Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  HID support for Linux
   4 *
   5 *  Copyright (c) 1999 Andreas Gal
   6 *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
   7 *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
   8 *  Copyright (c) 2006-2012 Jiri Kosina
   9 */
  10
  11/*
 
 
 
 
  12 */
  13
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15
  16#include <linux/module.h>
  17#include <linux/slab.h>
  18#include <linux/init.h>
  19#include <linux/kernel.h>
  20#include <linux/list.h>
  21#include <linux/mm.h>
  22#include <linux/spinlock.h>
  23#include <asm/unaligned.h>
  24#include <asm/byteorder.h>
  25#include <linux/input.h>
  26#include <linux/wait.h>
  27#include <linux/vmalloc.h>
  28#include <linux/sched.h>
  29#include <linux/semaphore.h>
  30
  31#include <linux/hid.h>
  32#include <linux/hiddev.h>
  33#include <linux/hid-debug.h>
  34#include <linux/hidraw.h>
  35
  36#include "hid-ids.h"
  37
  38/*
  39 * Version Information
  40 */
  41
  42#define DRIVER_DESC "HID core driver"
  43
  44int hid_debug = 0;
  45module_param_named(debug, hid_debug, int, 0600);
  46MODULE_PARM_DESC(debug, "toggle HID debugging messages");
  47EXPORT_SYMBOL_GPL(hid_debug);
  48
  49static int hid_ignore_special_drivers = 0;
  50module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
  51MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
  52
  53/*
  54 * Register a new report for a device.
  55 */
  56
  57struct hid_report *hid_register_report(struct hid_device *device,
  58				       enum hid_report_type type, unsigned int id,
  59				       unsigned int application)
  60{
  61	struct hid_report_enum *report_enum = device->report_enum + type;
  62	struct hid_report *report;
  63
  64	if (id >= HID_MAX_IDS)
  65		return NULL;
  66	if (report_enum->report_id_hash[id])
  67		return report_enum->report_id_hash[id];
  68
  69	report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
  70	if (!report)
  71		return NULL;
  72
  73	if (id != 0)
  74		report_enum->numbered = 1;
  75
  76	report->id = id;
  77	report->type = type;
  78	report->size = 0;
  79	report->device = device;
  80	report->application = application;
  81	report_enum->report_id_hash[id] = report;
  82
  83	list_add_tail(&report->list, &report_enum->report_list);
  84	INIT_LIST_HEAD(&report->field_entry_list);
  85
  86	return report;
  87}
  88EXPORT_SYMBOL_GPL(hid_register_report);
  89
  90/*
  91 * Register a new field for this report.
  92 */
  93
  94static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
  95{
  96	struct hid_field *field;
  97
  98	if (report->maxfield == HID_MAX_FIELDS) {
  99		hid_err(report->device, "too many fields in report\n");
 100		return NULL;
 101	}
 102
 103	field = kzalloc((sizeof(struct hid_field) +
 104			 usages * sizeof(struct hid_usage) +
 105			 3 * usages * sizeof(unsigned int)), GFP_KERNEL);
 106	if (!field)
 107		return NULL;
 108
 109	field->index = report->maxfield++;
 110	report->field[field->index] = field;
 111	field->usage = (struct hid_usage *)(field + 1);
 112	field->value = (s32 *)(field->usage + usages);
 113	field->new_value = (s32 *)(field->value + usages);
 114	field->usages_priorities = (s32 *)(field->new_value + usages);
 115	field->report = report;
 116
 117	return field;
 118}
 119
 120/*
 121 * Open a collection. The type/usage is pushed on the stack.
 122 */
 123
 124static int open_collection(struct hid_parser *parser, unsigned type)
 125{
 126	struct hid_collection *collection;
 127	unsigned usage;
 128	int collection_index;
 129
 130	usage = parser->local.usage[0];
 131
 132	if (parser->collection_stack_ptr == parser->collection_stack_size) {
 133		unsigned int *collection_stack;
 134		unsigned int new_size = parser->collection_stack_size +
 135					HID_COLLECTION_STACK_SIZE;
 136
 137		collection_stack = krealloc(parser->collection_stack,
 138					    new_size * sizeof(unsigned int),
 139					    GFP_KERNEL);
 140		if (!collection_stack)
 141			return -ENOMEM;
 142
 143		parser->collection_stack = collection_stack;
 144		parser->collection_stack_size = new_size;
 145	}
 146
 147	if (parser->device->maxcollection == parser->device->collection_size) {
 148		collection = kmalloc(
 149				array3_size(sizeof(struct hid_collection),
 150					    parser->device->collection_size,
 151					    2),
 152				GFP_KERNEL);
 153		if (collection == NULL) {
 154			hid_err(parser->device, "failed to reallocate collection array\n");
 155			return -ENOMEM;
 156		}
 157		memcpy(collection, parser->device->collection,
 158			sizeof(struct hid_collection) *
 159			parser->device->collection_size);
 160		memset(collection + parser->device->collection_size, 0,
 161			sizeof(struct hid_collection) *
 162			parser->device->collection_size);
 163		kfree(parser->device->collection);
 164		parser->device->collection = collection;
 165		parser->device->collection_size *= 2;
 166	}
 167
 168	parser->collection_stack[parser->collection_stack_ptr++] =
 169		parser->device->maxcollection;
 170
 171	collection_index = parser->device->maxcollection++;
 172	collection = parser->device->collection + collection_index;
 173	collection->type = type;
 174	collection->usage = usage;
 175	collection->level = parser->collection_stack_ptr - 1;
 176	collection->parent_idx = (collection->level == 0) ? -1 :
 177		parser->collection_stack[collection->level - 1];
 178
 179	if (type == HID_COLLECTION_APPLICATION)
 180		parser->device->maxapplication++;
 181
 182	return 0;
 183}
 184
 185/*
 186 * Close a collection.
 187 */
 188
 189static int close_collection(struct hid_parser *parser)
 190{
 191	if (!parser->collection_stack_ptr) {
 192		hid_err(parser->device, "collection stack underflow\n");
 193		return -EINVAL;
 194	}
 195	parser->collection_stack_ptr--;
 196	return 0;
 197}
 198
 199/*
 200 * Climb up the stack, search for the specified collection type
 201 * and return the usage.
 202 */
 203
 204static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
 205{
 206	struct hid_collection *collection = parser->device->collection;
 207	int n;
 208
 209	for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
 210		unsigned index = parser->collection_stack[n];
 211		if (collection[index].type == type)
 212			return collection[index].usage;
 213	}
 214	return 0; /* we know nothing about this usage type */
 215}
 216
 217/*
 218 * Concatenate usage which defines 16 bits or less with the
 219 * currently defined usage page to form a 32 bit usage
 220 */
 221
 222static void complete_usage(struct hid_parser *parser, unsigned int index)
 223{
 224	parser->local.usage[index] &= 0xFFFF;
 225	parser->local.usage[index] |=
 226		(parser->global.usage_page & 0xFFFF) << 16;
 227}
 228
 229/*
 230 * Add a usage to the temporary parser table.
 231 */
 232
 233static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
 234{
 235	if (parser->local.usage_index >= HID_MAX_USAGES) {
 236		hid_err(parser->device, "usage index exceeded\n");
 237		return -1;
 238	}
 239	parser->local.usage[parser->local.usage_index] = usage;
 240
 241	/*
 242	 * If Usage item only includes usage id, concatenate it with
 243	 * currently defined usage page
 244	 */
 245	if (size <= 2)
 246		complete_usage(parser, parser->local.usage_index);
 247
 248	parser->local.usage_size[parser->local.usage_index] = size;
 249	parser->local.collection_index[parser->local.usage_index] =
 250		parser->collection_stack_ptr ?
 251		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
 252	parser->local.usage_index++;
 253	return 0;
 254}
 255
 256/*
 257 * Register a new field for this report.
 258 */
 259
 260static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
 261{
 262	struct hid_report *report;
 263	struct hid_field *field;
 264	unsigned int usages;
 265	unsigned int offset;
 266	unsigned int i;
 267	unsigned int application;
 268
 269	application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
 270
 271	report = hid_register_report(parser->device, report_type,
 272				     parser->global.report_id, application);
 273	if (!report) {
 274		hid_err(parser->device, "hid_register_report failed\n");
 275		return -1;
 276	}
 277
 278	/* Handle both signed and unsigned cases properly */
 279	if ((parser->global.logical_minimum < 0 &&
 280		parser->global.logical_maximum <
 281		parser->global.logical_minimum) ||
 282		(parser->global.logical_minimum >= 0 &&
 283		(__u32)parser->global.logical_maximum <
 284		(__u32)parser->global.logical_minimum)) {
 285		dbg_hid("logical range invalid 0x%x 0x%x\n",
 286			parser->global.logical_minimum,
 287			parser->global.logical_maximum);
 288		return -1;
 289	}
 290
 291	offset = report->size;
 292	report->size += parser->global.report_size * parser->global.report_count;
 293
 294	/* Total size check: Allow for possible report index byte */
 295	if (report->size > (HID_MAX_BUFFER_SIZE - 1) << 3) {
 296		hid_err(parser->device, "report is too long\n");
 297		return -1;
 298	}
 299
 300	if (!parser->local.usage_index) /* Ignore padding fields */
 301		return 0;
 302
 303	usages = max_t(unsigned, parser->local.usage_index,
 304				 parser->global.report_count);
 305
 306	field = hid_register_field(report, usages);
 307	if (!field)
 308		return 0;
 309
 310	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
 311	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
 312	field->application = application;
 313
 314	for (i = 0; i < usages; i++) {
 315		unsigned j = i;
 316		/* Duplicate the last usage we parsed if we have excess values */
 317		if (i >= parser->local.usage_index)
 318			j = parser->local.usage_index - 1;
 319		field->usage[i].hid = parser->local.usage[j];
 320		field->usage[i].collection_index =
 321			parser->local.collection_index[j];
 322		field->usage[i].usage_index = i;
 323		field->usage[i].resolution_multiplier = 1;
 324	}
 325
 326	field->maxusage = usages;
 327	field->flags = flags;
 328	field->report_offset = offset;
 329	field->report_type = report_type;
 330	field->report_size = parser->global.report_size;
 331	field->report_count = parser->global.report_count;
 332	field->logical_minimum = parser->global.logical_minimum;
 333	field->logical_maximum = parser->global.logical_maximum;
 334	field->physical_minimum = parser->global.physical_minimum;
 335	field->physical_maximum = parser->global.physical_maximum;
 336	field->unit_exponent = parser->global.unit_exponent;
 337	field->unit = parser->global.unit;
 338
 339	return 0;
 340}
 341
 342/*
 343 * Read data value from item.
 344 */
 345
 346static u32 item_udata(struct hid_item *item)
 347{
 348	switch (item->size) {
 349	case 1: return item->data.u8;
 350	case 2: return item->data.u16;
 351	case 4: return item->data.u32;
 352	}
 353	return 0;
 354}
 355
 356static s32 item_sdata(struct hid_item *item)
 357{
 358	switch (item->size) {
 359	case 1: return item->data.s8;
 360	case 2: return item->data.s16;
 361	case 4: return item->data.s32;
 362	}
 363	return 0;
 364}
 365
 366/*
 367 * Process a global item.
 368 */
 369
 370static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
 371{
 372	__s32 raw_value;
 373	switch (item->tag) {
 374	case HID_GLOBAL_ITEM_TAG_PUSH:
 375
 376		if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
 377			hid_err(parser->device, "global environment stack overflow\n");
 378			return -1;
 379		}
 380
 381		memcpy(parser->global_stack + parser->global_stack_ptr++,
 382			&parser->global, sizeof(struct hid_global));
 383		return 0;
 384
 385	case HID_GLOBAL_ITEM_TAG_POP:
 386
 387		if (!parser->global_stack_ptr) {
 388			hid_err(parser->device, "global environment stack underflow\n");
 389			return -1;
 390		}
 391
 392		memcpy(&parser->global, parser->global_stack +
 393			--parser->global_stack_ptr, sizeof(struct hid_global));
 394		return 0;
 395
 396	case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
 397		parser->global.usage_page = item_udata(item);
 398		return 0;
 399
 400	case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
 401		parser->global.logical_minimum = item_sdata(item);
 402		return 0;
 403
 404	case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
 405		if (parser->global.logical_minimum < 0)
 406			parser->global.logical_maximum = item_sdata(item);
 407		else
 408			parser->global.logical_maximum = item_udata(item);
 409		return 0;
 410
 411	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
 412		parser->global.physical_minimum = item_sdata(item);
 413		return 0;
 414
 415	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
 416		if (parser->global.physical_minimum < 0)
 417			parser->global.physical_maximum = item_sdata(item);
 418		else
 419			parser->global.physical_maximum = item_udata(item);
 420		return 0;
 421
 422	case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
 423		/* Many devices provide unit exponent as a two's complement
 424		 * nibble due to the common misunderstanding of HID
 425		 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
 426		 * both this and the standard encoding. */
 427		raw_value = item_sdata(item);
 428		if (!(raw_value & 0xfffffff0))
 429			parser->global.unit_exponent = hid_snto32(raw_value, 4);
 430		else
 431			parser->global.unit_exponent = raw_value;
 432		return 0;
 433
 434	case HID_GLOBAL_ITEM_TAG_UNIT:
 435		parser->global.unit = item_udata(item);
 436		return 0;
 437
 438	case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
 439		parser->global.report_size = item_udata(item);
 440		if (parser->global.report_size > 256) {
 441			hid_err(parser->device, "invalid report_size %d\n",
 442					parser->global.report_size);
 443			return -1;
 444		}
 445		return 0;
 446
 447	case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
 448		parser->global.report_count = item_udata(item);
 449		if (parser->global.report_count > HID_MAX_USAGES) {
 450			hid_err(parser->device, "invalid report_count %d\n",
 451					parser->global.report_count);
 452			return -1;
 453		}
 454		return 0;
 455
 456	case HID_GLOBAL_ITEM_TAG_REPORT_ID:
 457		parser->global.report_id = item_udata(item);
 458		if (parser->global.report_id == 0 ||
 459		    parser->global.report_id >= HID_MAX_IDS) {
 460			hid_err(parser->device, "report_id %u is invalid\n",
 461				parser->global.report_id);
 462			return -1;
 463		}
 464		return 0;
 465
 466	default:
 467		hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
 468		return -1;
 469	}
 470}
 471
 472/*
 473 * Process a local item.
 474 */
 475
 476static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
 477{
 478	__u32 data;
 479	unsigned n;
 480	__u32 count;
 481
 482	data = item_udata(item);
 483
 484	switch (item->tag) {
 485	case HID_LOCAL_ITEM_TAG_DELIMITER:
 486
 487		if (data) {
 488			/*
 489			 * We treat items before the first delimiter
 490			 * as global to all usage sets (branch 0).
 491			 * In the moment we process only these global
 492			 * items and the first delimiter set.
 493			 */
 494			if (parser->local.delimiter_depth != 0) {
 495				hid_err(parser->device, "nested delimiters\n");
 496				return -1;
 497			}
 498			parser->local.delimiter_depth++;
 499			parser->local.delimiter_branch++;
 500		} else {
 501			if (parser->local.delimiter_depth < 1) {
 502				hid_err(parser->device, "bogus close delimiter\n");
 503				return -1;
 504			}
 505			parser->local.delimiter_depth--;
 506		}
 507		return 0;
 508
 509	case HID_LOCAL_ITEM_TAG_USAGE:
 510
 511		if (parser->local.delimiter_branch > 1) {
 512			dbg_hid("alternative usage ignored\n");
 513			return 0;
 514		}
 515
 516		return hid_add_usage(parser, data, item->size);
 
 
 
 517
 518	case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
 519
 520		if (parser->local.delimiter_branch > 1) {
 521			dbg_hid("alternative usage ignored\n");
 522			return 0;
 523		}
 524
 
 
 
 525		parser->local.usage_minimum = data;
 526		return 0;
 527
 528	case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
 529
 530		if (parser->local.delimiter_branch > 1) {
 531			dbg_hid("alternative usage ignored\n");
 532			return 0;
 533		}
 534
 
 
 
 535		count = data - parser->local.usage_minimum;
 536		if (count + parser->local.usage_index >= HID_MAX_USAGES) {
 537			/*
 538			 * We do not warn if the name is not set, we are
 539			 * actually pre-scanning the device.
 540			 */
 541			if (dev_name(&parser->device->dev))
 542				hid_warn(parser->device,
 543					 "ignoring exceeding usage max\n");
 544			data = HID_MAX_USAGES - parser->local.usage_index +
 545				parser->local.usage_minimum - 1;
 546			if (data <= 0) {
 547				hid_err(parser->device,
 548					"no more usage index available\n");
 549				return -1;
 550			}
 551		}
 552
 553		for (n = parser->local.usage_minimum; n <= data; n++)
 554			if (hid_add_usage(parser, n, item->size)) {
 555				dbg_hid("hid_add_usage failed\n");
 556				return -1;
 557			}
 558		return 0;
 559
 560	default:
 561
 562		dbg_hid("unknown local item tag 0x%x\n", item->tag);
 563		return 0;
 564	}
 565	return 0;
 566}
 567
 568/*
 569 * Concatenate Usage Pages into Usages where relevant:
 570 * As per specification, 6.2.2.8: "When the parser encounters a main item it
 571 * concatenates the last declared Usage Page with a Usage to form a complete
 572 * usage value."
 573 */
 574
 575static void hid_concatenate_last_usage_page(struct hid_parser *parser)
 576{
 577	int i;
 578	unsigned int usage_page;
 579	unsigned int current_page;
 580
 581	if (!parser->local.usage_index)
 582		return;
 583
 584	usage_page = parser->global.usage_page;
 585
 586	/*
 587	 * Concatenate usage page again only if last declared Usage Page
 588	 * has not been already used in previous usages concatenation
 589	 */
 590	for (i = parser->local.usage_index - 1; i >= 0; i--) {
 591		if (parser->local.usage_size[i] > 2)
 592			/* Ignore extended usages */
 593			continue;
 594
 595		current_page = parser->local.usage[i] >> 16;
 596		if (current_page == usage_page)
 597			break;
 598
 599		complete_usage(parser, i);
 600	}
 601}
 602
 603/*
 604 * Process a main item.
 605 */
 606
 607static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
 608{
 609	__u32 data;
 610	int ret;
 611
 612	hid_concatenate_last_usage_page(parser);
 613
 614	data = item_udata(item);
 615
 616	switch (item->tag) {
 617	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
 618		ret = open_collection(parser, data & 0xff);
 619		break;
 620	case HID_MAIN_ITEM_TAG_END_COLLECTION:
 621		ret = close_collection(parser);
 622		break;
 623	case HID_MAIN_ITEM_TAG_INPUT:
 624		ret = hid_add_field(parser, HID_INPUT_REPORT, data);
 625		break;
 626	case HID_MAIN_ITEM_TAG_OUTPUT:
 627		ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
 628		break;
 629	case HID_MAIN_ITEM_TAG_FEATURE:
 630		ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
 631		break;
 632	default:
 633		hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
 634		ret = 0;
 635	}
 636
 637	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
 638
 639	return ret;
 640}
 641
 642/*
 643 * Process a reserved item.
 644 */
 645
 646static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
 647{
 648	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
 649	return 0;
 650}
 651
 652/*
 653 * Free a report and all registered fields. The field->usage and
 654 * field->value table's are allocated behind the field, so we need
 655 * only to free(field) itself.
 656 */
 657
 658static void hid_free_report(struct hid_report *report)
 659{
 660	unsigned n;
 661
 662	kfree(report->field_entries);
 663
 664	for (n = 0; n < report->maxfield; n++)
 665		kfree(report->field[n]);
 666	kfree(report);
 667}
 668
 669/*
 670 * Close report. This function returns the device
 671 * state to the point prior to hid_open_report().
 672 */
 673static void hid_close_report(struct hid_device *device)
 674{
 675	unsigned i, j;
 676
 677	for (i = 0; i < HID_REPORT_TYPES; i++) {
 678		struct hid_report_enum *report_enum = device->report_enum + i;
 679
 680		for (j = 0; j < HID_MAX_IDS; j++) {
 681			struct hid_report *report = report_enum->report_id_hash[j];
 682			if (report)
 683				hid_free_report(report);
 684		}
 685		memset(report_enum, 0, sizeof(*report_enum));
 686		INIT_LIST_HEAD(&report_enum->report_list);
 687	}
 688
 689	kfree(device->rdesc);
 690	device->rdesc = NULL;
 691	device->rsize = 0;
 692
 693	kfree(device->collection);
 694	device->collection = NULL;
 695	device->collection_size = 0;
 696	device->maxcollection = 0;
 697	device->maxapplication = 0;
 698
 699	device->status &= ~HID_STAT_PARSED;
 700}
 701
 702/*
 703 * Free a device structure, all reports, and all fields.
 704 */
 705
 706static void hid_device_release(struct device *dev)
 707{
 708	struct hid_device *hid = to_hid_device(dev);
 709
 710	hid_close_report(hid);
 711	kfree(hid->dev_rdesc);
 712	kfree(hid);
 713}
 714
 715/*
 716 * Fetch a report description item from the data stream. We support long
 717 * items, though they are not used yet.
 718 */
 719
 720static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
 721{
 722	u8 b;
 723
 724	if ((end - start) <= 0)
 725		return NULL;
 726
 727	b = *start++;
 728
 729	item->type = (b >> 2) & 3;
 730	item->tag  = (b >> 4) & 15;
 731
 732	if (item->tag == HID_ITEM_TAG_LONG) {
 733
 734		item->format = HID_ITEM_FORMAT_LONG;
 735
 736		if ((end - start) < 2)
 737			return NULL;
 738
 739		item->size = *start++;
 740		item->tag  = *start++;
 741
 742		if ((end - start) < item->size)
 743			return NULL;
 744
 745		item->data.longdata = start;
 746		start += item->size;
 747		return start;
 748	}
 749
 750	item->format = HID_ITEM_FORMAT_SHORT;
 751	item->size = b & 3;
 752
 753	switch (item->size) {
 754	case 0:
 755		return start;
 756
 757	case 1:
 758		if ((end - start) < 1)
 759			return NULL;
 760		item->data.u8 = *start++;
 761		return start;
 762
 763	case 2:
 764		if ((end - start) < 2)
 765			return NULL;
 766		item->data.u16 = get_unaligned_le16(start);
 767		start = (__u8 *)((__le16 *)start + 1);
 768		return start;
 769
 770	case 3:
 771		item->size++;
 772		if ((end - start) < 4)
 773			return NULL;
 774		item->data.u32 = get_unaligned_le32(start);
 775		start = (__u8 *)((__le32 *)start + 1);
 776		return start;
 777	}
 778
 779	return NULL;
 780}
 781
 782static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
 783{
 784	struct hid_device *hid = parser->device;
 785
 786	if (usage == HID_DG_CONTACTID)
 787		hid->group = HID_GROUP_MULTITOUCH;
 788}
 789
 790static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
 791{
 792	if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
 793	    parser->global.report_size == 8)
 794		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
 795
 796	if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
 797	    parser->global.report_size == 8)
 798		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
 799}
 800
 801static void hid_scan_collection(struct hid_parser *parser, unsigned type)
 802{
 803	struct hid_device *hid = parser->device;
 804	int i;
 805
 806	if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
 807	    type == HID_COLLECTION_PHYSICAL)
 808		hid->group = HID_GROUP_SENSOR_HUB;
 809
 810	if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
 811	    hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
 812	    hid->group == HID_GROUP_MULTITOUCH)
 813		hid->group = HID_GROUP_GENERIC;
 814
 815	if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
 816		for (i = 0; i < parser->local.usage_index; i++)
 817			if (parser->local.usage[i] == HID_GD_POINTER)
 818				parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
 819
 820	if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
 821		parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
 822
 823	if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
 824		for (i = 0; i < parser->local.usage_index; i++)
 825			if (parser->local.usage[i] ==
 826					(HID_UP_GOOGLEVENDOR | 0x0001))
 827				parser->device->group =
 828					HID_GROUP_VIVALDI;
 829}
 830
 831static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
 832{
 833	__u32 data;
 834	int i;
 835
 836	hid_concatenate_last_usage_page(parser);
 837
 838	data = item_udata(item);
 839
 840	switch (item->tag) {
 841	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
 842		hid_scan_collection(parser, data & 0xff);
 843		break;
 844	case HID_MAIN_ITEM_TAG_END_COLLECTION:
 845		break;
 846	case HID_MAIN_ITEM_TAG_INPUT:
 847		/* ignore constant inputs, they will be ignored by hid-input */
 848		if (data & HID_MAIN_ITEM_CONSTANT)
 849			break;
 850		for (i = 0; i < parser->local.usage_index; i++)
 851			hid_scan_input_usage(parser, parser->local.usage[i]);
 852		break;
 853	case HID_MAIN_ITEM_TAG_OUTPUT:
 854		break;
 855	case HID_MAIN_ITEM_TAG_FEATURE:
 856		for (i = 0; i < parser->local.usage_index; i++)
 857			hid_scan_feature_usage(parser, parser->local.usage[i]);
 858		break;
 859	}
 860
 861	/* Reset the local parser environment */
 862	memset(&parser->local, 0, sizeof(parser->local));
 863
 864	return 0;
 865}
 866
 867/*
 868 * Scan a report descriptor before the device is added to the bus.
 869 * Sets device groups and other properties that determine what driver
 870 * to load.
 871 */
 872static int hid_scan_report(struct hid_device *hid)
 873{
 874	struct hid_parser *parser;
 875	struct hid_item item;
 876	__u8 *start = hid->dev_rdesc;
 877	__u8 *end = start + hid->dev_rsize;
 878	static int (*dispatch_type[])(struct hid_parser *parser,
 879				      struct hid_item *item) = {
 880		hid_scan_main,
 881		hid_parser_global,
 882		hid_parser_local,
 883		hid_parser_reserved
 884	};
 885
 886	parser = vzalloc(sizeof(struct hid_parser));
 887	if (!parser)
 888		return -ENOMEM;
 889
 890	parser->device = hid;
 891	hid->group = HID_GROUP_GENERIC;
 892
 893	/*
 894	 * The parsing is simpler than the one in hid_open_report() as we should
 895	 * be robust against hid errors. Those errors will be raised by
 896	 * hid_open_report() anyway.
 897	 */
 898	while ((start = fetch_item(start, end, &item)) != NULL)
 899		dispatch_type[item.type](parser, &item);
 900
 901	/*
 902	 * Handle special flags set during scanning.
 903	 */
 904	if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
 905	    (hid->group == HID_GROUP_MULTITOUCH))
 906		hid->group = HID_GROUP_MULTITOUCH_WIN_8;
 907
 908	/*
 909	 * Vendor specific handlings
 910	 */
 911	switch (hid->vendor) {
 912	case USB_VENDOR_ID_WACOM:
 913		hid->group = HID_GROUP_WACOM;
 914		break;
 915	case USB_VENDOR_ID_SYNAPTICS:
 916		if (hid->group == HID_GROUP_GENERIC)
 917			if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
 918			    && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
 919				/*
 920				 * hid-rmi should take care of them,
 921				 * not hid-generic
 922				 */
 923				hid->group = HID_GROUP_RMI;
 924		break;
 925	}
 926
 927	kfree(parser->collection_stack);
 928	vfree(parser);
 929	return 0;
 930}
 931
 932/**
 933 * hid_parse_report - parse device report
 934 *
 935 * @hid: hid device
 936 * @start: report start
 937 * @size: report size
 938 *
 939 * Allocate the device report as read by the bus driver. This function should
 940 * only be called from parse() in ll drivers.
 941 */
 942int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
 943{
 944	hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
 945	if (!hid->dev_rdesc)
 946		return -ENOMEM;
 947	hid->dev_rsize = size;
 948	return 0;
 949}
 950EXPORT_SYMBOL_GPL(hid_parse_report);
 951
 952static const char * const hid_report_names[] = {
 953	"HID_INPUT_REPORT",
 954	"HID_OUTPUT_REPORT",
 955	"HID_FEATURE_REPORT",
 956};
 957/**
 958 * hid_validate_values - validate existing device report's value indexes
 959 *
 960 * @hid: hid device
 961 * @type: which report type to examine
 962 * @id: which report ID to examine (0 for first)
 963 * @field_index: which report field to examine
 964 * @report_counts: expected number of values
 965 *
 966 * Validate the number of values in a given field of a given report, after
 967 * parsing.
 968 */
 969struct hid_report *hid_validate_values(struct hid_device *hid,
 970				       enum hid_report_type type, unsigned int id,
 971				       unsigned int field_index,
 972				       unsigned int report_counts)
 973{
 974	struct hid_report *report;
 975
 976	if (type > HID_FEATURE_REPORT) {
 977		hid_err(hid, "invalid HID report type %u\n", type);
 978		return NULL;
 979	}
 980
 981	if (id >= HID_MAX_IDS) {
 982		hid_err(hid, "invalid HID report id %u\n", id);
 983		return NULL;
 984	}
 985
 986	/*
 987	 * Explicitly not using hid_get_report() here since it depends on
 988	 * ->numbered being checked, which may not always be the case when
 989	 * drivers go to access report values.
 990	 */
 991	if (id == 0) {
 992		/*
 993		 * Validating on id 0 means we should examine the first
 994		 * report in the list.
 995		 */
 996		report = list_first_entry_or_null(
 997				&hid->report_enum[type].report_list,
 998				struct hid_report, list);
 999	} else {
1000		report = hid->report_enum[type].report_id_hash[id];
1001	}
1002	if (!report) {
1003		hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1004		return NULL;
1005	}
1006	if (report->maxfield <= field_index) {
1007		hid_err(hid, "not enough fields in %s %u\n",
1008			hid_report_names[type], id);
1009		return NULL;
1010	}
1011	if (report->field[field_index]->report_count < report_counts) {
1012		hid_err(hid, "not enough values in %s %u field %u\n",
1013			hid_report_names[type], id, field_index);
1014		return NULL;
1015	}
1016	return report;
1017}
1018EXPORT_SYMBOL_GPL(hid_validate_values);
1019
1020static int hid_calculate_multiplier(struct hid_device *hid,
1021				     struct hid_field *multiplier)
1022{
1023	int m;
1024	__s32 v = *multiplier->value;
1025	__s32 lmin = multiplier->logical_minimum;
1026	__s32 lmax = multiplier->logical_maximum;
1027	__s32 pmin = multiplier->physical_minimum;
1028	__s32 pmax = multiplier->physical_maximum;
1029
1030	/*
1031	 * "Because OS implementations will generally divide the control's
1032	 * reported count by the Effective Resolution Multiplier, designers
1033	 * should take care not to establish a potential Effective
1034	 * Resolution Multiplier of zero."
1035	 * HID Usage Table, v1.12, Section 4.3.1, p31
1036	 */
1037	if (lmax - lmin == 0)
1038		return 1;
1039	/*
1040	 * Handling the unit exponent is left as an exercise to whoever
1041	 * finds a device where that exponent is not 0.
1042	 */
1043	m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1044	if (unlikely(multiplier->unit_exponent != 0)) {
1045		hid_warn(hid,
1046			 "unsupported Resolution Multiplier unit exponent %d\n",
1047			 multiplier->unit_exponent);
1048	}
1049
1050	/* There are no devices with an effective multiplier > 255 */
1051	if (unlikely(m == 0 || m > 255 || m < -255)) {
1052		hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1053		m = 1;
1054	}
1055
1056	return m;
1057}
1058
1059static void hid_apply_multiplier_to_field(struct hid_device *hid,
1060					  struct hid_field *field,
1061					  struct hid_collection *multiplier_collection,
1062					  int effective_multiplier)
1063{
1064	struct hid_collection *collection;
1065	struct hid_usage *usage;
1066	int i;
1067
1068	/*
1069	 * If multiplier_collection is NULL, the multiplier applies
1070	 * to all fields in the report.
1071	 * Otherwise, it is the Logical Collection the multiplier applies to
1072	 * but our field may be in a subcollection of that collection.
1073	 */
1074	for (i = 0; i < field->maxusage; i++) {
1075		usage = &field->usage[i];
1076
1077		collection = &hid->collection[usage->collection_index];
1078		while (collection->parent_idx != -1 &&
1079		       collection != multiplier_collection)
1080			collection = &hid->collection[collection->parent_idx];
1081
1082		if (collection->parent_idx != -1 ||
1083		    multiplier_collection == NULL)
1084			usage->resolution_multiplier = effective_multiplier;
1085
1086	}
1087}
1088
1089static void hid_apply_multiplier(struct hid_device *hid,
1090				 struct hid_field *multiplier)
1091{
1092	struct hid_report_enum *rep_enum;
1093	struct hid_report *rep;
1094	struct hid_field *field;
1095	struct hid_collection *multiplier_collection;
1096	int effective_multiplier;
1097	int i;
1098
1099	/*
1100	 * "The Resolution Multiplier control must be contained in the same
1101	 * Logical Collection as the control(s) to which it is to be applied.
1102	 * If no Resolution Multiplier is defined, then the Resolution
1103	 * Multiplier defaults to 1.  If more than one control exists in a
1104	 * Logical Collection, the Resolution Multiplier is associated with
1105	 * all controls in the collection. If no Logical Collection is
1106	 * defined, the Resolution Multiplier is associated with all
1107	 * controls in the report."
1108	 * HID Usage Table, v1.12, Section 4.3.1, p30
1109	 *
1110	 * Thus, search from the current collection upwards until we find a
1111	 * logical collection. Then search all fields for that same parent
1112	 * collection. Those are the fields the multiplier applies to.
1113	 *
1114	 * If we have more than one multiplier, it will overwrite the
1115	 * applicable fields later.
1116	 */
1117	multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1118	while (multiplier_collection->parent_idx != -1 &&
1119	       multiplier_collection->type != HID_COLLECTION_LOGICAL)
1120		multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1121
1122	effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1123
1124	rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1125	list_for_each_entry(rep, &rep_enum->report_list, list) {
1126		for (i = 0; i < rep->maxfield; i++) {
1127			field = rep->field[i];
1128			hid_apply_multiplier_to_field(hid, field,
1129						      multiplier_collection,
1130						      effective_multiplier);
1131		}
1132	}
1133}
1134
1135/*
1136 * hid_setup_resolution_multiplier - set up all resolution multipliers
1137 *
1138 * @device: hid device
1139 *
1140 * Search for all Resolution Multiplier Feature Reports and apply their
1141 * value to all matching Input items. This only updates the internal struct
1142 * fields.
1143 *
1144 * The Resolution Multiplier is applied by the hardware. If the multiplier
1145 * is anything other than 1, the hardware will send pre-multiplied events
1146 * so that the same physical interaction generates an accumulated
1147 *	accumulated_value = value * * multiplier
1148 * This may be achieved by sending
1149 * - "value * multiplier" for each event, or
1150 * - "value" but "multiplier" times as frequently, or
1151 * - a combination of the above
1152 * The only guarantee is that the same physical interaction always generates
1153 * an accumulated 'value * multiplier'.
1154 *
1155 * This function must be called before any event processing and after
1156 * any SetRequest to the Resolution Multiplier.
1157 */
1158void hid_setup_resolution_multiplier(struct hid_device *hid)
1159{
1160	struct hid_report_enum *rep_enum;
1161	struct hid_report *rep;
1162	struct hid_usage *usage;
1163	int i, j;
1164
1165	rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1166	list_for_each_entry(rep, &rep_enum->report_list, list) {
1167		for (i = 0; i < rep->maxfield; i++) {
1168			/* Ignore if report count is out of bounds. */
1169			if (rep->field[i]->report_count < 1)
1170				continue;
1171
1172			for (j = 0; j < rep->field[i]->maxusage; j++) {
1173				usage = &rep->field[i]->usage[j];
1174				if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1175					hid_apply_multiplier(hid,
1176							     rep->field[i]);
1177			}
1178		}
1179	}
1180}
1181EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1182
1183/**
1184 * hid_open_report - open a driver-specific device report
1185 *
1186 * @device: hid device
1187 *
1188 * Parse a report description into a hid_device structure. Reports are
1189 * enumerated, fields are attached to these reports.
1190 * 0 returned on success, otherwise nonzero error value.
1191 *
1192 * This function (or the equivalent hid_parse() macro) should only be
1193 * called from probe() in drivers, before starting the device.
1194 */
1195int hid_open_report(struct hid_device *device)
1196{
1197	struct hid_parser *parser;
1198	struct hid_item item;
1199	unsigned int size;
1200	__u8 *start;
1201	__u8 *buf;
1202	__u8 *end;
1203	__u8 *next;
1204	int ret;
1205	int i;
1206	static int (*dispatch_type[])(struct hid_parser *parser,
1207				      struct hid_item *item) = {
1208		hid_parser_main,
1209		hid_parser_global,
1210		hid_parser_local,
1211		hid_parser_reserved
1212	};
1213
1214	if (WARN_ON(device->status & HID_STAT_PARSED))
1215		return -EBUSY;
1216
1217	start = device->dev_rdesc;
1218	if (WARN_ON(!start))
1219		return -ENODEV;
1220	size = device->dev_rsize;
1221
1222	buf = kmemdup(start, size, GFP_KERNEL);
1223	if (buf == NULL)
1224		return -ENOMEM;
1225
1226	if (device->driver->report_fixup)
1227		start = device->driver->report_fixup(device, buf, &size);
1228	else
1229		start = buf;
1230
1231	start = kmemdup(start, size, GFP_KERNEL);
1232	kfree(buf);
1233	if (start == NULL)
1234		return -ENOMEM;
1235
1236	device->rdesc = start;
1237	device->rsize = size;
1238
1239	parser = vzalloc(sizeof(struct hid_parser));
1240	if (!parser) {
1241		ret = -ENOMEM;
1242		goto alloc_err;
1243	}
1244
1245	parser->device = device;
1246
1247	end = start + size;
1248
1249	device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1250				     sizeof(struct hid_collection), GFP_KERNEL);
1251	if (!device->collection) {
1252		ret = -ENOMEM;
1253		goto err;
1254	}
1255	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1256	for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++)
1257		device->collection[i].parent_idx = -1;
1258
1259	ret = -EINVAL;
1260	while ((next = fetch_item(start, end, &item)) != NULL) {
1261		start = next;
1262
1263		if (item.format != HID_ITEM_FORMAT_SHORT) {
1264			hid_err(device, "unexpected long global item\n");
1265			goto err;
1266		}
1267
1268		if (dispatch_type[item.type](parser, &item)) {
1269			hid_err(device, "item %u %u %u %u parsing failed\n",
1270				item.format, (unsigned)item.size,
1271				(unsigned)item.type, (unsigned)item.tag);
1272			goto err;
1273		}
1274
1275		if (start == end) {
1276			if (parser->collection_stack_ptr) {
1277				hid_err(device, "unbalanced collection at end of report description\n");
1278				goto err;
1279			}
1280			if (parser->local.delimiter_depth) {
1281				hid_err(device, "unbalanced delimiter at end of report description\n");
1282				goto err;
1283			}
1284
1285			/*
1286			 * fetch initial values in case the device's
1287			 * default multiplier isn't the recommended 1
1288			 */
1289			hid_setup_resolution_multiplier(device);
1290
1291			kfree(parser->collection_stack);
1292			vfree(parser);
1293			device->status |= HID_STAT_PARSED;
1294
1295			return 0;
1296		}
1297	}
1298
1299	hid_err(device, "item fetching failed at offset %u/%u\n",
1300		size - (unsigned int)(end - start), size);
1301err:
1302	kfree(parser->collection_stack);
1303alloc_err:
1304	vfree(parser);
1305	hid_close_report(device);
1306	return ret;
1307}
1308EXPORT_SYMBOL_GPL(hid_open_report);
1309
1310/*
1311 * Convert a signed n-bit integer to signed 32-bit integer. Common
1312 * cases are done through the compiler, the screwed things has to be
1313 * done by hand.
1314 */
1315
1316static s32 snto32(__u32 value, unsigned n)
1317{
1318	if (!value || !n)
1319		return 0;
1320
1321	if (n > 32)
1322		n = 32;
1323
1324	switch (n) {
1325	case 8:  return ((__s8)value);
1326	case 16: return ((__s16)value);
1327	case 32: return ((__s32)value);
1328	}
1329	return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1330}
1331
1332s32 hid_snto32(__u32 value, unsigned n)
1333{
1334	return snto32(value, n);
1335}
1336EXPORT_SYMBOL_GPL(hid_snto32);
1337
1338/*
1339 * Convert a signed 32-bit integer to a signed n-bit integer.
1340 */
1341
1342static u32 s32ton(__s32 value, unsigned n)
1343{
1344	s32 a = value >> (n - 1);
1345	if (a && a != -1)
1346		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1347	return value & ((1 << n) - 1);
1348}
1349
1350/*
1351 * Extract/implement a data field from/to a little endian report (bit array).
1352 *
1353 * Code sort-of follows HID spec:
1354 *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1355 *
1356 * While the USB HID spec allows unlimited length bit fields in "report
1357 * descriptors", most devices never use more than 16 bits.
1358 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1359 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1360 */
1361
1362static u32 __extract(u8 *report, unsigned offset, int n)
1363{
1364	unsigned int idx = offset / 8;
1365	unsigned int bit_nr = 0;
1366	unsigned int bit_shift = offset % 8;
1367	int bits_to_copy = 8 - bit_shift;
1368	u32 value = 0;
1369	u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1370
1371	while (n > 0) {
1372		value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1373		n -= bits_to_copy;
1374		bit_nr += bits_to_copy;
1375		bits_to_copy = 8;
1376		bit_shift = 0;
1377		idx++;
1378	}
1379
1380	return value & mask;
1381}
1382
1383u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1384			unsigned offset, unsigned n)
1385{
1386	if (n > 32) {
1387		hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1388			      __func__, n, current->comm);
1389		n = 32;
1390	}
1391
1392	return __extract(report, offset, n);
1393}
1394EXPORT_SYMBOL_GPL(hid_field_extract);
1395
1396/*
1397 * "implement" : set bits in a little endian bit stream.
1398 * Same concepts as "extract" (see comments above).
1399 * The data mangled in the bit stream remains in little endian
1400 * order the whole time. It make more sense to talk about
1401 * endianness of register values by considering a register
1402 * a "cached" copy of the little endian bit stream.
1403 */
1404
1405static void __implement(u8 *report, unsigned offset, int n, u32 value)
1406{
1407	unsigned int idx = offset / 8;
1408	unsigned int bit_shift = offset % 8;
1409	int bits_to_set = 8 - bit_shift;
1410
1411	while (n - bits_to_set >= 0) {
1412		report[idx] &= ~(0xff << bit_shift);
1413		report[idx] |= value << bit_shift;
1414		value >>= bits_to_set;
1415		n -= bits_to_set;
1416		bits_to_set = 8;
1417		bit_shift = 0;
1418		idx++;
1419	}
1420
1421	/* last nibble */
1422	if (n) {
1423		u8 bit_mask = ((1U << n) - 1);
1424		report[idx] &= ~(bit_mask << bit_shift);
1425		report[idx] |= value << bit_shift;
1426	}
1427}
1428
1429static void implement(const struct hid_device *hid, u8 *report,
1430		      unsigned offset, unsigned n, u32 value)
1431{
1432	if (unlikely(n > 32)) {
1433		hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1434			 __func__, n, current->comm);
1435		n = 32;
1436	} else if (n < 32) {
1437		u32 m = (1U << n) - 1;
1438
1439		if (unlikely(value > m)) {
1440			hid_warn(hid,
1441				 "%s() called with too large value %d (n: %d)! (%s)\n",
1442				 __func__, value, n, current->comm);
1443			WARN_ON(1);
1444			value &= m;
1445		}
1446	}
1447
1448	__implement(report, offset, n, value);
1449}
1450
1451/*
1452 * Search an array for a value.
1453 */
1454
1455static int search(__s32 *array, __s32 value, unsigned n)
1456{
1457	while (n--) {
1458		if (*array++ == value)
1459			return 0;
1460	}
1461	return -1;
1462}
1463
1464/**
1465 * hid_match_report - check if driver's raw_event should be called
1466 *
1467 * @hid: hid device
1468 * @report: hid report to match against
1469 *
1470 * compare hid->driver->report_table->report_type to report->type
1471 */
1472static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1473{
1474	const struct hid_report_id *id = hid->driver->report_table;
1475
1476	if (!id) /* NULL means all */
1477		return 1;
1478
1479	for (; id->report_type != HID_TERMINATOR; id++)
1480		if (id->report_type == HID_ANY_ID ||
1481				id->report_type == report->type)
1482			return 1;
1483	return 0;
1484}
1485
1486/**
1487 * hid_match_usage - check if driver's event should be called
1488 *
1489 * @hid: hid device
1490 * @usage: usage to match against
1491 *
1492 * compare hid->driver->usage_table->usage_{type,code} to
1493 * usage->usage_{type,code}
1494 */
1495static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1496{
1497	const struct hid_usage_id *id = hid->driver->usage_table;
1498
1499	if (!id) /* NULL means all */
1500		return 1;
1501
1502	for (; id->usage_type != HID_ANY_ID - 1; id++)
1503		if ((id->usage_hid == HID_ANY_ID ||
1504				id->usage_hid == usage->hid) &&
1505				(id->usage_type == HID_ANY_ID ||
1506				id->usage_type == usage->type) &&
1507				(id->usage_code == HID_ANY_ID ||
1508				 id->usage_code == usage->code))
1509			return 1;
1510	return 0;
1511}
1512
1513static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1514		struct hid_usage *usage, __s32 value, int interrupt)
1515{
1516	struct hid_driver *hdrv = hid->driver;
1517	int ret;
1518
1519	if (!list_empty(&hid->debug_list))
1520		hid_dump_input(hid, usage, value);
1521
1522	if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1523		ret = hdrv->event(hid, field, usage, value);
1524		if (ret != 0) {
1525			if (ret < 0)
1526				hid_err(hid, "%s's event failed with %d\n",
1527						hdrv->name, ret);
1528			return;
1529		}
1530	}
1531
1532	if (hid->claimed & HID_CLAIMED_INPUT)
1533		hidinput_hid_event(hid, field, usage, value);
1534	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1535		hid->hiddev_hid_event(hid, field, usage, value);
1536}
1537
1538/*
1539 * Checks if the given value is valid within this field
 
 
1540 */
1541static inline int hid_array_value_is_valid(struct hid_field *field,
1542					   __s32 value)
1543{
1544	__s32 min = field->logical_minimum;
1545
1546	/*
1547	 * Value needs to be between logical min and max, and
1548	 * (value - min) is used as an index in the usage array.
1549	 * This array is of size field->maxusage
1550	 */
1551	return value >= min &&
1552	       value <= field->logical_maximum &&
1553	       value - min < field->maxusage;
1554}
1555
1556/*
1557 * Fetch the field from the data. The field content is stored for next
1558 * report processing (we do differential reporting to the layer).
1559 */
1560static void hid_input_fetch_field(struct hid_device *hid,
1561				  struct hid_field *field,
1562				  __u8 *data)
1563{
1564	unsigned n;
1565	unsigned count = field->report_count;
1566	unsigned offset = field->report_offset;
1567	unsigned size = field->report_size;
1568	__s32 min = field->logical_minimum;
 
1569	__s32 *value;
1570
1571	value = field->new_value;
1572	memset(value, 0, count * sizeof(__s32));
1573	field->ignored = false;
1574
1575	for (n = 0; n < count; n++) {
1576
1577		value[n] = min < 0 ?
1578			snto32(hid_field_extract(hid, data, offset + n * size,
1579			       size), size) :
1580			hid_field_extract(hid, data, offset + n * size, size);
1581
1582		/* Ignore report if ErrorRollOver */
1583		if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1584		    hid_array_value_is_valid(field, value[n]) &&
1585		    field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) {
1586			field->ignored = true;
1587			return;
1588		}
1589	}
1590}
1591
1592/*
1593 * Process a received variable field.
1594 */
1595
1596static void hid_input_var_field(struct hid_device *hid,
1597				struct hid_field *field,
1598				int interrupt)
1599{
1600	unsigned int count = field->report_count;
1601	__s32 *value = field->new_value;
1602	unsigned int n;
1603
1604	for (n = 0; n < count; n++)
1605		hid_process_event(hid,
1606				  field,
1607				  &field->usage[n],
1608				  value[n],
1609				  interrupt);
1610
1611	memcpy(field->value, value, count * sizeof(__s32));
1612}
1613
1614/*
1615 * Process a received array field. The field content is stored for
1616 * next report processing (we do differential reporting to the layer).
1617 */
1618
1619static void hid_input_array_field(struct hid_device *hid,
1620				  struct hid_field *field,
1621				  int interrupt)
1622{
1623	unsigned int n;
1624	unsigned int count = field->report_count;
1625	__s32 min = field->logical_minimum;
1626	__s32 *value;
1627
1628	value = field->new_value;
1629
1630	/* ErrorRollOver */
1631	if (field->ignored)
1632		return;
1633
1634	for (n = 0; n < count; n++) {
1635		if (hid_array_value_is_valid(field, field->value[n]) &&
1636		    search(value, field->value[n], count))
1637			hid_process_event(hid,
1638					  field,
1639					  &field->usage[field->value[n] - min],
1640					  0,
1641					  interrupt);
1642
1643		if (hid_array_value_is_valid(field, value[n]) &&
1644		    search(field->value, value[n], count))
1645			hid_process_event(hid,
1646					  field,
1647					  &field->usage[value[n] - min],
1648					  1,
1649					  interrupt);
1650	}
1651
1652	memcpy(field->value, value, count * sizeof(__s32));
1653}
1654
1655/*
1656 * Analyse a received report, and fetch the data from it. The field
1657 * content is stored for next report processing (we do differential
1658 * reporting to the layer).
1659 */
1660static void hid_process_report(struct hid_device *hid,
1661			       struct hid_report *report,
1662			       __u8 *data,
1663			       int interrupt)
1664{
1665	unsigned int a;
1666	struct hid_field_entry *entry;
1667	struct hid_field *field;
1668
1669	/* first retrieve all incoming values in data */
1670	for (a = 0; a < report->maxfield; a++)
1671		hid_input_fetch_field(hid, report->field[a], data);
1672
1673	if (!list_empty(&report->field_entry_list)) {
1674		/* INPUT_REPORT, we have a priority list of fields */
1675		list_for_each_entry(entry,
1676				    &report->field_entry_list,
1677				    list) {
1678			field = entry->field;
1679
1680			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1681				hid_process_event(hid,
1682						  field,
1683						  &field->usage[entry->index],
1684						  field->new_value[entry->index],
1685						  interrupt);
1686			else
1687				hid_input_array_field(hid, field, interrupt);
1688		}
1689
1690		/* we need to do the memcpy at the end for var items */
1691		for (a = 0; a < report->maxfield; a++) {
1692			field = report->field[a];
1693
1694			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1695				memcpy(field->value, field->new_value,
1696				       field->report_count * sizeof(__s32));
1697		}
1698	} else {
1699		/* FEATURE_REPORT, regular processing */
1700		for (a = 0; a < report->maxfield; a++) {
1701			field = report->field[a];
1702
1703			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1704				hid_input_var_field(hid, field, interrupt);
1705			else
1706				hid_input_array_field(hid, field, interrupt);
1707		}
 
 
 
 
 
 
1708	}
1709}
1710
1711/*
1712 * Insert a given usage_index in a field in the list
1713 * of processed usages in the report.
1714 *
1715 * The elements of lower priority score are processed
1716 * first.
1717 */
1718static void __hid_insert_field_entry(struct hid_device *hid,
1719				     struct hid_report *report,
1720				     struct hid_field_entry *entry,
1721				     struct hid_field *field,
1722				     unsigned int usage_index)
1723{
1724	struct hid_field_entry *next;
1725
1726	entry->field = field;
1727	entry->index = usage_index;
1728	entry->priority = field->usages_priorities[usage_index];
1729
1730	/* insert the element at the correct position */
1731	list_for_each_entry(next,
1732			    &report->field_entry_list,
1733			    list) {
1734		/*
1735		 * the priority of our element is strictly higher
1736		 * than the next one, insert it before
1737		 */
1738		if (entry->priority > next->priority) {
1739			list_add_tail(&entry->list, &next->list);
1740			return;
1741		}
1742	}
1743
1744	/* lowest priority score: insert at the end */
1745	list_add_tail(&entry->list, &report->field_entry_list);
1746}
1747
1748static void hid_report_process_ordering(struct hid_device *hid,
1749					struct hid_report *report)
1750{
1751	struct hid_field *field;
1752	struct hid_field_entry *entries;
1753	unsigned int a, u, usages;
1754	unsigned int count = 0;
1755
1756	/* count the number of individual fields in the report */
1757	for (a = 0; a < report->maxfield; a++) {
1758		field = report->field[a];
1759
1760		if (field->flags & HID_MAIN_ITEM_VARIABLE)
1761			count += field->report_count;
1762		else
1763			count++;
1764	}
1765
1766	/* allocate the memory to process the fields */
1767	entries = kcalloc(count, sizeof(*entries), GFP_KERNEL);
1768	if (!entries)
1769		return;
1770
1771	report->field_entries = entries;
1772
1773	/*
1774	 * walk through all fields in the report and
1775	 * store them by priority order in report->field_entry_list
1776	 *
1777	 * - Var elements are individualized (field + usage_index)
1778	 * - Arrays are taken as one, we can not chose an order for them
1779	 */
1780	usages = 0;
1781	for (a = 0; a < report->maxfield; a++) {
1782		field = report->field[a];
1783
1784		if (field->flags & HID_MAIN_ITEM_VARIABLE) {
1785			for (u = 0; u < field->report_count; u++) {
1786				__hid_insert_field_entry(hid, report,
1787							 &entries[usages],
1788							 field, u);
1789				usages++;
1790			}
1791		} else {
1792			__hid_insert_field_entry(hid, report, &entries[usages],
1793						 field, 0);
1794			usages++;
1795		}
1796	}
1797}
1798
1799static void hid_process_ordering(struct hid_device *hid)
1800{
1801	struct hid_report *report;
1802	struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT];
1803
1804	list_for_each_entry(report, &report_enum->report_list, list)
1805		hid_report_process_ordering(hid, report);
1806}
1807
1808/*
1809 * Output the field into the report.
1810 */
1811
1812static void hid_output_field(const struct hid_device *hid,
1813			     struct hid_field *field, __u8 *data)
1814{
1815	unsigned count = field->report_count;
1816	unsigned offset = field->report_offset;
1817	unsigned size = field->report_size;
1818	unsigned n;
1819
1820	for (n = 0; n < count; n++) {
1821		if (field->logical_minimum < 0)	/* signed values */
1822			implement(hid, data, offset + n * size, size,
1823				  s32ton(field->value[n], size));
1824		else				/* unsigned values */
1825			implement(hid, data, offset + n * size, size,
1826				  field->value[n]);
1827	}
1828}
1829
1830/*
1831 * Compute the size of a report.
1832 */
1833static size_t hid_compute_report_size(struct hid_report *report)
1834{
1835	if (report->size)
1836		return ((report->size - 1) >> 3) + 1;
1837
1838	return 0;
1839}
1840
1841/*
1842 * Create a report. 'data' has to be allocated using
1843 * hid_alloc_report_buf() so that it has proper size.
1844 */
1845
1846void hid_output_report(struct hid_report *report, __u8 *data)
1847{
1848	unsigned n;
1849
1850	if (report->id > 0)
1851		*data++ = report->id;
1852
1853	memset(data, 0, hid_compute_report_size(report));
1854	for (n = 0; n < report->maxfield; n++)
1855		hid_output_field(report->device, report->field[n], data);
1856}
1857EXPORT_SYMBOL_GPL(hid_output_report);
1858
1859/*
1860 * Allocator for buffer that is going to be passed to hid_output_report()
1861 */
1862u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1863{
1864	/*
1865	 * 7 extra bytes are necessary to achieve proper functionality
1866	 * of implement() working on 8 byte chunks
1867	 */
1868
1869	u32 len = hid_report_len(report) + 7;
1870
1871	return kmalloc(len, flags);
1872}
1873EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1874
1875/*
1876 * Set a field value. The report this field belongs to has to be
1877 * created and transferred to the device, to set this value in the
1878 * device.
1879 */
1880
1881int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1882{
1883	unsigned size;
1884
1885	if (!field)
1886		return -1;
1887
1888	size = field->report_size;
1889
1890	hid_dump_input(field->report->device, field->usage + offset, value);
1891
1892	if (offset >= field->report_count) {
1893		hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1894				offset, field->report_count);
1895		return -1;
1896	}
1897	if (field->logical_minimum < 0) {
1898		if (value != snto32(s32ton(value, size), size)) {
1899			hid_err(field->report->device, "value %d is out of range\n", value);
1900			return -1;
1901		}
1902	}
1903	field->value[offset] = value;
1904	return 0;
1905}
1906EXPORT_SYMBOL_GPL(hid_set_field);
1907
1908static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1909		const u8 *data)
1910{
1911	struct hid_report *report;
1912	unsigned int n = 0;	/* Normally report number is 0 */
1913
1914	/* Device uses numbered reports, data[0] is report number */
1915	if (report_enum->numbered)
1916		n = *data;
1917
1918	report = report_enum->report_id_hash[n];
1919	if (report == NULL)
1920		dbg_hid("undefined report_id %u received\n", n);
1921
1922	return report;
1923}
1924
1925/*
1926 * Implement a generic .request() callback, using .raw_request()
1927 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1928 */
1929int __hid_request(struct hid_device *hid, struct hid_report *report,
1930		enum hid_class_request reqtype)
1931{
1932	char *buf;
1933	int ret;
1934	u32 len;
1935
1936	buf = hid_alloc_report_buf(report, GFP_KERNEL);
1937	if (!buf)
1938		return -ENOMEM;
1939
1940	len = hid_report_len(report);
1941
1942	if (reqtype == HID_REQ_SET_REPORT)
1943		hid_output_report(report, buf);
1944
1945	ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1946					  report->type, reqtype);
1947	if (ret < 0) {
1948		dbg_hid("unable to complete request: %d\n", ret);
1949		goto out;
1950	}
1951
1952	if (reqtype == HID_REQ_GET_REPORT)
1953		hid_input_report(hid, report->type, buf, ret, 0);
1954
1955	ret = 0;
1956
1957out:
1958	kfree(buf);
1959	return ret;
1960}
1961EXPORT_SYMBOL_GPL(__hid_request);
1962
1963int hid_report_raw_event(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
1964			 int interrupt)
1965{
1966	struct hid_report_enum *report_enum = hid->report_enum + type;
1967	struct hid_report *report;
1968	struct hid_driver *hdrv;
 
1969	u32 rsize, csize = size;
1970	u8 *cdata = data;
1971	int ret = 0;
1972
1973	report = hid_get_report(report_enum, data);
1974	if (!report)
1975		goto out;
1976
1977	if (report_enum->numbered) {
1978		cdata++;
1979		csize--;
1980	}
1981
1982	rsize = hid_compute_report_size(report);
1983
1984	if (report_enum->numbered && rsize >= HID_MAX_BUFFER_SIZE)
1985		rsize = HID_MAX_BUFFER_SIZE - 1;
1986	else if (rsize > HID_MAX_BUFFER_SIZE)
1987		rsize = HID_MAX_BUFFER_SIZE;
1988
1989	if (csize < rsize) {
1990		dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1991				csize, rsize);
1992		memset(cdata + csize, 0, rsize - csize);
1993	}
1994
1995	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1996		hid->hiddev_report_event(hid, report);
1997	if (hid->claimed & HID_CLAIMED_HIDRAW) {
1998		ret = hidraw_report_event(hid, data, size);
1999		if (ret)
2000			goto out;
2001	}
2002
2003	if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
2004		hid_process_report(hid, report, cdata, interrupt);
 
2005		hdrv = hid->driver;
2006		if (hdrv && hdrv->report)
2007			hdrv->report(hid, report);
2008	}
2009
2010	if (hid->claimed & HID_CLAIMED_INPUT)
2011		hidinput_report_event(hid, report);
2012out:
2013	return ret;
2014}
2015EXPORT_SYMBOL_GPL(hid_report_raw_event);
2016
2017/**
2018 * hid_input_report - report data from lower layer (usb, bt...)
2019 *
2020 * @hid: hid device
2021 * @type: HID report type (HID_*_REPORT)
2022 * @data: report contents
2023 * @size: size of data parameter
2024 * @interrupt: distinguish between interrupt and control transfers
2025 *
2026 * This is data entry for lower layers.
2027 */
2028int hid_input_report(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2029		     int interrupt)
2030{
2031	struct hid_report_enum *report_enum;
2032	struct hid_driver *hdrv;
2033	struct hid_report *report;
2034	int ret = 0;
2035
2036	if (!hid)
2037		return -ENODEV;
2038
2039	if (down_trylock(&hid->driver_input_lock))
2040		return -EBUSY;
2041
2042	if (!hid->driver) {
2043		ret = -ENODEV;
2044		goto unlock;
2045	}
2046	report_enum = hid->report_enum + type;
2047	hdrv = hid->driver;
2048
2049	if (!size) {
2050		dbg_hid("empty report\n");
2051		ret = -1;
2052		goto unlock;
2053	}
2054
2055	/* Avoid unnecessary overhead if debugfs is disabled */
2056	if (!list_empty(&hid->debug_list))
2057		hid_dump_report(hid, type, data, size);
2058
2059	report = hid_get_report(report_enum, data);
2060
2061	if (!report) {
2062		ret = -1;
2063		goto unlock;
2064	}
2065
2066	if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
2067		ret = hdrv->raw_event(hid, report, data, size);
2068		if (ret < 0)
2069			goto unlock;
2070	}
2071
2072	ret = hid_report_raw_event(hid, type, data, size, interrupt);
2073
2074unlock:
2075	up(&hid->driver_input_lock);
2076	return ret;
2077}
2078EXPORT_SYMBOL_GPL(hid_input_report);
2079
2080bool hid_match_one_id(const struct hid_device *hdev,
2081		      const struct hid_device_id *id)
2082{
2083	return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
2084		(id->group == HID_GROUP_ANY || id->group == hdev->group) &&
2085		(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
2086		(id->product == HID_ANY_ID || id->product == hdev->product);
2087}
2088
2089const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
2090		const struct hid_device_id *id)
2091{
2092	for (; id->bus; id++)
2093		if (hid_match_one_id(hdev, id))
2094			return id;
2095
2096	return NULL;
2097}
2098EXPORT_SYMBOL_GPL(hid_match_id);
2099
2100static const struct hid_device_id hid_hiddev_list[] = {
2101	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
2102	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
2103	{ }
2104};
2105
2106static bool hid_hiddev(struct hid_device *hdev)
2107{
2108	return !!hid_match_id(hdev, hid_hiddev_list);
2109}
2110
2111
2112static ssize_t
2113read_report_descriptor(struct file *filp, struct kobject *kobj,
2114		struct bin_attribute *attr,
2115		char *buf, loff_t off, size_t count)
2116{
2117	struct device *dev = kobj_to_dev(kobj);
2118	struct hid_device *hdev = to_hid_device(dev);
2119
2120	if (off >= hdev->rsize)
2121		return 0;
2122
2123	if (off + count > hdev->rsize)
2124		count = hdev->rsize - off;
2125
2126	memcpy(buf, hdev->rdesc + off, count);
2127
2128	return count;
2129}
2130
2131static ssize_t
2132show_country(struct device *dev, struct device_attribute *attr,
2133		char *buf)
2134{
2135	struct hid_device *hdev = to_hid_device(dev);
2136
2137	return sprintf(buf, "%02x\n", hdev->country & 0xff);
2138}
2139
2140static struct bin_attribute dev_bin_attr_report_desc = {
2141	.attr = { .name = "report_descriptor", .mode = 0444 },
2142	.read = read_report_descriptor,
2143	.size = HID_MAX_DESCRIPTOR_SIZE,
2144};
2145
2146static const struct device_attribute dev_attr_country = {
2147	.attr = { .name = "country", .mode = 0444 },
2148	.show = show_country,
2149};
2150
2151int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
2152{
2153	static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
2154		"Joystick", "Gamepad", "Keyboard", "Keypad",
2155		"Multi-Axis Controller"
2156	};
2157	const char *type, *bus;
2158	char buf[64] = "";
2159	unsigned int i;
2160	int len;
2161	int ret;
2162
2163	if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
2164		connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
2165	if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
2166		connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
2167	if (hdev->bus != BUS_USB)
2168		connect_mask &= ~HID_CONNECT_HIDDEV;
2169	if (hid_hiddev(hdev))
2170		connect_mask |= HID_CONNECT_HIDDEV_FORCE;
2171
2172	if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
2173				connect_mask & HID_CONNECT_HIDINPUT_FORCE))
2174		hdev->claimed |= HID_CLAIMED_INPUT;
2175
2176	if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
2177			!hdev->hiddev_connect(hdev,
2178				connect_mask & HID_CONNECT_HIDDEV_FORCE))
2179		hdev->claimed |= HID_CLAIMED_HIDDEV;
2180	if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
2181		hdev->claimed |= HID_CLAIMED_HIDRAW;
2182
2183	if (connect_mask & HID_CONNECT_DRIVER)
2184		hdev->claimed |= HID_CLAIMED_DRIVER;
2185
2186	/* Drivers with the ->raw_event callback set are not required to connect
2187	 * to any other listener. */
2188	if (!hdev->claimed && !hdev->driver->raw_event) {
2189		hid_err(hdev, "device has no listeners, quitting\n");
2190		return -ENODEV;
2191	}
2192
2193	hid_process_ordering(hdev);
2194
2195	if ((hdev->claimed & HID_CLAIMED_INPUT) &&
2196			(connect_mask & HID_CONNECT_FF) && hdev->ff_init)
2197		hdev->ff_init(hdev);
2198
2199	len = 0;
2200	if (hdev->claimed & HID_CLAIMED_INPUT)
2201		len += sprintf(buf + len, "input");
2202	if (hdev->claimed & HID_CLAIMED_HIDDEV)
2203		len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
2204				((struct hiddev *)hdev->hiddev)->minor);
2205	if (hdev->claimed & HID_CLAIMED_HIDRAW)
2206		len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
2207				((struct hidraw *)hdev->hidraw)->minor);
2208
2209	type = "Device";
2210	for (i = 0; i < hdev->maxcollection; i++) {
2211		struct hid_collection *col = &hdev->collection[i];
2212		if (col->type == HID_COLLECTION_APPLICATION &&
2213		   (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2214		   (col->usage & 0xffff) < ARRAY_SIZE(types)) {
2215			type = types[col->usage & 0xffff];
2216			break;
2217		}
2218	}
2219
2220	switch (hdev->bus) {
2221	case BUS_USB:
2222		bus = "USB";
2223		break;
2224	case BUS_BLUETOOTH:
2225		bus = "BLUETOOTH";
2226		break;
2227	case BUS_I2C:
2228		bus = "I2C";
2229		break;
2230	case BUS_VIRTUAL:
2231		bus = "VIRTUAL";
2232		break;
2233	case BUS_INTEL_ISHTP:
2234	case BUS_AMD_SFH:
2235		bus = "SENSOR HUB";
2236		break;
2237	default:
2238		bus = "<UNKNOWN>";
2239	}
2240
2241	ret = device_create_file(&hdev->dev, &dev_attr_country);
2242	if (ret)
2243		hid_warn(hdev,
2244			 "can't create sysfs country code attribute err: %d\n", ret);
2245
2246	hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2247		 buf, bus, hdev->version >> 8, hdev->version & 0xff,
2248		 type, hdev->name, hdev->phys);
2249
2250	return 0;
2251}
2252EXPORT_SYMBOL_GPL(hid_connect);
2253
2254void hid_disconnect(struct hid_device *hdev)
2255{
2256	device_remove_file(&hdev->dev, &dev_attr_country);
2257	if (hdev->claimed & HID_CLAIMED_INPUT)
2258		hidinput_disconnect(hdev);
2259	if (hdev->claimed & HID_CLAIMED_HIDDEV)
2260		hdev->hiddev_disconnect(hdev);
2261	if (hdev->claimed & HID_CLAIMED_HIDRAW)
2262		hidraw_disconnect(hdev);
2263	hdev->claimed = 0;
2264}
2265EXPORT_SYMBOL_GPL(hid_disconnect);
2266
2267/**
2268 * hid_hw_start - start underlying HW
2269 * @hdev: hid device
2270 * @connect_mask: which outputs to connect, see HID_CONNECT_*
2271 *
2272 * Call this in probe function *after* hid_parse. This will setup HW
2273 * buffers and start the device (if not defeirred to device open).
2274 * hid_hw_stop must be called if this was successful.
2275 */
2276int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2277{
2278	int error;
2279
2280	error = hdev->ll_driver->start(hdev);
2281	if (error)
2282		return error;
2283
2284	if (connect_mask) {
2285		error = hid_connect(hdev, connect_mask);
2286		if (error) {
2287			hdev->ll_driver->stop(hdev);
2288			return error;
2289		}
2290	}
2291
2292	return 0;
2293}
2294EXPORT_SYMBOL_GPL(hid_hw_start);
2295
2296/**
2297 * hid_hw_stop - stop underlying HW
2298 * @hdev: hid device
2299 *
2300 * This is usually called from remove function or from probe when something
2301 * failed and hid_hw_start was called already.
2302 */
2303void hid_hw_stop(struct hid_device *hdev)
2304{
2305	hid_disconnect(hdev);
2306	hdev->ll_driver->stop(hdev);
2307}
2308EXPORT_SYMBOL_GPL(hid_hw_stop);
2309
2310/**
2311 * hid_hw_open - signal underlying HW to start delivering events
2312 * @hdev: hid device
2313 *
2314 * Tell underlying HW to start delivering events from the device.
2315 * This function should be called sometime after successful call
2316 * to hid_hw_start().
2317 */
2318int hid_hw_open(struct hid_device *hdev)
2319{
2320	int ret;
2321
2322	ret = mutex_lock_killable(&hdev->ll_open_lock);
2323	if (ret)
2324		return ret;
2325
2326	if (!hdev->ll_open_count++) {
2327		ret = hdev->ll_driver->open(hdev);
2328		if (ret)
2329			hdev->ll_open_count--;
2330	}
2331
2332	mutex_unlock(&hdev->ll_open_lock);
2333	return ret;
2334}
2335EXPORT_SYMBOL_GPL(hid_hw_open);
2336
2337/**
2338 * hid_hw_close - signal underlaying HW to stop delivering events
2339 *
2340 * @hdev: hid device
2341 *
2342 * This function indicates that we are not interested in the events
2343 * from this device anymore. Delivery of events may or may not stop,
2344 * depending on the number of users still outstanding.
2345 */
2346void hid_hw_close(struct hid_device *hdev)
2347{
2348	mutex_lock(&hdev->ll_open_lock);
2349	if (!--hdev->ll_open_count)
2350		hdev->ll_driver->close(hdev);
2351	mutex_unlock(&hdev->ll_open_lock);
2352}
2353EXPORT_SYMBOL_GPL(hid_hw_close);
2354
2355/**
2356 * hid_hw_request - send report request to device
2357 *
2358 * @hdev: hid device
2359 * @report: report to send
2360 * @reqtype: hid request type
2361 */
2362void hid_hw_request(struct hid_device *hdev,
2363		    struct hid_report *report, enum hid_class_request reqtype)
2364{
2365	if (hdev->ll_driver->request)
2366		return hdev->ll_driver->request(hdev, report, reqtype);
2367
2368	__hid_request(hdev, report, reqtype);
2369}
2370EXPORT_SYMBOL_GPL(hid_hw_request);
2371
2372/**
2373 * hid_hw_raw_request - send report request to device
2374 *
2375 * @hdev: hid device
2376 * @reportnum: report ID
2377 * @buf: in/out data to transfer
2378 * @len: length of buf
2379 * @rtype: HID report type
2380 * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT
2381 *
2382 * Return: count of data transferred, negative if error
2383 *
2384 * Same behavior as hid_hw_request, but with raw buffers instead.
2385 */
2386int hid_hw_raw_request(struct hid_device *hdev,
2387		       unsigned char reportnum, __u8 *buf,
2388		       size_t len, enum hid_report_type rtype, enum hid_class_request reqtype)
2389{
2390	if (len < 1 || len > HID_MAX_BUFFER_SIZE || !buf)
2391		return -EINVAL;
2392
2393	return hdev->ll_driver->raw_request(hdev, reportnum, buf, len,
2394					    rtype, reqtype);
2395}
2396EXPORT_SYMBOL_GPL(hid_hw_raw_request);
2397
2398/**
2399 * hid_hw_output_report - send output report to device
2400 *
2401 * @hdev: hid device
2402 * @buf: raw data to transfer
2403 * @len: length of buf
2404 *
2405 * Return: count of data transferred, negative if error
2406 */
2407int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len)
2408{
2409	if (len < 1 || len > HID_MAX_BUFFER_SIZE || !buf)
2410		return -EINVAL;
2411
2412	if (hdev->ll_driver->output_report)
2413		return hdev->ll_driver->output_report(hdev, buf, len);
2414
2415	return -ENOSYS;
2416}
2417EXPORT_SYMBOL_GPL(hid_hw_output_report);
2418
2419#ifdef CONFIG_PM
2420int hid_driver_suspend(struct hid_device *hdev, pm_message_t state)
2421{
2422	if (hdev->driver && hdev->driver->suspend)
2423		return hdev->driver->suspend(hdev, state);
2424
2425	return 0;
2426}
2427EXPORT_SYMBOL_GPL(hid_driver_suspend);
2428
2429int hid_driver_reset_resume(struct hid_device *hdev)
2430{
2431	if (hdev->driver && hdev->driver->reset_resume)
2432		return hdev->driver->reset_resume(hdev);
2433
2434	return 0;
2435}
2436EXPORT_SYMBOL_GPL(hid_driver_reset_resume);
2437
2438int hid_driver_resume(struct hid_device *hdev)
2439{
2440	if (hdev->driver && hdev->driver->resume)
2441		return hdev->driver->resume(hdev);
2442
2443	return 0;
2444}
2445EXPORT_SYMBOL_GPL(hid_driver_resume);
2446#endif /* CONFIG_PM */
2447
2448struct hid_dynid {
2449	struct list_head list;
2450	struct hid_device_id id;
2451};
2452
2453/**
2454 * new_id_store - add a new HID device ID to this driver and re-probe devices
2455 * @drv: target device driver
2456 * @buf: buffer for scanning device ID data
2457 * @count: input size
2458 *
2459 * Adds a new dynamic hid device ID to this driver,
2460 * and causes the driver to probe for all devices again.
2461 */
2462static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2463		size_t count)
2464{
2465	struct hid_driver *hdrv = to_hid_driver(drv);
2466	struct hid_dynid *dynid;
2467	__u32 bus, vendor, product;
2468	unsigned long driver_data = 0;
2469	int ret;
2470
2471	ret = sscanf(buf, "%x %x %x %lx",
2472			&bus, &vendor, &product, &driver_data);
2473	if (ret < 3)
2474		return -EINVAL;
2475
2476	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2477	if (!dynid)
2478		return -ENOMEM;
2479
2480	dynid->id.bus = bus;
2481	dynid->id.group = HID_GROUP_ANY;
2482	dynid->id.vendor = vendor;
2483	dynid->id.product = product;
2484	dynid->id.driver_data = driver_data;
2485
2486	spin_lock(&hdrv->dyn_lock);
2487	list_add_tail(&dynid->list, &hdrv->dyn_list);
2488	spin_unlock(&hdrv->dyn_lock);
2489
2490	ret = driver_attach(&hdrv->driver);
2491
2492	return ret ? : count;
2493}
2494static DRIVER_ATTR_WO(new_id);
2495
2496static struct attribute *hid_drv_attrs[] = {
2497	&driver_attr_new_id.attr,
2498	NULL,
2499};
2500ATTRIBUTE_GROUPS(hid_drv);
2501
2502static void hid_free_dynids(struct hid_driver *hdrv)
2503{
2504	struct hid_dynid *dynid, *n;
2505
2506	spin_lock(&hdrv->dyn_lock);
2507	list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2508		list_del(&dynid->list);
2509		kfree(dynid);
2510	}
2511	spin_unlock(&hdrv->dyn_lock);
2512}
2513
2514const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2515					     struct hid_driver *hdrv)
2516{
2517	struct hid_dynid *dynid;
2518
2519	spin_lock(&hdrv->dyn_lock);
2520	list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2521		if (hid_match_one_id(hdev, &dynid->id)) {
2522			spin_unlock(&hdrv->dyn_lock);
2523			return &dynid->id;
2524		}
2525	}
2526	spin_unlock(&hdrv->dyn_lock);
2527
2528	return hid_match_id(hdev, hdrv->id_table);
2529}
2530EXPORT_SYMBOL_GPL(hid_match_device);
2531
2532static int hid_bus_match(struct device *dev, struct device_driver *drv)
2533{
2534	struct hid_driver *hdrv = to_hid_driver(drv);
2535	struct hid_device *hdev = to_hid_device(dev);
2536
2537	return hid_match_device(hdev, hdrv) != NULL;
2538}
2539
2540/**
2541 * hid_compare_device_paths - check if both devices share the same path
2542 * @hdev_a: hid device
2543 * @hdev_b: hid device
2544 * @separator: char to use as separator
2545 *
2546 * Check if two devices share the same path up to the last occurrence of
2547 * the separator char. Both paths must exist (i.e., zero-length paths
2548 * don't match).
2549 */
2550bool hid_compare_device_paths(struct hid_device *hdev_a,
2551			      struct hid_device *hdev_b, char separator)
2552{
2553	int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2554	int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2555
2556	if (n1 != n2 || n1 <= 0 || n2 <= 0)
2557		return false;
2558
2559	return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2560}
2561EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2562
2563static int hid_device_probe(struct device *dev)
2564{
2565	struct hid_driver *hdrv = to_hid_driver(dev->driver);
2566	struct hid_device *hdev = to_hid_device(dev);
2567	const struct hid_device_id *id;
2568	int ret = 0;
2569
2570	if (down_interruptible(&hdev->driver_input_lock)) {
2571		ret = -EINTR;
2572		goto end;
2573	}
2574	hdev->io_started = false;
2575
2576	clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2577
2578	if (!hdev->driver) {
2579		id = hid_match_device(hdev, hdrv);
2580		if (id == NULL) {
2581			ret = -ENODEV;
2582			goto unlock;
2583		}
2584
2585		if (hdrv->match) {
2586			if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2587				ret = -ENODEV;
2588				goto unlock;
2589			}
2590		} else {
2591			/*
2592			 * hid-generic implements .match(), so if
2593			 * hid_ignore_special_drivers is set, we can safely
2594			 * return.
2595			 */
2596			if (hid_ignore_special_drivers) {
2597				ret = -ENODEV;
2598				goto unlock;
2599			}
2600		}
2601
2602		/* reset the quirks that has been previously set */
2603		hdev->quirks = hid_lookup_quirk(hdev);
2604		hdev->driver = hdrv;
2605		if (hdrv->probe) {
2606			ret = hdrv->probe(hdev, id);
2607		} else { /* default probe */
2608			ret = hid_open_report(hdev);
2609			if (!ret)
2610				ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2611		}
2612		if (ret) {
2613			hid_close_report(hdev);
2614			hdev->driver = NULL;
2615		}
2616	}
2617unlock:
2618	if (!hdev->io_started)
2619		up(&hdev->driver_input_lock);
2620end:
2621	return ret;
2622}
2623
2624static void hid_device_remove(struct device *dev)
2625{
2626	struct hid_device *hdev = to_hid_device(dev);
2627	struct hid_driver *hdrv;
 
2628
2629	down(&hdev->driver_input_lock);
 
 
 
2630	hdev->io_started = false;
2631
2632	hdrv = hdev->driver;
2633	if (hdrv) {
2634		if (hdrv->remove)
2635			hdrv->remove(hdev);
2636		else /* default remove */
2637			hid_hw_stop(hdev);
2638		hid_close_report(hdev);
2639		hdev->driver = NULL;
2640	}
2641
2642	if (!hdev->io_started)
2643		up(&hdev->driver_input_lock);
 
 
2644}
2645
2646static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2647			     char *buf)
2648{
2649	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2650
2651	return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2652			 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2653}
2654static DEVICE_ATTR_RO(modalias);
2655
2656static struct attribute *hid_dev_attrs[] = {
2657	&dev_attr_modalias.attr,
2658	NULL,
2659};
2660static struct bin_attribute *hid_dev_bin_attrs[] = {
2661	&dev_bin_attr_report_desc,
2662	NULL
2663};
2664static const struct attribute_group hid_dev_group = {
2665	.attrs = hid_dev_attrs,
2666	.bin_attrs = hid_dev_bin_attrs,
2667};
2668__ATTRIBUTE_GROUPS(hid_dev);
2669
2670static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2671{
2672	struct hid_device *hdev = to_hid_device(dev);
2673
2674	if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2675			hdev->bus, hdev->vendor, hdev->product))
2676		return -ENOMEM;
2677
2678	if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2679		return -ENOMEM;
2680
2681	if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2682		return -ENOMEM;
2683
2684	if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2685		return -ENOMEM;
2686
2687	if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2688			   hdev->bus, hdev->group, hdev->vendor, hdev->product))
2689		return -ENOMEM;
2690
2691	return 0;
2692}
2693
2694struct bus_type hid_bus_type = {
2695	.name		= "hid",
2696	.dev_groups	= hid_dev_groups,
2697	.drv_groups	= hid_drv_groups,
2698	.match		= hid_bus_match,
2699	.probe		= hid_device_probe,
2700	.remove		= hid_device_remove,
2701	.uevent		= hid_uevent,
2702};
2703EXPORT_SYMBOL(hid_bus_type);
2704
2705int hid_add_device(struct hid_device *hdev)
2706{
2707	static atomic_t id = ATOMIC_INIT(0);
2708	int ret;
2709
2710	if (WARN_ON(hdev->status & HID_STAT_ADDED))
2711		return -EBUSY;
2712
2713	hdev->quirks = hid_lookup_quirk(hdev);
2714
2715	/* we need to kill them here, otherwise they will stay allocated to
2716	 * wait for coming driver */
2717	if (hid_ignore(hdev))
2718		return -ENODEV;
2719
2720	/*
2721	 * Check for the mandatory transport channel.
2722	 */
2723	 if (!hdev->ll_driver->raw_request) {
2724		hid_err(hdev, "transport driver missing .raw_request()\n");
2725		return -EINVAL;
2726	 }
2727
2728	/*
2729	 * Read the device report descriptor once and use as template
2730	 * for the driver-specific modifications.
2731	 */
2732	ret = hdev->ll_driver->parse(hdev);
2733	if (ret)
2734		return ret;
2735	if (!hdev->dev_rdesc)
2736		return -ENODEV;
2737
2738	/*
2739	 * Scan generic devices for group information
2740	 */
2741	if (hid_ignore_special_drivers) {
2742		hdev->group = HID_GROUP_GENERIC;
2743	} else if (!hdev->group &&
2744		   !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2745		ret = hid_scan_report(hdev);
2746		if (ret)
2747			hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2748	}
2749
2750	hdev->id = atomic_inc_return(&id);
2751
2752	/* XXX hack, any other cleaner solution after the driver core
2753	 * is converted to allow more than 20 bytes as the device name? */
2754	dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2755		     hdev->vendor, hdev->product, hdev->id);
2756
2757	hid_debug_register(hdev, dev_name(&hdev->dev));
2758	ret = device_add(&hdev->dev);
2759	if (!ret)
2760		hdev->status |= HID_STAT_ADDED;
2761	else
2762		hid_debug_unregister(hdev);
2763
2764	return ret;
2765}
2766EXPORT_SYMBOL_GPL(hid_add_device);
2767
2768/**
2769 * hid_allocate_device - allocate new hid device descriptor
2770 *
2771 * Allocate and initialize hid device, so that hid_destroy_device might be
2772 * used to free it.
2773 *
2774 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2775 * error value.
2776 */
2777struct hid_device *hid_allocate_device(void)
2778{
2779	struct hid_device *hdev;
2780	int ret = -ENOMEM;
2781
2782	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2783	if (hdev == NULL)
2784		return ERR_PTR(ret);
2785
2786	device_initialize(&hdev->dev);
2787	hdev->dev.release = hid_device_release;
2788	hdev->dev.bus = &hid_bus_type;
2789	device_enable_async_suspend(&hdev->dev);
2790
2791	hid_close_report(hdev);
2792
2793	init_waitqueue_head(&hdev->debug_wait);
2794	INIT_LIST_HEAD(&hdev->debug_list);
2795	spin_lock_init(&hdev->debug_list_lock);
2796	sema_init(&hdev->driver_input_lock, 1);
2797	mutex_init(&hdev->ll_open_lock);
2798
2799	return hdev;
2800}
2801EXPORT_SYMBOL_GPL(hid_allocate_device);
2802
2803static void hid_remove_device(struct hid_device *hdev)
2804{
2805	if (hdev->status & HID_STAT_ADDED) {
2806		device_del(&hdev->dev);
2807		hid_debug_unregister(hdev);
2808		hdev->status &= ~HID_STAT_ADDED;
2809	}
2810	kfree(hdev->dev_rdesc);
2811	hdev->dev_rdesc = NULL;
2812	hdev->dev_rsize = 0;
2813}
2814
2815/**
2816 * hid_destroy_device - free previously allocated device
2817 *
2818 * @hdev: hid device
2819 *
2820 * If you allocate hid_device through hid_allocate_device, you should ever
2821 * free by this function.
2822 */
2823void hid_destroy_device(struct hid_device *hdev)
2824{
2825	hid_remove_device(hdev);
2826	put_device(&hdev->dev);
2827}
2828EXPORT_SYMBOL_GPL(hid_destroy_device);
2829
2830
2831static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2832{
2833	struct hid_driver *hdrv = data;
2834	struct hid_device *hdev = to_hid_device(dev);
2835
2836	if (hdev->driver == hdrv &&
2837	    !hdrv->match(hdev, hid_ignore_special_drivers) &&
2838	    !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2839		return device_reprobe(dev);
2840
2841	return 0;
2842}
2843
2844static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2845{
2846	struct hid_driver *hdrv = to_hid_driver(drv);
2847
2848	if (hdrv->match) {
2849		bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2850				 __hid_bus_reprobe_drivers);
2851	}
2852
2853	return 0;
2854}
2855
2856static int __bus_removed_driver(struct device_driver *drv, void *data)
2857{
2858	return bus_rescan_devices(&hid_bus_type);
2859}
2860
2861int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2862		const char *mod_name)
2863{
2864	int ret;
2865
2866	hdrv->driver.name = hdrv->name;
2867	hdrv->driver.bus = &hid_bus_type;
2868	hdrv->driver.owner = owner;
2869	hdrv->driver.mod_name = mod_name;
2870
2871	INIT_LIST_HEAD(&hdrv->dyn_list);
2872	spin_lock_init(&hdrv->dyn_lock);
2873
2874	ret = driver_register(&hdrv->driver);
2875
2876	if (ret == 0)
2877		bus_for_each_drv(&hid_bus_type, NULL, NULL,
2878				 __hid_bus_driver_added);
2879
2880	return ret;
2881}
2882EXPORT_SYMBOL_GPL(__hid_register_driver);
2883
2884void hid_unregister_driver(struct hid_driver *hdrv)
2885{
2886	driver_unregister(&hdrv->driver);
2887	hid_free_dynids(hdrv);
2888
2889	bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2890}
2891EXPORT_SYMBOL_GPL(hid_unregister_driver);
2892
2893int hid_check_keys_pressed(struct hid_device *hid)
2894{
2895	struct hid_input *hidinput;
2896	int i;
2897
2898	if (!(hid->claimed & HID_CLAIMED_INPUT))
2899		return 0;
2900
2901	list_for_each_entry(hidinput, &hid->inputs, list) {
2902		for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2903			if (hidinput->input->key[i])
2904				return 1;
2905	}
2906
2907	return 0;
2908}
 
2909EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2910
2911static int __init hid_init(void)
2912{
2913	int ret;
2914
2915	if (hid_debug)
2916		pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2917			"debugfs is now used for inspecting the device (report descriptor, reports)\n");
2918
2919	ret = bus_register(&hid_bus_type);
2920	if (ret) {
2921		pr_err("can't register hid bus\n");
2922		goto err;
2923	}
2924
2925	ret = hidraw_init();
2926	if (ret)
2927		goto err_bus;
2928
2929	hid_debug_init();
2930
2931	return 0;
2932err_bus:
2933	bus_unregister(&hid_bus_type);
2934err:
2935	return ret;
2936}
2937
2938static void __exit hid_exit(void)
2939{
2940	hid_debug_exit();
2941	hidraw_exit();
2942	bus_unregister(&hid_bus_type);
2943	hid_quirks_exit(HID_BUS_ANY);
2944}
2945
2946module_init(hid_init);
2947module_exit(hid_exit);
2948
2949MODULE_AUTHOR("Andreas Gal");
2950MODULE_AUTHOR("Vojtech Pavlik");
2951MODULE_AUTHOR("Jiri Kosina");
2952MODULE_LICENSE("GPL");
v4.17
 
   1/*
   2 *  HID support for Linux
   3 *
   4 *  Copyright (c) 1999 Andreas Gal
   5 *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
   6 *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
   7 *  Copyright (c) 2006-2012 Jiri Kosina
   8 */
   9
  10/*
  11 * This program is free software; you can redistribute it and/or modify it
  12 * under the terms of the GNU General Public License as published by the Free
  13 * Software Foundation; either version 2 of the License, or (at your option)
  14 * any later version.
  15 */
  16
  17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18
  19#include <linux/module.h>
  20#include <linux/slab.h>
  21#include <linux/init.h>
  22#include <linux/kernel.h>
  23#include <linux/list.h>
  24#include <linux/mm.h>
  25#include <linux/spinlock.h>
  26#include <asm/unaligned.h>
  27#include <asm/byteorder.h>
  28#include <linux/input.h>
  29#include <linux/wait.h>
  30#include <linux/vmalloc.h>
  31#include <linux/sched.h>
  32#include <linux/semaphore.h>
  33
  34#include <linux/hid.h>
  35#include <linux/hiddev.h>
  36#include <linux/hid-debug.h>
  37#include <linux/hidraw.h>
  38
  39#include "hid-ids.h"
  40
  41/*
  42 * Version Information
  43 */
  44
  45#define DRIVER_DESC "HID core driver"
  46
  47int hid_debug = 0;
  48module_param_named(debug, hid_debug, int, 0600);
  49MODULE_PARM_DESC(debug, "toggle HID debugging messages");
  50EXPORT_SYMBOL_GPL(hid_debug);
  51
  52static int hid_ignore_special_drivers = 0;
  53module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
  54MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
  55
  56/*
  57 * Register a new report for a device.
  58 */
  59
  60struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
 
 
  61{
  62	struct hid_report_enum *report_enum = device->report_enum + type;
  63	struct hid_report *report;
  64
  65	if (id >= HID_MAX_IDS)
  66		return NULL;
  67	if (report_enum->report_id_hash[id])
  68		return report_enum->report_id_hash[id];
  69
  70	report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
  71	if (!report)
  72		return NULL;
  73
  74	if (id != 0)
  75		report_enum->numbered = 1;
  76
  77	report->id = id;
  78	report->type = type;
  79	report->size = 0;
  80	report->device = device;
 
  81	report_enum->report_id_hash[id] = report;
  82
  83	list_add_tail(&report->list, &report_enum->report_list);
 
  84
  85	return report;
  86}
  87EXPORT_SYMBOL_GPL(hid_register_report);
  88
  89/*
  90 * Register a new field for this report.
  91 */
  92
  93static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
  94{
  95	struct hid_field *field;
  96
  97	if (report->maxfield == HID_MAX_FIELDS) {
  98		hid_err(report->device, "too many fields in report\n");
  99		return NULL;
 100	}
 101
 102	field = kzalloc((sizeof(struct hid_field) +
 103			 usages * sizeof(struct hid_usage) +
 104			 values * sizeof(unsigned)), GFP_KERNEL);
 105	if (!field)
 106		return NULL;
 107
 108	field->index = report->maxfield++;
 109	report->field[field->index] = field;
 110	field->usage = (struct hid_usage *)(field + 1);
 111	field->value = (s32 *)(field->usage + usages);
 
 
 112	field->report = report;
 113
 114	return field;
 115}
 116
 117/*
 118 * Open a collection. The type/usage is pushed on the stack.
 119 */
 120
 121static int open_collection(struct hid_parser *parser, unsigned type)
 122{
 123	struct hid_collection *collection;
 124	unsigned usage;
 
 125
 126	usage = parser->local.usage[0];
 127
 128	if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
 129		hid_err(parser->device, "collection stack overflow\n");
 130		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 131	}
 132
 133	if (parser->device->maxcollection == parser->device->collection_size) {
 134		collection = kmalloc(sizeof(struct hid_collection) *
 135				parser->device->collection_size * 2, GFP_KERNEL);
 
 
 
 136		if (collection == NULL) {
 137			hid_err(parser->device, "failed to reallocate collection array\n");
 138			return -ENOMEM;
 139		}
 140		memcpy(collection, parser->device->collection,
 141			sizeof(struct hid_collection) *
 142			parser->device->collection_size);
 143		memset(collection + parser->device->collection_size, 0,
 144			sizeof(struct hid_collection) *
 145			parser->device->collection_size);
 146		kfree(parser->device->collection);
 147		parser->device->collection = collection;
 148		parser->device->collection_size *= 2;
 149	}
 150
 151	parser->collection_stack[parser->collection_stack_ptr++] =
 152		parser->device->maxcollection;
 153
 154	collection = parser->device->collection +
 155		parser->device->maxcollection++;
 156	collection->type = type;
 157	collection->usage = usage;
 158	collection->level = parser->collection_stack_ptr - 1;
 
 
 159
 160	if (type == HID_COLLECTION_APPLICATION)
 161		parser->device->maxapplication++;
 162
 163	return 0;
 164}
 165
 166/*
 167 * Close a collection.
 168 */
 169
 170static int close_collection(struct hid_parser *parser)
 171{
 172	if (!parser->collection_stack_ptr) {
 173		hid_err(parser->device, "collection stack underflow\n");
 174		return -EINVAL;
 175	}
 176	parser->collection_stack_ptr--;
 177	return 0;
 178}
 179
 180/*
 181 * Climb up the stack, search for the specified collection type
 182 * and return the usage.
 183 */
 184
 185static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
 186{
 187	struct hid_collection *collection = parser->device->collection;
 188	int n;
 189
 190	for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
 191		unsigned index = parser->collection_stack[n];
 192		if (collection[index].type == type)
 193			return collection[index].usage;
 194	}
 195	return 0; /* we know nothing about this usage type */
 196}
 197
 198/*
 
 
 
 
 
 
 
 
 
 
 
 
 199 * Add a usage to the temporary parser table.
 200 */
 201
 202static int hid_add_usage(struct hid_parser *parser, unsigned usage)
 203{
 204	if (parser->local.usage_index >= HID_MAX_USAGES) {
 205		hid_err(parser->device, "usage index exceeded\n");
 206		return -1;
 207	}
 208	parser->local.usage[parser->local.usage_index] = usage;
 
 
 
 
 
 
 
 
 
 209	parser->local.collection_index[parser->local.usage_index] =
 210		parser->collection_stack_ptr ?
 211		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
 212	parser->local.usage_index++;
 213	return 0;
 214}
 215
 216/*
 217 * Register a new field for this report.
 218 */
 219
 220static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
 221{
 222	struct hid_report *report;
 223	struct hid_field *field;
 224	unsigned usages;
 225	unsigned offset;
 226	unsigned i;
 
 
 
 227
 228	report = hid_register_report(parser->device, report_type, parser->global.report_id);
 
 229	if (!report) {
 230		hid_err(parser->device, "hid_register_report failed\n");
 231		return -1;
 232	}
 233
 234	/* Handle both signed and unsigned cases properly */
 235	if ((parser->global.logical_minimum < 0 &&
 236		parser->global.logical_maximum <
 237		parser->global.logical_minimum) ||
 238		(parser->global.logical_minimum >= 0 &&
 239		(__u32)parser->global.logical_maximum <
 240		(__u32)parser->global.logical_minimum)) {
 241		dbg_hid("logical range invalid 0x%x 0x%x\n",
 242			parser->global.logical_minimum,
 243			parser->global.logical_maximum);
 244		return -1;
 245	}
 246
 247	offset = report->size;
 248	report->size += parser->global.report_size * parser->global.report_count;
 249
 
 
 
 
 
 
 250	if (!parser->local.usage_index) /* Ignore padding fields */
 251		return 0;
 252
 253	usages = max_t(unsigned, parser->local.usage_index,
 254				 parser->global.report_count);
 255
 256	field = hid_register_field(report, usages, parser->global.report_count);
 257	if (!field)
 258		return 0;
 259
 260	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
 261	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
 262	field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
 263
 264	for (i = 0; i < usages; i++) {
 265		unsigned j = i;
 266		/* Duplicate the last usage we parsed if we have excess values */
 267		if (i >= parser->local.usage_index)
 268			j = parser->local.usage_index - 1;
 269		field->usage[i].hid = parser->local.usage[j];
 270		field->usage[i].collection_index =
 271			parser->local.collection_index[j];
 272		field->usage[i].usage_index = i;
 
 273	}
 274
 275	field->maxusage = usages;
 276	field->flags = flags;
 277	field->report_offset = offset;
 278	field->report_type = report_type;
 279	field->report_size = parser->global.report_size;
 280	field->report_count = parser->global.report_count;
 281	field->logical_minimum = parser->global.logical_minimum;
 282	field->logical_maximum = parser->global.logical_maximum;
 283	field->physical_minimum = parser->global.physical_minimum;
 284	field->physical_maximum = parser->global.physical_maximum;
 285	field->unit_exponent = parser->global.unit_exponent;
 286	field->unit = parser->global.unit;
 287
 288	return 0;
 289}
 290
 291/*
 292 * Read data value from item.
 293 */
 294
 295static u32 item_udata(struct hid_item *item)
 296{
 297	switch (item->size) {
 298	case 1: return item->data.u8;
 299	case 2: return item->data.u16;
 300	case 4: return item->data.u32;
 301	}
 302	return 0;
 303}
 304
 305static s32 item_sdata(struct hid_item *item)
 306{
 307	switch (item->size) {
 308	case 1: return item->data.s8;
 309	case 2: return item->data.s16;
 310	case 4: return item->data.s32;
 311	}
 312	return 0;
 313}
 314
 315/*
 316 * Process a global item.
 317 */
 318
 319static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
 320{
 321	__s32 raw_value;
 322	switch (item->tag) {
 323	case HID_GLOBAL_ITEM_TAG_PUSH:
 324
 325		if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
 326			hid_err(parser->device, "global environment stack overflow\n");
 327			return -1;
 328		}
 329
 330		memcpy(parser->global_stack + parser->global_stack_ptr++,
 331			&parser->global, sizeof(struct hid_global));
 332		return 0;
 333
 334	case HID_GLOBAL_ITEM_TAG_POP:
 335
 336		if (!parser->global_stack_ptr) {
 337			hid_err(parser->device, "global environment stack underflow\n");
 338			return -1;
 339		}
 340
 341		memcpy(&parser->global, parser->global_stack +
 342			--parser->global_stack_ptr, sizeof(struct hid_global));
 343		return 0;
 344
 345	case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
 346		parser->global.usage_page = item_udata(item);
 347		return 0;
 348
 349	case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
 350		parser->global.logical_minimum = item_sdata(item);
 351		return 0;
 352
 353	case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
 354		if (parser->global.logical_minimum < 0)
 355			parser->global.logical_maximum = item_sdata(item);
 356		else
 357			parser->global.logical_maximum = item_udata(item);
 358		return 0;
 359
 360	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
 361		parser->global.physical_minimum = item_sdata(item);
 362		return 0;
 363
 364	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
 365		if (parser->global.physical_minimum < 0)
 366			parser->global.physical_maximum = item_sdata(item);
 367		else
 368			parser->global.physical_maximum = item_udata(item);
 369		return 0;
 370
 371	case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
 372		/* Many devices provide unit exponent as a two's complement
 373		 * nibble due to the common misunderstanding of HID
 374		 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
 375		 * both this and the standard encoding. */
 376		raw_value = item_sdata(item);
 377		if (!(raw_value & 0xfffffff0))
 378			parser->global.unit_exponent = hid_snto32(raw_value, 4);
 379		else
 380			parser->global.unit_exponent = raw_value;
 381		return 0;
 382
 383	case HID_GLOBAL_ITEM_TAG_UNIT:
 384		parser->global.unit = item_udata(item);
 385		return 0;
 386
 387	case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
 388		parser->global.report_size = item_udata(item);
 389		if (parser->global.report_size > 128) {
 390			hid_err(parser->device, "invalid report_size %d\n",
 391					parser->global.report_size);
 392			return -1;
 393		}
 394		return 0;
 395
 396	case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
 397		parser->global.report_count = item_udata(item);
 398		if (parser->global.report_count > HID_MAX_USAGES) {
 399			hid_err(parser->device, "invalid report_count %d\n",
 400					parser->global.report_count);
 401			return -1;
 402		}
 403		return 0;
 404
 405	case HID_GLOBAL_ITEM_TAG_REPORT_ID:
 406		parser->global.report_id = item_udata(item);
 407		if (parser->global.report_id == 0 ||
 408		    parser->global.report_id >= HID_MAX_IDS) {
 409			hid_err(parser->device, "report_id %u is invalid\n",
 410				parser->global.report_id);
 411			return -1;
 412		}
 413		return 0;
 414
 415	default:
 416		hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
 417		return -1;
 418	}
 419}
 420
 421/*
 422 * Process a local item.
 423 */
 424
 425static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
 426{
 427	__u32 data;
 428	unsigned n;
 429	__u32 count;
 430
 431	data = item_udata(item);
 432
 433	switch (item->tag) {
 434	case HID_LOCAL_ITEM_TAG_DELIMITER:
 435
 436		if (data) {
 437			/*
 438			 * We treat items before the first delimiter
 439			 * as global to all usage sets (branch 0).
 440			 * In the moment we process only these global
 441			 * items and the first delimiter set.
 442			 */
 443			if (parser->local.delimiter_depth != 0) {
 444				hid_err(parser->device, "nested delimiters\n");
 445				return -1;
 446			}
 447			parser->local.delimiter_depth++;
 448			parser->local.delimiter_branch++;
 449		} else {
 450			if (parser->local.delimiter_depth < 1) {
 451				hid_err(parser->device, "bogus close delimiter\n");
 452				return -1;
 453			}
 454			parser->local.delimiter_depth--;
 455		}
 456		return 0;
 457
 458	case HID_LOCAL_ITEM_TAG_USAGE:
 459
 460		if (parser->local.delimiter_branch > 1) {
 461			dbg_hid("alternative usage ignored\n");
 462			return 0;
 463		}
 464
 465		if (item->size <= 2)
 466			data = (parser->global.usage_page << 16) + data;
 467
 468		return hid_add_usage(parser, data);
 469
 470	case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
 471
 472		if (parser->local.delimiter_branch > 1) {
 473			dbg_hid("alternative usage ignored\n");
 474			return 0;
 475		}
 476
 477		if (item->size <= 2)
 478			data = (parser->global.usage_page << 16) + data;
 479
 480		parser->local.usage_minimum = data;
 481		return 0;
 482
 483	case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
 484
 485		if (parser->local.delimiter_branch > 1) {
 486			dbg_hid("alternative usage ignored\n");
 487			return 0;
 488		}
 489
 490		if (item->size <= 2)
 491			data = (parser->global.usage_page << 16) + data;
 492
 493		count = data - parser->local.usage_minimum;
 494		if (count + parser->local.usage_index >= HID_MAX_USAGES) {
 495			/*
 496			 * We do not warn if the name is not set, we are
 497			 * actually pre-scanning the device.
 498			 */
 499			if (dev_name(&parser->device->dev))
 500				hid_warn(parser->device,
 501					 "ignoring exceeding usage max\n");
 502			data = HID_MAX_USAGES - parser->local.usage_index +
 503				parser->local.usage_minimum - 1;
 504			if (data <= 0) {
 505				hid_err(parser->device,
 506					"no more usage index available\n");
 507				return -1;
 508			}
 509		}
 510
 511		for (n = parser->local.usage_minimum; n <= data; n++)
 512			if (hid_add_usage(parser, n)) {
 513				dbg_hid("hid_add_usage failed\n");
 514				return -1;
 515			}
 516		return 0;
 517
 518	default:
 519
 520		dbg_hid("unknown local item tag 0x%x\n", item->tag);
 521		return 0;
 522	}
 523	return 0;
 524}
 525
 526/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 527 * Process a main item.
 528 */
 529
 530static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
 531{
 532	__u32 data;
 533	int ret;
 534
 
 
 535	data = item_udata(item);
 536
 537	switch (item->tag) {
 538	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
 539		ret = open_collection(parser, data & 0xff);
 540		break;
 541	case HID_MAIN_ITEM_TAG_END_COLLECTION:
 542		ret = close_collection(parser);
 543		break;
 544	case HID_MAIN_ITEM_TAG_INPUT:
 545		ret = hid_add_field(parser, HID_INPUT_REPORT, data);
 546		break;
 547	case HID_MAIN_ITEM_TAG_OUTPUT:
 548		ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
 549		break;
 550	case HID_MAIN_ITEM_TAG_FEATURE:
 551		ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
 552		break;
 553	default:
 554		hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
 555		ret = 0;
 556	}
 557
 558	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
 559
 560	return ret;
 561}
 562
 563/*
 564 * Process a reserved item.
 565 */
 566
 567static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
 568{
 569	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
 570	return 0;
 571}
 572
 573/*
 574 * Free a report and all registered fields. The field->usage and
 575 * field->value table's are allocated behind the field, so we need
 576 * only to free(field) itself.
 577 */
 578
 579static void hid_free_report(struct hid_report *report)
 580{
 581	unsigned n;
 582
 
 
 583	for (n = 0; n < report->maxfield; n++)
 584		kfree(report->field[n]);
 585	kfree(report);
 586}
 587
 588/*
 589 * Close report. This function returns the device
 590 * state to the point prior to hid_open_report().
 591 */
 592static void hid_close_report(struct hid_device *device)
 593{
 594	unsigned i, j;
 595
 596	for (i = 0; i < HID_REPORT_TYPES; i++) {
 597		struct hid_report_enum *report_enum = device->report_enum + i;
 598
 599		for (j = 0; j < HID_MAX_IDS; j++) {
 600			struct hid_report *report = report_enum->report_id_hash[j];
 601			if (report)
 602				hid_free_report(report);
 603		}
 604		memset(report_enum, 0, sizeof(*report_enum));
 605		INIT_LIST_HEAD(&report_enum->report_list);
 606	}
 607
 608	kfree(device->rdesc);
 609	device->rdesc = NULL;
 610	device->rsize = 0;
 611
 612	kfree(device->collection);
 613	device->collection = NULL;
 614	device->collection_size = 0;
 615	device->maxcollection = 0;
 616	device->maxapplication = 0;
 617
 618	device->status &= ~HID_STAT_PARSED;
 619}
 620
 621/*
 622 * Free a device structure, all reports, and all fields.
 623 */
 624
 625static void hid_device_release(struct device *dev)
 626{
 627	struct hid_device *hid = to_hid_device(dev);
 628
 629	hid_close_report(hid);
 630	kfree(hid->dev_rdesc);
 631	kfree(hid);
 632}
 633
 634/*
 635 * Fetch a report description item from the data stream. We support long
 636 * items, though they are not used yet.
 637 */
 638
 639static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
 640{
 641	u8 b;
 642
 643	if ((end - start) <= 0)
 644		return NULL;
 645
 646	b = *start++;
 647
 648	item->type = (b >> 2) & 3;
 649	item->tag  = (b >> 4) & 15;
 650
 651	if (item->tag == HID_ITEM_TAG_LONG) {
 652
 653		item->format = HID_ITEM_FORMAT_LONG;
 654
 655		if ((end - start) < 2)
 656			return NULL;
 657
 658		item->size = *start++;
 659		item->tag  = *start++;
 660
 661		if ((end - start) < item->size)
 662			return NULL;
 663
 664		item->data.longdata = start;
 665		start += item->size;
 666		return start;
 667	}
 668
 669	item->format = HID_ITEM_FORMAT_SHORT;
 670	item->size = b & 3;
 671
 672	switch (item->size) {
 673	case 0:
 674		return start;
 675
 676	case 1:
 677		if ((end - start) < 1)
 678			return NULL;
 679		item->data.u8 = *start++;
 680		return start;
 681
 682	case 2:
 683		if ((end - start) < 2)
 684			return NULL;
 685		item->data.u16 = get_unaligned_le16(start);
 686		start = (__u8 *)((__le16 *)start + 1);
 687		return start;
 688
 689	case 3:
 690		item->size++;
 691		if ((end - start) < 4)
 692			return NULL;
 693		item->data.u32 = get_unaligned_le32(start);
 694		start = (__u8 *)((__le32 *)start + 1);
 695		return start;
 696	}
 697
 698	return NULL;
 699}
 700
 701static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
 702{
 703	struct hid_device *hid = parser->device;
 704
 705	if (usage == HID_DG_CONTACTID)
 706		hid->group = HID_GROUP_MULTITOUCH;
 707}
 708
 709static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
 710{
 711	if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
 712	    parser->global.report_size == 8)
 713		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
 
 
 
 
 714}
 715
 716static void hid_scan_collection(struct hid_parser *parser, unsigned type)
 717{
 718	struct hid_device *hid = parser->device;
 719	int i;
 720
 721	if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
 722	    type == HID_COLLECTION_PHYSICAL)
 723		hid->group = HID_GROUP_SENSOR_HUB;
 724
 725	if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
 726	    hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
 727	    hid->group == HID_GROUP_MULTITOUCH)
 728		hid->group = HID_GROUP_GENERIC;
 729
 730	if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
 731		for (i = 0; i < parser->local.usage_index; i++)
 732			if (parser->local.usage[i] == HID_GD_POINTER)
 733				parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
 734
 735	if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
 736		parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
 
 
 
 
 
 
 
 737}
 738
 739static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
 740{
 741	__u32 data;
 742	int i;
 743
 
 
 744	data = item_udata(item);
 745
 746	switch (item->tag) {
 747	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
 748		hid_scan_collection(parser, data & 0xff);
 749		break;
 750	case HID_MAIN_ITEM_TAG_END_COLLECTION:
 751		break;
 752	case HID_MAIN_ITEM_TAG_INPUT:
 753		/* ignore constant inputs, they will be ignored by hid-input */
 754		if (data & HID_MAIN_ITEM_CONSTANT)
 755			break;
 756		for (i = 0; i < parser->local.usage_index; i++)
 757			hid_scan_input_usage(parser, parser->local.usage[i]);
 758		break;
 759	case HID_MAIN_ITEM_TAG_OUTPUT:
 760		break;
 761	case HID_MAIN_ITEM_TAG_FEATURE:
 762		for (i = 0; i < parser->local.usage_index; i++)
 763			hid_scan_feature_usage(parser, parser->local.usage[i]);
 764		break;
 765	}
 766
 767	/* Reset the local parser environment */
 768	memset(&parser->local, 0, sizeof(parser->local));
 769
 770	return 0;
 771}
 772
 773/*
 774 * Scan a report descriptor before the device is added to the bus.
 775 * Sets device groups and other properties that determine what driver
 776 * to load.
 777 */
 778static int hid_scan_report(struct hid_device *hid)
 779{
 780	struct hid_parser *parser;
 781	struct hid_item item;
 782	__u8 *start = hid->dev_rdesc;
 783	__u8 *end = start + hid->dev_rsize;
 784	static int (*dispatch_type[])(struct hid_parser *parser,
 785				      struct hid_item *item) = {
 786		hid_scan_main,
 787		hid_parser_global,
 788		hid_parser_local,
 789		hid_parser_reserved
 790	};
 791
 792	parser = vzalloc(sizeof(struct hid_parser));
 793	if (!parser)
 794		return -ENOMEM;
 795
 796	parser->device = hid;
 797	hid->group = HID_GROUP_GENERIC;
 798
 799	/*
 800	 * The parsing is simpler than the one in hid_open_report() as we should
 801	 * be robust against hid errors. Those errors will be raised by
 802	 * hid_open_report() anyway.
 803	 */
 804	while ((start = fetch_item(start, end, &item)) != NULL)
 805		dispatch_type[item.type](parser, &item);
 806
 807	/*
 808	 * Handle special flags set during scanning.
 809	 */
 810	if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
 811	    (hid->group == HID_GROUP_MULTITOUCH))
 812		hid->group = HID_GROUP_MULTITOUCH_WIN_8;
 813
 814	/*
 815	 * Vendor specific handlings
 816	 */
 817	switch (hid->vendor) {
 818	case USB_VENDOR_ID_WACOM:
 819		hid->group = HID_GROUP_WACOM;
 820		break;
 821	case USB_VENDOR_ID_SYNAPTICS:
 822		if (hid->group == HID_GROUP_GENERIC)
 823			if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
 824			    && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
 825				/*
 826				 * hid-rmi should take care of them,
 827				 * not hid-generic
 828				 */
 829				hid->group = HID_GROUP_RMI;
 830		break;
 831	}
 832
 
 833	vfree(parser);
 834	return 0;
 835}
 836
 837/**
 838 * hid_parse_report - parse device report
 839 *
 840 * @device: hid device
 841 * @start: report start
 842 * @size: report size
 843 *
 844 * Allocate the device report as read by the bus driver. This function should
 845 * only be called from parse() in ll drivers.
 846 */
 847int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
 848{
 849	hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
 850	if (!hid->dev_rdesc)
 851		return -ENOMEM;
 852	hid->dev_rsize = size;
 853	return 0;
 854}
 855EXPORT_SYMBOL_GPL(hid_parse_report);
 856
 857static const char * const hid_report_names[] = {
 858	"HID_INPUT_REPORT",
 859	"HID_OUTPUT_REPORT",
 860	"HID_FEATURE_REPORT",
 861};
 862/**
 863 * hid_validate_values - validate existing device report's value indexes
 864 *
 865 * @device: hid device
 866 * @type: which report type to examine
 867 * @id: which report ID to examine (0 for first)
 868 * @field_index: which report field to examine
 869 * @report_counts: expected number of values
 870 *
 871 * Validate the number of values in a given field of a given report, after
 872 * parsing.
 873 */
 874struct hid_report *hid_validate_values(struct hid_device *hid,
 875				       unsigned int type, unsigned int id,
 876				       unsigned int field_index,
 877				       unsigned int report_counts)
 878{
 879	struct hid_report *report;
 880
 881	if (type > HID_FEATURE_REPORT) {
 882		hid_err(hid, "invalid HID report type %u\n", type);
 883		return NULL;
 884	}
 885
 886	if (id >= HID_MAX_IDS) {
 887		hid_err(hid, "invalid HID report id %u\n", id);
 888		return NULL;
 889	}
 890
 891	/*
 892	 * Explicitly not using hid_get_report() here since it depends on
 893	 * ->numbered being checked, which may not always be the case when
 894	 * drivers go to access report values.
 895	 */
 896	if (id == 0) {
 897		/*
 898		 * Validating on id 0 means we should examine the first
 899		 * report in the list.
 900		 */
 901		report = list_entry(
 902				hid->report_enum[type].report_list.next,
 903				struct hid_report, list);
 904	} else {
 905		report = hid->report_enum[type].report_id_hash[id];
 906	}
 907	if (!report) {
 908		hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
 909		return NULL;
 910	}
 911	if (report->maxfield <= field_index) {
 912		hid_err(hid, "not enough fields in %s %u\n",
 913			hid_report_names[type], id);
 914		return NULL;
 915	}
 916	if (report->field[field_index]->report_count < report_counts) {
 917		hid_err(hid, "not enough values in %s %u field %u\n",
 918			hid_report_names[type], id, field_index);
 919		return NULL;
 920	}
 921	return report;
 922}
 923EXPORT_SYMBOL_GPL(hid_validate_values);
 924
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 925/**
 926 * hid_open_report - open a driver-specific device report
 927 *
 928 * @device: hid device
 929 *
 930 * Parse a report description into a hid_device structure. Reports are
 931 * enumerated, fields are attached to these reports.
 932 * 0 returned on success, otherwise nonzero error value.
 933 *
 934 * This function (or the equivalent hid_parse() macro) should only be
 935 * called from probe() in drivers, before starting the device.
 936 */
 937int hid_open_report(struct hid_device *device)
 938{
 939	struct hid_parser *parser;
 940	struct hid_item item;
 941	unsigned int size;
 942	__u8 *start;
 943	__u8 *buf;
 944	__u8 *end;
 
 945	int ret;
 
 946	static int (*dispatch_type[])(struct hid_parser *parser,
 947				      struct hid_item *item) = {
 948		hid_parser_main,
 949		hid_parser_global,
 950		hid_parser_local,
 951		hid_parser_reserved
 952	};
 953
 954	if (WARN_ON(device->status & HID_STAT_PARSED))
 955		return -EBUSY;
 956
 957	start = device->dev_rdesc;
 958	if (WARN_ON(!start))
 959		return -ENODEV;
 960	size = device->dev_rsize;
 961
 962	buf = kmemdup(start, size, GFP_KERNEL);
 963	if (buf == NULL)
 964		return -ENOMEM;
 965
 966	if (device->driver->report_fixup)
 967		start = device->driver->report_fixup(device, buf, &size);
 968	else
 969		start = buf;
 970
 971	start = kmemdup(start, size, GFP_KERNEL);
 972	kfree(buf);
 973	if (start == NULL)
 974		return -ENOMEM;
 975
 976	device->rdesc = start;
 977	device->rsize = size;
 978
 979	parser = vzalloc(sizeof(struct hid_parser));
 980	if (!parser) {
 981		ret = -ENOMEM;
 982		goto err;
 983	}
 984
 985	parser->device = device;
 986
 987	end = start + size;
 988
 989	device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
 990				     sizeof(struct hid_collection), GFP_KERNEL);
 991	if (!device->collection) {
 992		ret = -ENOMEM;
 993		goto err;
 994	}
 995	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
 
 
 996
 997	ret = -EINVAL;
 998	while ((start = fetch_item(start, end, &item)) != NULL) {
 
 999
1000		if (item.format != HID_ITEM_FORMAT_SHORT) {
1001			hid_err(device, "unexpected long global item\n");
1002			goto err;
1003		}
1004
1005		if (dispatch_type[item.type](parser, &item)) {
1006			hid_err(device, "item %u %u %u %u parsing failed\n",
1007				item.format, (unsigned)item.size,
1008				(unsigned)item.type, (unsigned)item.tag);
1009			goto err;
1010		}
1011
1012		if (start == end) {
1013			if (parser->collection_stack_ptr) {
1014				hid_err(device, "unbalanced collection at end of report description\n");
1015				goto err;
1016			}
1017			if (parser->local.delimiter_depth) {
1018				hid_err(device, "unbalanced delimiter at end of report description\n");
1019				goto err;
1020			}
 
 
 
 
 
 
 
 
1021			vfree(parser);
1022			device->status |= HID_STAT_PARSED;
 
1023			return 0;
1024		}
1025	}
1026
1027	hid_err(device, "item fetching failed at offset %d\n", (int)(end - start));
 
1028err:
 
 
1029	vfree(parser);
1030	hid_close_report(device);
1031	return ret;
1032}
1033EXPORT_SYMBOL_GPL(hid_open_report);
1034
1035/*
1036 * Convert a signed n-bit integer to signed 32-bit integer. Common
1037 * cases are done through the compiler, the screwed things has to be
1038 * done by hand.
1039 */
1040
1041static s32 snto32(__u32 value, unsigned n)
1042{
 
 
 
 
 
 
1043	switch (n) {
1044	case 8:  return ((__s8)value);
1045	case 16: return ((__s16)value);
1046	case 32: return ((__s32)value);
1047	}
1048	return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1049}
1050
1051s32 hid_snto32(__u32 value, unsigned n)
1052{
1053	return snto32(value, n);
1054}
1055EXPORT_SYMBOL_GPL(hid_snto32);
1056
1057/*
1058 * Convert a signed 32-bit integer to a signed n-bit integer.
1059 */
1060
1061static u32 s32ton(__s32 value, unsigned n)
1062{
1063	s32 a = value >> (n - 1);
1064	if (a && a != -1)
1065		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1066	return value & ((1 << n) - 1);
1067}
1068
1069/*
1070 * Extract/implement a data field from/to a little endian report (bit array).
1071 *
1072 * Code sort-of follows HID spec:
1073 *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1074 *
1075 * While the USB HID spec allows unlimited length bit fields in "report
1076 * descriptors", most devices never use more than 16 bits.
1077 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1078 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1079 */
1080
1081static u32 __extract(u8 *report, unsigned offset, int n)
1082{
1083	unsigned int idx = offset / 8;
1084	unsigned int bit_nr = 0;
1085	unsigned int bit_shift = offset % 8;
1086	int bits_to_copy = 8 - bit_shift;
1087	u32 value = 0;
1088	u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1089
1090	while (n > 0) {
1091		value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1092		n -= bits_to_copy;
1093		bit_nr += bits_to_copy;
1094		bits_to_copy = 8;
1095		bit_shift = 0;
1096		idx++;
1097	}
1098
1099	return value & mask;
1100}
1101
1102u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1103			unsigned offset, unsigned n)
1104{
1105	if (n > 32) {
1106		hid_warn(hid, "hid_field_extract() called with n (%d) > 32! (%s)\n",
1107			 n, current->comm);
1108		n = 32;
1109	}
1110
1111	return __extract(report, offset, n);
1112}
1113EXPORT_SYMBOL_GPL(hid_field_extract);
1114
1115/*
1116 * "implement" : set bits in a little endian bit stream.
1117 * Same concepts as "extract" (see comments above).
1118 * The data mangled in the bit stream remains in little endian
1119 * order the whole time. It make more sense to talk about
1120 * endianness of register values by considering a register
1121 * a "cached" copy of the little endian bit stream.
1122 */
1123
1124static void __implement(u8 *report, unsigned offset, int n, u32 value)
1125{
1126	unsigned int idx = offset / 8;
1127	unsigned int bit_shift = offset % 8;
1128	int bits_to_set = 8 - bit_shift;
1129
1130	while (n - bits_to_set >= 0) {
1131		report[idx] &= ~(0xff << bit_shift);
1132		report[idx] |= value << bit_shift;
1133		value >>= bits_to_set;
1134		n -= bits_to_set;
1135		bits_to_set = 8;
1136		bit_shift = 0;
1137		idx++;
1138	}
1139
1140	/* last nibble */
1141	if (n) {
1142		u8 bit_mask = ((1U << n) - 1);
1143		report[idx] &= ~(bit_mask << bit_shift);
1144		report[idx] |= value << bit_shift;
1145	}
1146}
1147
1148static void implement(const struct hid_device *hid, u8 *report,
1149		      unsigned offset, unsigned n, u32 value)
1150{
1151	if (unlikely(n > 32)) {
1152		hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1153			 __func__, n, current->comm);
1154		n = 32;
1155	} else if (n < 32) {
1156		u32 m = (1U << n) - 1;
1157
1158		if (unlikely(value > m)) {
1159			hid_warn(hid,
1160				 "%s() called with too large value %d (n: %d)! (%s)\n",
1161				 __func__, value, n, current->comm);
1162			WARN_ON(1);
1163			value &= m;
1164		}
1165	}
1166
1167	__implement(report, offset, n, value);
1168}
1169
1170/*
1171 * Search an array for a value.
1172 */
1173
1174static int search(__s32 *array, __s32 value, unsigned n)
1175{
1176	while (n--) {
1177		if (*array++ == value)
1178			return 0;
1179	}
1180	return -1;
1181}
1182
1183/**
1184 * hid_match_report - check if driver's raw_event should be called
1185 *
1186 * @hid: hid device
1187 * @report_type: type to match against
1188 *
1189 * compare hid->driver->report_table->report_type to report->type
1190 */
1191static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1192{
1193	const struct hid_report_id *id = hid->driver->report_table;
1194
1195	if (!id) /* NULL means all */
1196		return 1;
1197
1198	for (; id->report_type != HID_TERMINATOR; id++)
1199		if (id->report_type == HID_ANY_ID ||
1200				id->report_type == report->type)
1201			return 1;
1202	return 0;
1203}
1204
1205/**
1206 * hid_match_usage - check if driver's event should be called
1207 *
1208 * @hid: hid device
1209 * @usage: usage to match against
1210 *
1211 * compare hid->driver->usage_table->usage_{type,code} to
1212 * usage->usage_{type,code}
1213 */
1214static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1215{
1216	const struct hid_usage_id *id = hid->driver->usage_table;
1217
1218	if (!id) /* NULL means all */
1219		return 1;
1220
1221	for (; id->usage_type != HID_ANY_ID - 1; id++)
1222		if ((id->usage_hid == HID_ANY_ID ||
1223				id->usage_hid == usage->hid) &&
1224				(id->usage_type == HID_ANY_ID ||
1225				id->usage_type == usage->type) &&
1226				(id->usage_code == HID_ANY_ID ||
1227				 id->usage_code == usage->code))
1228			return 1;
1229	return 0;
1230}
1231
1232static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1233		struct hid_usage *usage, __s32 value, int interrupt)
1234{
1235	struct hid_driver *hdrv = hid->driver;
1236	int ret;
1237
1238	if (!list_empty(&hid->debug_list))
1239		hid_dump_input(hid, usage, value);
1240
1241	if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1242		ret = hdrv->event(hid, field, usage, value);
1243		if (ret != 0) {
1244			if (ret < 0)
1245				hid_err(hid, "%s's event failed with %d\n",
1246						hdrv->name, ret);
1247			return;
1248		}
1249	}
1250
1251	if (hid->claimed & HID_CLAIMED_INPUT)
1252		hidinput_hid_event(hid, field, usage, value);
1253	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1254		hid->hiddev_hid_event(hid, field, usage, value);
1255}
1256
1257/*
1258 * Analyse a received field, and fetch the data from it. The field
1259 * content is stored for next report processing (we do differential
1260 * reporting to the layer).
1261 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1262
1263static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1264			    __u8 *data, int interrupt)
 
 
 
 
 
1265{
1266	unsigned n;
1267	unsigned count = field->report_count;
1268	unsigned offset = field->report_offset;
1269	unsigned size = field->report_size;
1270	__s32 min = field->logical_minimum;
1271	__s32 max = field->logical_maximum;
1272	__s32 *value;
1273
1274	value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC);
1275	if (!value)
1276		return;
1277
1278	for (n = 0; n < count; n++) {
1279
1280		value[n] = min < 0 ?
1281			snto32(hid_field_extract(hid, data, offset + n * size,
1282			       size), size) :
1283			hid_field_extract(hid, data, offset + n * size, size);
1284
1285		/* Ignore report if ErrorRollOver */
1286		if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1287		    value[n] >= min && value[n] <= max &&
1288		    value[n] - min < field->maxusage &&
1289		    field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1290			goto exit;
 
1291	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1292
1293	for (n = 0; n < count; n++) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1294
1295		if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1296			hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1297			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1298		}
 
 
 
 
1299
1300		if (field->value[n] >= min && field->value[n] <= max
1301			&& field->value[n] - min < field->maxusage
1302			&& field->usage[field->value[n] - min].hid
1303			&& search(value, field->value[n], count))
1304				hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1305
1306		if (value[n] >= min && value[n] <= max
1307			&& value[n] - min < field->maxusage
1308			&& field->usage[value[n] - min].hid
1309			&& search(field->value, value[n], count))
1310				hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1311	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1312
1313	memcpy(field->value, value, count * sizeof(__s32));
1314exit:
1315	kfree(value);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1316}
1317
1318/*
1319 * Output the field into the report.
1320 */
1321
1322static void hid_output_field(const struct hid_device *hid,
1323			     struct hid_field *field, __u8 *data)
1324{
1325	unsigned count = field->report_count;
1326	unsigned offset = field->report_offset;
1327	unsigned size = field->report_size;
1328	unsigned n;
1329
1330	for (n = 0; n < count; n++) {
1331		if (field->logical_minimum < 0)	/* signed values */
1332			implement(hid, data, offset + n * size, size,
1333				  s32ton(field->value[n], size));
1334		else				/* unsigned values */
1335			implement(hid, data, offset + n * size, size,
1336				  field->value[n]);
1337	}
1338}
1339
1340/*
 
 
 
 
 
 
 
 
 
 
 
1341 * Create a report. 'data' has to be allocated using
1342 * hid_alloc_report_buf() so that it has proper size.
1343 */
1344
1345void hid_output_report(struct hid_report *report, __u8 *data)
1346{
1347	unsigned n;
1348
1349	if (report->id > 0)
1350		*data++ = report->id;
1351
1352	memset(data, 0, ((report->size - 1) >> 3) + 1);
1353	for (n = 0; n < report->maxfield; n++)
1354		hid_output_field(report->device, report->field[n], data);
1355}
1356EXPORT_SYMBOL_GPL(hid_output_report);
1357
1358/*
1359 * Allocator for buffer that is going to be passed to hid_output_report()
1360 */
1361u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1362{
1363	/*
1364	 * 7 extra bytes are necessary to achieve proper functionality
1365	 * of implement() working on 8 byte chunks
1366	 */
1367
1368	u32 len = hid_report_len(report) + 7;
1369
1370	return kmalloc(len, flags);
1371}
1372EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1373
1374/*
1375 * Set a field value. The report this field belongs to has to be
1376 * created and transferred to the device, to set this value in the
1377 * device.
1378 */
1379
1380int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1381{
1382	unsigned size;
1383
1384	if (!field)
1385		return -1;
1386
1387	size = field->report_size;
1388
1389	hid_dump_input(field->report->device, field->usage + offset, value);
1390
1391	if (offset >= field->report_count) {
1392		hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1393				offset, field->report_count);
1394		return -1;
1395	}
1396	if (field->logical_minimum < 0) {
1397		if (value != snto32(s32ton(value, size), size)) {
1398			hid_err(field->report->device, "value %d is out of range\n", value);
1399			return -1;
1400		}
1401	}
1402	field->value[offset] = value;
1403	return 0;
1404}
1405EXPORT_SYMBOL_GPL(hid_set_field);
1406
1407static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1408		const u8 *data)
1409{
1410	struct hid_report *report;
1411	unsigned int n = 0;	/* Normally report number is 0 */
1412
1413	/* Device uses numbered reports, data[0] is report number */
1414	if (report_enum->numbered)
1415		n = *data;
1416
1417	report = report_enum->report_id_hash[n];
1418	if (report == NULL)
1419		dbg_hid("undefined report_id %u received\n", n);
1420
1421	return report;
1422}
1423
1424/*
1425 * Implement a generic .request() callback, using .raw_request()
1426 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1427 */
1428void __hid_request(struct hid_device *hid, struct hid_report *report,
1429		int reqtype)
1430{
1431	char *buf;
1432	int ret;
1433	u32 len;
1434
1435	buf = hid_alloc_report_buf(report, GFP_KERNEL);
1436	if (!buf)
1437		return;
1438
1439	len = hid_report_len(report);
1440
1441	if (reqtype == HID_REQ_SET_REPORT)
1442		hid_output_report(report, buf);
1443
1444	ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1445					  report->type, reqtype);
1446	if (ret < 0) {
1447		dbg_hid("unable to complete request: %d\n", ret);
1448		goto out;
1449	}
1450
1451	if (reqtype == HID_REQ_GET_REPORT)
1452		hid_input_report(hid, report->type, buf, ret, 0);
1453
 
 
1454out:
1455	kfree(buf);
 
1456}
1457EXPORT_SYMBOL_GPL(__hid_request);
1458
1459int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1460		int interrupt)
1461{
1462	struct hid_report_enum *report_enum = hid->report_enum + type;
1463	struct hid_report *report;
1464	struct hid_driver *hdrv;
1465	unsigned int a;
1466	u32 rsize, csize = size;
1467	u8 *cdata = data;
1468	int ret = 0;
1469
1470	report = hid_get_report(report_enum, data);
1471	if (!report)
1472		goto out;
1473
1474	if (report_enum->numbered) {
1475		cdata++;
1476		csize--;
1477	}
1478
1479	rsize = ((report->size - 1) >> 3) + 1;
1480
1481	if (rsize > HID_MAX_BUFFER_SIZE)
 
 
1482		rsize = HID_MAX_BUFFER_SIZE;
1483
1484	if (csize < rsize) {
1485		dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1486				csize, rsize);
1487		memset(cdata + csize, 0, rsize - csize);
1488	}
1489
1490	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1491		hid->hiddev_report_event(hid, report);
1492	if (hid->claimed & HID_CLAIMED_HIDRAW) {
1493		ret = hidraw_report_event(hid, data, size);
1494		if (ret)
1495			goto out;
1496	}
1497
1498	if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1499		for (a = 0; a < report->maxfield; a++)
1500			hid_input_field(hid, report->field[a], cdata, interrupt);
1501		hdrv = hid->driver;
1502		if (hdrv && hdrv->report)
1503			hdrv->report(hid, report);
1504	}
1505
1506	if (hid->claimed & HID_CLAIMED_INPUT)
1507		hidinput_report_event(hid, report);
1508out:
1509	return ret;
1510}
1511EXPORT_SYMBOL_GPL(hid_report_raw_event);
1512
1513/**
1514 * hid_input_report - report data from lower layer (usb, bt...)
1515 *
1516 * @hid: hid device
1517 * @type: HID report type (HID_*_REPORT)
1518 * @data: report contents
1519 * @size: size of data parameter
1520 * @interrupt: distinguish between interrupt and control transfers
1521 *
1522 * This is data entry for lower layers.
1523 */
1524int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
 
1525{
1526	struct hid_report_enum *report_enum;
1527	struct hid_driver *hdrv;
1528	struct hid_report *report;
1529	int ret = 0;
1530
1531	if (!hid)
1532		return -ENODEV;
1533
1534	if (down_trylock(&hid->driver_input_lock))
1535		return -EBUSY;
1536
1537	if (!hid->driver) {
1538		ret = -ENODEV;
1539		goto unlock;
1540	}
1541	report_enum = hid->report_enum + type;
1542	hdrv = hid->driver;
1543
1544	if (!size) {
1545		dbg_hid("empty report\n");
1546		ret = -1;
1547		goto unlock;
1548	}
1549
1550	/* Avoid unnecessary overhead if debugfs is disabled */
1551	if (!list_empty(&hid->debug_list))
1552		hid_dump_report(hid, type, data, size);
1553
1554	report = hid_get_report(report_enum, data);
1555
1556	if (!report) {
1557		ret = -1;
1558		goto unlock;
1559	}
1560
1561	if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1562		ret = hdrv->raw_event(hid, report, data, size);
1563		if (ret < 0)
1564			goto unlock;
1565	}
1566
1567	ret = hid_report_raw_event(hid, type, data, size, interrupt);
1568
1569unlock:
1570	up(&hid->driver_input_lock);
1571	return ret;
1572}
1573EXPORT_SYMBOL_GPL(hid_input_report);
1574
1575bool hid_match_one_id(const struct hid_device *hdev,
1576		      const struct hid_device_id *id)
1577{
1578	return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1579		(id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1580		(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1581		(id->product == HID_ANY_ID || id->product == hdev->product);
1582}
1583
1584const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1585		const struct hid_device_id *id)
1586{
1587	for (; id->bus; id++)
1588		if (hid_match_one_id(hdev, id))
1589			return id;
1590
1591	return NULL;
1592}
 
1593
1594static const struct hid_device_id hid_hiddev_list[] = {
1595	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1596	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1597	{ }
1598};
1599
1600static bool hid_hiddev(struct hid_device *hdev)
1601{
1602	return !!hid_match_id(hdev, hid_hiddev_list);
1603}
1604
1605
1606static ssize_t
1607read_report_descriptor(struct file *filp, struct kobject *kobj,
1608		struct bin_attribute *attr,
1609		char *buf, loff_t off, size_t count)
1610{
1611	struct device *dev = kobj_to_dev(kobj);
1612	struct hid_device *hdev = to_hid_device(dev);
1613
1614	if (off >= hdev->rsize)
1615		return 0;
1616
1617	if (off + count > hdev->rsize)
1618		count = hdev->rsize - off;
1619
1620	memcpy(buf, hdev->rdesc + off, count);
1621
1622	return count;
1623}
1624
1625static ssize_t
1626show_country(struct device *dev, struct device_attribute *attr,
1627		char *buf)
1628{
1629	struct hid_device *hdev = to_hid_device(dev);
1630
1631	return sprintf(buf, "%02x\n", hdev->country & 0xff);
1632}
1633
1634static struct bin_attribute dev_bin_attr_report_desc = {
1635	.attr = { .name = "report_descriptor", .mode = 0444 },
1636	.read = read_report_descriptor,
1637	.size = HID_MAX_DESCRIPTOR_SIZE,
1638};
1639
1640static const struct device_attribute dev_attr_country = {
1641	.attr = { .name = "country", .mode = 0444 },
1642	.show = show_country,
1643};
1644
1645int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1646{
1647	static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1648		"Joystick", "Gamepad", "Keyboard", "Keypad",
1649		"Multi-Axis Controller"
1650	};
1651	const char *type, *bus;
1652	char buf[64] = "";
1653	unsigned int i;
1654	int len;
1655	int ret;
1656
1657	if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1658		connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1659	if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1660		connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1661	if (hdev->bus != BUS_USB)
1662		connect_mask &= ~HID_CONNECT_HIDDEV;
1663	if (hid_hiddev(hdev))
1664		connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1665
1666	if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1667				connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1668		hdev->claimed |= HID_CLAIMED_INPUT;
1669
1670	if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1671			!hdev->hiddev_connect(hdev,
1672				connect_mask & HID_CONNECT_HIDDEV_FORCE))
1673		hdev->claimed |= HID_CLAIMED_HIDDEV;
1674	if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1675		hdev->claimed |= HID_CLAIMED_HIDRAW;
1676
1677	if (connect_mask & HID_CONNECT_DRIVER)
1678		hdev->claimed |= HID_CLAIMED_DRIVER;
1679
1680	/* Drivers with the ->raw_event callback set are not required to connect
1681	 * to any other listener. */
1682	if (!hdev->claimed && !hdev->driver->raw_event) {
1683		hid_err(hdev, "device has no listeners, quitting\n");
1684		return -ENODEV;
1685	}
1686
 
 
1687	if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1688			(connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1689		hdev->ff_init(hdev);
1690
1691	len = 0;
1692	if (hdev->claimed & HID_CLAIMED_INPUT)
1693		len += sprintf(buf + len, "input");
1694	if (hdev->claimed & HID_CLAIMED_HIDDEV)
1695		len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1696				((struct hiddev *)hdev->hiddev)->minor);
1697	if (hdev->claimed & HID_CLAIMED_HIDRAW)
1698		len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1699				((struct hidraw *)hdev->hidraw)->minor);
1700
1701	type = "Device";
1702	for (i = 0; i < hdev->maxcollection; i++) {
1703		struct hid_collection *col = &hdev->collection[i];
1704		if (col->type == HID_COLLECTION_APPLICATION &&
1705		   (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1706		   (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1707			type = types[col->usage & 0xffff];
1708			break;
1709		}
1710	}
1711
1712	switch (hdev->bus) {
1713	case BUS_USB:
1714		bus = "USB";
1715		break;
1716	case BUS_BLUETOOTH:
1717		bus = "BLUETOOTH";
1718		break;
1719	case BUS_I2C:
1720		bus = "I2C";
1721		break;
 
 
 
 
 
 
 
1722	default:
1723		bus = "<UNKNOWN>";
1724	}
1725
1726	ret = device_create_file(&hdev->dev, &dev_attr_country);
1727	if (ret)
1728		hid_warn(hdev,
1729			 "can't create sysfs country code attribute err: %d\n", ret);
1730
1731	hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1732		 buf, bus, hdev->version >> 8, hdev->version & 0xff,
1733		 type, hdev->name, hdev->phys);
1734
1735	return 0;
1736}
1737EXPORT_SYMBOL_GPL(hid_connect);
1738
1739void hid_disconnect(struct hid_device *hdev)
1740{
1741	device_remove_file(&hdev->dev, &dev_attr_country);
1742	if (hdev->claimed & HID_CLAIMED_INPUT)
1743		hidinput_disconnect(hdev);
1744	if (hdev->claimed & HID_CLAIMED_HIDDEV)
1745		hdev->hiddev_disconnect(hdev);
1746	if (hdev->claimed & HID_CLAIMED_HIDRAW)
1747		hidraw_disconnect(hdev);
1748	hdev->claimed = 0;
1749}
1750EXPORT_SYMBOL_GPL(hid_disconnect);
1751
1752/**
1753 * hid_hw_start - start underlying HW
1754 * @hdev: hid device
1755 * @connect_mask: which outputs to connect, see HID_CONNECT_*
1756 *
1757 * Call this in probe function *after* hid_parse. This will setup HW
1758 * buffers and start the device (if not defeirred to device open).
1759 * hid_hw_stop must be called if this was successful.
1760 */
1761int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
1762{
1763	int error;
1764
1765	error = hdev->ll_driver->start(hdev);
1766	if (error)
1767		return error;
1768
1769	if (connect_mask) {
1770		error = hid_connect(hdev, connect_mask);
1771		if (error) {
1772			hdev->ll_driver->stop(hdev);
1773			return error;
1774		}
1775	}
1776
1777	return 0;
1778}
1779EXPORT_SYMBOL_GPL(hid_hw_start);
1780
1781/**
1782 * hid_hw_stop - stop underlying HW
1783 * @hdev: hid device
1784 *
1785 * This is usually called from remove function or from probe when something
1786 * failed and hid_hw_start was called already.
1787 */
1788void hid_hw_stop(struct hid_device *hdev)
1789{
1790	hid_disconnect(hdev);
1791	hdev->ll_driver->stop(hdev);
1792}
1793EXPORT_SYMBOL_GPL(hid_hw_stop);
1794
1795/**
1796 * hid_hw_open - signal underlying HW to start delivering events
1797 * @hdev: hid device
1798 *
1799 * Tell underlying HW to start delivering events from the device.
1800 * This function should be called sometime after successful call
1801 * to hid_hiw_start().
1802 */
1803int hid_hw_open(struct hid_device *hdev)
1804{
1805	int ret;
1806
1807	ret = mutex_lock_killable(&hdev->ll_open_lock);
1808	if (ret)
1809		return ret;
1810
1811	if (!hdev->ll_open_count++) {
1812		ret = hdev->ll_driver->open(hdev);
1813		if (ret)
1814			hdev->ll_open_count--;
1815	}
1816
1817	mutex_unlock(&hdev->ll_open_lock);
1818	return ret;
1819}
1820EXPORT_SYMBOL_GPL(hid_hw_open);
1821
1822/**
1823 * hid_hw_close - signal underlaying HW to stop delivering events
1824 *
1825 * @hdev: hid device
1826 *
1827 * This function indicates that we are not interested in the events
1828 * from this device anymore. Delivery of events may or may not stop,
1829 * depending on the number of users still outstanding.
1830 */
1831void hid_hw_close(struct hid_device *hdev)
1832{
1833	mutex_lock(&hdev->ll_open_lock);
1834	if (!--hdev->ll_open_count)
1835		hdev->ll_driver->close(hdev);
1836	mutex_unlock(&hdev->ll_open_lock);
1837}
1838EXPORT_SYMBOL_GPL(hid_hw_close);
1839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1840struct hid_dynid {
1841	struct list_head list;
1842	struct hid_device_id id;
1843};
1844
1845/**
1846 * store_new_id - add a new HID device ID to this driver and re-probe devices
1847 * @driver: target device driver
1848 * @buf: buffer for scanning device ID data
1849 * @count: input size
1850 *
1851 * Adds a new dynamic hid device ID to this driver,
1852 * and causes the driver to probe for all devices again.
1853 */
1854static ssize_t new_id_store(struct device_driver *drv, const char *buf,
1855		size_t count)
1856{
1857	struct hid_driver *hdrv = to_hid_driver(drv);
1858	struct hid_dynid *dynid;
1859	__u32 bus, vendor, product;
1860	unsigned long driver_data = 0;
1861	int ret;
1862
1863	ret = sscanf(buf, "%x %x %x %lx",
1864			&bus, &vendor, &product, &driver_data);
1865	if (ret < 3)
1866		return -EINVAL;
1867
1868	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
1869	if (!dynid)
1870		return -ENOMEM;
1871
1872	dynid->id.bus = bus;
1873	dynid->id.group = HID_GROUP_ANY;
1874	dynid->id.vendor = vendor;
1875	dynid->id.product = product;
1876	dynid->id.driver_data = driver_data;
1877
1878	spin_lock(&hdrv->dyn_lock);
1879	list_add_tail(&dynid->list, &hdrv->dyn_list);
1880	spin_unlock(&hdrv->dyn_lock);
1881
1882	ret = driver_attach(&hdrv->driver);
1883
1884	return ret ? : count;
1885}
1886static DRIVER_ATTR_WO(new_id);
1887
1888static struct attribute *hid_drv_attrs[] = {
1889	&driver_attr_new_id.attr,
1890	NULL,
1891};
1892ATTRIBUTE_GROUPS(hid_drv);
1893
1894static void hid_free_dynids(struct hid_driver *hdrv)
1895{
1896	struct hid_dynid *dynid, *n;
1897
1898	spin_lock(&hdrv->dyn_lock);
1899	list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
1900		list_del(&dynid->list);
1901		kfree(dynid);
1902	}
1903	spin_unlock(&hdrv->dyn_lock);
1904}
1905
1906const struct hid_device_id *hid_match_device(struct hid_device *hdev,
1907					     struct hid_driver *hdrv)
1908{
1909	struct hid_dynid *dynid;
1910
1911	spin_lock(&hdrv->dyn_lock);
1912	list_for_each_entry(dynid, &hdrv->dyn_list, list) {
1913		if (hid_match_one_id(hdev, &dynid->id)) {
1914			spin_unlock(&hdrv->dyn_lock);
1915			return &dynid->id;
1916		}
1917	}
1918	spin_unlock(&hdrv->dyn_lock);
1919
1920	return hid_match_id(hdev, hdrv->id_table);
1921}
1922EXPORT_SYMBOL_GPL(hid_match_device);
1923
1924static int hid_bus_match(struct device *dev, struct device_driver *drv)
1925{
1926	struct hid_driver *hdrv = to_hid_driver(drv);
1927	struct hid_device *hdev = to_hid_device(dev);
1928
1929	return hid_match_device(hdev, hdrv) != NULL;
1930}
1931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1932static int hid_device_probe(struct device *dev)
1933{
1934	struct hid_driver *hdrv = to_hid_driver(dev->driver);
1935	struct hid_device *hdev = to_hid_device(dev);
1936	const struct hid_device_id *id;
1937	int ret = 0;
1938
1939	if (down_interruptible(&hdev->driver_input_lock)) {
1940		ret = -EINTR;
1941		goto end;
1942	}
1943	hdev->io_started = false;
1944
 
 
1945	if (!hdev->driver) {
1946		id = hid_match_device(hdev, hdrv);
1947		if (id == NULL) {
1948			ret = -ENODEV;
1949			goto unlock;
1950		}
1951
1952		if (hdrv->match) {
1953			if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
1954				ret = -ENODEV;
1955				goto unlock;
1956			}
1957		} else {
1958			/*
1959			 * hid-generic implements .match(), so if
1960			 * hid_ignore_special_drivers is set, we can safely
1961			 * return.
1962			 */
1963			if (hid_ignore_special_drivers) {
1964				ret = -ENODEV;
1965				goto unlock;
1966			}
1967		}
1968
1969		/* reset the quirks that has been previously set */
1970		hdev->quirks = hid_lookup_quirk(hdev);
1971		hdev->driver = hdrv;
1972		if (hdrv->probe) {
1973			ret = hdrv->probe(hdev, id);
1974		} else { /* default probe */
1975			ret = hid_open_report(hdev);
1976			if (!ret)
1977				ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
1978		}
1979		if (ret) {
1980			hid_close_report(hdev);
1981			hdev->driver = NULL;
1982		}
1983	}
1984unlock:
1985	if (!hdev->io_started)
1986		up(&hdev->driver_input_lock);
1987end:
1988	return ret;
1989}
1990
1991static int hid_device_remove(struct device *dev)
1992{
1993	struct hid_device *hdev = to_hid_device(dev);
1994	struct hid_driver *hdrv;
1995	int ret = 0;
1996
1997	if (down_interruptible(&hdev->driver_input_lock)) {
1998		ret = -EINTR;
1999		goto end;
2000	}
2001	hdev->io_started = false;
2002
2003	hdrv = hdev->driver;
2004	if (hdrv) {
2005		if (hdrv->remove)
2006			hdrv->remove(hdev);
2007		else /* default remove */
2008			hid_hw_stop(hdev);
2009		hid_close_report(hdev);
2010		hdev->driver = NULL;
2011	}
2012
2013	if (!hdev->io_started)
2014		up(&hdev->driver_input_lock);
2015end:
2016	return ret;
2017}
2018
2019static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2020			     char *buf)
2021{
2022	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2023
2024	return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2025			 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2026}
2027static DEVICE_ATTR_RO(modalias);
2028
2029static struct attribute *hid_dev_attrs[] = {
2030	&dev_attr_modalias.attr,
2031	NULL,
2032};
2033static struct bin_attribute *hid_dev_bin_attrs[] = {
2034	&dev_bin_attr_report_desc,
2035	NULL
2036};
2037static const struct attribute_group hid_dev_group = {
2038	.attrs = hid_dev_attrs,
2039	.bin_attrs = hid_dev_bin_attrs,
2040};
2041__ATTRIBUTE_GROUPS(hid_dev);
2042
2043static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2044{
2045	struct hid_device *hdev = to_hid_device(dev);
2046
2047	if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2048			hdev->bus, hdev->vendor, hdev->product))
2049		return -ENOMEM;
2050
2051	if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2052		return -ENOMEM;
2053
2054	if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2055		return -ENOMEM;
2056
2057	if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2058		return -ENOMEM;
2059
2060	if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2061			   hdev->bus, hdev->group, hdev->vendor, hdev->product))
2062		return -ENOMEM;
2063
2064	return 0;
2065}
2066
2067struct bus_type hid_bus_type = {
2068	.name		= "hid",
2069	.dev_groups	= hid_dev_groups,
2070	.drv_groups	= hid_drv_groups,
2071	.match		= hid_bus_match,
2072	.probe		= hid_device_probe,
2073	.remove		= hid_device_remove,
2074	.uevent		= hid_uevent,
2075};
2076EXPORT_SYMBOL(hid_bus_type);
2077
2078int hid_add_device(struct hid_device *hdev)
2079{
2080	static atomic_t id = ATOMIC_INIT(0);
2081	int ret;
2082
2083	if (WARN_ON(hdev->status & HID_STAT_ADDED))
2084		return -EBUSY;
2085
2086	hdev->quirks = hid_lookup_quirk(hdev);
2087
2088	/* we need to kill them here, otherwise they will stay allocated to
2089	 * wait for coming driver */
2090	if (hid_ignore(hdev))
2091		return -ENODEV;
2092
2093	/*
2094	 * Check for the mandatory transport channel.
2095	 */
2096	 if (!hdev->ll_driver->raw_request) {
2097		hid_err(hdev, "transport driver missing .raw_request()\n");
2098		return -EINVAL;
2099	 }
2100
2101	/*
2102	 * Read the device report descriptor once and use as template
2103	 * for the driver-specific modifications.
2104	 */
2105	ret = hdev->ll_driver->parse(hdev);
2106	if (ret)
2107		return ret;
2108	if (!hdev->dev_rdesc)
2109		return -ENODEV;
2110
2111	/*
2112	 * Scan generic devices for group information
2113	 */
2114	if (hid_ignore_special_drivers) {
2115		hdev->group = HID_GROUP_GENERIC;
2116	} else if (!hdev->group &&
2117		   !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2118		ret = hid_scan_report(hdev);
2119		if (ret)
2120			hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2121	}
2122
 
 
2123	/* XXX hack, any other cleaner solution after the driver core
2124	 * is converted to allow more than 20 bytes as the device name? */
2125	dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2126		     hdev->vendor, hdev->product, atomic_inc_return(&id));
2127
2128	hid_debug_register(hdev, dev_name(&hdev->dev));
2129	ret = device_add(&hdev->dev);
2130	if (!ret)
2131		hdev->status |= HID_STAT_ADDED;
2132	else
2133		hid_debug_unregister(hdev);
2134
2135	return ret;
2136}
2137EXPORT_SYMBOL_GPL(hid_add_device);
2138
2139/**
2140 * hid_allocate_device - allocate new hid device descriptor
2141 *
2142 * Allocate and initialize hid device, so that hid_destroy_device might be
2143 * used to free it.
2144 *
2145 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2146 * error value.
2147 */
2148struct hid_device *hid_allocate_device(void)
2149{
2150	struct hid_device *hdev;
2151	int ret = -ENOMEM;
2152
2153	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2154	if (hdev == NULL)
2155		return ERR_PTR(ret);
2156
2157	device_initialize(&hdev->dev);
2158	hdev->dev.release = hid_device_release;
2159	hdev->dev.bus = &hid_bus_type;
2160	device_enable_async_suspend(&hdev->dev);
2161
2162	hid_close_report(hdev);
2163
2164	init_waitqueue_head(&hdev->debug_wait);
2165	INIT_LIST_HEAD(&hdev->debug_list);
2166	spin_lock_init(&hdev->debug_list_lock);
2167	sema_init(&hdev->driver_input_lock, 1);
2168	mutex_init(&hdev->ll_open_lock);
2169
2170	return hdev;
2171}
2172EXPORT_SYMBOL_GPL(hid_allocate_device);
2173
2174static void hid_remove_device(struct hid_device *hdev)
2175{
2176	if (hdev->status & HID_STAT_ADDED) {
2177		device_del(&hdev->dev);
2178		hid_debug_unregister(hdev);
2179		hdev->status &= ~HID_STAT_ADDED;
2180	}
2181	kfree(hdev->dev_rdesc);
2182	hdev->dev_rdesc = NULL;
2183	hdev->dev_rsize = 0;
2184}
2185
2186/**
2187 * hid_destroy_device - free previously allocated device
2188 *
2189 * @hdev: hid device
2190 *
2191 * If you allocate hid_device through hid_allocate_device, you should ever
2192 * free by this function.
2193 */
2194void hid_destroy_device(struct hid_device *hdev)
2195{
2196	hid_remove_device(hdev);
2197	put_device(&hdev->dev);
2198}
2199EXPORT_SYMBOL_GPL(hid_destroy_device);
2200
2201
2202static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2203{
2204	struct hid_driver *hdrv = data;
2205	struct hid_device *hdev = to_hid_device(dev);
2206
2207	if (hdev->driver == hdrv &&
2208	    !hdrv->match(hdev, hid_ignore_special_drivers))
 
2209		return device_reprobe(dev);
2210
2211	return 0;
2212}
2213
2214static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2215{
2216	struct hid_driver *hdrv = to_hid_driver(drv);
2217
2218	if (hdrv->match) {
2219		bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2220				 __hid_bus_reprobe_drivers);
2221	}
2222
2223	return 0;
2224}
2225
2226static int __bus_removed_driver(struct device_driver *drv, void *data)
2227{
2228	return bus_rescan_devices(&hid_bus_type);
2229}
2230
2231int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2232		const char *mod_name)
2233{
2234	int ret;
2235
2236	hdrv->driver.name = hdrv->name;
2237	hdrv->driver.bus = &hid_bus_type;
2238	hdrv->driver.owner = owner;
2239	hdrv->driver.mod_name = mod_name;
2240
2241	INIT_LIST_HEAD(&hdrv->dyn_list);
2242	spin_lock_init(&hdrv->dyn_lock);
2243
2244	ret = driver_register(&hdrv->driver);
2245
2246	if (ret == 0)
2247		bus_for_each_drv(&hid_bus_type, NULL, NULL,
2248				 __hid_bus_driver_added);
2249
2250	return ret;
2251}
2252EXPORT_SYMBOL_GPL(__hid_register_driver);
2253
2254void hid_unregister_driver(struct hid_driver *hdrv)
2255{
2256	driver_unregister(&hdrv->driver);
2257	hid_free_dynids(hdrv);
2258
2259	bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2260}
2261EXPORT_SYMBOL_GPL(hid_unregister_driver);
2262
2263int hid_check_keys_pressed(struct hid_device *hid)
2264{
2265	struct hid_input *hidinput;
2266	int i;
2267
2268	if (!(hid->claimed & HID_CLAIMED_INPUT))
2269		return 0;
2270
2271	list_for_each_entry(hidinput, &hid->inputs, list) {
2272		for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2273			if (hidinput->input->key[i])
2274				return 1;
2275	}
2276
2277	return 0;
2278}
2279
2280EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2281
2282static int __init hid_init(void)
2283{
2284	int ret;
2285
2286	if (hid_debug)
2287		pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2288			"debugfs is now used for inspecting the device (report descriptor, reports)\n");
2289
2290	ret = bus_register(&hid_bus_type);
2291	if (ret) {
2292		pr_err("can't register hid bus\n");
2293		goto err;
2294	}
2295
2296	ret = hidraw_init();
2297	if (ret)
2298		goto err_bus;
2299
2300	hid_debug_init();
2301
2302	return 0;
2303err_bus:
2304	bus_unregister(&hid_bus_type);
2305err:
2306	return ret;
2307}
2308
2309static void __exit hid_exit(void)
2310{
2311	hid_debug_exit();
2312	hidraw_exit();
2313	bus_unregister(&hid_bus_type);
2314	hid_quirks_exit(HID_BUS_ANY);
2315}
2316
2317module_init(hid_init);
2318module_exit(hid_exit);
2319
2320MODULE_AUTHOR("Andreas Gal");
2321MODULE_AUTHOR("Vojtech Pavlik");
2322MODULE_AUTHOR("Jiri Kosina");
2323MODULE_LICENSE("GPL");