean.
859 */
860 smp_mb();
861 if (netif_queue_stopped(netdev) &&
862 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
863 netif_wake_queue(netdev);
864 ++adapter->restart_queue;
865 }
866 }
867
868 netdev->stats.tx_bytes += total_bytes;
869 netdev->stats.tx_packets += total_packets;
870 return count < tx_ring->count;
871}
872
873static irqreturn_t igbvf_msix_other(int irq, void *data)
874{
875 struct net_device *netdev = data;
876 struct igbvf_adapter *adapter = netdev_priv(netdev);
877 struct e1000_hw *hw = &adapter->hw;
878
879 adapter->int_counter1++;
880
881 hw->mac.get_link_status = 1;
882 if (!test_bit(__IGBVF_DOWN, &adapter->state))
883 mod_timer(&adapter->watchdog_timer, jiffies + 1);
884
885 ew32(EIMS, adapter->eims_other);
886
887 return IRQ_HANDLED;
888}
889
890static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
891{
892 struct net_device *netdev = data;
893 struct igbvf_adapter *adapter = netdev_priv(netdev);
894 struct e1000_hw *hw = &adapter->hw;
895 struct igbvf_ring *tx_ring = adapter->tx_ring;
896
897 if (tx_ring->set_itr) {
898 writel(tx_ring->itr_val,
899 adapter->hw.hw_addr + tx_ring->itr_register);
900 adapter->tx_ring->set_itr = 0;
901 }
902
903 adapter->total_tx_bytes = 0;
904 adapter->total_tx_packets = 0;
905
906 /* auto mask will automatically re-enable the interrupt when we write
907 * EICS
908 */
909 if (!igbvf_clean_tx_irq(tx_ring))
910 /* Ring was not completely cleaned, so fire another interrupt */
911 ew32(EICS, tx_ring->eims_value);
912 else
913 ew32(EIMS, tx_ring->eims_value);
914
915 return IRQ_HANDLED;
916}
917
918static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
919{
920 struct net_device *netdev = data;
921 struct igbvf_adapter *adapter = netdev_priv(netdev);
922
923 adapter->int_counter0++;
924
925 /* Write the ITR value calculated at the end of the
926 * previous interrupt.
927 */
928 if (adapter->rx_ring->set_itr) {
929 writel(adapter->rx_ring->itr_val,
930 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
931 adapter->rx_ring->set_itr = 0;
932 }
933
934 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
935 adapter->total_rx_bytes = 0;
936 adapter->total_rx_packets = 0;
937 __napi_schedule(&adapter->rx_ring->napi);
938 }
939
940 return IRQ_HANDLED;
941}
942
943#define IGBVF_NO_QUEUE -1
944
945static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
946 int tx_queue, int msix_vector)
947{
948 struct e1000_hw *hw = &adapter->hw;
949 u32 ivar, index;
950
951 /* 82576 uses a table-based method for assigning vectors.
952 * Each queue has a single entry in the table to which we write
953 * a vector number along with a "valid" bit. Sadly, the layout
954 * of the table is somewhat counterintuitive.
955 */
956 if (rx_queue > IGBVF_NO_QUEUE) {
957 index = (rx_queue >> 1);
958 ivar = array_er32(IVAR0, index);
959 if (rx_queue & 0x1) {
960 /* vector goes into third byte of register */
961 ivar = ivar & 0xFF00FFFF;
962 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
963 } else {
964 /* vector goes into low byte of register */
965 ivar = ivar & 0xFFFFFF00;
966 ivar |= msix_vector | E1000_IVAR_VALID;
967 }
968 adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
969 array_ew32(IVAR0, index, ivar);
970 }
971 if (tx_queue > IGBVF_NO_QUEUE) {
972 index = (tx_queue >> 1);
973 ivar = array_er32(IVAR0, index);
974 if (tx_queue & 0x1) {
975 /* vector goes into high byte of register */
976 ivar = ivar & 0x00FFFFFF;
977 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
978 } else {
979 /* vector goes into second byte of register */
980 ivar = ivar & 0xFFFF00FF;
981 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
982 }
983 adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
984 array_ew32(IVAR0, index, ivar);
985 }
986}
987
988/**
989 * igbvf_configure_msix - Configure MSI-X hardware
990 * @adapter: board private structure
991 *
992 * igbvf_configure_msix sets up the hardware to properly
993 * generate MSI-X interrupts.
994 **/
995static void igbvf_configure_msix(struct igbvf_adapter *adapter)
996{
997 u32 tmp;
998 struct e1000_hw *hw = &adapter->hw;
999 struct igbvf_ring *tx_ring = adapter->tx_ring;
1000 struct igbvf_ring *rx_ring = adapter->rx_ring;
1001 int vector = 0;
1002
1003 adapter->eims_enable_mask = 0;
1004
1005 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
1006 adapter->eims_enable_mask |= tx_ring->eims_value;
1007 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
1008 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
1009 adapter->eims_enable_mask |= rx_ring->eims_value;
1010 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
1011
1012 /* set vector for other causes, i.e. link changes */
1013
1014 tmp = (vector++ | E1000_IVAR_VALID);
1015
1016 ew32(IVAR_MISC, tmp);
1017
1018 adapter->eims_enable_mask = GENMASK(vector - 1, 0);
1019 adapter->eims_other = BIT(vector - 1);
1020 e1e_flush();
1021}
1022
1023static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1024{
1025 if (adapter->msix_entries) {
1026 pci_disable_msix(adapter->pdev);
1027 kfree(adapter->msix_entries);
1028 adapter->msix_entries = NULL;
1029 }
1030}
1031
1032/**
1033 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1034 * @adapter: board private structure
1035 *
1036 * Attempt to configure interrupts using the best available
1037 * capabilities of the hardware and kernel.
1038 **/
1039static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1040{
1041 int err = -ENOMEM;
1042 int i;
1043
1044 /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1045 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1046 GFP_KERNEL);
1047 if (adapter->msix_entries) {
1048 for (i = 0; i < 3; i++)
1049 adapter->msix_entries[i].entry = i;
1050
1051 err = pci_enable_msix_range(adapter->pdev,
1052 adapter->msix_entries, 3, 3);
1053 }
1054
1055 if (err < 0) {
1056 /* MSI-X failed */
1057 dev_err(&adapter->pdev->dev,
1058 "Failed to initialize MSI-X interrupts.\n");
1059 igbvf_reset_interrupt_capability(adapter);
1060 }
1061}
1062
1063/**
1064 * igbvf_request_msix - Initialize MSI-X interrupts
1065 * @adapter: board private structure
1066 *
1067 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1068 * kernel.
1069 **/
1070static int igbvf_request_msix(struct igbvf_adapter *adapter)
1071{
1072 struct net_device *netdev = adapter->netdev;
1073 int err = 0, vector = 0;
1074
1075 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1076 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1077 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1078 } else {
1079 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1080 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1081 }
1082
1083 err = request_irq(adapter->msix_entries[vector].vector,
1084 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1085 netdev);
1086 if (err)
1087 goto out;
1088
1089 adapter->tx_ring->itr_register = E1000_EITR(vector);
1090 adapter->tx_ring->itr_val = adapter->current_itr;
1091 vector++;
1092
1093 err = request_irq(adapter->msix_entries[vector].vector,
1094 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1095 netdev);
1096 if (err)
1097 goto out;
1098
1099 adapter->rx_ring->itr_register = E1000_EITR(vector);
1100 adapter->rx_ring->itr_val = adapter->current_itr;
1101 vector++;
1102
1103 err = request_irq(adapter->msix_entries[vector].vector,
1104 igbvf_msix_other, 0, netdev->name, netdev);
1105 if (err)
1106 goto out;
1107
1108 igbvf_configure_msix(adapter);
1109 return 0;
1110out:
1111 return err;
1112}
1113
1114/**
1115 * igbvf_alloc_queues - Allocate memory for all rings
1116 * @adapter: board private structure to initialize
1117 **/
1118static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1119{
1120 struct net_device *netdev = adapter->netdev;
1121
1122 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1123 if (!adapter->tx_ring)
1124 return -ENOMEM;
1125
1126 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1127 if (!adapter->rx_ring) {
1128 kfree(adapter->tx_ring);
1129 return -ENOMEM;
1130 }
1131
1132 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1133
1134 return 0;
1135}
1136
1137/**
1138 * igbvf_request_irq - initialize interrupts
1139 * @adapter: board private structure
1140 *
1141 * Attempts to configure interrupts using the best available
1142 * capabilities of the hardware and kernel.
1143 **/
1144static int igbvf_request_irq(struct igbvf_adapter *adapter)
1145{
1146 int err = -1;
1147
1148 /* igbvf supports msi-x only */
1149 if (adapter->msix_entries)
1150 err = igbvf_request_msix(adapter);
1151
1152 if (!err)
1153 return err;
1154
1155 dev_err(&adapter->pdev->dev,
1156 "Unable to allocate interrupt, Error: %d\n", err);
1157
1158 return err;
1159}
1160
1161static void igbvf_free_irq(struct igbvf_adapter *adapter)
1162{
1163 struct net_device *netdev = adapter->netdev;
1164 int vector;
1165
1166 if (adapter->msix_entries) {
1167 for (vector = 0; vector < 3; vector++)
1168 free_irq(adapter->msix_entries[vector].vector, netdev);
1169 }
1170}
1171
1172/**
1173 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1174 * @adapter: board private structure
1175 **/
1176static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1177{
1178 struct e1000_hw *hw = &adapter->hw;
1179
1180 ew32(EIMC, ~0);
1181
1182 if (adapter->msix_entries)
1183 ew32(EIAC, 0);
1184}
1185
1186/**
1187 * igbvf_irq_enable - Enable default interrupt generation settings
1188 * @adapter: board private structure
1189 **/
1190static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1191{
1192 struct e1000_hw *hw = &adapter->hw;
1193
1194 ew32(EIAC, adapter->eims_enable_mask);
1195 ew32(EIAM, adapter->eims_enable_mask);
1196 ew32(EIMS, adapter->eims_enable_mask);
1197}
1198
1199/**
1200 * igbvf_poll - NAPI Rx polling callback
1201 * @napi: struct associated with this polling callback
1202 * @budget: amount of packets driver is allowed to process this poll
1203 **/
1204static int igbvf_poll(struct napi_struct *napi, int budget)
1205{
1206 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1207 struct igbvf_adapter *adapter = rx_ring->adapter;
1208 struct e1000_hw *hw = &adapter->hw;
1209 int work_done = 0;
1210
1211 igbvf_clean_rx_irq(adapter, &work_done, budget);
1212
1213 /* If not enough Rx work done, exit the polling mode */
1214 if (work_done < budget) {
1215 napi_complete_done(napi, work_done);
1216
1217 if (adapter->requested_itr & 3)
1218 igbvf_set_itr(adapter);
1219
1220 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1221 ew32(EIMS, adapter->rx_ring->eims_value);
1222 }
1223
1224 return work_done;
1225}
1226
1227/**
1228 * igbvf_set_rlpml - set receive large packet maximum length
1229 * @adapter: board private structure
1230 *
1231 * Configure the maximum size of packets that will be received
1232 */
1233static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1234{
1235 int max_frame_size;
1236 struct e1000_hw *hw = &adapter->hw;
1237
1238 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1239
1240 spin_lock_bh(&hw->mbx_lock);
1241
1242 e1000_rlpml_set_vf(hw, max_frame_size);
1243
1244 spin_unlock_bh(&hw->mbx_lock);
1245}
1246
1247static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1248 __be16 proto, u16 vid)
1249{
1250 struct igbvf_adapter *adapter = netdev_priv(netdev);
1251 struct e1000_hw *hw = &adapter->hw;
1252
1253 spin_lock_bh(&hw->mbx_lock);
1254
1255 if (hw->mac.ops.set_vfta(hw, vid, true)) {
1256 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1257 spin_unlock_bh(&hw->mbx_lock);
1258 return -EINVAL;
1259 }
1260
1261 spin_unlock_bh(&hw->mbx_lock);
1262
1263 set_bit(vid, adapter->active_vlans);
1264 return 0;
1265}
1266
1267static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1268 __be16 proto, u16 vid)
1269{
1270 struct igbvf_adapter *adapter = netdev_priv(netdev);
1271 struct e1000_hw *hw = &adapter->hw;
1272
1273 spin_lock_bh(&hw->mbx_lock);
1274
1275 if (hw->mac.ops.set_vfta(hw, vid, false)) {
1276 dev_err(&adapter->pdev->dev,
1277 "Failed to remove vlan id %d\n", vid);
1278 spin_unlock_bh(&hw->mbx_lock);
1279 return -EINVAL;
1280 }
1281
1282 spin_unlock_bh(&hw->mbx_lock);
1283
1284 clear_bit(vid, adapter->active_vlans);
1285 return 0;
1286}
1287
1288static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1289{
1290 u16 vid;
1291
1292 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1293 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1294}
1295
1296/**
1297 * igbvf_configure_tx - Configure Transmit Unit after Reset
1298 * @adapter: board private structure
1299 *
1300 * Configure the Tx unit of the MAC after a reset.
1301 **/
1302static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1303{
1304 struct e1000_hw *hw = &adapter->hw;
1305 struct igbvf_ring *tx_ring = adapter->tx_ring;
1306 u64 tdba;
1307 u32 txdctl, dca_txctrl;
1308
1309 /* disable transmits */
1310 txdctl = er32(TXDCTL(0));
1311 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1312 e1e_flush();
1313 msleep(10);
1314
1315 /* Setup the HW Tx Head and Tail descriptor pointers */
1316 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1317 tdba = tx_ring->dma;
1318 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1319 ew32(TDBAH(0), (tdba >> 32));
1320 ew32(TDH(0), 0);
1321 ew32(TDT(0), 0);
1322 tx_ring->head = E1000_TDH(0);
1323 tx_ring->tail = E1000_TDT(0);
1324
1325 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1326 * MUST be delivered in order or it will completely screw up
1327 * our bookkeeping.
1328 */
1329 dca_txctrl = er32(DCA_TXCTRL(0));
1330 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1331 ew32(DCA_TXCTRL(0), dca_txctrl);
1332
1333 /* enable transmits */
1334 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1335 ew32(TXDCTL(0), txdctl);
1336
1337 /* Setup Transmit Descriptor Settings for eop descriptor */
1338 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1339
1340 /* enable Report Status bit */
1341 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1342}
1343
1344/**
1345 * igbvf_setup_srrctl - configure the receive control registers
1346 * @adapter: Board private structure
1347 **/
1348static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1349{
1350 struct e1000_hw *hw = &adapter->hw;
1351 u32 srrctl = 0;
1352
1353 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1354 E1000_SRRCTL_BSIZEHDR_MASK |
1355 E1000_SRRCTL_BSIZEPKT_MASK);
1356
1357 /* Enable queue drop to avoid head of line blocking */
1358 srrctl |= E1000_SRRCTL_DROP_EN;
1359
1360 /* Setup buffer sizes */
1361 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1362 E1000_SRRCTL_BSIZEPKT_SHIFT;
1363
1364 if (adapter->rx_buffer_len < 2048) {
1365 adapter->rx_ps_hdr_size = 0;
1366 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1367 } else {
1368 adapter->rx_ps_hdr_size = 128;
1369 srrctl |= adapter->rx_ps_hdr_size <<
1370 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1371 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1372 }
1373
1374 ew32(SRRCTL(0), srrctl);
1375}
1376
1377/**
1378 * igbvf_configure_rx - Configure Receive Unit after Reset
1379 * @adapter: board private structure
1380 *
1381 * Configure the Rx unit of the MAC after a reset.
1382 **/
1383static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1384{
1385 struct e1000_hw *hw = &adapter->hw;
1386 struct igbvf_ring *rx_ring = adapter->rx_ring;
1387 u64 rdba;
1388 u32 rxdctl;
1389
1390 /* disable receives */
1391 rxdctl = er32(RXDCTL(0));
1392 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1393 e1e_flush();
1394 msleep(10);
1395
1396 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1397 * the Base and Length of the Rx Descriptor Ring
1398 */
1399 rdba = rx_ring->dma;
1400 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1401 ew32(RDBAH(0), (rdba >> 32));
1402 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1403 rx_ring->head = E1000_RDH(0);
1404 rx_ring->tail = E1000_RDT(0);
1405 ew32(RDH(0), 0);
1406 ew32(RDT(0), 0);
1407
1408 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1409 rxdctl &= 0xFFF00000;
1410 rxdctl |= IGBVF_RX_PTHRESH;
1411 rxdctl |= IGBVF_RX_HTHRESH << 8;
1412 rxdctl |= IGBVF_RX_WTHRESH << 16;
1413
1414 igbvf_set_rlpml(adapter);
1415
1416 /* enable receives */
1417 ew32(RXDCTL(0), rxdctl);
1418}
1419
1420/**
1421 * igbvf_set_multi - Multicast and Promiscuous mode set
1422 * @netdev: network interface device structure
1423 *
1424 * The set_multi entry point is called whenever the multicast address
1425 * list or the network interface flags are updated. This routine is
1426 * responsible for configuring the hardware for proper multicast,
1427 * promiscuous mode, and all-multi behavior.
1428 **/
1429static void igbvf_set_multi(struct net_device *netdev)
1430{
1431 struct igbvf_adapter *adapter = netdev_priv(netdev);
1432 struct e1000_hw *hw = &adapter->hw;
1433 struct netdev_hw_addr *ha;
1434 u8 *mta_list = NULL;
1435 int i;
1436
1437 if (!netdev_mc_empty(netdev)) {
1438 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1439 GFP_ATOMIC);
1440 if (!mta_list)
1441 return;
1442 }
1443
1444 /* prepare a packed array of only addresses. */
1445 i = 0;
1446 netdev_for_each_mc_addr(ha, netdev)
1447 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1448
1449 spin_lock_bh(&hw->mbx_lock);
1450
1451 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1452
1453 spin_unlock_bh(&hw->mbx_lock);
1454 kfree(mta_list);
1455}
1456
1457/**
1458 * igbvf_set_uni - Configure unicast MAC filters
1459 * @netdev: network interface device structure
1460 *
1461 * This routine is responsible for configuring the hardware for proper
1462 * unicast filters.
1463 **/
1464static int igbvf_set_uni(struct net_device *netdev)
1465{
1466 struct igbvf_adapter *adapter = netdev_priv(netdev);
1467 struct e1000_hw *hw = &adapter->hw;
1468
1469 if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1470 pr_err("Too many unicast filters - No Space\n");
1471 return -ENOSPC;
1472 }
1473
1474 spin_lock_bh(&hw->mbx_lock);
1475
1476 /* Clear all unicast MAC filters */
1477 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1478
1479 spin_unlock_bh(&hw->mbx_lock);
1480
1481 if (!netdev_uc_empty(netdev)) {
1482 struct netdev_hw_addr *ha;
1483
1484 /* Add MAC filters one by one */
1485 netdev_for_each_uc_addr(ha, netdev) {
1486 spin_lock_bh(&hw->mbx_lock);
1487
1488 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1489 ha->addr);
1490
1491 spin_unlock_bh(&hw->mbx_lock);
1492 udelay(200);
1493 }
1494 }
1495
1496 return 0;
1497}
1498
1499static void igbvf_set_rx_mode(struct net_device *netdev)
1500{
1501 igbvf_set_multi(netdev);
1502 igbvf_set_uni(netdev);
1503}
1504
1505/**
1506 * igbvf_configure - configure the hardware for Rx and Tx
1507 * @adapter: private board structure
1508 **/
1509static void igbvf_configure(struct igbvf_adapter *adapter)
1510{
1511 igbvf_set_rx_mode(adapter->netdev);
1512
1513 igbvf_restore_vlan(adapter);
1514
1515 igbvf_configure_tx(adapter);
1516 igbvf_setup_srrctl(adapter);
1517 igbvf_configure_rx(adapter);
1518 igbvf_alloc_rx_buffers(adapter->rx_ring,
1519 igbvf_desc_unused(adapter->rx_ring));
1520}
1521
1522/* igbvf_reset - bring the hardware into a known good state
1523 * @adapter: private board structure
1524 *
1525 * This function boots the hardware and enables some settings that
1526 * require a configuration cycle of the hardware - those cannot be
1527 * set/changed during runtime. After reset the device needs to be
1528 * properly configured for Rx, Tx etc.
1529 */
1530static void igbvf_reset(struct igbvf_adapter *adapter)
1531{
1532 struct e1000_mac_info *mac = &adapter->hw.mac;
1533 struct net_device *netdev = adapter->netdev;
1534 struct e1000_hw *hw = &adapter->hw;
1535
1536 spin_lock_bh(&hw->mbx_lock);
1537
1538 /* Allow time for pending master requests to run */
1539 if (mac->ops.reset_hw(hw))
1540 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1541
1542 mac->ops.init_hw(hw);
1543
1544 spin_unlock_bh(&hw->mbx_lock);
1545
1546 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1547 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1548 netdev->addr_len);
1549 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1550 netdev->addr_len);
1551 }
1552
1553 adapter->last_reset = jiffies;
1554}
1555
1556int igbvf_up(struct igbvf_adapter *adapter)
1557{
1558 struct e1000_hw *hw = &adapter->hw;
1559
1560 /* hardware has been reset, we need to reload some things */
1561 igbvf_configure(adapter);
1562
1563 clear_bit(__IGBVF_DOWN, &adapter->state);
1564
1565 napi_enable(&adapter->rx_ring->napi);
1566 if (adapter->msix_entries)
1567 igbvf_configure_msix(adapter);
1568
1569 /* Clear any pending interrupts. */
1570 er32(EICR);
1571 igbvf_irq_enable(adapter);
1572
1573 /* start the watchdog */
1574 hw->mac.get_link_status = 1;
1575 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1576
1577 return 0;
1578}
1579
1580void igbvf_down(struct igbvf_adapter *adapter)
1581{
1582 struct net_device *netdev = adapter->netdev;
1583 struct e1000_hw *hw = &adapter->hw;
1584 u32 rxdctl, txdctl;
1585
1586 /* signal that we're down so the interrupt handler does not
1587 * reschedule our watchdog timer
1588 */
1589 set_bit(__IGBVF_DOWN, &adapter->state);
1590
1591 /* disable receives in the hardware */
1592 rxdctl = er32(RXDCTL(0));
1593 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1594
1595 netif_carrier_off(netdev);
1596 netif_stop_queue(netdev);
1597
1598 /* disable transmits in the hardware */
1599 txdctl = er32(TXDCTL(0));
1600 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1601
1602 /* flush both disables and wait for them to finish */
1603 e1e_flush();
1604 msleep(10);
1605
1606 napi_disable(&adapter->rx_ring->napi);
1607
1608 igbvf_irq_disable(adapter);
1609
1610 del_timer_sync(&adapter->watchdog_timer);
1611
1612 /* record the stats before reset*/
1613 igbvf_update_stats(adapter);
1614
1615 adapter->link_speed = 0;
1616 adapter->link_duplex = 0;
1617
1618 igbvf_reset(adapter);
1619 igbvf_clean_tx_ring(adapter->tx_ring);
1620 igbvf_clean_rx_ring(adapter->rx_ring);
1621}
1622
1623void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1624{
1625 might_sleep();
1626 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1627 usleep_range(1000, 2000);
1628 igbvf_down(adapter);
1629 igbvf_up(adapter);
1630 clear_bit(__IGBVF_RESETTING, &adapter->state);
1631}
1632
1633/**
1634 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1635 * @adapter: board private structure to initialize
1636 *
1637 * igbvf_sw_init initializes the Adapter private data structure.
1638 * Fields are initialized based on PCI device information and
1639 * OS network device settings (MTU size).
1640 **/
1641static int igbvf_sw_init(struct igbvf_adapter *adapter)
1642{
1643 struct net_device *netdev = adapter->netdev;
1644 s32 rc;
1645
1646 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1647 adapter->rx_ps_hdr_size = 0;
1648 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1649 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1650
1651 adapter->tx_int_delay = 8;
1652 adapter->tx_abs_int_delay = 32;
1653 adapter->rx_int_delay = 0;
1654 adapter->rx_abs_int_delay = 8;
1655 adapter->requested_itr = 3;
1656 adapter->current_itr = IGBVF_START_ITR;
1657
1658 /* Set various function pointers */
1659 adapter->ei->init_ops(&adapter->hw);
1660
1661 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1662 if (rc)
1663 return rc;
1664
1665 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1666 if (rc)
1667 return rc;
1668
1669 igbvf_set_interrupt_capability(adapter);
1670
1671 if (igbvf_alloc_queues(adapter))
1672 return -ENOMEM;
1673
1674 spin_lock_init(&adapter->tx_queue_lock);
1675
1676 /* Explicitly disable IRQ since the NIC can be in any state. */
1677 igbvf_irq_disable(adapter);
1678
1679 spin_lock_init(&adapter->stats_lock);
1680 spin_lock_init(&adapter->hw.mbx_lock);
1681
1682 set_bit(__IGBVF_DOWN, &adapter->state);
1683 return 0;
1684}
1685
1686static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1687{
1688 struct e1000_hw *hw = &adapter->hw;
1689
1690 adapter->stats.last_gprc = er32(VFGPRC);
1691 adapter->stats.last_gorc = er32(VFGORC);
1692 adapter->stats.last_gptc = er32(VFGPTC);
1693 adapter->stats.last_gotc = er32(VFGOTC);
1694 adapter->stats.last_mprc = er32(VFMPRC);
1695 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1696 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1697 adapter->stats.last_gorlbc = er32(VFGORLBC);
1698 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1699
1700 adapter->stats.base_gprc = er32(VFGPRC);
1701 adapter->stats.base_gorc = er32(VFGORC);
1702 adapter->stats.base_gptc = er32(VFGPTC);
1703 adapter->stats.base_gotc = er32(VFGOTC);
1704 adapter->stats.base_mprc = er32(VFMPRC);
1705 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1706 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1707 adapter->stats.base_gorlbc = er32(VFGORLBC);
1708 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1709}
1710
1711/**
1712 * igbvf_open - Called when a network interface is made active
1713 * @netdev: network interface device structure
1714 *
1715 * Returns 0 on success, negative value on failure
1716 *
1717 * The open entry point is called when a network interface is made
1718 * active by the system (IFF_UP). At this point all resources needed
1719 * for transmit and receive operations are allocated, the interrupt
1720 * handler is registered with the OS, the watchdog timer is started,
1721 * and the stack is notified that the interface is ready.
1722 **/
1723static int igbvf_open(struct net_device *netdev)
1724{
1725 struct igbvf_adapter *adapter = netdev_priv(netdev);
1726 struct e1000_hw *hw = &adapter->hw;
1727 int err;
1728
1729 /* disallow open during test */
1730 if (test_bit(__IGBVF_TESTING, &adapter->state))
1731 return -EBUSY;
1732
1733 /* allocate transmit descriptors */
1734 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1735 if (err)
1736 goto err_setup_tx;
1737
1738 /* allocate receive descriptors */
1739 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1740 if (err)
1741 goto err_setup_rx;
1742
1743 /* before we allocate an interrupt, we must be ready to handle it.
1744 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1745 * as soon as we call pci_request_irq, so we have to setup our
1746 * clean_rx handler before we do so.
1747 */
1748 igbvf_configure(adapter);
1749
1750 err = igbvf_request_irq(adapter);
1751 if (err)
1752 goto err_req_irq;
1753
1754 /* From here on the code is the same as igbvf_up() */
1755 clear_bit(__IGBVF_DOWN, &adapter->state);
1756
1757 napi_enable(&adapter->rx_ring->napi);
1758
1759 /* clear any pending interrupts */
1760 er32(EICR);
1761
1762 igbvf_irq_enable(adapter);
1763
1764 /* start the watchdog */
1765 hw->mac.get_link_status = 1;
1766 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1767
1768 return 0;
1769
1770err_req_irq:
1771 igbvf_free_rx_resources(adapter->rx_ring);
1772err_setup_rx:
1773 igbvf_free_tx_resources(adapter->tx_ring);
1774err_setup_tx:
1775 igbvf_reset(adapter);
1776
1777 return err;
1778}
1779
1780/**
1781 * igbvf_close - Disables a network interface
1782 * @netdev: network interface device structure
1783 *
1784 * Returns 0, this is not allowed to fail
1785 *
1786 * The close entry point is called when an interface is de-activated
1787 * by the OS. The hardware is still under the drivers control, but
1788 * needs to be disabled. A global MAC reset is issued to stop the
1789 * hardware, and all transmit and receive resources are freed.
1790 **/
1791static int igbvf_close(struct net_device *netdev)
1792{
1793 struct igbvf_adapter *adapter = netdev_priv(netdev);
1794
1795 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1796 igbvf_down(adapter);
1797
1798 igbvf_free_irq(adapter);
1799
1800 igbvf_free_tx_resources(adapter->tx_ring);
1801 igbvf_free_rx_resources(adapter->rx_ring);
1802
1803 return 0;
1804}
1805
1806/**
1807 * igbvf_set_mac - Change the Ethernet Address of the NIC
1808 * @netdev: network interface device structure
1809 * @p: pointer to an address structure
1810 *
1811 * Returns 0 on success, negative on failure
1812 **/
1813static int igbvf_set_mac(struct net_device *netdev, void *p)
1814{
1815 struct igbvf_adapter *adapter = netdev_priv(netdev);
1816 struct e1000_hw *hw = &adapter->hw;
1817 struct sockaddr *addr = p;
1818
1819 if (!is_valid_ether_addr(addr->sa_data))
1820 return -EADDRNOTAVAIL;
1821
1822 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1823
1824 spin_lock_bh(&hw->mbx_lock);
1825
1826 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1827
1828 spin_unlock_bh(&hw->mbx_lock);
1829
1830 if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1831 return -EADDRNOTAVAIL;
1832
1833 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1834
1835 return 0;
1836}
1837
1838#define UPDATE_VF_COUNTER(reg, name) \
1839{ \
1840 u32 current_counter = er32(reg); \
1841 if (current_counter < adapter->stats.last_##name) \
1842 adapter->stats.name += 0x100000000LL; \
1843 adapter->stats.last_##name = current_counter; \
1844 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1845 adapter->stats.name |= current_counter; \
1846}
1847
1848/**
1849 * igbvf_update_stats - Update the board statistics counters
1850 * @adapter: board private structure
1851**/
1852void igbvf_update_stats(struct igbvf_adapter *adapter)
1853{
1854 struct e1000_hw *hw = &adapter->hw;
1855 struct pci_dev *pdev = adapter->pdev;
1856
1857 /* Prevent stats update while adapter is being reset, link is down
1858 * or if the pci connection is down.
1859 */
1860 if (adapter->link_speed == 0)
1861 return;
1862
1863 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1864 return;
1865
1866 if (pci_channel_offline(pdev))
1867 return;
1868
1869 UPDATE_VF_COUNTER(VFGPRC, gprc);
1870 UPDATE_VF_COUNTER(VFGORC, gorc);
1871 UPDATE_VF_COUNTER(VFGPTC, gptc);
1872 UPDATE_VF_COUNTER(VFGOTC, gotc);
1873 UPDATE_VF_COUNTER(VFMPRC, mprc);
1874 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1875 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1876 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1877 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1878
1879 /* Fill out the OS statistics structure */
1880 adapter->netdev->stats.multicast = adapter->stats.mprc;
1881}
1882
1883static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1884{
1885 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1886 adapter->link_speed,
1887 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1888}
1889
1890static bool igbvf_has_link(struct igbvf_adapter *adapter)
1891{
1892 struct e1000_hw *hw = &adapter->hw;
1893 s32 ret_val = E1000_SUCCESS;
1894 bool link_active;
1895
1896 /* If interface is down, stay link down */
1897 if (test_bit(__IGBVF_DOWN, &adapter->state))
1898 return false;
1899
1900 spin_lock_bh(&hw->mbx_lock);
1901
1902 ret_val = hw->mac.ops.check_for_link(hw);
1903
1904 spin_unlock_bh(&hw->mbx_lock);
1905
1906 link_active = !hw->mac.get_link_status;
1907
1908 /* if check for link returns error we will need to reset */
1909 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1910 schedule_work(&adapter->reset_task);
1911
1912 return link_active;
1913}
1914
1915/**
1916 * igbvf_watchdog - Timer Call-back
1917 * @data: pointer to adapter cast into an unsigned long
1918 **/
1919static void igbvf_watchdog(struct timer_list *t)
1920{
1921 struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1922
1923 /* Do the rest outside of interrupt context */
1924 schedule_work(&adapter->watchdog_task);
1925}
1926
1927static void igbvf_watchdog_task(struct work_struct *work)
1928{
1929 struct igbvf_adapter *adapter = container_of(work,
1930 struct igbvf_adapter,
1931 watchdog_task);
1932 struct net_device *netdev = adapter->netdev;
1933 struct e1000_mac_info *mac = &adapter->hw.mac;
1934 struct igbvf_ring *tx_ring = adapter->tx_ring;
1935 struct e1000_hw *hw = &adapter->hw;
1936 u32 link;
1937 int tx_pending = 0;
1938
1939 link = igbvf_has_link(adapter);
1940
1941 if (link) {
1942 if (!netif_carrier_ok(netdev)) {
1943 mac->ops.get_link_up_info(&adapter->hw,
1944 &adapter->link_speed,
1945 &adapter->link_duplex);
1946 igbvf_print_link_info(adapter);
1947
1948 netif_carrier_on(netdev);
1949 netif_wake_queue(netdev);
1950 }
1951 } else {
1952 if (netif_carrier_ok(netdev)) {
1953 adapter->link_speed = 0;
1954 adapter->link_duplex = 0;
1955 dev_info(&adapter->pdev->dev, "Link is Down\n");
1956 netif_carrier_off(netdev);
1957 netif_stop_queue(netdev);
1958 }
1959 }
1960
1961 if (netif_carrier_ok(netdev)) {
1962 igbvf_update_stats(adapter);
1963 } else {
1964 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1965 tx_ring->count);
1966 if (tx_pending) {
1967 /* We've lost link, so the controller stops DMA,
1968 * but we've got queued Tx work that's never going
1969 * to get done, so reset controller to flush Tx.
1970 * (Do the reset outside of interrupt context).
1971 */
1972 adapter->tx_timeout_count++;
1973 schedule_work(&adapter->reset_task);
1974 }
1975 }
1976
1977 /* Cause software interrupt to ensure Rx ring is cleaned */
1978 ew32(EICS, adapter->rx_ring->eims_value);
1979
1980 /* Reset the timer */
1981 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1982 mod_timer(&adapter->watchdog_timer,
1983 round_jiffies(jiffies + (2 * HZ)));
1984}
1985
1986#define IGBVF_TX_FLAGS_CSUM 0x00000001
1987#define IGBVF_TX_FLAGS_VLAN 0x00000002
1988#define IGBVF_TX_FLAGS_TSO 0x00000004
1989#define IGBVF_TX_FLAGS_IPV4 0x00000008
1990#define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1991#define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1992
1993static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1994 u32 type_tucmd, u32 mss_l4len_idx)
1995{
1996 struct e1000_adv_tx_context_desc *context_desc;
1997 struct igbvf_buffer *buffer_info;
1998 u16 i = tx_ring->next_to_use;
1999
2000 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
2001 buffer_info = &tx_ring->buffer_info[i];
2002
2003 i++;
2004 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2005
2006 /* set bits to identify this as an advanced context descriptor */
2007 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
2008
2009 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2010 context_desc->seqnum_seed = 0;
2011 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
2012 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2013
2014 buffer_info->time_stamp = jiffies;
2015 buffer_info->dma = 0;
2016}
2017
2018static int igbvf_tso(struct igbvf_ring *tx_ring,
2019 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2020{
2021 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
2022 union {
2023 struct iphdr *v4;
2024 struct ipv6hdr *v6;
2025 unsigned char *hdr;
2026 } ip;
2027 union {
2028 struct tcphdr *tcp;
2029 unsigned char *hdr;
2030 } l4;
2031 u32 paylen, l4_offset;
2032 int err;
2033
2034 if (skb->ip_summed != CHECKSUM_PARTIAL)
2035 return 0;
2036
2037 if (!skb_is_gso(skb))
2038 return 0;
2039
2040 err = skb_cow_head(skb, 0);
2041 if (err < 0)
2042 return err;
2043
2044 ip.hdr = skb_network_header(skb);
2045 l4.hdr = skb_checksum_start(skb);
2046
2047 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2048 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2049
2050 /* initialize outer IP header fields */
2051 if (ip.v4->version == 4) {
2052 unsigned char *csum_start = skb_checksum_start(skb);
2053 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
2054
2055 /* IP header will have to cancel out any data that
2056 * is not a part of the outer IP header
2057 */
2058 ip.v4->check = csum_fold(csum_partial(trans_start,
2059 csum_start - trans_start,
2060 0));
2061 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2062
2063 ip.v4->tot_len = 0;
2064 } else {
2065 ip.v6->payload_len = 0;
2066 }
2067
2068 /* determine offset of inner transport header */
2069 l4_offset = l4.hdr - skb->data;
2070
2071 /* compute length of segmentation header */
2072 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2073
2074 /* remove payload length from inner checksum */
2075 paylen = skb->len - l4_offset;
2076 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
2077
2078 /* MSS L4LEN IDX */
2079 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2080 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2081
2082 /* VLAN MACLEN IPLEN */
2083 vlan_macip_lens = l4.hdr - ip.hdr;
2084 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2085 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2086
2087 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2088
2089 return 1;
2090}
2091
2092static inline bool igbvf_ipv6_csum_is_sctp(struct sk_buff *skb)
2093{
2094 unsigned int offset = 0;
2095
2096 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
2097
2098 return offset == skb_checksum_start_offset(skb);
2099}
2100
2101static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2102 u32 tx_flags, __be16 protocol)
2103{
2104 u32 vlan_macip_lens = 0;
2105 u32 type_tucmd = 0;
2106
2107 if (skb->ip_summed != CHECKSUM_PARTIAL) {
2108csum_failed:
2109 if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2110 return false;
2111 goto no_csum;
2112 }
2113
2114 switch (skb->csum_offset) {
2115 case offsetof(struct tcphdr, check):
2116 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2117 /* fall through */
2118 case offsetof(struct udphdr, check):
2119 break;
2120 case offsetof(struct sctphdr, checksum):
2121 /* validate that this is actually an SCTP request */
2122 if (((protocol == htons(ETH_P_IP)) &&
2123 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
2124 ((protocol == htons(ETH_P_IPV6)) &&
2125 igbvf_ipv6_csum_is_sctp(skb))) {
2126 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2127 break;
2128 }
2129 default:
2130 skb_checksum_help(skb);
2131 goto csum_failed;
2132 }
2133
2134 vlan_macip_lens = skb_checksum_start_offset(skb) -
2135 skb_network_offset(skb);
2136no_csum:
2137 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2138 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2139
2140 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2141 return true;
2142}
2143
2144static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2145{
2146 struct igbvf_adapter *adapter = netdev_priv(netdev);
2147
2148 /* there is enough descriptors then we don't need to worry */
2149 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2150 return 0;
2151
2152 netif_stop_queue(netdev);
2153
2154 /* Herbert's original patch had:
2155 * smp_mb__after_netif_stop_queue();
2156 * but since that doesn't exist yet, just open code it.
2157 */
2158 smp_mb();
2159
2160 /* We need to check again just in case room has been made available */
2161 if (igbvf_desc_unused(adapter->tx_ring) < size)
2162 return -EBUSY;
2163
2164 netif_wake_queue(netdev);
2165
2166 ++adapter->restart_queue;
2167 return 0;
2168}
2169
2170#define IGBVF_MAX_TXD_PWR 16
2171#define IGBVF_MAX_DATA_PER_TXD (1u << IGBVF_MAX_TXD_PWR)
2172
2173static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2174 struct igbvf_ring *tx_ring,
2175 struct sk_buff *skb)
2176{
2177 struct igbvf_buffer *buffer_info;
2178 struct pci_dev *pdev = adapter->pdev;
2179 unsigned int len = skb_headlen(skb);
2180 unsigned int count = 0, i;
2181 unsigned int f;
2182
2183 i = tx_ring->next_to_use;
2184
2185 buffer_info = &tx_ring->buffer_info[i];
2186 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2187 buffer_info->length = len;
2188 /* set time_stamp *before* dma to help avoid a possible race */
2189 buffer_info->time_stamp = jiffies;
2190 buffer_info->mapped_as_page = false;
2191 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2192 DMA_TO_DEVICE);
2193 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2194 goto dma_error;
2195
2196 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2197 const struct skb_frag_struct *frag;
2198
2199 count++;
2200 i++;
2201 if (i == tx_ring->count)
2202 i = 0;
2203
2204 frag = &skb_shinfo(skb)->frags[f];
2205 len = skb_frag_size(frag);
2206
2207 buffer_info = &tx_ring->buffer_info[i];
2208 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2209 buffer_info->length = len;
2210 buffer_info->time_stamp = jiffies;
2211 buffer_info->mapped_as_page = true;
2212 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2213 DMA_TO_DEVICE);
2214 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2215 goto dma_error;
2216 }
2217
2218 tx_ring->buffer_info[i].skb = skb;
2219
2220 return ++count;
2221
2222dma_error:
2223 dev_err(&pdev->dev, "TX DMA map failed\n");
2224
2225 /* clear timestamp and dma mappings for failed buffer_info mapping */
2226 buffer_info->dma = 0;
2227 buffer_info->time_stamp = 0;
2228 buffer_info->length = 0;
2229 buffer_info->mapped_as_page = false;
2230 if (count)
2231 count--;
2232
2233 /* clear timestamp and dma mappings for remaining portion of packet */
2234 while (count--) {
2235 if (i == 0)
2236 i += tx_ring->count;
2237 i--;
2238 buffer_info = &tx_ring->buffer_info[i];
2239 igbvf_put_txbuf(adapter, buffer_info);
2240 }
2241
2242 return 0;
2243}
2244
2245static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2246 struct igbvf_ring *tx_ring,
2247 int tx_flags, int count,
2248 unsigned int first, u32 paylen,
2249 u8 hdr_len)
2250{
2251 union e1000_adv_tx_desc *tx_desc = NULL;
2252 struct igbvf_buffer *buffer_info;
2253 u32 olinfo_status = 0, cmd_type_len;
2254 unsigned int i;
2255
2256 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2257 E1000_ADVTXD_DCMD_DEXT);
2258
2259 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2260 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2261
2262 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2263 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2264
2265 /* insert tcp checksum */
2266 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2267
2268 /* insert ip checksum */
2269 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2270 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2271
2272 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2273 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2274 }
2275
2276 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2277
2278 i = tx_ring->next_to_use;
2279 while (count--) {
2280 buffer_info = &tx_ring->buffer_info[i];
2281 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2282 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2283 tx_desc->read.cmd_type_len =
2284 cpu_to_le32(cmd_type_len | buffer_info->length);
2285 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2286 i++;
2287 if (i == tx_ring->count)
2288 i = 0;
2289 }
2290
2291 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2292 /* Force memory writes to complete before letting h/w
2293 * know there are new descriptors to fetch. (Only
2294 * applicable for weak-ordered memory model archs,
2295 * such as IA-64).
2296 */
2297 wmb();
2298
2299 tx_ring->buffer_info[first].next_to_watch = tx_desc;
2300 tx_ring->next_to_use = i;
2301 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2302 /* we need this if more than one processor can write to our tail
2303 * at a time, it synchronizes IO on IA64/Altix systems
2304 */
2305 mmiowb();
2306}
2307
2308static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2309 struct net_device *netdev,
2310 struct igbvf_ring *tx_ring)
2311{
2312 struct igbvf_adapter *adapter = netdev_priv(netdev);
2313 unsigned int first, tx_flags = 0;
2314 u8 hdr_len = 0;
2315 int count = 0;
2316 int tso = 0;
2317 __be16 protocol = vlan_get_protocol(skb);
2318
2319 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2320 dev_kfree_skb_any(skb);
2321 return NETDEV_TX_OK;
2322 }
2323
2324 if (skb->len <= 0) {
2325 dev_kfree_skb_any(skb);
2326 return NETDEV_TX_OK;
2327 }
2328
2329 /* need: count + 4 desc gap to keep tail from touching
2330 * + 2 desc gap to keep tail from touching head,
2331 * + 1 desc for skb->data,
2332 * + 1 desc for context descriptor,
2333 * head, otherwise try next time
2334 */
2335 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2336 /* this is a hard error */
2337 return NETDEV_TX_BUSY;
2338 }
2339
2340 if (skb_vlan_tag_present(skb)) {
2341 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2342 tx_flags |= (skb_vlan_tag_get(skb) <<
2343 IGBVF_TX_FLAGS_VLAN_SHIFT);
2344 }
2345
2346 if (protocol == htons(ETH_P_IP))
2347 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2348
2349 first = tx_ring->next_to_use;
2350
2351 tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2352 if (unlikely(tso < 0)) {
2353 dev_kfree_skb_any(skb);
2354 return NETDEV_TX_OK;
2355 }
2356
2357 if (tso)
2358 tx_flags |= IGBVF_TX_FLAGS_TSO;
2359 else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2360 (skb->ip_summed == CHECKSUM_PARTIAL))
2361 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2362
2363 /* count reflects descriptors mapped, if 0 then mapping error
2364 * has occurred and we need to rewind the descriptor queue
2365 */
2366 count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2367
2368 if (count) {
2369 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2370 first, skb->len, hdr_len);
2371 /* Make sure there is space in the ring for the next send. */
2372 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2373 } else {
2374 dev_kfree_skb_any(skb);
2375 tx_ring->buffer_info[first].time_stamp = 0;
2376 tx_ring->next_to_use = first;
2377 }
2378
2379 return NETDEV_TX_OK;
2380}
2381
2382static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2383 struct net_device *netdev)
2384{
2385 struct igbvf_adapter *adapter = netdev_priv(netdev);
2386 struct igbvf_ring *tx_ring;
2387
2388 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2389 dev_kfree_skb_any(skb);
2390 return NETDEV_TX_OK;
2391 }
2392
2393 tx_ring = &adapter->tx_ring[0];
2394
2395 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2396}
2397
2398/**
2399 * igbvf_tx_timeout - Respond to a Tx Hang
2400 * @netdev: network interface device structure
2401 **/
2402static void igbvf_tx_timeout(struct net_device *netdev)
2403{
2404 struct igbvf_adapter *adapter = netdev_priv(netdev);
2405
2406 /* Do the reset outside of interrupt context */
2407 adapter->tx_timeout_count++;
2408 schedule_work(&adapter->reset_task);
2409}
2410
2411static void igbvf_reset_task(struct work_struct *work)
2412{
2413 struct igbvf_adapter *adapter;
2414
2415 adapter = container_of(work, struct igbvf_adapter, reset_task);
2416
2417 igbvf_reinit_locked(adapter);
2418}
2419
2420/**
2421 * igbvf_change_mtu - Change the Maximum Transfer Unit
2422 * @netdev: network interface device structure
2423 * @new_mtu: new value for maximum frame size
2424 *
2425 * Returns 0 on success, negative on failure
2426 **/
2427static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2428{
2429 struct igbvf_adapter *adapter = netdev_priv(netdev);
2430 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2431
2432 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2433 usleep_range(1000, 2000);
2434 /* igbvf_down has a dependency on max_frame_size */
2435 adapter->max_frame_size = max_frame;
2436 if (netif_running(netdev))
2437 igbvf_down(adapter);
2438
2439 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2440 * means we reserve 2 more, this pushes us to allocate from the next
2441 * larger slab size.
2442 * i.e. RXBUFFER_2048 --> size-4096 slab
2443 * However with the new *_jumbo_rx* routines, jumbo receives will use
2444 * fragmented skbs
2445 */
2446
2447 if (max_frame <= 1024)
2448 adapter->rx_buffer_len = 1024;
2449 else if (max_frame <= 2048)
2450 adapter->rx_buffer_len = 2048;
2451 else
2452#if (PAGE_SIZE / 2) > 16384
2453 adapter->rx_buffer_len = 16384;
2454#else
2455 adapter->rx_buffer_len = PAGE_SIZE / 2;
2456#endif
2457
2458 /* adjust allocation if LPE protects us, and we aren't using SBP */
2459 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2460 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2461 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2462 ETH_FCS_LEN;
2463
2464 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2465 netdev->mtu, new_mtu);
2466 netdev->mtu = new_mtu;
2467
2468 if (netif_running(netdev))
2469 igbvf_up(adapter);
2470 else
2471 igbvf_reset(adapter);
2472
2473 clear_bit(__IGBVF_RESETTING, &adapter->state);
2474
2475 return 0;
2476}
2477
2478static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2479{
2480 switch (cmd) {
2481 default:
2482 return -EOPNOTSUPP;
2483 }
2484}
2485
2486static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2487{
2488 struct net_device *netdev = pci_get_drvdata(pdev);
2489 struct igbvf_adapter *adapter = netdev_priv(netdev);
2490#ifdef CONFIG_PM
2491 int retval = 0;
2492#endif
2493
2494 netif_device_detach(netdev);
2495
2496 if (netif_running(netdev)) {
2497 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2498 igbvf_down(adapter);
2499 igbvf_free_irq(adapter);
2500 }
2501
2502#ifdef CONFIG_PM
2503 retval = pci_save_state(pdev);
2504 if (retval)
2505 return retval;
2506#endif
2507
2508 pci_disable_device(pdev);
2509
2510 return 0;
2511}
2512
2513#ifdef CONFIG_PM
2514static int igbvf_resume(struct pci_dev *pdev)
2515{
2516 struct net_device *netdev = pci_get_drvdata(pdev);
2517 struct igbvf_adapter *adapter = netdev_priv(netdev);
2518 u32 err;
2519
2520 pci_restore_state(pdev);
2521 err = pci_enable_device_mem(pdev);
2522 if (err) {
2523 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2524 return err;
2525 }
2526
2527 pci_set_master(pdev);
2528
2529 if (netif_running(netdev)) {
2530 err = igbvf_request_irq(adapter);
2531 if (err)
2532 return err;
2533 }
2534
2535 igbvf_reset(adapter);
2536
2537 if (netif_running(netdev))
2538 igbvf_up(adapter);
2539
2540 netif_device_attach(netdev);
2541
2542 return 0;
2543}
2544#endif
2545
2546static void igbvf_shutdown(struct pci_dev *pdev)
2547{
2548 igbvf_suspend(pdev, PMSG_SUSPEND);
2549}
2550
2551#ifdef CONFIG_NET_POLL_CONTROLLER
2552/* Polling 'interrupt' - used by things like netconsole to send skbs
2553 * without having to re-enable interrupts. It's not called while
2554 * the interrupt routine is executing.
2555 */
2556static void igbvf_netpoll(struct net_device *netdev)
2557{
2558 struct igbvf_adapter *adapter = netdev_priv(netdev);
2559
2560 disable_irq(adapter->pdev->irq);
2561
2562 igbvf_clean_tx_irq(adapter->tx_ring);
2563
2564 enable_irq(adapter->pdev->irq);
2565}
2566#endif
2567
2568/**
2569 * igbvf_io_error_detected - called when PCI error is detected
2570 * @pdev: Pointer to PCI device
2571 * @state: The current pci connection state
2572 *
2573 * This function is called after a PCI bus error affecting
2574 * this device has been detected.
2575 */
2576static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2577 pci_channel_state_t state)
2578{
2579 struct net_device *netdev = pci_get_drvdata(pdev);
2580 struct igbvf_adapter *adapter = netdev_priv(netdev);
2581
2582 netif_device_detach(netdev);
2583
2584 if (state == pci_channel_io_perm_failure)
2585 return PCI_ERS_RESULT_DISCONNECT;
2586
2587 if (netif_running(netdev))
2588 igbvf_down(adapter);
2589 pci_disable_device(pdev);
2590
2591 /* Request a slot slot reset. */
2592 return PCI_ERS_RESULT_NEED_RESET;
2593}
2594
2595/**
2596 * igbvf_io_slot_reset - called after the pci bus has been reset.
2597 * @pdev: Pointer to PCI device
2598 *
2599 * Restart the card from scratch, as if from a cold-boot. Implementation
2600 * resembles the first-half of the igbvf_resume routine.
2601 */
2602static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2603{
2604 struct net_device *netdev = pci_get_drvdata(pdev);
2605 struct igbvf_adapter *adapter = netdev_priv(netdev);
2606
2607 if (pci_enable_device_mem(pdev)) {
2608 dev_err(&pdev->dev,
2609 "Cannot re-enable PCI device after reset.\n");
2610 return PCI_ERS_RESULT_DISCONNECT;
2611 }
2612 pci_set_master(pdev);
2613
2614 igbvf_reset(adapter);
2615
2616 return PCI_ERS_RESULT_RECOVERED;
2617}
2618
2619/**
2620 * igbvf_io_resume - called when traffic can start flowing again.
2621 * @pdev: Pointer to PCI device
2622 *
2623 * This callback is called when the error recovery driver tells us that
2624 * its OK to resume normal operation. Implementation resembles the
2625 * second-half of the igbvf_resume routine.
2626 */
2627static void igbvf_io_resume(struct pci_dev *pdev)
2628{
2629 struct net_device *netdev = pci_get_drvdata(pdev);
2630 struct igbvf_adapter *adapter = netdev_priv(netdev);
2631
2632 if (netif_running(netdev)) {
2633 if (igbvf_up(adapter)) {
2634 dev_err(&pdev->dev,
2635 "can't bring device back up after reset\n");
2636 return;
2637 }
2638 }
2639
2640 netif_device_attach(netdev);
2641}
2642
2643static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2644{
2645 struct e1000_hw *hw = &adapter->hw;
2646 struct net_device *netdev = adapter->netdev;
2647 struct pci_dev *pdev = adapter->pdev;
2648
2649 if (hw->mac.type == e1000_vfadapt_i350)
2650 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2651 else
2652 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2653 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2654}
2655
2656static int igbvf_set_features(struct net_device *netdev,
2657 netdev_features_t features)
2658{
2659 struct igbvf_adapter *adapter = netdev_priv(netdev);
2660
2661 if (features & NETIF_F_RXCSUM)
2662 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2663 else
2664 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2665
2666 return 0;
2667}
2668
2669#define IGBVF_MAX_MAC_HDR_LEN 127
2670#define IGBVF_MAX_NETWORK_HDR_LEN 511
2671
2672static netdev_features_t
2673igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2674 netdev_features_t features)
2675{
2676 unsigned int network_hdr_len, mac_hdr_len;
2677
2678 /* Make certain the headers can be described by a context descriptor */
2679 mac_hdr_len = skb_network_header(skb) - skb->data;
2680 if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2681 return features & ~(NETIF_F_HW_CSUM |
2682 NETIF_F_SCTP_CRC |
2683 NETIF_F_HW_VLAN_CTAG_TX |
2684 NETIF_F_TSO |
2685 NETIF_F_TSO6);
2686
2687 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2688 if (unlikely(network_hdr_len > IGBVF_MAX_NETWORK_HDR_LEN))
2689 return features & ~(NETIF_F_HW_CSUM |
2690 NETIF_F_SCTP_CRC |
2691 NETIF_F_TSO |
2692 NETIF_F_TSO6);
2693
2694 /* We can only support IPV4 TSO in tunnels if we can mangle the
2695 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2696 */
2697 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2698 features &= ~NETIF_F_TSO;
2699
2700 return features;
2701}
2702
2703static const struct net_device_ops igbvf_netdev_ops = {
2704 .ndo_open = igbvf_open,
2705 .ndo_stop = igbvf_close,
2706 .ndo_start_xmit = igbvf_xmit_frame,
2707 .ndo_set_rx_mode = igbvf_set_rx_mode,
2708 .ndo_set_mac_address = igbvf_set_mac,
2709 .ndo_change_mtu = igbvf_change_mtu,
2710 .ndo_do_ioctl = igbvf_ioctl,
2711 .ndo_tx_timeout = igbvf_tx_timeout,
2712 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2713 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2714#ifdef CONFIG_NET_POLL_CONTROLLER
2715 .ndo_poll_controller = igbvf_netpoll,
2716#endif
2717 .ndo_set_features = igbvf_set_features,
2718 .ndo_features_check = igbvf_features_check,
2719};
2720
2721/**
2722 * igbvf_probe - Device Initialization Routine
2723 * @pdev: PCI device information struct
2724 * @ent: entry in igbvf_pci_tbl
2725 *
2726 * Returns 0 on success, negative on failure
2727 *
2728 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2729 * The OS initialization, configuring of the adapter private structure,
2730 * and a hardware reset occur.
2731 **/
2732static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2733{
2734 struct net_device *netdev;
2735 struct igbvf_adapter *adapter;
2736 struct e1000_hw *hw;
2737 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2738
2739 static int cards_found;
2740 int err, pci_using_dac;
2741
2742 err = pci_enable_device_mem(pdev);
2743 if (err)
2744 return err;
2745
2746 pci_using_dac = 0;
2747 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2748 if (!err) {
2749 pci_using_dac = 1;
2750 } else {
2751 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2752 if (err) {
2753 dev_err(&pdev->dev,
2754 "No usable DMA configuration, aborting\n");
2755 goto err_dma;
2756 }
2757 }
2758
2759 err = pci_request_regions(pdev, igbvf_driver_name);
2760 if (err)
2761 goto err_pci_reg;
2762
2763 pci_set_master(pdev);
2764
2765 err = -ENOMEM;
2766 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2767 if (!netdev)
2768 goto err_alloc_etherdev;
2769
2770 SET_NETDEV_DEV(netdev, &pdev->dev);
2771
2772 pci_set_drvdata(pdev, netdev);
2773 adapter = netdev_priv(netdev);
2774 hw = &adapter->hw;
2775 adapter->netdev = netdev;
2776 adapter->pdev = pdev;
2777 adapter->ei = ei;
2778 adapter->pba = ei->pba;
2779 adapter->flags = ei->flags;
2780 adapter->hw.back = adapter;
2781 adapter->hw.mac.type = ei->mac;
2782 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2783
2784 /* PCI config space info */
2785
2786 hw->vendor_id = pdev->vendor;
2787 hw->device_id = pdev->device;
2788 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2789 hw->subsystem_device_id = pdev->subsystem_device;
2790 hw->revision_id = pdev->revision;
2791
2792 err = -EIO;
2793 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2794 pci_resource_len(pdev, 0));
2795
2796 if (!adapter->hw.hw_addr)
2797 goto err_ioremap;
2798
2799 if (ei->get_variants) {
2800 err = ei->get_variants(adapter);
2801 if (err)
2802 goto err_get_variants;
2803 }
2804
2805 /* setup adapter struct */
2806 err = igbvf_sw_init(adapter);
2807 if (err)
2808 goto err_sw_init;
2809
2810 /* construct the net_device struct */
2811 netdev->netdev_ops = &igbvf_netdev_ops;
2812
2813 igbvf_set_ethtool_ops(netdev);
2814 netdev->watchdog_timeo = 5 * HZ;
2815 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2816
2817 adapter->bd_number = cards_found++;
2818
2819 netdev->hw_features = NETIF_F_SG |
2820 NETIF_F_TSO |
2821 NETIF_F_TSO6 |
2822 NETIF_F_RXCSUM |
2823 NETIF_F_HW_CSUM |
2824 NETIF_F_SCTP_CRC;
2825
2826#define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2827 NETIF_F_GSO_GRE_CSUM | \
2828 NETIF_F_GSO_IPXIP4 | \
2829 NETIF_F_GSO_IPXIP6 | \
2830 NETIF_F_GSO_UDP_TUNNEL | \
2831 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2832
2833 netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2834 netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2835 IGBVF_GSO_PARTIAL_FEATURES;
2836
2837 netdev->features = netdev->hw_features;
2838
2839 if (pci_using_dac)
2840 netdev->features |= NETIF_F_HIGHDMA;
2841
2842 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2843 netdev->mpls_features |= NETIF_F_HW_CSUM;
2844 netdev->hw_enc_features |= netdev->vlan_features;
2845
2846 /* set this bit last since it cannot be part of vlan_features */
2847 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2848 NETIF_F_HW_VLAN_CTAG_RX |
2849 NETIF_F_HW_VLAN_CTAG_TX;
2850
2851 /* MTU range: 68 - 9216 */
2852 netdev->min_mtu = ETH_MIN_MTU;
2853 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2854
2855 spin_lock_bh(&hw->mbx_lock);
2856
2857 /*reset the controller to put the device in a known good state */
2858 err = hw->mac.ops.reset_hw(hw);
2859 if (err) {
2860 dev_info(&pdev->dev,
2861 "PF still in reset state. Is the PF interface up?\n");
2862 } else {
2863 err = hw->mac.ops.read_mac_addr(hw);
2864 if (err)
2865 dev_info(&pdev->dev, "Error reading MAC address.\n");
2866 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2867 dev_info(&pdev->dev,
2868 "MAC address not assigned by administrator.\n");
2869 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2870 netdev->addr_len);
2871 }
2872
2873 spin_unlock_bh(&hw->mbx_lock);
2874
2875 if (!is_valid_ether_addr(netdev->dev_addr)) {
2876 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2877 eth_hw_addr_random(netdev);
2878 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2879 netdev->addr_len);
2880 }
2881
2882 timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
2883
2884 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2885 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2886
2887 /* ring size defaults */
2888 adapter->rx_ring->count = 1024;
2889 adapter->tx_ring->count = 1024;
2890
2891 /* reset the hardware with the new settings */
2892 igbvf_reset(adapter);
2893
2894 /* set hardware-specific flags */
2895 if (adapter->hw.mac.type == e1000_vfadapt_i350)
2896 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2897
2898 strcpy(netdev->name, "eth%d");
2899 err = register_netdev(netdev);
2900 if (err)
2901 goto err_hw_init;
2902
2903 /* tell the stack to leave us alone until igbvf_open() is called */
2904 netif_carrier_off(netdev);
2905 netif_stop_queue(netdev);
2906
2907 igbvf_print_device_info(adapter);
2908
2909 igbvf_initialize_last_counter_stats(adapter);
2910
2911 return 0;
2912
2913err_hw_init:
2914 kfree(adapter->tx_ring);
2915 kfree(adapter->rx_ring);
2916err_sw_init:
2917 igbvf_reset_interrupt_capability(adapter);
2918err_get_variants:
2919 iounmap(adapter->hw.hw_addr);
2920err_ioremap:
2921 free_netdev(netdev);
2922err_alloc_etherdev:
2923 pci_release_regions(pdev);
2924err_pci_reg:
2925err_dma:
2926 pci_disable_device(pdev);
2927 return err;
2928}
2929
2930/**
2931 * igbvf_remove - Device Removal Routine
2932 * @pdev: PCI device information struct
2933 *
2934 * igbvf_remove is called by the PCI subsystem to alert the driver
2935 * that it should release a PCI device. The could be caused by a
2936 * Hot-Plug event, or because the driver is going to be removed from
2937 * memory.
2938 **/
2939static void igbvf_remove(struct pci_dev *pdev)
2940{
2941 struct net_device *netdev = pci_get_drvdata(pdev);
2942 struct igbvf_adapter *adapter = netdev_priv(netdev);
2943 struct e1000_hw *hw = &adapter->hw;
2944
2945 /* The watchdog timer may be rescheduled, so explicitly
2946 * disable it from being rescheduled.
2947 */
2948 set_bit(__IGBVF_DOWN, &adapter->state);
2949 del_timer_sync(&adapter->watchdog_timer);
2950
2951 cancel_work_sync(&adapter->reset_task);
2952 cancel_work_sync(&adapter->watchdog_task);
2953
2954 unregister_netdev(netdev);
2955
2956 igbvf_reset_interrupt_capability(adapter);
2957
2958 /* it is important to delete the NAPI struct prior to freeing the
2959 * Rx ring so that you do not end up with null pointer refs
2960 */
2961 netif_napi_del(&adapter->rx_ring->napi);
2962 kfree(adapter->tx_ring);
2963 kfree(adapter->rx_ring);
2964
2965 iounmap(hw->hw_addr);
2966 if (hw->flash_address)
2967 iounmap(hw->flash_address);
2968 pci_release_regions(pdev);
2969
2970 free_netdev(netdev);
2971
2972 pci_disable_device(pdev);
2973}
2974
2975/* PCI Error Recovery (ERS) */
2976static const struct pci_error_handlers igbvf_err_handler = {
2977 .error_detected = igbvf_io_error_detected,
2978 .slot_reset = igbvf_io_slot_reset,
2979 .resume = igbvf_io_resume,
2980};
2981
2982static const struct pci_device_id igbvf_pci_tbl[] = {
2983 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2984 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2985 { } /* terminate list */
2986};
2987MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2988
2989/* PCI Device API Driver */
2990static struct pci_driver igbvf_driver = {
2991 .name = igbvf_driver_name,
2992 .id_table = igbvf_pci_tbl,
2993 .probe = igbvf_probe,
2994 .remove = igbvf_remove,
2995#ifdef CONFIG_PM
2996 /* Power Management Hooks */
2997 .suspend = igbvf_suspend,
2998 .resume = igbvf_resume,
2999#endif
3000 .shutdown = igbvf_shutdown,
3001 .err_handler = &igbvf_err_handler
3002};
3003
3004/**
3005 * igbvf_init_module - Driver Registration Routine
3006 *
3007 * igbvf_init_module is the first routine called when the driver is
3008 * loaded. All it does is register with the PCI subsystem.
3009 **/
3010static int __init igbvf_init_module(void)
3011{
3012 int ret;
3013
3014 pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
3015 pr_info("%s\n", igbvf_copyright);
3016
3017 ret = pci_register_driver(&igbvf_driver);
3018
3019 return ret;
3020}
3021module_init(igbvf_init_module);
3022
3023/**
3024 * igbvf_exit_module - Driver Exit Cleanup Routine
3025 *
3026 * igbvf_exit_module is called just before the driver is removed
3027 * from memory.
3028 **/
3029static void __exit igbvf_exit_module(void)
3030{
3031 pci_unregister_driver(&igbvf_driver);
3032}
3033module_exit(igbvf_exit_module);
3034
3035MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
3036MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
3037MODULE_LICENSE("GPL");
3038MODULE_VERSION(DRV_VERSION);
3039
3040/* netdev.c */