Linux Audio

Check our new training course

Loading...
v6.2
   1/*
   2 * Copyright (C) 2009-2011 Red Hat, Inc.
   3 *
   4 * Author: Mikulas Patocka <mpatocka@redhat.com>
   5 *
   6 * This file is released under the GPL.
   7 */
   8
   9#include <linux/dm-bufio.h>
  10
  11#include <linux/device-mapper.h>
  12#include <linux/dm-io.h>
  13#include <linux/slab.h>
  14#include <linux/sched/mm.h>
  15#include <linux/jiffies.h>
  16#include <linux/vmalloc.h>
  17#include <linux/shrinker.h>
  18#include <linux/module.h>
  19#include <linux/rbtree.h>
  20#include <linux/stacktrace.h>
  21#include <linux/jump_label.h>
  22
  23#define DM_MSG_PREFIX "bufio"
  24
  25/*
  26 * Memory management policy:
  27 *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
  28 *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
  29 *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
  30 *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
  31 *	dirty buffers.
  32 */
  33#define DM_BUFIO_MIN_BUFFERS		8
  34
  35#define DM_BUFIO_MEMORY_PERCENT		2
  36#define DM_BUFIO_VMALLOC_PERCENT	25
  37#define DM_BUFIO_WRITEBACK_RATIO	3
  38#define DM_BUFIO_LOW_WATERMARK_RATIO	16
  39
  40/*
  41 * Check buffer ages in this interval (seconds)
  42 */
  43#define DM_BUFIO_WORK_TIMER_SECS	30
  44
  45/*
  46 * Free buffers when they are older than this (seconds)
  47 */
  48#define DM_BUFIO_DEFAULT_AGE_SECS	300
  49
  50/*
  51 * The nr of bytes of cached data to keep around.
  52 */
  53#define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
  54
  55/*
  56 * Align buffer writes to this boundary.
  57 * Tests show that SSDs have the highest IOPS when using 4k writes.
  58 */
  59#define DM_BUFIO_WRITE_ALIGN		4096
  60
  61/*
  62 * dm_buffer->list_mode
  63 */
  64#define LIST_CLEAN	0
  65#define LIST_DIRTY	1
  66#define LIST_SIZE	2
  67
  68/*
  69 * Linking of buffers:
  70 *	All buffers are linked to buffer_tree with their node field.
  71 *
  72 *	Clean buffers that are not being written (B_WRITING not set)
  73 *	are linked to lru[LIST_CLEAN] with their lru_list field.
  74 *
  75 *	Dirty and clean buffers that are being written are linked to
  76 *	lru[LIST_DIRTY] with their lru_list field. When the write
  77 *	finishes, the buffer cannot be relinked immediately (because we
  78 *	are in an interrupt context and relinking requires process
  79 *	context), so some clean-not-writing buffers can be held on
  80 *	dirty_lru too.  They are later added to lru in the process
  81 *	context.
  82 */
  83struct dm_bufio_client {
  84	struct mutex lock;
  85	spinlock_t spinlock;
  86	bool no_sleep;
  87
  88	struct list_head lru[LIST_SIZE];
  89	unsigned long n_buffers[LIST_SIZE];
  90
  91	struct block_device *bdev;
  92	unsigned block_size;
  93	s8 sectors_per_block_bits;
  94	void (*alloc_callback)(struct dm_buffer *);
  95	void (*write_callback)(struct dm_buffer *);
 
  96	struct kmem_cache *slab_buffer;
  97	struct kmem_cache *slab_cache;
  98	struct dm_io_client *dm_io;
  99
 100	struct list_head reserved_buffers;
 101	unsigned need_reserved_buffers;
 102
 103	unsigned minimum_buffers;
 104
 105	struct rb_root buffer_tree;
 106	wait_queue_head_t free_buffer_wait;
 107
 108	sector_t start;
 109
 110	int async_write_error;
 111
 112	struct list_head client_list;
 113
 114	struct shrinker shrinker;
 115	struct work_struct shrink_work;
 116	atomic_long_t need_shrink;
 117};
 118
 119/*
 120 * Buffer state bits.
 121 */
 122#define B_READING	0
 123#define B_WRITING	1
 124#define B_DIRTY		2
 125
 126/*
 127 * Describes how the block was allocated:
 128 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
 129 * See the comment at alloc_buffer_data.
 130 */
 131enum data_mode {
 132	DATA_MODE_SLAB = 0,
 133	DATA_MODE_GET_FREE_PAGES = 1,
 134	DATA_MODE_VMALLOC = 2,
 135	DATA_MODE_LIMIT = 3
 136};
 137
 138struct dm_buffer {
 139	struct rb_node node;
 140	struct list_head lru_list;
 141	struct list_head global_list;
 142	sector_t block;
 143	void *data;
 144	unsigned char data_mode;		/* DATA_MODE_* */
 145	unsigned char list_mode;		/* LIST_* */
 146	blk_status_t read_error;
 147	blk_status_t write_error;
 148	unsigned accessed;
 149	unsigned hold_count;
 150	unsigned long state;
 151	unsigned long last_accessed;
 152	unsigned dirty_start;
 153	unsigned dirty_end;
 154	unsigned write_start;
 155	unsigned write_end;
 156	struct dm_bufio_client *c;
 157	struct list_head write_list;
 158	void (*end_io)(struct dm_buffer *, blk_status_t);
 159#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
 160#define MAX_STACK 10
 161	unsigned int stack_len;
 162	unsigned long stack_entries[MAX_STACK];
 163#endif
 164};
 165
 166static DEFINE_STATIC_KEY_FALSE(no_sleep_enabled);
 167
 168/*----------------------------------------------------------------*/
 169
 170#define dm_bufio_in_request()	(!!current->bio_list)
 171
 172static void dm_bufio_lock(struct dm_bufio_client *c)
 173{
 174	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
 175		spin_lock_bh(&c->spinlock);
 176	else
 177		mutex_lock_nested(&c->lock, dm_bufio_in_request());
 178}
 179
 180static int dm_bufio_trylock(struct dm_bufio_client *c)
 181{
 182	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
 183		return spin_trylock_bh(&c->spinlock);
 184	else
 185		return mutex_trylock(&c->lock);
 186}
 187
 188static void dm_bufio_unlock(struct dm_bufio_client *c)
 189{
 190	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
 191		spin_unlock_bh(&c->spinlock);
 192	else
 193		mutex_unlock(&c->lock);
 194}
 195
 196/*----------------------------------------------------------------*/
 197
 198/*
 199 * Default cache size: available memory divided by the ratio.
 200 */
 201static unsigned long dm_bufio_default_cache_size;
 202
 203/*
 204 * Total cache size set by the user.
 205 */
 206static unsigned long dm_bufio_cache_size;
 207
 208/*
 209 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
 210 * at any time.  If it disagrees, the user has changed cache size.
 211 */
 212static unsigned long dm_bufio_cache_size_latch;
 213
 214static DEFINE_SPINLOCK(global_spinlock);
 215
 216static LIST_HEAD(global_queue);
 217
 218static unsigned long global_num = 0;
 219
 220/*
 221 * Buffers are freed after this timeout
 222 */
 223static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
 224static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
 225
 226static unsigned long dm_bufio_peak_allocated;
 227static unsigned long dm_bufio_allocated_kmem_cache;
 228static unsigned long dm_bufio_allocated_get_free_pages;
 229static unsigned long dm_bufio_allocated_vmalloc;
 230static unsigned long dm_bufio_current_allocated;
 231
 232/*----------------------------------------------------------------*/
 233
 234/*
 
 
 
 
 
 235 * The current number of clients.
 236 */
 237static int dm_bufio_client_count;
 238
 239/*
 240 * The list of all clients.
 241 */
 242static LIST_HEAD(dm_bufio_all_clients);
 243
 244/*
 245 * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count
 
 246 */
 247static DEFINE_MUTEX(dm_bufio_clients_lock);
 248
 249static struct workqueue_struct *dm_bufio_wq;
 250static struct delayed_work dm_bufio_cleanup_old_work;
 251static struct work_struct dm_bufio_replacement_work;
 252
 253
 254#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
 255static void buffer_record_stack(struct dm_buffer *b)
 256{
 257	b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2);
 
 
 
 
 258}
 259#endif
 260
 261/*----------------------------------------------------------------
 262 * A red/black tree acts as an index for all the buffers.
 263 *--------------------------------------------------------------*/
 264static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
 265{
 266	struct rb_node *n = c->buffer_tree.rb_node;
 267	struct dm_buffer *b;
 268
 269	while (n) {
 270		b = container_of(n, struct dm_buffer, node);
 271
 272		if (b->block == block)
 273			return b;
 274
 275		n = block < b->block ? n->rb_left : n->rb_right;
 276	}
 277
 278	return NULL;
 279}
 280
 281static struct dm_buffer *__find_next(struct dm_bufio_client *c, sector_t block)
 282{
 283	struct rb_node *n = c->buffer_tree.rb_node;
 284	struct dm_buffer *b;
 285	struct dm_buffer *best = NULL;
 286
 287	while (n) {
 288		b = container_of(n, struct dm_buffer, node);
 289
 290		if (b->block == block)
 291			return b;
 292
 293		if (block <= b->block) {
 294			n = n->rb_left;
 295			best = b;
 296		} else {
 297			n = n->rb_right;
 298		}
 299	}
 300
 301	return best;
 302}
 303
 304static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
 305{
 306	struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
 307	struct dm_buffer *found;
 308
 309	while (*new) {
 310		found = container_of(*new, struct dm_buffer, node);
 311
 312		if (found->block == b->block) {
 313			BUG_ON(found != b);
 314			return;
 315		}
 316
 317		parent = *new;
 318		new = b->block < found->block ?
 319			&found->node.rb_left : &found->node.rb_right;
 320	}
 321
 322	rb_link_node(&b->node, parent, new);
 323	rb_insert_color(&b->node, &c->buffer_tree);
 324}
 325
 326static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
 327{
 328	rb_erase(&b->node, &c->buffer_tree);
 329}
 330
 331/*----------------------------------------------------------------*/
 332
 333static void adjust_total_allocated(struct dm_buffer *b, bool unlink)
 334{
 335	unsigned char data_mode;
 336	long diff;
 337
 338	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
 339		&dm_bufio_allocated_kmem_cache,
 340		&dm_bufio_allocated_get_free_pages,
 341		&dm_bufio_allocated_vmalloc,
 342	};
 343
 344	data_mode = b->data_mode;
 345	diff = (long)b->c->block_size;
 346	if (unlink)
 347		diff = -diff;
 348
 349	spin_lock(&global_spinlock);
 350
 351	*class_ptr[data_mode] += diff;
 352
 353	dm_bufio_current_allocated += diff;
 354
 355	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
 356		dm_bufio_peak_allocated = dm_bufio_current_allocated;
 357
 358	b->accessed = 1;
 359
 360	if (!unlink) {
 361		list_add(&b->global_list, &global_queue);
 362		global_num++;
 363		if (dm_bufio_current_allocated > dm_bufio_cache_size)
 364			queue_work(dm_bufio_wq, &dm_bufio_replacement_work);
 365	} else {
 366		list_del(&b->global_list);
 367		global_num--;
 368	}
 369
 370	spin_unlock(&global_spinlock);
 371}
 372
 373/*
 374 * Change the number of clients and recalculate per-client limit.
 375 */
 376static void __cache_size_refresh(void)
 377{
 378	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
 379	BUG_ON(dm_bufio_client_count < 0);
 380
 381	dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
 382
 383	/*
 384	 * Use default if set to 0 and report the actual cache size used.
 385	 */
 386	if (!dm_bufio_cache_size_latch) {
 387		(void)cmpxchg(&dm_bufio_cache_size, 0,
 388			      dm_bufio_default_cache_size);
 389		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
 390	}
 
 
 
 391}
 392
 393/*
 394 * Allocating buffer data.
 395 *
 396 * Small buffers are allocated with kmem_cache, to use space optimally.
 397 *
 398 * For large buffers, we choose between get_free_pages and vmalloc.
 399 * Each has advantages and disadvantages.
 400 *
 401 * __get_free_pages can randomly fail if the memory is fragmented.
 402 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
 403 * as low as 128M) so using it for caching is not appropriate.
 404 *
 405 * If the allocation may fail we use __get_free_pages. Memory fragmentation
 406 * won't have a fatal effect here, but it just causes flushes of some other
 407 * buffers and more I/O will be performed. Don't use __get_free_pages if it
 408 * always fails (i.e. order >= MAX_ORDER).
 409 *
 410 * If the allocation shouldn't fail we use __vmalloc. This is only for the
 411 * initial reserve allocation, so there's no risk of wasting all vmalloc
 412 * space.
 413 */
 414static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
 415			       unsigned char *data_mode)
 416{
 417	if (unlikely(c->slab_cache != NULL)) {
 418		*data_mode = DATA_MODE_SLAB;
 419		return kmem_cache_alloc(c->slab_cache, gfp_mask);
 420	}
 421
 422	if (c->block_size <= KMALLOC_MAX_SIZE &&
 423	    gfp_mask & __GFP_NORETRY) {
 424		*data_mode = DATA_MODE_GET_FREE_PAGES;
 425		return (void *)__get_free_pages(gfp_mask,
 426						c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
 427	}
 428
 429	*data_mode = DATA_MODE_VMALLOC;
 430
 431	/*
 432	 * __vmalloc allocates the data pages and auxiliary structures with
 433	 * gfp_flags that were specified, but pagetables are always allocated
 434	 * with GFP_KERNEL, no matter what was specified as gfp_mask.
 435	 *
 436	 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
 437	 * all allocations done by this process (including pagetables) are done
 438	 * as if GFP_NOIO was specified.
 439	 */
 440	if (gfp_mask & __GFP_NORETRY) {
 441		unsigned noio_flag = memalloc_noio_save();
 442		void *ptr = __vmalloc(c->block_size, gfp_mask);
 443
 444		memalloc_noio_restore(noio_flag);
 445		return ptr;
 446	}
 447
 448	return __vmalloc(c->block_size, gfp_mask);
 449}
 450
 451/*
 452 * Free buffer's data.
 453 */
 454static void free_buffer_data(struct dm_bufio_client *c,
 455			     void *data, unsigned char data_mode)
 456{
 457	switch (data_mode) {
 458	case DATA_MODE_SLAB:
 459		kmem_cache_free(c->slab_cache, data);
 460		break;
 461
 462	case DATA_MODE_GET_FREE_PAGES:
 463		free_pages((unsigned long)data,
 464			   c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
 465		break;
 466
 467	case DATA_MODE_VMALLOC:
 468		vfree(data);
 469		break;
 470
 471	default:
 472		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
 473		       data_mode);
 474		BUG();
 475	}
 476}
 477
 478/*
 479 * Allocate buffer and its data.
 480 */
 481static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
 482{
 483	struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
 484
 485	if (!b)
 486		return NULL;
 487
 488	b->c = c;
 489
 490	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
 491	if (!b->data) {
 492		kmem_cache_free(c->slab_buffer, b);
 493		return NULL;
 494	}
 495
 
 
 496#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
 497	b->stack_len = 0;
 498#endif
 499	return b;
 500}
 501
 502/*
 503 * Free buffer and its data.
 504 */
 505static void free_buffer(struct dm_buffer *b)
 506{
 507	struct dm_bufio_client *c = b->c;
 508
 
 
 509	free_buffer_data(c, b->data, b->data_mode);
 510	kmem_cache_free(c->slab_buffer, b);
 511}
 512
 513/*
 514 * Link buffer to the buffer tree and clean or dirty queue.
 515 */
 516static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
 517{
 518	struct dm_bufio_client *c = b->c;
 519
 520	c->n_buffers[dirty]++;
 521	b->block = block;
 522	b->list_mode = dirty;
 523	list_add(&b->lru_list, &c->lru[dirty]);
 524	__insert(b->c, b);
 525	b->last_accessed = jiffies;
 526
 527	adjust_total_allocated(b, false);
 528}
 529
 530/*
 531 * Unlink buffer from the buffer tree and dirty or clean queue.
 532 */
 533static void __unlink_buffer(struct dm_buffer *b)
 534{
 535	struct dm_bufio_client *c = b->c;
 536
 537	BUG_ON(!c->n_buffers[b->list_mode]);
 538
 539	c->n_buffers[b->list_mode]--;
 540	__remove(b->c, b);
 541	list_del(&b->lru_list);
 542
 543	adjust_total_allocated(b, true);
 544}
 545
 546/*
 547 * Place the buffer to the head of dirty or clean LRU queue.
 548 */
 549static void __relink_lru(struct dm_buffer *b, int dirty)
 550{
 551	struct dm_bufio_client *c = b->c;
 552
 553	b->accessed = 1;
 554
 555	BUG_ON(!c->n_buffers[b->list_mode]);
 556
 557	c->n_buffers[b->list_mode]--;
 558	c->n_buffers[dirty]++;
 559	b->list_mode = dirty;
 560	list_move(&b->lru_list, &c->lru[dirty]);
 561	b->last_accessed = jiffies;
 562}
 563
 564/*----------------------------------------------------------------
 565 * Submit I/O on the buffer.
 566 *
 567 * Bio interface is faster but it has some problems:
 568 *	the vector list is limited (increasing this limit increases
 569 *	memory-consumption per buffer, so it is not viable);
 570 *
 571 *	the memory must be direct-mapped, not vmalloced;
 572 *
 573 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
 574 * it is not vmalloced, try using the bio interface.
 575 *
 576 * If the buffer is big, if it is vmalloced or if the underlying device
 577 * rejects the bio because it is too large, use dm-io layer to do the I/O.
 578 * The dm-io layer splits the I/O into multiple requests, avoiding the above
 579 * shortcomings.
 580 *--------------------------------------------------------------*/
 581
 582/*
 583 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
 584 * that the request was handled directly with bio interface.
 585 */
 586static void dmio_complete(unsigned long error, void *context)
 587{
 588	struct dm_buffer *b = context;
 589
 590	b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
 591}
 592
 593static void use_dmio(struct dm_buffer *b, enum req_op op, sector_t sector,
 594		     unsigned n_sectors, unsigned offset)
 595{
 596	int r;
 597	struct dm_io_request io_req = {
 598		.bi_opf = op,
 
 599		.notify.fn = dmio_complete,
 600		.notify.context = b,
 601		.client = b->c->dm_io,
 602	};
 603	struct dm_io_region region = {
 604		.bdev = b->c->bdev,
 605		.sector = sector,
 606		.count = n_sectors,
 607	};
 608
 609	if (b->data_mode != DATA_MODE_VMALLOC) {
 610		io_req.mem.type = DM_IO_KMEM;
 611		io_req.mem.ptr.addr = (char *)b->data + offset;
 612	} else {
 613		io_req.mem.type = DM_IO_VMA;
 614		io_req.mem.ptr.vma = (char *)b->data + offset;
 615	}
 616
 617	r = dm_io(&io_req, 1, &region, NULL);
 618	if (unlikely(r))
 619		b->end_io(b, errno_to_blk_status(r));
 620}
 621
 622static void bio_complete(struct bio *bio)
 623{
 624	struct dm_buffer *b = bio->bi_private;
 625	blk_status_t status = bio->bi_status;
 626	bio_uninit(bio);
 627	kfree(bio);
 628	b->end_io(b, status);
 629}
 630
 631static void use_bio(struct dm_buffer *b, enum req_op op, sector_t sector,
 632		    unsigned n_sectors, unsigned offset)
 633{
 634	struct bio *bio;
 635	char *ptr;
 636	unsigned vec_size, len;
 637
 638	vec_size = b->c->block_size >> PAGE_SHIFT;
 639	if (unlikely(b->c->sectors_per_block_bits < PAGE_SHIFT - SECTOR_SHIFT))
 640		vec_size += 2;
 641
 642	bio = bio_kmalloc(vec_size, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN);
 643	if (!bio) {
 644dmio:
 645		use_dmio(b, op, sector, n_sectors, offset);
 646		return;
 647	}
 648	bio_init(bio, b->c->bdev, bio->bi_inline_vecs, vec_size, op);
 649	bio->bi_iter.bi_sector = sector;
 
 
 650	bio->bi_end_io = bio_complete;
 651	bio->bi_private = b;
 652
 653	ptr = (char *)b->data + offset;
 654	len = n_sectors << SECTOR_SHIFT;
 655
 656	do {
 657		unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len);
 658		if (!bio_add_page(bio, virt_to_page(ptr), this_step,
 659				  offset_in_page(ptr))) {
 660			bio_put(bio);
 661			goto dmio;
 662		}
 663
 664		len -= this_step;
 665		ptr += this_step;
 666	} while (len > 0);
 667
 668	submit_bio(bio);
 669}
 670
 671static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block)
 672{
 673	sector_t sector;
 674
 675	if (likely(c->sectors_per_block_bits >= 0))
 676		sector = block << c->sectors_per_block_bits;
 677	else
 678		sector = block * (c->block_size >> SECTOR_SHIFT);
 679	sector += c->start;
 680
 681	return sector;
 682}
 683
 684static void submit_io(struct dm_buffer *b, enum req_op op,
 685		      void (*end_io)(struct dm_buffer *, blk_status_t))
 686{
 687	unsigned n_sectors;
 688	sector_t sector;
 689	unsigned offset, end;
 690
 691	b->end_io = end_io;
 692
 693	sector = block_to_sector(b->c, b->block);
 
 
 
 
 694
 695	if (op != REQ_OP_WRITE) {
 696		n_sectors = b->c->block_size >> SECTOR_SHIFT;
 697		offset = 0;
 698	} else {
 699		if (b->c->write_callback)
 700			b->c->write_callback(b);
 701		offset = b->write_start;
 702		end = b->write_end;
 703		offset &= -DM_BUFIO_WRITE_ALIGN;
 704		end += DM_BUFIO_WRITE_ALIGN - 1;
 705		end &= -DM_BUFIO_WRITE_ALIGN;
 706		if (unlikely(end > b->c->block_size))
 707			end = b->c->block_size;
 708
 709		sector += offset >> SECTOR_SHIFT;
 710		n_sectors = (end - offset) >> SECTOR_SHIFT;
 711	}
 712
 713	if (b->data_mode != DATA_MODE_VMALLOC)
 714		use_bio(b, op, sector, n_sectors, offset);
 715	else
 716		use_dmio(b, op, sector, n_sectors, offset);
 717}
 718
 719/*----------------------------------------------------------------
 720 * Writing dirty buffers
 721 *--------------------------------------------------------------*/
 722
 723/*
 724 * The endio routine for write.
 725 *
 726 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
 727 * it.
 728 */
 729static void write_endio(struct dm_buffer *b, blk_status_t status)
 730{
 731	b->write_error = status;
 732	if (unlikely(status)) {
 733		struct dm_bufio_client *c = b->c;
 734
 735		(void)cmpxchg(&c->async_write_error, 0,
 736				blk_status_to_errno(status));
 737	}
 738
 739	BUG_ON(!test_bit(B_WRITING, &b->state));
 740
 741	smp_mb__before_atomic();
 742	clear_bit(B_WRITING, &b->state);
 743	smp_mb__after_atomic();
 744
 745	wake_up_bit(&b->state, B_WRITING);
 746}
 747
 748/*
 749 * Initiate a write on a dirty buffer, but don't wait for it.
 750 *
 751 * - If the buffer is not dirty, exit.
 752 * - If there some previous write going on, wait for it to finish (we can't
 753 *   have two writes on the same buffer simultaneously).
 754 * - Submit our write and don't wait on it. We set B_WRITING indicating
 755 *   that there is a write in progress.
 756 */
 757static void __write_dirty_buffer(struct dm_buffer *b,
 758				 struct list_head *write_list)
 759{
 760	if (!test_bit(B_DIRTY, &b->state))
 761		return;
 762
 763	clear_bit(B_DIRTY, &b->state);
 764	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
 765
 766	b->write_start = b->dirty_start;
 767	b->write_end = b->dirty_end;
 768
 769	if (!write_list)
 770		submit_io(b, REQ_OP_WRITE, write_endio);
 771	else
 772		list_add_tail(&b->write_list, write_list);
 773}
 774
 775static void __flush_write_list(struct list_head *write_list)
 776{
 777	struct blk_plug plug;
 778	blk_start_plug(&plug);
 779	while (!list_empty(write_list)) {
 780		struct dm_buffer *b =
 781			list_entry(write_list->next, struct dm_buffer, write_list);
 782		list_del(&b->write_list);
 783		submit_io(b, REQ_OP_WRITE, write_endio);
 784		cond_resched();
 785	}
 786	blk_finish_plug(&plug);
 787}
 788
 789/*
 790 * Wait until any activity on the buffer finishes.  Possibly write the
 791 * buffer if it is dirty.  When this function finishes, there is no I/O
 792 * running on the buffer and the buffer is not dirty.
 793 */
 794static void __make_buffer_clean(struct dm_buffer *b)
 795{
 796	BUG_ON(b->hold_count);
 797
 798	/* smp_load_acquire() pairs with read_endio()'s smp_mb__before_atomic() */
 799	if (!smp_load_acquire(&b->state))	/* fast case */
 800		return;
 801
 802	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
 803	__write_dirty_buffer(b, NULL);
 804	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
 805}
 806
 807/*
 808 * Find some buffer that is not held by anybody, clean it, unlink it and
 809 * return it.
 810 */
 811static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
 812{
 813	struct dm_buffer *b;
 814
 815	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
 816		BUG_ON(test_bit(B_WRITING, &b->state));
 817		BUG_ON(test_bit(B_DIRTY, &b->state));
 818
 819		if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep &&
 820		    unlikely(test_bit_acquire(B_READING, &b->state)))
 821			continue;
 822
 823		if (!b->hold_count) {
 824			__make_buffer_clean(b);
 825			__unlink_buffer(b);
 826			return b;
 827		}
 828		cond_resched();
 829	}
 830
 831	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
 832		return NULL;
 833
 834	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
 835		BUG_ON(test_bit(B_READING, &b->state));
 836
 837		if (!b->hold_count) {
 838			__make_buffer_clean(b);
 839			__unlink_buffer(b);
 840			return b;
 841		}
 842		cond_resched();
 843	}
 844
 845	return NULL;
 846}
 847
 848/*
 849 * Wait until some other threads free some buffer or release hold count on
 850 * some buffer.
 851 *
 852 * This function is entered with c->lock held, drops it and regains it
 853 * before exiting.
 854 */
 855static void __wait_for_free_buffer(struct dm_bufio_client *c)
 856{
 857	DECLARE_WAITQUEUE(wait, current);
 858
 859	add_wait_queue(&c->free_buffer_wait, &wait);
 860	set_current_state(TASK_UNINTERRUPTIBLE);
 861	dm_bufio_unlock(c);
 862
 863	io_schedule();
 864
 865	remove_wait_queue(&c->free_buffer_wait, &wait);
 866
 867	dm_bufio_lock(c);
 868}
 869
 870enum new_flag {
 871	NF_FRESH = 0,
 872	NF_READ = 1,
 873	NF_GET = 2,
 874	NF_PREFETCH = 3
 875};
 876
 877/*
 878 * Allocate a new buffer. If the allocation is not possible, wait until
 879 * some other thread frees a buffer.
 880 *
 881 * May drop the lock and regain it.
 882 */
 883static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
 884{
 885	struct dm_buffer *b;
 886	bool tried_noio_alloc = false;
 887
 888	/*
 889	 * dm-bufio is resistant to allocation failures (it just keeps
 890	 * one buffer reserved in cases all the allocations fail).
 891	 * So set flags to not try too hard:
 892	 *	GFP_NOWAIT: don't wait; if we need to sleep we'll release our
 893	 *		    mutex and wait ourselves.
 894	 *	__GFP_NORETRY: don't retry and rather return failure
 895	 *	__GFP_NOMEMALLOC: don't use emergency reserves
 896	 *	__GFP_NOWARN: don't print a warning in case of failure
 897	 *
 898	 * For debugging, if we set the cache size to 1, no new buffers will
 899	 * be allocated.
 900	 */
 901	while (1) {
 902		if (dm_bufio_cache_size_latch != 1) {
 903			b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 904			if (b)
 905				return b;
 906		}
 907
 908		if (nf == NF_PREFETCH)
 909			return NULL;
 910
 911		if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
 912			dm_bufio_unlock(c);
 913			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 914			dm_bufio_lock(c);
 915			if (b)
 916				return b;
 917			tried_noio_alloc = true;
 918		}
 919
 920		if (!list_empty(&c->reserved_buffers)) {
 921			b = list_entry(c->reserved_buffers.next,
 922				       struct dm_buffer, lru_list);
 923			list_del(&b->lru_list);
 924			c->need_reserved_buffers++;
 925
 926			return b;
 927		}
 928
 929		b = __get_unclaimed_buffer(c);
 930		if (b)
 931			return b;
 932
 933		__wait_for_free_buffer(c);
 934	}
 935}
 936
 937static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
 938{
 939	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
 940
 941	if (!b)
 942		return NULL;
 943
 944	if (c->alloc_callback)
 945		c->alloc_callback(b);
 946
 947	return b;
 948}
 949
 950/*
 951 * Free a buffer and wake other threads waiting for free buffers.
 952 */
 953static void __free_buffer_wake(struct dm_buffer *b)
 954{
 955	struct dm_bufio_client *c = b->c;
 956
 957	if (!c->need_reserved_buffers)
 958		free_buffer(b);
 959	else {
 960		list_add(&b->lru_list, &c->reserved_buffers);
 961		c->need_reserved_buffers--;
 962	}
 963
 964	wake_up(&c->free_buffer_wait);
 965}
 966
 967static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
 968					struct list_head *write_list)
 969{
 970	struct dm_buffer *b, *tmp;
 971
 972	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
 973		BUG_ON(test_bit(B_READING, &b->state));
 974
 975		if (!test_bit(B_DIRTY, &b->state) &&
 976		    !test_bit(B_WRITING, &b->state)) {
 977			__relink_lru(b, LIST_CLEAN);
 978			continue;
 979		}
 980
 981		if (no_wait && test_bit(B_WRITING, &b->state))
 982			return;
 983
 984		__write_dirty_buffer(b, write_list);
 985		cond_resched();
 986	}
 987}
 988
 989/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 990 * Check if we're over watermark.
 991 * If we are over threshold_buffers, start freeing buffers.
 992 * If we're over "limit_buffers", block until we get under the limit.
 993 */
 994static void __check_watermark(struct dm_bufio_client *c,
 995			      struct list_head *write_list)
 996{
 997	if (c->n_buffers[LIST_DIRTY] > c->n_buffers[LIST_CLEAN] * DM_BUFIO_WRITEBACK_RATIO)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 998		__write_dirty_buffers_async(c, 1, write_list);
 999}
1000
1001/*----------------------------------------------------------------
1002 * Getting a buffer
1003 *--------------------------------------------------------------*/
1004
1005static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
1006				     enum new_flag nf, int *need_submit,
1007				     struct list_head *write_list)
1008{
1009	struct dm_buffer *b, *new_b = NULL;
1010
1011	*need_submit = 0;
1012
1013	b = __find(c, block);
1014	if (b)
1015		goto found_buffer;
1016
1017	if (nf == NF_GET)
1018		return NULL;
1019
1020	new_b = __alloc_buffer_wait(c, nf);
1021	if (!new_b)
1022		return NULL;
1023
1024	/*
1025	 * We've had a period where the mutex was unlocked, so need to
1026	 * recheck the buffer tree.
1027	 */
1028	b = __find(c, block);
1029	if (b) {
1030		__free_buffer_wake(new_b);
1031		goto found_buffer;
1032	}
1033
1034	__check_watermark(c, write_list);
1035
1036	b = new_b;
1037	b->hold_count = 1;
1038	b->read_error = 0;
1039	b->write_error = 0;
1040	__link_buffer(b, block, LIST_CLEAN);
1041
1042	if (nf == NF_FRESH) {
1043		b->state = 0;
1044		return b;
1045	}
1046
1047	b->state = 1 << B_READING;
1048	*need_submit = 1;
1049
1050	return b;
1051
1052found_buffer:
1053	if (nf == NF_PREFETCH)
1054		return NULL;
1055	/*
1056	 * Note: it is essential that we don't wait for the buffer to be
1057	 * read if dm_bufio_get function is used. Both dm_bufio_get and
1058	 * dm_bufio_prefetch can be used in the driver request routine.
1059	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1060	 * the same buffer, it would deadlock if we waited.
1061	 */
1062	if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state)))
1063		return NULL;
1064
1065	b->hold_count++;
1066	__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1067		     test_bit(B_WRITING, &b->state));
1068	return b;
1069}
1070
1071/*
1072 * The endio routine for reading: set the error, clear the bit and wake up
1073 * anyone waiting on the buffer.
1074 */
1075static void read_endio(struct dm_buffer *b, blk_status_t status)
1076{
1077	b->read_error = status;
1078
1079	BUG_ON(!test_bit(B_READING, &b->state));
1080
1081	smp_mb__before_atomic();
1082	clear_bit(B_READING, &b->state);
1083	smp_mb__after_atomic();
1084
1085	wake_up_bit(&b->state, B_READING);
1086}
1087
1088/*
1089 * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1090 * functions is similar except that dm_bufio_new doesn't read the
1091 * buffer from the disk (assuming that the caller overwrites all the data
1092 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1093 */
1094static void *new_read(struct dm_bufio_client *c, sector_t block,
1095		      enum new_flag nf, struct dm_buffer **bp)
1096{
1097	int need_submit;
1098	struct dm_buffer *b;
1099
1100	LIST_HEAD(write_list);
1101
1102	dm_bufio_lock(c);
1103	b = __bufio_new(c, block, nf, &need_submit, &write_list);
1104#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1105	if (b && b->hold_count == 1)
1106		buffer_record_stack(b);
1107#endif
1108	dm_bufio_unlock(c);
1109
1110	__flush_write_list(&write_list);
1111
1112	if (!b)
1113		return NULL;
1114
1115	if (need_submit)
1116		submit_io(b, REQ_OP_READ, read_endio);
1117
1118	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1119
1120	if (b->read_error) {
1121		int error = blk_status_to_errno(b->read_error);
1122
1123		dm_bufio_release(b);
1124
1125		return ERR_PTR(error);
1126	}
1127
1128	*bp = b;
1129
1130	return b->data;
1131}
1132
1133void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1134		   struct dm_buffer **bp)
1135{
1136	return new_read(c, block, NF_GET, bp);
1137}
1138EXPORT_SYMBOL_GPL(dm_bufio_get);
1139
1140void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1141		    struct dm_buffer **bp)
1142{
1143	BUG_ON(dm_bufio_in_request());
1144
1145	return new_read(c, block, NF_READ, bp);
1146}
1147EXPORT_SYMBOL_GPL(dm_bufio_read);
1148
1149void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1150		   struct dm_buffer **bp)
1151{
1152	BUG_ON(dm_bufio_in_request());
1153
1154	return new_read(c, block, NF_FRESH, bp);
1155}
1156EXPORT_SYMBOL_GPL(dm_bufio_new);
1157
1158void dm_bufio_prefetch(struct dm_bufio_client *c,
1159		       sector_t block, unsigned n_blocks)
1160{
1161	struct blk_plug plug;
1162
1163	LIST_HEAD(write_list);
1164
1165	BUG_ON(dm_bufio_in_request());
1166
1167	blk_start_plug(&plug);
1168	dm_bufio_lock(c);
1169
1170	for (; n_blocks--; block++) {
1171		int need_submit;
1172		struct dm_buffer *b;
1173		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1174				&write_list);
1175		if (unlikely(!list_empty(&write_list))) {
1176			dm_bufio_unlock(c);
1177			blk_finish_plug(&plug);
1178			__flush_write_list(&write_list);
1179			blk_start_plug(&plug);
1180			dm_bufio_lock(c);
1181		}
1182		if (unlikely(b != NULL)) {
1183			dm_bufio_unlock(c);
1184
1185			if (need_submit)
1186				submit_io(b, REQ_OP_READ, read_endio);
1187			dm_bufio_release(b);
1188
1189			cond_resched();
1190
1191			if (!n_blocks)
1192				goto flush_plug;
1193			dm_bufio_lock(c);
1194		}
1195	}
1196
1197	dm_bufio_unlock(c);
1198
1199flush_plug:
1200	blk_finish_plug(&plug);
1201}
1202EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1203
1204void dm_bufio_release(struct dm_buffer *b)
1205{
1206	struct dm_bufio_client *c = b->c;
1207
1208	dm_bufio_lock(c);
1209
1210	BUG_ON(!b->hold_count);
1211
1212	b->hold_count--;
1213	if (!b->hold_count) {
1214		wake_up(&c->free_buffer_wait);
1215
1216		/*
1217		 * If there were errors on the buffer, and the buffer is not
1218		 * to be written, free the buffer. There is no point in caching
1219		 * invalid buffer.
1220		 */
1221		if ((b->read_error || b->write_error) &&
1222		    !test_bit_acquire(B_READING, &b->state) &&
1223		    !test_bit(B_WRITING, &b->state) &&
1224		    !test_bit(B_DIRTY, &b->state)) {
1225			__unlink_buffer(b);
1226			__free_buffer_wake(b);
1227		}
1228	}
1229
1230	dm_bufio_unlock(c);
1231}
1232EXPORT_SYMBOL_GPL(dm_bufio_release);
1233
1234void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
1235					unsigned start, unsigned end)
1236{
1237	struct dm_bufio_client *c = b->c;
1238
1239	BUG_ON(start >= end);
1240	BUG_ON(end > b->c->block_size);
1241
1242	dm_bufio_lock(c);
1243
1244	BUG_ON(test_bit(B_READING, &b->state));
1245
1246	if (!test_and_set_bit(B_DIRTY, &b->state)) {
1247		b->dirty_start = start;
1248		b->dirty_end = end;
1249		__relink_lru(b, LIST_DIRTY);
1250	} else {
1251		if (start < b->dirty_start)
1252			b->dirty_start = start;
1253		if (end > b->dirty_end)
1254			b->dirty_end = end;
1255	}
1256
1257	dm_bufio_unlock(c);
1258}
1259EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
1260
1261void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1262{
1263	dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
1264}
1265EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1266
1267void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1268{
1269	LIST_HEAD(write_list);
1270
1271	BUG_ON(dm_bufio_in_request());
1272
1273	dm_bufio_lock(c);
1274	__write_dirty_buffers_async(c, 0, &write_list);
1275	dm_bufio_unlock(c);
1276	__flush_write_list(&write_list);
1277}
1278EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1279
1280/*
1281 * For performance, it is essential that the buffers are written asynchronously
1282 * and simultaneously (so that the block layer can merge the writes) and then
1283 * waited upon.
1284 *
1285 * Finally, we flush hardware disk cache.
1286 */
1287int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1288{
1289	int a, f;
1290	unsigned long buffers_processed = 0;
1291	struct dm_buffer *b, *tmp;
1292
1293	LIST_HEAD(write_list);
1294
1295	dm_bufio_lock(c);
1296	__write_dirty_buffers_async(c, 0, &write_list);
1297	dm_bufio_unlock(c);
1298	__flush_write_list(&write_list);
1299	dm_bufio_lock(c);
1300
1301again:
1302	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1303		int dropped_lock = 0;
1304
1305		if (buffers_processed < c->n_buffers[LIST_DIRTY])
1306			buffers_processed++;
1307
1308		BUG_ON(test_bit(B_READING, &b->state));
1309
1310		if (test_bit(B_WRITING, &b->state)) {
1311			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1312				dropped_lock = 1;
1313				b->hold_count++;
1314				dm_bufio_unlock(c);
1315				wait_on_bit_io(&b->state, B_WRITING,
1316					       TASK_UNINTERRUPTIBLE);
1317				dm_bufio_lock(c);
1318				b->hold_count--;
1319			} else
1320				wait_on_bit_io(&b->state, B_WRITING,
1321					       TASK_UNINTERRUPTIBLE);
1322		}
1323
1324		if (!test_bit(B_DIRTY, &b->state) &&
1325		    !test_bit(B_WRITING, &b->state))
1326			__relink_lru(b, LIST_CLEAN);
1327
1328		cond_resched();
1329
1330		/*
1331		 * If we dropped the lock, the list is no longer consistent,
1332		 * so we must restart the search.
1333		 *
1334		 * In the most common case, the buffer just processed is
1335		 * relinked to the clean list, so we won't loop scanning the
1336		 * same buffer again and again.
1337		 *
1338		 * This may livelock if there is another thread simultaneously
1339		 * dirtying buffers, so we count the number of buffers walked
1340		 * and if it exceeds the total number of buffers, it means that
1341		 * someone is doing some writes simultaneously with us.  In
1342		 * this case, stop, dropping the lock.
1343		 */
1344		if (dropped_lock)
1345			goto again;
1346	}
1347	wake_up(&c->free_buffer_wait);
1348	dm_bufio_unlock(c);
1349
1350	a = xchg(&c->async_write_error, 0);
1351	f = dm_bufio_issue_flush(c);
1352	if (a)
1353		return a;
1354
1355	return f;
1356}
1357EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1358
1359/*
1360 * Use dm-io to send an empty barrier to flush the device.
1361 */
1362int dm_bufio_issue_flush(struct dm_bufio_client *c)
1363{
1364	struct dm_io_request io_req = {
1365		.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
 
1366		.mem.type = DM_IO_KMEM,
1367		.mem.ptr.addr = NULL,
1368		.client = c->dm_io,
1369	};
1370	struct dm_io_region io_reg = {
1371		.bdev = c->bdev,
1372		.sector = 0,
1373		.count = 0,
1374	};
1375
1376	BUG_ON(dm_bufio_in_request());
1377
1378	return dm_io(&io_req, 1, &io_reg, NULL);
1379}
1380EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1381
1382/*
1383 * Use dm-io to send a discard request to flush the device.
1384 */
1385int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count)
1386{
1387	struct dm_io_request io_req = {
1388		.bi_opf = REQ_OP_DISCARD | REQ_SYNC,
1389		.mem.type = DM_IO_KMEM,
1390		.mem.ptr.addr = NULL,
1391		.client = c->dm_io,
1392	};
1393	struct dm_io_region io_reg = {
1394		.bdev = c->bdev,
1395		.sector = block_to_sector(c, block),
1396		.count = block_to_sector(c, count),
1397	};
1398
1399	BUG_ON(dm_bufio_in_request());
1400
1401	return dm_io(&io_req, 1, &io_reg, NULL);
1402}
1403EXPORT_SYMBOL_GPL(dm_bufio_issue_discard);
1404
1405/*
1406 * We first delete any other buffer that may be at that new location.
1407 *
1408 * Then, we write the buffer to the original location if it was dirty.
1409 *
1410 * Then, if we are the only one who is holding the buffer, relink the buffer
1411 * in the buffer tree for the new location.
1412 *
1413 * If there was someone else holding the buffer, we write it to the new
1414 * location but not relink it, because that other user needs to have the buffer
1415 * at the same place.
1416 */
1417void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1418{
1419	struct dm_bufio_client *c = b->c;
1420	struct dm_buffer *new;
1421
1422	BUG_ON(dm_bufio_in_request());
1423
1424	dm_bufio_lock(c);
1425
1426retry:
1427	new = __find(c, new_block);
1428	if (new) {
1429		if (new->hold_count) {
1430			__wait_for_free_buffer(c);
1431			goto retry;
1432		}
1433
1434		/*
1435		 * FIXME: Is there any point waiting for a write that's going
1436		 * to be overwritten in a bit?
1437		 */
1438		__make_buffer_clean(new);
1439		__unlink_buffer(new);
1440		__free_buffer_wake(new);
1441	}
1442
1443	BUG_ON(!b->hold_count);
1444	BUG_ON(test_bit(B_READING, &b->state));
1445
1446	__write_dirty_buffer(b, NULL);
1447	if (b->hold_count == 1) {
1448		wait_on_bit_io(&b->state, B_WRITING,
1449			       TASK_UNINTERRUPTIBLE);
1450		set_bit(B_DIRTY, &b->state);
1451		b->dirty_start = 0;
1452		b->dirty_end = c->block_size;
1453		__unlink_buffer(b);
1454		__link_buffer(b, new_block, LIST_DIRTY);
1455	} else {
1456		sector_t old_block;
1457		wait_on_bit_lock_io(&b->state, B_WRITING,
1458				    TASK_UNINTERRUPTIBLE);
1459		/*
1460		 * Relink buffer to "new_block" so that write_callback
1461		 * sees "new_block" as a block number.
1462		 * After the write, link the buffer back to old_block.
1463		 * All this must be done in bufio lock, so that block number
1464		 * change isn't visible to other threads.
1465		 */
1466		old_block = b->block;
1467		__unlink_buffer(b);
1468		__link_buffer(b, new_block, b->list_mode);
1469		submit_io(b, REQ_OP_WRITE, write_endio);
1470		wait_on_bit_io(&b->state, B_WRITING,
1471			       TASK_UNINTERRUPTIBLE);
1472		__unlink_buffer(b);
1473		__link_buffer(b, old_block, b->list_mode);
1474	}
1475
1476	dm_bufio_unlock(c);
1477	dm_bufio_release(b);
1478}
1479EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1480
1481static void forget_buffer_locked(struct dm_buffer *b)
1482{
1483	if (likely(!b->hold_count) && likely(!smp_load_acquire(&b->state))) {
1484		__unlink_buffer(b);
1485		__free_buffer_wake(b);
1486	}
1487}
1488
1489/*
1490 * Free the given buffer.
1491 *
1492 * This is just a hint, if the buffer is in use or dirty, this function
1493 * does nothing.
1494 */
1495void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1496{
1497	struct dm_buffer *b;
1498
1499	dm_bufio_lock(c);
1500
1501	b = __find(c, block);
1502	if (b)
1503		forget_buffer_locked(b);
 
 
1504
1505	dm_bufio_unlock(c);
1506}
1507EXPORT_SYMBOL_GPL(dm_bufio_forget);
1508
1509void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks)
1510{
1511	struct dm_buffer *b;
1512	sector_t end_block = block + n_blocks;
1513
1514	while (block < end_block) {
1515		dm_bufio_lock(c);
1516
1517		b = __find_next(c, block);
1518		if (b) {
1519			block = b->block + 1;
1520			forget_buffer_locked(b);
1521		}
1522
1523		dm_bufio_unlock(c);
1524
1525		if (!b)
1526			break;
1527	}
1528
1529}
1530EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers);
1531
1532void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1533{
1534	c->minimum_buffers = n;
1535}
1536EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
1537
1538unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1539{
1540	return c->block_size;
1541}
1542EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1543
1544sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1545{
1546	sector_t s = bdev_nr_sectors(c->bdev);
1547	if (s >= c->start)
1548		s -= c->start;
1549	else
1550		s = 0;
1551	if (likely(c->sectors_per_block_bits >= 0))
1552		s >>= c->sectors_per_block_bits;
1553	else
1554		sector_div(s, c->block_size >> SECTOR_SHIFT);
1555	return s;
1556}
1557EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1558
1559struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c)
1560{
1561	return c->dm_io;
1562}
1563EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client);
1564
1565sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1566{
1567	return b->block;
1568}
1569EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1570
1571void *dm_bufio_get_block_data(struct dm_buffer *b)
1572{
1573	return b->data;
1574}
1575EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1576
1577void *dm_bufio_get_aux_data(struct dm_buffer *b)
1578{
1579	return b + 1;
1580}
1581EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1582
1583struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1584{
1585	return b->c;
1586}
1587EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1588
1589static void drop_buffers(struct dm_bufio_client *c)
1590{
1591	struct dm_buffer *b;
1592	int i;
1593	bool warned = false;
1594
1595	BUG_ON(dm_bufio_in_request());
1596
1597	/*
1598	 * An optimization so that the buffers are not written one-by-one.
1599	 */
1600	dm_bufio_write_dirty_buffers_async(c);
1601
1602	dm_bufio_lock(c);
1603
1604	while ((b = __get_unclaimed_buffer(c)))
1605		__free_buffer_wake(b);
1606
1607	for (i = 0; i < LIST_SIZE; i++)
1608		list_for_each_entry(b, &c->lru[i], lru_list) {
1609			WARN_ON(!warned);
1610			warned = true;
1611			DMERR("leaked buffer %llx, hold count %u, list %d",
1612			      (unsigned long long)b->block, b->hold_count, i);
1613#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1614			stack_trace_print(b->stack_entries, b->stack_len, 1);
1615			/* mark unclaimed to avoid BUG_ON below */
1616			b->hold_count = 0;
1617#endif
1618		}
1619
1620#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1621	while ((b = __get_unclaimed_buffer(c)))
1622		__free_buffer_wake(b);
1623#endif
1624
1625	for (i = 0; i < LIST_SIZE; i++)
1626		BUG_ON(!list_empty(&c->lru[i]));
1627
1628	dm_bufio_unlock(c);
1629}
1630
1631/*
1632 * We may not be able to evict this buffer if IO pending or the client
1633 * is still using it.  Caller is expected to know buffer is too old.
1634 *
1635 * And if GFP_NOFS is used, we must not do any I/O because we hold
1636 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1637 * rerouted to different bufio client.
1638 */
1639static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1640{
1641	if (!(gfp & __GFP_FS) ||
1642	    (static_branch_unlikely(&no_sleep_enabled) && b->c->no_sleep)) {
1643		if (test_bit_acquire(B_READING, &b->state) ||
1644		    test_bit(B_WRITING, &b->state) ||
1645		    test_bit(B_DIRTY, &b->state))
1646			return false;
1647	}
1648
1649	if (b->hold_count)
1650		return false;
1651
1652	__make_buffer_clean(b);
1653	__unlink_buffer(b);
1654	__free_buffer_wake(b);
1655
1656	return true;
1657}
1658
1659static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1660{
1661	unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
1662	if (likely(c->sectors_per_block_bits >= 0))
1663		retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
1664	else
1665		retain_bytes /= c->block_size;
1666	return retain_bytes;
1667}
1668
1669static void __scan(struct dm_bufio_client *c)
 
1670{
1671	int l;
1672	struct dm_buffer *b, *tmp;
1673	unsigned long freed = 0;
1674	unsigned long count = c->n_buffers[LIST_CLEAN] +
1675			      c->n_buffers[LIST_DIRTY];
1676	unsigned long retain_target = get_retain_buffers(c);
1677
1678	for (l = 0; l < LIST_SIZE; l++) {
1679		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1680			if (count - freed <= retain_target)
1681				atomic_long_set(&c->need_shrink, 0);
1682			if (!atomic_long_read(&c->need_shrink))
1683				return;
1684			if (__try_evict_buffer(b, GFP_KERNEL)) {
1685				atomic_long_dec(&c->need_shrink);
1686				freed++;
1687			}
 
1688			cond_resched();
1689		}
1690	}
 
1691}
1692
1693static void shrink_work(struct work_struct *w)
1694{
1695	struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work);
1696
1697	dm_bufio_lock(c);
1698	__scan(c);
1699	dm_bufio_unlock(c);
1700}
1701
1702static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1703{
1704	struct dm_bufio_client *c;
 
1705
1706	c = container_of(shrink, struct dm_bufio_client, shrinker);
1707	atomic_long_add(sc->nr_to_scan, &c->need_shrink);
1708	queue_work(dm_bufio_wq, &c->shrink_work);
 
 
1709
1710	return sc->nr_to_scan;
 
 
1711}
1712
1713static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
 
1714{
1715	struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1716	unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) +
1717			      READ_ONCE(c->n_buffers[LIST_DIRTY]);
1718	unsigned long retain_target = get_retain_buffers(c);
1719	unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink);
1720
1721	if (unlikely(count < retain_target))
1722		count = 0;
1723	else
1724		count -= retain_target;
1725
1726	if (unlikely(count < queued_for_cleanup))
1727		count = 0;
1728	else
1729		count -= queued_for_cleanup;
1730
1731	return count;
1732}
1733
1734/*
1735 * Create the buffering interface
1736 */
1737struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1738					       unsigned reserved_buffers, unsigned aux_size,
1739					       void (*alloc_callback)(struct dm_buffer *),
1740					       void (*write_callback)(struct dm_buffer *),
1741					       unsigned int flags)
1742{
1743	int r;
1744	struct dm_bufio_client *c;
1745	unsigned i;
1746	char slab_name[27];
1747
1748	if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
1749		DMERR("%s: block size not specified or is not multiple of 512b", __func__);
1750		r = -EINVAL;
1751		goto bad_client;
1752	}
1753
1754	c = kzalloc(sizeof(*c), GFP_KERNEL);
1755	if (!c) {
1756		r = -ENOMEM;
1757		goto bad_client;
1758	}
1759	c->buffer_tree = RB_ROOT;
1760
1761	c->bdev = bdev;
1762	c->block_size = block_size;
1763	if (is_power_of_2(block_size))
1764		c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1765	else
1766		c->sectors_per_block_bits = -1;
1767
1768	c->alloc_callback = alloc_callback;
1769	c->write_callback = write_callback;
1770
1771	if (flags & DM_BUFIO_CLIENT_NO_SLEEP) {
1772		c->no_sleep = true;
1773		static_branch_inc(&no_sleep_enabled);
1774	}
1775
1776	for (i = 0; i < LIST_SIZE; i++) {
1777		INIT_LIST_HEAD(&c->lru[i]);
1778		c->n_buffers[i] = 0;
1779	}
1780
1781	mutex_init(&c->lock);
1782	spin_lock_init(&c->spinlock);
1783	INIT_LIST_HEAD(&c->reserved_buffers);
1784	c->need_reserved_buffers = reserved_buffers;
1785
1786	dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
1787
1788	init_waitqueue_head(&c->free_buffer_wait);
1789	c->async_write_error = 0;
1790
1791	c->dm_io = dm_io_client_create();
1792	if (IS_ERR(c->dm_io)) {
1793		r = PTR_ERR(c->dm_io);
1794		goto bad_dm_io;
1795	}
1796
1797	if (block_size <= KMALLOC_MAX_SIZE &&
1798	    (block_size < PAGE_SIZE || !is_power_of_2(block_size))) {
1799		unsigned align = min(1U << __ffs(block_size), (unsigned)PAGE_SIZE);
1800		snprintf(slab_name, sizeof slab_name, "dm_bufio_cache-%u", block_size);
1801		c->slab_cache = kmem_cache_create(slab_name, block_size, align,
1802						  SLAB_RECLAIM_ACCOUNT, NULL);
1803		if (!c->slab_cache) {
1804			r = -ENOMEM;
1805			goto bad;
1806		}
1807	}
1808	if (aux_size)
1809		snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer-%u", aux_size);
1810	else
1811		snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer");
1812	c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
1813					   0, SLAB_RECLAIM_ACCOUNT, NULL);
1814	if (!c->slab_buffer) {
1815		r = -ENOMEM;
1816		goto bad;
1817	}
1818
1819	while (c->need_reserved_buffers) {
1820		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1821
1822		if (!b) {
1823			r = -ENOMEM;
1824			goto bad;
1825		}
1826		__free_buffer_wake(b);
1827	}
1828
1829	INIT_WORK(&c->shrink_work, shrink_work);
1830	atomic_long_set(&c->need_shrink, 0);
1831
1832	c->shrinker.count_objects = dm_bufio_shrink_count;
1833	c->shrinker.scan_objects = dm_bufio_shrink_scan;
1834	c->shrinker.seeks = 1;
1835	c->shrinker.batch = 0;
1836	r = register_shrinker(&c->shrinker, "md-%s:(%u:%u)", slab_name,
1837			      MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
1838	if (r)
1839		goto bad;
1840
1841	mutex_lock(&dm_bufio_clients_lock);
1842	dm_bufio_client_count++;
1843	list_add(&c->client_list, &dm_bufio_all_clients);
1844	__cache_size_refresh();
1845	mutex_unlock(&dm_bufio_clients_lock);
1846
1847	return c;
1848
1849bad:
1850	while (!list_empty(&c->reserved_buffers)) {
1851		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1852						 struct dm_buffer, lru_list);
1853		list_del(&b->lru_list);
1854		free_buffer(b);
1855	}
1856	kmem_cache_destroy(c->slab_cache);
1857	kmem_cache_destroy(c->slab_buffer);
1858	dm_io_client_destroy(c->dm_io);
1859bad_dm_io:
1860	mutex_destroy(&c->lock);
1861	if (c->no_sleep)
1862		static_branch_dec(&no_sleep_enabled);
1863	kfree(c);
1864bad_client:
1865	return ERR_PTR(r);
1866}
1867EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1868
1869/*
1870 * Free the buffering interface.
1871 * It is required that there are no references on any buffers.
1872 */
1873void dm_bufio_client_destroy(struct dm_bufio_client *c)
1874{
1875	unsigned i;
1876
1877	drop_buffers(c);
1878
1879	unregister_shrinker(&c->shrinker);
1880	flush_work(&c->shrink_work);
1881
1882	mutex_lock(&dm_bufio_clients_lock);
1883
1884	list_del(&c->client_list);
1885	dm_bufio_client_count--;
1886	__cache_size_refresh();
1887
1888	mutex_unlock(&dm_bufio_clients_lock);
1889
1890	BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1891	BUG_ON(c->need_reserved_buffers);
1892
1893	while (!list_empty(&c->reserved_buffers)) {
1894		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1895						 struct dm_buffer, lru_list);
1896		list_del(&b->lru_list);
1897		free_buffer(b);
1898	}
1899
1900	for (i = 0; i < LIST_SIZE; i++)
1901		if (c->n_buffers[i])
1902			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1903
1904	for (i = 0; i < LIST_SIZE; i++)
1905		BUG_ON(c->n_buffers[i]);
1906
1907	kmem_cache_destroy(c->slab_cache);
1908	kmem_cache_destroy(c->slab_buffer);
1909	dm_io_client_destroy(c->dm_io);
1910	mutex_destroy(&c->lock);
1911	if (c->no_sleep)
1912		static_branch_dec(&no_sleep_enabled);
1913	kfree(c);
1914}
1915EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1916
1917void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
1918{
1919	c->start = start;
1920}
1921EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
1922
1923static unsigned get_max_age_hz(void)
1924{
1925	unsigned max_age = READ_ONCE(dm_bufio_max_age);
1926
1927	if (max_age > UINT_MAX / HZ)
1928		max_age = UINT_MAX / HZ;
1929
1930	return max_age * HZ;
1931}
1932
1933static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1934{
1935	return time_after_eq(jiffies, b->last_accessed + age_hz);
1936}
1937
1938static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1939{
1940	struct dm_buffer *b, *tmp;
1941	unsigned long retain_target = get_retain_buffers(c);
1942	unsigned long count;
1943	LIST_HEAD(write_list);
1944
1945	dm_bufio_lock(c);
1946
1947	__check_watermark(c, &write_list);
1948	if (unlikely(!list_empty(&write_list))) {
1949		dm_bufio_unlock(c);
1950		__flush_write_list(&write_list);
1951		dm_bufio_lock(c);
1952	}
1953
1954	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1955	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1956		if (count <= retain_target)
1957			break;
1958
1959		if (!older_than(b, age_hz))
1960			break;
1961
1962		if (__try_evict_buffer(b, 0))
1963			count--;
1964
1965		cond_resched();
1966	}
1967
1968	dm_bufio_unlock(c);
1969}
1970
1971static void do_global_cleanup(struct work_struct *w)
1972{
1973	struct dm_bufio_client *locked_client = NULL;
1974	struct dm_bufio_client *current_client;
1975	struct dm_buffer *b;
1976	unsigned spinlock_hold_count;
1977	unsigned long threshold = dm_bufio_cache_size -
1978		dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO;
1979	unsigned long loops = global_num * 2;
1980
1981	mutex_lock(&dm_bufio_clients_lock);
1982
1983	while (1) {
1984		cond_resched();
1985
1986		spin_lock(&global_spinlock);
1987		if (unlikely(dm_bufio_current_allocated <= threshold))
1988			break;
1989
1990		spinlock_hold_count = 0;
1991get_next:
1992		if (!loops--)
1993			break;
1994		if (unlikely(list_empty(&global_queue)))
1995			break;
1996		b = list_entry(global_queue.prev, struct dm_buffer, global_list);
1997
1998		if (b->accessed) {
1999			b->accessed = 0;
2000			list_move(&b->global_list, &global_queue);
2001			if (likely(++spinlock_hold_count < 16))
2002				goto get_next;
2003			spin_unlock(&global_spinlock);
2004			continue;
2005		}
2006
2007		current_client = b->c;
2008		if (unlikely(current_client != locked_client)) {
2009			if (locked_client)
2010				dm_bufio_unlock(locked_client);
2011
2012			if (!dm_bufio_trylock(current_client)) {
2013				spin_unlock(&global_spinlock);
2014				dm_bufio_lock(current_client);
2015				locked_client = current_client;
2016				continue;
2017			}
2018
2019			locked_client = current_client;
2020		}
2021
2022		spin_unlock(&global_spinlock);
2023
2024		if (unlikely(!__try_evict_buffer(b, GFP_KERNEL))) {
2025			spin_lock(&global_spinlock);
2026			list_move(&b->global_list, &global_queue);
2027			spin_unlock(&global_spinlock);
2028		}
2029	}
2030
2031	spin_unlock(&global_spinlock);
2032
2033	if (locked_client)
2034		dm_bufio_unlock(locked_client);
2035
2036	mutex_unlock(&dm_bufio_clients_lock);
2037}
2038
2039static void cleanup_old_buffers(void)
2040{
2041	unsigned long max_age_hz = get_max_age_hz();
2042	struct dm_bufio_client *c;
2043
2044	mutex_lock(&dm_bufio_clients_lock);
2045
2046	__cache_size_refresh();
2047
2048	list_for_each_entry(c, &dm_bufio_all_clients, client_list)
2049		__evict_old_buffers(c, max_age_hz);
2050
2051	mutex_unlock(&dm_bufio_clients_lock);
2052}
2053
 
 
 
2054static void work_fn(struct work_struct *w)
2055{
2056	cleanup_old_buffers();
2057
2058	queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2059			   DM_BUFIO_WORK_TIMER_SECS * HZ);
2060}
2061
2062/*----------------------------------------------------------------
2063 * Module setup
2064 *--------------------------------------------------------------*/
2065
2066/*
2067 * This is called only once for the whole dm_bufio module.
2068 * It initializes memory limit.
2069 */
2070static int __init dm_bufio_init(void)
2071{
2072	__u64 mem;
2073
2074	dm_bufio_allocated_kmem_cache = 0;
2075	dm_bufio_allocated_get_free_pages = 0;
2076	dm_bufio_allocated_vmalloc = 0;
2077	dm_bufio_current_allocated = 0;
2078
2079	mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
2080			       DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
2081
2082	if (mem > ULONG_MAX)
2083		mem = ULONG_MAX;
2084
2085#ifdef CONFIG_MMU
2086	if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
2087		mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
2088#endif
2089
2090	dm_bufio_default_cache_size = mem;
2091
2092	mutex_lock(&dm_bufio_clients_lock);
2093	__cache_size_refresh();
2094	mutex_unlock(&dm_bufio_clients_lock);
2095
2096	dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
2097	if (!dm_bufio_wq)
2098		return -ENOMEM;
2099
2100	INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn);
2101	INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup);
2102	queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2103			   DM_BUFIO_WORK_TIMER_SECS * HZ);
2104
2105	return 0;
2106}
2107
2108/*
2109 * This is called once when unloading the dm_bufio module.
2110 */
2111static void __exit dm_bufio_exit(void)
2112{
2113	int bug = 0;
2114
2115	cancel_delayed_work_sync(&dm_bufio_cleanup_old_work);
2116	destroy_workqueue(dm_bufio_wq);
2117
2118	if (dm_bufio_client_count) {
2119		DMCRIT("%s: dm_bufio_client_count leaked: %d",
2120			__func__, dm_bufio_client_count);
2121		bug = 1;
2122	}
2123
2124	if (dm_bufio_current_allocated) {
2125		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
2126			__func__, dm_bufio_current_allocated);
2127		bug = 1;
2128	}
2129
2130	if (dm_bufio_allocated_get_free_pages) {
2131		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
2132		       __func__, dm_bufio_allocated_get_free_pages);
2133		bug = 1;
2134	}
2135
2136	if (dm_bufio_allocated_vmalloc) {
2137		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
2138		       __func__, dm_bufio_allocated_vmalloc);
2139		bug = 1;
2140	}
2141
2142	BUG_ON(bug);
2143}
2144
2145module_init(dm_bufio_init)
2146module_exit(dm_bufio_exit)
2147
2148module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
2149MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
2150
2151module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
2152MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
2153
2154module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
2155MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
2156
2157module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
2158MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
2159
2160module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
2161MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
2162
2163module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
2164MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
2165
2166module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
2167MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
2168
2169module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
2170MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
2171
2172MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2173MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
2174MODULE_LICENSE("GPL");
v4.17
   1/*
   2 * Copyright (C) 2009-2011 Red Hat, Inc.
   3 *
   4 * Author: Mikulas Patocka <mpatocka@redhat.com>
   5 *
   6 * This file is released under the GPL.
   7 */
   8
   9#include <linux/dm-bufio.h>
  10
  11#include <linux/device-mapper.h>
  12#include <linux/dm-io.h>
  13#include <linux/slab.h>
  14#include <linux/sched/mm.h>
  15#include <linux/jiffies.h>
  16#include <linux/vmalloc.h>
  17#include <linux/shrinker.h>
  18#include <linux/module.h>
  19#include <linux/rbtree.h>
  20#include <linux/stacktrace.h>
 
  21
  22#define DM_MSG_PREFIX "bufio"
  23
  24/*
  25 * Memory management policy:
  26 *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
  27 *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
  28 *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
  29 *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
  30 *	dirty buffers.
  31 */
  32#define DM_BUFIO_MIN_BUFFERS		8
  33
  34#define DM_BUFIO_MEMORY_PERCENT		2
  35#define DM_BUFIO_VMALLOC_PERCENT	25
  36#define DM_BUFIO_WRITEBACK_PERCENT	75
 
  37
  38/*
  39 * Check buffer ages in this interval (seconds)
  40 */
  41#define DM_BUFIO_WORK_TIMER_SECS	30
  42
  43/*
  44 * Free buffers when they are older than this (seconds)
  45 */
  46#define DM_BUFIO_DEFAULT_AGE_SECS	300
  47
  48/*
  49 * The nr of bytes of cached data to keep around.
  50 */
  51#define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
  52
  53/*
  54 * Align buffer writes to this boundary.
  55 * Tests show that SSDs have the highest IOPS when using 4k writes.
  56 */
  57#define DM_BUFIO_WRITE_ALIGN		4096
  58
  59/*
  60 * dm_buffer->list_mode
  61 */
  62#define LIST_CLEAN	0
  63#define LIST_DIRTY	1
  64#define LIST_SIZE	2
  65
  66/*
  67 * Linking of buffers:
  68 *	All buffers are linked to cache_hash with their hash_list field.
  69 *
  70 *	Clean buffers that are not being written (B_WRITING not set)
  71 *	are linked to lru[LIST_CLEAN] with their lru_list field.
  72 *
  73 *	Dirty and clean buffers that are being written are linked to
  74 *	lru[LIST_DIRTY] with their lru_list field. When the write
  75 *	finishes, the buffer cannot be relinked immediately (because we
  76 *	are in an interrupt context and relinking requires process
  77 *	context), so some clean-not-writing buffers can be held on
  78 *	dirty_lru too.  They are later added to lru in the process
  79 *	context.
  80 */
  81struct dm_bufio_client {
  82	struct mutex lock;
 
 
  83
  84	struct list_head lru[LIST_SIZE];
  85	unsigned long n_buffers[LIST_SIZE];
  86
  87	struct block_device *bdev;
  88	unsigned block_size;
  89	s8 sectors_per_block_bits;
  90	void (*alloc_callback)(struct dm_buffer *);
  91	void (*write_callback)(struct dm_buffer *);
  92
  93	struct kmem_cache *slab_buffer;
  94	struct kmem_cache *slab_cache;
  95	struct dm_io_client *dm_io;
  96
  97	struct list_head reserved_buffers;
  98	unsigned need_reserved_buffers;
  99
 100	unsigned minimum_buffers;
 101
 102	struct rb_root buffer_tree;
 103	wait_queue_head_t free_buffer_wait;
 104
 105	sector_t start;
 106
 107	int async_write_error;
 108
 109	struct list_head client_list;
 
 110	struct shrinker shrinker;
 
 
 111};
 112
 113/*
 114 * Buffer state bits.
 115 */
 116#define B_READING	0
 117#define B_WRITING	1
 118#define B_DIRTY		2
 119
 120/*
 121 * Describes how the block was allocated:
 122 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
 123 * See the comment at alloc_buffer_data.
 124 */
 125enum data_mode {
 126	DATA_MODE_SLAB = 0,
 127	DATA_MODE_GET_FREE_PAGES = 1,
 128	DATA_MODE_VMALLOC = 2,
 129	DATA_MODE_LIMIT = 3
 130};
 131
 132struct dm_buffer {
 133	struct rb_node node;
 134	struct list_head lru_list;
 
 135	sector_t block;
 136	void *data;
 137	unsigned char data_mode;		/* DATA_MODE_* */
 138	unsigned char list_mode;		/* LIST_* */
 139	blk_status_t read_error;
 140	blk_status_t write_error;
 
 141	unsigned hold_count;
 142	unsigned long state;
 143	unsigned long last_accessed;
 144	unsigned dirty_start;
 145	unsigned dirty_end;
 146	unsigned write_start;
 147	unsigned write_end;
 148	struct dm_bufio_client *c;
 149	struct list_head write_list;
 150	void (*end_io)(struct dm_buffer *, blk_status_t);
 151#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
 152#define MAX_STACK 10
 153	struct stack_trace stack_trace;
 154	unsigned long stack_entries[MAX_STACK];
 155#endif
 156};
 157
 
 
 158/*----------------------------------------------------------------*/
 159
 160#define dm_bufio_in_request()	(!!current->bio_list)
 161
 162static void dm_bufio_lock(struct dm_bufio_client *c)
 163{
 164	mutex_lock_nested(&c->lock, dm_bufio_in_request());
 
 
 
 165}
 166
 167static int dm_bufio_trylock(struct dm_bufio_client *c)
 168{
 169	return mutex_trylock(&c->lock);
 
 
 
 170}
 171
 172static void dm_bufio_unlock(struct dm_bufio_client *c)
 173{
 174	mutex_unlock(&c->lock);
 
 
 
 175}
 176
 177/*----------------------------------------------------------------*/
 178
 179/*
 180 * Default cache size: available memory divided by the ratio.
 181 */
 182static unsigned long dm_bufio_default_cache_size;
 183
 184/*
 185 * Total cache size set by the user.
 186 */
 187static unsigned long dm_bufio_cache_size;
 188
 189/*
 190 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
 191 * at any time.  If it disagrees, the user has changed cache size.
 192 */
 193static unsigned long dm_bufio_cache_size_latch;
 194
 195static DEFINE_SPINLOCK(param_spinlock);
 
 
 
 
 196
 197/*
 198 * Buffers are freed after this timeout
 199 */
 200static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
 201static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
 202
 203static unsigned long dm_bufio_peak_allocated;
 204static unsigned long dm_bufio_allocated_kmem_cache;
 205static unsigned long dm_bufio_allocated_get_free_pages;
 206static unsigned long dm_bufio_allocated_vmalloc;
 207static unsigned long dm_bufio_current_allocated;
 208
 209/*----------------------------------------------------------------*/
 210
 211/*
 212 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
 213 */
 214static unsigned long dm_bufio_cache_size_per_client;
 215
 216/*
 217 * The current number of clients.
 218 */
 219static int dm_bufio_client_count;
 220
 221/*
 222 * The list of all clients.
 223 */
 224static LIST_HEAD(dm_bufio_all_clients);
 225
 226/*
 227 * This mutex protects dm_bufio_cache_size_latch,
 228 * dm_bufio_cache_size_per_client and dm_bufio_client_count
 229 */
 230static DEFINE_MUTEX(dm_bufio_clients_lock);
 231
 
 
 
 
 
 232#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
 233static void buffer_record_stack(struct dm_buffer *b)
 234{
 235	b->stack_trace.nr_entries = 0;
 236	b->stack_trace.max_entries = MAX_STACK;
 237	b->stack_trace.entries = b->stack_entries;
 238	b->stack_trace.skip = 2;
 239	save_stack_trace(&b->stack_trace);
 240}
 241#endif
 242
 243/*----------------------------------------------------------------
 244 * A red/black tree acts as an index for all the buffers.
 245 *--------------------------------------------------------------*/
 246static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
 247{
 248	struct rb_node *n = c->buffer_tree.rb_node;
 249	struct dm_buffer *b;
 250
 251	while (n) {
 252		b = container_of(n, struct dm_buffer, node);
 253
 254		if (b->block == block)
 255			return b;
 256
 257		n = (b->block < block) ? n->rb_left : n->rb_right;
 258	}
 259
 260	return NULL;
 261}
 262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 263static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
 264{
 265	struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
 266	struct dm_buffer *found;
 267
 268	while (*new) {
 269		found = container_of(*new, struct dm_buffer, node);
 270
 271		if (found->block == b->block) {
 272			BUG_ON(found != b);
 273			return;
 274		}
 275
 276		parent = *new;
 277		new = (found->block < b->block) ?
 278			&((*new)->rb_left) : &((*new)->rb_right);
 279	}
 280
 281	rb_link_node(&b->node, parent, new);
 282	rb_insert_color(&b->node, &c->buffer_tree);
 283}
 284
 285static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
 286{
 287	rb_erase(&b->node, &c->buffer_tree);
 288}
 289
 290/*----------------------------------------------------------------*/
 291
 292static void adjust_total_allocated(unsigned char data_mode, long diff)
 293{
 
 
 
 294	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
 295		&dm_bufio_allocated_kmem_cache,
 296		&dm_bufio_allocated_get_free_pages,
 297		&dm_bufio_allocated_vmalloc,
 298	};
 299
 300	spin_lock(&param_spinlock);
 
 
 
 
 
 301
 302	*class_ptr[data_mode] += diff;
 303
 304	dm_bufio_current_allocated += diff;
 305
 306	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
 307		dm_bufio_peak_allocated = dm_bufio_current_allocated;
 308
 309	spin_unlock(&param_spinlock);
 
 
 
 
 
 
 
 
 
 
 
 
 310}
 311
 312/*
 313 * Change the number of clients and recalculate per-client limit.
 314 */
 315static void __cache_size_refresh(void)
 316{
 317	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
 318	BUG_ON(dm_bufio_client_count < 0);
 319
 320	dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
 321
 322	/*
 323	 * Use default if set to 0 and report the actual cache size used.
 324	 */
 325	if (!dm_bufio_cache_size_latch) {
 326		(void)cmpxchg(&dm_bufio_cache_size, 0,
 327			      dm_bufio_default_cache_size);
 328		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
 329	}
 330
 331	dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
 332					 (dm_bufio_client_count ? : 1);
 333}
 334
 335/*
 336 * Allocating buffer data.
 337 *
 338 * Small buffers are allocated with kmem_cache, to use space optimally.
 339 *
 340 * For large buffers, we choose between get_free_pages and vmalloc.
 341 * Each has advantages and disadvantages.
 342 *
 343 * __get_free_pages can randomly fail if the memory is fragmented.
 344 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
 345 * as low as 128M) so using it for caching is not appropriate.
 346 *
 347 * If the allocation may fail we use __get_free_pages. Memory fragmentation
 348 * won't have a fatal effect here, but it just causes flushes of some other
 349 * buffers and more I/O will be performed. Don't use __get_free_pages if it
 350 * always fails (i.e. order >= MAX_ORDER).
 351 *
 352 * If the allocation shouldn't fail we use __vmalloc. This is only for the
 353 * initial reserve allocation, so there's no risk of wasting all vmalloc
 354 * space.
 355 */
 356static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
 357			       unsigned char *data_mode)
 358{
 359	if (unlikely(c->slab_cache != NULL)) {
 360		*data_mode = DATA_MODE_SLAB;
 361		return kmem_cache_alloc(c->slab_cache, gfp_mask);
 362	}
 363
 364	if (c->block_size <= KMALLOC_MAX_SIZE &&
 365	    gfp_mask & __GFP_NORETRY) {
 366		*data_mode = DATA_MODE_GET_FREE_PAGES;
 367		return (void *)__get_free_pages(gfp_mask,
 368						c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
 369	}
 370
 371	*data_mode = DATA_MODE_VMALLOC;
 372
 373	/*
 374	 * __vmalloc allocates the data pages and auxiliary structures with
 375	 * gfp_flags that were specified, but pagetables are always allocated
 376	 * with GFP_KERNEL, no matter what was specified as gfp_mask.
 377	 *
 378	 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
 379	 * all allocations done by this process (including pagetables) are done
 380	 * as if GFP_NOIO was specified.
 381	 */
 382	if (gfp_mask & __GFP_NORETRY) {
 383		unsigned noio_flag = memalloc_noio_save();
 384		void *ptr = __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL);
 385
 386		memalloc_noio_restore(noio_flag);
 387		return ptr;
 388	}
 389
 390	return __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL);
 391}
 392
 393/*
 394 * Free buffer's data.
 395 */
 396static void free_buffer_data(struct dm_bufio_client *c,
 397			     void *data, unsigned char data_mode)
 398{
 399	switch (data_mode) {
 400	case DATA_MODE_SLAB:
 401		kmem_cache_free(c->slab_cache, data);
 402		break;
 403
 404	case DATA_MODE_GET_FREE_PAGES:
 405		free_pages((unsigned long)data,
 406			   c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
 407		break;
 408
 409	case DATA_MODE_VMALLOC:
 410		vfree(data);
 411		break;
 412
 413	default:
 414		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
 415		       data_mode);
 416		BUG();
 417	}
 418}
 419
 420/*
 421 * Allocate buffer and its data.
 422 */
 423static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
 424{
 425	struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
 426
 427	if (!b)
 428		return NULL;
 429
 430	b->c = c;
 431
 432	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
 433	if (!b->data) {
 434		kmem_cache_free(c->slab_buffer, b);
 435		return NULL;
 436	}
 437
 438	adjust_total_allocated(b->data_mode, (long)c->block_size);
 439
 440#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
 441	memset(&b->stack_trace, 0, sizeof(b->stack_trace));
 442#endif
 443	return b;
 444}
 445
 446/*
 447 * Free buffer and its data.
 448 */
 449static void free_buffer(struct dm_buffer *b)
 450{
 451	struct dm_bufio_client *c = b->c;
 452
 453	adjust_total_allocated(b->data_mode, -(long)c->block_size);
 454
 455	free_buffer_data(c, b->data, b->data_mode);
 456	kmem_cache_free(c->slab_buffer, b);
 457}
 458
 459/*
 460 * Link buffer to the hash list and clean or dirty queue.
 461 */
 462static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
 463{
 464	struct dm_bufio_client *c = b->c;
 465
 466	c->n_buffers[dirty]++;
 467	b->block = block;
 468	b->list_mode = dirty;
 469	list_add(&b->lru_list, &c->lru[dirty]);
 470	__insert(b->c, b);
 471	b->last_accessed = jiffies;
 
 
 472}
 473
 474/*
 475 * Unlink buffer from the hash list and dirty or clean queue.
 476 */
 477static void __unlink_buffer(struct dm_buffer *b)
 478{
 479	struct dm_bufio_client *c = b->c;
 480
 481	BUG_ON(!c->n_buffers[b->list_mode]);
 482
 483	c->n_buffers[b->list_mode]--;
 484	__remove(b->c, b);
 485	list_del(&b->lru_list);
 
 
 486}
 487
 488/*
 489 * Place the buffer to the head of dirty or clean LRU queue.
 490 */
 491static void __relink_lru(struct dm_buffer *b, int dirty)
 492{
 493	struct dm_bufio_client *c = b->c;
 494
 
 
 495	BUG_ON(!c->n_buffers[b->list_mode]);
 496
 497	c->n_buffers[b->list_mode]--;
 498	c->n_buffers[dirty]++;
 499	b->list_mode = dirty;
 500	list_move(&b->lru_list, &c->lru[dirty]);
 501	b->last_accessed = jiffies;
 502}
 503
 504/*----------------------------------------------------------------
 505 * Submit I/O on the buffer.
 506 *
 507 * Bio interface is faster but it has some problems:
 508 *	the vector list is limited (increasing this limit increases
 509 *	memory-consumption per buffer, so it is not viable);
 510 *
 511 *	the memory must be direct-mapped, not vmalloced;
 512 *
 513 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
 514 * it is not vmalloced, try using the bio interface.
 515 *
 516 * If the buffer is big, if it is vmalloced or if the underlying device
 517 * rejects the bio because it is too large, use dm-io layer to do the I/O.
 518 * The dm-io layer splits the I/O into multiple requests, avoiding the above
 519 * shortcomings.
 520 *--------------------------------------------------------------*/
 521
 522/*
 523 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
 524 * that the request was handled directly with bio interface.
 525 */
 526static void dmio_complete(unsigned long error, void *context)
 527{
 528	struct dm_buffer *b = context;
 529
 530	b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
 531}
 532
 533static void use_dmio(struct dm_buffer *b, int rw, sector_t sector,
 534		     unsigned n_sectors, unsigned offset)
 535{
 536	int r;
 537	struct dm_io_request io_req = {
 538		.bi_op = rw,
 539		.bi_op_flags = 0,
 540		.notify.fn = dmio_complete,
 541		.notify.context = b,
 542		.client = b->c->dm_io,
 543	};
 544	struct dm_io_region region = {
 545		.bdev = b->c->bdev,
 546		.sector = sector,
 547		.count = n_sectors,
 548	};
 549
 550	if (b->data_mode != DATA_MODE_VMALLOC) {
 551		io_req.mem.type = DM_IO_KMEM;
 552		io_req.mem.ptr.addr = (char *)b->data + offset;
 553	} else {
 554		io_req.mem.type = DM_IO_VMA;
 555		io_req.mem.ptr.vma = (char *)b->data + offset;
 556	}
 557
 558	r = dm_io(&io_req, 1, &region, NULL);
 559	if (unlikely(r))
 560		b->end_io(b, errno_to_blk_status(r));
 561}
 562
 563static void bio_complete(struct bio *bio)
 564{
 565	struct dm_buffer *b = bio->bi_private;
 566	blk_status_t status = bio->bi_status;
 567	bio_put(bio);
 
 568	b->end_io(b, status);
 569}
 570
 571static void use_bio(struct dm_buffer *b, int rw, sector_t sector,
 572		    unsigned n_sectors, unsigned offset)
 573{
 574	struct bio *bio;
 575	char *ptr;
 576	unsigned vec_size, len;
 577
 578	vec_size = b->c->block_size >> PAGE_SHIFT;
 579	if (unlikely(b->c->sectors_per_block_bits < PAGE_SHIFT - SECTOR_SHIFT))
 580		vec_size += 2;
 581
 582	bio = bio_kmalloc(GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN, vec_size);
 583	if (!bio) {
 584dmio:
 585		use_dmio(b, rw, sector, n_sectors, offset);
 586		return;
 587	}
 588
 589	bio->bi_iter.bi_sector = sector;
 590	bio_set_dev(bio, b->c->bdev);
 591	bio_set_op_attrs(bio, rw, 0);
 592	bio->bi_end_io = bio_complete;
 593	bio->bi_private = b;
 594
 595	ptr = (char *)b->data + offset;
 596	len = n_sectors << SECTOR_SHIFT;
 597
 598	do {
 599		unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len);
 600		if (!bio_add_page(bio, virt_to_page(ptr), this_step,
 601				  offset_in_page(ptr))) {
 602			bio_put(bio);
 603			goto dmio;
 604		}
 605
 606		len -= this_step;
 607		ptr += this_step;
 608	} while (len > 0);
 609
 610	submit_bio(bio);
 611}
 612
 613static void submit_io(struct dm_buffer *b, int rw, void (*end_io)(struct dm_buffer *, blk_status_t))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 614{
 615	unsigned n_sectors;
 616	sector_t sector;
 617	unsigned offset, end;
 618
 619	b->end_io = end_io;
 620
 621	if (likely(b->c->sectors_per_block_bits >= 0))
 622		sector = b->block << b->c->sectors_per_block_bits;
 623	else
 624		sector = b->block * (b->c->block_size >> SECTOR_SHIFT);
 625	sector += b->c->start;
 626
 627	if (rw != REQ_OP_WRITE) {
 628		n_sectors = b->c->block_size >> SECTOR_SHIFT;
 629		offset = 0;
 630	} else {
 631		if (b->c->write_callback)
 632			b->c->write_callback(b);
 633		offset = b->write_start;
 634		end = b->write_end;
 635		offset &= -DM_BUFIO_WRITE_ALIGN;
 636		end += DM_BUFIO_WRITE_ALIGN - 1;
 637		end &= -DM_BUFIO_WRITE_ALIGN;
 638		if (unlikely(end > b->c->block_size))
 639			end = b->c->block_size;
 640
 641		sector += offset >> SECTOR_SHIFT;
 642		n_sectors = (end - offset) >> SECTOR_SHIFT;
 643	}
 644
 645	if (b->data_mode != DATA_MODE_VMALLOC)
 646		use_bio(b, rw, sector, n_sectors, offset);
 647	else
 648		use_dmio(b, rw, sector, n_sectors, offset);
 649}
 650
 651/*----------------------------------------------------------------
 652 * Writing dirty buffers
 653 *--------------------------------------------------------------*/
 654
 655/*
 656 * The endio routine for write.
 657 *
 658 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
 659 * it.
 660 */
 661static void write_endio(struct dm_buffer *b, blk_status_t status)
 662{
 663	b->write_error = status;
 664	if (unlikely(status)) {
 665		struct dm_bufio_client *c = b->c;
 666
 667		(void)cmpxchg(&c->async_write_error, 0,
 668				blk_status_to_errno(status));
 669	}
 670
 671	BUG_ON(!test_bit(B_WRITING, &b->state));
 672
 673	smp_mb__before_atomic();
 674	clear_bit(B_WRITING, &b->state);
 675	smp_mb__after_atomic();
 676
 677	wake_up_bit(&b->state, B_WRITING);
 678}
 679
 680/*
 681 * Initiate a write on a dirty buffer, but don't wait for it.
 682 *
 683 * - If the buffer is not dirty, exit.
 684 * - If there some previous write going on, wait for it to finish (we can't
 685 *   have two writes on the same buffer simultaneously).
 686 * - Submit our write and don't wait on it. We set B_WRITING indicating
 687 *   that there is a write in progress.
 688 */
 689static void __write_dirty_buffer(struct dm_buffer *b,
 690				 struct list_head *write_list)
 691{
 692	if (!test_bit(B_DIRTY, &b->state))
 693		return;
 694
 695	clear_bit(B_DIRTY, &b->state);
 696	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
 697
 698	b->write_start = b->dirty_start;
 699	b->write_end = b->dirty_end;
 700
 701	if (!write_list)
 702		submit_io(b, REQ_OP_WRITE, write_endio);
 703	else
 704		list_add_tail(&b->write_list, write_list);
 705}
 706
 707static void __flush_write_list(struct list_head *write_list)
 708{
 709	struct blk_plug plug;
 710	blk_start_plug(&plug);
 711	while (!list_empty(write_list)) {
 712		struct dm_buffer *b =
 713			list_entry(write_list->next, struct dm_buffer, write_list);
 714		list_del(&b->write_list);
 715		submit_io(b, REQ_OP_WRITE, write_endio);
 716		cond_resched();
 717	}
 718	blk_finish_plug(&plug);
 719}
 720
 721/*
 722 * Wait until any activity on the buffer finishes.  Possibly write the
 723 * buffer if it is dirty.  When this function finishes, there is no I/O
 724 * running on the buffer and the buffer is not dirty.
 725 */
 726static void __make_buffer_clean(struct dm_buffer *b)
 727{
 728	BUG_ON(b->hold_count);
 729
 730	if (!b->state)	/* fast case */
 
 731		return;
 732
 733	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
 734	__write_dirty_buffer(b, NULL);
 735	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
 736}
 737
 738/*
 739 * Find some buffer that is not held by anybody, clean it, unlink it and
 740 * return it.
 741 */
 742static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
 743{
 744	struct dm_buffer *b;
 745
 746	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
 747		BUG_ON(test_bit(B_WRITING, &b->state));
 748		BUG_ON(test_bit(B_DIRTY, &b->state));
 749
 
 
 
 
 750		if (!b->hold_count) {
 751			__make_buffer_clean(b);
 752			__unlink_buffer(b);
 753			return b;
 754		}
 755		cond_resched();
 756	}
 757
 
 
 
 758	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
 759		BUG_ON(test_bit(B_READING, &b->state));
 760
 761		if (!b->hold_count) {
 762			__make_buffer_clean(b);
 763			__unlink_buffer(b);
 764			return b;
 765		}
 766		cond_resched();
 767	}
 768
 769	return NULL;
 770}
 771
 772/*
 773 * Wait until some other threads free some buffer or release hold count on
 774 * some buffer.
 775 *
 776 * This function is entered with c->lock held, drops it and regains it
 777 * before exiting.
 778 */
 779static void __wait_for_free_buffer(struct dm_bufio_client *c)
 780{
 781	DECLARE_WAITQUEUE(wait, current);
 782
 783	add_wait_queue(&c->free_buffer_wait, &wait);
 784	set_current_state(TASK_UNINTERRUPTIBLE);
 785	dm_bufio_unlock(c);
 786
 787	io_schedule();
 788
 789	remove_wait_queue(&c->free_buffer_wait, &wait);
 790
 791	dm_bufio_lock(c);
 792}
 793
 794enum new_flag {
 795	NF_FRESH = 0,
 796	NF_READ = 1,
 797	NF_GET = 2,
 798	NF_PREFETCH = 3
 799};
 800
 801/*
 802 * Allocate a new buffer. If the allocation is not possible, wait until
 803 * some other thread frees a buffer.
 804 *
 805 * May drop the lock and regain it.
 806 */
 807static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
 808{
 809	struct dm_buffer *b;
 810	bool tried_noio_alloc = false;
 811
 812	/*
 813	 * dm-bufio is resistant to allocation failures (it just keeps
 814	 * one buffer reserved in cases all the allocations fail).
 815	 * So set flags to not try too hard:
 816	 *	GFP_NOWAIT: don't wait; if we need to sleep we'll release our
 817	 *		    mutex and wait ourselves.
 818	 *	__GFP_NORETRY: don't retry and rather return failure
 819	 *	__GFP_NOMEMALLOC: don't use emergency reserves
 820	 *	__GFP_NOWARN: don't print a warning in case of failure
 821	 *
 822	 * For debugging, if we set the cache size to 1, no new buffers will
 823	 * be allocated.
 824	 */
 825	while (1) {
 826		if (dm_bufio_cache_size_latch != 1) {
 827			b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 828			if (b)
 829				return b;
 830		}
 831
 832		if (nf == NF_PREFETCH)
 833			return NULL;
 834
 835		if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
 836			dm_bufio_unlock(c);
 837			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 838			dm_bufio_lock(c);
 839			if (b)
 840				return b;
 841			tried_noio_alloc = true;
 842		}
 843
 844		if (!list_empty(&c->reserved_buffers)) {
 845			b = list_entry(c->reserved_buffers.next,
 846				       struct dm_buffer, lru_list);
 847			list_del(&b->lru_list);
 848			c->need_reserved_buffers++;
 849
 850			return b;
 851		}
 852
 853		b = __get_unclaimed_buffer(c);
 854		if (b)
 855			return b;
 856
 857		__wait_for_free_buffer(c);
 858	}
 859}
 860
 861static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
 862{
 863	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
 864
 865	if (!b)
 866		return NULL;
 867
 868	if (c->alloc_callback)
 869		c->alloc_callback(b);
 870
 871	return b;
 872}
 873
 874/*
 875 * Free a buffer and wake other threads waiting for free buffers.
 876 */
 877static void __free_buffer_wake(struct dm_buffer *b)
 878{
 879	struct dm_bufio_client *c = b->c;
 880
 881	if (!c->need_reserved_buffers)
 882		free_buffer(b);
 883	else {
 884		list_add(&b->lru_list, &c->reserved_buffers);
 885		c->need_reserved_buffers--;
 886	}
 887
 888	wake_up(&c->free_buffer_wait);
 889}
 890
 891static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
 892					struct list_head *write_list)
 893{
 894	struct dm_buffer *b, *tmp;
 895
 896	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
 897		BUG_ON(test_bit(B_READING, &b->state));
 898
 899		if (!test_bit(B_DIRTY, &b->state) &&
 900		    !test_bit(B_WRITING, &b->state)) {
 901			__relink_lru(b, LIST_CLEAN);
 902			continue;
 903		}
 904
 905		if (no_wait && test_bit(B_WRITING, &b->state))
 906			return;
 907
 908		__write_dirty_buffer(b, write_list);
 909		cond_resched();
 910	}
 911}
 912
 913/*
 914 * Get writeback threshold and buffer limit for a given client.
 915 */
 916static void __get_memory_limit(struct dm_bufio_client *c,
 917			       unsigned long *threshold_buffers,
 918			       unsigned long *limit_buffers)
 919{
 920	unsigned long buffers;
 921
 922	if (unlikely(READ_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch)) {
 923		if (mutex_trylock(&dm_bufio_clients_lock)) {
 924			__cache_size_refresh();
 925			mutex_unlock(&dm_bufio_clients_lock);
 926		}
 927	}
 928
 929	buffers = dm_bufio_cache_size_per_client;
 930	if (likely(c->sectors_per_block_bits >= 0))
 931		buffers >>= c->sectors_per_block_bits + SECTOR_SHIFT;
 932	else
 933		buffers /= c->block_size;
 934
 935	if (buffers < c->minimum_buffers)
 936		buffers = c->minimum_buffers;
 937
 938	*limit_buffers = buffers;
 939	*threshold_buffers = mult_frac(buffers,
 940				       DM_BUFIO_WRITEBACK_PERCENT, 100);
 941}
 942
 943/*
 944 * Check if we're over watermark.
 945 * If we are over threshold_buffers, start freeing buffers.
 946 * If we're over "limit_buffers", block until we get under the limit.
 947 */
 948static void __check_watermark(struct dm_bufio_client *c,
 949			      struct list_head *write_list)
 950{
 951	unsigned long threshold_buffers, limit_buffers;
 952
 953	__get_memory_limit(c, &threshold_buffers, &limit_buffers);
 954
 955	while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
 956	       limit_buffers) {
 957
 958		struct dm_buffer *b = __get_unclaimed_buffer(c);
 959
 960		if (!b)
 961			return;
 962
 963		__free_buffer_wake(b);
 964		cond_resched();
 965	}
 966
 967	if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
 968		__write_dirty_buffers_async(c, 1, write_list);
 969}
 970
 971/*----------------------------------------------------------------
 972 * Getting a buffer
 973 *--------------------------------------------------------------*/
 974
 975static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
 976				     enum new_flag nf, int *need_submit,
 977				     struct list_head *write_list)
 978{
 979	struct dm_buffer *b, *new_b = NULL;
 980
 981	*need_submit = 0;
 982
 983	b = __find(c, block);
 984	if (b)
 985		goto found_buffer;
 986
 987	if (nf == NF_GET)
 988		return NULL;
 989
 990	new_b = __alloc_buffer_wait(c, nf);
 991	if (!new_b)
 992		return NULL;
 993
 994	/*
 995	 * We've had a period where the mutex was unlocked, so need to
 996	 * recheck the hash table.
 997	 */
 998	b = __find(c, block);
 999	if (b) {
1000		__free_buffer_wake(new_b);
1001		goto found_buffer;
1002	}
1003
1004	__check_watermark(c, write_list);
1005
1006	b = new_b;
1007	b->hold_count = 1;
1008	b->read_error = 0;
1009	b->write_error = 0;
1010	__link_buffer(b, block, LIST_CLEAN);
1011
1012	if (nf == NF_FRESH) {
1013		b->state = 0;
1014		return b;
1015	}
1016
1017	b->state = 1 << B_READING;
1018	*need_submit = 1;
1019
1020	return b;
1021
1022found_buffer:
1023	if (nf == NF_PREFETCH)
1024		return NULL;
1025	/*
1026	 * Note: it is essential that we don't wait for the buffer to be
1027	 * read if dm_bufio_get function is used. Both dm_bufio_get and
1028	 * dm_bufio_prefetch can be used in the driver request routine.
1029	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1030	 * the same buffer, it would deadlock if we waited.
1031	 */
1032	if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1033		return NULL;
1034
1035	b->hold_count++;
1036	__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1037		     test_bit(B_WRITING, &b->state));
1038	return b;
1039}
1040
1041/*
1042 * The endio routine for reading: set the error, clear the bit and wake up
1043 * anyone waiting on the buffer.
1044 */
1045static void read_endio(struct dm_buffer *b, blk_status_t status)
1046{
1047	b->read_error = status;
1048
1049	BUG_ON(!test_bit(B_READING, &b->state));
1050
1051	smp_mb__before_atomic();
1052	clear_bit(B_READING, &b->state);
1053	smp_mb__after_atomic();
1054
1055	wake_up_bit(&b->state, B_READING);
1056}
1057
1058/*
1059 * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1060 * functions is similar except that dm_bufio_new doesn't read the
1061 * buffer from the disk (assuming that the caller overwrites all the data
1062 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1063 */
1064static void *new_read(struct dm_bufio_client *c, sector_t block,
1065		      enum new_flag nf, struct dm_buffer **bp)
1066{
1067	int need_submit;
1068	struct dm_buffer *b;
1069
1070	LIST_HEAD(write_list);
1071
1072	dm_bufio_lock(c);
1073	b = __bufio_new(c, block, nf, &need_submit, &write_list);
1074#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1075	if (b && b->hold_count == 1)
1076		buffer_record_stack(b);
1077#endif
1078	dm_bufio_unlock(c);
1079
1080	__flush_write_list(&write_list);
1081
1082	if (!b)
1083		return NULL;
1084
1085	if (need_submit)
1086		submit_io(b, REQ_OP_READ, read_endio);
1087
1088	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1089
1090	if (b->read_error) {
1091		int error = blk_status_to_errno(b->read_error);
1092
1093		dm_bufio_release(b);
1094
1095		return ERR_PTR(error);
1096	}
1097
1098	*bp = b;
1099
1100	return b->data;
1101}
1102
1103void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1104		   struct dm_buffer **bp)
1105{
1106	return new_read(c, block, NF_GET, bp);
1107}
1108EXPORT_SYMBOL_GPL(dm_bufio_get);
1109
1110void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1111		    struct dm_buffer **bp)
1112{
1113	BUG_ON(dm_bufio_in_request());
1114
1115	return new_read(c, block, NF_READ, bp);
1116}
1117EXPORT_SYMBOL_GPL(dm_bufio_read);
1118
1119void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1120		   struct dm_buffer **bp)
1121{
1122	BUG_ON(dm_bufio_in_request());
1123
1124	return new_read(c, block, NF_FRESH, bp);
1125}
1126EXPORT_SYMBOL_GPL(dm_bufio_new);
1127
1128void dm_bufio_prefetch(struct dm_bufio_client *c,
1129		       sector_t block, unsigned n_blocks)
1130{
1131	struct blk_plug plug;
1132
1133	LIST_HEAD(write_list);
1134
1135	BUG_ON(dm_bufio_in_request());
1136
1137	blk_start_plug(&plug);
1138	dm_bufio_lock(c);
1139
1140	for (; n_blocks--; block++) {
1141		int need_submit;
1142		struct dm_buffer *b;
1143		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1144				&write_list);
1145		if (unlikely(!list_empty(&write_list))) {
1146			dm_bufio_unlock(c);
1147			blk_finish_plug(&plug);
1148			__flush_write_list(&write_list);
1149			blk_start_plug(&plug);
1150			dm_bufio_lock(c);
1151		}
1152		if (unlikely(b != NULL)) {
1153			dm_bufio_unlock(c);
1154
1155			if (need_submit)
1156				submit_io(b, REQ_OP_READ, read_endio);
1157			dm_bufio_release(b);
1158
1159			cond_resched();
1160
1161			if (!n_blocks)
1162				goto flush_plug;
1163			dm_bufio_lock(c);
1164		}
1165	}
1166
1167	dm_bufio_unlock(c);
1168
1169flush_plug:
1170	blk_finish_plug(&plug);
1171}
1172EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1173
1174void dm_bufio_release(struct dm_buffer *b)
1175{
1176	struct dm_bufio_client *c = b->c;
1177
1178	dm_bufio_lock(c);
1179
1180	BUG_ON(!b->hold_count);
1181
1182	b->hold_count--;
1183	if (!b->hold_count) {
1184		wake_up(&c->free_buffer_wait);
1185
1186		/*
1187		 * If there were errors on the buffer, and the buffer is not
1188		 * to be written, free the buffer. There is no point in caching
1189		 * invalid buffer.
1190		 */
1191		if ((b->read_error || b->write_error) &&
1192		    !test_bit(B_READING, &b->state) &&
1193		    !test_bit(B_WRITING, &b->state) &&
1194		    !test_bit(B_DIRTY, &b->state)) {
1195			__unlink_buffer(b);
1196			__free_buffer_wake(b);
1197		}
1198	}
1199
1200	dm_bufio_unlock(c);
1201}
1202EXPORT_SYMBOL_GPL(dm_bufio_release);
1203
1204void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
1205					unsigned start, unsigned end)
1206{
1207	struct dm_bufio_client *c = b->c;
1208
1209	BUG_ON(start >= end);
1210	BUG_ON(end > b->c->block_size);
1211
1212	dm_bufio_lock(c);
1213
1214	BUG_ON(test_bit(B_READING, &b->state));
1215
1216	if (!test_and_set_bit(B_DIRTY, &b->state)) {
1217		b->dirty_start = start;
1218		b->dirty_end = end;
1219		__relink_lru(b, LIST_DIRTY);
1220	} else {
1221		if (start < b->dirty_start)
1222			b->dirty_start = start;
1223		if (end > b->dirty_end)
1224			b->dirty_end = end;
1225	}
1226
1227	dm_bufio_unlock(c);
1228}
1229EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
1230
1231void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1232{
1233	dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
1234}
1235EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1236
1237void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1238{
1239	LIST_HEAD(write_list);
1240
1241	BUG_ON(dm_bufio_in_request());
1242
1243	dm_bufio_lock(c);
1244	__write_dirty_buffers_async(c, 0, &write_list);
1245	dm_bufio_unlock(c);
1246	__flush_write_list(&write_list);
1247}
1248EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1249
1250/*
1251 * For performance, it is essential that the buffers are written asynchronously
1252 * and simultaneously (so that the block layer can merge the writes) and then
1253 * waited upon.
1254 *
1255 * Finally, we flush hardware disk cache.
1256 */
1257int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1258{
1259	int a, f;
1260	unsigned long buffers_processed = 0;
1261	struct dm_buffer *b, *tmp;
1262
1263	LIST_HEAD(write_list);
1264
1265	dm_bufio_lock(c);
1266	__write_dirty_buffers_async(c, 0, &write_list);
1267	dm_bufio_unlock(c);
1268	__flush_write_list(&write_list);
1269	dm_bufio_lock(c);
1270
1271again:
1272	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1273		int dropped_lock = 0;
1274
1275		if (buffers_processed < c->n_buffers[LIST_DIRTY])
1276			buffers_processed++;
1277
1278		BUG_ON(test_bit(B_READING, &b->state));
1279
1280		if (test_bit(B_WRITING, &b->state)) {
1281			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1282				dropped_lock = 1;
1283				b->hold_count++;
1284				dm_bufio_unlock(c);
1285				wait_on_bit_io(&b->state, B_WRITING,
1286					       TASK_UNINTERRUPTIBLE);
1287				dm_bufio_lock(c);
1288				b->hold_count--;
1289			} else
1290				wait_on_bit_io(&b->state, B_WRITING,
1291					       TASK_UNINTERRUPTIBLE);
1292		}
1293
1294		if (!test_bit(B_DIRTY, &b->state) &&
1295		    !test_bit(B_WRITING, &b->state))
1296			__relink_lru(b, LIST_CLEAN);
1297
1298		cond_resched();
1299
1300		/*
1301		 * If we dropped the lock, the list is no longer consistent,
1302		 * so we must restart the search.
1303		 *
1304		 * In the most common case, the buffer just processed is
1305		 * relinked to the clean list, so we won't loop scanning the
1306		 * same buffer again and again.
1307		 *
1308		 * This may livelock if there is another thread simultaneously
1309		 * dirtying buffers, so we count the number of buffers walked
1310		 * and if it exceeds the total number of buffers, it means that
1311		 * someone is doing some writes simultaneously with us.  In
1312		 * this case, stop, dropping the lock.
1313		 */
1314		if (dropped_lock)
1315			goto again;
1316	}
1317	wake_up(&c->free_buffer_wait);
1318	dm_bufio_unlock(c);
1319
1320	a = xchg(&c->async_write_error, 0);
1321	f = dm_bufio_issue_flush(c);
1322	if (a)
1323		return a;
1324
1325	return f;
1326}
1327EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1328
1329/*
1330 * Use dm-io to send and empty barrier flush the device.
1331 */
1332int dm_bufio_issue_flush(struct dm_bufio_client *c)
1333{
1334	struct dm_io_request io_req = {
1335		.bi_op = REQ_OP_WRITE,
1336		.bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1337		.mem.type = DM_IO_KMEM,
1338		.mem.ptr.addr = NULL,
1339		.client = c->dm_io,
1340	};
1341	struct dm_io_region io_reg = {
1342		.bdev = c->bdev,
1343		.sector = 0,
1344		.count = 0,
1345	};
1346
1347	BUG_ON(dm_bufio_in_request());
1348
1349	return dm_io(&io_req, 1, &io_reg, NULL);
1350}
1351EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1352
1353/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1354 * We first delete any other buffer that may be at that new location.
1355 *
1356 * Then, we write the buffer to the original location if it was dirty.
1357 *
1358 * Then, if we are the only one who is holding the buffer, relink the buffer
1359 * in the hash queue for the new location.
1360 *
1361 * If there was someone else holding the buffer, we write it to the new
1362 * location but not relink it, because that other user needs to have the buffer
1363 * at the same place.
1364 */
1365void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1366{
1367	struct dm_bufio_client *c = b->c;
1368	struct dm_buffer *new;
1369
1370	BUG_ON(dm_bufio_in_request());
1371
1372	dm_bufio_lock(c);
1373
1374retry:
1375	new = __find(c, new_block);
1376	if (new) {
1377		if (new->hold_count) {
1378			__wait_for_free_buffer(c);
1379			goto retry;
1380		}
1381
1382		/*
1383		 * FIXME: Is there any point waiting for a write that's going
1384		 * to be overwritten in a bit?
1385		 */
1386		__make_buffer_clean(new);
1387		__unlink_buffer(new);
1388		__free_buffer_wake(new);
1389	}
1390
1391	BUG_ON(!b->hold_count);
1392	BUG_ON(test_bit(B_READING, &b->state));
1393
1394	__write_dirty_buffer(b, NULL);
1395	if (b->hold_count == 1) {
1396		wait_on_bit_io(&b->state, B_WRITING,
1397			       TASK_UNINTERRUPTIBLE);
1398		set_bit(B_DIRTY, &b->state);
1399		b->dirty_start = 0;
1400		b->dirty_end = c->block_size;
1401		__unlink_buffer(b);
1402		__link_buffer(b, new_block, LIST_DIRTY);
1403	} else {
1404		sector_t old_block;
1405		wait_on_bit_lock_io(&b->state, B_WRITING,
1406				    TASK_UNINTERRUPTIBLE);
1407		/*
1408		 * Relink buffer to "new_block" so that write_callback
1409		 * sees "new_block" as a block number.
1410		 * After the write, link the buffer back to old_block.
1411		 * All this must be done in bufio lock, so that block number
1412		 * change isn't visible to other threads.
1413		 */
1414		old_block = b->block;
1415		__unlink_buffer(b);
1416		__link_buffer(b, new_block, b->list_mode);
1417		submit_io(b, REQ_OP_WRITE, write_endio);
1418		wait_on_bit_io(&b->state, B_WRITING,
1419			       TASK_UNINTERRUPTIBLE);
1420		__unlink_buffer(b);
1421		__link_buffer(b, old_block, b->list_mode);
1422	}
1423
1424	dm_bufio_unlock(c);
1425	dm_bufio_release(b);
1426}
1427EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1428
 
 
 
 
 
 
 
 
1429/*
1430 * Free the given buffer.
1431 *
1432 * This is just a hint, if the buffer is in use or dirty, this function
1433 * does nothing.
1434 */
1435void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1436{
1437	struct dm_buffer *b;
1438
1439	dm_bufio_lock(c);
1440
1441	b = __find(c, block);
1442	if (b && likely(!b->hold_count) && likely(!b->state)) {
1443		__unlink_buffer(b);
1444		__free_buffer_wake(b);
1445	}
1446
1447	dm_bufio_unlock(c);
1448}
1449EXPORT_SYMBOL_GPL(dm_bufio_forget);
1450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1451void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1452{
1453	c->minimum_buffers = n;
1454}
1455EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
1456
1457unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1458{
1459	return c->block_size;
1460}
1461EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1462
1463sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1464{
1465	sector_t s = i_size_read(c->bdev->bd_inode) >> SECTOR_SHIFT;
 
 
 
 
1466	if (likely(c->sectors_per_block_bits >= 0))
1467		s >>= c->sectors_per_block_bits;
1468	else
1469		sector_div(s, c->block_size >> SECTOR_SHIFT);
1470	return s;
1471}
1472EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1473
 
 
 
 
 
 
1474sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1475{
1476	return b->block;
1477}
1478EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1479
1480void *dm_bufio_get_block_data(struct dm_buffer *b)
1481{
1482	return b->data;
1483}
1484EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1485
1486void *dm_bufio_get_aux_data(struct dm_buffer *b)
1487{
1488	return b + 1;
1489}
1490EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1491
1492struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1493{
1494	return b->c;
1495}
1496EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1497
1498static void drop_buffers(struct dm_bufio_client *c)
1499{
1500	struct dm_buffer *b;
1501	int i;
1502	bool warned = false;
1503
1504	BUG_ON(dm_bufio_in_request());
1505
1506	/*
1507	 * An optimization so that the buffers are not written one-by-one.
1508	 */
1509	dm_bufio_write_dirty_buffers_async(c);
1510
1511	dm_bufio_lock(c);
1512
1513	while ((b = __get_unclaimed_buffer(c)))
1514		__free_buffer_wake(b);
1515
1516	for (i = 0; i < LIST_SIZE; i++)
1517		list_for_each_entry(b, &c->lru[i], lru_list) {
1518			WARN_ON(!warned);
1519			warned = true;
1520			DMERR("leaked buffer %llx, hold count %u, list %d",
1521			      (unsigned long long)b->block, b->hold_count, i);
1522#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1523			print_stack_trace(&b->stack_trace, 1);
1524			b->hold_count = 0; /* mark unclaimed to avoid BUG_ON below */
 
1525#endif
1526		}
1527
1528#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1529	while ((b = __get_unclaimed_buffer(c)))
1530		__free_buffer_wake(b);
1531#endif
1532
1533	for (i = 0; i < LIST_SIZE; i++)
1534		BUG_ON(!list_empty(&c->lru[i]));
1535
1536	dm_bufio_unlock(c);
1537}
1538
1539/*
1540 * We may not be able to evict this buffer if IO pending or the client
1541 * is still using it.  Caller is expected to know buffer is too old.
1542 *
1543 * And if GFP_NOFS is used, we must not do any I/O because we hold
1544 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1545 * rerouted to different bufio client.
1546 */
1547static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1548{
1549	if (!(gfp & __GFP_FS)) {
1550		if (test_bit(B_READING, &b->state) ||
 
1551		    test_bit(B_WRITING, &b->state) ||
1552		    test_bit(B_DIRTY, &b->state))
1553			return false;
1554	}
1555
1556	if (b->hold_count)
1557		return false;
1558
1559	__make_buffer_clean(b);
1560	__unlink_buffer(b);
1561	__free_buffer_wake(b);
1562
1563	return true;
1564}
1565
1566static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1567{
1568	unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
1569	if (likely(c->sectors_per_block_bits >= 0))
1570		retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
1571	else
1572		retain_bytes /= c->block_size;
1573	return retain_bytes;
1574}
1575
1576static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1577			    gfp_t gfp_mask)
1578{
1579	int l;
1580	struct dm_buffer *b, *tmp;
1581	unsigned long freed = 0;
1582	unsigned long count = c->n_buffers[LIST_CLEAN] +
1583			      c->n_buffers[LIST_DIRTY];
1584	unsigned long retain_target = get_retain_buffers(c);
1585
1586	for (l = 0; l < LIST_SIZE; l++) {
1587		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1588			if (__try_evict_buffer(b, gfp_mask))
 
 
 
 
 
1589				freed++;
1590			if (!--nr_to_scan || ((count - freed) <= retain_target))
1591				return freed;
1592			cond_resched();
1593		}
1594	}
1595	return freed;
1596}
1597
1598static unsigned long
1599dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
 
 
 
 
 
 
 
 
1600{
1601	struct dm_bufio_client *c;
1602	unsigned long freed;
1603
1604	c = container_of(shrink, struct dm_bufio_client, shrinker);
1605	if (sc->gfp_mask & __GFP_FS)
1606		dm_bufio_lock(c);
1607	else if (!dm_bufio_trylock(c))
1608		return SHRINK_STOP;
1609
1610	freed  = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1611	dm_bufio_unlock(c);
1612	return freed;
1613}
1614
1615static unsigned long
1616dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1617{
1618	struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1619	unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) +
1620			      READ_ONCE(c->n_buffers[LIST_DIRTY]);
1621	unsigned long retain_target = get_retain_buffers(c);
 
1622
1623	return (count < retain_target) ? 0 : (count - retain_target);
 
 
 
 
 
 
 
 
 
 
1624}
1625
1626/*
1627 * Create the buffering interface
1628 */
1629struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1630					       unsigned reserved_buffers, unsigned aux_size,
1631					       void (*alloc_callback)(struct dm_buffer *),
1632					       void (*write_callback)(struct dm_buffer *))
 
1633{
1634	int r;
1635	struct dm_bufio_client *c;
1636	unsigned i;
1637	char slab_name[27];
1638
1639	if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
1640		DMERR("%s: block size not specified or is not multiple of 512b", __func__);
1641		r = -EINVAL;
1642		goto bad_client;
1643	}
1644
1645	c = kzalloc(sizeof(*c), GFP_KERNEL);
1646	if (!c) {
1647		r = -ENOMEM;
1648		goto bad_client;
1649	}
1650	c->buffer_tree = RB_ROOT;
1651
1652	c->bdev = bdev;
1653	c->block_size = block_size;
1654	if (is_power_of_2(block_size))
1655		c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1656	else
1657		c->sectors_per_block_bits = -1;
1658
1659	c->alloc_callback = alloc_callback;
1660	c->write_callback = write_callback;
1661
 
 
 
 
 
1662	for (i = 0; i < LIST_SIZE; i++) {
1663		INIT_LIST_HEAD(&c->lru[i]);
1664		c->n_buffers[i] = 0;
1665	}
1666
1667	mutex_init(&c->lock);
 
1668	INIT_LIST_HEAD(&c->reserved_buffers);
1669	c->need_reserved_buffers = reserved_buffers;
1670
1671	dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
1672
1673	init_waitqueue_head(&c->free_buffer_wait);
1674	c->async_write_error = 0;
1675
1676	c->dm_io = dm_io_client_create();
1677	if (IS_ERR(c->dm_io)) {
1678		r = PTR_ERR(c->dm_io);
1679		goto bad_dm_io;
1680	}
1681
1682	if (block_size <= KMALLOC_MAX_SIZE &&
1683	    (block_size < PAGE_SIZE || !is_power_of_2(block_size))) {
1684		unsigned align = min(1U << __ffs(block_size), (unsigned)PAGE_SIZE);
1685		snprintf(slab_name, sizeof slab_name, "dm_bufio_cache-%u", block_size);
1686		c->slab_cache = kmem_cache_create(slab_name, block_size, align,
1687						  SLAB_RECLAIM_ACCOUNT, NULL);
1688		if (!c->slab_cache) {
1689			r = -ENOMEM;
1690			goto bad;
1691		}
1692	}
1693	if (aux_size)
1694		snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer-%u", aux_size);
1695	else
1696		snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer");
1697	c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
1698					   0, SLAB_RECLAIM_ACCOUNT, NULL);
1699	if (!c->slab_buffer) {
1700		r = -ENOMEM;
1701		goto bad;
1702	}
1703
1704	while (c->need_reserved_buffers) {
1705		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1706
1707		if (!b) {
1708			r = -ENOMEM;
1709			goto bad;
1710		}
1711		__free_buffer_wake(b);
1712	}
1713
 
 
 
1714	c->shrinker.count_objects = dm_bufio_shrink_count;
1715	c->shrinker.scan_objects = dm_bufio_shrink_scan;
1716	c->shrinker.seeks = 1;
1717	c->shrinker.batch = 0;
1718	r = register_shrinker(&c->shrinker);
 
1719	if (r)
1720		goto bad;
1721
1722	mutex_lock(&dm_bufio_clients_lock);
1723	dm_bufio_client_count++;
1724	list_add(&c->client_list, &dm_bufio_all_clients);
1725	__cache_size_refresh();
1726	mutex_unlock(&dm_bufio_clients_lock);
1727
1728	return c;
1729
1730bad:
1731	while (!list_empty(&c->reserved_buffers)) {
1732		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1733						 struct dm_buffer, lru_list);
1734		list_del(&b->lru_list);
1735		free_buffer(b);
1736	}
1737	kmem_cache_destroy(c->slab_cache);
1738	kmem_cache_destroy(c->slab_buffer);
1739	dm_io_client_destroy(c->dm_io);
1740bad_dm_io:
1741	mutex_destroy(&c->lock);
 
 
1742	kfree(c);
1743bad_client:
1744	return ERR_PTR(r);
1745}
1746EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1747
1748/*
1749 * Free the buffering interface.
1750 * It is required that there are no references on any buffers.
1751 */
1752void dm_bufio_client_destroy(struct dm_bufio_client *c)
1753{
1754	unsigned i;
1755
1756	drop_buffers(c);
1757
1758	unregister_shrinker(&c->shrinker);
 
1759
1760	mutex_lock(&dm_bufio_clients_lock);
1761
1762	list_del(&c->client_list);
1763	dm_bufio_client_count--;
1764	__cache_size_refresh();
1765
1766	mutex_unlock(&dm_bufio_clients_lock);
1767
1768	BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1769	BUG_ON(c->need_reserved_buffers);
1770
1771	while (!list_empty(&c->reserved_buffers)) {
1772		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1773						 struct dm_buffer, lru_list);
1774		list_del(&b->lru_list);
1775		free_buffer(b);
1776	}
1777
1778	for (i = 0; i < LIST_SIZE; i++)
1779		if (c->n_buffers[i])
1780			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1781
1782	for (i = 0; i < LIST_SIZE; i++)
1783		BUG_ON(c->n_buffers[i]);
1784
1785	kmem_cache_destroy(c->slab_cache);
1786	kmem_cache_destroy(c->slab_buffer);
1787	dm_io_client_destroy(c->dm_io);
1788	mutex_destroy(&c->lock);
 
 
1789	kfree(c);
1790}
1791EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1792
1793void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
1794{
1795	c->start = start;
1796}
1797EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
1798
1799static unsigned get_max_age_hz(void)
1800{
1801	unsigned max_age = READ_ONCE(dm_bufio_max_age);
1802
1803	if (max_age > UINT_MAX / HZ)
1804		max_age = UINT_MAX / HZ;
1805
1806	return max_age * HZ;
1807}
1808
1809static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1810{
1811	return time_after_eq(jiffies, b->last_accessed + age_hz);
1812}
1813
1814static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1815{
1816	struct dm_buffer *b, *tmp;
1817	unsigned long retain_target = get_retain_buffers(c);
1818	unsigned long count;
1819	LIST_HEAD(write_list);
1820
1821	dm_bufio_lock(c);
1822
1823	__check_watermark(c, &write_list);
1824	if (unlikely(!list_empty(&write_list))) {
1825		dm_bufio_unlock(c);
1826		__flush_write_list(&write_list);
1827		dm_bufio_lock(c);
1828	}
1829
1830	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1831	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1832		if (count <= retain_target)
1833			break;
1834
1835		if (!older_than(b, age_hz))
1836			break;
1837
1838		if (__try_evict_buffer(b, 0))
1839			count--;
1840
1841		cond_resched();
1842	}
1843
1844	dm_bufio_unlock(c);
1845}
1846
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1847static void cleanup_old_buffers(void)
1848{
1849	unsigned long max_age_hz = get_max_age_hz();
1850	struct dm_bufio_client *c;
1851
1852	mutex_lock(&dm_bufio_clients_lock);
1853
1854	__cache_size_refresh();
1855
1856	list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1857		__evict_old_buffers(c, max_age_hz);
1858
1859	mutex_unlock(&dm_bufio_clients_lock);
1860}
1861
1862static struct workqueue_struct *dm_bufio_wq;
1863static struct delayed_work dm_bufio_work;
1864
1865static void work_fn(struct work_struct *w)
1866{
1867	cleanup_old_buffers();
1868
1869	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1870			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1871}
1872
1873/*----------------------------------------------------------------
1874 * Module setup
1875 *--------------------------------------------------------------*/
1876
1877/*
1878 * This is called only once for the whole dm_bufio module.
1879 * It initializes memory limit.
1880 */
1881static int __init dm_bufio_init(void)
1882{
1883	__u64 mem;
1884
1885	dm_bufio_allocated_kmem_cache = 0;
1886	dm_bufio_allocated_get_free_pages = 0;
1887	dm_bufio_allocated_vmalloc = 0;
1888	dm_bufio_current_allocated = 0;
1889
1890	mem = (__u64)mult_frac(totalram_pages - totalhigh_pages,
1891			       DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
1892
1893	if (mem > ULONG_MAX)
1894		mem = ULONG_MAX;
1895
1896#ifdef CONFIG_MMU
1897	if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
1898		mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
1899#endif
1900
1901	dm_bufio_default_cache_size = mem;
1902
1903	mutex_lock(&dm_bufio_clients_lock);
1904	__cache_size_refresh();
1905	mutex_unlock(&dm_bufio_clients_lock);
1906
1907	dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
1908	if (!dm_bufio_wq)
1909		return -ENOMEM;
1910
1911	INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1912	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
 
1913			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1914
1915	return 0;
1916}
1917
1918/*
1919 * This is called once when unloading the dm_bufio module.
1920 */
1921static void __exit dm_bufio_exit(void)
1922{
1923	int bug = 0;
1924
1925	cancel_delayed_work_sync(&dm_bufio_work);
1926	destroy_workqueue(dm_bufio_wq);
1927
1928	if (dm_bufio_client_count) {
1929		DMCRIT("%s: dm_bufio_client_count leaked: %d",
1930			__func__, dm_bufio_client_count);
1931		bug = 1;
1932	}
1933
1934	if (dm_bufio_current_allocated) {
1935		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1936			__func__, dm_bufio_current_allocated);
1937		bug = 1;
1938	}
1939
1940	if (dm_bufio_allocated_get_free_pages) {
1941		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1942		       __func__, dm_bufio_allocated_get_free_pages);
1943		bug = 1;
1944	}
1945
1946	if (dm_bufio_allocated_vmalloc) {
1947		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1948		       __func__, dm_bufio_allocated_vmalloc);
1949		bug = 1;
1950	}
1951
1952	BUG_ON(bug);
1953}
1954
1955module_init(dm_bufio_init)
1956module_exit(dm_bufio_exit)
1957
1958module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1959MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1960
1961module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1962MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1963
1964module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
1965MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
1966
1967module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1968MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1969
1970module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1971MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1972
1973module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1974MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1975
1976module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1977MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1978
1979module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1980MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1981
1982MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1983MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1984MODULE_LICENSE("GPL");