Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2009 - 2018 Intel Corporation. */
3
4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6#include <linux/module.h>
7#include <linux/types.h>
8#include <linux/init.h>
9#include <linux/pci.h>
10#include <linux/vmalloc.h>
11#include <linux/pagemap.h>
12#include <linux/delay.h>
13#include <linux/netdevice.h>
14#include <linux/tcp.h>
15#include <linux/ipv6.h>
16#include <linux/slab.h>
17#include <net/checksum.h>
18#include <net/ip6_checksum.h>
19#include <linux/mii.h>
20#include <linux/ethtool.h>
21#include <linux/if_vlan.h>
22#include <linux/prefetch.h>
23#include <linux/sctp.h>
24
25#include "igbvf.h"
26
27char igbvf_driver_name[] = "igbvf";
28static const char igbvf_driver_string[] =
29 "Intel(R) Gigabit Virtual Function Network Driver";
30static const char igbvf_copyright[] =
31 "Copyright (c) 2009 - 2012 Intel Corporation.";
32
33#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
34static int debug = -1;
35module_param(debug, int, 0);
36MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
37
38static int igbvf_poll(struct napi_struct *napi, int budget);
39static void igbvf_reset(struct igbvf_adapter *);
40static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
41static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
42
43static struct igbvf_info igbvf_vf_info = {
44 .mac = e1000_vfadapt,
45 .flags = 0,
46 .pba = 10,
47 .init_ops = e1000_init_function_pointers_vf,
48};
49
50static struct igbvf_info igbvf_i350_vf_info = {
51 .mac = e1000_vfadapt_i350,
52 .flags = 0,
53 .pba = 10,
54 .init_ops = e1000_init_function_pointers_vf,
55};
56
57static const struct igbvf_info *igbvf_info_tbl[] = {
58 [board_vf] = &igbvf_vf_info,
59 [board_i350_vf] = &igbvf_i350_vf_info,
60};
61
62/**
63 * igbvf_desc_unused - calculate if we have unused descriptors
64 * @ring: address of receive ring structure
65 **/
66static int igbvf_desc_unused(struct igbvf_ring *ring)
67{
68 if (ring->next_to_clean > ring->next_to_use)
69 return ring->next_to_clean - ring->next_to_use - 1;
70
71 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
72}
73
74/**
75 * igbvf_receive_skb - helper function to handle Rx indications
76 * @adapter: board private structure
77 * @netdev: pointer to netdev struct
78 * @skb: skb to indicate to stack
79 * @status: descriptor status field as written by hardware
80 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
81 * @skb: pointer to sk_buff to be indicated to stack
82 **/
83static void igbvf_receive_skb(struct igbvf_adapter *adapter,
84 struct net_device *netdev,
85 struct sk_buff *skb,
86 u32 status, __le16 vlan)
87{
88 u16 vid;
89
90 if (status & E1000_RXD_STAT_VP) {
91 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
92 (status & E1000_RXDEXT_STATERR_LB))
93 vid = be16_to_cpu((__force __be16)vlan) & E1000_RXD_SPC_VLAN_MASK;
94 else
95 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
96 if (test_bit(vid, adapter->active_vlans))
97 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
98 }
99
100 napi_gro_receive(&adapter->rx_ring->napi, skb);
101}
102
103static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
104 u32 status_err, struct sk_buff *skb)
105{
106 skb_checksum_none_assert(skb);
107
108 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
109 if ((status_err & E1000_RXD_STAT_IXSM) ||
110 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
111 return;
112
113 /* TCP/UDP checksum error bit is set */
114 if (status_err &
115 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
116 /* let the stack verify checksum errors */
117 adapter->hw_csum_err++;
118 return;
119 }
120
121 /* It must be a TCP or UDP packet with a valid checksum */
122 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
123 skb->ip_summed = CHECKSUM_UNNECESSARY;
124
125 adapter->hw_csum_good++;
126}
127
128/**
129 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
130 * @rx_ring: address of ring structure to repopulate
131 * @cleaned_count: number of buffers to repopulate
132 **/
133static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
134 int cleaned_count)
135{
136 struct igbvf_adapter *adapter = rx_ring->adapter;
137 struct net_device *netdev = adapter->netdev;
138 struct pci_dev *pdev = adapter->pdev;
139 union e1000_adv_rx_desc *rx_desc;
140 struct igbvf_buffer *buffer_info;
141 struct sk_buff *skb;
142 unsigned int i;
143 int bufsz;
144
145 i = rx_ring->next_to_use;
146 buffer_info = &rx_ring->buffer_info[i];
147
148 if (adapter->rx_ps_hdr_size)
149 bufsz = adapter->rx_ps_hdr_size;
150 else
151 bufsz = adapter->rx_buffer_len;
152
153 while (cleaned_count--) {
154 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
155
156 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
157 if (!buffer_info->page) {
158 buffer_info->page = alloc_page(GFP_ATOMIC);
159 if (!buffer_info->page) {
160 adapter->alloc_rx_buff_failed++;
161 goto no_buffers;
162 }
163 buffer_info->page_offset = 0;
164 } else {
165 buffer_info->page_offset ^= PAGE_SIZE / 2;
166 }
167 buffer_info->page_dma =
168 dma_map_page(&pdev->dev, buffer_info->page,
169 buffer_info->page_offset,
170 PAGE_SIZE / 2,
171 DMA_FROM_DEVICE);
172 if (dma_mapping_error(&pdev->dev,
173 buffer_info->page_dma)) {
174 __free_page(buffer_info->page);
175 buffer_info->page = NULL;
176 dev_err(&pdev->dev, "RX DMA map failed\n");
177 break;
178 }
179 }
180
181 if (!buffer_info->skb) {
182 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
183 if (!skb) {
184 adapter->alloc_rx_buff_failed++;
185 goto no_buffers;
186 }
187
188 buffer_info->skb = skb;
189 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
190 bufsz,
191 DMA_FROM_DEVICE);
192 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
193 dev_kfree_skb(buffer_info->skb);
194 buffer_info->skb = NULL;
195 dev_err(&pdev->dev, "RX DMA map failed\n");
196 goto no_buffers;
197 }
198 }
199 /* Refresh the desc even if buffer_addrs didn't change because
200 * each write-back erases this info.
201 */
202 if (adapter->rx_ps_hdr_size) {
203 rx_desc->read.pkt_addr =
204 cpu_to_le64(buffer_info->page_dma);
205 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
206 } else {
207 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
208 rx_desc->read.hdr_addr = 0;
209 }
210
211 i++;
212 if (i == rx_ring->count)
213 i = 0;
214 buffer_info = &rx_ring->buffer_info[i];
215 }
216
217no_buffers:
218 if (rx_ring->next_to_use != i) {
219 rx_ring->next_to_use = i;
220 if (i == 0)
221 i = (rx_ring->count - 1);
222 else
223 i--;
224
225 /* Force memory writes to complete before letting h/w
226 * know there are new descriptors to fetch. (Only
227 * applicable for weak-ordered memory model archs,
228 * such as IA-64).
229 */
230 wmb();
231 writel(i, adapter->hw.hw_addr + rx_ring->tail);
232 }
233}
234
235/**
236 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
237 * @adapter: board private structure
238 * @work_done: output parameter used to indicate completed work
239 * @work_to_do: input parameter setting limit of work
240 *
241 * the return value indicates whether actual cleaning was done, there
242 * is no guarantee that everything was cleaned
243 **/
244static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
245 int *work_done, int work_to_do)
246{
247 struct igbvf_ring *rx_ring = adapter->rx_ring;
248 struct net_device *netdev = adapter->netdev;
249 struct pci_dev *pdev = adapter->pdev;
250 union e1000_adv_rx_desc *rx_desc, *next_rxd;
251 struct igbvf_buffer *buffer_info, *next_buffer;
252 struct sk_buff *skb;
253 bool cleaned = false;
254 int cleaned_count = 0;
255 unsigned int total_bytes = 0, total_packets = 0;
256 unsigned int i;
257 u32 length, hlen, staterr;
258
259 i = rx_ring->next_to_clean;
260 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
261 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
262
263 while (staterr & E1000_RXD_STAT_DD) {
264 if (*work_done >= work_to_do)
265 break;
266 (*work_done)++;
267 rmb(); /* read descriptor and rx_buffer_info after status DD */
268
269 buffer_info = &rx_ring->buffer_info[i];
270
271 /* HW will not DMA in data larger than the given buffer, even
272 * if it parses the (NFS, of course) header to be larger. In
273 * that case, it fills the header buffer and spills the rest
274 * into the page.
275 */
276 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
277 & E1000_RXDADV_HDRBUFLEN_MASK) >>
278 E1000_RXDADV_HDRBUFLEN_SHIFT;
279 if (hlen > adapter->rx_ps_hdr_size)
280 hlen = adapter->rx_ps_hdr_size;
281
282 length = le16_to_cpu(rx_desc->wb.upper.length);
283 cleaned = true;
284 cleaned_count++;
285
286 skb = buffer_info->skb;
287 prefetch(skb->data - NET_IP_ALIGN);
288 buffer_info->skb = NULL;
289 if (!adapter->rx_ps_hdr_size) {
290 dma_unmap_single(&pdev->dev, buffer_info->dma,
291 adapter->rx_buffer_len,
292 DMA_FROM_DEVICE);
293 buffer_info->dma = 0;
294 skb_put(skb, length);
295 goto send_up;
296 }
297
298 if (!skb_shinfo(skb)->nr_frags) {
299 dma_unmap_single(&pdev->dev, buffer_info->dma,
300 adapter->rx_ps_hdr_size,
301 DMA_FROM_DEVICE);
302 buffer_info->dma = 0;
303 skb_put(skb, hlen);
304 }
305
306 if (length) {
307 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
308 PAGE_SIZE / 2,
309 DMA_FROM_DEVICE);
310 buffer_info->page_dma = 0;
311
312 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
313 buffer_info->page,
314 buffer_info->page_offset,
315 length);
316
317 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
318 (page_count(buffer_info->page) != 1))
319 buffer_info->page = NULL;
320 else
321 get_page(buffer_info->page);
322
323 skb->len += length;
324 skb->data_len += length;
325 skb->truesize += PAGE_SIZE / 2;
326 }
327send_up:
328 i++;
329 if (i == rx_ring->count)
330 i = 0;
331 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
332 prefetch(next_rxd);
333 next_buffer = &rx_ring->buffer_info[i];
334
335 if (!(staterr & E1000_RXD_STAT_EOP)) {
336 buffer_info->skb = next_buffer->skb;
337 buffer_info->dma = next_buffer->dma;
338 next_buffer->skb = skb;
339 next_buffer->dma = 0;
340 goto next_desc;
341 }
342
343 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
344 dev_kfree_skb_irq(skb);
345 goto next_desc;
346 }
347
348 total_bytes += skb->len;
349 total_packets++;
350
351 igbvf_rx_checksum_adv(adapter, staterr, skb);
352
353 skb->protocol = eth_type_trans(skb, netdev);
354
355 igbvf_receive_skb(adapter, netdev, skb, staterr,
356 rx_desc->wb.upper.vlan);
357
358next_desc:
359 rx_desc->wb.upper.status_error = 0;
360
361 /* return some buffers to hardware, one at a time is too slow */
362 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
363 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
364 cleaned_count = 0;
365 }
366
367 /* use prefetched values */
368 rx_desc = next_rxd;
369 buffer_info = next_buffer;
370
371 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
372 }
373
374 rx_ring->next_to_clean = i;
375 cleaned_count = igbvf_desc_unused(rx_ring);
376
377 if (cleaned_count)
378 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
379
380 adapter->total_rx_packets += total_packets;
381 adapter->total_rx_bytes += total_bytes;
382 netdev->stats.rx_bytes += total_bytes;
383 netdev->stats.rx_packets += total_packets;
384 return cleaned;
385}
386
387static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
388 struct igbvf_buffer *buffer_info)
389{
390 if (buffer_info->dma) {
391 if (buffer_info->mapped_as_page)
392 dma_unmap_page(&adapter->pdev->dev,
393 buffer_info->dma,
394 buffer_info->length,
395 DMA_TO_DEVICE);
396 else
397 dma_unmap_single(&adapter->pdev->dev,
398 buffer_info->dma,
399 buffer_info->length,
400 DMA_TO_DEVICE);
401 buffer_info->dma = 0;
402 }
403 if (buffer_info->skb) {
404 dev_kfree_skb_any(buffer_info->skb);
405 buffer_info->skb = NULL;
406 }
407 buffer_info->time_stamp = 0;
408}
409
410/**
411 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
412 * @adapter: board private structure
413 * @tx_ring: ring being initialized
414 *
415 * Return 0 on success, negative on failure
416 **/
417int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
418 struct igbvf_ring *tx_ring)
419{
420 struct pci_dev *pdev = adapter->pdev;
421 int size;
422
423 size = sizeof(struct igbvf_buffer) * tx_ring->count;
424 tx_ring->buffer_info = vzalloc(size);
425 if (!tx_ring->buffer_info)
426 goto err;
427
428 /* round up to nearest 4K */
429 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
430 tx_ring->size = ALIGN(tx_ring->size, 4096);
431
432 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
433 &tx_ring->dma, GFP_KERNEL);
434 if (!tx_ring->desc)
435 goto err;
436
437 tx_ring->adapter = adapter;
438 tx_ring->next_to_use = 0;
439 tx_ring->next_to_clean = 0;
440
441 return 0;
442err:
443 vfree(tx_ring->buffer_info);
444 dev_err(&adapter->pdev->dev,
445 "Unable to allocate memory for the transmit descriptor ring\n");
446 return -ENOMEM;
447}
448
449/**
450 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
451 * @adapter: board private structure
452 * @rx_ring: ring being initialized
453 *
454 * Returns 0 on success, negative on failure
455 **/
456int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
457 struct igbvf_ring *rx_ring)
458{
459 struct pci_dev *pdev = adapter->pdev;
460 int size, desc_len;
461
462 size = sizeof(struct igbvf_buffer) * rx_ring->count;
463 rx_ring->buffer_info = vzalloc(size);
464 if (!rx_ring->buffer_info)
465 goto err;
466
467 desc_len = sizeof(union e1000_adv_rx_desc);
468
469 /* Round up to nearest 4K */
470 rx_ring->size = rx_ring->count * desc_len;
471 rx_ring->size = ALIGN(rx_ring->size, 4096);
472
473 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
474 &rx_ring->dma, GFP_KERNEL);
475 if (!rx_ring->desc)
476 goto err;
477
478 rx_ring->next_to_clean = 0;
479 rx_ring->next_to_use = 0;
480
481 rx_ring->adapter = adapter;
482
483 return 0;
484
485err:
486 vfree(rx_ring->buffer_info);
487 rx_ring->buffer_info = NULL;
488 dev_err(&adapter->pdev->dev,
489 "Unable to allocate memory for the receive descriptor ring\n");
490 return -ENOMEM;
491}
492
493/**
494 * igbvf_clean_tx_ring - Free Tx Buffers
495 * @tx_ring: ring to be cleaned
496 **/
497static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
498{
499 struct igbvf_adapter *adapter = tx_ring->adapter;
500 struct igbvf_buffer *buffer_info;
501 unsigned long size;
502 unsigned int i;
503
504 if (!tx_ring->buffer_info)
505 return;
506
507 /* Free all the Tx ring sk_buffs */
508 for (i = 0; i < tx_ring->count; i++) {
509 buffer_info = &tx_ring->buffer_info[i];
510 igbvf_put_txbuf(adapter, buffer_info);
511 }
512
513 size = sizeof(struct igbvf_buffer) * tx_ring->count;
514 memset(tx_ring->buffer_info, 0, size);
515
516 /* Zero out the descriptor ring */
517 memset(tx_ring->desc, 0, tx_ring->size);
518
519 tx_ring->next_to_use = 0;
520 tx_ring->next_to_clean = 0;
521
522 writel(0, adapter->hw.hw_addr + tx_ring->head);
523 writel(0, adapter->hw.hw_addr + tx_ring->tail);
524}
525
526/**
527 * igbvf_free_tx_resources - Free Tx Resources per Queue
528 * @tx_ring: ring to free resources from
529 *
530 * Free all transmit software resources
531 **/
532void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
533{
534 struct pci_dev *pdev = tx_ring->adapter->pdev;
535
536 igbvf_clean_tx_ring(tx_ring);
537
538 vfree(tx_ring->buffer_info);
539 tx_ring->buffer_info = NULL;
540
541 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
542 tx_ring->dma);
543
544 tx_ring->desc = NULL;
545}
546
547/**
548 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
549 * @rx_ring: ring structure pointer to free buffers from
550 **/
551static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
552{
553 struct igbvf_adapter *adapter = rx_ring->adapter;
554 struct igbvf_buffer *buffer_info;
555 struct pci_dev *pdev = adapter->pdev;
556 unsigned long size;
557 unsigned int i;
558
559 if (!rx_ring->buffer_info)
560 return;
561
562 /* Free all the Rx ring sk_buffs */
563 for (i = 0; i < rx_ring->count; i++) {
564 buffer_info = &rx_ring->buffer_info[i];
565 if (buffer_info->dma) {
566 if (adapter->rx_ps_hdr_size) {
567 dma_unmap_single(&pdev->dev, buffer_info->dma,
568 adapter->rx_ps_hdr_size,
569 DMA_FROM_DEVICE);
570 } else {
571 dma_unmap_single(&pdev->dev, buffer_info->dma,
572 adapter->rx_buffer_len,
573 DMA_FROM_DEVICE);
574 }
575 buffer_info->dma = 0;
576 }
577
578 if (buffer_info->skb) {
579 dev_kfree_skb(buffer_info->skb);
580 buffer_info->skb = NULL;
581 }
582
583 if (buffer_info->page) {
584 if (buffer_info->page_dma)
585 dma_unmap_page(&pdev->dev,
586 buffer_info->page_dma,
587 PAGE_SIZE / 2,
588 DMA_FROM_DEVICE);
589 put_page(buffer_info->page);
590 buffer_info->page = NULL;
591 buffer_info->page_dma = 0;
592 buffer_info->page_offset = 0;
593 }
594 }
595
596 size = sizeof(struct igbvf_buffer) * rx_ring->count;
597 memset(rx_ring->buffer_info, 0, size);
598
599 /* Zero out the descriptor ring */
600 memset(rx_ring->desc, 0, rx_ring->size);
601
602 rx_ring->next_to_clean = 0;
603 rx_ring->next_to_use = 0;
604
605 writel(0, adapter->hw.hw_addr + rx_ring->head);
606 writel(0, adapter->hw.hw_addr + rx_ring->tail);
607}
608
609/**
610 * igbvf_free_rx_resources - Free Rx Resources
611 * @rx_ring: ring to clean the resources from
612 *
613 * Free all receive software resources
614 **/
615
616void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
617{
618 struct pci_dev *pdev = rx_ring->adapter->pdev;
619
620 igbvf_clean_rx_ring(rx_ring);
621
622 vfree(rx_ring->buffer_info);
623 rx_ring->buffer_info = NULL;
624
625 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
626 rx_ring->dma);
627 rx_ring->desc = NULL;
628}
629
630/**
631 * igbvf_update_itr - update the dynamic ITR value based on statistics
632 * @adapter: pointer to adapter
633 * @itr_setting: current adapter->itr
634 * @packets: the number of packets during this measurement interval
635 * @bytes: the number of bytes during this measurement interval
636 *
637 * Stores a new ITR value based on packets and byte counts during the last
638 * interrupt. The advantage of per interrupt computation is faster updates
639 * and more accurate ITR for the current traffic pattern. Constants in this
640 * function were computed based on theoretical maximum wire speed and thresholds
641 * were set based on testing data as well as attempting to minimize response
642 * time while increasing bulk throughput.
643 **/
644static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
645 enum latency_range itr_setting,
646 int packets, int bytes)
647{
648 enum latency_range retval = itr_setting;
649
650 if (packets == 0)
651 goto update_itr_done;
652
653 switch (itr_setting) {
654 case lowest_latency:
655 /* handle TSO and jumbo frames */
656 if (bytes/packets > 8000)
657 retval = bulk_latency;
658 else if ((packets < 5) && (bytes > 512))
659 retval = low_latency;
660 break;
661 case low_latency: /* 50 usec aka 20000 ints/s */
662 if (bytes > 10000) {
663 /* this if handles the TSO accounting */
664 if (bytes/packets > 8000)
665 retval = bulk_latency;
666 else if ((packets < 10) || ((bytes/packets) > 1200))
667 retval = bulk_latency;
668 else if ((packets > 35))
669 retval = lowest_latency;
670 } else if (bytes/packets > 2000) {
671 retval = bulk_latency;
672 } else if (packets <= 2 && bytes < 512) {
673 retval = lowest_latency;
674 }
675 break;
676 case bulk_latency: /* 250 usec aka 4000 ints/s */
677 if (bytes > 25000) {
678 if (packets > 35)
679 retval = low_latency;
680 } else if (bytes < 6000) {
681 retval = low_latency;
682 }
683 break;
684 default:
685 break;
686 }
687
688update_itr_done:
689 return retval;
690}
691
692static int igbvf_range_to_itr(enum latency_range current_range)
693{
694 int new_itr;
695
696 switch (current_range) {
697 /* counts and packets in update_itr are dependent on these numbers */
698 case lowest_latency:
699 new_itr = IGBVF_70K_ITR;
700 break;
701 case low_latency:
702 new_itr = IGBVF_20K_ITR;
703 break;
704 case bulk_latency:
705 new_itr = IGBVF_4K_ITR;
706 break;
707 default:
708 new_itr = IGBVF_START_ITR;
709 break;
710 }
711 return new_itr;
712}
713
714static void igbvf_set_itr(struct igbvf_adapter *adapter)
715{
716 u32 new_itr;
717
718 adapter->tx_ring->itr_range =
719 igbvf_update_itr(adapter,
720 adapter->tx_ring->itr_val,
721 adapter->total_tx_packets,
722 adapter->total_tx_bytes);
723
724 /* conservative mode (itr 3) eliminates the lowest_latency setting */
725 if (adapter->requested_itr == 3 &&
726 adapter->tx_ring->itr_range == lowest_latency)
727 adapter->tx_ring->itr_range = low_latency;
728
729 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
730
731 if (new_itr != adapter->tx_ring->itr_val) {
732 u32 current_itr = adapter->tx_ring->itr_val;
733 /* this attempts to bias the interrupt rate towards Bulk
734 * by adding intermediate steps when interrupt rate is
735 * increasing
736 */
737 new_itr = new_itr > current_itr ?
738 min(current_itr + (new_itr >> 2), new_itr) :
739 new_itr;
740 adapter->tx_ring->itr_val = new_itr;
741
742 adapter->tx_ring->set_itr = 1;
743 }
744
745 adapter->rx_ring->itr_range =
746 igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
747 adapter->total_rx_packets,
748 adapter->total_rx_bytes);
749 if (adapter->requested_itr == 3 &&
750 adapter->rx_ring->itr_range == lowest_latency)
751 adapter->rx_ring->itr_range = low_latency;
752
753 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
754
755 if (new_itr != adapter->rx_ring->itr_val) {
756 u32 current_itr = adapter->rx_ring->itr_val;
757
758 new_itr = new_itr > current_itr ?
759 min(current_itr + (new_itr >> 2), new_itr) :
760 new_itr;
761 adapter->rx_ring->itr_val = new_itr;
762
763 adapter->rx_ring->set_itr = 1;
764 }
765}
766
767/**
768 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
769 * @tx_ring: ring structure to clean descriptors from
770 *
771 * returns true if ring is completely cleaned
772 **/
773static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
774{
775 struct igbvf_adapter *adapter = tx_ring->adapter;
776 struct net_device *netdev = adapter->netdev;
777 struct igbvf_buffer *buffer_info;
778 struct sk_buff *skb;
779 union e1000_adv_tx_desc *tx_desc, *eop_desc;
780 unsigned int total_bytes = 0, total_packets = 0;
781 unsigned int i, count = 0;
782 bool cleaned = false;
783
784 i = tx_ring->next_to_clean;
785 buffer_info = &tx_ring->buffer_info[i];
786 eop_desc = buffer_info->next_to_watch;
787
788 do {
789 /* if next_to_watch is not set then there is no work pending */
790 if (!eop_desc)
791 break;
792
793 /* prevent any other reads prior to eop_desc */
794 smp_rmb();
795
796 /* if DD is not set pending work has not been completed */
797 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
798 break;
799
800 /* clear next_to_watch to prevent false hangs */
801 buffer_info->next_to_watch = NULL;
802
803 for (cleaned = false; !cleaned; count++) {
804 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
805 cleaned = (tx_desc == eop_desc);
806 skb = buffer_info->skb;
807
808 if (skb) {
809 unsigned int segs, bytecount;
810
811 /* gso_segs is currently only valid for tcp */
812 segs = skb_shinfo(skb)->gso_segs ?: 1;
813 /* multiply data chunks by size of headers */
814 bytecount = ((segs - 1) * skb_headlen(skb)) +
815 skb->len;
816 total_packets += segs;
817 total_bytes += bytecount;
818 }
819
820 igbvf_put_txbuf(adapter, buffer_info);
821 tx_desc->wb.status = 0;
822
823 i++;
824 if (i == tx_ring->count)
825 i = 0;
826
827 buffer_info = &tx_ring->buffer_info[i];
828 }
829
830 eop_desc = buffer_info->next_to_watch;
831 } while (count < tx_ring->count);
832
833 tx_ring->next_to_clean = i;
834
835 if (unlikely(count && netif_carrier_ok(netdev) &&
836 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
837 /* Make sure that anybody stopping the queue after this
838 * sees the new next_to_clean.
839 */
840 smp_mb();
841 if (netif_queue_stopped(netdev) &&
842 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
843 netif_wake_queue(netdev);
844 ++adapter->restart_queue;
845 }
846 }
847
848 netdev->stats.tx_bytes += total_bytes;
849 netdev->stats.tx_packets += total_packets;
850 return count < tx_ring->count;
851}
852
853static irqreturn_t igbvf_msix_other(int irq, void *data)
854{
855 struct net_device *netdev = data;
856 struct igbvf_adapter *adapter = netdev_priv(netdev);
857 struct e1000_hw *hw = &adapter->hw;
858
859 adapter->int_counter1++;
860
861 hw->mac.get_link_status = 1;
862 if (!test_bit(__IGBVF_DOWN, &adapter->state))
863 mod_timer(&adapter->watchdog_timer, jiffies + 1);
864
865 ew32(EIMS, adapter->eims_other);
866
867 return IRQ_HANDLED;
868}
869
870static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
871{
872 struct net_device *netdev = data;
873 struct igbvf_adapter *adapter = netdev_priv(netdev);
874 struct e1000_hw *hw = &adapter->hw;
875 struct igbvf_ring *tx_ring = adapter->tx_ring;
876
877 if (tx_ring->set_itr) {
878 writel(tx_ring->itr_val,
879 adapter->hw.hw_addr + tx_ring->itr_register);
880 adapter->tx_ring->set_itr = 0;
881 }
882
883 adapter->total_tx_bytes = 0;
884 adapter->total_tx_packets = 0;
885
886 /* auto mask will automatically re-enable the interrupt when we write
887 * EICS
888 */
889 if (!igbvf_clean_tx_irq(tx_ring))
890 /* Ring was not completely cleaned, so fire another interrupt */
891 ew32(EICS, tx_ring->eims_value);
892 else
893 ew32(EIMS, tx_ring->eims_value);
894
895 return IRQ_HANDLED;
896}
897
898static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
899{
900 struct net_device *netdev = data;
901 struct igbvf_adapter *adapter = netdev_priv(netdev);
902
903 adapter->int_counter0++;
904
905 /* Write the ITR value calculated at the end of the
906 * previous interrupt.
907 */
908 if (adapter->rx_ring->set_itr) {
909 writel(adapter->rx_ring->itr_val,
910 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
911 adapter->rx_ring->set_itr = 0;
912 }
913
914 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
915 adapter->total_rx_bytes = 0;
916 adapter->total_rx_packets = 0;
917 __napi_schedule(&adapter->rx_ring->napi);
918 }
919
920 return IRQ_HANDLED;
921}
922
923#define IGBVF_NO_QUEUE -1
924
925static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
926 int tx_queue, int msix_vector)
927{
928 struct e1000_hw *hw = &adapter->hw;
929 u32 ivar, index;
930
931 /* 82576 uses a table-based method for assigning vectors.
932 * Each queue has a single entry in the table to which we write
933 * a vector number along with a "valid" bit. Sadly, the layout
934 * of the table is somewhat counterintuitive.
935 */
936 if (rx_queue > IGBVF_NO_QUEUE) {
937 index = (rx_queue >> 1);
938 ivar = array_er32(IVAR0, index);
939 if (rx_queue & 0x1) {
940 /* vector goes into third byte of register */
941 ivar = ivar & 0xFF00FFFF;
942 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
943 } else {
944 /* vector goes into low byte of register */
945 ivar = ivar & 0xFFFFFF00;
946 ivar |= msix_vector | E1000_IVAR_VALID;
947 }
948 adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
949 array_ew32(IVAR0, index, ivar);
950 }
951 if (tx_queue > IGBVF_NO_QUEUE) {
952 index = (tx_queue >> 1);
953 ivar = array_er32(IVAR0, index);
954 if (tx_queue & 0x1) {
955 /* vector goes into high byte of register */
956 ivar = ivar & 0x00FFFFFF;
957 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
958 } else {
959 /* vector goes into second byte of register */
960 ivar = ivar & 0xFFFF00FF;
961 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
962 }
963 adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
964 array_ew32(IVAR0, index, ivar);
965 }
966}
967
968/**
969 * igbvf_configure_msix - Configure MSI-X hardware
970 * @adapter: board private structure
971 *
972 * igbvf_configure_msix sets up the hardware to properly
973 * generate MSI-X interrupts.
974 **/
975static void igbvf_configure_msix(struct igbvf_adapter *adapter)
976{
977 u32 tmp;
978 struct e1000_hw *hw = &adapter->hw;
979 struct igbvf_ring *tx_ring = adapter->tx_ring;
980 struct igbvf_ring *rx_ring = adapter->rx_ring;
981 int vector = 0;
982
983 adapter->eims_enable_mask = 0;
984
985 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
986 adapter->eims_enable_mask |= tx_ring->eims_value;
987 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
988 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
989 adapter->eims_enable_mask |= rx_ring->eims_value;
990 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
991
992 /* set vector for other causes, i.e. link changes */
993
994 tmp = (vector++ | E1000_IVAR_VALID);
995
996 ew32(IVAR_MISC, tmp);
997
998 adapter->eims_enable_mask = GENMASK(vector - 1, 0);
999 adapter->eims_other = BIT(vector - 1);
1000 e1e_flush();
1001}
1002
1003static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1004{
1005 if (adapter->msix_entries) {
1006 pci_disable_msix(adapter->pdev);
1007 kfree(adapter->msix_entries);
1008 adapter->msix_entries = NULL;
1009 }
1010}
1011
1012/**
1013 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1014 * @adapter: board private structure
1015 *
1016 * Attempt to configure interrupts using the best available
1017 * capabilities of the hardware and kernel.
1018 **/
1019static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1020{
1021 int err = -ENOMEM;
1022 int i;
1023
1024 /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1025 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1026 GFP_KERNEL);
1027 if (adapter->msix_entries) {
1028 for (i = 0; i < 3; i++)
1029 adapter->msix_entries[i].entry = i;
1030
1031 err = pci_enable_msix_range(adapter->pdev,
1032 adapter->msix_entries, 3, 3);
1033 }
1034
1035 if (err < 0) {
1036 /* MSI-X failed */
1037 dev_err(&adapter->pdev->dev,
1038 "Failed to initialize MSI-X interrupts.\n");
1039 igbvf_reset_interrupt_capability(adapter);
1040 }
1041}
1042
1043/**
1044 * igbvf_request_msix - Initialize MSI-X interrupts
1045 * @adapter: board private structure
1046 *
1047 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1048 * kernel.
1049 **/
1050static int igbvf_request_msix(struct igbvf_adapter *adapter)
1051{
1052 struct net_device *netdev = adapter->netdev;
1053 int err = 0, vector = 0;
1054
1055 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1056 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1057 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1058 } else {
1059 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1060 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1061 }
1062
1063 err = request_irq(adapter->msix_entries[vector].vector,
1064 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1065 netdev);
1066 if (err)
1067 goto out;
1068
1069 adapter->tx_ring->itr_register = E1000_EITR(vector);
1070 adapter->tx_ring->itr_val = adapter->current_itr;
1071 vector++;
1072
1073 err = request_irq(adapter->msix_entries[vector].vector,
1074 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1075 netdev);
1076 if (err)
1077 goto out;
1078
1079 adapter->rx_ring->itr_register = E1000_EITR(vector);
1080 adapter->rx_ring->itr_val = adapter->current_itr;
1081 vector++;
1082
1083 err = request_irq(adapter->msix_entries[vector].vector,
1084 igbvf_msix_other, 0, netdev->name, netdev);
1085 if (err)
1086 goto out;
1087
1088 igbvf_configure_msix(adapter);
1089 return 0;
1090out:
1091 return err;
1092}
1093
1094/**
1095 * igbvf_alloc_queues - Allocate memory for all rings
1096 * @adapter: board private structure to initialize
1097 **/
1098static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1099{
1100 struct net_device *netdev = adapter->netdev;
1101
1102 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1103 if (!adapter->tx_ring)
1104 return -ENOMEM;
1105
1106 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1107 if (!adapter->rx_ring) {
1108 kfree(adapter->tx_ring);
1109 return -ENOMEM;
1110 }
1111
1112 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll);
1113
1114 return 0;
1115}
1116
1117/**
1118 * igbvf_request_irq - initialize interrupts
1119 * @adapter: board private structure
1120 *
1121 * Attempts to configure interrupts using the best available
1122 * capabilities of the hardware and kernel.
1123 **/
1124static int igbvf_request_irq(struct igbvf_adapter *adapter)
1125{
1126 int err = -1;
1127
1128 /* igbvf supports msi-x only */
1129 if (adapter->msix_entries)
1130 err = igbvf_request_msix(adapter);
1131
1132 if (!err)
1133 return err;
1134
1135 dev_err(&adapter->pdev->dev,
1136 "Unable to allocate interrupt, Error: %d\n", err);
1137
1138 return err;
1139}
1140
1141static void igbvf_free_irq(struct igbvf_adapter *adapter)
1142{
1143 struct net_device *netdev = adapter->netdev;
1144 int vector;
1145
1146 if (adapter->msix_entries) {
1147 for (vector = 0; vector < 3; vector++)
1148 free_irq(adapter->msix_entries[vector].vector, netdev);
1149 }
1150}
1151
1152/**
1153 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1154 * @adapter: board private structure
1155 **/
1156static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1157{
1158 struct e1000_hw *hw = &adapter->hw;
1159
1160 ew32(EIMC, ~0);
1161
1162 if (adapter->msix_entries)
1163 ew32(EIAC, 0);
1164}
1165
1166/**
1167 * igbvf_irq_enable - Enable default interrupt generation settings
1168 * @adapter: board private structure
1169 **/
1170static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1171{
1172 struct e1000_hw *hw = &adapter->hw;
1173
1174 ew32(EIAC, adapter->eims_enable_mask);
1175 ew32(EIAM, adapter->eims_enable_mask);
1176 ew32(EIMS, adapter->eims_enable_mask);
1177}
1178
1179/**
1180 * igbvf_poll - NAPI Rx polling callback
1181 * @napi: struct associated with this polling callback
1182 * @budget: amount of packets driver is allowed to process this poll
1183 **/
1184static int igbvf_poll(struct napi_struct *napi, int budget)
1185{
1186 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1187 struct igbvf_adapter *adapter = rx_ring->adapter;
1188 struct e1000_hw *hw = &adapter->hw;
1189 int work_done = 0;
1190
1191 igbvf_clean_rx_irq(adapter, &work_done, budget);
1192
1193 if (work_done == budget)
1194 return budget;
1195
1196 /* Exit the polling mode, but don't re-enable interrupts if stack might
1197 * poll us due to busy-polling
1198 */
1199 if (likely(napi_complete_done(napi, work_done))) {
1200 if (adapter->requested_itr & 3)
1201 igbvf_set_itr(adapter);
1202
1203 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1204 ew32(EIMS, adapter->rx_ring->eims_value);
1205 }
1206
1207 return work_done;
1208}
1209
1210/**
1211 * igbvf_set_rlpml - set receive large packet maximum length
1212 * @adapter: board private structure
1213 *
1214 * Configure the maximum size of packets that will be received
1215 */
1216static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1217{
1218 int max_frame_size;
1219 struct e1000_hw *hw = &adapter->hw;
1220
1221 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1222
1223 spin_lock_bh(&hw->mbx_lock);
1224
1225 e1000_rlpml_set_vf(hw, max_frame_size);
1226
1227 spin_unlock_bh(&hw->mbx_lock);
1228}
1229
1230static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1231 __be16 proto, u16 vid)
1232{
1233 struct igbvf_adapter *adapter = netdev_priv(netdev);
1234 struct e1000_hw *hw = &adapter->hw;
1235
1236 spin_lock_bh(&hw->mbx_lock);
1237
1238 if (hw->mac.ops.set_vfta(hw, vid, true)) {
1239 dev_warn(&adapter->pdev->dev, "Vlan id %d\n is not added", vid);
1240 spin_unlock_bh(&hw->mbx_lock);
1241 return -EINVAL;
1242 }
1243
1244 spin_unlock_bh(&hw->mbx_lock);
1245
1246 set_bit(vid, adapter->active_vlans);
1247 return 0;
1248}
1249
1250static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1251 __be16 proto, u16 vid)
1252{
1253 struct igbvf_adapter *adapter = netdev_priv(netdev);
1254 struct e1000_hw *hw = &adapter->hw;
1255
1256 spin_lock_bh(&hw->mbx_lock);
1257
1258 if (hw->mac.ops.set_vfta(hw, vid, false)) {
1259 dev_err(&adapter->pdev->dev,
1260 "Failed to remove vlan id %d\n", vid);
1261 spin_unlock_bh(&hw->mbx_lock);
1262 return -EINVAL;
1263 }
1264
1265 spin_unlock_bh(&hw->mbx_lock);
1266
1267 clear_bit(vid, adapter->active_vlans);
1268 return 0;
1269}
1270
1271static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1272{
1273 u16 vid;
1274
1275 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1276 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1277}
1278
1279/**
1280 * igbvf_configure_tx - Configure Transmit Unit after Reset
1281 * @adapter: board private structure
1282 *
1283 * Configure the Tx unit of the MAC after a reset.
1284 **/
1285static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1286{
1287 struct e1000_hw *hw = &adapter->hw;
1288 struct igbvf_ring *tx_ring = adapter->tx_ring;
1289 u64 tdba;
1290 u32 txdctl, dca_txctrl;
1291
1292 /* disable transmits */
1293 txdctl = er32(TXDCTL(0));
1294 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1295 e1e_flush();
1296 msleep(10);
1297
1298 /* Setup the HW Tx Head and Tail descriptor pointers */
1299 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1300 tdba = tx_ring->dma;
1301 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1302 ew32(TDBAH(0), (tdba >> 32));
1303 ew32(TDH(0), 0);
1304 ew32(TDT(0), 0);
1305 tx_ring->head = E1000_TDH(0);
1306 tx_ring->tail = E1000_TDT(0);
1307
1308 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1309 * MUST be delivered in order or it will completely screw up
1310 * our bookkeeping.
1311 */
1312 dca_txctrl = er32(DCA_TXCTRL(0));
1313 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1314 ew32(DCA_TXCTRL(0), dca_txctrl);
1315
1316 /* enable transmits */
1317 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1318 ew32(TXDCTL(0), txdctl);
1319
1320 /* Setup Transmit Descriptor Settings for eop descriptor */
1321 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1322
1323 /* enable Report Status bit */
1324 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1325}
1326
1327/**
1328 * igbvf_setup_srrctl - configure the receive control registers
1329 * @adapter: Board private structure
1330 **/
1331static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1332{
1333 struct e1000_hw *hw = &adapter->hw;
1334 u32 srrctl = 0;
1335
1336 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1337 E1000_SRRCTL_BSIZEHDR_MASK |
1338 E1000_SRRCTL_BSIZEPKT_MASK);
1339
1340 /* Enable queue drop to avoid head of line blocking */
1341 srrctl |= E1000_SRRCTL_DROP_EN;
1342
1343 /* Setup buffer sizes */
1344 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1345 E1000_SRRCTL_BSIZEPKT_SHIFT;
1346
1347 if (adapter->rx_buffer_len < 2048) {
1348 adapter->rx_ps_hdr_size = 0;
1349 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1350 } else {
1351 adapter->rx_ps_hdr_size = 128;
1352 srrctl |= adapter->rx_ps_hdr_size <<
1353 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1354 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1355 }
1356
1357 ew32(SRRCTL(0), srrctl);
1358}
1359
1360/**
1361 * igbvf_configure_rx - Configure Receive Unit after Reset
1362 * @adapter: board private structure
1363 *
1364 * Configure the Rx unit of the MAC after a reset.
1365 **/
1366static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1367{
1368 struct e1000_hw *hw = &adapter->hw;
1369 struct igbvf_ring *rx_ring = adapter->rx_ring;
1370 u64 rdba;
1371 u32 rxdctl;
1372
1373 /* disable receives */
1374 rxdctl = er32(RXDCTL(0));
1375 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1376 e1e_flush();
1377 msleep(10);
1378
1379 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1380 * the Base and Length of the Rx Descriptor Ring
1381 */
1382 rdba = rx_ring->dma;
1383 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1384 ew32(RDBAH(0), (rdba >> 32));
1385 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1386 rx_ring->head = E1000_RDH(0);
1387 rx_ring->tail = E1000_RDT(0);
1388 ew32(RDH(0), 0);
1389 ew32(RDT(0), 0);
1390
1391 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1392 rxdctl &= 0xFFF00000;
1393 rxdctl |= IGBVF_RX_PTHRESH;
1394 rxdctl |= IGBVF_RX_HTHRESH << 8;
1395 rxdctl |= IGBVF_RX_WTHRESH << 16;
1396
1397 igbvf_set_rlpml(adapter);
1398
1399 /* enable receives */
1400 ew32(RXDCTL(0), rxdctl);
1401}
1402
1403/**
1404 * igbvf_set_multi - Multicast and Promiscuous mode set
1405 * @netdev: network interface device structure
1406 *
1407 * The set_multi entry point is called whenever the multicast address
1408 * list or the network interface flags are updated. This routine is
1409 * responsible for configuring the hardware for proper multicast,
1410 * promiscuous mode, and all-multi behavior.
1411 **/
1412static void igbvf_set_multi(struct net_device *netdev)
1413{
1414 struct igbvf_adapter *adapter = netdev_priv(netdev);
1415 struct e1000_hw *hw = &adapter->hw;
1416 struct netdev_hw_addr *ha;
1417 u8 *mta_list = NULL;
1418 int i;
1419
1420 if (!netdev_mc_empty(netdev)) {
1421 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1422 GFP_ATOMIC);
1423 if (!mta_list)
1424 return;
1425 }
1426
1427 /* prepare a packed array of only addresses. */
1428 i = 0;
1429 netdev_for_each_mc_addr(ha, netdev)
1430 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1431
1432 spin_lock_bh(&hw->mbx_lock);
1433
1434 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1435
1436 spin_unlock_bh(&hw->mbx_lock);
1437 kfree(mta_list);
1438}
1439
1440/**
1441 * igbvf_set_uni - Configure unicast MAC filters
1442 * @netdev: network interface device structure
1443 *
1444 * This routine is responsible for configuring the hardware for proper
1445 * unicast filters.
1446 **/
1447static int igbvf_set_uni(struct net_device *netdev)
1448{
1449 struct igbvf_adapter *adapter = netdev_priv(netdev);
1450 struct e1000_hw *hw = &adapter->hw;
1451
1452 if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1453 pr_err("Too many unicast filters - No Space\n");
1454 return -ENOSPC;
1455 }
1456
1457 spin_lock_bh(&hw->mbx_lock);
1458
1459 /* Clear all unicast MAC filters */
1460 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1461
1462 spin_unlock_bh(&hw->mbx_lock);
1463
1464 if (!netdev_uc_empty(netdev)) {
1465 struct netdev_hw_addr *ha;
1466
1467 /* Add MAC filters one by one */
1468 netdev_for_each_uc_addr(ha, netdev) {
1469 spin_lock_bh(&hw->mbx_lock);
1470
1471 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1472 ha->addr);
1473
1474 spin_unlock_bh(&hw->mbx_lock);
1475 udelay(200);
1476 }
1477 }
1478
1479 return 0;
1480}
1481
1482static void igbvf_set_rx_mode(struct net_device *netdev)
1483{
1484 igbvf_set_multi(netdev);
1485 igbvf_set_uni(netdev);
1486}
1487
1488/**
1489 * igbvf_configure - configure the hardware for Rx and Tx
1490 * @adapter: private board structure
1491 **/
1492static void igbvf_configure(struct igbvf_adapter *adapter)
1493{
1494 igbvf_set_rx_mode(adapter->netdev);
1495
1496 igbvf_restore_vlan(adapter);
1497
1498 igbvf_configure_tx(adapter);
1499 igbvf_setup_srrctl(adapter);
1500 igbvf_configure_rx(adapter);
1501 igbvf_alloc_rx_buffers(adapter->rx_ring,
1502 igbvf_desc_unused(adapter->rx_ring));
1503}
1504
1505/* igbvf_reset - bring the hardware into a known good state
1506 * @adapter: private board structure
1507 *
1508 * This function boots the hardware and enables some settings that
1509 * require a configuration cycle of the hardware - those cannot be
1510 * set/changed during runtime. After reset the device needs to be
1511 * properly configured for Rx, Tx etc.
1512 */
1513static void igbvf_reset(struct igbvf_adapter *adapter)
1514{
1515 struct e1000_mac_info *mac = &adapter->hw.mac;
1516 struct net_device *netdev = adapter->netdev;
1517 struct e1000_hw *hw = &adapter->hw;
1518
1519 spin_lock_bh(&hw->mbx_lock);
1520
1521 /* Allow time for pending master requests to run */
1522 if (mac->ops.reset_hw(hw))
1523 dev_info(&adapter->pdev->dev, "PF still resetting\n");
1524
1525 mac->ops.init_hw(hw);
1526
1527 spin_unlock_bh(&hw->mbx_lock);
1528
1529 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1530 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
1531 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1532 netdev->addr_len);
1533 }
1534
1535 adapter->last_reset = jiffies;
1536}
1537
1538int igbvf_up(struct igbvf_adapter *adapter)
1539{
1540 struct e1000_hw *hw = &adapter->hw;
1541
1542 /* hardware has been reset, we need to reload some things */
1543 igbvf_configure(adapter);
1544
1545 clear_bit(__IGBVF_DOWN, &adapter->state);
1546
1547 napi_enable(&adapter->rx_ring->napi);
1548 if (adapter->msix_entries)
1549 igbvf_configure_msix(adapter);
1550
1551 /* Clear any pending interrupts. */
1552 er32(EICR);
1553 igbvf_irq_enable(adapter);
1554
1555 /* start the watchdog */
1556 hw->mac.get_link_status = 1;
1557 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1558
1559 return 0;
1560}
1561
1562void igbvf_down(struct igbvf_adapter *adapter)
1563{
1564 struct net_device *netdev = adapter->netdev;
1565 struct e1000_hw *hw = &adapter->hw;
1566 u32 rxdctl, txdctl;
1567
1568 /* signal that we're down so the interrupt handler does not
1569 * reschedule our watchdog timer
1570 */
1571 set_bit(__IGBVF_DOWN, &adapter->state);
1572
1573 /* disable receives in the hardware */
1574 rxdctl = er32(RXDCTL(0));
1575 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1576
1577 netif_carrier_off(netdev);
1578 netif_stop_queue(netdev);
1579
1580 /* disable transmits in the hardware */
1581 txdctl = er32(TXDCTL(0));
1582 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1583
1584 /* flush both disables and wait for them to finish */
1585 e1e_flush();
1586 msleep(10);
1587
1588 napi_disable(&adapter->rx_ring->napi);
1589
1590 igbvf_irq_disable(adapter);
1591
1592 del_timer_sync(&adapter->watchdog_timer);
1593
1594 /* record the stats before reset*/
1595 igbvf_update_stats(adapter);
1596
1597 adapter->link_speed = 0;
1598 adapter->link_duplex = 0;
1599
1600 igbvf_reset(adapter);
1601 igbvf_clean_tx_ring(adapter->tx_ring);
1602 igbvf_clean_rx_ring(adapter->rx_ring);
1603}
1604
1605void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1606{
1607 might_sleep();
1608 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1609 usleep_range(1000, 2000);
1610 igbvf_down(adapter);
1611 igbvf_up(adapter);
1612 clear_bit(__IGBVF_RESETTING, &adapter->state);
1613}
1614
1615/**
1616 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1617 * @adapter: board private structure to initialize
1618 *
1619 * igbvf_sw_init initializes the Adapter private data structure.
1620 * Fields are initialized based on PCI device information and
1621 * OS network device settings (MTU size).
1622 **/
1623static int igbvf_sw_init(struct igbvf_adapter *adapter)
1624{
1625 struct net_device *netdev = adapter->netdev;
1626 s32 rc;
1627
1628 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1629 adapter->rx_ps_hdr_size = 0;
1630 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1631 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1632
1633 adapter->tx_int_delay = 8;
1634 adapter->tx_abs_int_delay = 32;
1635 adapter->rx_int_delay = 0;
1636 adapter->rx_abs_int_delay = 8;
1637 adapter->requested_itr = 3;
1638 adapter->current_itr = IGBVF_START_ITR;
1639
1640 /* Set various function pointers */
1641 adapter->ei->init_ops(&adapter->hw);
1642
1643 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1644 if (rc)
1645 return rc;
1646
1647 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1648 if (rc)
1649 return rc;
1650
1651 igbvf_set_interrupt_capability(adapter);
1652
1653 if (igbvf_alloc_queues(adapter))
1654 return -ENOMEM;
1655
1656 spin_lock_init(&adapter->tx_queue_lock);
1657
1658 /* Explicitly disable IRQ since the NIC can be in any state. */
1659 igbvf_irq_disable(adapter);
1660
1661 spin_lock_init(&adapter->stats_lock);
1662 spin_lock_init(&adapter->hw.mbx_lock);
1663
1664 set_bit(__IGBVF_DOWN, &adapter->state);
1665 return 0;
1666}
1667
1668static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1669{
1670 struct e1000_hw *hw = &adapter->hw;
1671
1672 adapter->stats.last_gprc = er32(VFGPRC);
1673 adapter->stats.last_gorc = er32(VFGORC);
1674 adapter->stats.last_gptc = er32(VFGPTC);
1675 adapter->stats.last_gotc = er32(VFGOTC);
1676 adapter->stats.last_mprc = er32(VFMPRC);
1677 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1678 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1679 adapter->stats.last_gorlbc = er32(VFGORLBC);
1680 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1681
1682 adapter->stats.base_gprc = er32(VFGPRC);
1683 adapter->stats.base_gorc = er32(VFGORC);
1684 adapter->stats.base_gptc = er32(VFGPTC);
1685 adapter->stats.base_gotc = er32(VFGOTC);
1686 adapter->stats.base_mprc = er32(VFMPRC);
1687 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1688 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1689 adapter->stats.base_gorlbc = er32(VFGORLBC);
1690 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1691}
1692
1693/**
1694 * igbvf_open - Called when a network interface is made active
1695 * @netdev: network interface device structure
1696 *
1697 * Returns 0 on success, negative value on failure
1698 *
1699 * The open entry point is called when a network interface is made
1700 * active by the system (IFF_UP). At this point all resources needed
1701 * for transmit and receive operations are allocated, the interrupt
1702 * handler is registered with the OS, the watchdog timer is started,
1703 * and the stack is notified that the interface is ready.
1704 **/
1705static int igbvf_open(struct net_device *netdev)
1706{
1707 struct igbvf_adapter *adapter = netdev_priv(netdev);
1708 struct e1000_hw *hw = &adapter->hw;
1709 int err;
1710
1711 /* disallow open during test */
1712 if (test_bit(__IGBVF_TESTING, &adapter->state))
1713 return -EBUSY;
1714
1715 /* allocate transmit descriptors */
1716 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1717 if (err)
1718 goto err_setup_tx;
1719
1720 /* allocate receive descriptors */
1721 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1722 if (err)
1723 goto err_setup_rx;
1724
1725 /* before we allocate an interrupt, we must be ready to handle it.
1726 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1727 * as soon as we call pci_request_irq, so we have to setup our
1728 * clean_rx handler before we do so.
1729 */
1730 igbvf_configure(adapter);
1731
1732 err = igbvf_request_irq(adapter);
1733 if (err)
1734 goto err_req_irq;
1735
1736 /* From here on the code is the same as igbvf_up() */
1737 clear_bit(__IGBVF_DOWN, &adapter->state);
1738
1739 napi_enable(&adapter->rx_ring->napi);
1740
1741 /* clear any pending interrupts */
1742 er32(EICR);
1743
1744 igbvf_irq_enable(adapter);
1745
1746 /* start the watchdog */
1747 hw->mac.get_link_status = 1;
1748 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1749
1750 return 0;
1751
1752err_req_irq:
1753 igbvf_free_rx_resources(adapter->rx_ring);
1754err_setup_rx:
1755 igbvf_free_tx_resources(adapter->tx_ring);
1756err_setup_tx:
1757 igbvf_reset(adapter);
1758
1759 return err;
1760}
1761
1762/**
1763 * igbvf_close - Disables a network interface
1764 * @netdev: network interface device structure
1765 *
1766 * Returns 0, this is not allowed to fail
1767 *
1768 * The close entry point is called when an interface is de-activated
1769 * by the OS. The hardware is still under the drivers control, but
1770 * needs to be disabled. A global MAC reset is issued to stop the
1771 * hardware, and all transmit and receive resources are freed.
1772 **/
1773static int igbvf_close(struct net_device *netdev)
1774{
1775 struct igbvf_adapter *adapter = netdev_priv(netdev);
1776
1777 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1778 igbvf_down(adapter);
1779
1780 igbvf_free_irq(adapter);
1781
1782 igbvf_free_tx_resources(adapter->tx_ring);
1783 igbvf_free_rx_resources(adapter->rx_ring);
1784
1785 return 0;
1786}
1787
1788/**
1789 * igbvf_set_mac - Change the Ethernet Address of the NIC
1790 * @netdev: network interface device structure
1791 * @p: pointer to an address structure
1792 *
1793 * Returns 0 on success, negative on failure
1794 **/
1795static int igbvf_set_mac(struct net_device *netdev, void *p)
1796{
1797 struct igbvf_adapter *adapter = netdev_priv(netdev);
1798 struct e1000_hw *hw = &adapter->hw;
1799 struct sockaddr *addr = p;
1800
1801 if (!is_valid_ether_addr(addr->sa_data))
1802 return -EADDRNOTAVAIL;
1803
1804 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1805
1806 spin_lock_bh(&hw->mbx_lock);
1807
1808 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1809
1810 spin_unlock_bh(&hw->mbx_lock);
1811
1812 if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1813 return -EADDRNOTAVAIL;
1814
1815 eth_hw_addr_set(netdev, addr->sa_data);
1816
1817 return 0;
1818}
1819
1820#define UPDATE_VF_COUNTER(reg, name) \
1821{ \
1822 u32 current_counter = er32(reg); \
1823 if (current_counter < adapter->stats.last_##name) \
1824 adapter->stats.name += 0x100000000LL; \
1825 adapter->stats.last_##name = current_counter; \
1826 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1827 adapter->stats.name |= current_counter; \
1828}
1829
1830/**
1831 * igbvf_update_stats - Update the board statistics counters
1832 * @adapter: board private structure
1833**/
1834void igbvf_update_stats(struct igbvf_adapter *adapter)
1835{
1836 struct e1000_hw *hw = &adapter->hw;
1837 struct pci_dev *pdev = adapter->pdev;
1838
1839 /* Prevent stats update while adapter is being reset, link is down
1840 * or if the pci connection is down.
1841 */
1842 if (adapter->link_speed == 0)
1843 return;
1844
1845 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1846 return;
1847
1848 if (pci_channel_offline(pdev))
1849 return;
1850
1851 UPDATE_VF_COUNTER(VFGPRC, gprc);
1852 UPDATE_VF_COUNTER(VFGORC, gorc);
1853 UPDATE_VF_COUNTER(VFGPTC, gptc);
1854 UPDATE_VF_COUNTER(VFGOTC, gotc);
1855 UPDATE_VF_COUNTER(VFMPRC, mprc);
1856 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1857 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1858 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1859 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1860
1861 /* Fill out the OS statistics structure */
1862 adapter->netdev->stats.multicast = adapter->stats.mprc;
1863}
1864
1865static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1866{
1867 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1868 adapter->link_speed,
1869 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1870}
1871
1872static bool igbvf_has_link(struct igbvf_adapter *adapter)
1873{
1874 struct e1000_hw *hw = &adapter->hw;
1875 s32 ret_val = E1000_SUCCESS;
1876 bool link_active;
1877
1878 /* If interface is down, stay link down */
1879 if (test_bit(__IGBVF_DOWN, &adapter->state))
1880 return false;
1881
1882 spin_lock_bh(&hw->mbx_lock);
1883
1884 ret_val = hw->mac.ops.check_for_link(hw);
1885
1886 spin_unlock_bh(&hw->mbx_lock);
1887
1888 link_active = !hw->mac.get_link_status;
1889
1890 /* if check for link returns error we will need to reset */
1891 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1892 schedule_work(&adapter->reset_task);
1893
1894 return link_active;
1895}
1896
1897/**
1898 * igbvf_watchdog - Timer Call-back
1899 * @t: timer list pointer containing private struct
1900 **/
1901static void igbvf_watchdog(struct timer_list *t)
1902{
1903 struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1904
1905 /* Do the rest outside of interrupt context */
1906 schedule_work(&adapter->watchdog_task);
1907}
1908
1909static void igbvf_watchdog_task(struct work_struct *work)
1910{
1911 struct igbvf_adapter *adapter = container_of(work,
1912 struct igbvf_adapter,
1913 watchdog_task);
1914 struct net_device *netdev = adapter->netdev;
1915 struct e1000_mac_info *mac = &adapter->hw.mac;
1916 struct igbvf_ring *tx_ring = adapter->tx_ring;
1917 struct e1000_hw *hw = &adapter->hw;
1918 u32 link;
1919 int tx_pending = 0;
1920
1921 link = igbvf_has_link(adapter);
1922
1923 if (link) {
1924 if (!netif_carrier_ok(netdev)) {
1925 mac->ops.get_link_up_info(&adapter->hw,
1926 &adapter->link_speed,
1927 &adapter->link_duplex);
1928 igbvf_print_link_info(adapter);
1929
1930 netif_carrier_on(netdev);
1931 netif_wake_queue(netdev);
1932 }
1933 } else {
1934 if (netif_carrier_ok(netdev)) {
1935 adapter->link_speed = 0;
1936 adapter->link_duplex = 0;
1937 dev_info(&adapter->pdev->dev, "Link is Down\n");
1938 netif_carrier_off(netdev);
1939 netif_stop_queue(netdev);
1940 }
1941 }
1942
1943 if (netif_carrier_ok(netdev)) {
1944 igbvf_update_stats(adapter);
1945 } else {
1946 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1947 tx_ring->count);
1948 if (tx_pending) {
1949 /* We've lost link, so the controller stops DMA,
1950 * but we've got queued Tx work that's never going
1951 * to get done, so reset controller to flush Tx.
1952 * (Do the reset outside of interrupt context).
1953 */
1954 adapter->tx_timeout_count++;
1955 schedule_work(&adapter->reset_task);
1956 }
1957 }
1958
1959 /* Cause software interrupt to ensure Rx ring is cleaned */
1960 ew32(EICS, adapter->rx_ring->eims_value);
1961
1962 /* Reset the timer */
1963 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1964 mod_timer(&adapter->watchdog_timer,
1965 round_jiffies(jiffies + (2 * HZ)));
1966}
1967
1968#define IGBVF_TX_FLAGS_CSUM 0x00000001
1969#define IGBVF_TX_FLAGS_VLAN 0x00000002
1970#define IGBVF_TX_FLAGS_TSO 0x00000004
1971#define IGBVF_TX_FLAGS_IPV4 0x00000008
1972#define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1973#define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1974
1975static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1976 u32 type_tucmd, u32 mss_l4len_idx)
1977{
1978 struct e1000_adv_tx_context_desc *context_desc;
1979 struct igbvf_buffer *buffer_info;
1980 u16 i = tx_ring->next_to_use;
1981
1982 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1983 buffer_info = &tx_ring->buffer_info[i];
1984
1985 i++;
1986 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1987
1988 /* set bits to identify this as an advanced context descriptor */
1989 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1990
1991 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1992 context_desc->seqnum_seed = 0;
1993 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1994 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1995
1996 buffer_info->time_stamp = jiffies;
1997 buffer_info->dma = 0;
1998}
1999
2000static int igbvf_tso(struct igbvf_ring *tx_ring,
2001 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2002{
2003 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
2004 union {
2005 struct iphdr *v4;
2006 struct ipv6hdr *v6;
2007 unsigned char *hdr;
2008 } ip;
2009 union {
2010 struct tcphdr *tcp;
2011 unsigned char *hdr;
2012 } l4;
2013 u32 paylen, l4_offset;
2014 int err;
2015
2016 if (skb->ip_summed != CHECKSUM_PARTIAL)
2017 return 0;
2018
2019 if (!skb_is_gso(skb))
2020 return 0;
2021
2022 err = skb_cow_head(skb, 0);
2023 if (err < 0)
2024 return err;
2025
2026 ip.hdr = skb_network_header(skb);
2027 l4.hdr = skb_checksum_start(skb);
2028
2029 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2030 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2031
2032 /* initialize outer IP header fields */
2033 if (ip.v4->version == 4) {
2034 unsigned char *csum_start = skb_checksum_start(skb);
2035 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
2036
2037 /* IP header will have to cancel out any data that
2038 * is not a part of the outer IP header
2039 */
2040 ip.v4->check = csum_fold(csum_partial(trans_start,
2041 csum_start - trans_start,
2042 0));
2043 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2044
2045 ip.v4->tot_len = 0;
2046 } else {
2047 ip.v6->payload_len = 0;
2048 }
2049
2050 /* determine offset of inner transport header */
2051 l4_offset = l4.hdr - skb->data;
2052
2053 /* compute length of segmentation header */
2054 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2055
2056 /* remove payload length from inner checksum */
2057 paylen = skb->len - l4_offset;
2058 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2059
2060 /* MSS L4LEN IDX */
2061 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2062 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2063
2064 /* VLAN MACLEN IPLEN */
2065 vlan_macip_lens = l4.hdr - ip.hdr;
2066 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2067 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2068
2069 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2070
2071 return 1;
2072}
2073
2074static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2075 u32 tx_flags, __be16 protocol)
2076{
2077 u32 vlan_macip_lens = 0;
2078 u32 type_tucmd = 0;
2079
2080 if (skb->ip_summed != CHECKSUM_PARTIAL) {
2081csum_failed:
2082 if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2083 return false;
2084 goto no_csum;
2085 }
2086
2087 switch (skb->csum_offset) {
2088 case offsetof(struct tcphdr, check):
2089 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2090 fallthrough;
2091 case offsetof(struct udphdr, check):
2092 break;
2093 case offsetof(struct sctphdr, checksum):
2094 /* validate that this is actually an SCTP request */
2095 if (skb_csum_is_sctp(skb)) {
2096 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2097 break;
2098 }
2099 fallthrough;
2100 default:
2101 skb_checksum_help(skb);
2102 goto csum_failed;
2103 }
2104
2105 vlan_macip_lens = skb_checksum_start_offset(skb) -
2106 skb_network_offset(skb);
2107no_csum:
2108 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2109 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2110
2111 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2112 return true;
2113}
2114
2115static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2116{
2117 struct igbvf_adapter *adapter = netdev_priv(netdev);
2118
2119 /* there is enough descriptors then we don't need to worry */
2120 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2121 return 0;
2122
2123 netif_stop_queue(netdev);
2124
2125 /* Herbert's original patch had:
2126 * smp_mb__after_netif_stop_queue();
2127 * but since that doesn't exist yet, just open code it.
2128 */
2129 smp_mb();
2130
2131 /* We need to check again just in case room has been made available */
2132 if (igbvf_desc_unused(adapter->tx_ring) < size)
2133 return -EBUSY;
2134
2135 netif_wake_queue(netdev);
2136
2137 ++adapter->restart_queue;
2138 return 0;
2139}
2140
2141#define IGBVF_MAX_TXD_PWR 16
2142#define IGBVF_MAX_DATA_PER_TXD (1u << IGBVF_MAX_TXD_PWR)
2143
2144static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2145 struct igbvf_ring *tx_ring,
2146 struct sk_buff *skb)
2147{
2148 struct igbvf_buffer *buffer_info;
2149 struct pci_dev *pdev = adapter->pdev;
2150 unsigned int len = skb_headlen(skb);
2151 unsigned int count = 0, i;
2152 unsigned int f;
2153
2154 i = tx_ring->next_to_use;
2155
2156 buffer_info = &tx_ring->buffer_info[i];
2157 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2158 buffer_info->length = len;
2159 /* set time_stamp *before* dma to help avoid a possible race */
2160 buffer_info->time_stamp = jiffies;
2161 buffer_info->mapped_as_page = false;
2162 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2163 DMA_TO_DEVICE);
2164 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2165 goto dma_error;
2166
2167 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2168 const skb_frag_t *frag;
2169
2170 count++;
2171 i++;
2172 if (i == tx_ring->count)
2173 i = 0;
2174
2175 frag = &skb_shinfo(skb)->frags[f];
2176 len = skb_frag_size(frag);
2177
2178 buffer_info = &tx_ring->buffer_info[i];
2179 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2180 buffer_info->length = len;
2181 buffer_info->time_stamp = jiffies;
2182 buffer_info->mapped_as_page = true;
2183 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2184 DMA_TO_DEVICE);
2185 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2186 goto dma_error;
2187 }
2188
2189 tx_ring->buffer_info[i].skb = skb;
2190
2191 return ++count;
2192
2193dma_error:
2194 dev_err(&pdev->dev, "TX DMA map failed\n");
2195
2196 /* clear timestamp and dma mappings for failed buffer_info mapping */
2197 buffer_info->dma = 0;
2198 buffer_info->time_stamp = 0;
2199 buffer_info->length = 0;
2200 buffer_info->mapped_as_page = false;
2201 if (count)
2202 count--;
2203
2204 /* clear timestamp and dma mappings for remaining portion of packet */
2205 while (count--) {
2206 if (i == 0)
2207 i += tx_ring->count;
2208 i--;
2209 buffer_info = &tx_ring->buffer_info[i];
2210 igbvf_put_txbuf(adapter, buffer_info);
2211 }
2212
2213 return 0;
2214}
2215
2216static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2217 struct igbvf_ring *tx_ring,
2218 int tx_flags, int count,
2219 unsigned int first, u32 paylen,
2220 u8 hdr_len)
2221{
2222 union e1000_adv_tx_desc *tx_desc = NULL;
2223 struct igbvf_buffer *buffer_info;
2224 u32 olinfo_status = 0, cmd_type_len;
2225 unsigned int i;
2226
2227 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2228 E1000_ADVTXD_DCMD_DEXT);
2229
2230 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2231 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2232
2233 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2234 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2235
2236 /* insert tcp checksum */
2237 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2238
2239 /* insert ip checksum */
2240 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2241 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2242
2243 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2244 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2245 }
2246
2247 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2248
2249 i = tx_ring->next_to_use;
2250 while (count--) {
2251 buffer_info = &tx_ring->buffer_info[i];
2252 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2253 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2254 tx_desc->read.cmd_type_len =
2255 cpu_to_le32(cmd_type_len | buffer_info->length);
2256 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2257 i++;
2258 if (i == tx_ring->count)
2259 i = 0;
2260 }
2261
2262 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2263 /* Force memory writes to complete before letting h/w
2264 * know there are new descriptors to fetch. (Only
2265 * applicable for weak-ordered memory model archs,
2266 * such as IA-64).
2267 */
2268 wmb();
2269
2270 tx_ring->buffer_info[first].next_to_watch = tx_desc;
2271 tx_ring->next_to_use = i;
2272 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2273}
2274
2275static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2276 struct net_device *netdev,
2277 struct igbvf_ring *tx_ring)
2278{
2279 struct igbvf_adapter *adapter = netdev_priv(netdev);
2280 unsigned int first, tx_flags = 0;
2281 u8 hdr_len = 0;
2282 int count = 0;
2283 int tso = 0;
2284 __be16 protocol = vlan_get_protocol(skb);
2285
2286 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2287 dev_kfree_skb_any(skb);
2288 return NETDEV_TX_OK;
2289 }
2290
2291 if (skb->len <= 0) {
2292 dev_kfree_skb_any(skb);
2293 return NETDEV_TX_OK;
2294 }
2295
2296 /* need: count + 4 desc gap to keep tail from touching
2297 * + 2 desc gap to keep tail from touching head,
2298 * + 1 desc for skb->data,
2299 * + 1 desc for context descriptor,
2300 * head, otherwise try next time
2301 */
2302 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2303 /* this is a hard error */
2304 return NETDEV_TX_BUSY;
2305 }
2306
2307 if (skb_vlan_tag_present(skb)) {
2308 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2309 tx_flags |= (skb_vlan_tag_get(skb) <<
2310 IGBVF_TX_FLAGS_VLAN_SHIFT);
2311 }
2312
2313 if (protocol == htons(ETH_P_IP))
2314 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2315
2316 first = tx_ring->next_to_use;
2317
2318 tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2319 if (unlikely(tso < 0)) {
2320 dev_kfree_skb_any(skb);
2321 return NETDEV_TX_OK;
2322 }
2323
2324 if (tso)
2325 tx_flags |= IGBVF_TX_FLAGS_TSO;
2326 else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2327 (skb->ip_summed == CHECKSUM_PARTIAL))
2328 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2329
2330 /* count reflects descriptors mapped, if 0 then mapping error
2331 * has occurred and we need to rewind the descriptor queue
2332 */
2333 count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2334
2335 if (count) {
2336 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2337 first, skb->len, hdr_len);
2338 /* Make sure there is space in the ring for the next send. */
2339 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2340 } else {
2341 dev_kfree_skb_any(skb);
2342 tx_ring->buffer_info[first].time_stamp = 0;
2343 tx_ring->next_to_use = first;
2344 }
2345
2346 return NETDEV_TX_OK;
2347}
2348
2349static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2350 struct net_device *netdev)
2351{
2352 struct igbvf_adapter *adapter = netdev_priv(netdev);
2353 struct igbvf_ring *tx_ring;
2354
2355 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2356 dev_kfree_skb_any(skb);
2357 return NETDEV_TX_OK;
2358 }
2359
2360 tx_ring = &adapter->tx_ring[0];
2361
2362 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2363}
2364
2365/**
2366 * igbvf_tx_timeout - Respond to a Tx Hang
2367 * @netdev: network interface device structure
2368 * @txqueue: queue timing out (unused)
2369 **/
2370static void igbvf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
2371{
2372 struct igbvf_adapter *adapter = netdev_priv(netdev);
2373
2374 /* Do the reset outside of interrupt context */
2375 adapter->tx_timeout_count++;
2376 schedule_work(&adapter->reset_task);
2377}
2378
2379static void igbvf_reset_task(struct work_struct *work)
2380{
2381 struct igbvf_adapter *adapter;
2382
2383 adapter = container_of(work, struct igbvf_adapter, reset_task);
2384
2385 igbvf_reinit_locked(adapter);
2386}
2387
2388/**
2389 * igbvf_change_mtu - Change the Maximum Transfer Unit
2390 * @netdev: network interface device structure
2391 * @new_mtu: new value for maximum frame size
2392 *
2393 * Returns 0 on success, negative on failure
2394 **/
2395static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2396{
2397 struct igbvf_adapter *adapter = netdev_priv(netdev);
2398 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2399
2400 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2401 usleep_range(1000, 2000);
2402 /* igbvf_down has a dependency on max_frame_size */
2403 adapter->max_frame_size = max_frame;
2404 if (netif_running(netdev))
2405 igbvf_down(adapter);
2406
2407 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2408 * means we reserve 2 more, this pushes us to allocate from the next
2409 * larger slab size.
2410 * i.e. RXBUFFER_2048 --> size-4096 slab
2411 * However with the new *_jumbo_rx* routines, jumbo receives will use
2412 * fragmented skbs
2413 */
2414
2415 if (max_frame <= 1024)
2416 adapter->rx_buffer_len = 1024;
2417 else if (max_frame <= 2048)
2418 adapter->rx_buffer_len = 2048;
2419 else
2420#if (PAGE_SIZE / 2) > 16384
2421 adapter->rx_buffer_len = 16384;
2422#else
2423 adapter->rx_buffer_len = PAGE_SIZE / 2;
2424#endif
2425
2426 /* adjust allocation if LPE protects us, and we aren't using SBP */
2427 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2428 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2429 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2430 ETH_FCS_LEN;
2431
2432 netdev_dbg(netdev, "changing MTU from %d to %d\n",
2433 netdev->mtu, new_mtu);
2434 netdev->mtu = new_mtu;
2435
2436 if (netif_running(netdev))
2437 igbvf_up(adapter);
2438 else
2439 igbvf_reset(adapter);
2440
2441 clear_bit(__IGBVF_RESETTING, &adapter->state);
2442
2443 return 0;
2444}
2445
2446static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2447{
2448 switch (cmd) {
2449 default:
2450 return -EOPNOTSUPP;
2451 }
2452}
2453
2454static int igbvf_suspend(struct device *dev_d)
2455{
2456 struct net_device *netdev = dev_get_drvdata(dev_d);
2457 struct igbvf_adapter *adapter = netdev_priv(netdev);
2458
2459 netif_device_detach(netdev);
2460
2461 if (netif_running(netdev)) {
2462 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2463 igbvf_down(adapter);
2464 igbvf_free_irq(adapter);
2465 }
2466
2467 return 0;
2468}
2469
2470static int __maybe_unused igbvf_resume(struct device *dev_d)
2471{
2472 struct pci_dev *pdev = to_pci_dev(dev_d);
2473 struct net_device *netdev = pci_get_drvdata(pdev);
2474 struct igbvf_adapter *adapter = netdev_priv(netdev);
2475 u32 err;
2476
2477 pci_set_master(pdev);
2478
2479 if (netif_running(netdev)) {
2480 err = igbvf_request_irq(adapter);
2481 if (err)
2482 return err;
2483 }
2484
2485 igbvf_reset(adapter);
2486
2487 if (netif_running(netdev))
2488 igbvf_up(adapter);
2489
2490 netif_device_attach(netdev);
2491
2492 return 0;
2493}
2494
2495static void igbvf_shutdown(struct pci_dev *pdev)
2496{
2497 igbvf_suspend(&pdev->dev);
2498}
2499
2500#ifdef CONFIG_NET_POLL_CONTROLLER
2501/* Polling 'interrupt' - used by things like netconsole to send skbs
2502 * without having to re-enable interrupts. It's not called while
2503 * the interrupt routine is executing.
2504 */
2505static void igbvf_netpoll(struct net_device *netdev)
2506{
2507 struct igbvf_adapter *adapter = netdev_priv(netdev);
2508
2509 disable_irq(adapter->pdev->irq);
2510
2511 igbvf_clean_tx_irq(adapter->tx_ring);
2512
2513 enable_irq(adapter->pdev->irq);
2514}
2515#endif
2516
2517/**
2518 * igbvf_io_error_detected - called when PCI error is detected
2519 * @pdev: Pointer to PCI device
2520 * @state: The current pci connection state
2521 *
2522 * This function is called after a PCI bus error affecting
2523 * this device has been detected.
2524 */
2525static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2526 pci_channel_state_t state)
2527{
2528 struct net_device *netdev = pci_get_drvdata(pdev);
2529 struct igbvf_adapter *adapter = netdev_priv(netdev);
2530
2531 netif_device_detach(netdev);
2532
2533 if (state == pci_channel_io_perm_failure)
2534 return PCI_ERS_RESULT_DISCONNECT;
2535
2536 if (netif_running(netdev))
2537 igbvf_down(adapter);
2538 pci_disable_device(pdev);
2539
2540 /* Request a slot reset. */
2541 return PCI_ERS_RESULT_NEED_RESET;
2542}
2543
2544/**
2545 * igbvf_io_slot_reset - called after the pci bus has been reset.
2546 * @pdev: Pointer to PCI device
2547 *
2548 * Restart the card from scratch, as if from a cold-boot. Implementation
2549 * resembles the first-half of the igbvf_resume routine.
2550 */
2551static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2552{
2553 struct net_device *netdev = pci_get_drvdata(pdev);
2554 struct igbvf_adapter *adapter = netdev_priv(netdev);
2555
2556 if (pci_enable_device_mem(pdev)) {
2557 dev_err(&pdev->dev,
2558 "Cannot re-enable PCI device after reset.\n");
2559 return PCI_ERS_RESULT_DISCONNECT;
2560 }
2561 pci_set_master(pdev);
2562
2563 igbvf_reset(adapter);
2564
2565 return PCI_ERS_RESULT_RECOVERED;
2566}
2567
2568/**
2569 * igbvf_io_resume - called when traffic can start flowing again.
2570 * @pdev: Pointer to PCI device
2571 *
2572 * This callback is called when the error recovery driver tells us that
2573 * its OK to resume normal operation. Implementation resembles the
2574 * second-half of the igbvf_resume routine.
2575 */
2576static void igbvf_io_resume(struct pci_dev *pdev)
2577{
2578 struct net_device *netdev = pci_get_drvdata(pdev);
2579 struct igbvf_adapter *adapter = netdev_priv(netdev);
2580
2581 if (netif_running(netdev)) {
2582 if (igbvf_up(adapter)) {
2583 dev_err(&pdev->dev,
2584 "can't bring device back up after reset\n");
2585 return;
2586 }
2587 }
2588
2589 netif_device_attach(netdev);
2590}
2591
2592static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2593{
2594 struct e1000_hw *hw = &adapter->hw;
2595 struct net_device *netdev = adapter->netdev;
2596 struct pci_dev *pdev = adapter->pdev;
2597
2598 if (hw->mac.type == e1000_vfadapt_i350)
2599 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2600 else
2601 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2602 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2603}
2604
2605static int igbvf_set_features(struct net_device *netdev,
2606 netdev_features_t features)
2607{
2608 struct igbvf_adapter *adapter = netdev_priv(netdev);
2609
2610 if (features & NETIF_F_RXCSUM)
2611 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2612 else
2613 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2614
2615 return 0;
2616}
2617
2618#define IGBVF_MAX_MAC_HDR_LEN 127
2619#define IGBVF_MAX_NETWORK_HDR_LEN 511
2620
2621static netdev_features_t
2622igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2623 netdev_features_t features)
2624{
2625 unsigned int network_hdr_len, mac_hdr_len;
2626
2627 /* Make certain the headers can be described by a context descriptor */
2628 mac_hdr_len = skb_network_header(skb) - skb->data;
2629 if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2630 return features & ~(NETIF_F_HW_CSUM |
2631 NETIF_F_SCTP_CRC |
2632 NETIF_F_HW_VLAN_CTAG_TX |
2633 NETIF_F_TSO |
2634 NETIF_F_TSO6);
2635
2636 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2637 if (unlikely(network_hdr_len > IGBVF_MAX_NETWORK_HDR_LEN))
2638 return features & ~(NETIF_F_HW_CSUM |
2639 NETIF_F_SCTP_CRC |
2640 NETIF_F_TSO |
2641 NETIF_F_TSO6);
2642
2643 /* We can only support IPV4 TSO in tunnels if we can mangle the
2644 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2645 */
2646 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2647 features &= ~NETIF_F_TSO;
2648
2649 return features;
2650}
2651
2652static const struct net_device_ops igbvf_netdev_ops = {
2653 .ndo_open = igbvf_open,
2654 .ndo_stop = igbvf_close,
2655 .ndo_start_xmit = igbvf_xmit_frame,
2656 .ndo_set_rx_mode = igbvf_set_rx_mode,
2657 .ndo_set_mac_address = igbvf_set_mac,
2658 .ndo_change_mtu = igbvf_change_mtu,
2659 .ndo_eth_ioctl = igbvf_ioctl,
2660 .ndo_tx_timeout = igbvf_tx_timeout,
2661 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2662 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2663#ifdef CONFIG_NET_POLL_CONTROLLER
2664 .ndo_poll_controller = igbvf_netpoll,
2665#endif
2666 .ndo_set_features = igbvf_set_features,
2667 .ndo_features_check = igbvf_features_check,
2668};
2669
2670/**
2671 * igbvf_probe - Device Initialization Routine
2672 * @pdev: PCI device information struct
2673 * @ent: entry in igbvf_pci_tbl
2674 *
2675 * Returns 0 on success, negative on failure
2676 *
2677 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2678 * The OS initialization, configuring of the adapter private structure,
2679 * and a hardware reset occur.
2680 **/
2681static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2682{
2683 struct net_device *netdev;
2684 struct igbvf_adapter *adapter;
2685 struct e1000_hw *hw;
2686 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2687 static int cards_found;
2688 int err;
2689
2690 err = pci_enable_device_mem(pdev);
2691 if (err)
2692 return err;
2693
2694 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2695 if (err) {
2696 dev_err(&pdev->dev,
2697 "No usable DMA configuration, aborting\n");
2698 goto err_dma;
2699 }
2700
2701 err = pci_request_regions(pdev, igbvf_driver_name);
2702 if (err)
2703 goto err_pci_reg;
2704
2705 pci_set_master(pdev);
2706
2707 err = -ENOMEM;
2708 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2709 if (!netdev)
2710 goto err_alloc_etherdev;
2711
2712 SET_NETDEV_DEV(netdev, &pdev->dev);
2713
2714 pci_set_drvdata(pdev, netdev);
2715 adapter = netdev_priv(netdev);
2716 hw = &adapter->hw;
2717 adapter->netdev = netdev;
2718 adapter->pdev = pdev;
2719 adapter->ei = ei;
2720 adapter->pba = ei->pba;
2721 adapter->flags = ei->flags;
2722 adapter->hw.back = adapter;
2723 adapter->hw.mac.type = ei->mac;
2724 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2725
2726 /* PCI config space info */
2727
2728 hw->vendor_id = pdev->vendor;
2729 hw->device_id = pdev->device;
2730 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2731 hw->subsystem_device_id = pdev->subsystem_device;
2732 hw->revision_id = pdev->revision;
2733
2734 err = -EIO;
2735 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2736 pci_resource_len(pdev, 0));
2737
2738 if (!adapter->hw.hw_addr)
2739 goto err_ioremap;
2740
2741 if (ei->get_variants) {
2742 err = ei->get_variants(adapter);
2743 if (err)
2744 goto err_get_variants;
2745 }
2746
2747 /* setup adapter struct */
2748 err = igbvf_sw_init(adapter);
2749 if (err)
2750 goto err_sw_init;
2751
2752 /* construct the net_device struct */
2753 netdev->netdev_ops = &igbvf_netdev_ops;
2754
2755 igbvf_set_ethtool_ops(netdev);
2756 netdev->watchdog_timeo = 5 * HZ;
2757 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2758
2759 adapter->bd_number = cards_found++;
2760
2761 netdev->hw_features = NETIF_F_SG |
2762 NETIF_F_TSO |
2763 NETIF_F_TSO6 |
2764 NETIF_F_RXCSUM |
2765 NETIF_F_HW_CSUM |
2766 NETIF_F_SCTP_CRC;
2767
2768#define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2769 NETIF_F_GSO_GRE_CSUM | \
2770 NETIF_F_GSO_IPXIP4 | \
2771 NETIF_F_GSO_IPXIP6 | \
2772 NETIF_F_GSO_UDP_TUNNEL | \
2773 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2774
2775 netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2776 netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2777 IGBVF_GSO_PARTIAL_FEATURES;
2778
2779 netdev->features = netdev->hw_features | NETIF_F_HIGHDMA;
2780
2781 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2782 netdev->mpls_features |= NETIF_F_HW_CSUM;
2783 netdev->hw_enc_features |= netdev->vlan_features;
2784
2785 /* set this bit last since it cannot be part of vlan_features */
2786 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2787 NETIF_F_HW_VLAN_CTAG_RX |
2788 NETIF_F_HW_VLAN_CTAG_TX;
2789
2790 /* MTU range: 68 - 9216 */
2791 netdev->min_mtu = ETH_MIN_MTU;
2792 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2793
2794 spin_lock_bh(&hw->mbx_lock);
2795
2796 /*reset the controller to put the device in a known good state */
2797 err = hw->mac.ops.reset_hw(hw);
2798 if (err) {
2799 dev_info(&pdev->dev,
2800 "PF still in reset state. Is the PF interface up?\n");
2801 } else {
2802 err = hw->mac.ops.read_mac_addr(hw);
2803 if (err)
2804 dev_info(&pdev->dev, "Error reading MAC address.\n");
2805 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2806 dev_info(&pdev->dev,
2807 "MAC address not assigned by administrator.\n");
2808 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2809 }
2810
2811 spin_unlock_bh(&hw->mbx_lock);
2812
2813 if (!is_valid_ether_addr(netdev->dev_addr)) {
2814 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2815 eth_hw_addr_random(netdev);
2816 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2817 netdev->addr_len);
2818 }
2819
2820 timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
2821
2822 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2823 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2824
2825 /* ring size defaults */
2826 adapter->rx_ring->count = 1024;
2827 adapter->tx_ring->count = 1024;
2828
2829 /* reset the hardware with the new settings */
2830 igbvf_reset(adapter);
2831
2832 /* set hardware-specific flags */
2833 if (adapter->hw.mac.type == e1000_vfadapt_i350)
2834 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2835
2836 strcpy(netdev->name, "eth%d");
2837 err = register_netdev(netdev);
2838 if (err)
2839 goto err_hw_init;
2840
2841 /* tell the stack to leave us alone until igbvf_open() is called */
2842 netif_carrier_off(netdev);
2843 netif_stop_queue(netdev);
2844
2845 igbvf_print_device_info(adapter);
2846
2847 igbvf_initialize_last_counter_stats(adapter);
2848
2849 return 0;
2850
2851err_hw_init:
2852 netif_napi_del(&adapter->rx_ring->napi);
2853 kfree(adapter->tx_ring);
2854 kfree(adapter->rx_ring);
2855err_sw_init:
2856 igbvf_reset_interrupt_capability(adapter);
2857err_get_variants:
2858 iounmap(adapter->hw.hw_addr);
2859err_ioremap:
2860 free_netdev(netdev);
2861err_alloc_etherdev:
2862 pci_release_regions(pdev);
2863err_pci_reg:
2864err_dma:
2865 pci_disable_device(pdev);
2866 return err;
2867}
2868
2869/**
2870 * igbvf_remove - Device Removal Routine
2871 * @pdev: PCI device information struct
2872 *
2873 * igbvf_remove is called by the PCI subsystem to alert the driver
2874 * that it should release a PCI device. The could be caused by a
2875 * Hot-Plug event, or because the driver is going to be removed from
2876 * memory.
2877 **/
2878static void igbvf_remove(struct pci_dev *pdev)
2879{
2880 struct net_device *netdev = pci_get_drvdata(pdev);
2881 struct igbvf_adapter *adapter = netdev_priv(netdev);
2882 struct e1000_hw *hw = &adapter->hw;
2883
2884 /* The watchdog timer may be rescheduled, so explicitly
2885 * disable it from being rescheduled.
2886 */
2887 set_bit(__IGBVF_DOWN, &adapter->state);
2888 del_timer_sync(&adapter->watchdog_timer);
2889
2890 cancel_work_sync(&adapter->reset_task);
2891 cancel_work_sync(&adapter->watchdog_task);
2892
2893 unregister_netdev(netdev);
2894
2895 igbvf_reset_interrupt_capability(adapter);
2896
2897 /* it is important to delete the NAPI struct prior to freeing the
2898 * Rx ring so that you do not end up with null pointer refs
2899 */
2900 netif_napi_del(&adapter->rx_ring->napi);
2901 kfree(adapter->tx_ring);
2902 kfree(adapter->rx_ring);
2903
2904 iounmap(hw->hw_addr);
2905 if (hw->flash_address)
2906 iounmap(hw->flash_address);
2907 pci_release_regions(pdev);
2908
2909 free_netdev(netdev);
2910
2911 pci_disable_device(pdev);
2912}
2913
2914/* PCI Error Recovery (ERS) */
2915static const struct pci_error_handlers igbvf_err_handler = {
2916 .error_detected = igbvf_io_error_detected,
2917 .slot_reset = igbvf_io_slot_reset,
2918 .resume = igbvf_io_resume,
2919};
2920
2921static const struct pci_device_id igbvf_pci_tbl[] = {
2922 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2923 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2924 { } /* terminate list */
2925};
2926MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2927
2928static SIMPLE_DEV_PM_OPS(igbvf_pm_ops, igbvf_suspend, igbvf_resume);
2929
2930/* PCI Device API Driver */
2931static struct pci_driver igbvf_driver = {
2932 .name = igbvf_driver_name,
2933 .id_table = igbvf_pci_tbl,
2934 .probe = igbvf_probe,
2935 .remove = igbvf_remove,
2936 .driver.pm = &igbvf_pm_ops,
2937 .shutdown = igbvf_shutdown,
2938 .err_handler = &igbvf_err_handler
2939};
2940
2941/**
2942 * igbvf_init_module - Driver Registration Routine
2943 *
2944 * igbvf_init_module is the first routine called when the driver is
2945 * loaded. All it does is register with the PCI subsystem.
2946 **/
2947static int __init igbvf_init_module(void)
2948{
2949 int ret;
2950
2951 pr_info("%s\n", igbvf_driver_string);
2952 pr_info("%s\n", igbvf_copyright);
2953
2954 ret = pci_register_driver(&igbvf_driver);
2955
2956 return ret;
2957}
2958module_init(igbvf_init_module);
2959
2960/**
2961 * igbvf_exit_module - Driver Exit Cleanup Routine
2962 *
2963 * igbvf_exit_module is called just before the driver is removed
2964 * from memory.
2965 **/
2966static void __exit igbvf_exit_module(void)
2967{
2968 pci_unregister_driver(&igbvf_driver);
2969}
2970module_exit(igbvf_exit_module);
2971
2972MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2973MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2974MODULE_LICENSE("GPL v2");
2975
2976/* netdev.c */
1/*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
33#include <linux/pci.h>
34#include <linux/vmalloc.h>
35#include <linux/pagemap.h>
36#include <linux/delay.h>
37#include <linux/netdevice.h>
38#include <linux/tcp.h>
39#include <linux/ipv6.h>
40#include <linux/slab.h>
41#include <net/checksum.h>
42#include <net/ip6_checksum.h>
43#include <linux/mii.h>
44#include <linux/ethtool.h>
45#include <linux/if_vlan.h>
46#include <linux/prefetch.h>
47
48#include "igbvf.h"
49
50#define DRV_VERSION "2.0.1-k"
51char igbvf_driver_name[] = "igbvf";
52const char igbvf_driver_version[] = DRV_VERSION;
53static const char igbvf_driver_string[] =
54 "Intel(R) Gigabit Virtual Function Network Driver";
55static const char igbvf_copyright[] =
56 "Copyright (c) 2009 - 2012 Intel Corporation.";
57
58#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
59static int debug = -1;
60module_param(debug, int, 0);
61MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
62
63static int igbvf_poll(struct napi_struct *napi, int budget);
64static void igbvf_reset(struct igbvf_adapter *);
65static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
66static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
67
68static struct igbvf_info igbvf_vf_info = {
69 .mac = e1000_vfadapt,
70 .flags = 0,
71 .pba = 10,
72 .init_ops = e1000_init_function_pointers_vf,
73};
74
75static struct igbvf_info igbvf_i350_vf_info = {
76 .mac = e1000_vfadapt_i350,
77 .flags = 0,
78 .pba = 10,
79 .init_ops = e1000_init_function_pointers_vf,
80};
81
82static const struct igbvf_info *igbvf_info_tbl[] = {
83 [board_vf] = &igbvf_vf_info,
84 [board_i350_vf] = &igbvf_i350_vf_info,
85};
86
87/**
88 * igbvf_desc_unused - calculate if we have unused descriptors
89 **/
90static int igbvf_desc_unused(struct igbvf_ring *ring)
91{
92 if (ring->next_to_clean > ring->next_to_use)
93 return ring->next_to_clean - ring->next_to_use - 1;
94
95 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
96}
97
98/**
99 * igbvf_receive_skb - helper function to handle Rx indications
100 * @adapter: board private structure
101 * @status: descriptor status field as written by hardware
102 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
103 * @skb: pointer to sk_buff to be indicated to stack
104 **/
105static void igbvf_receive_skb(struct igbvf_adapter *adapter,
106 struct net_device *netdev,
107 struct sk_buff *skb,
108 u32 status, u16 vlan)
109{
110 if (status & E1000_RXD_STAT_VP) {
111 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
112 if (test_bit(vid, adapter->active_vlans))
113 __vlan_hwaccel_put_tag(skb, vid);
114 }
115 netif_receive_skb(skb);
116}
117
118static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
119 u32 status_err, struct sk_buff *skb)
120{
121 skb_checksum_none_assert(skb);
122
123 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
124 if ((status_err & E1000_RXD_STAT_IXSM) ||
125 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
126 return;
127
128 /* TCP/UDP checksum error bit is set */
129 if (status_err &
130 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
131 /* let the stack verify checksum errors */
132 adapter->hw_csum_err++;
133 return;
134 }
135
136 /* It must be a TCP or UDP packet with a valid checksum */
137 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
138 skb->ip_summed = CHECKSUM_UNNECESSARY;
139
140 adapter->hw_csum_good++;
141}
142
143/**
144 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
145 * @rx_ring: address of ring structure to repopulate
146 * @cleaned_count: number of buffers to repopulate
147 **/
148static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
149 int cleaned_count)
150{
151 struct igbvf_adapter *adapter = rx_ring->adapter;
152 struct net_device *netdev = adapter->netdev;
153 struct pci_dev *pdev = adapter->pdev;
154 union e1000_adv_rx_desc *rx_desc;
155 struct igbvf_buffer *buffer_info;
156 struct sk_buff *skb;
157 unsigned int i;
158 int bufsz;
159
160 i = rx_ring->next_to_use;
161 buffer_info = &rx_ring->buffer_info[i];
162
163 if (adapter->rx_ps_hdr_size)
164 bufsz = adapter->rx_ps_hdr_size;
165 else
166 bufsz = adapter->rx_buffer_len;
167
168 while (cleaned_count--) {
169 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
170
171 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
172 if (!buffer_info->page) {
173 buffer_info->page = alloc_page(GFP_ATOMIC);
174 if (!buffer_info->page) {
175 adapter->alloc_rx_buff_failed++;
176 goto no_buffers;
177 }
178 buffer_info->page_offset = 0;
179 } else {
180 buffer_info->page_offset ^= PAGE_SIZE / 2;
181 }
182 buffer_info->page_dma =
183 dma_map_page(&pdev->dev, buffer_info->page,
184 buffer_info->page_offset,
185 PAGE_SIZE / 2,
186 DMA_FROM_DEVICE);
187 }
188
189 if (!buffer_info->skb) {
190 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
191 if (!skb) {
192 adapter->alloc_rx_buff_failed++;
193 goto no_buffers;
194 }
195
196 buffer_info->skb = skb;
197 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
198 bufsz,
199 DMA_FROM_DEVICE);
200 }
201 /* Refresh the desc even if buffer_addrs didn't change because
202 * each write-back erases this info. */
203 if (adapter->rx_ps_hdr_size) {
204 rx_desc->read.pkt_addr =
205 cpu_to_le64(buffer_info->page_dma);
206 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
207 } else {
208 rx_desc->read.pkt_addr =
209 cpu_to_le64(buffer_info->dma);
210 rx_desc->read.hdr_addr = 0;
211 }
212
213 i++;
214 if (i == rx_ring->count)
215 i = 0;
216 buffer_info = &rx_ring->buffer_info[i];
217 }
218
219no_buffers:
220 if (rx_ring->next_to_use != i) {
221 rx_ring->next_to_use = i;
222 if (i == 0)
223 i = (rx_ring->count - 1);
224 else
225 i--;
226
227 /* Force memory writes to complete before letting h/w
228 * know there are new descriptors to fetch. (Only
229 * applicable for weak-ordered memory model archs,
230 * such as IA-64). */
231 wmb();
232 writel(i, adapter->hw.hw_addr + rx_ring->tail);
233 }
234}
235
236/**
237 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
238 * @adapter: board private structure
239 *
240 * the return value indicates whether actual cleaning was done, there
241 * is no guarantee that everything was cleaned
242 **/
243static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
244 int *work_done, int work_to_do)
245{
246 struct igbvf_ring *rx_ring = adapter->rx_ring;
247 struct net_device *netdev = adapter->netdev;
248 struct pci_dev *pdev = adapter->pdev;
249 union e1000_adv_rx_desc *rx_desc, *next_rxd;
250 struct igbvf_buffer *buffer_info, *next_buffer;
251 struct sk_buff *skb;
252 bool cleaned = false;
253 int cleaned_count = 0;
254 unsigned int total_bytes = 0, total_packets = 0;
255 unsigned int i;
256 u32 length, hlen, staterr;
257
258 i = rx_ring->next_to_clean;
259 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
260 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
261
262 while (staterr & E1000_RXD_STAT_DD) {
263 if (*work_done >= work_to_do)
264 break;
265 (*work_done)++;
266 rmb(); /* read descriptor and rx_buffer_info after status DD */
267
268 buffer_info = &rx_ring->buffer_info[i];
269
270 /* HW will not DMA in data larger than the given buffer, even
271 * if it parses the (NFS, of course) header to be larger. In
272 * that case, it fills the header buffer and spills the rest
273 * into the page.
274 */
275 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
276 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
277 if (hlen > adapter->rx_ps_hdr_size)
278 hlen = adapter->rx_ps_hdr_size;
279
280 length = le16_to_cpu(rx_desc->wb.upper.length);
281 cleaned = true;
282 cleaned_count++;
283
284 skb = buffer_info->skb;
285 prefetch(skb->data - NET_IP_ALIGN);
286 buffer_info->skb = NULL;
287 if (!adapter->rx_ps_hdr_size) {
288 dma_unmap_single(&pdev->dev, buffer_info->dma,
289 adapter->rx_buffer_len,
290 DMA_FROM_DEVICE);
291 buffer_info->dma = 0;
292 skb_put(skb, length);
293 goto send_up;
294 }
295
296 if (!skb_shinfo(skb)->nr_frags) {
297 dma_unmap_single(&pdev->dev, buffer_info->dma,
298 adapter->rx_ps_hdr_size,
299 DMA_FROM_DEVICE);
300 skb_put(skb, hlen);
301 }
302
303 if (length) {
304 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
305 PAGE_SIZE / 2,
306 DMA_FROM_DEVICE);
307 buffer_info->page_dma = 0;
308
309 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
310 buffer_info->page,
311 buffer_info->page_offset,
312 length);
313
314 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
315 (page_count(buffer_info->page) != 1))
316 buffer_info->page = NULL;
317 else
318 get_page(buffer_info->page);
319
320 skb->len += length;
321 skb->data_len += length;
322 skb->truesize += PAGE_SIZE / 2;
323 }
324send_up:
325 i++;
326 if (i == rx_ring->count)
327 i = 0;
328 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
329 prefetch(next_rxd);
330 next_buffer = &rx_ring->buffer_info[i];
331
332 if (!(staterr & E1000_RXD_STAT_EOP)) {
333 buffer_info->skb = next_buffer->skb;
334 buffer_info->dma = next_buffer->dma;
335 next_buffer->skb = skb;
336 next_buffer->dma = 0;
337 goto next_desc;
338 }
339
340 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
341 dev_kfree_skb_irq(skb);
342 goto next_desc;
343 }
344
345 total_bytes += skb->len;
346 total_packets++;
347
348 igbvf_rx_checksum_adv(adapter, staterr, skb);
349
350 skb->protocol = eth_type_trans(skb, netdev);
351
352 igbvf_receive_skb(adapter, netdev, skb, staterr,
353 rx_desc->wb.upper.vlan);
354
355next_desc:
356 rx_desc->wb.upper.status_error = 0;
357
358 /* return some buffers to hardware, one at a time is too slow */
359 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
360 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
361 cleaned_count = 0;
362 }
363
364 /* use prefetched values */
365 rx_desc = next_rxd;
366 buffer_info = next_buffer;
367
368 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
369 }
370
371 rx_ring->next_to_clean = i;
372 cleaned_count = igbvf_desc_unused(rx_ring);
373
374 if (cleaned_count)
375 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
376
377 adapter->total_rx_packets += total_packets;
378 adapter->total_rx_bytes += total_bytes;
379 adapter->net_stats.rx_bytes += total_bytes;
380 adapter->net_stats.rx_packets += total_packets;
381 return cleaned;
382}
383
384static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
385 struct igbvf_buffer *buffer_info)
386{
387 if (buffer_info->dma) {
388 if (buffer_info->mapped_as_page)
389 dma_unmap_page(&adapter->pdev->dev,
390 buffer_info->dma,
391 buffer_info->length,
392 DMA_TO_DEVICE);
393 else
394 dma_unmap_single(&adapter->pdev->dev,
395 buffer_info->dma,
396 buffer_info->length,
397 DMA_TO_DEVICE);
398 buffer_info->dma = 0;
399 }
400 if (buffer_info->skb) {
401 dev_kfree_skb_any(buffer_info->skb);
402 buffer_info->skb = NULL;
403 }
404 buffer_info->time_stamp = 0;
405}
406
407/**
408 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
409 * @adapter: board private structure
410 *
411 * Return 0 on success, negative on failure
412 **/
413int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
414 struct igbvf_ring *tx_ring)
415{
416 struct pci_dev *pdev = adapter->pdev;
417 int size;
418
419 size = sizeof(struct igbvf_buffer) * tx_ring->count;
420 tx_ring->buffer_info = vzalloc(size);
421 if (!tx_ring->buffer_info)
422 goto err;
423
424 /* round up to nearest 4K */
425 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
426 tx_ring->size = ALIGN(tx_ring->size, 4096);
427
428 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
429 &tx_ring->dma, GFP_KERNEL);
430
431 if (!tx_ring->desc)
432 goto err;
433
434 tx_ring->adapter = adapter;
435 tx_ring->next_to_use = 0;
436 tx_ring->next_to_clean = 0;
437
438 return 0;
439err:
440 vfree(tx_ring->buffer_info);
441 dev_err(&adapter->pdev->dev,
442 "Unable to allocate memory for the transmit descriptor ring\n");
443 return -ENOMEM;
444}
445
446/**
447 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
448 * @adapter: board private structure
449 *
450 * Returns 0 on success, negative on failure
451 **/
452int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
453 struct igbvf_ring *rx_ring)
454{
455 struct pci_dev *pdev = adapter->pdev;
456 int size, desc_len;
457
458 size = sizeof(struct igbvf_buffer) * rx_ring->count;
459 rx_ring->buffer_info = vzalloc(size);
460 if (!rx_ring->buffer_info)
461 goto err;
462
463 desc_len = sizeof(union e1000_adv_rx_desc);
464
465 /* Round up to nearest 4K */
466 rx_ring->size = rx_ring->count * desc_len;
467 rx_ring->size = ALIGN(rx_ring->size, 4096);
468
469 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
470 &rx_ring->dma, GFP_KERNEL);
471
472 if (!rx_ring->desc)
473 goto err;
474
475 rx_ring->next_to_clean = 0;
476 rx_ring->next_to_use = 0;
477
478 rx_ring->adapter = adapter;
479
480 return 0;
481
482err:
483 vfree(rx_ring->buffer_info);
484 rx_ring->buffer_info = NULL;
485 dev_err(&adapter->pdev->dev,
486 "Unable to allocate memory for the receive descriptor ring\n");
487 return -ENOMEM;
488}
489
490/**
491 * igbvf_clean_tx_ring - Free Tx Buffers
492 * @tx_ring: ring to be cleaned
493 **/
494static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
495{
496 struct igbvf_adapter *adapter = tx_ring->adapter;
497 struct igbvf_buffer *buffer_info;
498 unsigned long size;
499 unsigned int i;
500
501 if (!tx_ring->buffer_info)
502 return;
503
504 /* Free all the Tx ring sk_buffs */
505 for (i = 0; i < tx_ring->count; i++) {
506 buffer_info = &tx_ring->buffer_info[i];
507 igbvf_put_txbuf(adapter, buffer_info);
508 }
509
510 size = sizeof(struct igbvf_buffer) * tx_ring->count;
511 memset(tx_ring->buffer_info, 0, size);
512
513 /* Zero out the descriptor ring */
514 memset(tx_ring->desc, 0, tx_ring->size);
515
516 tx_ring->next_to_use = 0;
517 tx_ring->next_to_clean = 0;
518
519 writel(0, adapter->hw.hw_addr + tx_ring->head);
520 writel(0, adapter->hw.hw_addr + tx_ring->tail);
521}
522
523/**
524 * igbvf_free_tx_resources - Free Tx Resources per Queue
525 * @tx_ring: ring to free resources from
526 *
527 * Free all transmit software resources
528 **/
529void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
530{
531 struct pci_dev *pdev = tx_ring->adapter->pdev;
532
533 igbvf_clean_tx_ring(tx_ring);
534
535 vfree(tx_ring->buffer_info);
536 tx_ring->buffer_info = NULL;
537
538 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
539 tx_ring->dma);
540
541 tx_ring->desc = NULL;
542}
543
544/**
545 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
546 * @adapter: board private structure
547 **/
548static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
549{
550 struct igbvf_adapter *adapter = rx_ring->adapter;
551 struct igbvf_buffer *buffer_info;
552 struct pci_dev *pdev = adapter->pdev;
553 unsigned long size;
554 unsigned int i;
555
556 if (!rx_ring->buffer_info)
557 return;
558
559 /* Free all the Rx ring sk_buffs */
560 for (i = 0; i < rx_ring->count; i++) {
561 buffer_info = &rx_ring->buffer_info[i];
562 if (buffer_info->dma) {
563 if (adapter->rx_ps_hdr_size){
564 dma_unmap_single(&pdev->dev, buffer_info->dma,
565 adapter->rx_ps_hdr_size,
566 DMA_FROM_DEVICE);
567 } else {
568 dma_unmap_single(&pdev->dev, buffer_info->dma,
569 adapter->rx_buffer_len,
570 DMA_FROM_DEVICE);
571 }
572 buffer_info->dma = 0;
573 }
574
575 if (buffer_info->skb) {
576 dev_kfree_skb(buffer_info->skb);
577 buffer_info->skb = NULL;
578 }
579
580 if (buffer_info->page) {
581 if (buffer_info->page_dma)
582 dma_unmap_page(&pdev->dev,
583 buffer_info->page_dma,
584 PAGE_SIZE / 2,
585 DMA_FROM_DEVICE);
586 put_page(buffer_info->page);
587 buffer_info->page = NULL;
588 buffer_info->page_dma = 0;
589 buffer_info->page_offset = 0;
590 }
591 }
592
593 size = sizeof(struct igbvf_buffer) * rx_ring->count;
594 memset(rx_ring->buffer_info, 0, size);
595
596 /* Zero out the descriptor ring */
597 memset(rx_ring->desc, 0, rx_ring->size);
598
599 rx_ring->next_to_clean = 0;
600 rx_ring->next_to_use = 0;
601
602 writel(0, adapter->hw.hw_addr + rx_ring->head);
603 writel(0, adapter->hw.hw_addr + rx_ring->tail);
604}
605
606/**
607 * igbvf_free_rx_resources - Free Rx Resources
608 * @rx_ring: ring to clean the resources from
609 *
610 * Free all receive software resources
611 **/
612
613void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
614{
615 struct pci_dev *pdev = rx_ring->adapter->pdev;
616
617 igbvf_clean_rx_ring(rx_ring);
618
619 vfree(rx_ring->buffer_info);
620 rx_ring->buffer_info = NULL;
621
622 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
623 rx_ring->dma);
624 rx_ring->desc = NULL;
625}
626
627/**
628 * igbvf_update_itr - update the dynamic ITR value based on statistics
629 * @adapter: pointer to adapter
630 * @itr_setting: current adapter->itr
631 * @packets: the number of packets during this measurement interval
632 * @bytes: the number of bytes during this measurement interval
633 *
634 * Stores a new ITR value based on packets and byte
635 * counts during the last interrupt. The advantage of per interrupt
636 * computation is faster updates and more accurate ITR for the current
637 * traffic pattern. Constants in this function were computed
638 * based on theoretical maximum wire speed and thresholds were set based
639 * on testing data as well as attempting to minimize response time
640 * while increasing bulk throughput.
641 **/
642static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
643 enum latency_range itr_setting,
644 int packets, int bytes)
645{
646 enum latency_range retval = itr_setting;
647
648 if (packets == 0)
649 goto update_itr_done;
650
651 switch (itr_setting) {
652 case lowest_latency:
653 /* handle TSO and jumbo frames */
654 if (bytes/packets > 8000)
655 retval = bulk_latency;
656 else if ((packets < 5) && (bytes > 512))
657 retval = low_latency;
658 break;
659 case low_latency: /* 50 usec aka 20000 ints/s */
660 if (bytes > 10000) {
661 /* this if handles the TSO accounting */
662 if (bytes/packets > 8000)
663 retval = bulk_latency;
664 else if ((packets < 10) || ((bytes/packets) > 1200))
665 retval = bulk_latency;
666 else if ((packets > 35))
667 retval = lowest_latency;
668 } else if (bytes/packets > 2000) {
669 retval = bulk_latency;
670 } else if (packets <= 2 && bytes < 512) {
671 retval = lowest_latency;
672 }
673 break;
674 case bulk_latency: /* 250 usec aka 4000 ints/s */
675 if (bytes > 25000) {
676 if (packets > 35)
677 retval = low_latency;
678 } else if (bytes < 6000) {
679 retval = low_latency;
680 }
681 break;
682 default:
683 break;
684 }
685
686update_itr_done:
687 return retval;
688}
689
690static int igbvf_range_to_itr(enum latency_range current_range)
691{
692 int new_itr;
693
694 switch (current_range) {
695 /* counts and packets in update_itr are dependent on these numbers */
696 case lowest_latency:
697 new_itr = IGBVF_70K_ITR;
698 break;
699 case low_latency:
700 new_itr = IGBVF_20K_ITR;
701 break;
702 case bulk_latency:
703 new_itr = IGBVF_4K_ITR;
704 break;
705 default:
706 new_itr = IGBVF_START_ITR;
707 break;
708 }
709 return new_itr;
710}
711
712static void igbvf_set_itr(struct igbvf_adapter *adapter)
713{
714 u32 new_itr;
715
716 adapter->tx_ring->itr_range =
717 igbvf_update_itr(adapter,
718 adapter->tx_ring->itr_val,
719 adapter->total_tx_packets,
720 adapter->total_tx_bytes);
721
722 /* conservative mode (itr 3) eliminates the lowest_latency setting */
723 if (adapter->requested_itr == 3 &&
724 adapter->tx_ring->itr_range == lowest_latency)
725 adapter->tx_ring->itr_range = low_latency;
726
727 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
728
729
730 if (new_itr != adapter->tx_ring->itr_val) {
731 u32 current_itr = adapter->tx_ring->itr_val;
732 /*
733 * this attempts to bias the interrupt rate towards Bulk
734 * by adding intermediate steps when interrupt rate is
735 * increasing
736 */
737 new_itr = new_itr > current_itr ?
738 min(current_itr + (new_itr >> 2), new_itr) :
739 new_itr;
740 adapter->tx_ring->itr_val = new_itr;
741
742 adapter->tx_ring->set_itr = 1;
743 }
744
745 adapter->rx_ring->itr_range =
746 igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
747 adapter->total_rx_packets,
748 adapter->total_rx_bytes);
749 if (adapter->requested_itr == 3 &&
750 adapter->rx_ring->itr_range == lowest_latency)
751 adapter->rx_ring->itr_range = low_latency;
752
753 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
754
755 if (new_itr != adapter->rx_ring->itr_val) {
756 u32 current_itr = adapter->rx_ring->itr_val;
757 new_itr = new_itr > current_itr ?
758 min(current_itr + (new_itr >> 2), new_itr) :
759 new_itr;
760 adapter->rx_ring->itr_val = new_itr;
761
762 adapter->rx_ring->set_itr = 1;
763 }
764}
765
766/**
767 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
768 * @adapter: board private structure
769 * returns true if ring is completely cleaned
770 **/
771static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
772{
773 struct igbvf_adapter *adapter = tx_ring->adapter;
774 struct net_device *netdev = adapter->netdev;
775 struct igbvf_buffer *buffer_info;
776 struct sk_buff *skb;
777 union e1000_adv_tx_desc *tx_desc, *eop_desc;
778 unsigned int total_bytes = 0, total_packets = 0;
779 unsigned int i, eop, count = 0;
780 bool cleaned = false;
781
782 i = tx_ring->next_to_clean;
783 eop = tx_ring->buffer_info[i].next_to_watch;
784 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
785
786 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
787 (count < tx_ring->count)) {
788 rmb(); /* read buffer_info after eop_desc status */
789 for (cleaned = false; !cleaned; count++) {
790 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
791 buffer_info = &tx_ring->buffer_info[i];
792 cleaned = (i == eop);
793 skb = buffer_info->skb;
794
795 if (skb) {
796 unsigned int segs, bytecount;
797
798 /* gso_segs is currently only valid for tcp */
799 segs = skb_shinfo(skb)->gso_segs ?: 1;
800 /* multiply data chunks by size of headers */
801 bytecount = ((segs - 1) * skb_headlen(skb)) +
802 skb->len;
803 total_packets += segs;
804 total_bytes += bytecount;
805 }
806
807 igbvf_put_txbuf(adapter, buffer_info);
808 tx_desc->wb.status = 0;
809
810 i++;
811 if (i == tx_ring->count)
812 i = 0;
813 }
814 eop = tx_ring->buffer_info[i].next_to_watch;
815 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
816 }
817
818 tx_ring->next_to_clean = i;
819
820 if (unlikely(count &&
821 netif_carrier_ok(netdev) &&
822 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
823 /* Make sure that anybody stopping the queue after this
824 * sees the new next_to_clean.
825 */
826 smp_mb();
827 if (netif_queue_stopped(netdev) &&
828 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
829 netif_wake_queue(netdev);
830 ++adapter->restart_queue;
831 }
832 }
833
834 adapter->net_stats.tx_bytes += total_bytes;
835 adapter->net_stats.tx_packets += total_packets;
836 return count < tx_ring->count;
837}
838
839static irqreturn_t igbvf_msix_other(int irq, void *data)
840{
841 struct net_device *netdev = data;
842 struct igbvf_adapter *adapter = netdev_priv(netdev);
843 struct e1000_hw *hw = &adapter->hw;
844
845 adapter->int_counter1++;
846
847 netif_carrier_off(netdev);
848 hw->mac.get_link_status = 1;
849 if (!test_bit(__IGBVF_DOWN, &adapter->state))
850 mod_timer(&adapter->watchdog_timer, jiffies + 1);
851
852 ew32(EIMS, adapter->eims_other);
853
854 return IRQ_HANDLED;
855}
856
857static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
858{
859 struct net_device *netdev = data;
860 struct igbvf_adapter *adapter = netdev_priv(netdev);
861 struct e1000_hw *hw = &adapter->hw;
862 struct igbvf_ring *tx_ring = adapter->tx_ring;
863
864 if (tx_ring->set_itr) {
865 writel(tx_ring->itr_val,
866 adapter->hw.hw_addr + tx_ring->itr_register);
867 adapter->tx_ring->set_itr = 0;
868 }
869
870 adapter->total_tx_bytes = 0;
871 adapter->total_tx_packets = 0;
872
873 /* auto mask will automatically reenable the interrupt when we write
874 * EICS */
875 if (!igbvf_clean_tx_irq(tx_ring))
876 /* Ring was not completely cleaned, so fire another interrupt */
877 ew32(EICS, tx_ring->eims_value);
878 else
879 ew32(EIMS, tx_ring->eims_value);
880
881 return IRQ_HANDLED;
882}
883
884static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
885{
886 struct net_device *netdev = data;
887 struct igbvf_adapter *adapter = netdev_priv(netdev);
888
889 adapter->int_counter0++;
890
891 /* Write the ITR value calculated at the end of the
892 * previous interrupt.
893 */
894 if (adapter->rx_ring->set_itr) {
895 writel(adapter->rx_ring->itr_val,
896 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
897 adapter->rx_ring->set_itr = 0;
898 }
899
900 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
901 adapter->total_rx_bytes = 0;
902 adapter->total_rx_packets = 0;
903 __napi_schedule(&adapter->rx_ring->napi);
904 }
905
906 return IRQ_HANDLED;
907}
908
909#define IGBVF_NO_QUEUE -1
910
911static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
912 int tx_queue, int msix_vector)
913{
914 struct e1000_hw *hw = &adapter->hw;
915 u32 ivar, index;
916
917 /* 82576 uses a table-based method for assigning vectors.
918 Each queue has a single entry in the table to which we write
919 a vector number along with a "valid" bit. Sadly, the layout
920 of the table is somewhat counterintuitive. */
921 if (rx_queue > IGBVF_NO_QUEUE) {
922 index = (rx_queue >> 1);
923 ivar = array_er32(IVAR0, index);
924 if (rx_queue & 0x1) {
925 /* vector goes into third byte of register */
926 ivar = ivar & 0xFF00FFFF;
927 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
928 } else {
929 /* vector goes into low byte of register */
930 ivar = ivar & 0xFFFFFF00;
931 ivar |= msix_vector | E1000_IVAR_VALID;
932 }
933 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
934 array_ew32(IVAR0, index, ivar);
935 }
936 if (tx_queue > IGBVF_NO_QUEUE) {
937 index = (tx_queue >> 1);
938 ivar = array_er32(IVAR0, index);
939 if (tx_queue & 0x1) {
940 /* vector goes into high byte of register */
941 ivar = ivar & 0x00FFFFFF;
942 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
943 } else {
944 /* vector goes into second byte of register */
945 ivar = ivar & 0xFFFF00FF;
946 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
947 }
948 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
949 array_ew32(IVAR0, index, ivar);
950 }
951}
952
953/**
954 * igbvf_configure_msix - Configure MSI-X hardware
955 *
956 * igbvf_configure_msix sets up the hardware to properly
957 * generate MSI-X interrupts.
958 **/
959static void igbvf_configure_msix(struct igbvf_adapter *adapter)
960{
961 u32 tmp;
962 struct e1000_hw *hw = &adapter->hw;
963 struct igbvf_ring *tx_ring = adapter->tx_ring;
964 struct igbvf_ring *rx_ring = adapter->rx_ring;
965 int vector = 0;
966
967 adapter->eims_enable_mask = 0;
968
969 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
970 adapter->eims_enable_mask |= tx_ring->eims_value;
971 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
972 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
973 adapter->eims_enable_mask |= rx_ring->eims_value;
974 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
975
976 /* set vector for other causes, i.e. link changes */
977
978 tmp = (vector++ | E1000_IVAR_VALID);
979
980 ew32(IVAR_MISC, tmp);
981
982 adapter->eims_enable_mask = (1 << (vector)) - 1;
983 adapter->eims_other = 1 << (vector - 1);
984 e1e_flush();
985}
986
987static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
988{
989 if (adapter->msix_entries) {
990 pci_disable_msix(adapter->pdev);
991 kfree(adapter->msix_entries);
992 adapter->msix_entries = NULL;
993 }
994}
995
996/**
997 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
998 *
999 * Attempt to configure interrupts using the best available
1000 * capabilities of the hardware and kernel.
1001 **/
1002static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1003{
1004 int err = -ENOMEM;
1005 int i;
1006
1007 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1008 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1009 GFP_KERNEL);
1010 if (adapter->msix_entries) {
1011 for (i = 0; i < 3; i++)
1012 adapter->msix_entries[i].entry = i;
1013
1014 err = pci_enable_msix(adapter->pdev,
1015 adapter->msix_entries, 3);
1016 }
1017
1018 if (err) {
1019 /* MSI-X failed */
1020 dev_err(&adapter->pdev->dev,
1021 "Failed to initialize MSI-X interrupts.\n");
1022 igbvf_reset_interrupt_capability(adapter);
1023 }
1024}
1025
1026/**
1027 * igbvf_request_msix - Initialize MSI-X interrupts
1028 *
1029 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1030 * kernel.
1031 **/
1032static int igbvf_request_msix(struct igbvf_adapter *adapter)
1033{
1034 struct net_device *netdev = adapter->netdev;
1035 int err = 0, vector = 0;
1036
1037 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1038 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1039 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1040 } else {
1041 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1042 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1043 }
1044
1045 err = request_irq(adapter->msix_entries[vector].vector,
1046 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1047 netdev);
1048 if (err)
1049 goto out;
1050
1051 adapter->tx_ring->itr_register = E1000_EITR(vector);
1052 adapter->tx_ring->itr_val = adapter->current_itr;
1053 vector++;
1054
1055 err = request_irq(adapter->msix_entries[vector].vector,
1056 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1057 netdev);
1058 if (err)
1059 goto out;
1060
1061 adapter->rx_ring->itr_register = E1000_EITR(vector);
1062 adapter->rx_ring->itr_val = adapter->current_itr;
1063 vector++;
1064
1065 err = request_irq(adapter->msix_entries[vector].vector,
1066 igbvf_msix_other, 0, netdev->name, netdev);
1067 if (err)
1068 goto out;
1069
1070 igbvf_configure_msix(adapter);
1071 return 0;
1072out:
1073 return err;
1074}
1075
1076/**
1077 * igbvf_alloc_queues - Allocate memory for all rings
1078 * @adapter: board private structure to initialize
1079 **/
1080static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter)
1081{
1082 struct net_device *netdev = adapter->netdev;
1083
1084 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1085 if (!adapter->tx_ring)
1086 return -ENOMEM;
1087
1088 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1089 if (!adapter->rx_ring) {
1090 kfree(adapter->tx_ring);
1091 return -ENOMEM;
1092 }
1093
1094 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1095
1096 return 0;
1097}
1098
1099/**
1100 * igbvf_request_irq - initialize interrupts
1101 *
1102 * Attempts to configure interrupts using the best available
1103 * capabilities of the hardware and kernel.
1104 **/
1105static int igbvf_request_irq(struct igbvf_adapter *adapter)
1106{
1107 int err = -1;
1108
1109 /* igbvf supports msi-x only */
1110 if (adapter->msix_entries)
1111 err = igbvf_request_msix(adapter);
1112
1113 if (!err)
1114 return err;
1115
1116 dev_err(&adapter->pdev->dev,
1117 "Unable to allocate interrupt, Error: %d\n", err);
1118
1119 return err;
1120}
1121
1122static void igbvf_free_irq(struct igbvf_adapter *adapter)
1123{
1124 struct net_device *netdev = adapter->netdev;
1125 int vector;
1126
1127 if (adapter->msix_entries) {
1128 for (vector = 0; vector < 3; vector++)
1129 free_irq(adapter->msix_entries[vector].vector, netdev);
1130 }
1131}
1132
1133/**
1134 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1135 **/
1136static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1137{
1138 struct e1000_hw *hw = &adapter->hw;
1139
1140 ew32(EIMC, ~0);
1141
1142 if (adapter->msix_entries)
1143 ew32(EIAC, 0);
1144}
1145
1146/**
1147 * igbvf_irq_enable - Enable default interrupt generation settings
1148 **/
1149static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1150{
1151 struct e1000_hw *hw = &adapter->hw;
1152
1153 ew32(EIAC, adapter->eims_enable_mask);
1154 ew32(EIAM, adapter->eims_enable_mask);
1155 ew32(EIMS, adapter->eims_enable_mask);
1156}
1157
1158/**
1159 * igbvf_poll - NAPI Rx polling callback
1160 * @napi: struct associated with this polling callback
1161 * @budget: amount of packets driver is allowed to process this poll
1162 **/
1163static int igbvf_poll(struct napi_struct *napi, int budget)
1164{
1165 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1166 struct igbvf_adapter *adapter = rx_ring->adapter;
1167 struct e1000_hw *hw = &adapter->hw;
1168 int work_done = 0;
1169
1170 igbvf_clean_rx_irq(adapter, &work_done, budget);
1171
1172 /* If not enough Rx work done, exit the polling mode */
1173 if (work_done < budget) {
1174 napi_complete(napi);
1175
1176 if (adapter->requested_itr & 3)
1177 igbvf_set_itr(adapter);
1178
1179 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1180 ew32(EIMS, adapter->rx_ring->eims_value);
1181 }
1182
1183 return work_done;
1184}
1185
1186/**
1187 * igbvf_set_rlpml - set receive large packet maximum length
1188 * @adapter: board private structure
1189 *
1190 * Configure the maximum size of packets that will be received
1191 */
1192static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1193{
1194 int max_frame_size;
1195 struct e1000_hw *hw = &adapter->hw;
1196
1197 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1198 e1000_rlpml_set_vf(hw, max_frame_size);
1199}
1200
1201static int igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1202{
1203 struct igbvf_adapter *adapter = netdev_priv(netdev);
1204 struct e1000_hw *hw = &adapter->hw;
1205
1206 if (hw->mac.ops.set_vfta(hw, vid, true)) {
1207 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1208 return -EINVAL;
1209 }
1210 set_bit(vid, adapter->active_vlans);
1211 return 0;
1212}
1213
1214static int igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1215{
1216 struct igbvf_adapter *adapter = netdev_priv(netdev);
1217 struct e1000_hw *hw = &adapter->hw;
1218
1219 if (hw->mac.ops.set_vfta(hw, vid, false)) {
1220 dev_err(&adapter->pdev->dev,
1221 "Failed to remove vlan id %d\n", vid);
1222 return -EINVAL;
1223 }
1224 clear_bit(vid, adapter->active_vlans);
1225 return 0;
1226}
1227
1228static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1229{
1230 u16 vid;
1231
1232 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1233 igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1234}
1235
1236/**
1237 * igbvf_configure_tx - Configure Transmit Unit after Reset
1238 * @adapter: board private structure
1239 *
1240 * Configure the Tx unit of the MAC after a reset.
1241 **/
1242static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1243{
1244 struct e1000_hw *hw = &adapter->hw;
1245 struct igbvf_ring *tx_ring = adapter->tx_ring;
1246 u64 tdba;
1247 u32 txdctl, dca_txctrl;
1248
1249 /* disable transmits */
1250 txdctl = er32(TXDCTL(0));
1251 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1252 e1e_flush();
1253 msleep(10);
1254
1255 /* Setup the HW Tx Head and Tail descriptor pointers */
1256 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1257 tdba = tx_ring->dma;
1258 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1259 ew32(TDBAH(0), (tdba >> 32));
1260 ew32(TDH(0), 0);
1261 ew32(TDT(0), 0);
1262 tx_ring->head = E1000_TDH(0);
1263 tx_ring->tail = E1000_TDT(0);
1264
1265 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1266 * MUST be delivered in order or it will completely screw up
1267 * our bookeeping.
1268 */
1269 dca_txctrl = er32(DCA_TXCTRL(0));
1270 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1271 ew32(DCA_TXCTRL(0), dca_txctrl);
1272
1273 /* enable transmits */
1274 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1275 ew32(TXDCTL(0), txdctl);
1276
1277 /* Setup Transmit Descriptor Settings for eop descriptor */
1278 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1279
1280 /* enable Report Status bit */
1281 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1282}
1283
1284/**
1285 * igbvf_setup_srrctl - configure the receive control registers
1286 * @adapter: Board private structure
1287 **/
1288static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1289{
1290 struct e1000_hw *hw = &adapter->hw;
1291 u32 srrctl = 0;
1292
1293 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1294 E1000_SRRCTL_BSIZEHDR_MASK |
1295 E1000_SRRCTL_BSIZEPKT_MASK);
1296
1297 /* Enable queue drop to avoid head of line blocking */
1298 srrctl |= E1000_SRRCTL_DROP_EN;
1299
1300 /* Setup buffer sizes */
1301 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1302 E1000_SRRCTL_BSIZEPKT_SHIFT;
1303
1304 if (adapter->rx_buffer_len < 2048) {
1305 adapter->rx_ps_hdr_size = 0;
1306 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1307 } else {
1308 adapter->rx_ps_hdr_size = 128;
1309 srrctl |= adapter->rx_ps_hdr_size <<
1310 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1311 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1312 }
1313
1314 ew32(SRRCTL(0), srrctl);
1315}
1316
1317/**
1318 * igbvf_configure_rx - Configure Receive Unit after Reset
1319 * @adapter: board private structure
1320 *
1321 * Configure the Rx unit of the MAC after a reset.
1322 **/
1323static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1324{
1325 struct e1000_hw *hw = &adapter->hw;
1326 struct igbvf_ring *rx_ring = adapter->rx_ring;
1327 u64 rdba;
1328 u32 rdlen, rxdctl;
1329
1330 /* disable receives */
1331 rxdctl = er32(RXDCTL(0));
1332 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1333 e1e_flush();
1334 msleep(10);
1335
1336 rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1337
1338 /*
1339 * Setup the HW Rx Head and Tail Descriptor Pointers and
1340 * the Base and Length of the Rx Descriptor Ring
1341 */
1342 rdba = rx_ring->dma;
1343 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1344 ew32(RDBAH(0), (rdba >> 32));
1345 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1346 rx_ring->head = E1000_RDH(0);
1347 rx_ring->tail = E1000_RDT(0);
1348 ew32(RDH(0), 0);
1349 ew32(RDT(0), 0);
1350
1351 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1352 rxdctl &= 0xFFF00000;
1353 rxdctl |= IGBVF_RX_PTHRESH;
1354 rxdctl |= IGBVF_RX_HTHRESH << 8;
1355 rxdctl |= IGBVF_RX_WTHRESH << 16;
1356
1357 igbvf_set_rlpml(adapter);
1358
1359 /* enable receives */
1360 ew32(RXDCTL(0), rxdctl);
1361}
1362
1363/**
1364 * igbvf_set_multi - Multicast and Promiscuous mode set
1365 * @netdev: network interface device structure
1366 *
1367 * The set_multi entry point is called whenever the multicast address
1368 * list or the network interface flags are updated. This routine is
1369 * responsible for configuring the hardware for proper multicast,
1370 * promiscuous mode, and all-multi behavior.
1371 **/
1372static void igbvf_set_multi(struct net_device *netdev)
1373{
1374 struct igbvf_adapter *adapter = netdev_priv(netdev);
1375 struct e1000_hw *hw = &adapter->hw;
1376 struct netdev_hw_addr *ha;
1377 u8 *mta_list = NULL;
1378 int i;
1379
1380 if (!netdev_mc_empty(netdev)) {
1381 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
1382 if (!mta_list) {
1383 dev_err(&adapter->pdev->dev,
1384 "failed to allocate multicast filter list\n");
1385 return;
1386 }
1387 }
1388
1389 /* prepare a packed array of only addresses. */
1390 i = 0;
1391 netdev_for_each_mc_addr(ha, netdev)
1392 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1393
1394 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1395 kfree(mta_list);
1396}
1397
1398/**
1399 * igbvf_configure - configure the hardware for Rx and Tx
1400 * @adapter: private board structure
1401 **/
1402static void igbvf_configure(struct igbvf_adapter *adapter)
1403{
1404 igbvf_set_multi(adapter->netdev);
1405
1406 igbvf_restore_vlan(adapter);
1407
1408 igbvf_configure_tx(adapter);
1409 igbvf_setup_srrctl(adapter);
1410 igbvf_configure_rx(adapter);
1411 igbvf_alloc_rx_buffers(adapter->rx_ring,
1412 igbvf_desc_unused(adapter->rx_ring));
1413}
1414
1415/* igbvf_reset - bring the hardware into a known good state
1416 *
1417 * This function boots the hardware and enables some settings that
1418 * require a configuration cycle of the hardware - those cannot be
1419 * set/changed during runtime. After reset the device needs to be
1420 * properly configured for Rx, Tx etc.
1421 */
1422static void igbvf_reset(struct igbvf_adapter *adapter)
1423{
1424 struct e1000_mac_info *mac = &adapter->hw.mac;
1425 struct net_device *netdev = adapter->netdev;
1426 struct e1000_hw *hw = &adapter->hw;
1427
1428 /* Allow time for pending master requests to run */
1429 if (mac->ops.reset_hw(hw))
1430 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1431
1432 mac->ops.init_hw(hw);
1433
1434 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1435 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1436 netdev->addr_len);
1437 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1438 netdev->addr_len);
1439 }
1440
1441 adapter->last_reset = jiffies;
1442}
1443
1444int igbvf_up(struct igbvf_adapter *adapter)
1445{
1446 struct e1000_hw *hw = &adapter->hw;
1447
1448 /* hardware has been reset, we need to reload some things */
1449 igbvf_configure(adapter);
1450
1451 clear_bit(__IGBVF_DOWN, &adapter->state);
1452
1453 napi_enable(&adapter->rx_ring->napi);
1454 if (adapter->msix_entries)
1455 igbvf_configure_msix(adapter);
1456
1457 /* Clear any pending interrupts. */
1458 er32(EICR);
1459 igbvf_irq_enable(adapter);
1460
1461 /* start the watchdog */
1462 hw->mac.get_link_status = 1;
1463 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1464
1465
1466 return 0;
1467}
1468
1469void igbvf_down(struct igbvf_adapter *adapter)
1470{
1471 struct net_device *netdev = adapter->netdev;
1472 struct e1000_hw *hw = &adapter->hw;
1473 u32 rxdctl, txdctl;
1474
1475 /*
1476 * signal that we're down so the interrupt handler does not
1477 * reschedule our watchdog timer
1478 */
1479 set_bit(__IGBVF_DOWN, &adapter->state);
1480
1481 /* disable receives in the hardware */
1482 rxdctl = er32(RXDCTL(0));
1483 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1484
1485 netif_stop_queue(netdev);
1486
1487 /* disable transmits in the hardware */
1488 txdctl = er32(TXDCTL(0));
1489 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1490
1491 /* flush both disables and wait for them to finish */
1492 e1e_flush();
1493 msleep(10);
1494
1495 napi_disable(&adapter->rx_ring->napi);
1496
1497 igbvf_irq_disable(adapter);
1498
1499 del_timer_sync(&adapter->watchdog_timer);
1500
1501 netif_carrier_off(netdev);
1502
1503 /* record the stats before reset*/
1504 igbvf_update_stats(adapter);
1505
1506 adapter->link_speed = 0;
1507 adapter->link_duplex = 0;
1508
1509 igbvf_reset(adapter);
1510 igbvf_clean_tx_ring(adapter->tx_ring);
1511 igbvf_clean_rx_ring(adapter->rx_ring);
1512}
1513
1514void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1515{
1516 might_sleep();
1517 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1518 msleep(1);
1519 igbvf_down(adapter);
1520 igbvf_up(adapter);
1521 clear_bit(__IGBVF_RESETTING, &adapter->state);
1522}
1523
1524/**
1525 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1526 * @adapter: board private structure to initialize
1527 *
1528 * igbvf_sw_init initializes the Adapter private data structure.
1529 * Fields are initialized based on PCI device information and
1530 * OS network device settings (MTU size).
1531 **/
1532static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter)
1533{
1534 struct net_device *netdev = adapter->netdev;
1535 s32 rc;
1536
1537 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1538 adapter->rx_ps_hdr_size = 0;
1539 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1540 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1541
1542 adapter->tx_int_delay = 8;
1543 adapter->tx_abs_int_delay = 32;
1544 adapter->rx_int_delay = 0;
1545 adapter->rx_abs_int_delay = 8;
1546 adapter->requested_itr = 3;
1547 adapter->current_itr = IGBVF_START_ITR;
1548
1549 /* Set various function pointers */
1550 adapter->ei->init_ops(&adapter->hw);
1551
1552 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1553 if (rc)
1554 return rc;
1555
1556 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1557 if (rc)
1558 return rc;
1559
1560 igbvf_set_interrupt_capability(adapter);
1561
1562 if (igbvf_alloc_queues(adapter))
1563 return -ENOMEM;
1564
1565 spin_lock_init(&adapter->tx_queue_lock);
1566
1567 /* Explicitly disable IRQ since the NIC can be in any state. */
1568 igbvf_irq_disable(adapter);
1569
1570 spin_lock_init(&adapter->stats_lock);
1571
1572 set_bit(__IGBVF_DOWN, &adapter->state);
1573 return 0;
1574}
1575
1576static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1577{
1578 struct e1000_hw *hw = &adapter->hw;
1579
1580 adapter->stats.last_gprc = er32(VFGPRC);
1581 adapter->stats.last_gorc = er32(VFGORC);
1582 adapter->stats.last_gptc = er32(VFGPTC);
1583 adapter->stats.last_gotc = er32(VFGOTC);
1584 adapter->stats.last_mprc = er32(VFMPRC);
1585 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1586 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1587 adapter->stats.last_gorlbc = er32(VFGORLBC);
1588 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1589
1590 adapter->stats.base_gprc = er32(VFGPRC);
1591 adapter->stats.base_gorc = er32(VFGORC);
1592 adapter->stats.base_gptc = er32(VFGPTC);
1593 adapter->stats.base_gotc = er32(VFGOTC);
1594 adapter->stats.base_mprc = er32(VFMPRC);
1595 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1596 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1597 adapter->stats.base_gorlbc = er32(VFGORLBC);
1598 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1599}
1600
1601/**
1602 * igbvf_open - Called when a network interface is made active
1603 * @netdev: network interface device structure
1604 *
1605 * Returns 0 on success, negative value on failure
1606 *
1607 * The open entry point is called when a network interface is made
1608 * active by the system (IFF_UP). At this point all resources needed
1609 * for transmit and receive operations are allocated, the interrupt
1610 * handler is registered with the OS, the watchdog timer is started,
1611 * and the stack is notified that the interface is ready.
1612 **/
1613static int igbvf_open(struct net_device *netdev)
1614{
1615 struct igbvf_adapter *adapter = netdev_priv(netdev);
1616 struct e1000_hw *hw = &adapter->hw;
1617 int err;
1618
1619 /* disallow open during test */
1620 if (test_bit(__IGBVF_TESTING, &adapter->state))
1621 return -EBUSY;
1622
1623 /* allocate transmit descriptors */
1624 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1625 if (err)
1626 goto err_setup_tx;
1627
1628 /* allocate receive descriptors */
1629 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1630 if (err)
1631 goto err_setup_rx;
1632
1633 /*
1634 * before we allocate an interrupt, we must be ready to handle it.
1635 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1636 * as soon as we call pci_request_irq, so we have to setup our
1637 * clean_rx handler before we do so.
1638 */
1639 igbvf_configure(adapter);
1640
1641 err = igbvf_request_irq(adapter);
1642 if (err)
1643 goto err_req_irq;
1644
1645 /* From here on the code is the same as igbvf_up() */
1646 clear_bit(__IGBVF_DOWN, &adapter->state);
1647
1648 napi_enable(&adapter->rx_ring->napi);
1649
1650 /* clear any pending interrupts */
1651 er32(EICR);
1652
1653 igbvf_irq_enable(adapter);
1654
1655 /* start the watchdog */
1656 hw->mac.get_link_status = 1;
1657 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1658
1659 return 0;
1660
1661err_req_irq:
1662 igbvf_free_rx_resources(adapter->rx_ring);
1663err_setup_rx:
1664 igbvf_free_tx_resources(adapter->tx_ring);
1665err_setup_tx:
1666 igbvf_reset(adapter);
1667
1668 return err;
1669}
1670
1671/**
1672 * igbvf_close - Disables a network interface
1673 * @netdev: network interface device structure
1674 *
1675 * Returns 0, this is not allowed to fail
1676 *
1677 * The close entry point is called when an interface is de-activated
1678 * by the OS. The hardware is still under the drivers control, but
1679 * needs to be disabled. A global MAC reset is issued to stop the
1680 * hardware, and all transmit and receive resources are freed.
1681 **/
1682static int igbvf_close(struct net_device *netdev)
1683{
1684 struct igbvf_adapter *adapter = netdev_priv(netdev);
1685
1686 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1687 igbvf_down(adapter);
1688
1689 igbvf_free_irq(adapter);
1690
1691 igbvf_free_tx_resources(adapter->tx_ring);
1692 igbvf_free_rx_resources(adapter->rx_ring);
1693
1694 return 0;
1695}
1696/**
1697 * igbvf_set_mac - Change the Ethernet Address of the NIC
1698 * @netdev: network interface device structure
1699 * @p: pointer to an address structure
1700 *
1701 * Returns 0 on success, negative on failure
1702 **/
1703static int igbvf_set_mac(struct net_device *netdev, void *p)
1704{
1705 struct igbvf_adapter *adapter = netdev_priv(netdev);
1706 struct e1000_hw *hw = &adapter->hw;
1707 struct sockaddr *addr = p;
1708
1709 if (!is_valid_ether_addr(addr->sa_data))
1710 return -EADDRNOTAVAIL;
1711
1712 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1713
1714 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1715
1716 if (memcmp(addr->sa_data, hw->mac.addr, 6))
1717 return -EADDRNOTAVAIL;
1718
1719 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1720 netdev->addr_assign_type &= ~NET_ADDR_RANDOM;
1721
1722 return 0;
1723}
1724
1725#define UPDATE_VF_COUNTER(reg, name) \
1726 { \
1727 u32 current_counter = er32(reg); \
1728 if (current_counter < adapter->stats.last_##name) \
1729 adapter->stats.name += 0x100000000LL; \
1730 adapter->stats.last_##name = current_counter; \
1731 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1732 adapter->stats.name |= current_counter; \
1733 }
1734
1735/**
1736 * igbvf_update_stats - Update the board statistics counters
1737 * @adapter: board private structure
1738**/
1739void igbvf_update_stats(struct igbvf_adapter *adapter)
1740{
1741 struct e1000_hw *hw = &adapter->hw;
1742 struct pci_dev *pdev = adapter->pdev;
1743
1744 /*
1745 * Prevent stats update while adapter is being reset, link is down
1746 * or if the pci connection is down.
1747 */
1748 if (adapter->link_speed == 0)
1749 return;
1750
1751 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1752 return;
1753
1754 if (pci_channel_offline(pdev))
1755 return;
1756
1757 UPDATE_VF_COUNTER(VFGPRC, gprc);
1758 UPDATE_VF_COUNTER(VFGORC, gorc);
1759 UPDATE_VF_COUNTER(VFGPTC, gptc);
1760 UPDATE_VF_COUNTER(VFGOTC, gotc);
1761 UPDATE_VF_COUNTER(VFMPRC, mprc);
1762 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1763 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1764 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1765 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1766
1767 /* Fill out the OS statistics structure */
1768 adapter->net_stats.multicast = adapter->stats.mprc;
1769}
1770
1771static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1772{
1773 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1774 adapter->link_speed,
1775 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1776}
1777
1778static bool igbvf_has_link(struct igbvf_adapter *adapter)
1779{
1780 struct e1000_hw *hw = &adapter->hw;
1781 s32 ret_val = E1000_SUCCESS;
1782 bool link_active;
1783
1784 /* If interface is down, stay link down */
1785 if (test_bit(__IGBVF_DOWN, &adapter->state))
1786 return false;
1787
1788 ret_val = hw->mac.ops.check_for_link(hw);
1789 link_active = !hw->mac.get_link_status;
1790
1791 /* if check for link returns error we will need to reset */
1792 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1793 schedule_work(&adapter->reset_task);
1794
1795 return link_active;
1796}
1797
1798/**
1799 * igbvf_watchdog - Timer Call-back
1800 * @data: pointer to adapter cast into an unsigned long
1801 **/
1802static void igbvf_watchdog(unsigned long data)
1803{
1804 struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1805
1806 /* Do the rest outside of interrupt context */
1807 schedule_work(&adapter->watchdog_task);
1808}
1809
1810static void igbvf_watchdog_task(struct work_struct *work)
1811{
1812 struct igbvf_adapter *adapter = container_of(work,
1813 struct igbvf_adapter,
1814 watchdog_task);
1815 struct net_device *netdev = adapter->netdev;
1816 struct e1000_mac_info *mac = &adapter->hw.mac;
1817 struct igbvf_ring *tx_ring = adapter->tx_ring;
1818 struct e1000_hw *hw = &adapter->hw;
1819 u32 link;
1820 int tx_pending = 0;
1821
1822 link = igbvf_has_link(adapter);
1823
1824 if (link) {
1825 if (!netif_carrier_ok(netdev)) {
1826 mac->ops.get_link_up_info(&adapter->hw,
1827 &adapter->link_speed,
1828 &adapter->link_duplex);
1829 igbvf_print_link_info(adapter);
1830
1831 netif_carrier_on(netdev);
1832 netif_wake_queue(netdev);
1833 }
1834 } else {
1835 if (netif_carrier_ok(netdev)) {
1836 adapter->link_speed = 0;
1837 adapter->link_duplex = 0;
1838 dev_info(&adapter->pdev->dev, "Link is Down\n");
1839 netif_carrier_off(netdev);
1840 netif_stop_queue(netdev);
1841 }
1842 }
1843
1844 if (netif_carrier_ok(netdev)) {
1845 igbvf_update_stats(adapter);
1846 } else {
1847 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1848 tx_ring->count);
1849 if (tx_pending) {
1850 /*
1851 * We've lost link, so the controller stops DMA,
1852 * but we've got queued Tx work that's never going
1853 * to get done, so reset controller to flush Tx.
1854 * (Do the reset outside of interrupt context).
1855 */
1856 adapter->tx_timeout_count++;
1857 schedule_work(&adapter->reset_task);
1858 }
1859 }
1860
1861 /* Cause software interrupt to ensure Rx ring is cleaned */
1862 ew32(EICS, adapter->rx_ring->eims_value);
1863
1864 /* Reset the timer */
1865 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1866 mod_timer(&adapter->watchdog_timer,
1867 round_jiffies(jiffies + (2 * HZ)));
1868}
1869
1870#define IGBVF_TX_FLAGS_CSUM 0x00000001
1871#define IGBVF_TX_FLAGS_VLAN 0x00000002
1872#define IGBVF_TX_FLAGS_TSO 0x00000004
1873#define IGBVF_TX_FLAGS_IPV4 0x00000008
1874#define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1875#define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1876
1877static int igbvf_tso(struct igbvf_adapter *adapter,
1878 struct igbvf_ring *tx_ring,
1879 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1880{
1881 struct e1000_adv_tx_context_desc *context_desc;
1882 unsigned int i;
1883 int err;
1884 struct igbvf_buffer *buffer_info;
1885 u32 info = 0, tu_cmd = 0;
1886 u32 mss_l4len_idx, l4len;
1887 *hdr_len = 0;
1888
1889 if (skb_header_cloned(skb)) {
1890 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1891 if (err) {
1892 dev_err(&adapter->pdev->dev,
1893 "igbvf_tso returning an error\n");
1894 return err;
1895 }
1896 }
1897
1898 l4len = tcp_hdrlen(skb);
1899 *hdr_len += l4len;
1900
1901 if (skb->protocol == htons(ETH_P_IP)) {
1902 struct iphdr *iph = ip_hdr(skb);
1903 iph->tot_len = 0;
1904 iph->check = 0;
1905 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1906 iph->daddr, 0,
1907 IPPROTO_TCP,
1908 0);
1909 } else if (skb_is_gso_v6(skb)) {
1910 ipv6_hdr(skb)->payload_len = 0;
1911 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1912 &ipv6_hdr(skb)->daddr,
1913 0, IPPROTO_TCP, 0);
1914 }
1915
1916 i = tx_ring->next_to_use;
1917
1918 buffer_info = &tx_ring->buffer_info[i];
1919 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1920 /* VLAN MACLEN IPLEN */
1921 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1922 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1923 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1924 *hdr_len += skb_network_offset(skb);
1925 info |= (skb_transport_header(skb) - skb_network_header(skb));
1926 *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1927 context_desc->vlan_macip_lens = cpu_to_le32(info);
1928
1929 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1930 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1931
1932 if (skb->protocol == htons(ETH_P_IP))
1933 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1934 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1935
1936 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1937
1938 /* MSS L4LEN IDX */
1939 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1940 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1941
1942 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1943 context_desc->seqnum_seed = 0;
1944
1945 buffer_info->time_stamp = jiffies;
1946 buffer_info->next_to_watch = i;
1947 buffer_info->dma = 0;
1948 i++;
1949 if (i == tx_ring->count)
1950 i = 0;
1951
1952 tx_ring->next_to_use = i;
1953
1954 return true;
1955}
1956
1957static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1958 struct igbvf_ring *tx_ring,
1959 struct sk_buff *skb, u32 tx_flags)
1960{
1961 struct e1000_adv_tx_context_desc *context_desc;
1962 unsigned int i;
1963 struct igbvf_buffer *buffer_info;
1964 u32 info = 0, tu_cmd = 0;
1965
1966 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
1967 (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
1968 i = tx_ring->next_to_use;
1969 buffer_info = &tx_ring->buffer_info[i];
1970 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1971
1972 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1973 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1974
1975 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1976 if (skb->ip_summed == CHECKSUM_PARTIAL)
1977 info |= (skb_transport_header(skb) -
1978 skb_network_header(skb));
1979
1980
1981 context_desc->vlan_macip_lens = cpu_to_le32(info);
1982
1983 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1984
1985 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1986 switch (skb->protocol) {
1987 case __constant_htons(ETH_P_IP):
1988 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1989 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
1990 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1991 break;
1992 case __constant_htons(ETH_P_IPV6):
1993 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
1994 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1995 break;
1996 default:
1997 break;
1998 }
1999 }
2000
2001 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2002 context_desc->seqnum_seed = 0;
2003 context_desc->mss_l4len_idx = 0;
2004
2005 buffer_info->time_stamp = jiffies;
2006 buffer_info->next_to_watch = i;
2007 buffer_info->dma = 0;
2008 i++;
2009 if (i == tx_ring->count)
2010 i = 0;
2011 tx_ring->next_to_use = i;
2012
2013 return true;
2014 }
2015
2016 return false;
2017}
2018
2019static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2020{
2021 struct igbvf_adapter *adapter = netdev_priv(netdev);
2022
2023 /* there is enough descriptors then we don't need to worry */
2024 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2025 return 0;
2026
2027 netif_stop_queue(netdev);
2028
2029 smp_mb();
2030
2031 /* We need to check again just in case room has been made available */
2032 if (igbvf_desc_unused(adapter->tx_ring) < size)
2033 return -EBUSY;
2034
2035 netif_wake_queue(netdev);
2036
2037 ++adapter->restart_queue;
2038 return 0;
2039}
2040
2041#define IGBVF_MAX_TXD_PWR 16
2042#define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR)
2043
2044static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2045 struct igbvf_ring *tx_ring,
2046 struct sk_buff *skb,
2047 unsigned int first)
2048{
2049 struct igbvf_buffer *buffer_info;
2050 struct pci_dev *pdev = adapter->pdev;
2051 unsigned int len = skb_headlen(skb);
2052 unsigned int count = 0, i;
2053 unsigned int f;
2054
2055 i = tx_ring->next_to_use;
2056
2057 buffer_info = &tx_ring->buffer_info[i];
2058 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2059 buffer_info->length = len;
2060 /* set time_stamp *before* dma to help avoid a possible race */
2061 buffer_info->time_stamp = jiffies;
2062 buffer_info->next_to_watch = i;
2063 buffer_info->mapped_as_page = false;
2064 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2065 DMA_TO_DEVICE);
2066 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2067 goto dma_error;
2068
2069
2070 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2071 const struct skb_frag_struct *frag;
2072
2073 count++;
2074 i++;
2075 if (i == tx_ring->count)
2076 i = 0;
2077
2078 frag = &skb_shinfo(skb)->frags[f];
2079 len = skb_frag_size(frag);
2080
2081 buffer_info = &tx_ring->buffer_info[i];
2082 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2083 buffer_info->length = len;
2084 buffer_info->time_stamp = jiffies;
2085 buffer_info->next_to_watch = i;
2086 buffer_info->mapped_as_page = true;
2087 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2088 DMA_TO_DEVICE);
2089 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2090 goto dma_error;
2091 }
2092
2093 tx_ring->buffer_info[i].skb = skb;
2094 tx_ring->buffer_info[first].next_to_watch = i;
2095
2096 return ++count;
2097
2098dma_error:
2099 dev_err(&pdev->dev, "TX DMA map failed\n");
2100
2101 /* clear timestamp and dma mappings for failed buffer_info mapping */
2102 buffer_info->dma = 0;
2103 buffer_info->time_stamp = 0;
2104 buffer_info->length = 0;
2105 buffer_info->next_to_watch = 0;
2106 buffer_info->mapped_as_page = false;
2107 if (count)
2108 count--;
2109
2110 /* clear timestamp and dma mappings for remaining portion of packet */
2111 while (count--) {
2112 if (i==0)
2113 i += tx_ring->count;
2114 i--;
2115 buffer_info = &tx_ring->buffer_info[i];
2116 igbvf_put_txbuf(adapter, buffer_info);
2117 }
2118
2119 return 0;
2120}
2121
2122static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2123 struct igbvf_ring *tx_ring,
2124 int tx_flags, int count, u32 paylen,
2125 u8 hdr_len)
2126{
2127 union e1000_adv_tx_desc *tx_desc = NULL;
2128 struct igbvf_buffer *buffer_info;
2129 u32 olinfo_status = 0, cmd_type_len;
2130 unsigned int i;
2131
2132 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2133 E1000_ADVTXD_DCMD_DEXT);
2134
2135 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2136 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2137
2138 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2139 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2140
2141 /* insert tcp checksum */
2142 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2143
2144 /* insert ip checksum */
2145 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2146 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2147
2148 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2149 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2150 }
2151
2152 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2153
2154 i = tx_ring->next_to_use;
2155 while (count--) {
2156 buffer_info = &tx_ring->buffer_info[i];
2157 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2158 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2159 tx_desc->read.cmd_type_len =
2160 cpu_to_le32(cmd_type_len | buffer_info->length);
2161 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2162 i++;
2163 if (i == tx_ring->count)
2164 i = 0;
2165 }
2166
2167 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2168 /* Force memory writes to complete before letting h/w
2169 * know there are new descriptors to fetch. (Only
2170 * applicable for weak-ordered memory model archs,
2171 * such as IA-64). */
2172 wmb();
2173
2174 tx_ring->next_to_use = i;
2175 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2176 /* we need this if more than one processor can write to our tail
2177 * at a time, it syncronizes IO on IA64/Altix systems */
2178 mmiowb();
2179}
2180
2181static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2182 struct net_device *netdev,
2183 struct igbvf_ring *tx_ring)
2184{
2185 struct igbvf_adapter *adapter = netdev_priv(netdev);
2186 unsigned int first, tx_flags = 0;
2187 u8 hdr_len = 0;
2188 int count = 0;
2189 int tso = 0;
2190
2191 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2192 dev_kfree_skb_any(skb);
2193 return NETDEV_TX_OK;
2194 }
2195
2196 if (skb->len <= 0) {
2197 dev_kfree_skb_any(skb);
2198 return NETDEV_TX_OK;
2199 }
2200
2201 /*
2202 * need: count + 4 desc gap to keep tail from touching
2203 * + 2 desc gap to keep tail from touching head,
2204 * + 1 desc for skb->data,
2205 * + 1 desc for context descriptor,
2206 * head, otherwise try next time
2207 */
2208 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2209 /* this is a hard error */
2210 return NETDEV_TX_BUSY;
2211 }
2212
2213 if (vlan_tx_tag_present(skb)) {
2214 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2215 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2216 }
2217
2218 if (skb->protocol == htons(ETH_P_IP))
2219 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2220
2221 first = tx_ring->next_to_use;
2222
2223 tso = skb_is_gso(skb) ?
2224 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2225 if (unlikely(tso < 0)) {
2226 dev_kfree_skb_any(skb);
2227 return NETDEV_TX_OK;
2228 }
2229
2230 if (tso)
2231 tx_flags |= IGBVF_TX_FLAGS_TSO;
2232 else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2233 (skb->ip_summed == CHECKSUM_PARTIAL))
2234 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2235
2236 /*
2237 * count reflects descriptors mapped, if 0 then mapping error
2238 * has occurred and we need to rewind the descriptor queue
2239 */
2240 count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2241
2242 if (count) {
2243 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2244 skb->len, hdr_len);
2245 /* Make sure there is space in the ring for the next send. */
2246 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2247 } else {
2248 dev_kfree_skb_any(skb);
2249 tx_ring->buffer_info[first].time_stamp = 0;
2250 tx_ring->next_to_use = first;
2251 }
2252
2253 return NETDEV_TX_OK;
2254}
2255
2256static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2257 struct net_device *netdev)
2258{
2259 struct igbvf_adapter *adapter = netdev_priv(netdev);
2260 struct igbvf_ring *tx_ring;
2261
2262 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2263 dev_kfree_skb_any(skb);
2264 return NETDEV_TX_OK;
2265 }
2266
2267 tx_ring = &adapter->tx_ring[0];
2268
2269 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2270}
2271
2272/**
2273 * igbvf_tx_timeout - Respond to a Tx Hang
2274 * @netdev: network interface device structure
2275 **/
2276static void igbvf_tx_timeout(struct net_device *netdev)
2277{
2278 struct igbvf_adapter *adapter = netdev_priv(netdev);
2279
2280 /* Do the reset outside of interrupt context */
2281 adapter->tx_timeout_count++;
2282 schedule_work(&adapter->reset_task);
2283}
2284
2285static void igbvf_reset_task(struct work_struct *work)
2286{
2287 struct igbvf_adapter *adapter;
2288 adapter = container_of(work, struct igbvf_adapter, reset_task);
2289
2290 igbvf_reinit_locked(adapter);
2291}
2292
2293/**
2294 * igbvf_get_stats - Get System Network Statistics
2295 * @netdev: network interface device structure
2296 *
2297 * Returns the address of the device statistics structure.
2298 * The statistics are actually updated from the timer callback.
2299 **/
2300static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2301{
2302 struct igbvf_adapter *adapter = netdev_priv(netdev);
2303
2304 /* only return the current stats */
2305 return &adapter->net_stats;
2306}
2307
2308/**
2309 * igbvf_change_mtu - Change the Maximum Transfer Unit
2310 * @netdev: network interface device structure
2311 * @new_mtu: new value for maximum frame size
2312 *
2313 * Returns 0 on success, negative on failure
2314 **/
2315static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2316{
2317 struct igbvf_adapter *adapter = netdev_priv(netdev);
2318 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2319
2320 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2321 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2322 return -EINVAL;
2323 }
2324
2325#define MAX_STD_JUMBO_FRAME_SIZE 9234
2326 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2327 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2328 return -EINVAL;
2329 }
2330
2331 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2332 msleep(1);
2333 /* igbvf_down has a dependency on max_frame_size */
2334 adapter->max_frame_size = max_frame;
2335 if (netif_running(netdev))
2336 igbvf_down(adapter);
2337
2338 /*
2339 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2340 * means we reserve 2 more, this pushes us to allocate from the next
2341 * larger slab size.
2342 * i.e. RXBUFFER_2048 --> size-4096 slab
2343 * However with the new *_jumbo_rx* routines, jumbo receives will use
2344 * fragmented skbs
2345 */
2346
2347 if (max_frame <= 1024)
2348 adapter->rx_buffer_len = 1024;
2349 else if (max_frame <= 2048)
2350 adapter->rx_buffer_len = 2048;
2351 else
2352#if (PAGE_SIZE / 2) > 16384
2353 adapter->rx_buffer_len = 16384;
2354#else
2355 adapter->rx_buffer_len = PAGE_SIZE / 2;
2356#endif
2357
2358
2359 /* adjust allocation if LPE protects us, and we aren't using SBP */
2360 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2361 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2362 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2363 ETH_FCS_LEN;
2364
2365 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2366 netdev->mtu, new_mtu);
2367 netdev->mtu = new_mtu;
2368
2369 if (netif_running(netdev))
2370 igbvf_up(adapter);
2371 else
2372 igbvf_reset(adapter);
2373
2374 clear_bit(__IGBVF_RESETTING, &adapter->state);
2375
2376 return 0;
2377}
2378
2379static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2380{
2381 switch (cmd) {
2382 default:
2383 return -EOPNOTSUPP;
2384 }
2385}
2386
2387static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2388{
2389 struct net_device *netdev = pci_get_drvdata(pdev);
2390 struct igbvf_adapter *adapter = netdev_priv(netdev);
2391#ifdef CONFIG_PM
2392 int retval = 0;
2393#endif
2394
2395 netif_device_detach(netdev);
2396
2397 if (netif_running(netdev)) {
2398 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2399 igbvf_down(adapter);
2400 igbvf_free_irq(adapter);
2401 }
2402
2403#ifdef CONFIG_PM
2404 retval = pci_save_state(pdev);
2405 if (retval)
2406 return retval;
2407#endif
2408
2409 pci_disable_device(pdev);
2410
2411 return 0;
2412}
2413
2414#ifdef CONFIG_PM
2415static int igbvf_resume(struct pci_dev *pdev)
2416{
2417 struct net_device *netdev = pci_get_drvdata(pdev);
2418 struct igbvf_adapter *adapter = netdev_priv(netdev);
2419 u32 err;
2420
2421 pci_restore_state(pdev);
2422 err = pci_enable_device_mem(pdev);
2423 if (err) {
2424 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2425 return err;
2426 }
2427
2428 pci_set_master(pdev);
2429
2430 if (netif_running(netdev)) {
2431 err = igbvf_request_irq(adapter);
2432 if (err)
2433 return err;
2434 }
2435
2436 igbvf_reset(adapter);
2437
2438 if (netif_running(netdev))
2439 igbvf_up(adapter);
2440
2441 netif_device_attach(netdev);
2442
2443 return 0;
2444}
2445#endif
2446
2447static void igbvf_shutdown(struct pci_dev *pdev)
2448{
2449 igbvf_suspend(pdev, PMSG_SUSPEND);
2450}
2451
2452#ifdef CONFIG_NET_POLL_CONTROLLER
2453/*
2454 * Polling 'interrupt' - used by things like netconsole to send skbs
2455 * without having to re-enable interrupts. It's not called while
2456 * the interrupt routine is executing.
2457 */
2458static void igbvf_netpoll(struct net_device *netdev)
2459{
2460 struct igbvf_adapter *adapter = netdev_priv(netdev);
2461
2462 disable_irq(adapter->pdev->irq);
2463
2464 igbvf_clean_tx_irq(adapter->tx_ring);
2465
2466 enable_irq(adapter->pdev->irq);
2467}
2468#endif
2469
2470/**
2471 * igbvf_io_error_detected - called when PCI error is detected
2472 * @pdev: Pointer to PCI device
2473 * @state: The current pci connection state
2474 *
2475 * This function is called after a PCI bus error affecting
2476 * this device has been detected.
2477 */
2478static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2479 pci_channel_state_t state)
2480{
2481 struct net_device *netdev = pci_get_drvdata(pdev);
2482 struct igbvf_adapter *adapter = netdev_priv(netdev);
2483
2484 netif_device_detach(netdev);
2485
2486 if (state == pci_channel_io_perm_failure)
2487 return PCI_ERS_RESULT_DISCONNECT;
2488
2489 if (netif_running(netdev))
2490 igbvf_down(adapter);
2491 pci_disable_device(pdev);
2492
2493 /* Request a slot slot reset. */
2494 return PCI_ERS_RESULT_NEED_RESET;
2495}
2496
2497/**
2498 * igbvf_io_slot_reset - called after the pci bus has been reset.
2499 * @pdev: Pointer to PCI device
2500 *
2501 * Restart the card from scratch, as if from a cold-boot. Implementation
2502 * resembles the first-half of the igbvf_resume routine.
2503 */
2504static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2505{
2506 struct net_device *netdev = pci_get_drvdata(pdev);
2507 struct igbvf_adapter *adapter = netdev_priv(netdev);
2508
2509 if (pci_enable_device_mem(pdev)) {
2510 dev_err(&pdev->dev,
2511 "Cannot re-enable PCI device after reset.\n");
2512 return PCI_ERS_RESULT_DISCONNECT;
2513 }
2514 pci_set_master(pdev);
2515
2516 igbvf_reset(adapter);
2517
2518 return PCI_ERS_RESULT_RECOVERED;
2519}
2520
2521/**
2522 * igbvf_io_resume - called when traffic can start flowing again.
2523 * @pdev: Pointer to PCI device
2524 *
2525 * This callback is called when the error recovery driver tells us that
2526 * its OK to resume normal operation. Implementation resembles the
2527 * second-half of the igbvf_resume routine.
2528 */
2529static void igbvf_io_resume(struct pci_dev *pdev)
2530{
2531 struct net_device *netdev = pci_get_drvdata(pdev);
2532 struct igbvf_adapter *adapter = netdev_priv(netdev);
2533
2534 if (netif_running(netdev)) {
2535 if (igbvf_up(adapter)) {
2536 dev_err(&pdev->dev,
2537 "can't bring device back up after reset\n");
2538 return;
2539 }
2540 }
2541
2542 netif_device_attach(netdev);
2543}
2544
2545static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2546{
2547 struct e1000_hw *hw = &adapter->hw;
2548 struct net_device *netdev = adapter->netdev;
2549 struct pci_dev *pdev = adapter->pdev;
2550
2551 if (hw->mac.type == e1000_vfadapt_i350)
2552 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2553 else
2554 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2555 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2556}
2557
2558static int igbvf_set_features(struct net_device *netdev,
2559 netdev_features_t features)
2560{
2561 struct igbvf_adapter *adapter = netdev_priv(netdev);
2562
2563 if (features & NETIF_F_RXCSUM)
2564 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2565 else
2566 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2567
2568 return 0;
2569}
2570
2571static const struct net_device_ops igbvf_netdev_ops = {
2572 .ndo_open = igbvf_open,
2573 .ndo_stop = igbvf_close,
2574 .ndo_start_xmit = igbvf_xmit_frame,
2575 .ndo_get_stats = igbvf_get_stats,
2576 .ndo_set_rx_mode = igbvf_set_multi,
2577 .ndo_set_mac_address = igbvf_set_mac,
2578 .ndo_change_mtu = igbvf_change_mtu,
2579 .ndo_do_ioctl = igbvf_ioctl,
2580 .ndo_tx_timeout = igbvf_tx_timeout,
2581 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2582 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2583#ifdef CONFIG_NET_POLL_CONTROLLER
2584 .ndo_poll_controller = igbvf_netpoll,
2585#endif
2586 .ndo_set_features = igbvf_set_features,
2587};
2588
2589/**
2590 * igbvf_probe - Device Initialization Routine
2591 * @pdev: PCI device information struct
2592 * @ent: entry in igbvf_pci_tbl
2593 *
2594 * Returns 0 on success, negative on failure
2595 *
2596 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2597 * The OS initialization, configuring of the adapter private structure,
2598 * and a hardware reset occur.
2599 **/
2600static int __devinit igbvf_probe(struct pci_dev *pdev,
2601 const struct pci_device_id *ent)
2602{
2603 struct net_device *netdev;
2604 struct igbvf_adapter *adapter;
2605 struct e1000_hw *hw;
2606 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2607
2608 static int cards_found;
2609 int err, pci_using_dac;
2610
2611 err = pci_enable_device_mem(pdev);
2612 if (err)
2613 return err;
2614
2615 pci_using_dac = 0;
2616 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2617 if (!err) {
2618 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2619 if (!err)
2620 pci_using_dac = 1;
2621 } else {
2622 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2623 if (err) {
2624 err = dma_set_coherent_mask(&pdev->dev,
2625 DMA_BIT_MASK(32));
2626 if (err) {
2627 dev_err(&pdev->dev, "No usable DMA "
2628 "configuration, aborting\n");
2629 goto err_dma;
2630 }
2631 }
2632 }
2633
2634 err = pci_request_regions(pdev, igbvf_driver_name);
2635 if (err)
2636 goto err_pci_reg;
2637
2638 pci_set_master(pdev);
2639
2640 err = -ENOMEM;
2641 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2642 if (!netdev)
2643 goto err_alloc_etherdev;
2644
2645 SET_NETDEV_DEV(netdev, &pdev->dev);
2646
2647 pci_set_drvdata(pdev, netdev);
2648 adapter = netdev_priv(netdev);
2649 hw = &adapter->hw;
2650 adapter->netdev = netdev;
2651 adapter->pdev = pdev;
2652 adapter->ei = ei;
2653 adapter->pba = ei->pba;
2654 adapter->flags = ei->flags;
2655 adapter->hw.back = adapter;
2656 adapter->hw.mac.type = ei->mac;
2657 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2658
2659 /* PCI config space info */
2660
2661 hw->vendor_id = pdev->vendor;
2662 hw->device_id = pdev->device;
2663 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2664 hw->subsystem_device_id = pdev->subsystem_device;
2665 hw->revision_id = pdev->revision;
2666
2667 err = -EIO;
2668 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2669 pci_resource_len(pdev, 0));
2670
2671 if (!adapter->hw.hw_addr)
2672 goto err_ioremap;
2673
2674 if (ei->get_variants) {
2675 err = ei->get_variants(adapter);
2676 if (err)
2677 goto err_ioremap;
2678 }
2679
2680 /* setup adapter struct */
2681 err = igbvf_sw_init(adapter);
2682 if (err)
2683 goto err_sw_init;
2684
2685 /* construct the net_device struct */
2686 netdev->netdev_ops = &igbvf_netdev_ops;
2687
2688 igbvf_set_ethtool_ops(netdev);
2689 netdev->watchdog_timeo = 5 * HZ;
2690 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2691
2692 adapter->bd_number = cards_found++;
2693
2694 netdev->hw_features = NETIF_F_SG |
2695 NETIF_F_IP_CSUM |
2696 NETIF_F_IPV6_CSUM |
2697 NETIF_F_TSO |
2698 NETIF_F_TSO6 |
2699 NETIF_F_RXCSUM;
2700
2701 netdev->features = netdev->hw_features |
2702 NETIF_F_HW_VLAN_TX |
2703 NETIF_F_HW_VLAN_RX |
2704 NETIF_F_HW_VLAN_FILTER;
2705
2706 if (pci_using_dac)
2707 netdev->features |= NETIF_F_HIGHDMA;
2708
2709 netdev->vlan_features |= NETIF_F_TSO;
2710 netdev->vlan_features |= NETIF_F_TSO6;
2711 netdev->vlan_features |= NETIF_F_IP_CSUM;
2712 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2713 netdev->vlan_features |= NETIF_F_SG;
2714
2715 /*reset the controller to put the device in a known good state */
2716 err = hw->mac.ops.reset_hw(hw);
2717 if (err) {
2718 dev_info(&pdev->dev,
2719 "PF still in reset state, assigning new address."
2720 " Is the PF interface up?\n");
2721 eth_hw_addr_random(netdev);
2722 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2723 netdev->addr_len);
2724 } else {
2725 err = hw->mac.ops.read_mac_addr(hw);
2726 if (err) {
2727 dev_err(&pdev->dev, "Error reading MAC address\n");
2728 goto err_hw_init;
2729 }
2730 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2731 netdev->addr_len);
2732 }
2733
2734 if (!is_valid_ether_addr(netdev->dev_addr)) {
2735 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
2736 netdev->dev_addr);
2737 err = -EIO;
2738 goto err_hw_init;
2739 }
2740
2741 memcpy(netdev->perm_addr, netdev->dev_addr, netdev->addr_len);
2742
2743 setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2744 (unsigned long) adapter);
2745
2746 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2747 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2748
2749 /* ring size defaults */
2750 adapter->rx_ring->count = 1024;
2751 adapter->tx_ring->count = 1024;
2752
2753 /* reset the hardware with the new settings */
2754 igbvf_reset(adapter);
2755
2756 strcpy(netdev->name, "eth%d");
2757 err = register_netdev(netdev);
2758 if (err)
2759 goto err_hw_init;
2760
2761 /* tell the stack to leave us alone until igbvf_open() is called */
2762 netif_carrier_off(netdev);
2763 netif_stop_queue(netdev);
2764
2765 igbvf_print_device_info(adapter);
2766
2767 igbvf_initialize_last_counter_stats(adapter);
2768
2769 return 0;
2770
2771err_hw_init:
2772 kfree(adapter->tx_ring);
2773 kfree(adapter->rx_ring);
2774err_sw_init:
2775 igbvf_reset_interrupt_capability(adapter);
2776 iounmap(adapter->hw.hw_addr);
2777err_ioremap:
2778 free_netdev(netdev);
2779err_alloc_etherdev:
2780 pci_release_regions(pdev);
2781err_pci_reg:
2782err_dma:
2783 pci_disable_device(pdev);
2784 return err;
2785}
2786
2787/**
2788 * igbvf_remove - Device Removal Routine
2789 * @pdev: PCI device information struct
2790 *
2791 * igbvf_remove is called by the PCI subsystem to alert the driver
2792 * that it should release a PCI device. The could be caused by a
2793 * Hot-Plug event, or because the driver is going to be removed from
2794 * memory.
2795 **/
2796static void __devexit igbvf_remove(struct pci_dev *pdev)
2797{
2798 struct net_device *netdev = pci_get_drvdata(pdev);
2799 struct igbvf_adapter *adapter = netdev_priv(netdev);
2800 struct e1000_hw *hw = &adapter->hw;
2801
2802 /*
2803 * The watchdog timer may be rescheduled, so explicitly
2804 * disable it from being rescheduled.
2805 */
2806 set_bit(__IGBVF_DOWN, &adapter->state);
2807 del_timer_sync(&adapter->watchdog_timer);
2808
2809 cancel_work_sync(&adapter->reset_task);
2810 cancel_work_sync(&adapter->watchdog_task);
2811
2812 unregister_netdev(netdev);
2813
2814 igbvf_reset_interrupt_capability(adapter);
2815
2816 /*
2817 * it is important to delete the napi struct prior to freeing the
2818 * rx ring so that you do not end up with null pointer refs
2819 */
2820 netif_napi_del(&adapter->rx_ring->napi);
2821 kfree(adapter->tx_ring);
2822 kfree(adapter->rx_ring);
2823
2824 iounmap(hw->hw_addr);
2825 if (hw->flash_address)
2826 iounmap(hw->flash_address);
2827 pci_release_regions(pdev);
2828
2829 free_netdev(netdev);
2830
2831 pci_disable_device(pdev);
2832}
2833
2834/* PCI Error Recovery (ERS) */
2835static struct pci_error_handlers igbvf_err_handler = {
2836 .error_detected = igbvf_io_error_detected,
2837 .slot_reset = igbvf_io_slot_reset,
2838 .resume = igbvf_io_resume,
2839};
2840
2841static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = {
2842 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2843 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2844 { } /* terminate list */
2845};
2846MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2847
2848/* PCI Device API Driver */
2849static struct pci_driver igbvf_driver = {
2850 .name = igbvf_driver_name,
2851 .id_table = igbvf_pci_tbl,
2852 .probe = igbvf_probe,
2853 .remove = __devexit_p(igbvf_remove),
2854#ifdef CONFIG_PM
2855 /* Power Management Hooks */
2856 .suspend = igbvf_suspend,
2857 .resume = igbvf_resume,
2858#endif
2859 .shutdown = igbvf_shutdown,
2860 .err_handler = &igbvf_err_handler
2861};
2862
2863/**
2864 * igbvf_init_module - Driver Registration Routine
2865 *
2866 * igbvf_init_module is the first routine called when the driver is
2867 * loaded. All it does is register with the PCI subsystem.
2868 **/
2869static int __init igbvf_init_module(void)
2870{
2871 int ret;
2872 pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2873 pr_info("%s\n", igbvf_copyright);
2874
2875 ret = pci_register_driver(&igbvf_driver);
2876
2877 return ret;
2878}
2879module_init(igbvf_init_module);
2880
2881/**
2882 * igbvf_exit_module - Driver Exit Cleanup Routine
2883 *
2884 * igbvf_exit_module is called just before the driver is removed
2885 * from memory.
2886 **/
2887static void __exit igbvf_exit_module(void)
2888{
2889 pci_unregister_driver(&igbvf_driver);
2890}
2891module_exit(igbvf_exit_module);
2892
2893
2894MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2895MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2896MODULE_LICENSE("GPL");
2897MODULE_VERSION(DRV_VERSION);
2898
2899/* netdev.c */