Linux Audio

Check our new training course

Loading...
v6.2
   1/*
   2 * Copyright (C) 2009-2011 Red Hat, Inc.
   3 *
   4 * Author: Mikulas Patocka <mpatocka@redhat.com>
   5 *
   6 * This file is released under the GPL.
   7 */
   8
   9#include <linux/dm-bufio.h>
  10
  11#include <linux/device-mapper.h>
  12#include <linux/dm-io.h>
  13#include <linux/slab.h>
  14#include <linux/sched/mm.h>
  15#include <linux/jiffies.h>
  16#include <linux/vmalloc.h>
  17#include <linux/shrinker.h>
  18#include <linux/module.h>
  19#include <linux/rbtree.h>
  20#include <linux/stacktrace.h>
  21#include <linux/jump_label.h>
  22
  23#define DM_MSG_PREFIX "bufio"
  24
  25/*
  26 * Memory management policy:
  27 *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
  28 *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
  29 *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
  30 *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
  31 *	dirty buffers.
  32 */
  33#define DM_BUFIO_MIN_BUFFERS		8
  34
  35#define DM_BUFIO_MEMORY_PERCENT		2
  36#define DM_BUFIO_VMALLOC_PERCENT	25
  37#define DM_BUFIO_WRITEBACK_RATIO	3
  38#define DM_BUFIO_LOW_WATERMARK_RATIO	16
  39
  40/*
  41 * Check buffer ages in this interval (seconds)
  42 */
  43#define DM_BUFIO_WORK_TIMER_SECS	30
  44
  45/*
  46 * Free buffers when they are older than this (seconds)
  47 */
  48#define DM_BUFIO_DEFAULT_AGE_SECS	300
  49
  50/*
  51 * The nr of bytes of cached data to keep around.
  52 */
  53#define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
  54
  55/*
  56 * Align buffer writes to this boundary.
  57 * Tests show that SSDs have the highest IOPS when using 4k writes.
  58 */
  59#define DM_BUFIO_WRITE_ALIGN		4096
 
 
 
 
 
 
 
  60
  61/*
  62 * dm_buffer->list_mode
  63 */
  64#define LIST_CLEAN	0
  65#define LIST_DIRTY	1
  66#define LIST_SIZE	2
  67
  68/*
  69 * Linking of buffers:
  70 *	All buffers are linked to buffer_tree with their node field.
  71 *
  72 *	Clean buffers that are not being written (B_WRITING not set)
  73 *	are linked to lru[LIST_CLEAN] with their lru_list field.
  74 *
  75 *	Dirty and clean buffers that are being written are linked to
  76 *	lru[LIST_DIRTY] with their lru_list field. When the write
  77 *	finishes, the buffer cannot be relinked immediately (because we
  78 *	are in an interrupt context and relinking requires process
  79 *	context), so some clean-not-writing buffers can be held on
  80 *	dirty_lru too.  They are later added to lru in the process
  81 *	context.
  82 */
  83struct dm_bufio_client {
  84	struct mutex lock;
  85	spinlock_t spinlock;
  86	bool no_sleep;
  87
  88	struct list_head lru[LIST_SIZE];
  89	unsigned long n_buffers[LIST_SIZE];
  90
  91	struct block_device *bdev;
  92	unsigned block_size;
  93	s8 sectors_per_block_bits;
 
 
 
  94	void (*alloc_callback)(struct dm_buffer *);
  95	void (*write_callback)(struct dm_buffer *);
  96	struct kmem_cache *slab_buffer;
  97	struct kmem_cache *slab_cache;
  98	struct dm_io_client *dm_io;
  99
 100	struct list_head reserved_buffers;
 101	unsigned need_reserved_buffers;
 102
 103	unsigned minimum_buffers;
 104
 105	struct rb_root buffer_tree;
 106	wait_queue_head_t free_buffer_wait;
 107
 108	sector_t start;
 109
 110	int async_write_error;
 111
 112	struct list_head client_list;
 113
 114	struct shrinker shrinker;
 115	struct work_struct shrink_work;
 116	atomic_long_t need_shrink;
 117};
 118
 119/*
 120 * Buffer state bits.
 121 */
 122#define B_READING	0
 123#define B_WRITING	1
 124#define B_DIRTY		2
 125
 126/*
 127 * Describes how the block was allocated:
 128 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
 129 * See the comment at alloc_buffer_data.
 130 */
 131enum data_mode {
 132	DATA_MODE_SLAB = 0,
 133	DATA_MODE_GET_FREE_PAGES = 1,
 134	DATA_MODE_VMALLOC = 2,
 135	DATA_MODE_LIMIT = 3
 136};
 137
 138struct dm_buffer {
 139	struct rb_node node;
 140	struct list_head lru_list;
 141	struct list_head global_list;
 142	sector_t block;
 143	void *data;
 144	unsigned char data_mode;		/* DATA_MODE_* */
 145	unsigned char list_mode;		/* LIST_* */
 146	blk_status_t read_error;
 147	blk_status_t write_error;
 148	unsigned accessed;
 149	unsigned hold_count;
 
 
 150	unsigned long state;
 151	unsigned long last_accessed;
 152	unsigned dirty_start;
 153	unsigned dirty_end;
 154	unsigned write_start;
 155	unsigned write_end;
 156	struct dm_bufio_client *c;
 157	struct list_head write_list;
 158	void (*end_io)(struct dm_buffer *, blk_status_t);
 
 159#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
 160#define MAX_STACK 10
 161	unsigned int stack_len;
 162	unsigned long stack_entries[MAX_STACK];
 163#endif
 164};
 165
 166static DEFINE_STATIC_KEY_FALSE(no_sleep_enabled);
 167
 168/*----------------------------------------------------------------*/
 169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 170#define dm_bufio_in_request()	(!!current->bio_list)
 171
 172static void dm_bufio_lock(struct dm_bufio_client *c)
 173{
 174	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
 175		spin_lock_bh(&c->spinlock);
 176	else
 177		mutex_lock_nested(&c->lock, dm_bufio_in_request());
 178}
 179
 180static int dm_bufio_trylock(struct dm_bufio_client *c)
 181{
 182	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
 183		return spin_trylock_bh(&c->spinlock);
 184	else
 185		return mutex_trylock(&c->lock);
 186}
 187
 188static void dm_bufio_unlock(struct dm_bufio_client *c)
 189{
 190	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
 191		spin_unlock_bh(&c->spinlock);
 192	else
 193		mutex_unlock(&c->lock);
 194}
 195
 196/*----------------------------------------------------------------*/
 197
 198/*
 199 * Default cache size: available memory divided by the ratio.
 200 */
 201static unsigned long dm_bufio_default_cache_size;
 202
 203/*
 204 * Total cache size set by the user.
 205 */
 206static unsigned long dm_bufio_cache_size;
 207
 208/*
 209 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
 210 * at any time.  If it disagrees, the user has changed cache size.
 211 */
 212static unsigned long dm_bufio_cache_size_latch;
 213
 214static DEFINE_SPINLOCK(global_spinlock);
 215
 216static LIST_HEAD(global_queue);
 217
 218static unsigned long global_num = 0;
 219
 220/*
 221 * Buffers are freed after this timeout
 222 */
 223static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
 224static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
 225
 226static unsigned long dm_bufio_peak_allocated;
 227static unsigned long dm_bufio_allocated_kmem_cache;
 228static unsigned long dm_bufio_allocated_get_free_pages;
 229static unsigned long dm_bufio_allocated_vmalloc;
 230static unsigned long dm_bufio_current_allocated;
 231
 232/*----------------------------------------------------------------*/
 233
 234/*
 
 
 
 
 
 235 * The current number of clients.
 236 */
 237static int dm_bufio_client_count;
 238
 239/*
 240 * The list of all clients.
 241 */
 242static LIST_HEAD(dm_bufio_all_clients);
 243
 244/*
 245 * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count
 
 246 */
 247static DEFINE_MUTEX(dm_bufio_clients_lock);
 248
 249static struct workqueue_struct *dm_bufio_wq;
 250static struct delayed_work dm_bufio_cleanup_old_work;
 251static struct work_struct dm_bufio_replacement_work;
 252
 253
 254#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
 255static void buffer_record_stack(struct dm_buffer *b)
 256{
 257	b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2);
 
 
 
 
 258}
 259#endif
 260
 261/*----------------------------------------------------------------
 262 * A red/black tree acts as an index for all the buffers.
 263 *--------------------------------------------------------------*/
 264static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
 265{
 266	struct rb_node *n = c->buffer_tree.rb_node;
 267	struct dm_buffer *b;
 268
 269	while (n) {
 270		b = container_of(n, struct dm_buffer, node);
 271
 272		if (b->block == block)
 273			return b;
 274
 275		n = block < b->block ? n->rb_left : n->rb_right;
 276	}
 277
 278	return NULL;
 279}
 280
 281static struct dm_buffer *__find_next(struct dm_bufio_client *c, sector_t block)
 282{
 283	struct rb_node *n = c->buffer_tree.rb_node;
 284	struct dm_buffer *b;
 285	struct dm_buffer *best = NULL;
 286
 287	while (n) {
 288		b = container_of(n, struct dm_buffer, node);
 289
 290		if (b->block == block)
 291			return b;
 292
 293		if (block <= b->block) {
 294			n = n->rb_left;
 295			best = b;
 296		} else {
 297			n = n->rb_right;
 298		}
 299	}
 300
 301	return best;
 302}
 303
 304static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
 305{
 306	struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
 307	struct dm_buffer *found;
 308
 309	while (*new) {
 310		found = container_of(*new, struct dm_buffer, node);
 311
 312		if (found->block == b->block) {
 313			BUG_ON(found != b);
 314			return;
 315		}
 316
 317		parent = *new;
 318		new = b->block < found->block ?
 319			&found->node.rb_left : &found->node.rb_right;
 320	}
 321
 322	rb_link_node(&b->node, parent, new);
 323	rb_insert_color(&b->node, &c->buffer_tree);
 324}
 325
 326static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
 327{
 328	rb_erase(&b->node, &c->buffer_tree);
 329}
 330
 331/*----------------------------------------------------------------*/
 332
 333static void adjust_total_allocated(struct dm_buffer *b, bool unlink)
 334{
 335	unsigned char data_mode;
 336	long diff;
 337
 338	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
 339		&dm_bufio_allocated_kmem_cache,
 340		&dm_bufio_allocated_get_free_pages,
 341		&dm_bufio_allocated_vmalloc,
 342	};
 343
 344	data_mode = b->data_mode;
 345	diff = (long)b->c->block_size;
 346	if (unlink)
 347		diff = -diff;
 348
 349	spin_lock(&global_spinlock);
 350
 351	*class_ptr[data_mode] += diff;
 352
 353	dm_bufio_current_allocated += diff;
 354
 355	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
 356		dm_bufio_peak_allocated = dm_bufio_current_allocated;
 357
 358	b->accessed = 1;
 359
 360	if (!unlink) {
 361		list_add(&b->global_list, &global_queue);
 362		global_num++;
 363		if (dm_bufio_current_allocated > dm_bufio_cache_size)
 364			queue_work(dm_bufio_wq, &dm_bufio_replacement_work);
 365	} else {
 366		list_del(&b->global_list);
 367		global_num--;
 368	}
 369
 370	spin_unlock(&global_spinlock);
 371}
 372
 373/*
 374 * Change the number of clients and recalculate per-client limit.
 375 */
 376static void __cache_size_refresh(void)
 377{
 378	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
 379	BUG_ON(dm_bufio_client_count < 0);
 380
 381	dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
 382
 383	/*
 384	 * Use default if set to 0 and report the actual cache size used.
 385	 */
 386	if (!dm_bufio_cache_size_latch) {
 387		(void)cmpxchg(&dm_bufio_cache_size, 0,
 388			      dm_bufio_default_cache_size);
 389		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
 390	}
 
 
 
 391}
 392
 393/*
 394 * Allocating buffer data.
 395 *
 396 * Small buffers are allocated with kmem_cache, to use space optimally.
 397 *
 398 * For large buffers, we choose between get_free_pages and vmalloc.
 399 * Each has advantages and disadvantages.
 400 *
 401 * __get_free_pages can randomly fail if the memory is fragmented.
 402 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
 403 * as low as 128M) so using it for caching is not appropriate.
 404 *
 405 * If the allocation may fail we use __get_free_pages. Memory fragmentation
 406 * won't have a fatal effect here, but it just causes flushes of some other
 407 * buffers and more I/O will be performed. Don't use __get_free_pages if it
 408 * always fails (i.e. order >= MAX_ORDER).
 409 *
 410 * If the allocation shouldn't fail we use __vmalloc. This is only for the
 411 * initial reserve allocation, so there's no risk of wasting all vmalloc
 412 * space.
 413 */
 414static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
 415			       unsigned char *data_mode)
 416{
 417	if (unlikely(c->slab_cache != NULL)) {
 
 
 
 418		*data_mode = DATA_MODE_SLAB;
 419		return kmem_cache_alloc(c->slab_cache, gfp_mask);
 420	}
 421
 422	if (c->block_size <= KMALLOC_MAX_SIZE &&
 423	    gfp_mask & __GFP_NORETRY) {
 424		*data_mode = DATA_MODE_GET_FREE_PAGES;
 425		return (void *)__get_free_pages(gfp_mask,
 426						c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
 427	}
 428
 429	*data_mode = DATA_MODE_VMALLOC;
 430
 431	/*
 432	 * __vmalloc allocates the data pages and auxiliary structures with
 433	 * gfp_flags that were specified, but pagetables are always allocated
 434	 * with GFP_KERNEL, no matter what was specified as gfp_mask.
 435	 *
 436	 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
 437	 * all allocations done by this process (including pagetables) are done
 438	 * as if GFP_NOIO was specified.
 439	 */
 440	if (gfp_mask & __GFP_NORETRY) {
 441		unsigned noio_flag = memalloc_noio_save();
 442		void *ptr = __vmalloc(c->block_size, gfp_mask);
 443
 
 
 
 
 
 
 444		memalloc_noio_restore(noio_flag);
 445		return ptr;
 446	}
 447
 448	return __vmalloc(c->block_size, gfp_mask);
 449}
 450
 451/*
 452 * Free buffer's data.
 453 */
 454static void free_buffer_data(struct dm_bufio_client *c,
 455			     void *data, unsigned char data_mode)
 456{
 457	switch (data_mode) {
 458	case DATA_MODE_SLAB:
 459		kmem_cache_free(c->slab_cache, data);
 460		break;
 461
 462	case DATA_MODE_GET_FREE_PAGES:
 463		free_pages((unsigned long)data,
 464			   c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
 465		break;
 466
 467	case DATA_MODE_VMALLOC:
 468		vfree(data);
 469		break;
 470
 471	default:
 472		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
 473		       data_mode);
 474		BUG();
 475	}
 476}
 477
 478/*
 479 * Allocate buffer and its data.
 480 */
 481static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
 482{
 483	struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
 
 484
 485	if (!b)
 486		return NULL;
 487
 488	b->c = c;
 489
 490	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
 491	if (!b->data) {
 492		kmem_cache_free(c->slab_buffer, b);
 493		return NULL;
 494	}
 495
 
 
 496#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
 497	b->stack_len = 0;
 498#endif
 499	return b;
 500}
 501
 502/*
 503 * Free buffer and its data.
 504 */
 505static void free_buffer(struct dm_buffer *b)
 506{
 507	struct dm_bufio_client *c = b->c;
 508
 
 
 509	free_buffer_data(c, b->data, b->data_mode);
 510	kmem_cache_free(c->slab_buffer, b);
 511}
 512
 513/*
 514 * Link buffer to the buffer tree and clean or dirty queue.
 515 */
 516static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
 517{
 518	struct dm_bufio_client *c = b->c;
 519
 520	c->n_buffers[dirty]++;
 521	b->block = block;
 522	b->list_mode = dirty;
 523	list_add(&b->lru_list, &c->lru[dirty]);
 524	__insert(b->c, b);
 525	b->last_accessed = jiffies;
 526
 527	adjust_total_allocated(b, false);
 528}
 529
 530/*
 531 * Unlink buffer from the buffer tree and dirty or clean queue.
 532 */
 533static void __unlink_buffer(struct dm_buffer *b)
 534{
 535	struct dm_bufio_client *c = b->c;
 536
 537	BUG_ON(!c->n_buffers[b->list_mode]);
 538
 539	c->n_buffers[b->list_mode]--;
 540	__remove(b->c, b);
 541	list_del(&b->lru_list);
 542
 543	adjust_total_allocated(b, true);
 544}
 545
 546/*
 547 * Place the buffer to the head of dirty or clean LRU queue.
 548 */
 549static void __relink_lru(struct dm_buffer *b, int dirty)
 550{
 551	struct dm_bufio_client *c = b->c;
 552
 553	b->accessed = 1;
 554
 555	BUG_ON(!c->n_buffers[b->list_mode]);
 556
 557	c->n_buffers[b->list_mode]--;
 558	c->n_buffers[dirty]++;
 559	b->list_mode = dirty;
 560	list_move(&b->lru_list, &c->lru[dirty]);
 561	b->last_accessed = jiffies;
 562}
 563
 564/*----------------------------------------------------------------
 565 * Submit I/O on the buffer.
 566 *
 567 * Bio interface is faster but it has some problems:
 568 *	the vector list is limited (increasing this limit increases
 569 *	memory-consumption per buffer, so it is not viable);
 570 *
 571 *	the memory must be direct-mapped, not vmalloced;
 572 *
 
 
 
 
 573 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
 574 * it is not vmalloced, try using the bio interface.
 575 *
 576 * If the buffer is big, if it is vmalloced or if the underlying device
 577 * rejects the bio because it is too large, use dm-io layer to do the I/O.
 578 * The dm-io layer splits the I/O into multiple requests, avoiding the above
 579 * shortcomings.
 580 *--------------------------------------------------------------*/
 581
 582/*
 583 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
 584 * that the request was handled directly with bio interface.
 585 */
 586static void dmio_complete(unsigned long error, void *context)
 587{
 588	struct dm_buffer *b = context;
 589
 590	b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
 
 591}
 592
 593static void use_dmio(struct dm_buffer *b, enum req_op op, sector_t sector,
 594		     unsigned n_sectors, unsigned offset)
 595{
 596	int r;
 597	struct dm_io_request io_req = {
 598		.bi_opf = op,
 
 599		.notify.fn = dmio_complete,
 600		.notify.context = b,
 601		.client = b->c->dm_io,
 602	};
 603	struct dm_io_region region = {
 604		.bdev = b->c->bdev,
 605		.sector = sector,
 606		.count = n_sectors,
 607	};
 608
 609	if (b->data_mode != DATA_MODE_VMALLOC) {
 610		io_req.mem.type = DM_IO_KMEM;
 611		io_req.mem.ptr.addr = (char *)b->data + offset;
 612	} else {
 613		io_req.mem.type = DM_IO_VMA;
 614		io_req.mem.ptr.vma = (char *)b->data + offset;
 615	}
 616
 
 
 617	r = dm_io(&io_req, 1, &region, NULL);
 618	if (unlikely(r))
 619		b->end_io(b, errno_to_blk_status(r));
 
 
 620}
 621
 622static void bio_complete(struct bio *bio)
 623{
 624	struct dm_buffer *b = bio->bi_private;
 625	blk_status_t status = bio->bi_status;
 626	bio_uninit(bio);
 627	kfree(bio);
 628	b->end_io(b, status);
 
 
 
 
 
 
 629}
 630
 631static void use_bio(struct dm_buffer *b, enum req_op op, sector_t sector,
 632		    unsigned n_sectors, unsigned offset)
 633{
 634	struct bio *bio;
 635	char *ptr;
 636	unsigned vec_size, len;
 637
 638	vec_size = b->c->block_size >> PAGE_SHIFT;
 639	if (unlikely(b->c->sectors_per_block_bits < PAGE_SHIFT - SECTOR_SHIFT))
 640		vec_size += 2;
 641
 642	bio = bio_kmalloc(vec_size, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN);
 643	if (!bio) {
 644dmio:
 645		use_dmio(b, op, sector, n_sectors, offset);
 646		return;
 647	}
 648	bio_init(bio, b->c->bdev, bio->bi_inline_vecs, vec_size, op);
 649	bio->bi_iter.bi_sector = sector;
 650	bio->bi_end_io = bio_complete;
 651	bio->bi_private = b;
 
 
 
 652
 653	ptr = (char *)b->data + offset;
 654	len = n_sectors << SECTOR_SHIFT;
 
 
 655
 656	do {
 657		unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len);
 658		if (!bio_add_page(bio, virt_to_page(ptr), this_step,
 659				  offset_in_page(ptr))) {
 660			bio_put(bio);
 661			goto dmio;
 
 662		}
 663
 664		len -= this_step;
 665		ptr += this_step;
 666	} while (len > 0);
 667
 668	submit_bio(bio);
 669}
 670
 671static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block)
 
 672{
 673	sector_t sector;
 674
 675	if (likely(c->sectors_per_block_bits >= 0))
 676		sector = block << c->sectors_per_block_bits;
 677	else
 678		sector = block * (c->block_size >> SECTOR_SHIFT);
 679	sector += c->start;
 680
 681	return sector;
 682}
 683
 684static void submit_io(struct dm_buffer *b, enum req_op op,
 685		      void (*end_io)(struct dm_buffer *, blk_status_t))
 686{
 687	unsigned n_sectors;
 688	sector_t sector;
 689	unsigned offset, end;
 690
 691	b->end_io = end_io;
 692
 693	sector = block_to_sector(b->c, b->block);
 694
 695	if (op != REQ_OP_WRITE) {
 696		n_sectors = b->c->block_size >> SECTOR_SHIFT;
 697		offset = 0;
 698	} else {
 699		if (b->c->write_callback)
 700			b->c->write_callback(b);
 701		offset = b->write_start;
 702		end = b->write_end;
 703		offset &= -DM_BUFIO_WRITE_ALIGN;
 704		end += DM_BUFIO_WRITE_ALIGN - 1;
 705		end &= -DM_BUFIO_WRITE_ALIGN;
 706		if (unlikely(end > b->c->block_size))
 707			end = b->c->block_size;
 708
 709		sector += offset >> SECTOR_SHIFT;
 710		n_sectors = (end - offset) >> SECTOR_SHIFT;
 711	}
 712
 713	if (b->data_mode != DATA_MODE_VMALLOC)
 714		use_bio(b, op, sector, n_sectors, offset);
 715	else
 716		use_dmio(b, op, sector, n_sectors, offset);
 717}
 718
 719/*----------------------------------------------------------------
 720 * Writing dirty buffers
 721 *--------------------------------------------------------------*/
 722
 723/*
 724 * The endio routine for write.
 725 *
 726 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
 727 * it.
 728 */
 729static void write_endio(struct dm_buffer *b, blk_status_t status)
 730{
 731	b->write_error = status;
 732	if (unlikely(status)) {
 733		struct dm_bufio_client *c = b->c;
 734
 735		(void)cmpxchg(&c->async_write_error, 0,
 736				blk_status_to_errno(status));
 
 
 
 737	}
 738
 739	BUG_ON(!test_bit(B_WRITING, &b->state));
 740
 741	smp_mb__before_atomic();
 742	clear_bit(B_WRITING, &b->state);
 743	smp_mb__after_atomic();
 744
 745	wake_up_bit(&b->state, B_WRITING);
 746}
 747
 748/*
 749 * Initiate a write on a dirty buffer, but don't wait for it.
 750 *
 751 * - If the buffer is not dirty, exit.
 752 * - If there some previous write going on, wait for it to finish (we can't
 753 *   have two writes on the same buffer simultaneously).
 754 * - Submit our write and don't wait on it. We set B_WRITING indicating
 755 *   that there is a write in progress.
 756 */
 757static void __write_dirty_buffer(struct dm_buffer *b,
 758				 struct list_head *write_list)
 759{
 760	if (!test_bit(B_DIRTY, &b->state))
 761		return;
 762
 763	clear_bit(B_DIRTY, &b->state);
 764	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
 765
 766	b->write_start = b->dirty_start;
 767	b->write_end = b->dirty_end;
 768
 769	if (!write_list)
 770		submit_io(b, REQ_OP_WRITE, write_endio);
 771	else
 772		list_add_tail(&b->write_list, write_list);
 773}
 774
 775static void __flush_write_list(struct list_head *write_list)
 776{
 777	struct blk_plug plug;
 778	blk_start_plug(&plug);
 779	while (!list_empty(write_list)) {
 780		struct dm_buffer *b =
 781			list_entry(write_list->next, struct dm_buffer, write_list);
 782		list_del(&b->write_list);
 783		submit_io(b, REQ_OP_WRITE, write_endio);
 784		cond_resched();
 785	}
 786	blk_finish_plug(&plug);
 787}
 788
 789/*
 790 * Wait until any activity on the buffer finishes.  Possibly write the
 791 * buffer if it is dirty.  When this function finishes, there is no I/O
 792 * running on the buffer and the buffer is not dirty.
 793 */
 794static void __make_buffer_clean(struct dm_buffer *b)
 795{
 796	BUG_ON(b->hold_count);
 797
 798	/* smp_load_acquire() pairs with read_endio()'s smp_mb__before_atomic() */
 799	if (!smp_load_acquire(&b->state))	/* fast case */
 800		return;
 801
 802	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
 803	__write_dirty_buffer(b, NULL);
 804	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
 805}
 806
 807/*
 808 * Find some buffer that is not held by anybody, clean it, unlink it and
 809 * return it.
 810 */
 811static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
 812{
 813	struct dm_buffer *b;
 814
 815	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
 816		BUG_ON(test_bit(B_WRITING, &b->state));
 817		BUG_ON(test_bit(B_DIRTY, &b->state));
 818
 819		if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep &&
 820		    unlikely(test_bit_acquire(B_READING, &b->state)))
 821			continue;
 822
 823		if (!b->hold_count) {
 824			__make_buffer_clean(b);
 825			__unlink_buffer(b);
 826			return b;
 827		}
 828		cond_resched();
 829	}
 830
 831	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
 832		return NULL;
 833
 834	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
 835		BUG_ON(test_bit(B_READING, &b->state));
 836
 837		if (!b->hold_count) {
 838			__make_buffer_clean(b);
 839			__unlink_buffer(b);
 840			return b;
 841		}
 842		cond_resched();
 843	}
 844
 845	return NULL;
 846}
 847
 848/*
 849 * Wait until some other threads free some buffer or release hold count on
 850 * some buffer.
 851 *
 852 * This function is entered with c->lock held, drops it and regains it
 853 * before exiting.
 854 */
 855static void __wait_for_free_buffer(struct dm_bufio_client *c)
 856{
 857	DECLARE_WAITQUEUE(wait, current);
 858
 859	add_wait_queue(&c->free_buffer_wait, &wait);
 860	set_current_state(TASK_UNINTERRUPTIBLE);
 861	dm_bufio_unlock(c);
 862
 863	io_schedule();
 864
 865	remove_wait_queue(&c->free_buffer_wait, &wait);
 866
 867	dm_bufio_lock(c);
 868}
 869
 870enum new_flag {
 871	NF_FRESH = 0,
 872	NF_READ = 1,
 873	NF_GET = 2,
 874	NF_PREFETCH = 3
 875};
 876
 877/*
 878 * Allocate a new buffer. If the allocation is not possible, wait until
 879 * some other thread frees a buffer.
 880 *
 881 * May drop the lock and regain it.
 882 */
 883static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
 884{
 885	struct dm_buffer *b;
 886	bool tried_noio_alloc = false;
 887
 888	/*
 889	 * dm-bufio is resistant to allocation failures (it just keeps
 890	 * one buffer reserved in cases all the allocations fail).
 891	 * So set flags to not try too hard:
 892	 *	GFP_NOWAIT: don't wait; if we need to sleep we'll release our
 893	 *		    mutex and wait ourselves.
 894	 *	__GFP_NORETRY: don't retry and rather return failure
 895	 *	__GFP_NOMEMALLOC: don't use emergency reserves
 896	 *	__GFP_NOWARN: don't print a warning in case of failure
 897	 *
 898	 * For debugging, if we set the cache size to 1, no new buffers will
 899	 * be allocated.
 900	 */
 901	while (1) {
 902		if (dm_bufio_cache_size_latch != 1) {
 903			b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 904			if (b)
 905				return b;
 906		}
 907
 908		if (nf == NF_PREFETCH)
 909			return NULL;
 910
 911		if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
 912			dm_bufio_unlock(c);
 913			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 914			dm_bufio_lock(c);
 915			if (b)
 916				return b;
 917			tried_noio_alloc = true;
 918		}
 919
 920		if (!list_empty(&c->reserved_buffers)) {
 921			b = list_entry(c->reserved_buffers.next,
 922				       struct dm_buffer, lru_list);
 923			list_del(&b->lru_list);
 924			c->need_reserved_buffers++;
 925
 926			return b;
 927		}
 928
 929		b = __get_unclaimed_buffer(c);
 930		if (b)
 931			return b;
 932
 933		__wait_for_free_buffer(c);
 934	}
 935}
 936
 937static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
 938{
 939	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
 940
 941	if (!b)
 942		return NULL;
 943
 944	if (c->alloc_callback)
 945		c->alloc_callback(b);
 946
 947	return b;
 948}
 949
 950/*
 951 * Free a buffer and wake other threads waiting for free buffers.
 952 */
 953static void __free_buffer_wake(struct dm_buffer *b)
 954{
 955	struct dm_bufio_client *c = b->c;
 956
 957	if (!c->need_reserved_buffers)
 958		free_buffer(b);
 959	else {
 960		list_add(&b->lru_list, &c->reserved_buffers);
 961		c->need_reserved_buffers--;
 962	}
 963
 964	wake_up(&c->free_buffer_wait);
 965}
 966
 967static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
 968					struct list_head *write_list)
 969{
 970	struct dm_buffer *b, *tmp;
 971
 972	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
 973		BUG_ON(test_bit(B_READING, &b->state));
 974
 975		if (!test_bit(B_DIRTY, &b->state) &&
 976		    !test_bit(B_WRITING, &b->state)) {
 977			__relink_lru(b, LIST_CLEAN);
 978			continue;
 979		}
 980
 981		if (no_wait && test_bit(B_WRITING, &b->state))
 982			return;
 983
 984		__write_dirty_buffer(b, write_list);
 985		cond_resched();
 986	}
 987}
 988
 989/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 990 * Check if we're over watermark.
 991 * If we are over threshold_buffers, start freeing buffers.
 992 * If we're over "limit_buffers", block until we get under the limit.
 993 */
 994static void __check_watermark(struct dm_bufio_client *c,
 995			      struct list_head *write_list)
 996{
 997	if (c->n_buffers[LIST_DIRTY] > c->n_buffers[LIST_CLEAN] * DM_BUFIO_WRITEBACK_RATIO)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 998		__write_dirty_buffers_async(c, 1, write_list);
 999}
1000
1001/*----------------------------------------------------------------
1002 * Getting a buffer
1003 *--------------------------------------------------------------*/
1004
1005static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
1006				     enum new_flag nf, int *need_submit,
1007				     struct list_head *write_list)
1008{
1009	struct dm_buffer *b, *new_b = NULL;
1010
1011	*need_submit = 0;
1012
1013	b = __find(c, block);
1014	if (b)
1015		goto found_buffer;
1016
1017	if (nf == NF_GET)
1018		return NULL;
1019
1020	new_b = __alloc_buffer_wait(c, nf);
1021	if (!new_b)
1022		return NULL;
1023
1024	/*
1025	 * We've had a period where the mutex was unlocked, so need to
1026	 * recheck the buffer tree.
1027	 */
1028	b = __find(c, block);
1029	if (b) {
1030		__free_buffer_wake(new_b);
1031		goto found_buffer;
1032	}
1033
1034	__check_watermark(c, write_list);
1035
1036	b = new_b;
1037	b->hold_count = 1;
1038	b->read_error = 0;
1039	b->write_error = 0;
1040	__link_buffer(b, block, LIST_CLEAN);
1041
1042	if (nf == NF_FRESH) {
1043		b->state = 0;
1044		return b;
1045	}
1046
1047	b->state = 1 << B_READING;
1048	*need_submit = 1;
1049
1050	return b;
1051
1052found_buffer:
1053	if (nf == NF_PREFETCH)
1054		return NULL;
1055	/*
1056	 * Note: it is essential that we don't wait for the buffer to be
1057	 * read if dm_bufio_get function is used. Both dm_bufio_get and
1058	 * dm_bufio_prefetch can be used in the driver request routine.
1059	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1060	 * the same buffer, it would deadlock if we waited.
1061	 */
1062	if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state)))
1063		return NULL;
1064
1065	b->hold_count++;
1066	__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1067		     test_bit(B_WRITING, &b->state));
1068	return b;
1069}
1070
1071/*
1072 * The endio routine for reading: set the error, clear the bit and wake up
1073 * anyone waiting on the buffer.
1074 */
1075static void read_endio(struct dm_buffer *b, blk_status_t status)
1076{
1077	b->read_error = status;
 
 
1078
1079	BUG_ON(!test_bit(B_READING, &b->state));
1080
1081	smp_mb__before_atomic();
1082	clear_bit(B_READING, &b->state);
1083	smp_mb__after_atomic();
1084
1085	wake_up_bit(&b->state, B_READING);
1086}
1087
1088/*
1089 * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1090 * functions is similar except that dm_bufio_new doesn't read the
1091 * buffer from the disk (assuming that the caller overwrites all the data
1092 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1093 */
1094static void *new_read(struct dm_bufio_client *c, sector_t block,
1095		      enum new_flag nf, struct dm_buffer **bp)
1096{
1097	int need_submit;
1098	struct dm_buffer *b;
1099
1100	LIST_HEAD(write_list);
1101
1102	dm_bufio_lock(c);
1103	b = __bufio_new(c, block, nf, &need_submit, &write_list);
1104#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1105	if (b && b->hold_count == 1)
1106		buffer_record_stack(b);
1107#endif
1108	dm_bufio_unlock(c);
1109
1110	__flush_write_list(&write_list);
1111
1112	if (!b)
1113		return NULL;
1114
1115	if (need_submit)
1116		submit_io(b, REQ_OP_READ, read_endio);
1117
1118	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1119
1120	if (b->read_error) {
1121		int error = blk_status_to_errno(b->read_error);
1122
1123		dm_bufio_release(b);
1124
1125		return ERR_PTR(error);
1126	}
1127
1128	*bp = b;
1129
1130	return b->data;
1131}
1132
1133void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1134		   struct dm_buffer **bp)
1135{
1136	return new_read(c, block, NF_GET, bp);
1137}
1138EXPORT_SYMBOL_GPL(dm_bufio_get);
1139
1140void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1141		    struct dm_buffer **bp)
1142{
1143	BUG_ON(dm_bufio_in_request());
1144
1145	return new_read(c, block, NF_READ, bp);
1146}
1147EXPORT_SYMBOL_GPL(dm_bufio_read);
1148
1149void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1150		   struct dm_buffer **bp)
1151{
1152	BUG_ON(dm_bufio_in_request());
1153
1154	return new_read(c, block, NF_FRESH, bp);
1155}
1156EXPORT_SYMBOL_GPL(dm_bufio_new);
1157
1158void dm_bufio_prefetch(struct dm_bufio_client *c,
1159		       sector_t block, unsigned n_blocks)
1160{
1161	struct blk_plug plug;
1162
1163	LIST_HEAD(write_list);
1164
1165	BUG_ON(dm_bufio_in_request());
1166
1167	blk_start_plug(&plug);
1168	dm_bufio_lock(c);
1169
1170	for (; n_blocks--; block++) {
1171		int need_submit;
1172		struct dm_buffer *b;
1173		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1174				&write_list);
1175		if (unlikely(!list_empty(&write_list))) {
1176			dm_bufio_unlock(c);
1177			blk_finish_plug(&plug);
1178			__flush_write_list(&write_list);
1179			blk_start_plug(&plug);
1180			dm_bufio_lock(c);
1181		}
1182		if (unlikely(b != NULL)) {
1183			dm_bufio_unlock(c);
1184
1185			if (need_submit)
1186				submit_io(b, REQ_OP_READ, read_endio);
1187			dm_bufio_release(b);
1188
1189			cond_resched();
1190
1191			if (!n_blocks)
1192				goto flush_plug;
1193			dm_bufio_lock(c);
1194		}
1195	}
1196
1197	dm_bufio_unlock(c);
1198
1199flush_plug:
1200	blk_finish_plug(&plug);
1201}
1202EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1203
1204void dm_bufio_release(struct dm_buffer *b)
1205{
1206	struct dm_bufio_client *c = b->c;
1207
1208	dm_bufio_lock(c);
1209
1210	BUG_ON(!b->hold_count);
1211
1212	b->hold_count--;
1213	if (!b->hold_count) {
1214		wake_up(&c->free_buffer_wait);
1215
1216		/*
1217		 * If there were errors on the buffer, and the buffer is not
1218		 * to be written, free the buffer. There is no point in caching
1219		 * invalid buffer.
1220		 */
1221		if ((b->read_error || b->write_error) &&
1222		    !test_bit_acquire(B_READING, &b->state) &&
1223		    !test_bit(B_WRITING, &b->state) &&
1224		    !test_bit(B_DIRTY, &b->state)) {
1225			__unlink_buffer(b);
1226			__free_buffer_wake(b);
1227		}
1228	}
1229
1230	dm_bufio_unlock(c);
1231}
1232EXPORT_SYMBOL_GPL(dm_bufio_release);
1233
1234void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
1235					unsigned start, unsigned end)
1236{
1237	struct dm_bufio_client *c = b->c;
1238
1239	BUG_ON(start >= end);
1240	BUG_ON(end > b->c->block_size);
1241
1242	dm_bufio_lock(c);
1243
1244	BUG_ON(test_bit(B_READING, &b->state));
1245
1246	if (!test_and_set_bit(B_DIRTY, &b->state)) {
1247		b->dirty_start = start;
1248		b->dirty_end = end;
1249		__relink_lru(b, LIST_DIRTY);
1250	} else {
1251		if (start < b->dirty_start)
1252			b->dirty_start = start;
1253		if (end > b->dirty_end)
1254			b->dirty_end = end;
1255	}
1256
1257	dm_bufio_unlock(c);
1258}
1259EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
1260
1261void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1262{
1263	dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
1264}
1265EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1266
1267void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1268{
1269	LIST_HEAD(write_list);
1270
1271	BUG_ON(dm_bufio_in_request());
1272
1273	dm_bufio_lock(c);
1274	__write_dirty_buffers_async(c, 0, &write_list);
1275	dm_bufio_unlock(c);
1276	__flush_write_list(&write_list);
1277}
1278EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1279
1280/*
1281 * For performance, it is essential that the buffers are written asynchronously
1282 * and simultaneously (so that the block layer can merge the writes) and then
1283 * waited upon.
1284 *
1285 * Finally, we flush hardware disk cache.
1286 */
1287int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1288{
1289	int a, f;
1290	unsigned long buffers_processed = 0;
1291	struct dm_buffer *b, *tmp;
1292
1293	LIST_HEAD(write_list);
1294
1295	dm_bufio_lock(c);
1296	__write_dirty_buffers_async(c, 0, &write_list);
1297	dm_bufio_unlock(c);
1298	__flush_write_list(&write_list);
1299	dm_bufio_lock(c);
1300
1301again:
1302	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1303		int dropped_lock = 0;
1304
1305		if (buffers_processed < c->n_buffers[LIST_DIRTY])
1306			buffers_processed++;
1307
1308		BUG_ON(test_bit(B_READING, &b->state));
1309
1310		if (test_bit(B_WRITING, &b->state)) {
1311			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1312				dropped_lock = 1;
1313				b->hold_count++;
1314				dm_bufio_unlock(c);
1315				wait_on_bit_io(&b->state, B_WRITING,
1316					       TASK_UNINTERRUPTIBLE);
1317				dm_bufio_lock(c);
1318				b->hold_count--;
1319			} else
1320				wait_on_bit_io(&b->state, B_WRITING,
1321					       TASK_UNINTERRUPTIBLE);
1322		}
1323
1324		if (!test_bit(B_DIRTY, &b->state) &&
1325		    !test_bit(B_WRITING, &b->state))
1326			__relink_lru(b, LIST_CLEAN);
1327
1328		cond_resched();
1329
1330		/*
1331		 * If we dropped the lock, the list is no longer consistent,
1332		 * so we must restart the search.
1333		 *
1334		 * In the most common case, the buffer just processed is
1335		 * relinked to the clean list, so we won't loop scanning the
1336		 * same buffer again and again.
1337		 *
1338		 * This may livelock if there is another thread simultaneously
1339		 * dirtying buffers, so we count the number of buffers walked
1340		 * and if it exceeds the total number of buffers, it means that
1341		 * someone is doing some writes simultaneously with us.  In
1342		 * this case, stop, dropping the lock.
1343		 */
1344		if (dropped_lock)
1345			goto again;
1346	}
1347	wake_up(&c->free_buffer_wait);
1348	dm_bufio_unlock(c);
1349
1350	a = xchg(&c->async_write_error, 0);
1351	f = dm_bufio_issue_flush(c);
1352	if (a)
1353		return a;
1354
1355	return f;
1356}
1357EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1358
1359/*
1360 * Use dm-io to send an empty barrier to flush the device.
1361 */
1362int dm_bufio_issue_flush(struct dm_bufio_client *c)
1363{
1364	struct dm_io_request io_req = {
1365		.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
 
1366		.mem.type = DM_IO_KMEM,
1367		.mem.ptr.addr = NULL,
1368		.client = c->dm_io,
1369	};
1370	struct dm_io_region io_reg = {
1371		.bdev = c->bdev,
1372		.sector = 0,
1373		.count = 0,
1374	};
1375
1376	BUG_ON(dm_bufio_in_request());
1377
1378	return dm_io(&io_req, 1, &io_reg, NULL);
1379}
1380EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1381
1382/*
1383 * Use dm-io to send a discard request to flush the device.
1384 */
1385int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count)
1386{
1387	struct dm_io_request io_req = {
1388		.bi_opf = REQ_OP_DISCARD | REQ_SYNC,
1389		.mem.type = DM_IO_KMEM,
1390		.mem.ptr.addr = NULL,
1391		.client = c->dm_io,
1392	};
1393	struct dm_io_region io_reg = {
1394		.bdev = c->bdev,
1395		.sector = block_to_sector(c, block),
1396		.count = block_to_sector(c, count),
1397	};
1398
1399	BUG_ON(dm_bufio_in_request());
1400
1401	return dm_io(&io_req, 1, &io_reg, NULL);
1402}
1403EXPORT_SYMBOL_GPL(dm_bufio_issue_discard);
1404
1405/*
1406 * We first delete any other buffer that may be at that new location.
1407 *
1408 * Then, we write the buffer to the original location if it was dirty.
1409 *
1410 * Then, if we are the only one who is holding the buffer, relink the buffer
1411 * in the buffer tree for the new location.
1412 *
1413 * If there was someone else holding the buffer, we write it to the new
1414 * location but not relink it, because that other user needs to have the buffer
1415 * at the same place.
1416 */
1417void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1418{
1419	struct dm_bufio_client *c = b->c;
1420	struct dm_buffer *new;
1421
1422	BUG_ON(dm_bufio_in_request());
1423
1424	dm_bufio_lock(c);
1425
1426retry:
1427	new = __find(c, new_block);
1428	if (new) {
1429		if (new->hold_count) {
1430			__wait_for_free_buffer(c);
1431			goto retry;
1432		}
1433
1434		/*
1435		 * FIXME: Is there any point waiting for a write that's going
1436		 * to be overwritten in a bit?
1437		 */
1438		__make_buffer_clean(new);
1439		__unlink_buffer(new);
1440		__free_buffer_wake(new);
1441	}
1442
1443	BUG_ON(!b->hold_count);
1444	BUG_ON(test_bit(B_READING, &b->state));
1445
1446	__write_dirty_buffer(b, NULL);
1447	if (b->hold_count == 1) {
1448		wait_on_bit_io(&b->state, B_WRITING,
1449			       TASK_UNINTERRUPTIBLE);
1450		set_bit(B_DIRTY, &b->state);
1451		b->dirty_start = 0;
1452		b->dirty_end = c->block_size;
1453		__unlink_buffer(b);
1454		__link_buffer(b, new_block, LIST_DIRTY);
1455	} else {
1456		sector_t old_block;
1457		wait_on_bit_lock_io(&b->state, B_WRITING,
1458				    TASK_UNINTERRUPTIBLE);
1459		/*
1460		 * Relink buffer to "new_block" so that write_callback
1461		 * sees "new_block" as a block number.
1462		 * After the write, link the buffer back to old_block.
1463		 * All this must be done in bufio lock, so that block number
1464		 * change isn't visible to other threads.
1465		 */
1466		old_block = b->block;
1467		__unlink_buffer(b);
1468		__link_buffer(b, new_block, b->list_mode);
1469		submit_io(b, REQ_OP_WRITE, write_endio);
1470		wait_on_bit_io(&b->state, B_WRITING,
1471			       TASK_UNINTERRUPTIBLE);
1472		__unlink_buffer(b);
1473		__link_buffer(b, old_block, b->list_mode);
1474	}
1475
1476	dm_bufio_unlock(c);
1477	dm_bufio_release(b);
1478}
1479EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1480
1481static void forget_buffer_locked(struct dm_buffer *b)
1482{
1483	if (likely(!b->hold_count) && likely(!smp_load_acquire(&b->state))) {
1484		__unlink_buffer(b);
1485		__free_buffer_wake(b);
1486	}
1487}
1488
1489/*
1490 * Free the given buffer.
1491 *
1492 * This is just a hint, if the buffer is in use or dirty, this function
1493 * does nothing.
1494 */
1495void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1496{
1497	struct dm_buffer *b;
1498
1499	dm_bufio_lock(c);
1500
1501	b = __find(c, block);
1502	if (b)
1503		forget_buffer_locked(b);
1504
1505	dm_bufio_unlock(c);
1506}
1507EXPORT_SYMBOL_GPL(dm_bufio_forget);
1508
1509void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks)
1510{
1511	struct dm_buffer *b;
1512	sector_t end_block = block + n_blocks;
1513
1514	while (block < end_block) {
1515		dm_bufio_lock(c);
1516
1517		b = __find_next(c, block);
1518		if (b) {
1519			block = b->block + 1;
1520			forget_buffer_locked(b);
1521		}
1522
1523		dm_bufio_unlock(c);
1524
1525		if (!b)
1526			break;
1527	}
1528
 
1529}
1530EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers);
1531
1532void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1533{
1534	c->minimum_buffers = n;
1535}
1536EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
1537
1538unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1539{
1540	return c->block_size;
1541}
1542EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1543
1544sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1545{
1546	sector_t s = bdev_nr_sectors(c->bdev);
1547	if (s >= c->start)
1548		s -= c->start;
1549	else
1550		s = 0;
1551	if (likely(c->sectors_per_block_bits >= 0))
1552		s >>= c->sectors_per_block_bits;
1553	else
1554		sector_div(s, c->block_size >> SECTOR_SHIFT);
1555	return s;
1556}
1557EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1558
1559struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c)
1560{
1561	return c->dm_io;
1562}
1563EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client);
1564
1565sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1566{
1567	return b->block;
1568}
1569EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1570
1571void *dm_bufio_get_block_data(struct dm_buffer *b)
1572{
1573	return b->data;
1574}
1575EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1576
1577void *dm_bufio_get_aux_data(struct dm_buffer *b)
1578{
1579	return b + 1;
1580}
1581EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1582
1583struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1584{
1585	return b->c;
1586}
1587EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1588
1589static void drop_buffers(struct dm_bufio_client *c)
1590{
1591	struct dm_buffer *b;
1592	int i;
1593	bool warned = false;
1594
1595	BUG_ON(dm_bufio_in_request());
1596
1597	/*
1598	 * An optimization so that the buffers are not written one-by-one.
1599	 */
1600	dm_bufio_write_dirty_buffers_async(c);
1601
1602	dm_bufio_lock(c);
1603
1604	while ((b = __get_unclaimed_buffer(c)))
1605		__free_buffer_wake(b);
1606
1607	for (i = 0; i < LIST_SIZE; i++)
1608		list_for_each_entry(b, &c->lru[i], lru_list) {
1609			WARN_ON(!warned);
1610			warned = true;
1611			DMERR("leaked buffer %llx, hold count %u, list %d",
1612			      (unsigned long long)b->block, b->hold_count, i);
1613#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1614			stack_trace_print(b->stack_entries, b->stack_len, 1);
1615			/* mark unclaimed to avoid BUG_ON below */
1616			b->hold_count = 0;
1617#endif
1618		}
1619
1620#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1621	while ((b = __get_unclaimed_buffer(c)))
1622		__free_buffer_wake(b);
1623#endif
1624
1625	for (i = 0; i < LIST_SIZE; i++)
1626		BUG_ON(!list_empty(&c->lru[i]));
1627
1628	dm_bufio_unlock(c);
1629}
1630
1631/*
1632 * We may not be able to evict this buffer if IO pending or the client
1633 * is still using it.  Caller is expected to know buffer is too old.
1634 *
1635 * And if GFP_NOFS is used, we must not do any I/O because we hold
1636 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1637 * rerouted to different bufio client.
1638 */
1639static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1640{
1641	if (!(gfp & __GFP_FS) ||
1642	    (static_branch_unlikely(&no_sleep_enabled) && b->c->no_sleep)) {
1643		if (test_bit_acquire(B_READING, &b->state) ||
1644		    test_bit(B_WRITING, &b->state) ||
1645		    test_bit(B_DIRTY, &b->state))
1646			return false;
1647	}
1648
1649	if (b->hold_count)
1650		return false;
1651
1652	__make_buffer_clean(b);
1653	__unlink_buffer(b);
1654	__free_buffer_wake(b);
1655
1656	return true;
1657}
1658
1659static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1660{
1661	unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
1662	if (likely(c->sectors_per_block_bits >= 0))
1663		retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
1664	else
1665		retain_bytes /= c->block_size;
1666	return retain_bytes;
1667}
1668
1669static void __scan(struct dm_bufio_client *c)
 
1670{
1671	int l;
1672	struct dm_buffer *b, *tmp;
1673	unsigned long freed = 0;
1674	unsigned long count = c->n_buffers[LIST_CLEAN] +
1675			      c->n_buffers[LIST_DIRTY];
1676	unsigned long retain_target = get_retain_buffers(c);
1677
1678	for (l = 0; l < LIST_SIZE; l++) {
1679		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1680			if (count - freed <= retain_target)
1681				atomic_long_set(&c->need_shrink, 0);
1682			if (!atomic_long_read(&c->need_shrink))
1683				return;
1684			if (__try_evict_buffer(b, GFP_KERNEL)) {
1685				atomic_long_dec(&c->need_shrink);
1686				freed++;
1687			}
 
1688			cond_resched();
1689		}
1690	}
 
1691}
1692
1693static void shrink_work(struct work_struct *w)
1694{
1695	struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work);
1696
1697	dm_bufio_lock(c);
1698	__scan(c);
1699	dm_bufio_unlock(c);
1700}
1701
1702static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1703{
1704	struct dm_bufio_client *c;
 
1705
1706	c = container_of(shrink, struct dm_bufio_client, shrinker);
1707	atomic_long_add(sc->nr_to_scan, &c->need_shrink);
1708	queue_work(dm_bufio_wq, &c->shrink_work);
 
 
1709
1710	return sc->nr_to_scan;
 
 
1711}
1712
1713static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
 
1714{
1715	struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1716	unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) +
1717			      READ_ONCE(c->n_buffers[LIST_DIRTY]);
1718	unsigned long retain_target = get_retain_buffers(c);
1719	unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink);
1720
1721	if (unlikely(count < retain_target))
1722		count = 0;
1723	else
1724		count -= retain_target;
1725
1726	if (unlikely(count < queued_for_cleanup))
1727		count = 0;
1728	else
1729		count -= queued_for_cleanup;
1730
1731	return count;
1732}
1733
1734/*
1735 * Create the buffering interface
1736 */
1737struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1738					       unsigned reserved_buffers, unsigned aux_size,
1739					       void (*alloc_callback)(struct dm_buffer *),
1740					       void (*write_callback)(struct dm_buffer *),
1741					       unsigned int flags)
1742{
1743	int r;
1744	struct dm_bufio_client *c;
1745	unsigned i;
1746	char slab_name[27];
1747
1748	if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
1749		DMERR("%s: block size not specified or is not multiple of 512b", __func__);
1750		r = -EINVAL;
1751		goto bad_client;
1752	}
1753
1754	c = kzalloc(sizeof(*c), GFP_KERNEL);
1755	if (!c) {
1756		r = -ENOMEM;
1757		goto bad_client;
1758	}
1759	c->buffer_tree = RB_ROOT;
1760
1761	c->bdev = bdev;
1762	c->block_size = block_size;
1763	if (is_power_of_2(block_size))
1764		c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1765	else
1766		c->sectors_per_block_bits = -1;
 
1767
 
1768	c->alloc_callback = alloc_callback;
1769	c->write_callback = write_callback;
1770
1771	if (flags & DM_BUFIO_CLIENT_NO_SLEEP) {
1772		c->no_sleep = true;
1773		static_branch_inc(&no_sleep_enabled);
1774	}
1775
1776	for (i = 0; i < LIST_SIZE; i++) {
1777		INIT_LIST_HEAD(&c->lru[i]);
1778		c->n_buffers[i] = 0;
1779	}
1780
1781	mutex_init(&c->lock);
1782	spin_lock_init(&c->spinlock);
1783	INIT_LIST_HEAD(&c->reserved_buffers);
1784	c->need_reserved_buffers = reserved_buffers;
1785
1786	dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
1787
1788	init_waitqueue_head(&c->free_buffer_wait);
1789	c->async_write_error = 0;
1790
1791	c->dm_io = dm_io_client_create();
1792	if (IS_ERR(c->dm_io)) {
1793		r = PTR_ERR(c->dm_io);
1794		goto bad_dm_io;
1795	}
1796
1797	if (block_size <= KMALLOC_MAX_SIZE &&
1798	    (block_size < PAGE_SIZE || !is_power_of_2(block_size))) {
1799		unsigned align = min(1U << __ffs(block_size), (unsigned)PAGE_SIZE);
1800		snprintf(slab_name, sizeof slab_name, "dm_bufio_cache-%u", block_size);
1801		c->slab_cache = kmem_cache_create(slab_name, block_size, align,
1802						  SLAB_RECLAIM_ACCOUNT, NULL);
1803		if (!c->slab_cache) {
1804			r = -ENOMEM;
1805			goto bad;
 
 
 
 
 
 
 
 
 
 
 
1806		}
1807	}
1808	if (aux_size)
1809		snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer-%u", aux_size);
1810	else
1811		snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer");
1812	c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
1813					   0, SLAB_RECLAIM_ACCOUNT, NULL);
1814	if (!c->slab_buffer) {
1815		r = -ENOMEM;
1816		goto bad;
1817	}
1818
1819	while (c->need_reserved_buffers) {
1820		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1821
1822		if (!b) {
1823			r = -ENOMEM;
1824			goto bad;
1825		}
1826		__free_buffer_wake(b);
1827	}
1828
1829	INIT_WORK(&c->shrink_work, shrink_work);
1830	atomic_long_set(&c->need_shrink, 0);
1831
1832	c->shrinker.count_objects = dm_bufio_shrink_count;
1833	c->shrinker.scan_objects = dm_bufio_shrink_scan;
1834	c->shrinker.seeks = 1;
1835	c->shrinker.batch = 0;
1836	r = register_shrinker(&c->shrinker, "md-%s:(%u:%u)", slab_name,
1837			      MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
1838	if (r)
1839		goto bad;
1840
1841	mutex_lock(&dm_bufio_clients_lock);
1842	dm_bufio_client_count++;
1843	list_add(&c->client_list, &dm_bufio_all_clients);
1844	__cache_size_refresh();
1845	mutex_unlock(&dm_bufio_clients_lock);
1846
 
 
 
 
 
 
1847	return c;
1848
1849bad:
 
1850	while (!list_empty(&c->reserved_buffers)) {
1851		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1852						 struct dm_buffer, lru_list);
1853		list_del(&b->lru_list);
1854		free_buffer(b);
1855	}
1856	kmem_cache_destroy(c->slab_cache);
1857	kmem_cache_destroy(c->slab_buffer);
1858	dm_io_client_destroy(c->dm_io);
1859bad_dm_io:
1860	mutex_destroy(&c->lock);
1861	if (c->no_sleep)
1862		static_branch_dec(&no_sleep_enabled);
1863	kfree(c);
1864bad_client:
1865	return ERR_PTR(r);
1866}
1867EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1868
1869/*
1870 * Free the buffering interface.
1871 * It is required that there are no references on any buffers.
1872 */
1873void dm_bufio_client_destroy(struct dm_bufio_client *c)
1874{
1875	unsigned i;
1876
1877	drop_buffers(c);
1878
1879	unregister_shrinker(&c->shrinker);
1880	flush_work(&c->shrink_work);
1881
1882	mutex_lock(&dm_bufio_clients_lock);
1883
1884	list_del(&c->client_list);
1885	dm_bufio_client_count--;
1886	__cache_size_refresh();
1887
1888	mutex_unlock(&dm_bufio_clients_lock);
1889
1890	BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1891	BUG_ON(c->need_reserved_buffers);
1892
1893	while (!list_empty(&c->reserved_buffers)) {
1894		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1895						 struct dm_buffer, lru_list);
1896		list_del(&b->lru_list);
1897		free_buffer(b);
1898	}
1899
1900	for (i = 0; i < LIST_SIZE; i++)
1901		if (c->n_buffers[i])
1902			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1903
1904	for (i = 0; i < LIST_SIZE; i++)
1905		BUG_ON(c->n_buffers[i]);
1906
1907	kmem_cache_destroy(c->slab_cache);
1908	kmem_cache_destroy(c->slab_buffer);
1909	dm_io_client_destroy(c->dm_io);
1910	mutex_destroy(&c->lock);
1911	if (c->no_sleep)
1912		static_branch_dec(&no_sleep_enabled);
1913	kfree(c);
1914}
1915EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1916
1917void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
1918{
1919	c->start = start;
1920}
1921EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
1922
1923static unsigned get_max_age_hz(void)
1924{
1925	unsigned max_age = READ_ONCE(dm_bufio_max_age);
1926
1927	if (max_age > UINT_MAX / HZ)
1928		max_age = UINT_MAX / HZ;
1929
1930	return max_age * HZ;
1931}
1932
1933static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1934{
1935	return time_after_eq(jiffies, b->last_accessed + age_hz);
1936}
1937
1938static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1939{
1940	struct dm_buffer *b, *tmp;
1941	unsigned long retain_target = get_retain_buffers(c);
1942	unsigned long count;
1943	LIST_HEAD(write_list);
1944
1945	dm_bufio_lock(c);
1946
1947	__check_watermark(c, &write_list);
1948	if (unlikely(!list_empty(&write_list))) {
1949		dm_bufio_unlock(c);
1950		__flush_write_list(&write_list);
1951		dm_bufio_lock(c);
1952	}
1953
1954	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1955	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1956		if (count <= retain_target)
1957			break;
1958
1959		if (!older_than(b, age_hz))
1960			break;
1961
1962		if (__try_evict_buffer(b, 0))
1963			count--;
1964
1965		cond_resched();
1966	}
1967
1968	dm_bufio_unlock(c);
1969}
1970
1971static void do_global_cleanup(struct work_struct *w)
1972{
1973	struct dm_bufio_client *locked_client = NULL;
1974	struct dm_bufio_client *current_client;
1975	struct dm_buffer *b;
1976	unsigned spinlock_hold_count;
1977	unsigned long threshold = dm_bufio_cache_size -
1978		dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO;
1979	unsigned long loops = global_num * 2;
1980
1981	mutex_lock(&dm_bufio_clients_lock);
1982
1983	while (1) {
1984		cond_resched();
1985
1986		spin_lock(&global_spinlock);
1987		if (unlikely(dm_bufio_current_allocated <= threshold))
1988			break;
1989
1990		spinlock_hold_count = 0;
1991get_next:
1992		if (!loops--)
1993			break;
1994		if (unlikely(list_empty(&global_queue)))
1995			break;
1996		b = list_entry(global_queue.prev, struct dm_buffer, global_list);
1997
1998		if (b->accessed) {
1999			b->accessed = 0;
2000			list_move(&b->global_list, &global_queue);
2001			if (likely(++spinlock_hold_count < 16))
2002				goto get_next;
2003			spin_unlock(&global_spinlock);
2004			continue;
2005		}
2006
2007		current_client = b->c;
2008		if (unlikely(current_client != locked_client)) {
2009			if (locked_client)
2010				dm_bufio_unlock(locked_client);
2011
2012			if (!dm_bufio_trylock(current_client)) {
2013				spin_unlock(&global_spinlock);
2014				dm_bufio_lock(current_client);
2015				locked_client = current_client;
2016				continue;
2017			}
2018
2019			locked_client = current_client;
2020		}
2021
2022		spin_unlock(&global_spinlock);
2023
2024		if (unlikely(!__try_evict_buffer(b, GFP_KERNEL))) {
2025			spin_lock(&global_spinlock);
2026			list_move(&b->global_list, &global_queue);
2027			spin_unlock(&global_spinlock);
2028		}
2029	}
2030
2031	spin_unlock(&global_spinlock);
2032
2033	if (locked_client)
2034		dm_bufio_unlock(locked_client);
2035
2036	mutex_unlock(&dm_bufio_clients_lock);
2037}
2038
2039static void cleanup_old_buffers(void)
2040{
2041	unsigned long max_age_hz = get_max_age_hz();
2042	struct dm_bufio_client *c;
2043
2044	mutex_lock(&dm_bufio_clients_lock);
2045
2046	__cache_size_refresh();
2047
2048	list_for_each_entry(c, &dm_bufio_all_clients, client_list)
2049		__evict_old_buffers(c, max_age_hz);
2050
2051	mutex_unlock(&dm_bufio_clients_lock);
2052}
2053
 
 
 
2054static void work_fn(struct work_struct *w)
2055{
2056	cleanup_old_buffers();
2057
2058	queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2059			   DM_BUFIO_WORK_TIMER_SECS * HZ);
2060}
2061
2062/*----------------------------------------------------------------
2063 * Module setup
2064 *--------------------------------------------------------------*/
2065
2066/*
2067 * This is called only once for the whole dm_bufio module.
2068 * It initializes memory limit.
2069 */
2070static int __init dm_bufio_init(void)
2071{
2072	__u64 mem;
2073
2074	dm_bufio_allocated_kmem_cache = 0;
2075	dm_bufio_allocated_get_free_pages = 0;
2076	dm_bufio_allocated_vmalloc = 0;
2077	dm_bufio_current_allocated = 0;
2078
2079	mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
2080			       DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
 
 
 
2081
2082	if (mem > ULONG_MAX)
2083		mem = ULONG_MAX;
2084
2085#ifdef CONFIG_MMU
2086	if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
2087		mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
 
 
 
 
2088#endif
2089
2090	dm_bufio_default_cache_size = mem;
2091
2092	mutex_lock(&dm_bufio_clients_lock);
2093	__cache_size_refresh();
2094	mutex_unlock(&dm_bufio_clients_lock);
2095
2096	dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
2097	if (!dm_bufio_wq)
2098		return -ENOMEM;
2099
2100	INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn);
2101	INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup);
2102	queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2103			   DM_BUFIO_WORK_TIMER_SECS * HZ);
2104
2105	return 0;
2106}
2107
2108/*
2109 * This is called once when unloading the dm_bufio module.
2110 */
2111static void __exit dm_bufio_exit(void)
2112{
2113	int bug = 0;
 
2114
2115	cancel_delayed_work_sync(&dm_bufio_cleanup_old_work);
2116	destroy_workqueue(dm_bufio_wq);
2117
 
 
 
 
 
 
2118	if (dm_bufio_client_count) {
2119		DMCRIT("%s: dm_bufio_client_count leaked: %d",
2120			__func__, dm_bufio_client_count);
2121		bug = 1;
2122	}
2123
2124	if (dm_bufio_current_allocated) {
2125		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
2126			__func__, dm_bufio_current_allocated);
2127		bug = 1;
2128	}
2129
2130	if (dm_bufio_allocated_get_free_pages) {
2131		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
2132		       __func__, dm_bufio_allocated_get_free_pages);
2133		bug = 1;
2134	}
2135
2136	if (dm_bufio_allocated_vmalloc) {
2137		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
2138		       __func__, dm_bufio_allocated_vmalloc);
2139		bug = 1;
2140	}
2141
2142	BUG_ON(bug);
2143}
2144
2145module_init(dm_bufio_init)
2146module_exit(dm_bufio_exit)
2147
2148module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
2149MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
2150
2151module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
2152MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
2153
2154module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
2155MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
2156
2157module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
2158MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
2159
2160module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
2161MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
2162
2163module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
2164MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
2165
2166module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
2167MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
2168
2169module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
2170MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
2171
2172MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2173MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
2174MODULE_LICENSE("GPL");
v4.10.11
   1/*
   2 * Copyright (C) 2009-2011 Red Hat, Inc.
   3 *
   4 * Author: Mikulas Patocka <mpatocka@redhat.com>
   5 *
   6 * This file is released under the GPL.
   7 */
   8
   9#include "dm-bufio.h"
  10
  11#include <linux/device-mapper.h>
  12#include <linux/dm-io.h>
  13#include <linux/slab.h>
 
  14#include <linux/jiffies.h>
  15#include <linux/vmalloc.h>
  16#include <linux/shrinker.h>
  17#include <linux/module.h>
  18#include <linux/rbtree.h>
  19#include <linux/stacktrace.h>
 
  20
  21#define DM_MSG_PREFIX "bufio"
  22
  23/*
  24 * Memory management policy:
  25 *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
  26 *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
  27 *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
  28 *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
  29 *	dirty buffers.
  30 */
  31#define DM_BUFIO_MIN_BUFFERS		8
  32
  33#define DM_BUFIO_MEMORY_PERCENT		2
  34#define DM_BUFIO_VMALLOC_PERCENT	25
  35#define DM_BUFIO_WRITEBACK_PERCENT	75
 
  36
  37/*
  38 * Check buffer ages in this interval (seconds)
  39 */
  40#define DM_BUFIO_WORK_TIMER_SECS	30
  41
  42/*
  43 * Free buffers when they are older than this (seconds)
  44 */
  45#define DM_BUFIO_DEFAULT_AGE_SECS	300
  46
  47/*
  48 * The nr of bytes of cached data to keep around.
  49 */
  50#define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
  51
  52/*
  53 * The number of bvec entries that are embedded directly in the buffer.
  54 * If the chunk size is larger, dm-io is used to do the io.
  55 */
  56#define DM_BUFIO_INLINE_VECS		16
  57
  58/*
  59 * Don't try to use kmem_cache_alloc for blocks larger than this.
  60 * For explanation, see alloc_buffer_data below.
  61 */
  62#define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT	(PAGE_SIZE >> 1)
  63#define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT	(PAGE_SIZE << (MAX_ORDER - 1))
  64
  65/*
  66 * dm_buffer->list_mode
  67 */
  68#define LIST_CLEAN	0
  69#define LIST_DIRTY	1
  70#define LIST_SIZE	2
  71
  72/*
  73 * Linking of buffers:
  74 *	All buffers are linked to cache_hash with their hash_list field.
  75 *
  76 *	Clean buffers that are not being written (B_WRITING not set)
  77 *	are linked to lru[LIST_CLEAN] with their lru_list field.
  78 *
  79 *	Dirty and clean buffers that are being written are linked to
  80 *	lru[LIST_DIRTY] with their lru_list field. When the write
  81 *	finishes, the buffer cannot be relinked immediately (because we
  82 *	are in an interrupt context and relinking requires process
  83 *	context), so some clean-not-writing buffers can be held on
  84 *	dirty_lru too.  They are later added to lru in the process
  85 *	context.
  86 */
  87struct dm_bufio_client {
  88	struct mutex lock;
 
 
  89
  90	struct list_head lru[LIST_SIZE];
  91	unsigned long n_buffers[LIST_SIZE];
  92
  93	struct block_device *bdev;
  94	unsigned block_size;
  95	unsigned char sectors_per_block_bits;
  96	unsigned char pages_per_block_bits;
  97	unsigned char blocks_per_page_bits;
  98	unsigned aux_size;
  99	void (*alloc_callback)(struct dm_buffer *);
 100	void (*write_callback)(struct dm_buffer *);
 101
 
 102	struct dm_io_client *dm_io;
 103
 104	struct list_head reserved_buffers;
 105	unsigned need_reserved_buffers;
 106
 107	unsigned minimum_buffers;
 108
 109	struct rb_root buffer_tree;
 110	wait_queue_head_t free_buffer_wait;
 111
 
 
 112	int async_write_error;
 113
 114	struct list_head client_list;
 
 115	struct shrinker shrinker;
 
 
 116};
 117
 118/*
 119 * Buffer state bits.
 120 */
 121#define B_READING	0
 122#define B_WRITING	1
 123#define B_DIRTY		2
 124
 125/*
 126 * Describes how the block was allocated:
 127 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
 128 * See the comment at alloc_buffer_data.
 129 */
 130enum data_mode {
 131	DATA_MODE_SLAB = 0,
 132	DATA_MODE_GET_FREE_PAGES = 1,
 133	DATA_MODE_VMALLOC = 2,
 134	DATA_MODE_LIMIT = 3
 135};
 136
 137struct dm_buffer {
 138	struct rb_node node;
 139	struct list_head lru_list;
 
 140	sector_t block;
 141	void *data;
 142	enum data_mode data_mode;
 143	unsigned char list_mode;		/* LIST_* */
 
 
 
 144	unsigned hold_count;
 145	int read_error;
 146	int write_error;
 147	unsigned long state;
 148	unsigned long last_accessed;
 
 
 
 
 149	struct dm_bufio_client *c;
 150	struct list_head write_list;
 151	struct bio bio;
 152	struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
 153#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
 154#define MAX_STACK 10
 155	struct stack_trace stack_trace;
 156	unsigned long stack_entries[MAX_STACK];
 157#endif
 158};
 159
 
 
 160/*----------------------------------------------------------------*/
 161
 162static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
 163static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
 164
 165static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
 166{
 167	unsigned ret = c->blocks_per_page_bits - 1;
 168
 169	BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
 170
 171	return ret;
 172}
 173
 174#define DM_BUFIO_CACHE(c)	(dm_bufio_caches[dm_bufio_cache_index(c)])
 175#define DM_BUFIO_CACHE_NAME(c)	(dm_bufio_cache_names[dm_bufio_cache_index(c)])
 176
 177#define dm_bufio_in_request()	(!!current->bio_list)
 178
 179static void dm_bufio_lock(struct dm_bufio_client *c)
 180{
 181	mutex_lock_nested(&c->lock, dm_bufio_in_request());
 
 
 
 182}
 183
 184static int dm_bufio_trylock(struct dm_bufio_client *c)
 185{
 186	return mutex_trylock(&c->lock);
 
 
 
 187}
 188
 189static void dm_bufio_unlock(struct dm_bufio_client *c)
 190{
 191	mutex_unlock(&c->lock);
 
 
 
 192}
 193
 194/*----------------------------------------------------------------*/
 195
 196/*
 197 * Default cache size: available memory divided by the ratio.
 198 */
 199static unsigned long dm_bufio_default_cache_size;
 200
 201/*
 202 * Total cache size set by the user.
 203 */
 204static unsigned long dm_bufio_cache_size;
 205
 206/*
 207 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
 208 * at any time.  If it disagrees, the user has changed cache size.
 209 */
 210static unsigned long dm_bufio_cache_size_latch;
 211
 212static DEFINE_SPINLOCK(param_spinlock);
 
 
 
 
 213
 214/*
 215 * Buffers are freed after this timeout
 216 */
 217static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
 218static unsigned dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
 219
 220static unsigned long dm_bufio_peak_allocated;
 221static unsigned long dm_bufio_allocated_kmem_cache;
 222static unsigned long dm_bufio_allocated_get_free_pages;
 223static unsigned long dm_bufio_allocated_vmalloc;
 224static unsigned long dm_bufio_current_allocated;
 225
 226/*----------------------------------------------------------------*/
 227
 228/*
 229 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
 230 */
 231static unsigned long dm_bufio_cache_size_per_client;
 232
 233/*
 234 * The current number of clients.
 235 */
 236static int dm_bufio_client_count;
 237
 238/*
 239 * The list of all clients.
 240 */
 241static LIST_HEAD(dm_bufio_all_clients);
 242
 243/*
 244 * This mutex protects dm_bufio_cache_size_latch,
 245 * dm_bufio_cache_size_per_client and dm_bufio_client_count
 246 */
 247static DEFINE_MUTEX(dm_bufio_clients_lock);
 248
 
 
 
 
 
 249#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
 250static void buffer_record_stack(struct dm_buffer *b)
 251{
 252	b->stack_trace.nr_entries = 0;
 253	b->stack_trace.max_entries = MAX_STACK;
 254	b->stack_trace.entries = b->stack_entries;
 255	b->stack_trace.skip = 2;
 256	save_stack_trace(&b->stack_trace);
 257}
 258#endif
 259
 260/*----------------------------------------------------------------
 261 * A red/black tree acts as an index for all the buffers.
 262 *--------------------------------------------------------------*/
 263static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
 264{
 265	struct rb_node *n = c->buffer_tree.rb_node;
 266	struct dm_buffer *b;
 267
 268	while (n) {
 269		b = container_of(n, struct dm_buffer, node);
 270
 271		if (b->block == block)
 272			return b;
 273
 274		n = (b->block < block) ? n->rb_left : n->rb_right;
 275	}
 276
 277	return NULL;
 278}
 279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 280static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
 281{
 282	struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
 283	struct dm_buffer *found;
 284
 285	while (*new) {
 286		found = container_of(*new, struct dm_buffer, node);
 287
 288		if (found->block == b->block) {
 289			BUG_ON(found != b);
 290			return;
 291		}
 292
 293		parent = *new;
 294		new = (found->block < b->block) ?
 295			&((*new)->rb_left) : &((*new)->rb_right);
 296	}
 297
 298	rb_link_node(&b->node, parent, new);
 299	rb_insert_color(&b->node, &c->buffer_tree);
 300}
 301
 302static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
 303{
 304	rb_erase(&b->node, &c->buffer_tree);
 305}
 306
 307/*----------------------------------------------------------------*/
 308
 309static void adjust_total_allocated(enum data_mode data_mode, long diff)
 310{
 
 
 
 311	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
 312		&dm_bufio_allocated_kmem_cache,
 313		&dm_bufio_allocated_get_free_pages,
 314		&dm_bufio_allocated_vmalloc,
 315	};
 316
 317	spin_lock(&param_spinlock);
 
 
 
 
 
 318
 319	*class_ptr[data_mode] += diff;
 320
 321	dm_bufio_current_allocated += diff;
 322
 323	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
 324		dm_bufio_peak_allocated = dm_bufio_current_allocated;
 325
 326	spin_unlock(&param_spinlock);
 
 
 
 
 
 
 
 
 
 
 
 
 327}
 328
 329/*
 330 * Change the number of clients and recalculate per-client limit.
 331 */
 332static void __cache_size_refresh(void)
 333{
 334	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
 335	BUG_ON(dm_bufio_client_count < 0);
 336
 337	dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
 338
 339	/*
 340	 * Use default if set to 0 and report the actual cache size used.
 341	 */
 342	if (!dm_bufio_cache_size_latch) {
 343		(void)cmpxchg(&dm_bufio_cache_size, 0,
 344			      dm_bufio_default_cache_size);
 345		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
 346	}
 347
 348	dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
 349					 (dm_bufio_client_count ? : 1);
 350}
 351
 352/*
 353 * Allocating buffer data.
 354 *
 355 * Small buffers are allocated with kmem_cache, to use space optimally.
 356 *
 357 * For large buffers, we choose between get_free_pages and vmalloc.
 358 * Each has advantages and disadvantages.
 359 *
 360 * __get_free_pages can randomly fail if the memory is fragmented.
 361 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
 362 * as low as 128M) so using it for caching is not appropriate.
 363 *
 364 * If the allocation may fail we use __get_free_pages. Memory fragmentation
 365 * won't have a fatal effect here, but it just causes flushes of some other
 366 * buffers and more I/O will be performed. Don't use __get_free_pages if it
 367 * always fails (i.e. order >= MAX_ORDER).
 368 *
 369 * If the allocation shouldn't fail we use __vmalloc. This is only for the
 370 * initial reserve allocation, so there's no risk of wasting all vmalloc
 371 * space.
 372 */
 373static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
 374			       enum data_mode *data_mode)
 375{
 376	unsigned noio_flag;
 377	void *ptr;
 378
 379	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
 380		*data_mode = DATA_MODE_SLAB;
 381		return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
 382	}
 383
 384	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
 385	    gfp_mask & __GFP_NORETRY) {
 386		*data_mode = DATA_MODE_GET_FREE_PAGES;
 387		return (void *)__get_free_pages(gfp_mask,
 388						c->pages_per_block_bits);
 389	}
 390
 391	*data_mode = DATA_MODE_VMALLOC;
 392
 393	/*
 394	 * __vmalloc allocates the data pages and auxiliary structures with
 395	 * gfp_flags that were specified, but pagetables are always allocated
 396	 * with GFP_KERNEL, no matter what was specified as gfp_mask.
 397	 *
 398	 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
 399	 * all allocations done by this process (including pagetables) are done
 400	 * as if GFP_NOIO was specified.
 401	 */
 
 
 
 402
 403	if (gfp_mask & __GFP_NORETRY)
 404		noio_flag = memalloc_noio_save();
 405
 406	ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL);
 407
 408	if (gfp_mask & __GFP_NORETRY)
 409		memalloc_noio_restore(noio_flag);
 
 
 410
 411	return ptr;
 412}
 413
 414/*
 415 * Free buffer's data.
 416 */
 417static void free_buffer_data(struct dm_bufio_client *c,
 418			     void *data, enum data_mode data_mode)
 419{
 420	switch (data_mode) {
 421	case DATA_MODE_SLAB:
 422		kmem_cache_free(DM_BUFIO_CACHE(c), data);
 423		break;
 424
 425	case DATA_MODE_GET_FREE_PAGES:
 426		free_pages((unsigned long)data, c->pages_per_block_bits);
 
 427		break;
 428
 429	case DATA_MODE_VMALLOC:
 430		vfree(data);
 431		break;
 432
 433	default:
 434		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
 435		       data_mode);
 436		BUG();
 437	}
 438}
 439
 440/*
 441 * Allocate buffer and its data.
 442 */
 443static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
 444{
 445	struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
 446				      gfp_mask);
 447
 448	if (!b)
 449		return NULL;
 450
 451	b->c = c;
 452
 453	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
 454	if (!b->data) {
 455		kfree(b);
 456		return NULL;
 457	}
 458
 459	adjust_total_allocated(b->data_mode, (long)c->block_size);
 460
 461#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
 462	memset(&b->stack_trace, 0, sizeof(b->stack_trace));
 463#endif
 464	return b;
 465}
 466
 467/*
 468 * Free buffer and its data.
 469 */
 470static void free_buffer(struct dm_buffer *b)
 471{
 472	struct dm_bufio_client *c = b->c;
 473
 474	adjust_total_allocated(b->data_mode, -(long)c->block_size);
 475
 476	free_buffer_data(c, b->data, b->data_mode);
 477	kfree(b);
 478}
 479
 480/*
 481 * Link buffer to the hash list and clean or dirty queue.
 482 */
 483static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
 484{
 485	struct dm_bufio_client *c = b->c;
 486
 487	c->n_buffers[dirty]++;
 488	b->block = block;
 489	b->list_mode = dirty;
 490	list_add(&b->lru_list, &c->lru[dirty]);
 491	__insert(b->c, b);
 492	b->last_accessed = jiffies;
 
 
 493}
 494
 495/*
 496 * Unlink buffer from the hash list and dirty or clean queue.
 497 */
 498static void __unlink_buffer(struct dm_buffer *b)
 499{
 500	struct dm_bufio_client *c = b->c;
 501
 502	BUG_ON(!c->n_buffers[b->list_mode]);
 503
 504	c->n_buffers[b->list_mode]--;
 505	__remove(b->c, b);
 506	list_del(&b->lru_list);
 
 
 507}
 508
 509/*
 510 * Place the buffer to the head of dirty or clean LRU queue.
 511 */
 512static void __relink_lru(struct dm_buffer *b, int dirty)
 513{
 514	struct dm_bufio_client *c = b->c;
 515
 
 
 516	BUG_ON(!c->n_buffers[b->list_mode]);
 517
 518	c->n_buffers[b->list_mode]--;
 519	c->n_buffers[dirty]++;
 520	b->list_mode = dirty;
 521	list_move(&b->lru_list, &c->lru[dirty]);
 522	b->last_accessed = jiffies;
 523}
 524
 525/*----------------------------------------------------------------
 526 * Submit I/O on the buffer.
 527 *
 528 * Bio interface is faster but it has some problems:
 529 *	the vector list is limited (increasing this limit increases
 530 *	memory-consumption per buffer, so it is not viable);
 531 *
 532 *	the memory must be direct-mapped, not vmalloced;
 533 *
 534 *	the I/O driver can reject requests spuriously if it thinks that
 535 *	the requests are too big for the device or if they cross a
 536 *	controller-defined memory boundary.
 537 *
 538 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
 539 * it is not vmalloced, try using the bio interface.
 540 *
 541 * If the buffer is big, if it is vmalloced or if the underlying device
 542 * rejects the bio because it is too large, use dm-io layer to do the I/O.
 543 * The dm-io layer splits the I/O into multiple requests, avoiding the above
 544 * shortcomings.
 545 *--------------------------------------------------------------*/
 546
 547/*
 548 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
 549 * that the request was handled directly with bio interface.
 550 */
 551static void dmio_complete(unsigned long error, void *context)
 552{
 553	struct dm_buffer *b = context;
 554
 555	b->bio.bi_error = error ? -EIO : 0;
 556	b->bio.bi_end_io(&b->bio);
 557}
 558
 559static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
 560		     bio_end_io_t *end_io)
 561{
 562	int r;
 563	struct dm_io_request io_req = {
 564		.bi_op = rw,
 565		.bi_op_flags = 0,
 566		.notify.fn = dmio_complete,
 567		.notify.context = b,
 568		.client = b->c->dm_io,
 569	};
 570	struct dm_io_region region = {
 571		.bdev = b->c->bdev,
 572		.sector = block << b->c->sectors_per_block_bits,
 573		.count = b->c->block_size >> SECTOR_SHIFT,
 574	};
 575
 576	if (b->data_mode != DATA_MODE_VMALLOC) {
 577		io_req.mem.type = DM_IO_KMEM;
 578		io_req.mem.ptr.addr = b->data;
 579	} else {
 580		io_req.mem.type = DM_IO_VMA;
 581		io_req.mem.ptr.vma = b->data;
 582	}
 583
 584	b->bio.bi_end_io = end_io;
 585
 586	r = dm_io(&io_req, 1, &region, NULL);
 587	if (r) {
 588		b->bio.bi_error = r;
 589		end_io(&b->bio);
 590	}
 591}
 592
 593static void inline_endio(struct bio *bio)
 594{
 595	bio_end_io_t *end_fn = bio->bi_private;
 596	int error = bio->bi_error;
 597
 598	/*
 599	 * Reset the bio to free any attached resources
 600	 * (e.g. bio integrity profiles).
 601	 */
 602	bio_reset(bio);
 603
 604	bio->bi_error = error;
 605	end_fn(bio);
 606}
 607
 608static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
 609			   bio_end_io_t *end_io)
 610{
 
 611	char *ptr;
 612	int len;
 613
 614	bio_init(&b->bio, b->bio_vec, DM_BUFIO_INLINE_VECS);
 615	b->bio.bi_iter.bi_sector = block << b->c->sectors_per_block_bits;
 616	b->bio.bi_bdev = b->c->bdev;
 617	b->bio.bi_end_io = inline_endio;
 618	/*
 619	 * Use of .bi_private isn't a problem here because
 620	 * the dm_buffer's inline bio is local to bufio.
 621	 */
 622	b->bio.bi_private = end_io;
 623	bio_set_op_attrs(&b->bio, rw, 0);
 624
 625	/*
 626	 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
 627	 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
 628	 */
 629	ptr = b->data;
 630	len = b->c->block_size;
 631
 632	if (len >= PAGE_SIZE)
 633		BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
 634	else
 635		BUG_ON((unsigned long)ptr & (len - 1));
 636
 637	do {
 638		if (!bio_add_page(&b->bio, virt_to_page(ptr),
 639				  len < PAGE_SIZE ? len : PAGE_SIZE,
 640				  offset_in_page(ptr))) {
 641			BUG_ON(b->c->block_size <= PAGE_SIZE);
 642			use_dmio(b, rw, block, end_io);
 643			return;
 644		}
 645
 646		len -= PAGE_SIZE;
 647		ptr += PAGE_SIZE;
 648	} while (len > 0);
 649
 650	submit_bio(&b->bio);
 651}
 652
 653static void submit_io(struct dm_buffer *b, int rw, sector_t block,
 654		      bio_end_io_t *end_io)
 655{
 656	if (rw == WRITE && b->c->write_callback)
 657		b->c->write_callback(b);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 658
 659	if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
 660	    b->data_mode != DATA_MODE_VMALLOC)
 661		use_inline_bio(b, rw, block, end_io);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 662	else
 663		use_dmio(b, rw, block, end_io);
 664}
 665
 666/*----------------------------------------------------------------
 667 * Writing dirty buffers
 668 *--------------------------------------------------------------*/
 669
 670/*
 671 * The endio routine for write.
 672 *
 673 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
 674 * it.
 675 */
 676static void write_endio(struct bio *bio)
 677{
 678	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
 
 
 679
 680	b->write_error = bio->bi_error;
 681	if (unlikely(bio->bi_error)) {
 682		struct dm_bufio_client *c = b->c;
 683		int error = bio->bi_error;
 684		(void)cmpxchg(&c->async_write_error, 0, error);
 685	}
 686
 687	BUG_ON(!test_bit(B_WRITING, &b->state));
 688
 689	smp_mb__before_atomic();
 690	clear_bit(B_WRITING, &b->state);
 691	smp_mb__after_atomic();
 692
 693	wake_up_bit(&b->state, B_WRITING);
 694}
 695
 696/*
 697 * Initiate a write on a dirty buffer, but don't wait for it.
 698 *
 699 * - If the buffer is not dirty, exit.
 700 * - If there some previous write going on, wait for it to finish (we can't
 701 *   have two writes on the same buffer simultaneously).
 702 * - Submit our write and don't wait on it. We set B_WRITING indicating
 703 *   that there is a write in progress.
 704 */
 705static void __write_dirty_buffer(struct dm_buffer *b,
 706				 struct list_head *write_list)
 707{
 708	if (!test_bit(B_DIRTY, &b->state))
 709		return;
 710
 711	clear_bit(B_DIRTY, &b->state);
 712	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
 713
 
 
 
 714	if (!write_list)
 715		submit_io(b, WRITE, b->block, write_endio);
 716	else
 717		list_add_tail(&b->write_list, write_list);
 718}
 719
 720static void __flush_write_list(struct list_head *write_list)
 721{
 722	struct blk_plug plug;
 723	blk_start_plug(&plug);
 724	while (!list_empty(write_list)) {
 725		struct dm_buffer *b =
 726			list_entry(write_list->next, struct dm_buffer, write_list);
 727		list_del(&b->write_list);
 728		submit_io(b, WRITE, b->block, write_endio);
 729		cond_resched();
 730	}
 731	blk_finish_plug(&plug);
 732}
 733
 734/*
 735 * Wait until any activity on the buffer finishes.  Possibly write the
 736 * buffer if it is dirty.  When this function finishes, there is no I/O
 737 * running on the buffer and the buffer is not dirty.
 738 */
 739static void __make_buffer_clean(struct dm_buffer *b)
 740{
 741	BUG_ON(b->hold_count);
 742
 743	if (!b->state)	/* fast case */
 
 744		return;
 745
 746	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
 747	__write_dirty_buffer(b, NULL);
 748	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
 749}
 750
 751/*
 752 * Find some buffer that is not held by anybody, clean it, unlink it and
 753 * return it.
 754 */
 755static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
 756{
 757	struct dm_buffer *b;
 758
 759	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
 760		BUG_ON(test_bit(B_WRITING, &b->state));
 761		BUG_ON(test_bit(B_DIRTY, &b->state));
 762
 
 
 
 
 763		if (!b->hold_count) {
 764			__make_buffer_clean(b);
 765			__unlink_buffer(b);
 766			return b;
 767		}
 768		cond_resched();
 769	}
 770
 
 
 
 771	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
 772		BUG_ON(test_bit(B_READING, &b->state));
 773
 774		if (!b->hold_count) {
 775			__make_buffer_clean(b);
 776			__unlink_buffer(b);
 777			return b;
 778		}
 779		cond_resched();
 780	}
 781
 782	return NULL;
 783}
 784
 785/*
 786 * Wait until some other threads free some buffer or release hold count on
 787 * some buffer.
 788 *
 789 * This function is entered with c->lock held, drops it and regains it
 790 * before exiting.
 791 */
 792static void __wait_for_free_buffer(struct dm_bufio_client *c)
 793{
 794	DECLARE_WAITQUEUE(wait, current);
 795
 796	add_wait_queue(&c->free_buffer_wait, &wait);
 797	set_task_state(current, TASK_UNINTERRUPTIBLE);
 798	dm_bufio_unlock(c);
 799
 800	io_schedule();
 801
 802	remove_wait_queue(&c->free_buffer_wait, &wait);
 803
 804	dm_bufio_lock(c);
 805}
 806
 807enum new_flag {
 808	NF_FRESH = 0,
 809	NF_READ = 1,
 810	NF_GET = 2,
 811	NF_PREFETCH = 3
 812};
 813
 814/*
 815 * Allocate a new buffer. If the allocation is not possible, wait until
 816 * some other thread frees a buffer.
 817 *
 818 * May drop the lock and regain it.
 819 */
 820static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
 821{
 822	struct dm_buffer *b;
 823	bool tried_noio_alloc = false;
 824
 825	/*
 826	 * dm-bufio is resistant to allocation failures (it just keeps
 827	 * one buffer reserved in cases all the allocations fail).
 828	 * So set flags to not try too hard:
 829	 *	GFP_NOWAIT: don't wait; if we need to sleep we'll release our
 830	 *		    mutex and wait ourselves.
 831	 *	__GFP_NORETRY: don't retry and rather return failure
 832	 *	__GFP_NOMEMALLOC: don't use emergency reserves
 833	 *	__GFP_NOWARN: don't print a warning in case of failure
 834	 *
 835	 * For debugging, if we set the cache size to 1, no new buffers will
 836	 * be allocated.
 837	 */
 838	while (1) {
 839		if (dm_bufio_cache_size_latch != 1) {
 840			b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 841			if (b)
 842				return b;
 843		}
 844
 845		if (nf == NF_PREFETCH)
 846			return NULL;
 847
 848		if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
 849			dm_bufio_unlock(c);
 850			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 851			dm_bufio_lock(c);
 852			if (b)
 853				return b;
 854			tried_noio_alloc = true;
 855		}
 856
 857		if (!list_empty(&c->reserved_buffers)) {
 858			b = list_entry(c->reserved_buffers.next,
 859				       struct dm_buffer, lru_list);
 860			list_del(&b->lru_list);
 861			c->need_reserved_buffers++;
 862
 863			return b;
 864		}
 865
 866		b = __get_unclaimed_buffer(c);
 867		if (b)
 868			return b;
 869
 870		__wait_for_free_buffer(c);
 871	}
 872}
 873
 874static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
 875{
 876	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
 877
 878	if (!b)
 879		return NULL;
 880
 881	if (c->alloc_callback)
 882		c->alloc_callback(b);
 883
 884	return b;
 885}
 886
 887/*
 888 * Free a buffer and wake other threads waiting for free buffers.
 889 */
 890static void __free_buffer_wake(struct dm_buffer *b)
 891{
 892	struct dm_bufio_client *c = b->c;
 893
 894	if (!c->need_reserved_buffers)
 895		free_buffer(b);
 896	else {
 897		list_add(&b->lru_list, &c->reserved_buffers);
 898		c->need_reserved_buffers--;
 899	}
 900
 901	wake_up(&c->free_buffer_wait);
 902}
 903
 904static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
 905					struct list_head *write_list)
 906{
 907	struct dm_buffer *b, *tmp;
 908
 909	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
 910		BUG_ON(test_bit(B_READING, &b->state));
 911
 912		if (!test_bit(B_DIRTY, &b->state) &&
 913		    !test_bit(B_WRITING, &b->state)) {
 914			__relink_lru(b, LIST_CLEAN);
 915			continue;
 916		}
 917
 918		if (no_wait && test_bit(B_WRITING, &b->state))
 919			return;
 920
 921		__write_dirty_buffer(b, write_list);
 922		cond_resched();
 923	}
 924}
 925
 926/*
 927 * Get writeback threshold and buffer limit for a given client.
 928 */
 929static void __get_memory_limit(struct dm_bufio_client *c,
 930			       unsigned long *threshold_buffers,
 931			       unsigned long *limit_buffers)
 932{
 933	unsigned long buffers;
 934
 935	if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) {
 936		mutex_lock(&dm_bufio_clients_lock);
 937		__cache_size_refresh();
 938		mutex_unlock(&dm_bufio_clients_lock);
 939	}
 940
 941	buffers = dm_bufio_cache_size_per_client >>
 942		  (c->sectors_per_block_bits + SECTOR_SHIFT);
 943
 944	if (buffers < c->minimum_buffers)
 945		buffers = c->minimum_buffers;
 946
 947	*limit_buffers = buffers;
 948	*threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
 949}
 950
 951/*
 952 * Check if we're over watermark.
 953 * If we are over threshold_buffers, start freeing buffers.
 954 * If we're over "limit_buffers", block until we get under the limit.
 955 */
 956static void __check_watermark(struct dm_bufio_client *c,
 957			      struct list_head *write_list)
 958{
 959	unsigned long threshold_buffers, limit_buffers;
 960
 961	__get_memory_limit(c, &threshold_buffers, &limit_buffers);
 962
 963	while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
 964	       limit_buffers) {
 965
 966		struct dm_buffer *b = __get_unclaimed_buffer(c);
 967
 968		if (!b)
 969			return;
 970
 971		__free_buffer_wake(b);
 972		cond_resched();
 973	}
 974
 975	if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
 976		__write_dirty_buffers_async(c, 1, write_list);
 977}
 978
 979/*----------------------------------------------------------------
 980 * Getting a buffer
 981 *--------------------------------------------------------------*/
 982
 983static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
 984				     enum new_flag nf, int *need_submit,
 985				     struct list_head *write_list)
 986{
 987	struct dm_buffer *b, *new_b = NULL;
 988
 989	*need_submit = 0;
 990
 991	b = __find(c, block);
 992	if (b)
 993		goto found_buffer;
 994
 995	if (nf == NF_GET)
 996		return NULL;
 997
 998	new_b = __alloc_buffer_wait(c, nf);
 999	if (!new_b)
1000		return NULL;
1001
1002	/*
1003	 * We've had a period where the mutex was unlocked, so need to
1004	 * recheck the hash table.
1005	 */
1006	b = __find(c, block);
1007	if (b) {
1008		__free_buffer_wake(new_b);
1009		goto found_buffer;
1010	}
1011
1012	__check_watermark(c, write_list);
1013
1014	b = new_b;
1015	b->hold_count = 1;
1016	b->read_error = 0;
1017	b->write_error = 0;
1018	__link_buffer(b, block, LIST_CLEAN);
1019
1020	if (nf == NF_FRESH) {
1021		b->state = 0;
1022		return b;
1023	}
1024
1025	b->state = 1 << B_READING;
1026	*need_submit = 1;
1027
1028	return b;
1029
1030found_buffer:
1031	if (nf == NF_PREFETCH)
1032		return NULL;
1033	/*
1034	 * Note: it is essential that we don't wait for the buffer to be
1035	 * read if dm_bufio_get function is used. Both dm_bufio_get and
1036	 * dm_bufio_prefetch can be used in the driver request routine.
1037	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1038	 * the same buffer, it would deadlock if we waited.
1039	 */
1040	if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1041		return NULL;
1042
1043	b->hold_count++;
1044	__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1045		     test_bit(B_WRITING, &b->state));
1046	return b;
1047}
1048
1049/*
1050 * The endio routine for reading: set the error, clear the bit and wake up
1051 * anyone waiting on the buffer.
1052 */
1053static void read_endio(struct bio *bio)
1054{
1055	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
1056
1057	b->read_error = bio->bi_error;
1058
1059	BUG_ON(!test_bit(B_READING, &b->state));
1060
1061	smp_mb__before_atomic();
1062	clear_bit(B_READING, &b->state);
1063	smp_mb__after_atomic();
1064
1065	wake_up_bit(&b->state, B_READING);
1066}
1067
1068/*
1069 * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1070 * functions is similar except that dm_bufio_new doesn't read the
1071 * buffer from the disk (assuming that the caller overwrites all the data
1072 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1073 */
1074static void *new_read(struct dm_bufio_client *c, sector_t block,
1075		      enum new_flag nf, struct dm_buffer **bp)
1076{
1077	int need_submit;
1078	struct dm_buffer *b;
1079
1080	LIST_HEAD(write_list);
1081
1082	dm_bufio_lock(c);
1083	b = __bufio_new(c, block, nf, &need_submit, &write_list);
1084#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1085	if (b && b->hold_count == 1)
1086		buffer_record_stack(b);
1087#endif
1088	dm_bufio_unlock(c);
1089
1090	__flush_write_list(&write_list);
1091
1092	if (!b)
1093		return NULL;
1094
1095	if (need_submit)
1096		submit_io(b, READ, b->block, read_endio);
1097
1098	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1099
1100	if (b->read_error) {
1101		int error = b->read_error;
1102
1103		dm_bufio_release(b);
1104
1105		return ERR_PTR(error);
1106	}
1107
1108	*bp = b;
1109
1110	return b->data;
1111}
1112
1113void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1114		   struct dm_buffer **bp)
1115{
1116	return new_read(c, block, NF_GET, bp);
1117}
1118EXPORT_SYMBOL_GPL(dm_bufio_get);
1119
1120void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1121		    struct dm_buffer **bp)
1122{
1123	BUG_ON(dm_bufio_in_request());
1124
1125	return new_read(c, block, NF_READ, bp);
1126}
1127EXPORT_SYMBOL_GPL(dm_bufio_read);
1128
1129void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1130		   struct dm_buffer **bp)
1131{
1132	BUG_ON(dm_bufio_in_request());
1133
1134	return new_read(c, block, NF_FRESH, bp);
1135}
1136EXPORT_SYMBOL_GPL(dm_bufio_new);
1137
1138void dm_bufio_prefetch(struct dm_bufio_client *c,
1139		       sector_t block, unsigned n_blocks)
1140{
1141	struct blk_plug plug;
1142
1143	LIST_HEAD(write_list);
1144
1145	BUG_ON(dm_bufio_in_request());
1146
1147	blk_start_plug(&plug);
1148	dm_bufio_lock(c);
1149
1150	for (; n_blocks--; block++) {
1151		int need_submit;
1152		struct dm_buffer *b;
1153		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1154				&write_list);
1155		if (unlikely(!list_empty(&write_list))) {
1156			dm_bufio_unlock(c);
1157			blk_finish_plug(&plug);
1158			__flush_write_list(&write_list);
1159			blk_start_plug(&plug);
1160			dm_bufio_lock(c);
1161		}
1162		if (unlikely(b != NULL)) {
1163			dm_bufio_unlock(c);
1164
1165			if (need_submit)
1166				submit_io(b, READ, b->block, read_endio);
1167			dm_bufio_release(b);
1168
1169			cond_resched();
1170
1171			if (!n_blocks)
1172				goto flush_plug;
1173			dm_bufio_lock(c);
1174		}
1175	}
1176
1177	dm_bufio_unlock(c);
1178
1179flush_plug:
1180	blk_finish_plug(&plug);
1181}
1182EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1183
1184void dm_bufio_release(struct dm_buffer *b)
1185{
1186	struct dm_bufio_client *c = b->c;
1187
1188	dm_bufio_lock(c);
1189
1190	BUG_ON(!b->hold_count);
1191
1192	b->hold_count--;
1193	if (!b->hold_count) {
1194		wake_up(&c->free_buffer_wait);
1195
1196		/*
1197		 * If there were errors on the buffer, and the buffer is not
1198		 * to be written, free the buffer. There is no point in caching
1199		 * invalid buffer.
1200		 */
1201		if ((b->read_error || b->write_error) &&
1202		    !test_bit(B_READING, &b->state) &&
1203		    !test_bit(B_WRITING, &b->state) &&
1204		    !test_bit(B_DIRTY, &b->state)) {
1205			__unlink_buffer(b);
1206			__free_buffer_wake(b);
1207		}
1208	}
1209
1210	dm_bufio_unlock(c);
1211}
1212EXPORT_SYMBOL_GPL(dm_bufio_release);
1213
1214void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
 
1215{
1216	struct dm_bufio_client *c = b->c;
1217
 
 
 
1218	dm_bufio_lock(c);
1219
1220	BUG_ON(test_bit(B_READING, &b->state));
1221
1222	if (!test_and_set_bit(B_DIRTY, &b->state))
 
 
1223		__relink_lru(b, LIST_DIRTY);
 
 
 
 
 
 
1224
1225	dm_bufio_unlock(c);
1226}
 
 
 
 
 
 
1227EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1228
1229void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1230{
1231	LIST_HEAD(write_list);
1232
1233	BUG_ON(dm_bufio_in_request());
1234
1235	dm_bufio_lock(c);
1236	__write_dirty_buffers_async(c, 0, &write_list);
1237	dm_bufio_unlock(c);
1238	__flush_write_list(&write_list);
1239}
1240EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1241
1242/*
1243 * For performance, it is essential that the buffers are written asynchronously
1244 * and simultaneously (so that the block layer can merge the writes) and then
1245 * waited upon.
1246 *
1247 * Finally, we flush hardware disk cache.
1248 */
1249int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1250{
1251	int a, f;
1252	unsigned long buffers_processed = 0;
1253	struct dm_buffer *b, *tmp;
1254
1255	LIST_HEAD(write_list);
1256
1257	dm_bufio_lock(c);
1258	__write_dirty_buffers_async(c, 0, &write_list);
1259	dm_bufio_unlock(c);
1260	__flush_write_list(&write_list);
1261	dm_bufio_lock(c);
1262
1263again:
1264	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1265		int dropped_lock = 0;
1266
1267		if (buffers_processed < c->n_buffers[LIST_DIRTY])
1268			buffers_processed++;
1269
1270		BUG_ON(test_bit(B_READING, &b->state));
1271
1272		if (test_bit(B_WRITING, &b->state)) {
1273			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1274				dropped_lock = 1;
1275				b->hold_count++;
1276				dm_bufio_unlock(c);
1277				wait_on_bit_io(&b->state, B_WRITING,
1278					       TASK_UNINTERRUPTIBLE);
1279				dm_bufio_lock(c);
1280				b->hold_count--;
1281			} else
1282				wait_on_bit_io(&b->state, B_WRITING,
1283					       TASK_UNINTERRUPTIBLE);
1284		}
1285
1286		if (!test_bit(B_DIRTY, &b->state) &&
1287		    !test_bit(B_WRITING, &b->state))
1288			__relink_lru(b, LIST_CLEAN);
1289
1290		cond_resched();
1291
1292		/*
1293		 * If we dropped the lock, the list is no longer consistent,
1294		 * so we must restart the search.
1295		 *
1296		 * In the most common case, the buffer just processed is
1297		 * relinked to the clean list, so we won't loop scanning the
1298		 * same buffer again and again.
1299		 *
1300		 * This may livelock if there is another thread simultaneously
1301		 * dirtying buffers, so we count the number of buffers walked
1302		 * and if it exceeds the total number of buffers, it means that
1303		 * someone is doing some writes simultaneously with us.  In
1304		 * this case, stop, dropping the lock.
1305		 */
1306		if (dropped_lock)
1307			goto again;
1308	}
1309	wake_up(&c->free_buffer_wait);
1310	dm_bufio_unlock(c);
1311
1312	a = xchg(&c->async_write_error, 0);
1313	f = dm_bufio_issue_flush(c);
1314	if (a)
1315		return a;
1316
1317	return f;
1318}
1319EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1320
1321/*
1322 * Use dm-io to send and empty barrier flush the device.
1323 */
1324int dm_bufio_issue_flush(struct dm_bufio_client *c)
1325{
1326	struct dm_io_request io_req = {
1327		.bi_op = REQ_OP_WRITE,
1328		.bi_op_flags = REQ_PREFLUSH,
1329		.mem.type = DM_IO_KMEM,
1330		.mem.ptr.addr = NULL,
1331		.client = c->dm_io,
1332	};
1333	struct dm_io_region io_reg = {
1334		.bdev = c->bdev,
1335		.sector = 0,
1336		.count = 0,
1337	};
1338
1339	BUG_ON(dm_bufio_in_request());
1340
1341	return dm_io(&io_req, 1, &io_reg, NULL);
1342}
1343EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1344
1345/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1346 * We first delete any other buffer that may be at that new location.
1347 *
1348 * Then, we write the buffer to the original location if it was dirty.
1349 *
1350 * Then, if we are the only one who is holding the buffer, relink the buffer
1351 * in the hash queue for the new location.
1352 *
1353 * If there was someone else holding the buffer, we write it to the new
1354 * location but not relink it, because that other user needs to have the buffer
1355 * at the same place.
1356 */
1357void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1358{
1359	struct dm_bufio_client *c = b->c;
1360	struct dm_buffer *new;
1361
1362	BUG_ON(dm_bufio_in_request());
1363
1364	dm_bufio_lock(c);
1365
1366retry:
1367	new = __find(c, new_block);
1368	if (new) {
1369		if (new->hold_count) {
1370			__wait_for_free_buffer(c);
1371			goto retry;
1372		}
1373
1374		/*
1375		 * FIXME: Is there any point waiting for a write that's going
1376		 * to be overwritten in a bit?
1377		 */
1378		__make_buffer_clean(new);
1379		__unlink_buffer(new);
1380		__free_buffer_wake(new);
1381	}
1382
1383	BUG_ON(!b->hold_count);
1384	BUG_ON(test_bit(B_READING, &b->state));
1385
1386	__write_dirty_buffer(b, NULL);
1387	if (b->hold_count == 1) {
1388		wait_on_bit_io(&b->state, B_WRITING,
1389			       TASK_UNINTERRUPTIBLE);
1390		set_bit(B_DIRTY, &b->state);
 
 
1391		__unlink_buffer(b);
1392		__link_buffer(b, new_block, LIST_DIRTY);
1393	} else {
1394		sector_t old_block;
1395		wait_on_bit_lock_io(&b->state, B_WRITING,
1396				    TASK_UNINTERRUPTIBLE);
1397		/*
1398		 * Relink buffer to "new_block" so that write_callback
1399		 * sees "new_block" as a block number.
1400		 * After the write, link the buffer back to old_block.
1401		 * All this must be done in bufio lock, so that block number
1402		 * change isn't visible to other threads.
1403		 */
1404		old_block = b->block;
1405		__unlink_buffer(b);
1406		__link_buffer(b, new_block, b->list_mode);
1407		submit_io(b, WRITE, new_block, write_endio);
1408		wait_on_bit_io(&b->state, B_WRITING,
1409			       TASK_UNINTERRUPTIBLE);
1410		__unlink_buffer(b);
1411		__link_buffer(b, old_block, b->list_mode);
1412	}
1413
1414	dm_bufio_unlock(c);
1415	dm_bufio_release(b);
1416}
1417EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1418
 
 
 
 
 
 
 
 
1419/*
1420 * Free the given buffer.
1421 *
1422 * This is just a hint, if the buffer is in use or dirty, this function
1423 * does nothing.
1424 */
1425void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1426{
1427	struct dm_buffer *b;
1428
1429	dm_bufio_lock(c);
1430
1431	b = __find(c, block);
1432	if (b && likely(!b->hold_count) && likely(!b->state)) {
1433		__unlink_buffer(b);
1434		__free_buffer_wake(b);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1435	}
1436
1437	dm_bufio_unlock(c);
1438}
1439EXPORT_SYMBOL(dm_bufio_forget);
1440
1441void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1442{
1443	c->minimum_buffers = n;
1444}
1445EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1446
1447unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1448{
1449	return c->block_size;
1450}
1451EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1452
1453sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1454{
1455	return i_size_read(c->bdev->bd_inode) >>
1456			   (SECTOR_SHIFT + c->sectors_per_block_bits);
 
 
 
 
 
 
 
 
1457}
1458EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1459
 
 
 
 
 
 
1460sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1461{
1462	return b->block;
1463}
1464EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1465
1466void *dm_bufio_get_block_data(struct dm_buffer *b)
1467{
1468	return b->data;
1469}
1470EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1471
1472void *dm_bufio_get_aux_data(struct dm_buffer *b)
1473{
1474	return b + 1;
1475}
1476EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1477
1478struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1479{
1480	return b->c;
1481}
1482EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1483
1484static void drop_buffers(struct dm_bufio_client *c)
1485{
1486	struct dm_buffer *b;
1487	int i;
1488	bool warned = false;
1489
1490	BUG_ON(dm_bufio_in_request());
1491
1492	/*
1493	 * An optimization so that the buffers are not written one-by-one.
1494	 */
1495	dm_bufio_write_dirty_buffers_async(c);
1496
1497	dm_bufio_lock(c);
1498
1499	while ((b = __get_unclaimed_buffer(c)))
1500		__free_buffer_wake(b);
1501
1502	for (i = 0; i < LIST_SIZE; i++)
1503		list_for_each_entry(b, &c->lru[i], lru_list) {
1504			WARN_ON(!warned);
1505			warned = true;
1506			DMERR("leaked buffer %llx, hold count %u, list %d",
1507			      (unsigned long long)b->block, b->hold_count, i);
1508#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1509			print_stack_trace(&b->stack_trace, 1);
1510			b->hold_count = 0; /* mark unclaimed to avoid BUG_ON below */
 
1511#endif
1512		}
1513
1514#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1515	while ((b = __get_unclaimed_buffer(c)))
1516		__free_buffer_wake(b);
1517#endif
1518
1519	for (i = 0; i < LIST_SIZE; i++)
1520		BUG_ON(!list_empty(&c->lru[i]));
1521
1522	dm_bufio_unlock(c);
1523}
1524
1525/*
1526 * We may not be able to evict this buffer if IO pending or the client
1527 * is still using it.  Caller is expected to know buffer is too old.
1528 *
1529 * And if GFP_NOFS is used, we must not do any I/O because we hold
1530 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1531 * rerouted to different bufio client.
1532 */
1533static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1534{
1535	if (!(gfp & __GFP_FS)) {
1536		if (test_bit(B_READING, &b->state) ||
 
1537		    test_bit(B_WRITING, &b->state) ||
1538		    test_bit(B_DIRTY, &b->state))
1539			return false;
1540	}
1541
1542	if (b->hold_count)
1543		return false;
1544
1545	__make_buffer_clean(b);
1546	__unlink_buffer(b);
1547	__free_buffer_wake(b);
1548
1549	return true;
1550}
1551
1552static unsigned get_retain_buffers(struct dm_bufio_client *c)
1553{
1554        unsigned retain_bytes = ACCESS_ONCE(dm_bufio_retain_bytes);
1555        return retain_bytes / c->block_size;
 
 
 
 
1556}
1557
1558static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1559			    gfp_t gfp_mask)
1560{
1561	int l;
1562	struct dm_buffer *b, *tmp;
1563	unsigned long freed = 0;
1564	unsigned long count = nr_to_scan;
1565	unsigned retain_target = get_retain_buffers(c);
 
1566
1567	for (l = 0; l < LIST_SIZE; l++) {
1568		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1569			if (__try_evict_buffer(b, gfp_mask))
 
 
 
 
 
1570				freed++;
1571			if (!--nr_to_scan || ((count - freed) <= retain_target))
1572				return freed;
1573			cond_resched();
1574		}
1575	}
1576	return freed;
1577}
1578
1579static unsigned long
1580dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
 
 
 
 
 
 
 
 
1581{
1582	struct dm_bufio_client *c;
1583	unsigned long freed;
1584
1585	c = container_of(shrink, struct dm_bufio_client, shrinker);
1586	if (sc->gfp_mask & __GFP_FS)
1587		dm_bufio_lock(c);
1588	else if (!dm_bufio_trylock(c))
1589		return SHRINK_STOP;
1590
1591	freed  = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1592	dm_bufio_unlock(c);
1593	return freed;
1594}
1595
1596static unsigned long
1597dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1598{
1599	struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
 
 
 
 
 
 
 
 
 
1600
1601	return ACCESS_ONCE(c->n_buffers[LIST_CLEAN]) + ACCESS_ONCE(c->n_buffers[LIST_DIRTY]);
 
 
 
 
 
1602}
1603
1604/*
1605 * Create the buffering interface
1606 */
1607struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1608					       unsigned reserved_buffers, unsigned aux_size,
1609					       void (*alloc_callback)(struct dm_buffer *),
1610					       void (*write_callback)(struct dm_buffer *))
 
1611{
1612	int r;
1613	struct dm_bufio_client *c;
1614	unsigned i;
 
1615
1616	BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1617	       (block_size & (block_size - 1)));
 
 
 
1618
1619	c = kzalloc(sizeof(*c), GFP_KERNEL);
1620	if (!c) {
1621		r = -ENOMEM;
1622		goto bad_client;
1623	}
1624	c->buffer_tree = RB_ROOT;
1625
1626	c->bdev = bdev;
1627	c->block_size = block_size;
1628	c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1629	c->pages_per_block_bits = (__ffs(block_size) >= PAGE_SHIFT) ?
1630				  __ffs(block_size) - PAGE_SHIFT : 0;
1631	c->blocks_per_page_bits = (__ffs(block_size) < PAGE_SHIFT ?
1632				  PAGE_SHIFT - __ffs(block_size) : 0);
1633
1634	c->aux_size = aux_size;
1635	c->alloc_callback = alloc_callback;
1636	c->write_callback = write_callback;
1637
 
 
 
 
 
1638	for (i = 0; i < LIST_SIZE; i++) {
1639		INIT_LIST_HEAD(&c->lru[i]);
1640		c->n_buffers[i] = 0;
1641	}
1642
1643	mutex_init(&c->lock);
 
1644	INIT_LIST_HEAD(&c->reserved_buffers);
1645	c->need_reserved_buffers = reserved_buffers;
1646
1647	c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1648
1649	init_waitqueue_head(&c->free_buffer_wait);
1650	c->async_write_error = 0;
1651
1652	c->dm_io = dm_io_client_create();
1653	if (IS_ERR(c->dm_io)) {
1654		r = PTR_ERR(c->dm_io);
1655		goto bad_dm_io;
1656	}
1657
1658	mutex_lock(&dm_bufio_clients_lock);
1659	if (c->blocks_per_page_bits) {
1660		if (!DM_BUFIO_CACHE_NAME(c)) {
1661			DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1662			if (!DM_BUFIO_CACHE_NAME(c)) {
1663				r = -ENOMEM;
1664				mutex_unlock(&dm_bufio_clients_lock);
1665				goto bad_cache;
1666			}
1667		}
1668
1669		if (!DM_BUFIO_CACHE(c)) {
1670			DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1671							      c->block_size,
1672							      c->block_size, 0, NULL);
1673			if (!DM_BUFIO_CACHE(c)) {
1674				r = -ENOMEM;
1675				mutex_unlock(&dm_bufio_clients_lock);
1676				goto bad_cache;
1677			}
1678		}
1679	}
1680	mutex_unlock(&dm_bufio_clients_lock);
 
 
 
 
 
 
 
 
 
1681
1682	while (c->need_reserved_buffers) {
1683		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1684
1685		if (!b) {
1686			r = -ENOMEM;
1687			goto bad_buffer;
1688		}
1689		__free_buffer_wake(b);
1690	}
1691
 
 
 
 
 
 
 
 
 
 
 
 
1692	mutex_lock(&dm_bufio_clients_lock);
1693	dm_bufio_client_count++;
1694	list_add(&c->client_list, &dm_bufio_all_clients);
1695	__cache_size_refresh();
1696	mutex_unlock(&dm_bufio_clients_lock);
1697
1698	c->shrinker.count_objects = dm_bufio_shrink_count;
1699	c->shrinker.scan_objects = dm_bufio_shrink_scan;
1700	c->shrinker.seeks = 1;
1701	c->shrinker.batch = 0;
1702	register_shrinker(&c->shrinker);
1703
1704	return c;
1705
1706bad_buffer:
1707bad_cache:
1708	while (!list_empty(&c->reserved_buffers)) {
1709		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1710						 struct dm_buffer, lru_list);
1711		list_del(&b->lru_list);
1712		free_buffer(b);
1713	}
 
 
1714	dm_io_client_destroy(c->dm_io);
1715bad_dm_io:
 
 
 
1716	kfree(c);
1717bad_client:
1718	return ERR_PTR(r);
1719}
1720EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1721
1722/*
1723 * Free the buffering interface.
1724 * It is required that there are no references on any buffers.
1725 */
1726void dm_bufio_client_destroy(struct dm_bufio_client *c)
1727{
1728	unsigned i;
1729
1730	drop_buffers(c);
1731
1732	unregister_shrinker(&c->shrinker);
 
1733
1734	mutex_lock(&dm_bufio_clients_lock);
1735
1736	list_del(&c->client_list);
1737	dm_bufio_client_count--;
1738	__cache_size_refresh();
1739
1740	mutex_unlock(&dm_bufio_clients_lock);
1741
1742	BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1743	BUG_ON(c->need_reserved_buffers);
1744
1745	while (!list_empty(&c->reserved_buffers)) {
1746		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1747						 struct dm_buffer, lru_list);
1748		list_del(&b->lru_list);
1749		free_buffer(b);
1750	}
1751
1752	for (i = 0; i < LIST_SIZE; i++)
1753		if (c->n_buffers[i])
1754			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1755
1756	for (i = 0; i < LIST_SIZE; i++)
1757		BUG_ON(c->n_buffers[i]);
1758
 
 
1759	dm_io_client_destroy(c->dm_io);
 
 
 
1760	kfree(c);
1761}
1762EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1763
 
 
 
 
 
 
1764static unsigned get_max_age_hz(void)
1765{
1766	unsigned max_age = ACCESS_ONCE(dm_bufio_max_age);
1767
1768	if (max_age > UINT_MAX / HZ)
1769		max_age = UINT_MAX / HZ;
1770
1771	return max_age * HZ;
1772}
1773
1774static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1775{
1776	return time_after_eq(jiffies, b->last_accessed + age_hz);
1777}
1778
1779static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1780{
1781	struct dm_buffer *b, *tmp;
1782	unsigned retain_target = get_retain_buffers(c);
1783	unsigned count;
 
1784
1785	dm_bufio_lock(c);
1786
 
 
 
 
 
 
 
1787	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1788	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1789		if (count <= retain_target)
1790			break;
1791
1792		if (!older_than(b, age_hz))
1793			break;
1794
1795		if (__try_evict_buffer(b, 0))
1796			count--;
1797
1798		cond_resched();
1799	}
1800
1801	dm_bufio_unlock(c);
1802}
1803
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1804static void cleanup_old_buffers(void)
1805{
1806	unsigned long max_age_hz = get_max_age_hz();
1807	struct dm_bufio_client *c;
1808
1809	mutex_lock(&dm_bufio_clients_lock);
1810
 
 
1811	list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1812		__evict_old_buffers(c, max_age_hz);
1813
1814	mutex_unlock(&dm_bufio_clients_lock);
1815}
1816
1817static struct workqueue_struct *dm_bufio_wq;
1818static struct delayed_work dm_bufio_work;
1819
1820static void work_fn(struct work_struct *w)
1821{
1822	cleanup_old_buffers();
1823
1824	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1825			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1826}
1827
1828/*----------------------------------------------------------------
1829 * Module setup
1830 *--------------------------------------------------------------*/
1831
1832/*
1833 * This is called only once for the whole dm_bufio module.
1834 * It initializes memory limit.
1835 */
1836static int __init dm_bufio_init(void)
1837{
1838	__u64 mem;
1839
1840	dm_bufio_allocated_kmem_cache = 0;
1841	dm_bufio_allocated_get_free_pages = 0;
1842	dm_bufio_allocated_vmalloc = 0;
1843	dm_bufio_current_allocated = 0;
1844
1845	memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1846	memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1847
1848	mem = (__u64)((totalram_pages - totalhigh_pages) *
1849		      DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1850
1851	if (mem > ULONG_MAX)
1852		mem = ULONG_MAX;
1853
1854#ifdef CONFIG_MMU
1855	/*
1856	 * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1857	 * in fs/proc/internal.h
1858	 */
1859	if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1860		mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1861#endif
1862
1863	dm_bufio_default_cache_size = mem;
1864
1865	mutex_lock(&dm_bufio_clients_lock);
1866	__cache_size_refresh();
1867	mutex_unlock(&dm_bufio_clients_lock);
1868
1869	dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
1870	if (!dm_bufio_wq)
1871		return -ENOMEM;
1872
1873	INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1874	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
 
1875			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1876
1877	return 0;
1878}
1879
1880/*
1881 * This is called once when unloading the dm_bufio module.
1882 */
1883static void __exit dm_bufio_exit(void)
1884{
1885	int bug = 0;
1886	int i;
1887
1888	cancel_delayed_work_sync(&dm_bufio_work);
1889	destroy_workqueue(dm_bufio_wq);
1890
1891	for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++)
1892		kmem_cache_destroy(dm_bufio_caches[i]);
1893
1894	for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1895		kfree(dm_bufio_cache_names[i]);
1896
1897	if (dm_bufio_client_count) {
1898		DMCRIT("%s: dm_bufio_client_count leaked: %d",
1899			__func__, dm_bufio_client_count);
1900		bug = 1;
1901	}
1902
1903	if (dm_bufio_current_allocated) {
1904		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1905			__func__, dm_bufio_current_allocated);
1906		bug = 1;
1907	}
1908
1909	if (dm_bufio_allocated_get_free_pages) {
1910		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1911		       __func__, dm_bufio_allocated_get_free_pages);
1912		bug = 1;
1913	}
1914
1915	if (dm_bufio_allocated_vmalloc) {
1916		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1917		       __func__, dm_bufio_allocated_vmalloc);
1918		bug = 1;
1919	}
1920
1921	BUG_ON(bug);
1922}
1923
1924module_init(dm_bufio_init)
1925module_exit(dm_bufio_exit)
1926
1927module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1928MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1929
1930module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1931MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1932
1933module_param_named(retain_bytes, dm_bufio_retain_bytes, uint, S_IRUGO | S_IWUSR);
1934MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
1935
1936module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1937MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1938
1939module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1940MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1941
1942module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1943MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1944
1945module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1946MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1947
1948module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1949MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1950
1951MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1952MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1953MODULE_LICENSE("GPL");