Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * HID support for Linux
4 *
5 * Copyright (c) 1999 Andreas Gal
6 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8 * Copyright (c) 2006-2012 Jiri Kosina
9 */
10
11/*
12 */
13
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16#include <linux/module.h>
17#include <linux/slab.h>
18#include <linux/init.h>
19#include <linux/kernel.h>
20#include <linux/list.h>
21#include <linux/mm.h>
22#include <linux/spinlock.h>
23#include <asm/unaligned.h>
24#include <asm/byteorder.h>
25#include <linux/input.h>
26#include <linux/wait.h>
27#include <linux/vmalloc.h>
28#include <linux/sched.h>
29#include <linux/semaphore.h>
30
31#include <linux/hid.h>
32#include <linux/hiddev.h>
33#include <linux/hid-debug.h>
34#include <linux/hidraw.h>
35
36#include "hid-ids.h"
37
38/*
39 * Version Information
40 */
41
42#define DRIVER_DESC "HID core driver"
43
44int hid_debug = 0;
45module_param_named(debug, hid_debug, int, 0600);
46MODULE_PARM_DESC(debug, "toggle HID debugging messages");
47EXPORT_SYMBOL_GPL(hid_debug);
48
49static int hid_ignore_special_drivers = 0;
50module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
51MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
52
53/*
54 * Register a new report for a device.
55 */
56
57struct hid_report *hid_register_report(struct hid_device *device,
58 enum hid_report_type type, unsigned int id,
59 unsigned int application)
60{
61 struct hid_report_enum *report_enum = device->report_enum + type;
62 struct hid_report *report;
63
64 if (id >= HID_MAX_IDS)
65 return NULL;
66 if (report_enum->report_id_hash[id])
67 return report_enum->report_id_hash[id];
68
69 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
70 if (!report)
71 return NULL;
72
73 if (id != 0)
74 report_enum->numbered = 1;
75
76 report->id = id;
77 report->type = type;
78 report->size = 0;
79 report->device = device;
80 report->application = application;
81 report_enum->report_id_hash[id] = report;
82
83 list_add_tail(&report->list, &report_enum->report_list);
84 INIT_LIST_HEAD(&report->field_entry_list);
85
86 return report;
87}
88EXPORT_SYMBOL_GPL(hid_register_report);
89
90/*
91 * Register a new field for this report.
92 */
93
94static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
95{
96 struct hid_field *field;
97
98 if (report->maxfield == HID_MAX_FIELDS) {
99 hid_err(report->device, "too many fields in report\n");
100 return NULL;
101 }
102
103 field = kzalloc((sizeof(struct hid_field) +
104 usages * sizeof(struct hid_usage) +
105 3 * usages * sizeof(unsigned int)), GFP_KERNEL);
106 if (!field)
107 return NULL;
108
109 field->index = report->maxfield++;
110 report->field[field->index] = field;
111 field->usage = (struct hid_usage *)(field + 1);
112 field->value = (s32 *)(field->usage + usages);
113 field->new_value = (s32 *)(field->value + usages);
114 field->usages_priorities = (s32 *)(field->new_value + usages);
115 field->report = report;
116
117 return field;
118}
119
120/*
121 * Open a collection. The type/usage is pushed on the stack.
122 */
123
124static int open_collection(struct hid_parser *parser, unsigned type)
125{
126 struct hid_collection *collection;
127 unsigned usage;
128 int collection_index;
129
130 usage = parser->local.usage[0];
131
132 if (parser->collection_stack_ptr == parser->collection_stack_size) {
133 unsigned int *collection_stack;
134 unsigned int new_size = parser->collection_stack_size +
135 HID_COLLECTION_STACK_SIZE;
136
137 collection_stack = krealloc(parser->collection_stack,
138 new_size * sizeof(unsigned int),
139 GFP_KERNEL);
140 if (!collection_stack)
141 return -ENOMEM;
142
143 parser->collection_stack = collection_stack;
144 parser->collection_stack_size = new_size;
145 }
146
147 if (parser->device->maxcollection == parser->device->collection_size) {
148 collection = kmalloc(
149 array3_size(sizeof(struct hid_collection),
150 parser->device->collection_size,
151 2),
152 GFP_KERNEL);
153 if (collection == NULL) {
154 hid_err(parser->device, "failed to reallocate collection array\n");
155 return -ENOMEM;
156 }
157 memcpy(collection, parser->device->collection,
158 sizeof(struct hid_collection) *
159 parser->device->collection_size);
160 memset(collection + parser->device->collection_size, 0,
161 sizeof(struct hid_collection) *
162 parser->device->collection_size);
163 kfree(parser->device->collection);
164 parser->device->collection = collection;
165 parser->device->collection_size *= 2;
166 }
167
168 parser->collection_stack[parser->collection_stack_ptr++] =
169 parser->device->maxcollection;
170
171 collection_index = parser->device->maxcollection++;
172 collection = parser->device->collection + collection_index;
173 collection->type = type;
174 collection->usage = usage;
175 collection->level = parser->collection_stack_ptr - 1;
176 collection->parent_idx = (collection->level == 0) ? -1 :
177 parser->collection_stack[collection->level - 1];
178
179 if (type == HID_COLLECTION_APPLICATION)
180 parser->device->maxapplication++;
181
182 return 0;
183}
184
185/*
186 * Close a collection.
187 */
188
189static int close_collection(struct hid_parser *parser)
190{
191 if (!parser->collection_stack_ptr) {
192 hid_err(parser->device, "collection stack underflow\n");
193 return -EINVAL;
194 }
195 parser->collection_stack_ptr--;
196 return 0;
197}
198
199/*
200 * Climb up the stack, search for the specified collection type
201 * and return the usage.
202 */
203
204static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
205{
206 struct hid_collection *collection = parser->device->collection;
207 int n;
208
209 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
210 unsigned index = parser->collection_stack[n];
211 if (collection[index].type == type)
212 return collection[index].usage;
213 }
214 return 0; /* we know nothing about this usage type */
215}
216
217/*
218 * Concatenate usage which defines 16 bits or less with the
219 * currently defined usage page to form a 32 bit usage
220 */
221
222static void complete_usage(struct hid_parser *parser, unsigned int index)
223{
224 parser->local.usage[index] &= 0xFFFF;
225 parser->local.usage[index] |=
226 (parser->global.usage_page & 0xFFFF) << 16;
227}
228
229/*
230 * Add a usage to the temporary parser table.
231 */
232
233static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
234{
235 if (parser->local.usage_index >= HID_MAX_USAGES) {
236 hid_err(parser->device, "usage index exceeded\n");
237 return -1;
238 }
239 parser->local.usage[parser->local.usage_index] = usage;
240
241 /*
242 * If Usage item only includes usage id, concatenate it with
243 * currently defined usage page
244 */
245 if (size <= 2)
246 complete_usage(parser, parser->local.usage_index);
247
248 parser->local.usage_size[parser->local.usage_index] = size;
249 parser->local.collection_index[parser->local.usage_index] =
250 parser->collection_stack_ptr ?
251 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
252 parser->local.usage_index++;
253 return 0;
254}
255
256/*
257 * Register a new field for this report.
258 */
259
260static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
261{
262 struct hid_report *report;
263 struct hid_field *field;
264 unsigned int usages;
265 unsigned int offset;
266 unsigned int i;
267 unsigned int application;
268
269 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
270
271 report = hid_register_report(parser->device, report_type,
272 parser->global.report_id, application);
273 if (!report) {
274 hid_err(parser->device, "hid_register_report failed\n");
275 return -1;
276 }
277
278 /* Handle both signed and unsigned cases properly */
279 if ((parser->global.logical_minimum < 0 &&
280 parser->global.logical_maximum <
281 parser->global.logical_minimum) ||
282 (parser->global.logical_minimum >= 0 &&
283 (__u32)parser->global.logical_maximum <
284 (__u32)parser->global.logical_minimum)) {
285 dbg_hid("logical range invalid 0x%x 0x%x\n",
286 parser->global.logical_minimum,
287 parser->global.logical_maximum);
288 return -1;
289 }
290
291 offset = report->size;
292 report->size += parser->global.report_size * parser->global.report_count;
293
294 /* Total size check: Allow for possible report index byte */
295 if (report->size > (HID_MAX_BUFFER_SIZE - 1) << 3) {
296 hid_err(parser->device, "report is too long\n");
297 return -1;
298 }
299
300 if (!parser->local.usage_index) /* Ignore padding fields */
301 return 0;
302
303 usages = max_t(unsigned, parser->local.usage_index,
304 parser->global.report_count);
305
306 field = hid_register_field(report, usages);
307 if (!field)
308 return 0;
309
310 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
311 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
312 field->application = application;
313
314 for (i = 0; i < usages; i++) {
315 unsigned j = i;
316 /* Duplicate the last usage we parsed if we have excess values */
317 if (i >= parser->local.usage_index)
318 j = parser->local.usage_index - 1;
319 field->usage[i].hid = parser->local.usage[j];
320 field->usage[i].collection_index =
321 parser->local.collection_index[j];
322 field->usage[i].usage_index = i;
323 field->usage[i].resolution_multiplier = 1;
324 }
325
326 field->maxusage = usages;
327 field->flags = flags;
328 field->report_offset = offset;
329 field->report_type = report_type;
330 field->report_size = parser->global.report_size;
331 field->report_count = parser->global.report_count;
332 field->logical_minimum = parser->global.logical_minimum;
333 field->logical_maximum = parser->global.logical_maximum;
334 field->physical_minimum = parser->global.physical_minimum;
335 field->physical_maximum = parser->global.physical_maximum;
336 field->unit_exponent = parser->global.unit_exponent;
337 field->unit = parser->global.unit;
338
339 return 0;
340}
341
342/*
343 * Read data value from item.
344 */
345
346static u32 item_udata(struct hid_item *item)
347{
348 switch (item->size) {
349 case 1: return item->data.u8;
350 case 2: return item->data.u16;
351 case 4: return item->data.u32;
352 }
353 return 0;
354}
355
356static s32 item_sdata(struct hid_item *item)
357{
358 switch (item->size) {
359 case 1: return item->data.s8;
360 case 2: return item->data.s16;
361 case 4: return item->data.s32;
362 }
363 return 0;
364}
365
366/*
367 * Process a global item.
368 */
369
370static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
371{
372 __s32 raw_value;
373 switch (item->tag) {
374 case HID_GLOBAL_ITEM_TAG_PUSH:
375
376 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
377 hid_err(parser->device, "global environment stack overflow\n");
378 return -1;
379 }
380
381 memcpy(parser->global_stack + parser->global_stack_ptr++,
382 &parser->global, sizeof(struct hid_global));
383 return 0;
384
385 case HID_GLOBAL_ITEM_TAG_POP:
386
387 if (!parser->global_stack_ptr) {
388 hid_err(parser->device, "global environment stack underflow\n");
389 return -1;
390 }
391
392 memcpy(&parser->global, parser->global_stack +
393 --parser->global_stack_ptr, sizeof(struct hid_global));
394 return 0;
395
396 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
397 parser->global.usage_page = item_udata(item);
398 return 0;
399
400 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
401 parser->global.logical_minimum = item_sdata(item);
402 return 0;
403
404 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
405 if (parser->global.logical_minimum < 0)
406 parser->global.logical_maximum = item_sdata(item);
407 else
408 parser->global.logical_maximum = item_udata(item);
409 return 0;
410
411 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
412 parser->global.physical_minimum = item_sdata(item);
413 return 0;
414
415 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
416 if (parser->global.physical_minimum < 0)
417 parser->global.physical_maximum = item_sdata(item);
418 else
419 parser->global.physical_maximum = item_udata(item);
420 return 0;
421
422 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
423 /* Many devices provide unit exponent as a two's complement
424 * nibble due to the common misunderstanding of HID
425 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
426 * both this and the standard encoding. */
427 raw_value = item_sdata(item);
428 if (!(raw_value & 0xfffffff0))
429 parser->global.unit_exponent = hid_snto32(raw_value, 4);
430 else
431 parser->global.unit_exponent = raw_value;
432 return 0;
433
434 case HID_GLOBAL_ITEM_TAG_UNIT:
435 parser->global.unit = item_udata(item);
436 return 0;
437
438 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
439 parser->global.report_size = item_udata(item);
440 if (parser->global.report_size > 256) {
441 hid_err(parser->device, "invalid report_size %d\n",
442 parser->global.report_size);
443 return -1;
444 }
445 return 0;
446
447 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
448 parser->global.report_count = item_udata(item);
449 if (parser->global.report_count > HID_MAX_USAGES) {
450 hid_err(parser->device, "invalid report_count %d\n",
451 parser->global.report_count);
452 return -1;
453 }
454 return 0;
455
456 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
457 parser->global.report_id = item_udata(item);
458 if (parser->global.report_id == 0 ||
459 parser->global.report_id >= HID_MAX_IDS) {
460 hid_err(parser->device, "report_id %u is invalid\n",
461 parser->global.report_id);
462 return -1;
463 }
464 return 0;
465
466 default:
467 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
468 return -1;
469 }
470}
471
472/*
473 * Process a local item.
474 */
475
476static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
477{
478 __u32 data;
479 unsigned n;
480 __u32 count;
481
482 data = item_udata(item);
483
484 switch (item->tag) {
485 case HID_LOCAL_ITEM_TAG_DELIMITER:
486
487 if (data) {
488 /*
489 * We treat items before the first delimiter
490 * as global to all usage sets (branch 0).
491 * In the moment we process only these global
492 * items and the first delimiter set.
493 */
494 if (parser->local.delimiter_depth != 0) {
495 hid_err(parser->device, "nested delimiters\n");
496 return -1;
497 }
498 parser->local.delimiter_depth++;
499 parser->local.delimiter_branch++;
500 } else {
501 if (parser->local.delimiter_depth < 1) {
502 hid_err(parser->device, "bogus close delimiter\n");
503 return -1;
504 }
505 parser->local.delimiter_depth--;
506 }
507 return 0;
508
509 case HID_LOCAL_ITEM_TAG_USAGE:
510
511 if (parser->local.delimiter_branch > 1) {
512 dbg_hid("alternative usage ignored\n");
513 return 0;
514 }
515
516 return hid_add_usage(parser, data, item->size);
517
518 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
519
520 if (parser->local.delimiter_branch > 1) {
521 dbg_hid("alternative usage ignored\n");
522 return 0;
523 }
524
525 parser->local.usage_minimum = data;
526 return 0;
527
528 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
529
530 if (parser->local.delimiter_branch > 1) {
531 dbg_hid("alternative usage ignored\n");
532 return 0;
533 }
534
535 count = data - parser->local.usage_minimum;
536 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
537 /*
538 * We do not warn if the name is not set, we are
539 * actually pre-scanning the device.
540 */
541 if (dev_name(&parser->device->dev))
542 hid_warn(parser->device,
543 "ignoring exceeding usage max\n");
544 data = HID_MAX_USAGES - parser->local.usage_index +
545 parser->local.usage_minimum - 1;
546 if (data <= 0) {
547 hid_err(parser->device,
548 "no more usage index available\n");
549 return -1;
550 }
551 }
552
553 for (n = parser->local.usage_minimum; n <= data; n++)
554 if (hid_add_usage(parser, n, item->size)) {
555 dbg_hid("hid_add_usage failed\n");
556 return -1;
557 }
558 return 0;
559
560 default:
561
562 dbg_hid("unknown local item tag 0x%x\n", item->tag);
563 return 0;
564 }
565 return 0;
566}
567
568/*
569 * Concatenate Usage Pages into Usages where relevant:
570 * As per specification, 6.2.2.8: "When the parser encounters a main item it
571 * concatenates the last declared Usage Page with a Usage to form a complete
572 * usage value."
573 */
574
575static void hid_concatenate_last_usage_page(struct hid_parser *parser)
576{
577 int i;
578 unsigned int usage_page;
579 unsigned int current_page;
580
581 if (!parser->local.usage_index)
582 return;
583
584 usage_page = parser->global.usage_page;
585
586 /*
587 * Concatenate usage page again only if last declared Usage Page
588 * has not been already used in previous usages concatenation
589 */
590 for (i = parser->local.usage_index - 1; i >= 0; i--) {
591 if (parser->local.usage_size[i] > 2)
592 /* Ignore extended usages */
593 continue;
594
595 current_page = parser->local.usage[i] >> 16;
596 if (current_page == usage_page)
597 break;
598
599 complete_usage(parser, i);
600 }
601}
602
603/*
604 * Process a main item.
605 */
606
607static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
608{
609 __u32 data;
610 int ret;
611
612 hid_concatenate_last_usage_page(parser);
613
614 data = item_udata(item);
615
616 switch (item->tag) {
617 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
618 ret = open_collection(parser, data & 0xff);
619 break;
620 case HID_MAIN_ITEM_TAG_END_COLLECTION:
621 ret = close_collection(parser);
622 break;
623 case HID_MAIN_ITEM_TAG_INPUT:
624 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
625 break;
626 case HID_MAIN_ITEM_TAG_OUTPUT:
627 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
628 break;
629 case HID_MAIN_ITEM_TAG_FEATURE:
630 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
631 break;
632 default:
633 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
634 ret = 0;
635 }
636
637 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
638
639 return ret;
640}
641
642/*
643 * Process a reserved item.
644 */
645
646static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
647{
648 dbg_hid("reserved item type, tag 0x%x\n", item->tag);
649 return 0;
650}
651
652/*
653 * Free a report and all registered fields. The field->usage and
654 * field->value table's are allocated behind the field, so we need
655 * only to free(field) itself.
656 */
657
658static void hid_free_report(struct hid_report *report)
659{
660 unsigned n;
661
662 kfree(report->field_entries);
663
664 for (n = 0; n < report->maxfield; n++)
665 kfree(report->field[n]);
666 kfree(report);
667}
668
669/*
670 * Close report. This function returns the device
671 * state to the point prior to hid_open_report().
672 */
673static void hid_close_report(struct hid_device *device)
674{
675 unsigned i, j;
676
677 for (i = 0; i < HID_REPORT_TYPES; i++) {
678 struct hid_report_enum *report_enum = device->report_enum + i;
679
680 for (j = 0; j < HID_MAX_IDS; j++) {
681 struct hid_report *report = report_enum->report_id_hash[j];
682 if (report)
683 hid_free_report(report);
684 }
685 memset(report_enum, 0, sizeof(*report_enum));
686 INIT_LIST_HEAD(&report_enum->report_list);
687 }
688
689 kfree(device->rdesc);
690 device->rdesc = NULL;
691 device->rsize = 0;
692
693 kfree(device->collection);
694 device->collection = NULL;
695 device->collection_size = 0;
696 device->maxcollection = 0;
697 device->maxapplication = 0;
698
699 device->status &= ~HID_STAT_PARSED;
700}
701
702/*
703 * Free a device structure, all reports, and all fields.
704 */
705
706static void hid_device_release(struct device *dev)
707{
708 struct hid_device *hid = to_hid_device(dev);
709
710 hid_close_report(hid);
711 kfree(hid->dev_rdesc);
712 kfree(hid);
713}
714
715/*
716 * Fetch a report description item from the data stream. We support long
717 * items, though they are not used yet.
718 */
719
720static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
721{
722 u8 b;
723
724 if ((end - start) <= 0)
725 return NULL;
726
727 b = *start++;
728
729 item->type = (b >> 2) & 3;
730 item->tag = (b >> 4) & 15;
731
732 if (item->tag == HID_ITEM_TAG_LONG) {
733
734 item->format = HID_ITEM_FORMAT_LONG;
735
736 if ((end - start) < 2)
737 return NULL;
738
739 item->size = *start++;
740 item->tag = *start++;
741
742 if ((end - start) < item->size)
743 return NULL;
744
745 item->data.longdata = start;
746 start += item->size;
747 return start;
748 }
749
750 item->format = HID_ITEM_FORMAT_SHORT;
751 item->size = b & 3;
752
753 switch (item->size) {
754 case 0:
755 return start;
756
757 case 1:
758 if ((end - start) < 1)
759 return NULL;
760 item->data.u8 = *start++;
761 return start;
762
763 case 2:
764 if ((end - start) < 2)
765 return NULL;
766 item->data.u16 = get_unaligned_le16(start);
767 start = (__u8 *)((__le16 *)start + 1);
768 return start;
769
770 case 3:
771 item->size++;
772 if ((end - start) < 4)
773 return NULL;
774 item->data.u32 = get_unaligned_le32(start);
775 start = (__u8 *)((__le32 *)start + 1);
776 return start;
777 }
778
779 return NULL;
780}
781
782static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
783{
784 struct hid_device *hid = parser->device;
785
786 if (usage == HID_DG_CONTACTID)
787 hid->group = HID_GROUP_MULTITOUCH;
788}
789
790static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
791{
792 if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
793 parser->global.report_size == 8)
794 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
795
796 if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
797 parser->global.report_size == 8)
798 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
799}
800
801static void hid_scan_collection(struct hid_parser *parser, unsigned type)
802{
803 struct hid_device *hid = parser->device;
804 int i;
805
806 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
807 type == HID_COLLECTION_PHYSICAL)
808 hid->group = HID_GROUP_SENSOR_HUB;
809
810 if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
811 hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
812 hid->group == HID_GROUP_MULTITOUCH)
813 hid->group = HID_GROUP_GENERIC;
814
815 if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
816 for (i = 0; i < parser->local.usage_index; i++)
817 if (parser->local.usage[i] == HID_GD_POINTER)
818 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
819
820 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
821 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
822
823 if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
824 for (i = 0; i < parser->local.usage_index; i++)
825 if (parser->local.usage[i] ==
826 (HID_UP_GOOGLEVENDOR | 0x0001))
827 parser->device->group =
828 HID_GROUP_VIVALDI;
829}
830
831static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
832{
833 __u32 data;
834 int i;
835
836 hid_concatenate_last_usage_page(parser);
837
838 data = item_udata(item);
839
840 switch (item->tag) {
841 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
842 hid_scan_collection(parser, data & 0xff);
843 break;
844 case HID_MAIN_ITEM_TAG_END_COLLECTION:
845 break;
846 case HID_MAIN_ITEM_TAG_INPUT:
847 /* ignore constant inputs, they will be ignored by hid-input */
848 if (data & HID_MAIN_ITEM_CONSTANT)
849 break;
850 for (i = 0; i < parser->local.usage_index; i++)
851 hid_scan_input_usage(parser, parser->local.usage[i]);
852 break;
853 case HID_MAIN_ITEM_TAG_OUTPUT:
854 break;
855 case HID_MAIN_ITEM_TAG_FEATURE:
856 for (i = 0; i < parser->local.usage_index; i++)
857 hid_scan_feature_usage(parser, parser->local.usage[i]);
858 break;
859 }
860
861 /* Reset the local parser environment */
862 memset(&parser->local, 0, sizeof(parser->local));
863
864 return 0;
865}
866
867/*
868 * Scan a report descriptor before the device is added to the bus.
869 * Sets device groups and other properties that determine what driver
870 * to load.
871 */
872static int hid_scan_report(struct hid_device *hid)
873{
874 struct hid_parser *parser;
875 struct hid_item item;
876 __u8 *start = hid->dev_rdesc;
877 __u8 *end = start + hid->dev_rsize;
878 static int (*dispatch_type[])(struct hid_parser *parser,
879 struct hid_item *item) = {
880 hid_scan_main,
881 hid_parser_global,
882 hid_parser_local,
883 hid_parser_reserved
884 };
885
886 parser = vzalloc(sizeof(struct hid_parser));
887 if (!parser)
888 return -ENOMEM;
889
890 parser->device = hid;
891 hid->group = HID_GROUP_GENERIC;
892
893 /*
894 * The parsing is simpler than the one in hid_open_report() as we should
895 * be robust against hid errors. Those errors will be raised by
896 * hid_open_report() anyway.
897 */
898 while ((start = fetch_item(start, end, &item)) != NULL)
899 dispatch_type[item.type](parser, &item);
900
901 /*
902 * Handle special flags set during scanning.
903 */
904 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
905 (hid->group == HID_GROUP_MULTITOUCH))
906 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
907
908 /*
909 * Vendor specific handlings
910 */
911 switch (hid->vendor) {
912 case USB_VENDOR_ID_WACOM:
913 hid->group = HID_GROUP_WACOM;
914 break;
915 case USB_VENDOR_ID_SYNAPTICS:
916 if (hid->group == HID_GROUP_GENERIC)
917 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
918 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
919 /*
920 * hid-rmi should take care of them,
921 * not hid-generic
922 */
923 hid->group = HID_GROUP_RMI;
924 break;
925 }
926
927 kfree(parser->collection_stack);
928 vfree(parser);
929 return 0;
930}
931
932/**
933 * hid_parse_report - parse device report
934 *
935 * @hid: hid device
936 * @start: report start
937 * @size: report size
938 *
939 * Allocate the device report as read by the bus driver. This function should
940 * only be called from parse() in ll drivers.
941 */
942int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
943{
944 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
945 if (!hid->dev_rdesc)
946 return -ENOMEM;
947 hid->dev_rsize = size;
948 return 0;
949}
950EXPORT_SYMBOL_GPL(hid_parse_report);
951
952static const char * const hid_report_names[] = {
953 "HID_INPUT_REPORT",
954 "HID_OUTPUT_REPORT",
955 "HID_FEATURE_REPORT",
956};
957/**
958 * hid_validate_values - validate existing device report's value indexes
959 *
960 * @hid: hid device
961 * @type: which report type to examine
962 * @id: which report ID to examine (0 for first)
963 * @field_index: which report field to examine
964 * @report_counts: expected number of values
965 *
966 * Validate the number of values in a given field of a given report, after
967 * parsing.
968 */
969struct hid_report *hid_validate_values(struct hid_device *hid,
970 enum hid_report_type type, unsigned int id,
971 unsigned int field_index,
972 unsigned int report_counts)
973{
974 struct hid_report *report;
975
976 if (type > HID_FEATURE_REPORT) {
977 hid_err(hid, "invalid HID report type %u\n", type);
978 return NULL;
979 }
980
981 if (id >= HID_MAX_IDS) {
982 hid_err(hid, "invalid HID report id %u\n", id);
983 return NULL;
984 }
985
986 /*
987 * Explicitly not using hid_get_report() here since it depends on
988 * ->numbered being checked, which may not always be the case when
989 * drivers go to access report values.
990 */
991 if (id == 0) {
992 /*
993 * Validating on id 0 means we should examine the first
994 * report in the list.
995 */
996 report = list_first_entry_or_null(
997 &hid->report_enum[type].report_list,
998 struct hid_report, list);
999 } else {
1000 report = hid->report_enum[type].report_id_hash[id];
1001 }
1002 if (!report) {
1003 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1004 return NULL;
1005 }
1006 if (report->maxfield <= field_index) {
1007 hid_err(hid, "not enough fields in %s %u\n",
1008 hid_report_names[type], id);
1009 return NULL;
1010 }
1011 if (report->field[field_index]->report_count < report_counts) {
1012 hid_err(hid, "not enough values in %s %u field %u\n",
1013 hid_report_names[type], id, field_index);
1014 return NULL;
1015 }
1016 return report;
1017}
1018EXPORT_SYMBOL_GPL(hid_validate_values);
1019
1020static int hid_calculate_multiplier(struct hid_device *hid,
1021 struct hid_field *multiplier)
1022{
1023 int m;
1024 __s32 v = *multiplier->value;
1025 __s32 lmin = multiplier->logical_minimum;
1026 __s32 lmax = multiplier->logical_maximum;
1027 __s32 pmin = multiplier->physical_minimum;
1028 __s32 pmax = multiplier->physical_maximum;
1029
1030 /*
1031 * "Because OS implementations will generally divide the control's
1032 * reported count by the Effective Resolution Multiplier, designers
1033 * should take care not to establish a potential Effective
1034 * Resolution Multiplier of zero."
1035 * HID Usage Table, v1.12, Section 4.3.1, p31
1036 */
1037 if (lmax - lmin == 0)
1038 return 1;
1039 /*
1040 * Handling the unit exponent is left as an exercise to whoever
1041 * finds a device where that exponent is not 0.
1042 */
1043 m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1044 if (unlikely(multiplier->unit_exponent != 0)) {
1045 hid_warn(hid,
1046 "unsupported Resolution Multiplier unit exponent %d\n",
1047 multiplier->unit_exponent);
1048 }
1049
1050 /* There are no devices with an effective multiplier > 255 */
1051 if (unlikely(m == 0 || m > 255 || m < -255)) {
1052 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1053 m = 1;
1054 }
1055
1056 return m;
1057}
1058
1059static void hid_apply_multiplier_to_field(struct hid_device *hid,
1060 struct hid_field *field,
1061 struct hid_collection *multiplier_collection,
1062 int effective_multiplier)
1063{
1064 struct hid_collection *collection;
1065 struct hid_usage *usage;
1066 int i;
1067
1068 /*
1069 * If multiplier_collection is NULL, the multiplier applies
1070 * to all fields in the report.
1071 * Otherwise, it is the Logical Collection the multiplier applies to
1072 * but our field may be in a subcollection of that collection.
1073 */
1074 for (i = 0; i < field->maxusage; i++) {
1075 usage = &field->usage[i];
1076
1077 collection = &hid->collection[usage->collection_index];
1078 while (collection->parent_idx != -1 &&
1079 collection != multiplier_collection)
1080 collection = &hid->collection[collection->parent_idx];
1081
1082 if (collection->parent_idx != -1 ||
1083 multiplier_collection == NULL)
1084 usage->resolution_multiplier = effective_multiplier;
1085
1086 }
1087}
1088
1089static void hid_apply_multiplier(struct hid_device *hid,
1090 struct hid_field *multiplier)
1091{
1092 struct hid_report_enum *rep_enum;
1093 struct hid_report *rep;
1094 struct hid_field *field;
1095 struct hid_collection *multiplier_collection;
1096 int effective_multiplier;
1097 int i;
1098
1099 /*
1100 * "The Resolution Multiplier control must be contained in the same
1101 * Logical Collection as the control(s) to which it is to be applied.
1102 * If no Resolution Multiplier is defined, then the Resolution
1103 * Multiplier defaults to 1. If more than one control exists in a
1104 * Logical Collection, the Resolution Multiplier is associated with
1105 * all controls in the collection. If no Logical Collection is
1106 * defined, the Resolution Multiplier is associated with all
1107 * controls in the report."
1108 * HID Usage Table, v1.12, Section 4.3.1, p30
1109 *
1110 * Thus, search from the current collection upwards until we find a
1111 * logical collection. Then search all fields for that same parent
1112 * collection. Those are the fields the multiplier applies to.
1113 *
1114 * If we have more than one multiplier, it will overwrite the
1115 * applicable fields later.
1116 */
1117 multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1118 while (multiplier_collection->parent_idx != -1 &&
1119 multiplier_collection->type != HID_COLLECTION_LOGICAL)
1120 multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1121
1122 effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1123
1124 rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1125 list_for_each_entry(rep, &rep_enum->report_list, list) {
1126 for (i = 0; i < rep->maxfield; i++) {
1127 field = rep->field[i];
1128 hid_apply_multiplier_to_field(hid, field,
1129 multiplier_collection,
1130 effective_multiplier);
1131 }
1132 }
1133}
1134
1135/*
1136 * hid_setup_resolution_multiplier - set up all resolution multipliers
1137 *
1138 * @device: hid device
1139 *
1140 * Search for all Resolution Multiplier Feature Reports and apply their
1141 * value to all matching Input items. This only updates the internal struct
1142 * fields.
1143 *
1144 * The Resolution Multiplier is applied by the hardware. If the multiplier
1145 * is anything other than 1, the hardware will send pre-multiplied events
1146 * so that the same physical interaction generates an accumulated
1147 * accumulated_value = value * * multiplier
1148 * This may be achieved by sending
1149 * - "value * multiplier" for each event, or
1150 * - "value" but "multiplier" times as frequently, or
1151 * - a combination of the above
1152 * The only guarantee is that the same physical interaction always generates
1153 * an accumulated 'value * multiplier'.
1154 *
1155 * This function must be called before any event processing and after
1156 * any SetRequest to the Resolution Multiplier.
1157 */
1158void hid_setup_resolution_multiplier(struct hid_device *hid)
1159{
1160 struct hid_report_enum *rep_enum;
1161 struct hid_report *rep;
1162 struct hid_usage *usage;
1163 int i, j;
1164
1165 rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1166 list_for_each_entry(rep, &rep_enum->report_list, list) {
1167 for (i = 0; i < rep->maxfield; i++) {
1168 /* Ignore if report count is out of bounds. */
1169 if (rep->field[i]->report_count < 1)
1170 continue;
1171
1172 for (j = 0; j < rep->field[i]->maxusage; j++) {
1173 usage = &rep->field[i]->usage[j];
1174 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1175 hid_apply_multiplier(hid,
1176 rep->field[i]);
1177 }
1178 }
1179 }
1180}
1181EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1182
1183/**
1184 * hid_open_report - open a driver-specific device report
1185 *
1186 * @device: hid device
1187 *
1188 * Parse a report description into a hid_device structure. Reports are
1189 * enumerated, fields are attached to these reports.
1190 * 0 returned on success, otherwise nonzero error value.
1191 *
1192 * This function (or the equivalent hid_parse() macro) should only be
1193 * called from probe() in drivers, before starting the device.
1194 */
1195int hid_open_report(struct hid_device *device)
1196{
1197 struct hid_parser *parser;
1198 struct hid_item item;
1199 unsigned int size;
1200 __u8 *start;
1201 __u8 *buf;
1202 __u8 *end;
1203 __u8 *next;
1204 int ret;
1205 int i;
1206 static int (*dispatch_type[])(struct hid_parser *parser,
1207 struct hid_item *item) = {
1208 hid_parser_main,
1209 hid_parser_global,
1210 hid_parser_local,
1211 hid_parser_reserved
1212 };
1213
1214 if (WARN_ON(device->status & HID_STAT_PARSED))
1215 return -EBUSY;
1216
1217 start = device->dev_rdesc;
1218 if (WARN_ON(!start))
1219 return -ENODEV;
1220 size = device->dev_rsize;
1221
1222 buf = kmemdup(start, size, GFP_KERNEL);
1223 if (buf == NULL)
1224 return -ENOMEM;
1225
1226 if (device->driver->report_fixup)
1227 start = device->driver->report_fixup(device, buf, &size);
1228 else
1229 start = buf;
1230
1231 start = kmemdup(start, size, GFP_KERNEL);
1232 kfree(buf);
1233 if (start == NULL)
1234 return -ENOMEM;
1235
1236 device->rdesc = start;
1237 device->rsize = size;
1238
1239 parser = vzalloc(sizeof(struct hid_parser));
1240 if (!parser) {
1241 ret = -ENOMEM;
1242 goto alloc_err;
1243 }
1244
1245 parser->device = device;
1246
1247 end = start + size;
1248
1249 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1250 sizeof(struct hid_collection), GFP_KERNEL);
1251 if (!device->collection) {
1252 ret = -ENOMEM;
1253 goto err;
1254 }
1255 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1256 for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++)
1257 device->collection[i].parent_idx = -1;
1258
1259 ret = -EINVAL;
1260 while ((next = fetch_item(start, end, &item)) != NULL) {
1261 start = next;
1262
1263 if (item.format != HID_ITEM_FORMAT_SHORT) {
1264 hid_err(device, "unexpected long global item\n");
1265 goto err;
1266 }
1267
1268 if (dispatch_type[item.type](parser, &item)) {
1269 hid_err(device, "item %u %u %u %u parsing failed\n",
1270 item.format, (unsigned)item.size,
1271 (unsigned)item.type, (unsigned)item.tag);
1272 goto err;
1273 }
1274
1275 if (start == end) {
1276 if (parser->collection_stack_ptr) {
1277 hid_err(device, "unbalanced collection at end of report description\n");
1278 goto err;
1279 }
1280 if (parser->local.delimiter_depth) {
1281 hid_err(device, "unbalanced delimiter at end of report description\n");
1282 goto err;
1283 }
1284
1285 /*
1286 * fetch initial values in case the device's
1287 * default multiplier isn't the recommended 1
1288 */
1289 hid_setup_resolution_multiplier(device);
1290
1291 kfree(parser->collection_stack);
1292 vfree(parser);
1293 device->status |= HID_STAT_PARSED;
1294
1295 return 0;
1296 }
1297 }
1298
1299 hid_err(device, "item fetching failed at offset %u/%u\n",
1300 size - (unsigned int)(end - start), size);
1301err:
1302 kfree(parser->collection_stack);
1303alloc_err:
1304 vfree(parser);
1305 hid_close_report(device);
1306 return ret;
1307}
1308EXPORT_SYMBOL_GPL(hid_open_report);
1309
1310/*
1311 * Convert a signed n-bit integer to signed 32-bit integer. Common
1312 * cases are done through the compiler, the screwed things has to be
1313 * done by hand.
1314 */
1315
1316static s32 snto32(__u32 value, unsigned n)
1317{
1318 if (!value || !n)
1319 return 0;
1320
1321 if (n > 32)
1322 n = 32;
1323
1324 switch (n) {
1325 case 8: return ((__s8)value);
1326 case 16: return ((__s16)value);
1327 case 32: return ((__s32)value);
1328 }
1329 return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1330}
1331
1332s32 hid_snto32(__u32 value, unsigned n)
1333{
1334 return snto32(value, n);
1335}
1336EXPORT_SYMBOL_GPL(hid_snto32);
1337
1338/*
1339 * Convert a signed 32-bit integer to a signed n-bit integer.
1340 */
1341
1342static u32 s32ton(__s32 value, unsigned n)
1343{
1344 s32 a = value >> (n - 1);
1345 if (a && a != -1)
1346 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1347 return value & ((1 << n) - 1);
1348}
1349
1350/*
1351 * Extract/implement a data field from/to a little endian report (bit array).
1352 *
1353 * Code sort-of follows HID spec:
1354 * http://www.usb.org/developers/hidpage/HID1_11.pdf
1355 *
1356 * While the USB HID spec allows unlimited length bit fields in "report
1357 * descriptors", most devices never use more than 16 bits.
1358 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1359 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1360 */
1361
1362static u32 __extract(u8 *report, unsigned offset, int n)
1363{
1364 unsigned int idx = offset / 8;
1365 unsigned int bit_nr = 0;
1366 unsigned int bit_shift = offset % 8;
1367 int bits_to_copy = 8 - bit_shift;
1368 u32 value = 0;
1369 u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1370
1371 while (n > 0) {
1372 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1373 n -= bits_to_copy;
1374 bit_nr += bits_to_copy;
1375 bits_to_copy = 8;
1376 bit_shift = 0;
1377 idx++;
1378 }
1379
1380 return value & mask;
1381}
1382
1383u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1384 unsigned offset, unsigned n)
1385{
1386 if (n > 32) {
1387 hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1388 __func__, n, current->comm);
1389 n = 32;
1390 }
1391
1392 return __extract(report, offset, n);
1393}
1394EXPORT_SYMBOL_GPL(hid_field_extract);
1395
1396/*
1397 * "implement" : set bits in a little endian bit stream.
1398 * Same concepts as "extract" (see comments above).
1399 * The data mangled in the bit stream remains in little endian
1400 * order the whole time. It make more sense to talk about
1401 * endianness of register values by considering a register
1402 * a "cached" copy of the little endian bit stream.
1403 */
1404
1405static void __implement(u8 *report, unsigned offset, int n, u32 value)
1406{
1407 unsigned int idx = offset / 8;
1408 unsigned int bit_shift = offset % 8;
1409 int bits_to_set = 8 - bit_shift;
1410
1411 while (n - bits_to_set >= 0) {
1412 report[idx] &= ~(0xff << bit_shift);
1413 report[idx] |= value << bit_shift;
1414 value >>= bits_to_set;
1415 n -= bits_to_set;
1416 bits_to_set = 8;
1417 bit_shift = 0;
1418 idx++;
1419 }
1420
1421 /* last nibble */
1422 if (n) {
1423 u8 bit_mask = ((1U << n) - 1);
1424 report[idx] &= ~(bit_mask << bit_shift);
1425 report[idx] |= value << bit_shift;
1426 }
1427}
1428
1429static void implement(const struct hid_device *hid, u8 *report,
1430 unsigned offset, unsigned n, u32 value)
1431{
1432 if (unlikely(n > 32)) {
1433 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1434 __func__, n, current->comm);
1435 n = 32;
1436 } else if (n < 32) {
1437 u32 m = (1U << n) - 1;
1438
1439 if (unlikely(value > m)) {
1440 hid_warn(hid,
1441 "%s() called with too large value %d (n: %d)! (%s)\n",
1442 __func__, value, n, current->comm);
1443 WARN_ON(1);
1444 value &= m;
1445 }
1446 }
1447
1448 __implement(report, offset, n, value);
1449}
1450
1451/*
1452 * Search an array for a value.
1453 */
1454
1455static int search(__s32 *array, __s32 value, unsigned n)
1456{
1457 while (n--) {
1458 if (*array++ == value)
1459 return 0;
1460 }
1461 return -1;
1462}
1463
1464/**
1465 * hid_match_report - check if driver's raw_event should be called
1466 *
1467 * @hid: hid device
1468 * @report: hid report to match against
1469 *
1470 * compare hid->driver->report_table->report_type to report->type
1471 */
1472static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1473{
1474 const struct hid_report_id *id = hid->driver->report_table;
1475
1476 if (!id) /* NULL means all */
1477 return 1;
1478
1479 for (; id->report_type != HID_TERMINATOR; id++)
1480 if (id->report_type == HID_ANY_ID ||
1481 id->report_type == report->type)
1482 return 1;
1483 return 0;
1484}
1485
1486/**
1487 * hid_match_usage - check if driver's event should be called
1488 *
1489 * @hid: hid device
1490 * @usage: usage to match against
1491 *
1492 * compare hid->driver->usage_table->usage_{type,code} to
1493 * usage->usage_{type,code}
1494 */
1495static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1496{
1497 const struct hid_usage_id *id = hid->driver->usage_table;
1498
1499 if (!id) /* NULL means all */
1500 return 1;
1501
1502 for (; id->usage_type != HID_ANY_ID - 1; id++)
1503 if ((id->usage_hid == HID_ANY_ID ||
1504 id->usage_hid == usage->hid) &&
1505 (id->usage_type == HID_ANY_ID ||
1506 id->usage_type == usage->type) &&
1507 (id->usage_code == HID_ANY_ID ||
1508 id->usage_code == usage->code))
1509 return 1;
1510 return 0;
1511}
1512
1513static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1514 struct hid_usage *usage, __s32 value, int interrupt)
1515{
1516 struct hid_driver *hdrv = hid->driver;
1517 int ret;
1518
1519 if (!list_empty(&hid->debug_list))
1520 hid_dump_input(hid, usage, value);
1521
1522 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1523 ret = hdrv->event(hid, field, usage, value);
1524 if (ret != 0) {
1525 if (ret < 0)
1526 hid_err(hid, "%s's event failed with %d\n",
1527 hdrv->name, ret);
1528 return;
1529 }
1530 }
1531
1532 if (hid->claimed & HID_CLAIMED_INPUT)
1533 hidinput_hid_event(hid, field, usage, value);
1534 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1535 hid->hiddev_hid_event(hid, field, usage, value);
1536}
1537
1538/*
1539 * Checks if the given value is valid within this field
1540 */
1541static inline int hid_array_value_is_valid(struct hid_field *field,
1542 __s32 value)
1543{
1544 __s32 min = field->logical_minimum;
1545
1546 /*
1547 * Value needs to be between logical min and max, and
1548 * (value - min) is used as an index in the usage array.
1549 * This array is of size field->maxusage
1550 */
1551 return value >= min &&
1552 value <= field->logical_maximum &&
1553 value - min < field->maxusage;
1554}
1555
1556/*
1557 * Fetch the field from the data. The field content is stored for next
1558 * report processing (we do differential reporting to the layer).
1559 */
1560static void hid_input_fetch_field(struct hid_device *hid,
1561 struct hid_field *field,
1562 __u8 *data)
1563{
1564 unsigned n;
1565 unsigned count = field->report_count;
1566 unsigned offset = field->report_offset;
1567 unsigned size = field->report_size;
1568 __s32 min = field->logical_minimum;
1569 __s32 *value;
1570
1571 value = field->new_value;
1572 memset(value, 0, count * sizeof(__s32));
1573 field->ignored = false;
1574
1575 for (n = 0; n < count; n++) {
1576
1577 value[n] = min < 0 ?
1578 snto32(hid_field_extract(hid, data, offset + n * size,
1579 size), size) :
1580 hid_field_extract(hid, data, offset + n * size, size);
1581
1582 /* Ignore report if ErrorRollOver */
1583 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1584 hid_array_value_is_valid(field, value[n]) &&
1585 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) {
1586 field->ignored = true;
1587 return;
1588 }
1589 }
1590}
1591
1592/*
1593 * Process a received variable field.
1594 */
1595
1596static void hid_input_var_field(struct hid_device *hid,
1597 struct hid_field *field,
1598 int interrupt)
1599{
1600 unsigned int count = field->report_count;
1601 __s32 *value = field->new_value;
1602 unsigned int n;
1603
1604 for (n = 0; n < count; n++)
1605 hid_process_event(hid,
1606 field,
1607 &field->usage[n],
1608 value[n],
1609 interrupt);
1610
1611 memcpy(field->value, value, count * sizeof(__s32));
1612}
1613
1614/*
1615 * Process a received array field. The field content is stored for
1616 * next report processing (we do differential reporting to the layer).
1617 */
1618
1619static void hid_input_array_field(struct hid_device *hid,
1620 struct hid_field *field,
1621 int interrupt)
1622{
1623 unsigned int n;
1624 unsigned int count = field->report_count;
1625 __s32 min = field->logical_minimum;
1626 __s32 *value;
1627
1628 value = field->new_value;
1629
1630 /* ErrorRollOver */
1631 if (field->ignored)
1632 return;
1633
1634 for (n = 0; n < count; n++) {
1635 if (hid_array_value_is_valid(field, field->value[n]) &&
1636 search(value, field->value[n], count))
1637 hid_process_event(hid,
1638 field,
1639 &field->usage[field->value[n] - min],
1640 0,
1641 interrupt);
1642
1643 if (hid_array_value_is_valid(field, value[n]) &&
1644 search(field->value, value[n], count))
1645 hid_process_event(hid,
1646 field,
1647 &field->usage[value[n] - min],
1648 1,
1649 interrupt);
1650 }
1651
1652 memcpy(field->value, value, count * sizeof(__s32));
1653}
1654
1655/*
1656 * Analyse a received report, and fetch the data from it. The field
1657 * content is stored for next report processing (we do differential
1658 * reporting to the layer).
1659 */
1660static void hid_process_report(struct hid_device *hid,
1661 struct hid_report *report,
1662 __u8 *data,
1663 int interrupt)
1664{
1665 unsigned int a;
1666 struct hid_field_entry *entry;
1667 struct hid_field *field;
1668
1669 /* first retrieve all incoming values in data */
1670 for (a = 0; a < report->maxfield; a++)
1671 hid_input_fetch_field(hid, report->field[a], data);
1672
1673 if (!list_empty(&report->field_entry_list)) {
1674 /* INPUT_REPORT, we have a priority list of fields */
1675 list_for_each_entry(entry,
1676 &report->field_entry_list,
1677 list) {
1678 field = entry->field;
1679
1680 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1681 hid_process_event(hid,
1682 field,
1683 &field->usage[entry->index],
1684 field->new_value[entry->index],
1685 interrupt);
1686 else
1687 hid_input_array_field(hid, field, interrupt);
1688 }
1689
1690 /* we need to do the memcpy at the end for var items */
1691 for (a = 0; a < report->maxfield; a++) {
1692 field = report->field[a];
1693
1694 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1695 memcpy(field->value, field->new_value,
1696 field->report_count * sizeof(__s32));
1697 }
1698 } else {
1699 /* FEATURE_REPORT, regular processing */
1700 for (a = 0; a < report->maxfield; a++) {
1701 field = report->field[a];
1702
1703 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1704 hid_input_var_field(hid, field, interrupt);
1705 else
1706 hid_input_array_field(hid, field, interrupt);
1707 }
1708 }
1709}
1710
1711/*
1712 * Insert a given usage_index in a field in the list
1713 * of processed usages in the report.
1714 *
1715 * The elements of lower priority score are processed
1716 * first.
1717 */
1718static void __hid_insert_field_entry(struct hid_device *hid,
1719 struct hid_report *report,
1720 struct hid_field_entry *entry,
1721 struct hid_field *field,
1722 unsigned int usage_index)
1723{
1724 struct hid_field_entry *next;
1725
1726 entry->field = field;
1727 entry->index = usage_index;
1728 entry->priority = field->usages_priorities[usage_index];
1729
1730 /* insert the element at the correct position */
1731 list_for_each_entry(next,
1732 &report->field_entry_list,
1733 list) {
1734 /*
1735 * the priority of our element is strictly higher
1736 * than the next one, insert it before
1737 */
1738 if (entry->priority > next->priority) {
1739 list_add_tail(&entry->list, &next->list);
1740 return;
1741 }
1742 }
1743
1744 /* lowest priority score: insert at the end */
1745 list_add_tail(&entry->list, &report->field_entry_list);
1746}
1747
1748static void hid_report_process_ordering(struct hid_device *hid,
1749 struct hid_report *report)
1750{
1751 struct hid_field *field;
1752 struct hid_field_entry *entries;
1753 unsigned int a, u, usages;
1754 unsigned int count = 0;
1755
1756 /* count the number of individual fields in the report */
1757 for (a = 0; a < report->maxfield; a++) {
1758 field = report->field[a];
1759
1760 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1761 count += field->report_count;
1762 else
1763 count++;
1764 }
1765
1766 /* allocate the memory to process the fields */
1767 entries = kcalloc(count, sizeof(*entries), GFP_KERNEL);
1768 if (!entries)
1769 return;
1770
1771 report->field_entries = entries;
1772
1773 /*
1774 * walk through all fields in the report and
1775 * store them by priority order in report->field_entry_list
1776 *
1777 * - Var elements are individualized (field + usage_index)
1778 * - Arrays are taken as one, we can not chose an order for them
1779 */
1780 usages = 0;
1781 for (a = 0; a < report->maxfield; a++) {
1782 field = report->field[a];
1783
1784 if (field->flags & HID_MAIN_ITEM_VARIABLE) {
1785 for (u = 0; u < field->report_count; u++) {
1786 __hid_insert_field_entry(hid, report,
1787 &entries[usages],
1788 field, u);
1789 usages++;
1790 }
1791 } else {
1792 __hid_insert_field_entry(hid, report, &entries[usages],
1793 field, 0);
1794 usages++;
1795 }
1796 }
1797}
1798
1799static void hid_process_ordering(struct hid_device *hid)
1800{
1801 struct hid_report *report;
1802 struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT];
1803
1804 list_for_each_entry(report, &report_enum->report_list, list)
1805 hid_report_process_ordering(hid, report);
1806}
1807
1808/*
1809 * Output the field into the report.
1810 */
1811
1812static void hid_output_field(const struct hid_device *hid,
1813 struct hid_field *field, __u8 *data)
1814{
1815 unsigned count = field->report_count;
1816 unsigned offset = field->report_offset;
1817 unsigned size = field->report_size;
1818 unsigned n;
1819
1820 for (n = 0; n < count; n++) {
1821 if (field->logical_minimum < 0) /* signed values */
1822 implement(hid, data, offset + n * size, size,
1823 s32ton(field->value[n], size));
1824 else /* unsigned values */
1825 implement(hid, data, offset + n * size, size,
1826 field->value[n]);
1827 }
1828}
1829
1830/*
1831 * Compute the size of a report.
1832 */
1833static size_t hid_compute_report_size(struct hid_report *report)
1834{
1835 if (report->size)
1836 return ((report->size - 1) >> 3) + 1;
1837
1838 return 0;
1839}
1840
1841/*
1842 * Create a report. 'data' has to be allocated using
1843 * hid_alloc_report_buf() so that it has proper size.
1844 */
1845
1846void hid_output_report(struct hid_report *report, __u8 *data)
1847{
1848 unsigned n;
1849
1850 if (report->id > 0)
1851 *data++ = report->id;
1852
1853 memset(data, 0, hid_compute_report_size(report));
1854 for (n = 0; n < report->maxfield; n++)
1855 hid_output_field(report->device, report->field[n], data);
1856}
1857EXPORT_SYMBOL_GPL(hid_output_report);
1858
1859/*
1860 * Allocator for buffer that is going to be passed to hid_output_report()
1861 */
1862u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1863{
1864 /*
1865 * 7 extra bytes are necessary to achieve proper functionality
1866 * of implement() working on 8 byte chunks
1867 */
1868
1869 u32 len = hid_report_len(report) + 7;
1870
1871 return kmalloc(len, flags);
1872}
1873EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1874
1875/*
1876 * Set a field value. The report this field belongs to has to be
1877 * created and transferred to the device, to set this value in the
1878 * device.
1879 */
1880
1881int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1882{
1883 unsigned size;
1884
1885 if (!field)
1886 return -1;
1887
1888 size = field->report_size;
1889
1890 hid_dump_input(field->report->device, field->usage + offset, value);
1891
1892 if (offset >= field->report_count) {
1893 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1894 offset, field->report_count);
1895 return -1;
1896 }
1897 if (field->logical_minimum < 0) {
1898 if (value != snto32(s32ton(value, size), size)) {
1899 hid_err(field->report->device, "value %d is out of range\n", value);
1900 return -1;
1901 }
1902 }
1903 field->value[offset] = value;
1904 return 0;
1905}
1906EXPORT_SYMBOL_GPL(hid_set_field);
1907
1908static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1909 const u8 *data)
1910{
1911 struct hid_report *report;
1912 unsigned int n = 0; /* Normally report number is 0 */
1913
1914 /* Device uses numbered reports, data[0] is report number */
1915 if (report_enum->numbered)
1916 n = *data;
1917
1918 report = report_enum->report_id_hash[n];
1919 if (report == NULL)
1920 dbg_hid("undefined report_id %u received\n", n);
1921
1922 return report;
1923}
1924
1925/*
1926 * Implement a generic .request() callback, using .raw_request()
1927 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1928 */
1929int __hid_request(struct hid_device *hid, struct hid_report *report,
1930 enum hid_class_request reqtype)
1931{
1932 char *buf;
1933 int ret;
1934 u32 len;
1935
1936 buf = hid_alloc_report_buf(report, GFP_KERNEL);
1937 if (!buf)
1938 return -ENOMEM;
1939
1940 len = hid_report_len(report);
1941
1942 if (reqtype == HID_REQ_SET_REPORT)
1943 hid_output_report(report, buf);
1944
1945 ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1946 report->type, reqtype);
1947 if (ret < 0) {
1948 dbg_hid("unable to complete request: %d\n", ret);
1949 goto out;
1950 }
1951
1952 if (reqtype == HID_REQ_GET_REPORT)
1953 hid_input_report(hid, report->type, buf, ret, 0);
1954
1955 ret = 0;
1956
1957out:
1958 kfree(buf);
1959 return ret;
1960}
1961EXPORT_SYMBOL_GPL(__hid_request);
1962
1963int hid_report_raw_event(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
1964 int interrupt)
1965{
1966 struct hid_report_enum *report_enum = hid->report_enum + type;
1967 struct hid_report *report;
1968 struct hid_driver *hdrv;
1969 u32 rsize, csize = size;
1970 u8 *cdata = data;
1971 int ret = 0;
1972
1973 report = hid_get_report(report_enum, data);
1974 if (!report)
1975 goto out;
1976
1977 if (report_enum->numbered) {
1978 cdata++;
1979 csize--;
1980 }
1981
1982 rsize = hid_compute_report_size(report);
1983
1984 if (report_enum->numbered && rsize >= HID_MAX_BUFFER_SIZE)
1985 rsize = HID_MAX_BUFFER_SIZE - 1;
1986 else if (rsize > HID_MAX_BUFFER_SIZE)
1987 rsize = HID_MAX_BUFFER_SIZE;
1988
1989 if (csize < rsize) {
1990 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1991 csize, rsize);
1992 memset(cdata + csize, 0, rsize - csize);
1993 }
1994
1995 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1996 hid->hiddev_report_event(hid, report);
1997 if (hid->claimed & HID_CLAIMED_HIDRAW) {
1998 ret = hidraw_report_event(hid, data, size);
1999 if (ret)
2000 goto out;
2001 }
2002
2003 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
2004 hid_process_report(hid, report, cdata, interrupt);
2005 hdrv = hid->driver;
2006 if (hdrv && hdrv->report)
2007 hdrv->report(hid, report);
2008 }
2009
2010 if (hid->claimed & HID_CLAIMED_INPUT)
2011 hidinput_report_event(hid, report);
2012out:
2013 return ret;
2014}
2015EXPORT_SYMBOL_GPL(hid_report_raw_event);
2016
2017/**
2018 * hid_input_report - report data from lower layer (usb, bt...)
2019 *
2020 * @hid: hid device
2021 * @type: HID report type (HID_*_REPORT)
2022 * @data: report contents
2023 * @size: size of data parameter
2024 * @interrupt: distinguish between interrupt and control transfers
2025 *
2026 * This is data entry for lower layers.
2027 */
2028int hid_input_report(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2029 int interrupt)
2030{
2031 struct hid_report_enum *report_enum;
2032 struct hid_driver *hdrv;
2033 struct hid_report *report;
2034 int ret = 0;
2035
2036 if (!hid)
2037 return -ENODEV;
2038
2039 if (down_trylock(&hid->driver_input_lock))
2040 return -EBUSY;
2041
2042 if (!hid->driver) {
2043 ret = -ENODEV;
2044 goto unlock;
2045 }
2046 report_enum = hid->report_enum + type;
2047 hdrv = hid->driver;
2048
2049 if (!size) {
2050 dbg_hid("empty report\n");
2051 ret = -1;
2052 goto unlock;
2053 }
2054
2055 /* Avoid unnecessary overhead if debugfs is disabled */
2056 if (!list_empty(&hid->debug_list))
2057 hid_dump_report(hid, type, data, size);
2058
2059 report = hid_get_report(report_enum, data);
2060
2061 if (!report) {
2062 ret = -1;
2063 goto unlock;
2064 }
2065
2066 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
2067 ret = hdrv->raw_event(hid, report, data, size);
2068 if (ret < 0)
2069 goto unlock;
2070 }
2071
2072 ret = hid_report_raw_event(hid, type, data, size, interrupt);
2073
2074unlock:
2075 up(&hid->driver_input_lock);
2076 return ret;
2077}
2078EXPORT_SYMBOL_GPL(hid_input_report);
2079
2080bool hid_match_one_id(const struct hid_device *hdev,
2081 const struct hid_device_id *id)
2082{
2083 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
2084 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
2085 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
2086 (id->product == HID_ANY_ID || id->product == hdev->product);
2087}
2088
2089const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
2090 const struct hid_device_id *id)
2091{
2092 for (; id->bus; id++)
2093 if (hid_match_one_id(hdev, id))
2094 return id;
2095
2096 return NULL;
2097}
2098EXPORT_SYMBOL_GPL(hid_match_id);
2099
2100static const struct hid_device_id hid_hiddev_list[] = {
2101 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
2102 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
2103 { }
2104};
2105
2106static bool hid_hiddev(struct hid_device *hdev)
2107{
2108 return !!hid_match_id(hdev, hid_hiddev_list);
2109}
2110
2111
2112static ssize_t
2113read_report_descriptor(struct file *filp, struct kobject *kobj,
2114 struct bin_attribute *attr,
2115 char *buf, loff_t off, size_t count)
2116{
2117 struct device *dev = kobj_to_dev(kobj);
2118 struct hid_device *hdev = to_hid_device(dev);
2119
2120 if (off >= hdev->rsize)
2121 return 0;
2122
2123 if (off + count > hdev->rsize)
2124 count = hdev->rsize - off;
2125
2126 memcpy(buf, hdev->rdesc + off, count);
2127
2128 return count;
2129}
2130
2131static ssize_t
2132show_country(struct device *dev, struct device_attribute *attr,
2133 char *buf)
2134{
2135 struct hid_device *hdev = to_hid_device(dev);
2136
2137 return sprintf(buf, "%02x\n", hdev->country & 0xff);
2138}
2139
2140static struct bin_attribute dev_bin_attr_report_desc = {
2141 .attr = { .name = "report_descriptor", .mode = 0444 },
2142 .read = read_report_descriptor,
2143 .size = HID_MAX_DESCRIPTOR_SIZE,
2144};
2145
2146static const struct device_attribute dev_attr_country = {
2147 .attr = { .name = "country", .mode = 0444 },
2148 .show = show_country,
2149};
2150
2151int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
2152{
2153 static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
2154 "Joystick", "Gamepad", "Keyboard", "Keypad",
2155 "Multi-Axis Controller"
2156 };
2157 const char *type, *bus;
2158 char buf[64] = "";
2159 unsigned int i;
2160 int len;
2161 int ret;
2162
2163 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
2164 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
2165 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
2166 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
2167 if (hdev->bus != BUS_USB)
2168 connect_mask &= ~HID_CONNECT_HIDDEV;
2169 if (hid_hiddev(hdev))
2170 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
2171
2172 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
2173 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
2174 hdev->claimed |= HID_CLAIMED_INPUT;
2175
2176 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
2177 !hdev->hiddev_connect(hdev,
2178 connect_mask & HID_CONNECT_HIDDEV_FORCE))
2179 hdev->claimed |= HID_CLAIMED_HIDDEV;
2180 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
2181 hdev->claimed |= HID_CLAIMED_HIDRAW;
2182
2183 if (connect_mask & HID_CONNECT_DRIVER)
2184 hdev->claimed |= HID_CLAIMED_DRIVER;
2185
2186 /* Drivers with the ->raw_event callback set are not required to connect
2187 * to any other listener. */
2188 if (!hdev->claimed && !hdev->driver->raw_event) {
2189 hid_err(hdev, "device has no listeners, quitting\n");
2190 return -ENODEV;
2191 }
2192
2193 hid_process_ordering(hdev);
2194
2195 if ((hdev->claimed & HID_CLAIMED_INPUT) &&
2196 (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
2197 hdev->ff_init(hdev);
2198
2199 len = 0;
2200 if (hdev->claimed & HID_CLAIMED_INPUT)
2201 len += sprintf(buf + len, "input");
2202 if (hdev->claimed & HID_CLAIMED_HIDDEV)
2203 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
2204 ((struct hiddev *)hdev->hiddev)->minor);
2205 if (hdev->claimed & HID_CLAIMED_HIDRAW)
2206 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
2207 ((struct hidraw *)hdev->hidraw)->minor);
2208
2209 type = "Device";
2210 for (i = 0; i < hdev->maxcollection; i++) {
2211 struct hid_collection *col = &hdev->collection[i];
2212 if (col->type == HID_COLLECTION_APPLICATION &&
2213 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2214 (col->usage & 0xffff) < ARRAY_SIZE(types)) {
2215 type = types[col->usage & 0xffff];
2216 break;
2217 }
2218 }
2219
2220 switch (hdev->bus) {
2221 case BUS_USB:
2222 bus = "USB";
2223 break;
2224 case BUS_BLUETOOTH:
2225 bus = "BLUETOOTH";
2226 break;
2227 case BUS_I2C:
2228 bus = "I2C";
2229 break;
2230 case BUS_VIRTUAL:
2231 bus = "VIRTUAL";
2232 break;
2233 case BUS_INTEL_ISHTP:
2234 case BUS_AMD_SFH:
2235 bus = "SENSOR HUB";
2236 break;
2237 default:
2238 bus = "<UNKNOWN>";
2239 }
2240
2241 ret = device_create_file(&hdev->dev, &dev_attr_country);
2242 if (ret)
2243 hid_warn(hdev,
2244 "can't create sysfs country code attribute err: %d\n", ret);
2245
2246 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2247 buf, bus, hdev->version >> 8, hdev->version & 0xff,
2248 type, hdev->name, hdev->phys);
2249
2250 return 0;
2251}
2252EXPORT_SYMBOL_GPL(hid_connect);
2253
2254void hid_disconnect(struct hid_device *hdev)
2255{
2256 device_remove_file(&hdev->dev, &dev_attr_country);
2257 if (hdev->claimed & HID_CLAIMED_INPUT)
2258 hidinput_disconnect(hdev);
2259 if (hdev->claimed & HID_CLAIMED_HIDDEV)
2260 hdev->hiddev_disconnect(hdev);
2261 if (hdev->claimed & HID_CLAIMED_HIDRAW)
2262 hidraw_disconnect(hdev);
2263 hdev->claimed = 0;
2264}
2265EXPORT_SYMBOL_GPL(hid_disconnect);
2266
2267/**
2268 * hid_hw_start - start underlying HW
2269 * @hdev: hid device
2270 * @connect_mask: which outputs to connect, see HID_CONNECT_*
2271 *
2272 * Call this in probe function *after* hid_parse. This will setup HW
2273 * buffers and start the device (if not defeirred to device open).
2274 * hid_hw_stop must be called if this was successful.
2275 */
2276int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2277{
2278 int error;
2279
2280 error = hdev->ll_driver->start(hdev);
2281 if (error)
2282 return error;
2283
2284 if (connect_mask) {
2285 error = hid_connect(hdev, connect_mask);
2286 if (error) {
2287 hdev->ll_driver->stop(hdev);
2288 return error;
2289 }
2290 }
2291
2292 return 0;
2293}
2294EXPORT_SYMBOL_GPL(hid_hw_start);
2295
2296/**
2297 * hid_hw_stop - stop underlying HW
2298 * @hdev: hid device
2299 *
2300 * This is usually called from remove function or from probe when something
2301 * failed and hid_hw_start was called already.
2302 */
2303void hid_hw_stop(struct hid_device *hdev)
2304{
2305 hid_disconnect(hdev);
2306 hdev->ll_driver->stop(hdev);
2307}
2308EXPORT_SYMBOL_GPL(hid_hw_stop);
2309
2310/**
2311 * hid_hw_open - signal underlying HW to start delivering events
2312 * @hdev: hid device
2313 *
2314 * Tell underlying HW to start delivering events from the device.
2315 * This function should be called sometime after successful call
2316 * to hid_hw_start().
2317 */
2318int hid_hw_open(struct hid_device *hdev)
2319{
2320 int ret;
2321
2322 ret = mutex_lock_killable(&hdev->ll_open_lock);
2323 if (ret)
2324 return ret;
2325
2326 if (!hdev->ll_open_count++) {
2327 ret = hdev->ll_driver->open(hdev);
2328 if (ret)
2329 hdev->ll_open_count--;
2330 }
2331
2332 mutex_unlock(&hdev->ll_open_lock);
2333 return ret;
2334}
2335EXPORT_SYMBOL_GPL(hid_hw_open);
2336
2337/**
2338 * hid_hw_close - signal underlaying HW to stop delivering events
2339 *
2340 * @hdev: hid device
2341 *
2342 * This function indicates that we are not interested in the events
2343 * from this device anymore. Delivery of events may or may not stop,
2344 * depending on the number of users still outstanding.
2345 */
2346void hid_hw_close(struct hid_device *hdev)
2347{
2348 mutex_lock(&hdev->ll_open_lock);
2349 if (!--hdev->ll_open_count)
2350 hdev->ll_driver->close(hdev);
2351 mutex_unlock(&hdev->ll_open_lock);
2352}
2353EXPORT_SYMBOL_GPL(hid_hw_close);
2354
2355/**
2356 * hid_hw_request - send report request to device
2357 *
2358 * @hdev: hid device
2359 * @report: report to send
2360 * @reqtype: hid request type
2361 */
2362void hid_hw_request(struct hid_device *hdev,
2363 struct hid_report *report, enum hid_class_request reqtype)
2364{
2365 if (hdev->ll_driver->request)
2366 return hdev->ll_driver->request(hdev, report, reqtype);
2367
2368 __hid_request(hdev, report, reqtype);
2369}
2370EXPORT_SYMBOL_GPL(hid_hw_request);
2371
2372/**
2373 * hid_hw_raw_request - send report request to device
2374 *
2375 * @hdev: hid device
2376 * @reportnum: report ID
2377 * @buf: in/out data to transfer
2378 * @len: length of buf
2379 * @rtype: HID report type
2380 * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT
2381 *
2382 * Return: count of data transferred, negative if error
2383 *
2384 * Same behavior as hid_hw_request, but with raw buffers instead.
2385 */
2386int hid_hw_raw_request(struct hid_device *hdev,
2387 unsigned char reportnum, __u8 *buf,
2388 size_t len, enum hid_report_type rtype, enum hid_class_request reqtype)
2389{
2390 if (len < 1 || len > HID_MAX_BUFFER_SIZE || !buf)
2391 return -EINVAL;
2392
2393 return hdev->ll_driver->raw_request(hdev, reportnum, buf, len,
2394 rtype, reqtype);
2395}
2396EXPORT_SYMBOL_GPL(hid_hw_raw_request);
2397
2398/**
2399 * hid_hw_output_report - send output report to device
2400 *
2401 * @hdev: hid device
2402 * @buf: raw data to transfer
2403 * @len: length of buf
2404 *
2405 * Return: count of data transferred, negative if error
2406 */
2407int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len)
2408{
2409 if (len < 1 || len > HID_MAX_BUFFER_SIZE || !buf)
2410 return -EINVAL;
2411
2412 if (hdev->ll_driver->output_report)
2413 return hdev->ll_driver->output_report(hdev, buf, len);
2414
2415 return -ENOSYS;
2416}
2417EXPORT_SYMBOL_GPL(hid_hw_output_report);
2418
2419#ifdef CONFIG_PM
2420int hid_driver_suspend(struct hid_device *hdev, pm_message_t state)
2421{
2422 if (hdev->driver && hdev->driver->suspend)
2423 return hdev->driver->suspend(hdev, state);
2424
2425 return 0;
2426}
2427EXPORT_SYMBOL_GPL(hid_driver_suspend);
2428
2429int hid_driver_reset_resume(struct hid_device *hdev)
2430{
2431 if (hdev->driver && hdev->driver->reset_resume)
2432 return hdev->driver->reset_resume(hdev);
2433
2434 return 0;
2435}
2436EXPORT_SYMBOL_GPL(hid_driver_reset_resume);
2437
2438int hid_driver_resume(struct hid_device *hdev)
2439{
2440 if (hdev->driver && hdev->driver->resume)
2441 return hdev->driver->resume(hdev);
2442
2443 return 0;
2444}
2445EXPORT_SYMBOL_GPL(hid_driver_resume);
2446#endif /* CONFIG_PM */
2447
2448struct hid_dynid {
2449 struct list_head list;
2450 struct hid_device_id id;
2451};
2452
2453/**
2454 * new_id_store - add a new HID device ID to this driver and re-probe devices
2455 * @drv: target device driver
2456 * @buf: buffer for scanning device ID data
2457 * @count: input size
2458 *
2459 * Adds a new dynamic hid device ID to this driver,
2460 * and causes the driver to probe for all devices again.
2461 */
2462static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2463 size_t count)
2464{
2465 struct hid_driver *hdrv = to_hid_driver(drv);
2466 struct hid_dynid *dynid;
2467 __u32 bus, vendor, product;
2468 unsigned long driver_data = 0;
2469 int ret;
2470
2471 ret = sscanf(buf, "%x %x %x %lx",
2472 &bus, &vendor, &product, &driver_data);
2473 if (ret < 3)
2474 return -EINVAL;
2475
2476 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2477 if (!dynid)
2478 return -ENOMEM;
2479
2480 dynid->id.bus = bus;
2481 dynid->id.group = HID_GROUP_ANY;
2482 dynid->id.vendor = vendor;
2483 dynid->id.product = product;
2484 dynid->id.driver_data = driver_data;
2485
2486 spin_lock(&hdrv->dyn_lock);
2487 list_add_tail(&dynid->list, &hdrv->dyn_list);
2488 spin_unlock(&hdrv->dyn_lock);
2489
2490 ret = driver_attach(&hdrv->driver);
2491
2492 return ret ? : count;
2493}
2494static DRIVER_ATTR_WO(new_id);
2495
2496static struct attribute *hid_drv_attrs[] = {
2497 &driver_attr_new_id.attr,
2498 NULL,
2499};
2500ATTRIBUTE_GROUPS(hid_drv);
2501
2502static void hid_free_dynids(struct hid_driver *hdrv)
2503{
2504 struct hid_dynid *dynid, *n;
2505
2506 spin_lock(&hdrv->dyn_lock);
2507 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2508 list_del(&dynid->list);
2509 kfree(dynid);
2510 }
2511 spin_unlock(&hdrv->dyn_lock);
2512}
2513
2514const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2515 struct hid_driver *hdrv)
2516{
2517 struct hid_dynid *dynid;
2518
2519 spin_lock(&hdrv->dyn_lock);
2520 list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2521 if (hid_match_one_id(hdev, &dynid->id)) {
2522 spin_unlock(&hdrv->dyn_lock);
2523 return &dynid->id;
2524 }
2525 }
2526 spin_unlock(&hdrv->dyn_lock);
2527
2528 return hid_match_id(hdev, hdrv->id_table);
2529}
2530EXPORT_SYMBOL_GPL(hid_match_device);
2531
2532static int hid_bus_match(struct device *dev, struct device_driver *drv)
2533{
2534 struct hid_driver *hdrv = to_hid_driver(drv);
2535 struct hid_device *hdev = to_hid_device(dev);
2536
2537 return hid_match_device(hdev, hdrv) != NULL;
2538}
2539
2540/**
2541 * hid_compare_device_paths - check if both devices share the same path
2542 * @hdev_a: hid device
2543 * @hdev_b: hid device
2544 * @separator: char to use as separator
2545 *
2546 * Check if two devices share the same path up to the last occurrence of
2547 * the separator char. Both paths must exist (i.e., zero-length paths
2548 * don't match).
2549 */
2550bool hid_compare_device_paths(struct hid_device *hdev_a,
2551 struct hid_device *hdev_b, char separator)
2552{
2553 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2554 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2555
2556 if (n1 != n2 || n1 <= 0 || n2 <= 0)
2557 return false;
2558
2559 return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2560}
2561EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2562
2563static int hid_device_probe(struct device *dev)
2564{
2565 struct hid_driver *hdrv = to_hid_driver(dev->driver);
2566 struct hid_device *hdev = to_hid_device(dev);
2567 const struct hid_device_id *id;
2568 int ret = 0;
2569
2570 if (down_interruptible(&hdev->driver_input_lock)) {
2571 ret = -EINTR;
2572 goto end;
2573 }
2574 hdev->io_started = false;
2575
2576 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2577
2578 if (!hdev->driver) {
2579 id = hid_match_device(hdev, hdrv);
2580 if (id == NULL) {
2581 ret = -ENODEV;
2582 goto unlock;
2583 }
2584
2585 if (hdrv->match) {
2586 if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2587 ret = -ENODEV;
2588 goto unlock;
2589 }
2590 } else {
2591 /*
2592 * hid-generic implements .match(), so if
2593 * hid_ignore_special_drivers is set, we can safely
2594 * return.
2595 */
2596 if (hid_ignore_special_drivers) {
2597 ret = -ENODEV;
2598 goto unlock;
2599 }
2600 }
2601
2602 /* reset the quirks that has been previously set */
2603 hdev->quirks = hid_lookup_quirk(hdev);
2604 hdev->driver = hdrv;
2605 if (hdrv->probe) {
2606 ret = hdrv->probe(hdev, id);
2607 } else { /* default probe */
2608 ret = hid_open_report(hdev);
2609 if (!ret)
2610 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2611 }
2612 if (ret) {
2613 hid_close_report(hdev);
2614 hdev->driver = NULL;
2615 }
2616 }
2617unlock:
2618 if (!hdev->io_started)
2619 up(&hdev->driver_input_lock);
2620end:
2621 return ret;
2622}
2623
2624static void hid_device_remove(struct device *dev)
2625{
2626 struct hid_device *hdev = to_hid_device(dev);
2627 struct hid_driver *hdrv;
2628
2629 down(&hdev->driver_input_lock);
2630 hdev->io_started = false;
2631
2632 hdrv = hdev->driver;
2633 if (hdrv) {
2634 if (hdrv->remove)
2635 hdrv->remove(hdev);
2636 else /* default remove */
2637 hid_hw_stop(hdev);
2638 hid_close_report(hdev);
2639 hdev->driver = NULL;
2640 }
2641
2642 if (!hdev->io_started)
2643 up(&hdev->driver_input_lock);
2644}
2645
2646static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2647 char *buf)
2648{
2649 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2650
2651 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2652 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2653}
2654static DEVICE_ATTR_RO(modalias);
2655
2656static struct attribute *hid_dev_attrs[] = {
2657 &dev_attr_modalias.attr,
2658 NULL,
2659};
2660static struct bin_attribute *hid_dev_bin_attrs[] = {
2661 &dev_bin_attr_report_desc,
2662 NULL
2663};
2664static const struct attribute_group hid_dev_group = {
2665 .attrs = hid_dev_attrs,
2666 .bin_attrs = hid_dev_bin_attrs,
2667};
2668__ATTRIBUTE_GROUPS(hid_dev);
2669
2670static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2671{
2672 struct hid_device *hdev = to_hid_device(dev);
2673
2674 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2675 hdev->bus, hdev->vendor, hdev->product))
2676 return -ENOMEM;
2677
2678 if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2679 return -ENOMEM;
2680
2681 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2682 return -ENOMEM;
2683
2684 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2685 return -ENOMEM;
2686
2687 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2688 hdev->bus, hdev->group, hdev->vendor, hdev->product))
2689 return -ENOMEM;
2690
2691 return 0;
2692}
2693
2694struct bus_type hid_bus_type = {
2695 .name = "hid",
2696 .dev_groups = hid_dev_groups,
2697 .drv_groups = hid_drv_groups,
2698 .match = hid_bus_match,
2699 .probe = hid_device_probe,
2700 .remove = hid_device_remove,
2701 .uevent = hid_uevent,
2702};
2703EXPORT_SYMBOL(hid_bus_type);
2704
2705int hid_add_device(struct hid_device *hdev)
2706{
2707 static atomic_t id = ATOMIC_INIT(0);
2708 int ret;
2709
2710 if (WARN_ON(hdev->status & HID_STAT_ADDED))
2711 return -EBUSY;
2712
2713 hdev->quirks = hid_lookup_quirk(hdev);
2714
2715 /* we need to kill them here, otherwise they will stay allocated to
2716 * wait for coming driver */
2717 if (hid_ignore(hdev))
2718 return -ENODEV;
2719
2720 /*
2721 * Check for the mandatory transport channel.
2722 */
2723 if (!hdev->ll_driver->raw_request) {
2724 hid_err(hdev, "transport driver missing .raw_request()\n");
2725 return -EINVAL;
2726 }
2727
2728 /*
2729 * Read the device report descriptor once and use as template
2730 * for the driver-specific modifications.
2731 */
2732 ret = hdev->ll_driver->parse(hdev);
2733 if (ret)
2734 return ret;
2735 if (!hdev->dev_rdesc)
2736 return -ENODEV;
2737
2738 /*
2739 * Scan generic devices for group information
2740 */
2741 if (hid_ignore_special_drivers) {
2742 hdev->group = HID_GROUP_GENERIC;
2743 } else if (!hdev->group &&
2744 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2745 ret = hid_scan_report(hdev);
2746 if (ret)
2747 hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2748 }
2749
2750 hdev->id = atomic_inc_return(&id);
2751
2752 /* XXX hack, any other cleaner solution after the driver core
2753 * is converted to allow more than 20 bytes as the device name? */
2754 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2755 hdev->vendor, hdev->product, hdev->id);
2756
2757 hid_debug_register(hdev, dev_name(&hdev->dev));
2758 ret = device_add(&hdev->dev);
2759 if (!ret)
2760 hdev->status |= HID_STAT_ADDED;
2761 else
2762 hid_debug_unregister(hdev);
2763
2764 return ret;
2765}
2766EXPORT_SYMBOL_GPL(hid_add_device);
2767
2768/**
2769 * hid_allocate_device - allocate new hid device descriptor
2770 *
2771 * Allocate and initialize hid device, so that hid_destroy_device might be
2772 * used to free it.
2773 *
2774 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2775 * error value.
2776 */
2777struct hid_device *hid_allocate_device(void)
2778{
2779 struct hid_device *hdev;
2780 int ret = -ENOMEM;
2781
2782 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2783 if (hdev == NULL)
2784 return ERR_PTR(ret);
2785
2786 device_initialize(&hdev->dev);
2787 hdev->dev.release = hid_device_release;
2788 hdev->dev.bus = &hid_bus_type;
2789 device_enable_async_suspend(&hdev->dev);
2790
2791 hid_close_report(hdev);
2792
2793 init_waitqueue_head(&hdev->debug_wait);
2794 INIT_LIST_HEAD(&hdev->debug_list);
2795 spin_lock_init(&hdev->debug_list_lock);
2796 sema_init(&hdev->driver_input_lock, 1);
2797 mutex_init(&hdev->ll_open_lock);
2798
2799 return hdev;
2800}
2801EXPORT_SYMBOL_GPL(hid_allocate_device);
2802
2803static void hid_remove_device(struct hid_device *hdev)
2804{
2805 if (hdev->status & HID_STAT_ADDED) {
2806 device_del(&hdev->dev);
2807 hid_debug_unregister(hdev);
2808 hdev->status &= ~HID_STAT_ADDED;
2809 }
2810 kfree(hdev->dev_rdesc);
2811 hdev->dev_rdesc = NULL;
2812 hdev->dev_rsize = 0;
2813}
2814
2815/**
2816 * hid_destroy_device - free previously allocated device
2817 *
2818 * @hdev: hid device
2819 *
2820 * If you allocate hid_device through hid_allocate_device, you should ever
2821 * free by this function.
2822 */
2823void hid_destroy_device(struct hid_device *hdev)
2824{
2825 hid_remove_device(hdev);
2826 put_device(&hdev->dev);
2827}
2828EXPORT_SYMBOL_GPL(hid_destroy_device);
2829
2830
2831static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2832{
2833 struct hid_driver *hdrv = data;
2834 struct hid_device *hdev = to_hid_device(dev);
2835
2836 if (hdev->driver == hdrv &&
2837 !hdrv->match(hdev, hid_ignore_special_drivers) &&
2838 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2839 return device_reprobe(dev);
2840
2841 return 0;
2842}
2843
2844static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2845{
2846 struct hid_driver *hdrv = to_hid_driver(drv);
2847
2848 if (hdrv->match) {
2849 bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2850 __hid_bus_reprobe_drivers);
2851 }
2852
2853 return 0;
2854}
2855
2856static int __bus_removed_driver(struct device_driver *drv, void *data)
2857{
2858 return bus_rescan_devices(&hid_bus_type);
2859}
2860
2861int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2862 const char *mod_name)
2863{
2864 int ret;
2865
2866 hdrv->driver.name = hdrv->name;
2867 hdrv->driver.bus = &hid_bus_type;
2868 hdrv->driver.owner = owner;
2869 hdrv->driver.mod_name = mod_name;
2870
2871 INIT_LIST_HEAD(&hdrv->dyn_list);
2872 spin_lock_init(&hdrv->dyn_lock);
2873
2874 ret = driver_register(&hdrv->driver);
2875
2876 if (ret == 0)
2877 bus_for_each_drv(&hid_bus_type, NULL, NULL,
2878 __hid_bus_driver_added);
2879
2880 return ret;
2881}
2882EXPORT_SYMBOL_GPL(__hid_register_driver);
2883
2884void hid_unregister_driver(struct hid_driver *hdrv)
2885{
2886 driver_unregister(&hdrv->driver);
2887 hid_free_dynids(hdrv);
2888
2889 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2890}
2891EXPORT_SYMBOL_GPL(hid_unregister_driver);
2892
2893int hid_check_keys_pressed(struct hid_device *hid)
2894{
2895 struct hid_input *hidinput;
2896 int i;
2897
2898 if (!(hid->claimed & HID_CLAIMED_INPUT))
2899 return 0;
2900
2901 list_for_each_entry(hidinput, &hid->inputs, list) {
2902 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2903 if (hidinput->input->key[i])
2904 return 1;
2905 }
2906
2907 return 0;
2908}
2909EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2910
2911static int __init hid_init(void)
2912{
2913 int ret;
2914
2915 if (hid_debug)
2916 pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2917 "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2918
2919 ret = bus_register(&hid_bus_type);
2920 if (ret) {
2921 pr_err("can't register hid bus\n");
2922 goto err;
2923 }
2924
2925 ret = hidraw_init();
2926 if (ret)
2927 goto err_bus;
2928
2929 hid_debug_init();
2930
2931 return 0;
2932err_bus:
2933 bus_unregister(&hid_bus_type);
2934err:
2935 return ret;
2936}
2937
2938static void __exit hid_exit(void)
2939{
2940 hid_debug_exit();
2941 hidraw_exit();
2942 bus_unregister(&hid_bus_type);
2943 hid_quirks_exit(HID_BUS_ANY);
2944}
2945
2946module_init(hid_init);
2947module_exit(hid_exit);
2948
2949MODULE_AUTHOR("Andreas Gal");
2950MODULE_AUTHOR("Vojtech Pavlik");
2951MODULE_AUTHOR("Jiri Kosina");
2952MODULE_LICENSE("GPL");
1/*
2 * HID support for Linux
3 *
4 * Copyright (c) 1999 Andreas Gal
5 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
6 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
7 * Copyright (c) 2006-2010 Jiri Kosina
8 */
9
10/*
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
14 * any later version.
15 */
16
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19#include <linux/module.h>
20#include <linux/slab.h>
21#include <linux/init.h>
22#include <linux/kernel.h>
23#include <linux/list.h>
24#include <linux/mm.h>
25#include <linux/spinlock.h>
26#include <asm/unaligned.h>
27#include <asm/byteorder.h>
28#include <linux/input.h>
29#include <linux/wait.h>
30#include <linux/vmalloc.h>
31#include <linux/sched.h>
32
33#include <linux/hid.h>
34#include <linux/hiddev.h>
35#include <linux/hid-debug.h>
36#include <linux/hidraw.h>
37
38#include "hid-ids.h"
39
40/*
41 * Version Information
42 */
43
44#define DRIVER_DESC "HID core driver"
45#define DRIVER_LICENSE "GPL"
46
47int hid_debug = 0;
48module_param_named(debug, hid_debug, int, 0600);
49MODULE_PARM_DESC(debug, "toggle HID debugging messages");
50EXPORT_SYMBOL_GPL(hid_debug);
51
52/*
53 * Register a new report for a device.
54 */
55
56struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
57{
58 struct hid_report_enum *report_enum = device->report_enum + type;
59 struct hid_report *report;
60
61 if (report_enum->report_id_hash[id])
62 return report_enum->report_id_hash[id];
63
64 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
65 if (!report)
66 return NULL;
67
68 if (id != 0)
69 report_enum->numbered = 1;
70
71 report->id = id;
72 report->type = type;
73 report->size = 0;
74 report->device = device;
75 report_enum->report_id_hash[id] = report;
76
77 list_add_tail(&report->list, &report_enum->report_list);
78
79 return report;
80}
81EXPORT_SYMBOL_GPL(hid_register_report);
82
83/*
84 * Register a new field for this report.
85 */
86
87static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
88{
89 struct hid_field *field;
90
91 if (report->maxfield == HID_MAX_FIELDS) {
92 dbg_hid("too many fields in report\n");
93 return NULL;
94 }
95
96 field = kzalloc((sizeof(struct hid_field) +
97 usages * sizeof(struct hid_usage) +
98 values * sizeof(unsigned)), GFP_KERNEL);
99 if (!field)
100 return NULL;
101
102 field->index = report->maxfield++;
103 report->field[field->index] = field;
104 field->usage = (struct hid_usage *)(field + 1);
105 field->value = (s32 *)(field->usage + usages);
106 field->report = report;
107
108 return field;
109}
110
111/*
112 * Open a collection. The type/usage is pushed on the stack.
113 */
114
115static int open_collection(struct hid_parser *parser, unsigned type)
116{
117 struct hid_collection *collection;
118 unsigned usage;
119
120 usage = parser->local.usage[0];
121
122 if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
123 dbg_hid("collection stack overflow\n");
124 return -1;
125 }
126
127 if (parser->device->maxcollection == parser->device->collection_size) {
128 collection = kmalloc(sizeof(struct hid_collection) *
129 parser->device->collection_size * 2, GFP_KERNEL);
130 if (collection == NULL) {
131 dbg_hid("failed to reallocate collection array\n");
132 return -1;
133 }
134 memcpy(collection, parser->device->collection,
135 sizeof(struct hid_collection) *
136 parser->device->collection_size);
137 memset(collection + parser->device->collection_size, 0,
138 sizeof(struct hid_collection) *
139 parser->device->collection_size);
140 kfree(parser->device->collection);
141 parser->device->collection = collection;
142 parser->device->collection_size *= 2;
143 }
144
145 parser->collection_stack[parser->collection_stack_ptr++] =
146 parser->device->maxcollection;
147
148 collection = parser->device->collection +
149 parser->device->maxcollection++;
150 collection->type = type;
151 collection->usage = usage;
152 collection->level = parser->collection_stack_ptr - 1;
153
154 if (type == HID_COLLECTION_APPLICATION)
155 parser->device->maxapplication++;
156
157 return 0;
158}
159
160/*
161 * Close a collection.
162 */
163
164static int close_collection(struct hid_parser *parser)
165{
166 if (!parser->collection_stack_ptr) {
167 dbg_hid("collection stack underflow\n");
168 return -1;
169 }
170 parser->collection_stack_ptr--;
171 return 0;
172}
173
174/*
175 * Climb up the stack, search for the specified collection type
176 * and return the usage.
177 */
178
179static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
180{
181 struct hid_collection *collection = parser->device->collection;
182 int n;
183
184 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
185 unsigned index = parser->collection_stack[n];
186 if (collection[index].type == type)
187 return collection[index].usage;
188 }
189 return 0; /* we know nothing about this usage type */
190}
191
192/*
193 * Add a usage to the temporary parser table.
194 */
195
196static int hid_add_usage(struct hid_parser *parser, unsigned usage)
197{
198 if (parser->local.usage_index >= HID_MAX_USAGES) {
199 dbg_hid("usage index exceeded\n");
200 return -1;
201 }
202 parser->local.usage[parser->local.usage_index] = usage;
203 parser->local.collection_index[parser->local.usage_index] =
204 parser->collection_stack_ptr ?
205 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
206 parser->local.usage_index++;
207 return 0;
208}
209
210/*
211 * Register a new field for this report.
212 */
213
214static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
215{
216 struct hid_report *report;
217 struct hid_field *field;
218 int usages;
219 unsigned offset;
220 int i;
221
222 report = hid_register_report(parser->device, report_type, parser->global.report_id);
223 if (!report) {
224 dbg_hid("hid_register_report failed\n");
225 return -1;
226 }
227
228 if (parser->global.logical_maximum < parser->global.logical_minimum) {
229 dbg_hid("logical range invalid %d %d\n", parser->global.logical_minimum, parser->global.logical_maximum);
230 return -1;
231 }
232
233 offset = report->size;
234 report->size += parser->global.report_size * parser->global.report_count;
235
236 if (!parser->local.usage_index) /* Ignore padding fields */
237 return 0;
238
239 usages = max_t(int, parser->local.usage_index, parser->global.report_count);
240
241 field = hid_register_field(report, usages, parser->global.report_count);
242 if (!field)
243 return 0;
244
245 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
246 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
247 field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
248
249 for (i = 0; i < usages; i++) {
250 int j = i;
251 /* Duplicate the last usage we parsed if we have excess values */
252 if (i >= parser->local.usage_index)
253 j = parser->local.usage_index - 1;
254 field->usage[i].hid = parser->local.usage[j];
255 field->usage[i].collection_index =
256 parser->local.collection_index[j];
257 }
258
259 field->maxusage = usages;
260 field->flags = flags;
261 field->report_offset = offset;
262 field->report_type = report_type;
263 field->report_size = parser->global.report_size;
264 field->report_count = parser->global.report_count;
265 field->logical_minimum = parser->global.logical_minimum;
266 field->logical_maximum = parser->global.logical_maximum;
267 field->physical_minimum = parser->global.physical_minimum;
268 field->physical_maximum = parser->global.physical_maximum;
269 field->unit_exponent = parser->global.unit_exponent;
270 field->unit = parser->global.unit;
271
272 return 0;
273}
274
275/*
276 * Read data value from item.
277 */
278
279static u32 item_udata(struct hid_item *item)
280{
281 switch (item->size) {
282 case 1: return item->data.u8;
283 case 2: return item->data.u16;
284 case 4: return item->data.u32;
285 }
286 return 0;
287}
288
289static s32 item_sdata(struct hid_item *item)
290{
291 switch (item->size) {
292 case 1: return item->data.s8;
293 case 2: return item->data.s16;
294 case 4: return item->data.s32;
295 }
296 return 0;
297}
298
299/*
300 * Process a global item.
301 */
302
303static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
304{
305 switch (item->tag) {
306 case HID_GLOBAL_ITEM_TAG_PUSH:
307
308 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
309 dbg_hid("global environment stack overflow\n");
310 return -1;
311 }
312
313 memcpy(parser->global_stack + parser->global_stack_ptr++,
314 &parser->global, sizeof(struct hid_global));
315 return 0;
316
317 case HID_GLOBAL_ITEM_TAG_POP:
318
319 if (!parser->global_stack_ptr) {
320 dbg_hid("global environment stack underflow\n");
321 return -1;
322 }
323
324 memcpy(&parser->global, parser->global_stack +
325 --parser->global_stack_ptr, sizeof(struct hid_global));
326 return 0;
327
328 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
329 parser->global.usage_page = item_udata(item);
330 return 0;
331
332 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
333 parser->global.logical_minimum = item_sdata(item);
334 return 0;
335
336 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
337 if (parser->global.logical_minimum < 0)
338 parser->global.logical_maximum = item_sdata(item);
339 else
340 parser->global.logical_maximum = item_udata(item);
341 return 0;
342
343 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
344 parser->global.physical_minimum = item_sdata(item);
345 return 0;
346
347 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
348 if (parser->global.physical_minimum < 0)
349 parser->global.physical_maximum = item_sdata(item);
350 else
351 parser->global.physical_maximum = item_udata(item);
352 return 0;
353
354 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
355 parser->global.unit_exponent = item_sdata(item);
356 return 0;
357
358 case HID_GLOBAL_ITEM_TAG_UNIT:
359 parser->global.unit = item_udata(item);
360 return 0;
361
362 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
363 parser->global.report_size = item_udata(item);
364 if (parser->global.report_size > 32) {
365 dbg_hid("invalid report_size %d\n",
366 parser->global.report_size);
367 return -1;
368 }
369 return 0;
370
371 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
372 parser->global.report_count = item_udata(item);
373 if (parser->global.report_count > HID_MAX_USAGES) {
374 dbg_hid("invalid report_count %d\n",
375 parser->global.report_count);
376 return -1;
377 }
378 return 0;
379
380 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
381 parser->global.report_id = item_udata(item);
382 if (parser->global.report_id == 0) {
383 dbg_hid("report_id 0 is invalid\n");
384 return -1;
385 }
386 return 0;
387
388 default:
389 dbg_hid("unknown global tag 0x%x\n", item->tag);
390 return -1;
391 }
392}
393
394/*
395 * Process a local item.
396 */
397
398static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
399{
400 __u32 data;
401 unsigned n;
402
403 data = item_udata(item);
404
405 switch (item->tag) {
406 case HID_LOCAL_ITEM_TAG_DELIMITER:
407
408 if (data) {
409 /*
410 * We treat items before the first delimiter
411 * as global to all usage sets (branch 0).
412 * In the moment we process only these global
413 * items and the first delimiter set.
414 */
415 if (parser->local.delimiter_depth != 0) {
416 dbg_hid("nested delimiters\n");
417 return -1;
418 }
419 parser->local.delimiter_depth++;
420 parser->local.delimiter_branch++;
421 } else {
422 if (parser->local.delimiter_depth < 1) {
423 dbg_hid("bogus close delimiter\n");
424 return -1;
425 }
426 parser->local.delimiter_depth--;
427 }
428 return 1;
429
430 case HID_LOCAL_ITEM_TAG_USAGE:
431
432 if (parser->local.delimiter_branch > 1) {
433 dbg_hid("alternative usage ignored\n");
434 return 0;
435 }
436
437 if (item->size <= 2)
438 data = (parser->global.usage_page << 16) + data;
439
440 return hid_add_usage(parser, data);
441
442 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
443
444 if (parser->local.delimiter_branch > 1) {
445 dbg_hid("alternative usage ignored\n");
446 return 0;
447 }
448
449 if (item->size <= 2)
450 data = (parser->global.usage_page << 16) + data;
451
452 parser->local.usage_minimum = data;
453 return 0;
454
455 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
456
457 if (parser->local.delimiter_branch > 1) {
458 dbg_hid("alternative usage ignored\n");
459 return 0;
460 }
461
462 if (item->size <= 2)
463 data = (parser->global.usage_page << 16) + data;
464
465 for (n = parser->local.usage_minimum; n <= data; n++)
466 if (hid_add_usage(parser, n)) {
467 dbg_hid("hid_add_usage failed\n");
468 return -1;
469 }
470 return 0;
471
472 default:
473
474 dbg_hid("unknown local item tag 0x%x\n", item->tag);
475 return 0;
476 }
477 return 0;
478}
479
480/*
481 * Process a main item.
482 */
483
484static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
485{
486 __u32 data;
487 int ret;
488
489 data = item_udata(item);
490
491 switch (item->tag) {
492 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
493 ret = open_collection(parser, data & 0xff);
494 break;
495 case HID_MAIN_ITEM_TAG_END_COLLECTION:
496 ret = close_collection(parser);
497 break;
498 case HID_MAIN_ITEM_TAG_INPUT:
499 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
500 break;
501 case HID_MAIN_ITEM_TAG_OUTPUT:
502 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
503 break;
504 case HID_MAIN_ITEM_TAG_FEATURE:
505 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
506 break;
507 default:
508 dbg_hid("unknown main item tag 0x%x\n", item->tag);
509 ret = 0;
510 }
511
512 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
513
514 return ret;
515}
516
517/*
518 * Process a reserved item.
519 */
520
521static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
522{
523 dbg_hid("reserved item type, tag 0x%x\n", item->tag);
524 return 0;
525}
526
527/*
528 * Free a report and all registered fields. The field->usage and
529 * field->value table's are allocated behind the field, so we need
530 * only to free(field) itself.
531 */
532
533static void hid_free_report(struct hid_report *report)
534{
535 unsigned n;
536
537 for (n = 0; n < report->maxfield; n++)
538 kfree(report->field[n]);
539 kfree(report);
540}
541
542/*
543 * Free a device structure, all reports, and all fields.
544 */
545
546static void hid_device_release(struct device *dev)
547{
548 struct hid_device *device = container_of(dev, struct hid_device, dev);
549 unsigned i, j;
550
551 for (i = 0; i < HID_REPORT_TYPES; i++) {
552 struct hid_report_enum *report_enum = device->report_enum + i;
553
554 for (j = 0; j < 256; j++) {
555 struct hid_report *report = report_enum->report_id_hash[j];
556 if (report)
557 hid_free_report(report);
558 }
559 }
560
561 kfree(device->rdesc);
562 kfree(device->collection);
563 kfree(device);
564}
565
566/*
567 * Fetch a report description item from the data stream. We support long
568 * items, though they are not used yet.
569 */
570
571static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
572{
573 u8 b;
574
575 if ((end - start) <= 0)
576 return NULL;
577
578 b = *start++;
579
580 item->type = (b >> 2) & 3;
581 item->tag = (b >> 4) & 15;
582
583 if (item->tag == HID_ITEM_TAG_LONG) {
584
585 item->format = HID_ITEM_FORMAT_LONG;
586
587 if ((end - start) < 2)
588 return NULL;
589
590 item->size = *start++;
591 item->tag = *start++;
592
593 if ((end - start) < item->size)
594 return NULL;
595
596 item->data.longdata = start;
597 start += item->size;
598 return start;
599 }
600
601 item->format = HID_ITEM_FORMAT_SHORT;
602 item->size = b & 3;
603
604 switch (item->size) {
605 case 0:
606 return start;
607
608 case 1:
609 if ((end - start) < 1)
610 return NULL;
611 item->data.u8 = *start++;
612 return start;
613
614 case 2:
615 if ((end - start) < 2)
616 return NULL;
617 item->data.u16 = get_unaligned_le16(start);
618 start = (__u8 *)((__le16 *)start + 1);
619 return start;
620
621 case 3:
622 item->size++;
623 if ((end - start) < 4)
624 return NULL;
625 item->data.u32 = get_unaligned_le32(start);
626 start = (__u8 *)((__le32 *)start + 1);
627 return start;
628 }
629
630 return NULL;
631}
632
633/**
634 * hid_parse_report - parse device report
635 *
636 * @device: hid device
637 * @start: report start
638 * @size: report size
639 *
640 * Parse a report description into a hid_device structure. Reports are
641 * enumerated, fields are attached to these reports.
642 * 0 returned on success, otherwise nonzero error value.
643 */
644int hid_parse_report(struct hid_device *device, __u8 *start,
645 unsigned size)
646{
647 struct hid_parser *parser;
648 struct hid_item item;
649 __u8 *end;
650 int ret;
651 static int (*dispatch_type[])(struct hid_parser *parser,
652 struct hid_item *item) = {
653 hid_parser_main,
654 hid_parser_global,
655 hid_parser_local,
656 hid_parser_reserved
657 };
658
659 if (device->driver->report_fixup)
660 start = device->driver->report_fixup(device, start, &size);
661
662 device->rdesc = kmemdup(start, size, GFP_KERNEL);
663 if (device->rdesc == NULL)
664 return -ENOMEM;
665 device->rsize = size;
666
667 parser = vzalloc(sizeof(struct hid_parser));
668 if (!parser) {
669 ret = -ENOMEM;
670 goto err;
671 }
672
673 parser->device = device;
674
675 end = start + size;
676 ret = -EINVAL;
677 while ((start = fetch_item(start, end, &item)) != NULL) {
678
679 if (item.format != HID_ITEM_FORMAT_SHORT) {
680 dbg_hid("unexpected long global item\n");
681 goto err;
682 }
683
684 if (dispatch_type[item.type](parser, &item)) {
685 dbg_hid("item %u %u %u %u parsing failed\n",
686 item.format, (unsigned)item.size,
687 (unsigned)item.type, (unsigned)item.tag);
688 goto err;
689 }
690
691 if (start == end) {
692 if (parser->collection_stack_ptr) {
693 dbg_hid("unbalanced collection at end of report description\n");
694 goto err;
695 }
696 if (parser->local.delimiter_depth) {
697 dbg_hid("unbalanced delimiter at end of report description\n");
698 goto err;
699 }
700 vfree(parser);
701 return 0;
702 }
703 }
704
705 dbg_hid("item fetching failed at offset %d\n", (int)(end - start));
706err:
707 vfree(parser);
708 return ret;
709}
710EXPORT_SYMBOL_GPL(hid_parse_report);
711
712/*
713 * Convert a signed n-bit integer to signed 32-bit integer. Common
714 * cases are done through the compiler, the screwed things has to be
715 * done by hand.
716 */
717
718static s32 snto32(__u32 value, unsigned n)
719{
720 switch (n) {
721 case 8: return ((__s8)value);
722 case 16: return ((__s16)value);
723 case 32: return ((__s32)value);
724 }
725 return value & (1 << (n - 1)) ? value | (-1 << n) : value;
726}
727
728/*
729 * Convert a signed 32-bit integer to a signed n-bit integer.
730 */
731
732static u32 s32ton(__s32 value, unsigned n)
733{
734 s32 a = value >> (n - 1);
735 if (a && a != -1)
736 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
737 return value & ((1 << n) - 1);
738}
739
740/*
741 * Extract/implement a data field from/to a little endian report (bit array).
742 *
743 * Code sort-of follows HID spec:
744 * http://www.usb.org/developers/devclass_docs/HID1_11.pdf
745 *
746 * While the USB HID spec allows unlimited length bit fields in "report
747 * descriptors", most devices never use more than 16 bits.
748 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
749 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
750 */
751
752static __u32 extract(const struct hid_device *hid, __u8 *report,
753 unsigned offset, unsigned n)
754{
755 u64 x;
756
757 if (n > 32)
758 hid_warn(hid, "extract() called with n (%d) > 32! (%s)\n",
759 n, current->comm);
760
761 report += offset >> 3; /* adjust byte index */
762 offset &= 7; /* now only need bit offset into one byte */
763 x = get_unaligned_le64(report);
764 x = (x >> offset) & ((1ULL << n) - 1); /* extract bit field */
765 return (u32) x;
766}
767
768/*
769 * "implement" : set bits in a little endian bit stream.
770 * Same concepts as "extract" (see comments above).
771 * The data mangled in the bit stream remains in little endian
772 * order the whole time. It make more sense to talk about
773 * endianness of register values by considering a register
774 * a "cached" copy of the little endiad bit stream.
775 */
776static void implement(const struct hid_device *hid, __u8 *report,
777 unsigned offset, unsigned n, __u32 value)
778{
779 u64 x;
780 u64 m = (1ULL << n) - 1;
781
782 if (n > 32)
783 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
784 __func__, n, current->comm);
785
786 if (value > m)
787 hid_warn(hid, "%s() called with too large value %d! (%s)\n",
788 __func__, value, current->comm);
789 WARN_ON(value > m);
790 value &= m;
791
792 report += offset >> 3;
793 offset &= 7;
794
795 x = get_unaligned_le64(report);
796 x &= ~(m << offset);
797 x |= ((u64)value) << offset;
798 put_unaligned_le64(x, report);
799}
800
801/*
802 * Search an array for a value.
803 */
804
805static int search(__s32 *array, __s32 value, unsigned n)
806{
807 while (n--) {
808 if (*array++ == value)
809 return 0;
810 }
811 return -1;
812}
813
814/**
815 * hid_match_report - check if driver's raw_event should be called
816 *
817 * @hid: hid device
818 * @report_type: type to match against
819 *
820 * compare hid->driver->report_table->report_type to report->type
821 */
822static int hid_match_report(struct hid_device *hid, struct hid_report *report)
823{
824 const struct hid_report_id *id = hid->driver->report_table;
825
826 if (!id) /* NULL means all */
827 return 1;
828
829 for (; id->report_type != HID_TERMINATOR; id++)
830 if (id->report_type == HID_ANY_ID ||
831 id->report_type == report->type)
832 return 1;
833 return 0;
834}
835
836/**
837 * hid_match_usage - check if driver's event should be called
838 *
839 * @hid: hid device
840 * @usage: usage to match against
841 *
842 * compare hid->driver->usage_table->usage_{type,code} to
843 * usage->usage_{type,code}
844 */
845static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
846{
847 const struct hid_usage_id *id = hid->driver->usage_table;
848
849 if (!id) /* NULL means all */
850 return 1;
851
852 for (; id->usage_type != HID_ANY_ID - 1; id++)
853 if ((id->usage_hid == HID_ANY_ID ||
854 id->usage_hid == usage->hid) &&
855 (id->usage_type == HID_ANY_ID ||
856 id->usage_type == usage->type) &&
857 (id->usage_code == HID_ANY_ID ||
858 id->usage_code == usage->code))
859 return 1;
860 return 0;
861}
862
863static void hid_process_event(struct hid_device *hid, struct hid_field *field,
864 struct hid_usage *usage, __s32 value, int interrupt)
865{
866 struct hid_driver *hdrv = hid->driver;
867 int ret;
868
869 hid_dump_input(hid, usage, value);
870
871 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
872 ret = hdrv->event(hid, field, usage, value);
873 if (ret != 0) {
874 if (ret < 0)
875 dbg_hid("%s's event failed with %d\n",
876 hdrv->name, ret);
877 return;
878 }
879 }
880
881 if (hid->claimed & HID_CLAIMED_INPUT)
882 hidinput_hid_event(hid, field, usage, value);
883 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
884 hid->hiddev_hid_event(hid, field, usage, value);
885}
886
887/*
888 * Analyse a received field, and fetch the data from it. The field
889 * content is stored for next report processing (we do differential
890 * reporting to the layer).
891 */
892
893static void hid_input_field(struct hid_device *hid, struct hid_field *field,
894 __u8 *data, int interrupt)
895{
896 unsigned n;
897 unsigned count = field->report_count;
898 unsigned offset = field->report_offset;
899 unsigned size = field->report_size;
900 __s32 min = field->logical_minimum;
901 __s32 max = field->logical_maximum;
902 __s32 *value;
903
904 value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC);
905 if (!value)
906 return;
907
908 for (n = 0; n < count; n++) {
909
910 value[n] = min < 0 ?
911 snto32(extract(hid, data, offset + n * size, size),
912 size) :
913 extract(hid, data, offset + n * size, size);
914
915 /* Ignore report if ErrorRollOver */
916 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
917 value[n] >= min && value[n] <= max &&
918 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
919 goto exit;
920 }
921
922 for (n = 0; n < count; n++) {
923
924 if (HID_MAIN_ITEM_VARIABLE & field->flags) {
925 hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
926 continue;
927 }
928
929 if (field->value[n] >= min && field->value[n] <= max
930 && field->usage[field->value[n] - min].hid
931 && search(value, field->value[n], count))
932 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
933
934 if (value[n] >= min && value[n] <= max
935 && field->usage[value[n] - min].hid
936 && search(field->value, value[n], count))
937 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
938 }
939
940 memcpy(field->value, value, count * sizeof(__s32));
941exit:
942 kfree(value);
943}
944
945/*
946 * Output the field into the report.
947 */
948
949static void hid_output_field(const struct hid_device *hid,
950 struct hid_field *field, __u8 *data)
951{
952 unsigned count = field->report_count;
953 unsigned offset = field->report_offset;
954 unsigned size = field->report_size;
955 unsigned n;
956
957 for (n = 0; n < count; n++) {
958 if (field->logical_minimum < 0) /* signed values */
959 implement(hid, data, offset + n * size, size,
960 s32ton(field->value[n], size));
961 else /* unsigned values */
962 implement(hid, data, offset + n * size, size,
963 field->value[n]);
964 }
965}
966
967/*
968 * Create a report.
969 */
970
971void hid_output_report(struct hid_report *report, __u8 *data)
972{
973 unsigned n;
974
975 if (report->id > 0)
976 *data++ = report->id;
977
978 memset(data, 0, ((report->size - 1) >> 3) + 1);
979 for (n = 0; n < report->maxfield; n++)
980 hid_output_field(report->device, report->field[n], data);
981}
982EXPORT_SYMBOL_GPL(hid_output_report);
983
984/*
985 * Set a field value. The report this field belongs to has to be
986 * created and transferred to the device, to set this value in the
987 * device.
988 */
989
990int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
991{
992 unsigned size = field->report_size;
993
994 hid_dump_input(field->report->device, field->usage + offset, value);
995
996 if (offset >= field->report_count) {
997 dbg_hid("offset (%d) exceeds report_count (%d)\n", offset, field->report_count);
998 return -1;
999 }
1000 if (field->logical_minimum < 0) {
1001 if (value != snto32(s32ton(value, size), size)) {
1002 dbg_hid("value %d is out of range\n", value);
1003 return -1;
1004 }
1005 }
1006 field->value[offset] = value;
1007 return 0;
1008}
1009EXPORT_SYMBOL_GPL(hid_set_field);
1010
1011static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1012 const u8 *data)
1013{
1014 struct hid_report *report;
1015 unsigned int n = 0; /* Normally report number is 0 */
1016
1017 /* Device uses numbered reports, data[0] is report number */
1018 if (report_enum->numbered)
1019 n = *data;
1020
1021 report = report_enum->report_id_hash[n];
1022 if (report == NULL)
1023 dbg_hid("undefined report_id %u received\n", n);
1024
1025 return report;
1026}
1027
1028void hid_report_raw_event(struct hid_device *hid, int type, u8 *data, int size,
1029 int interrupt)
1030{
1031 struct hid_report_enum *report_enum = hid->report_enum + type;
1032 struct hid_report *report;
1033 unsigned int a;
1034 int rsize, csize = size;
1035 u8 *cdata = data;
1036
1037 report = hid_get_report(report_enum, data);
1038 if (!report)
1039 return;
1040
1041 if (report_enum->numbered) {
1042 cdata++;
1043 csize--;
1044 }
1045
1046 rsize = ((report->size - 1) >> 3) + 1;
1047
1048 if (rsize > HID_MAX_BUFFER_SIZE)
1049 rsize = HID_MAX_BUFFER_SIZE;
1050
1051 if (csize < rsize) {
1052 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1053 csize, rsize);
1054 memset(cdata + csize, 0, rsize - csize);
1055 }
1056
1057 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1058 hid->hiddev_report_event(hid, report);
1059 if (hid->claimed & HID_CLAIMED_HIDRAW)
1060 hidraw_report_event(hid, data, size);
1061
1062 for (a = 0; a < report->maxfield; a++)
1063 hid_input_field(hid, report->field[a], cdata, interrupt);
1064
1065 if (hid->claimed & HID_CLAIMED_INPUT)
1066 hidinput_report_event(hid, report);
1067}
1068EXPORT_SYMBOL_GPL(hid_report_raw_event);
1069
1070/**
1071 * hid_input_report - report data from lower layer (usb, bt...)
1072 *
1073 * @hid: hid device
1074 * @type: HID report type (HID_*_REPORT)
1075 * @data: report contents
1076 * @size: size of data parameter
1077 * @interrupt: distinguish between interrupt and control transfers
1078 *
1079 * This is data entry for lower layers.
1080 */
1081int hid_input_report(struct hid_device *hid, int type, u8 *data, int size, int interrupt)
1082{
1083 struct hid_report_enum *report_enum;
1084 struct hid_driver *hdrv;
1085 struct hid_report *report;
1086 char *buf;
1087 unsigned int i;
1088 int ret;
1089
1090 if (!hid || !hid->driver)
1091 return -ENODEV;
1092 report_enum = hid->report_enum + type;
1093 hdrv = hid->driver;
1094
1095 if (!size) {
1096 dbg_hid("empty report\n");
1097 return -1;
1098 }
1099
1100 buf = kmalloc(sizeof(char) * HID_DEBUG_BUFSIZE, GFP_ATOMIC);
1101
1102 if (!buf)
1103 goto nomem;
1104
1105 /* dump the report */
1106 snprintf(buf, HID_DEBUG_BUFSIZE - 1,
1107 "\nreport (size %u) (%snumbered) = ", size, report_enum->numbered ? "" : "un");
1108 hid_debug_event(hid, buf);
1109
1110 for (i = 0; i < size; i++) {
1111 snprintf(buf, HID_DEBUG_BUFSIZE - 1,
1112 " %02x", data[i]);
1113 hid_debug_event(hid, buf);
1114 }
1115 hid_debug_event(hid, "\n");
1116 kfree(buf);
1117
1118nomem:
1119 report = hid_get_report(report_enum, data);
1120
1121 if (!report)
1122 return -1;
1123
1124 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1125 ret = hdrv->raw_event(hid, report, data, size);
1126 if (ret != 0)
1127 return ret < 0 ? ret : 0;
1128 }
1129
1130 hid_report_raw_event(hid, type, data, size, interrupt);
1131
1132 return 0;
1133}
1134EXPORT_SYMBOL_GPL(hid_input_report);
1135
1136static bool hid_match_one_id(struct hid_device *hdev,
1137 const struct hid_device_id *id)
1138{
1139 return id->bus == hdev->bus &&
1140 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1141 (id->product == HID_ANY_ID || id->product == hdev->product);
1142}
1143
1144static const struct hid_device_id *hid_match_id(struct hid_device *hdev,
1145 const struct hid_device_id *id)
1146{
1147 for (; id->bus; id++)
1148 if (hid_match_one_id(hdev, id))
1149 return id;
1150
1151 return NULL;
1152}
1153
1154static const struct hid_device_id hid_hiddev_list[] = {
1155 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1156 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1157 { }
1158};
1159
1160static bool hid_hiddev(struct hid_device *hdev)
1161{
1162 return !!hid_match_id(hdev, hid_hiddev_list);
1163}
1164
1165
1166static ssize_t
1167read_report_descriptor(struct file *filp, struct kobject *kobj,
1168 struct bin_attribute *attr,
1169 char *buf, loff_t off, size_t count)
1170{
1171 struct device *dev = container_of(kobj, struct device, kobj);
1172 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1173
1174 if (off >= hdev->rsize)
1175 return 0;
1176
1177 if (off + count > hdev->rsize)
1178 count = hdev->rsize - off;
1179
1180 memcpy(buf, hdev->rdesc + off, count);
1181
1182 return count;
1183}
1184
1185static struct bin_attribute dev_bin_attr_report_desc = {
1186 .attr = { .name = "report_descriptor", .mode = 0444 },
1187 .read = read_report_descriptor,
1188 .size = HID_MAX_DESCRIPTOR_SIZE,
1189};
1190
1191int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1192{
1193 static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1194 "Joystick", "Gamepad", "Keyboard", "Keypad",
1195 "Multi-Axis Controller"
1196 };
1197 const char *type, *bus;
1198 char buf[64];
1199 unsigned int i;
1200 int len;
1201 int ret;
1202
1203 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1204 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1205 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1206 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1207 if (hdev->bus != BUS_USB)
1208 connect_mask &= ~HID_CONNECT_HIDDEV;
1209 if (hid_hiddev(hdev))
1210 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1211
1212 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1213 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1214 hdev->claimed |= HID_CLAIMED_INPUT;
1215 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1216 !hdev->hiddev_connect(hdev,
1217 connect_mask & HID_CONNECT_HIDDEV_FORCE))
1218 hdev->claimed |= HID_CLAIMED_HIDDEV;
1219 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1220 hdev->claimed |= HID_CLAIMED_HIDRAW;
1221
1222 if (!hdev->claimed) {
1223 hid_err(hdev, "claimed by neither input, hiddev nor hidraw\n");
1224 return -ENODEV;
1225 }
1226
1227 if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1228 (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1229 hdev->ff_init(hdev);
1230
1231 len = 0;
1232 if (hdev->claimed & HID_CLAIMED_INPUT)
1233 len += sprintf(buf + len, "input");
1234 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1235 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1236 hdev->minor);
1237 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1238 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1239 ((struct hidraw *)hdev->hidraw)->minor);
1240
1241 type = "Device";
1242 for (i = 0; i < hdev->maxcollection; i++) {
1243 struct hid_collection *col = &hdev->collection[i];
1244 if (col->type == HID_COLLECTION_APPLICATION &&
1245 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1246 (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1247 type = types[col->usage & 0xffff];
1248 break;
1249 }
1250 }
1251
1252 switch (hdev->bus) {
1253 case BUS_USB:
1254 bus = "USB";
1255 break;
1256 case BUS_BLUETOOTH:
1257 bus = "BLUETOOTH";
1258 break;
1259 default:
1260 bus = "<UNKNOWN>";
1261 }
1262
1263 ret = device_create_bin_file(&hdev->dev, &dev_bin_attr_report_desc);
1264 if (ret)
1265 hid_warn(hdev,
1266 "can't create sysfs report descriptor attribute err: %d\n", ret);
1267
1268 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1269 buf, bus, hdev->version >> 8, hdev->version & 0xff,
1270 type, hdev->name, hdev->phys);
1271
1272 return 0;
1273}
1274EXPORT_SYMBOL_GPL(hid_connect);
1275
1276void hid_disconnect(struct hid_device *hdev)
1277{
1278 device_remove_bin_file(&hdev->dev, &dev_bin_attr_report_desc);
1279 if (hdev->claimed & HID_CLAIMED_INPUT)
1280 hidinput_disconnect(hdev);
1281 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1282 hdev->hiddev_disconnect(hdev);
1283 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1284 hidraw_disconnect(hdev);
1285}
1286EXPORT_SYMBOL_GPL(hid_disconnect);
1287
1288/* a list of devices for which there is a specialized driver on HID bus */
1289static const struct hid_device_id hid_have_special_driver[] = {
1290 { HID_USB_DEVICE(USB_VENDOR_ID_3M, USB_DEVICE_ID_3M1968) },
1291 { HID_USB_DEVICE(USB_VENDOR_ID_3M, USB_DEVICE_ID_3M2256) },
1292 { HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_WCP32PU) },
1293 { HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_X5_005D) },
1294 { HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_RP_649) },
1295 { HID_USB_DEVICE(USB_VENDOR_ID_ACRUX, 0x0802) },
1296 { HID_USB_DEVICE(USB_VENDOR_ID_ACTIONSTAR, USB_DEVICE_ID_ACTIONSTAR_1011) },
1297 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ATV_IRCONTROL) },
1298 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_IRCONTROL4) },
1299 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MIGHTYMOUSE) },
1300 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MAGICMOUSE) },
1301 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MAGICTRACKPAD) },
1302 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ANSI) },
1303 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ISO) },
1304 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ANSI) },
1305 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ISO) },
1306 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_JIS) },
1307 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ANSI) },
1308 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ISO) },
1309 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_JIS) },
1310 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ANSI) },
1311 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ISO) },
1312 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_JIS) },
1313 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_ANSI) },
1314 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_ISO) },
1315 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_JIS) },
1316 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_ANSI) },
1317 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_ISO) },
1318 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_JIS) },
1319 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ANSI) },
1320 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ISO) },
1321 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_JIS) },
1322 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_ANSI) },
1323 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_ISO) },
1324 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_JIS) },
1325 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ANSI) },
1326 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ISO) },
1327 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_JIS) },
1328 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ANSI) },
1329 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ISO) },
1330 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_JIS) },
1331 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ANSI) },
1332 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ISO) },
1333 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_JIS) },
1334 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ANSI) },
1335 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ISO) },
1336 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_JIS) },
1337 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ANSI) },
1338 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ISO) },
1339 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_JIS) },
1340 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ANSI) },
1341 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ISO) },
1342 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_JIS) },
1343 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_ANSI) },
1344 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_ISO) },
1345 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_JIS) },
1346 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_ANSI) },
1347 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_ISO) },
1348 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_JIS) },
1349 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_TP_ONLY) },
1350 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER1_TP_ONLY) },
1351 { HID_USB_DEVICE(USB_VENDOR_ID_ASUS, USB_DEVICE_ID_ASUS_T91MT) },
1352 { HID_USB_DEVICE(USB_VENDOR_ID_ASUS, USB_DEVICE_ID_ASUSTEK_MULTITOUCH_YFO) },
1353 { HID_USB_DEVICE(USB_VENDOR_ID_BELKIN, USB_DEVICE_ID_FLIP_KVM) },
1354 { HID_USB_DEVICE(USB_VENDOR_ID_BTC, USB_DEVICE_ID_BTC_EMPREX_REMOTE) },
1355 { HID_USB_DEVICE(USB_VENDOR_ID_BTC, USB_DEVICE_ID_BTC_EMPREX_REMOTE_2) },
1356 { HID_USB_DEVICE(USB_VENDOR_ID_CANDO, USB_DEVICE_ID_CANDO_PIXCIR_MULTI_TOUCH) },
1357 { HID_USB_DEVICE(USB_VENDOR_ID_CANDO, USB_DEVICE_ID_CANDO_MULTI_TOUCH) },
1358 { HID_USB_DEVICE(USB_VENDOR_ID_CANDO, USB_DEVICE_ID_CANDO_MULTI_TOUCH_10_1) },
1359 { HID_USB_DEVICE(USB_VENDOR_ID_CANDO, USB_DEVICE_ID_CANDO_MULTI_TOUCH_11_6) },
1360 { HID_USB_DEVICE(USB_VENDOR_ID_CANDO, USB_DEVICE_ID_CANDO_MULTI_TOUCH_15_6) },
1361 { HID_USB_DEVICE(USB_VENDOR_ID_CHERRY, USB_DEVICE_ID_CHERRY_CYMOTION) },
1362 { HID_USB_DEVICE(USB_VENDOR_ID_CHERRY, USB_DEVICE_ID_CHERRY_CYMOTION_SOLAR) },
1363 { HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_TACTICAL_PAD) },
1364 { HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_WIRELESS) },
1365 { HID_USB_DEVICE(USB_VENDOR_ID_CHUNGHWAT, USB_DEVICE_ID_CHUNGHWAT_MULTITOUCH) },
1366 { HID_USB_DEVICE(USB_VENDOR_ID_CREATIVELABS, USB_DEVICE_ID_PRODIKEYS_PCMIDI) },
1367 { HID_USB_DEVICE(USB_VENDOR_ID_CVTOUCH, USB_DEVICE_ID_CVTOUCH_SCREEN) },
1368 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_1) },
1369 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_2) },
1370 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_3) },
1371 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_MOUSE) },
1372 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_TRUETOUCH) },
1373 { HID_USB_DEVICE(USB_VENDOR_ID_DRAGONRISE, 0x0006) },
1374 { HID_USB_DEVICE(USB_VENDOR_ID_DRAGONRISE, 0x0011) },
1375 { HID_USB_DEVICE(USB_VENDOR_ID_DWAV, USB_DEVICE_ID_DWAV_EGALAX_MULTITOUCH) },
1376 { HID_USB_DEVICE(USB_VENDOR_ID_DWAV, USB_DEVICE_ID_DWAV_EGALAX_MULTITOUCH1) },
1377 { HID_USB_DEVICE(USB_VENDOR_ID_DWAV, USB_DEVICE_ID_DWAV_EGALAX_MULTITOUCH2) },
1378 { HID_USB_DEVICE(USB_VENDOR_ID_DWAV, USB_DEVICE_ID_DWAV_EGALAX_MULTITOUCH3) },
1379 { HID_USB_DEVICE(USB_VENDOR_ID_DWAV, USB_DEVICE_ID_DWAV_EGALAX_MULTITOUCH4) },
1380 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_ELECOM, USB_DEVICE_ID_ELECOM_BM084) },
1381 { HID_USB_DEVICE(USB_VENDOR_ID_ELO, USB_DEVICE_ID_ELO_TS2515) },
1382 { HID_USB_DEVICE(USB_VENDOR_ID_EMS, USB_DEVICE_ID_EMS_TRIO_LINKER_PLUS_II) },
1383 { HID_USB_DEVICE(USB_VENDOR_ID_EZKEY, USB_DEVICE_ID_BTC_8193) },
1384 { HID_USB_DEVICE(USB_VENDOR_ID_GAMERON, USB_DEVICE_ID_GAMERON_DUAL_PSX_ADAPTOR) },
1385 { HID_USB_DEVICE(USB_VENDOR_ID_GAMERON, USB_DEVICE_ID_GAMERON_DUAL_PCS_ADAPTOR) },
1386 { HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, USB_DEVICE_ID_GENERAL_TOUCH_WIN7_TWOFINGERS) },
1387 { HID_USB_DEVICE(USB_VENDOR_ID_GOODTOUCH, USB_DEVICE_ID_GOODTOUCH_000f) },
1388 { HID_USB_DEVICE(USB_VENDOR_ID_GREENASIA, 0x0003) },
1389 { HID_USB_DEVICE(USB_VENDOR_ID_GREENASIA, 0x0012) },
1390 { HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE) },
1391 { HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE_2) },
1392 { HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE_3) },
1393 { HID_USB_DEVICE(USB_VENDOR_ID_HANVON, USB_DEVICE_ID_HANVON_MULTITOUCH) },
1394 { HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK, USB_DEVICE_ID_HOLTEK_ON_LINE_GRIP) },
1395 { HID_USB_DEVICE(USB_VENDOR_ID_ILITEK, USB_DEVICE_ID_ILITEK_MULTITOUCH) },
1396 { HID_USB_DEVICE(USB_VENDOR_ID_IRTOUCHSYSTEMS, USB_DEVICE_ID_IRTOUCH_INFRARED_USB) },
1397 { HID_USB_DEVICE(USB_VENDOR_ID_KENSINGTON, USB_DEVICE_ID_KS_SLIMBLADE) },
1398 { HID_USB_DEVICE(USB_VENDOR_ID_KEYTOUCH, USB_DEVICE_ID_KEYTOUCH_IEC) },
1399 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_ERGO_525V) },
1400 { HID_USB_DEVICE(USB_VENDOR_ID_LABTEC, USB_DEVICE_ID_LABTEC_WIRELESS_KEYBOARD) },
1401 { HID_USB_DEVICE(USB_VENDOR_ID_LCPOWER, USB_DEVICE_ID_LCPOWER_LC1000 ) },
1402 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_MX3000_RECEIVER) },
1403 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_S510_RECEIVER) },
1404 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_S510_RECEIVER_2) },
1405 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RECEIVER) },
1406 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_DESKTOP) },
1407 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_EDGE) },
1408 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_MINI) },
1409 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_ELITE_KBD) },
1410 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_CORDLESS_DESKTOP_LX500) },
1411 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_EXTREME_3D) },
1412 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WHEEL) },
1413 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD_CORD) },
1414 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD) },
1415 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD2_2) },
1416 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WINGMAN_F3D) },
1417 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WINGMAN_FFG ) },
1418 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_FORCE3D_PRO) },
1419 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_FLIGHT_SYSTEM_G940) },
1420 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_MOMO_WHEEL) },
1421 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_MOMO_WHEEL2) },
1422 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_DFP_WHEEL) },
1423 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G25_WHEEL) },
1424 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G27_WHEEL) },
1425 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WII_WHEEL) },
1426 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD2) },
1427 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_SPACETRAVELLER) },
1428 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_SPACENAVIGATOR) },
1429 { HID_USB_DEVICE(USB_VENDOR_ID_LUMIO, USB_DEVICE_ID_CRYSTALTOUCH) },
1430 { HID_USB_DEVICE(USB_VENDOR_ID_LUMIO, USB_DEVICE_ID_CRYSTALTOUCH_DUAL) },
1431 { HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICOLCD) },
1432 { HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICOLCD_BOOTLOADER) },
1433 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_COMFORT_MOUSE_4500) },
1434 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_SIDEWINDER_GV) },
1435 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_NE4K) },
1436 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_LK6K) },
1437 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_PRESENTER_8K_USB) },
1438 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_DIGITAL_MEDIA_3K) },
1439 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_WIRELESS_OPTICAL_DESKTOP_3_0) },
1440 { HID_USB_DEVICE(USB_VENDOR_ID_MONTEREY, USB_DEVICE_ID_GENIUS_KB29E) },
1441 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN) },
1442 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_1) },
1443 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_2) },
1444 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_3) },
1445 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_4) },
1446 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_5) },
1447 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_6) },
1448 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_7) },
1449 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_8) },
1450 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_9) },
1451 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_10) },
1452 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_11) },
1453 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_12) },
1454 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_13) },
1455 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_14) },
1456 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_15) },
1457 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_16) },
1458 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_17) },
1459 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_18) },
1460 { HID_USB_DEVICE(USB_VENDOR_ID_ORTEK, USB_DEVICE_ID_ORTEK_PKB1700) },
1461 { HID_USB_DEVICE(USB_VENDOR_ID_ORTEK, USB_DEVICE_ID_ORTEK_WKB2000) },
1462 { HID_USB_DEVICE(USB_VENDOR_ID_PENMOUNT, USB_DEVICE_ID_PENMOUNT_PCI) },
1463 { HID_USB_DEVICE(USB_VENDOR_ID_PETALYNX, USB_DEVICE_ID_PETALYNX_MAXTER_REMOTE) },
1464 { HID_USB_DEVICE(USB_VENDOR_ID_QUANTA, USB_DEVICE_ID_QUANTA_OPTICAL_TOUCH) },
1465 { HID_USB_DEVICE(USB_VENDOR_ID_QUANTA, USB_DEVICE_ID_PIXART_IMAGING_INC_OPTICAL_TOUCH_SCREEN) },
1466 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONE) },
1467 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_ARVO) },
1468 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONEPLUS) },
1469 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KOVAPLUS) },
1470 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_PYRA_WIRED) },
1471 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_PYRA_WIRELESS) },
1472 { HID_USB_DEVICE(USB_VENDOR_ID_SAMSUNG, USB_DEVICE_ID_SAMSUNG_IR_REMOTE) },
1473 { HID_USB_DEVICE(USB_VENDOR_ID_SAMSUNG, USB_DEVICE_ID_SAMSUNG_WIRELESS_KBD_MOUSE) },
1474 { HID_USB_DEVICE(USB_VENDOR_ID_SKYCABLE, USB_DEVICE_ID_SKYCABLE_WIRELESS_PRESENTER) },
1475 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS3_CONTROLLER) },
1476 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_NAVIGATION_CONTROLLER) },
1477 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS3_CONTROLLER) },
1478 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_VAIO_VGX_MOUSE) },
1479 { HID_USB_DEVICE(USB_VENDOR_ID_STANTUM, USB_DEVICE_ID_MTP) },
1480 { HID_USB_DEVICE(USB_VENDOR_ID_STANTUM_STM, USB_DEVICE_ID_MTP_STM) },
1481 { HID_USB_DEVICE(USB_VENDOR_ID_STANTUM_SITRONIX, USB_DEVICE_ID_MTP_SITRONIX) },
1482 { HID_USB_DEVICE(USB_VENDOR_ID_SUNPLUS, USB_DEVICE_ID_SUNPLUS_WDESKTOP) },
1483 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb300) },
1484 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb304) },
1485 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb323) },
1486 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb324) },
1487 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb651) },
1488 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb653) },
1489 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb654) },
1490 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb65a) },
1491 { HID_USB_DEVICE(USB_VENDOR_ID_TOPSEED, USB_DEVICE_ID_TOPSEED_CYBERLINK) },
1492 { HID_USB_DEVICE(USB_VENDOR_ID_TOPSEED2, USB_DEVICE_ID_TOPSEED2_RF_COMBO) },
1493 { HID_USB_DEVICE(USB_VENDOR_ID_TOUCH_INTL, USB_DEVICE_ID_TOUCH_INTL_MULTI_TOUCH) },
1494 { HID_USB_DEVICE(USB_VENDOR_ID_TWINHAN, USB_DEVICE_ID_TWINHAN_IR_REMOTE) },
1495 { HID_USB_DEVICE(USB_VENDOR_ID_TURBOX, USB_DEVICE_ID_TURBOX_TOUCHSCREEN_MOSART) },
1496 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_PF1209) },
1497 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP4030U) },
1498 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP5540U) },
1499 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP8060U) },
1500 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP1062) },
1501 { HID_USB_DEVICE(USB_VENDOR_ID_UNITEC, USB_DEVICE_ID_UNITEC_USB_TOUCH_0709) },
1502 { HID_USB_DEVICE(USB_VENDOR_ID_UNITEC, USB_DEVICE_ID_UNITEC_USB_TOUCH_0A19) },
1503 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_SMARTJOY_PLUS) },
1504 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE_BLUETOOTH) },
1505 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_SLIM_TABLET_5_8_INCH) },
1506 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_SLIM_TABLET_12_1_INCH) },
1507 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_MEDIA_TABLET_10_6_INCH) },
1508 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_MEDIA_TABLET_14_1_INCH) },
1509 { HID_USB_DEVICE(USB_VENDOR_ID_XAT, USB_DEVICE_ID_XAT_CSR) },
1510 { HID_USB_DEVICE(USB_VENDOR_ID_X_TENSIONS, USB_DEVICE_ID_SPEEDLINK_VAD_CEZANNE) },
1511 { HID_USB_DEVICE(USB_VENDOR_ID_ZEROPLUS, 0x0005) },
1512 { HID_USB_DEVICE(USB_VENDOR_ID_ZEROPLUS, 0x0030) },
1513 { HID_USB_DEVICE(USB_VENDOR_ID_ZYDACRON, USB_DEVICE_ID_ZYDACRON_REMOTE_CONTROL) },
1514
1515 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_PRESENTER_8K_BT) },
1516 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_NINTENDO, USB_DEVICE_ID_NINTENDO_WIIMOTE) },
1517 { }
1518};
1519
1520struct hid_dynid {
1521 struct list_head list;
1522 struct hid_device_id id;
1523};
1524
1525/**
1526 * store_new_id - add a new HID device ID to this driver and re-probe devices
1527 * @driver: target device driver
1528 * @buf: buffer for scanning device ID data
1529 * @count: input size
1530 *
1531 * Adds a new dynamic hid device ID to this driver,
1532 * and causes the driver to probe for all devices again.
1533 */
1534static ssize_t store_new_id(struct device_driver *drv, const char *buf,
1535 size_t count)
1536{
1537 struct hid_driver *hdrv = container_of(drv, struct hid_driver, driver);
1538 struct hid_dynid *dynid;
1539 __u32 bus, vendor, product;
1540 unsigned long driver_data = 0;
1541 int ret;
1542
1543 ret = sscanf(buf, "%x %x %x %lx",
1544 &bus, &vendor, &product, &driver_data);
1545 if (ret < 3)
1546 return -EINVAL;
1547
1548 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
1549 if (!dynid)
1550 return -ENOMEM;
1551
1552 dynid->id.bus = bus;
1553 dynid->id.vendor = vendor;
1554 dynid->id.product = product;
1555 dynid->id.driver_data = driver_data;
1556
1557 spin_lock(&hdrv->dyn_lock);
1558 list_add_tail(&dynid->list, &hdrv->dyn_list);
1559 spin_unlock(&hdrv->dyn_lock);
1560
1561 ret = 0;
1562 if (get_driver(&hdrv->driver)) {
1563 ret = driver_attach(&hdrv->driver);
1564 put_driver(&hdrv->driver);
1565 }
1566
1567 return ret ? : count;
1568}
1569static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
1570
1571static void hid_free_dynids(struct hid_driver *hdrv)
1572{
1573 struct hid_dynid *dynid, *n;
1574
1575 spin_lock(&hdrv->dyn_lock);
1576 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
1577 list_del(&dynid->list);
1578 kfree(dynid);
1579 }
1580 spin_unlock(&hdrv->dyn_lock);
1581}
1582
1583static const struct hid_device_id *hid_match_device(struct hid_device *hdev,
1584 struct hid_driver *hdrv)
1585{
1586 struct hid_dynid *dynid;
1587
1588 spin_lock(&hdrv->dyn_lock);
1589 list_for_each_entry(dynid, &hdrv->dyn_list, list) {
1590 if (hid_match_one_id(hdev, &dynid->id)) {
1591 spin_unlock(&hdrv->dyn_lock);
1592 return &dynid->id;
1593 }
1594 }
1595 spin_unlock(&hdrv->dyn_lock);
1596
1597 return hid_match_id(hdev, hdrv->id_table);
1598}
1599
1600static int hid_bus_match(struct device *dev, struct device_driver *drv)
1601{
1602 struct hid_driver *hdrv = container_of(drv, struct hid_driver, driver);
1603 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1604
1605 if (!hid_match_device(hdev, hdrv))
1606 return 0;
1607
1608 /* generic wants all that don't have specialized driver */
1609 if (!strncmp(hdrv->name, "generic-", 8))
1610 return !hid_match_id(hdev, hid_have_special_driver);
1611
1612 return 1;
1613}
1614
1615static int hid_device_probe(struct device *dev)
1616{
1617 struct hid_driver *hdrv = container_of(dev->driver,
1618 struct hid_driver, driver);
1619 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1620 const struct hid_device_id *id;
1621 int ret = 0;
1622
1623 if (!hdev->driver) {
1624 id = hid_match_device(hdev, hdrv);
1625 if (id == NULL)
1626 return -ENODEV;
1627
1628 hdev->driver = hdrv;
1629 if (hdrv->probe) {
1630 ret = hdrv->probe(hdev, id);
1631 } else { /* default probe */
1632 ret = hid_parse(hdev);
1633 if (!ret)
1634 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
1635 }
1636 if (ret)
1637 hdev->driver = NULL;
1638 }
1639 return ret;
1640}
1641
1642static int hid_device_remove(struct device *dev)
1643{
1644 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1645 struct hid_driver *hdrv = hdev->driver;
1646
1647 if (hdrv) {
1648 if (hdrv->remove)
1649 hdrv->remove(hdev);
1650 else /* default remove */
1651 hid_hw_stop(hdev);
1652 hdev->driver = NULL;
1653 }
1654
1655 return 0;
1656}
1657
1658static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
1659{
1660 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1661
1662 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
1663 hdev->bus, hdev->vendor, hdev->product))
1664 return -ENOMEM;
1665
1666 if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
1667 return -ENOMEM;
1668
1669 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
1670 return -ENOMEM;
1671
1672 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
1673 return -ENOMEM;
1674
1675 if (add_uevent_var(env, "MODALIAS=hid:b%04Xv%08Xp%08X",
1676 hdev->bus, hdev->vendor, hdev->product))
1677 return -ENOMEM;
1678
1679 return 0;
1680}
1681
1682static struct bus_type hid_bus_type = {
1683 .name = "hid",
1684 .match = hid_bus_match,
1685 .probe = hid_device_probe,
1686 .remove = hid_device_remove,
1687 .uevent = hid_uevent,
1688};
1689
1690/* a list of devices that shouldn't be handled by HID core at all */
1691static const struct hid_device_id hid_ignore_list[] = {
1692 { HID_USB_DEVICE(USB_VENDOR_ID_ACECAD, USB_DEVICE_ID_ACECAD_FLAIR) },
1693 { HID_USB_DEVICE(USB_VENDOR_ID_ACECAD, USB_DEVICE_ID_ACECAD_302) },
1694 { HID_USB_DEVICE(USB_VENDOR_ID_ADS_TECH, USB_DEVICE_ID_ADS_TECH_RADIO_SI470X) },
1695 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_01) },
1696 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_10) },
1697 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_20) },
1698 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_21) },
1699 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_22) },
1700 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_23) },
1701 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_24) },
1702 { HID_USB_DEVICE(USB_VENDOR_ID_AIRCABLE, USB_DEVICE_ID_AIRCABLE1) },
1703 { HID_USB_DEVICE(USB_VENDOR_ID_ALCOR, USB_DEVICE_ID_ALCOR_USBRS232) },
1704 { HID_USB_DEVICE(USB_VENDOR_ID_ASUSTEK, USB_DEVICE_ID_ASUSTEK_LCM)},
1705 { HID_USB_DEVICE(USB_VENDOR_ID_ASUSTEK, USB_DEVICE_ID_ASUSTEK_LCM2)},
1706 { HID_USB_DEVICE(USB_VENDOR_ID_AVERMEDIA, USB_DEVICE_ID_AVER_FM_MR800) },
1707 { HID_USB_DEVICE(USB_VENDOR_ID_BERKSHIRE, USB_DEVICE_ID_BERKSHIRE_PCWD) },
1708 { HID_USB_DEVICE(USB_VENDOR_ID_CIDC, 0x0103) },
1709 { HID_USB_DEVICE(USB_VENDOR_ID_CYGNAL, USB_DEVICE_ID_CYGNAL_RADIO_SI470X) },
1710 { HID_USB_DEVICE(USB_VENDOR_ID_CMEDIA, USB_DEVICE_ID_CM109) },
1711 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_HIDCOM) },
1712 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_ULTRAMOUSE) },
1713 { HID_USB_DEVICE(USB_VENDOR_ID_DEALEXTREAME, USB_DEVICE_ID_DEALEXTREAME_RADIO_SI4701) },
1714 { HID_USB_DEVICE(USB_VENDOR_ID_DELORME, USB_DEVICE_ID_DELORME_EARTHMATE) },
1715 { HID_USB_DEVICE(USB_VENDOR_ID_DELORME, USB_DEVICE_ID_DELORME_EM_LT20) },
1716 { HID_USB_DEVICE(USB_VENDOR_ID_DREAM_CHEEKY, 0x0004) },
1717 { HID_USB_DEVICE(USB_VENDOR_ID_ESSENTIAL_REALITY, USB_DEVICE_ID_ESSENTIAL_REALITY_P5) },
1718 { HID_USB_DEVICE(USB_VENDOR_ID_ETT, USB_DEVICE_ID_TC5UH) },
1719 { HID_USB_DEVICE(USB_VENDOR_ID_ETT, USB_DEVICE_ID_TC4UM) },
1720 { HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0002) },
1721 { HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0003) },
1722 { HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0004) },
1723 { HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_4_PHIDGETSERVO_30) },
1724 { HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_1_PHIDGETSERVO_30) },
1725 { HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_0_4_IF_KIT) },
1726 { HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_16_16_IF_KIT) },
1727 { HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_8_8_8_IF_KIT) },
1728 { HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_8_7_IF_KIT) },
1729 { HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_8_8_IF_KIT) },
1730 { HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_PHIDGET_MOTORCONTROL) },
1731 { HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_SUPER_Q2) },
1732 { HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_GOGOPEN) },
1733 { HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_PENPOWER) },
1734 { HID_USB_DEVICE(USB_VENDOR_ID_GRETAGMACBETH, USB_DEVICE_ID_GRETAGMACBETH_HUEY) },
1735 { HID_USB_DEVICE(USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_POWERMATE) },
1736 { HID_USB_DEVICE(USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_SOUNDKNOB) },
1737 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_90) },
1738 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_100) },
1739 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_101) },
1740 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_103) },
1741 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_104) },
1742 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_105) },
1743 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_106) },
1744 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_107) },
1745 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_108) },
1746 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_200) },
1747 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_201) },
1748 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_202) },
1749 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_203) },
1750 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_204) },
1751 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_205) },
1752 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_206) },
1753 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_207) },
1754 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_300) },
1755 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_301) },
1756 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_302) },
1757 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_303) },
1758 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_304) },
1759 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_305) },
1760 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_306) },
1761 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_307) },
1762 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_308) },
1763 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_309) },
1764 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_400) },
1765 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_401) },
1766 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_402) },
1767 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_403) },
1768 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_404) },
1769 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_405) },
1770 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_500) },
1771 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_501) },
1772 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_502) },
1773 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_503) },
1774 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_504) },
1775 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1000) },
1776 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1001) },
1777 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1002) },
1778 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1003) },
1779 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1004) },
1780 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1005) },
1781 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1006) },
1782 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1007) },
1783 { HID_USB_DEVICE(USB_VENDOR_ID_IMATION, USB_DEVICE_ID_DISC_STAKKA) },
1784 { HID_USB_DEVICE(USB_VENDOR_ID_KBGEAR, USB_DEVICE_ID_KBGEAR_JAMSTUDIO) },
1785 { HID_USB_DEVICE(USB_VENDOR_ID_KWORLD, USB_DEVICE_ID_KWORLD_RADIO_FM700) },
1786 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_GPEN_560) },
1787 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_KYE, 0x0058) },
1788 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_CASSY) },
1789 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_CASSY2) },
1790 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POCKETCASSY) },
1791 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POCKETCASSY2) },
1792 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOBILECASSY) },
1793 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOBILECASSY2) },
1794 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYVOLTAGE) },
1795 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYCURRENT) },
1796 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYTIME) },
1797 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYTEMPERATURE) },
1798 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYPH) },
1799 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_JWM) },
1800 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_DMMP) },
1801 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIP) },
1802 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIC) },
1803 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIB) },
1804 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_XRAY) },
1805 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_XRAY2) },
1806 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_VIDEOCOM) },
1807 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOTOR) },
1808 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_COM3LAB) },
1809 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_TELEPORT) },
1810 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_NETWORKANALYSER) },
1811 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POWERCONTROL) },
1812 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MACHINETEST) },
1813 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOSTANALYSER) },
1814 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOSTANALYSER2) },
1815 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_ABSESP) },
1816 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_AUTODATABUS) },
1817 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MCT) },
1818 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_HYBRID) },
1819 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_HEATCONTROL) },
1820 { HID_USB_DEVICE(USB_VENDOR_ID_MCC, USB_DEVICE_ID_MCC_PMD1024LS) },
1821 { HID_USB_DEVICE(USB_VENDOR_ID_MCC, USB_DEVICE_ID_MCC_PMD1208LS) },
1822 { HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICKIT1) },
1823 { HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICKIT2) },
1824 { HID_USB_DEVICE(USB_VENDOR_ID_NATIONAL_SEMICONDUCTOR, USB_DEVICE_ID_N_S_HARMONY) },
1825 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100) },
1826 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 20) },
1827 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 30) },
1828 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 100) },
1829 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 108) },
1830 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 118) },
1831 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 200) },
1832 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 300) },
1833 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 400) },
1834 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 500) },
1835 { HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0001) },
1836 { HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0002) },
1837 { HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0003) },
1838 { HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0004) },
1839 { HID_USB_DEVICE(USB_VENDOR_ID_PHILIPS, USB_DEVICE_ID_PHILIPS_IEEE802154_DONGLE) },
1840 { HID_USB_DEVICE(USB_VENDOR_ID_POWERCOM, USB_DEVICE_ID_POWERCOM_UPS) },
1841 { HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_LABPRO) },
1842 { HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_GOTEMP) },
1843 { HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_SKIP) },
1844 { HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_CYCLOPS) },
1845 { HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_LCSPEC) },
1846 { HID_USB_DEVICE(USB_VENDOR_ID_WACOM, HID_ANY_ID) },
1847 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_4_PHIDGETSERVO_20) },
1848 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_1_PHIDGETSERVO_20) },
1849 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_8_8_4_IF_KIT) },
1850 { HID_USB_DEVICE(USB_VENDOR_ID_YEALINK, USB_DEVICE_ID_YEALINK_P1K_P4K_B2K) },
1851 { }
1852};
1853
1854/**
1855 * hid_mouse_ignore_list - mouse devices which should not be handled by the hid layer
1856 *
1857 * There are composite devices for which we want to ignore only a certain
1858 * interface. This is a list of devices for which only the mouse interface will
1859 * be ignored. This allows a dedicated driver to take care of the interface.
1860 */
1861static const struct hid_device_id hid_mouse_ignore_list[] = {
1862 /* appletouch driver */
1863 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ANSI) },
1864 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ISO) },
1865 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ANSI) },
1866 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ISO) },
1867 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_JIS) },
1868 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ANSI) },
1869 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ISO) },
1870 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_JIS) },
1871 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ANSI) },
1872 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ISO) },
1873 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_JIS) },
1874 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ANSI) },
1875 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ISO) },
1876 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_JIS) },
1877 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ANSI) },
1878 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ISO) },
1879 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_JIS) },
1880 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ANSI) },
1881 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ISO) },
1882 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_JIS) },
1883 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ANSI) },
1884 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ISO) },
1885 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_JIS) },
1886 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ANSI) },
1887 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ISO) },
1888 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_JIS) },
1889 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ANSI) },
1890 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ISO) },
1891 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_JIS) },
1892 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ANSI) },
1893 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ISO) },
1894 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_JIS) },
1895 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_TP_ONLY) },
1896 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER1_TP_ONLY) },
1897 { }
1898};
1899
1900static bool hid_ignore(struct hid_device *hdev)
1901{
1902 switch (hdev->vendor) {
1903 case USB_VENDOR_ID_CODEMERCS:
1904 /* ignore all Code Mercenaries IOWarrior devices */
1905 if (hdev->product >= USB_DEVICE_ID_CODEMERCS_IOW_FIRST &&
1906 hdev->product <= USB_DEVICE_ID_CODEMERCS_IOW_LAST)
1907 return true;
1908 break;
1909 case USB_VENDOR_ID_LOGITECH:
1910 if (hdev->product >= USB_DEVICE_ID_LOGITECH_HARMONY_FIRST &&
1911 hdev->product <= USB_DEVICE_ID_LOGITECH_HARMONY_LAST)
1912 return true;
1913 break;
1914 case USB_VENDOR_ID_SOUNDGRAPH:
1915 if (hdev->product >= USB_DEVICE_ID_SOUNDGRAPH_IMON_FIRST &&
1916 hdev->product <= USB_DEVICE_ID_SOUNDGRAPH_IMON_LAST)
1917 return true;
1918 break;
1919 case USB_VENDOR_ID_HANWANG:
1920 if (hdev->product >= USB_DEVICE_ID_HANWANG_TABLET_FIRST &&
1921 hdev->product <= USB_DEVICE_ID_HANWANG_TABLET_LAST)
1922 return true;
1923 break;
1924 case USB_VENDOR_ID_JESS:
1925 if (hdev->product == USB_DEVICE_ID_JESS_YUREX &&
1926 hdev->type == HID_TYPE_USBNONE)
1927 return true;
1928 break;
1929 }
1930
1931 if (hdev->type == HID_TYPE_USBMOUSE &&
1932 hid_match_id(hdev, hid_mouse_ignore_list))
1933 return true;
1934
1935 return !!hid_match_id(hdev, hid_ignore_list);
1936}
1937
1938int hid_add_device(struct hid_device *hdev)
1939{
1940 static atomic_t id = ATOMIC_INIT(0);
1941 int ret;
1942
1943 if (WARN_ON(hdev->status & HID_STAT_ADDED))
1944 return -EBUSY;
1945
1946 /* we need to kill them here, otherwise they will stay allocated to
1947 * wait for coming driver */
1948 if (!(hdev->quirks & HID_QUIRK_NO_IGNORE)
1949 && (hid_ignore(hdev) || (hdev->quirks & HID_QUIRK_IGNORE)))
1950 return -ENODEV;
1951
1952 /* XXX hack, any other cleaner solution after the driver core
1953 * is converted to allow more than 20 bytes as the device name? */
1954 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
1955 hdev->vendor, hdev->product, atomic_inc_return(&id));
1956
1957 hid_debug_register(hdev, dev_name(&hdev->dev));
1958 ret = device_add(&hdev->dev);
1959 if (!ret)
1960 hdev->status |= HID_STAT_ADDED;
1961 else
1962 hid_debug_unregister(hdev);
1963
1964 return ret;
1965}
1966EXPORT_SYMBOL_GPL(hid_add_device);
1967
1968/**
1969 * hid_allocate_device - allocate new hid device descriptor
1970 *
1971 * Allocate and initialize hid device, so that hid_destroy_device might be
1972 * used to free it.
1973 *
1974 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
1975 * error value.
1976 */
1977struct hid_device *hid_allocate_device(void)
1978{
1979 struct hid_device *hdev;
1980 unsigned int i;
1981 int ret = -ENOMEM;
1982
1983 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
1984 if (hdev == NULL)
1985 return ERR_PTR(ret);
1986
1987 device_initialize(&hdev->dev);
1988 hdev->dev.release = hid_device_release;
1989 hdev->dev.bus = &hid_bus_type;
1990
1991 hdev->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1992 sizeof(struct hid_collection), GFP_KERNEL);
1993 if (hdev->collection == NULL)
1994 goto err;
1995 hdev->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1996
1997 for (i = 0; i < HID_REPORT_TYPES; i++)
1998 INIT_LIST_HEAD(&hdev->report_enum[i].report_list);
1999
2000 init_waitqueue_head(&hdev->debug_wait);
2001 INIT_LIST_HEAD(&hdev->debug_list);
2002
2003 return hdev;
2004err:
2005 put_device(&hdev->dev);
2006 return ERR_PTR(ret);
2007}
2008EXPORT_SYMBOL_GPL(hid_allocate_device);
2009
2010static void hid_remove_device(struct hid_device *hdev)
2011{
2012 if (hdev->status & HID_STAT_ADDED) {
2013 device_del(&hdev->dev);
2014 hid_debug_unregister(hdev);
2015 hdev->status &= ~HID_STAT_ADDED;
2016 }
2017}
2018
2019/**
2020 * hid_destroy_device - free previously allocated device
2021 *
2022 * @hdev: hid device
2023 *
2024 * If you allocate hid_device through hid_allocate_device, you should ever
2025 * free by this function.
2026 */
2027void hid_destroy_device(struct hid_device *hdev)
2028{
2029 hid_remove_device(hdev);
2030 put_device(&hdev->dev);
2031}
2032EXPORT_SYMBOL_GPL(hid_destroy_device);
2033
2034int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2035 const char *mod_name)
2036{
2037 int ret;
2038
2039 hdrv->driver.name = hdrv->name;
2040 hdrv->driver.bus = &hid_bus_type;
2041 hdrv->driver.owner = owner;
2042 hdrv->driver.mod_name = mod_name;
2043
2044 INIT_LIST_HEAD(&hdrv->dyn_list);
2045 spin_lock_init(&hdrv->dyn_lock);
2046
2047 ret = driver_register(&hdrv->driver);
2048 if (ret)
2049 return ret;
2050
2051 ret = driver_create_file(&hdrv->driver, &driver_attr_new_id);
2052 if (ret)
2053 driver_unregister(&hdrv->driver);
2054
2055 return ret;
2056}
2057EXPORT_SYMBOL_GPL(__hid_register_driver);
2058
2059void hid_unregister_driver(struct hid_driver *hdrv)
2060{
2061 driver_remove_file(&hdrv->driver, &driver_attr_new_id);
2062 driver_unregister(&hdrv->driver);
2063 hid_free_dynids(hdrv);
2064}
2065EXPORT_SYMBOL_GPL(hid_unregister_driver);
2066
2067int hid_check_keys_pressed(struct hid_device *hid)
2068{
2069 struct hid_input *hidinput;
2070 int i;
2071
2072 if (!(hid->claimed & HID_CLAIMED_INPUT))
2073 return 0;
2074
2075 list_for_each_entry(hidinput, &hid->inputs, list) {
2076 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2077 if (hidinput->input->key[i])
2078 return 1;
2079 }
2080
2081 return 0;
2082}
2083
2084EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2085
2086static int __init hid_init(void)
2087{
2088 int ret;
2089
2090 if (hid_debug)
2091 pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2092 "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2093
2094 ret = bus_register(&hid_bus_type);
2095 if (ret) {
2096 pr_err("can't register hid bus\n");
2097 goto err;
2098 }
2099
2100 ret = hidraw_init();
2101 if (ret)
2102 goto err_bus;
2103
2104 hid_debug_init();
2105
2106 return 0;
2107err_bus:
2108 bus_unregister(&hid_bus_type);
2109err:
2110 return ret;
2111}
2112
2113static void __exit hid_exit(void)
2114{
2115 hid_debug_exit();
2116 hidraw_exit();
2117 bus_unregister(&hid_bus_type);
2118}
2119
2120module_init(hid_init);
2121module_exit(hid_exit);
2122
2123MODULE_AUTHOR("Andreas Gal");
2124MODULE_AUTHOR("Vojtech Pavlik");
2125MODULE_AUTHOR("Jiri Kosina");
2126MODULE_LICENSE(DRIVER_LICENSE);
2127