Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  HID support for Linux
   4 *
   5 *  Copyright (c) 1999 Andreas Gal
   6 *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
   7 *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
   8 *  Copyright (c) 2006-2012 Jiri Kosina
   9 */
  10
  11/*
 
 
 
 
  12 */
  13
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15
  16#include <linux/module.h>
  17#include <linux/slab.h>
  18#include <linux/init.h>
  19#include <linux/kernel.h>
  20#include <linux/list.h>
  21#include <linux/mm.h>
  22#include <linux/spinlock.h>
  23#include <asm/unaligned.h>
  24#include <asm/byteorder.h>
  25#include <linux/input.h>
  26#include <linux/wait.h>
  27#include <linux/vmalloc.h>
  28#include <linux/sched.h>
  29#include <linux/semaphore.h>
  30
  31#include <linux/hid.h>
  32#include <linux/hiddev.h>
  33#include <linux/hid-debug.h>
  34#include <linux/hidraw.h>
  35
  36#include "hid-ids.h"
  37
  38/*
  39 * Version Information
  40 */
  41
  42#define DRIVER_DESC "HID core driver"
 
  43
  44int hid_debug = 0;
  45module_param_named(debug, hid_debug, int, 0600);
  46MODULE_PARM_DESC(debug, "toggle HID debugging messages");
  47EXPORT_SYMBOL_GPL(hid_debug);
  48
  49static int hid_ignore_special_drivers = 0;
  50module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
  51MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
  52
  53/*
  54 * Register a new report for a device.
  55 */
  56
  57struct hid_report *hid_register_report(struct hid_device *device,
  58				       enum hid_report_type type, unsigned int id,
  59				       unsigned int application)
  60{
  61	struct hid_report_enum *report_enum = device->report_enum + type;
  62	struct hid_report *report;
  63
  64	if (id >= HID_MAX_IDS)
  65		return NULL;
  66	if (report_enum->report_id_hash[id])
  67		return report_enum->report_id_hash[id];
  68
  69	report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
  70	if (!report)
  71		return NULL;
  72
  73	if (id != 0)
  74		report_enum->numbered = 1;
  75
  76	report->id = id;
  77	report->type = type;
  78	report->size = 0;
  79	report->device = device;
  80	report->application = application;
  81	report_enum->report_id_hash[id] = report;
  82
  83	list_add_tail(&report->list, &report_enum->report_list);
  84	INIT_LIST_HEAD(&report->field_entry_list);
  85
  86	return report;
  87}
  88EXPORT_SYMBOL_GPL(hid_register_report);
  89
  90/*
  91 * Register a new field for this report.
  92 */
  93
  94static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
  95{
  96	struct hid_field *field;
  97
  98	if (report->maxfield == HID_MAX_FIELDS) {
  99		hid_err(report->device, "too many fields in report\n");
 100		return NULL;
 101	}
 102
 103	field = kzalloc((sizeof(struct hid_field) +
 104			 usages * sizeof(struct hid_usage) +
 105			 3 * usages * sizeof(unsigned int)), GFP_KERNEL);
 106	if (!field)
 107		return NULL;
 108
 109	field->index = report->maxfield++;
 110	report->field[field->index] = field;
 111	field->usage = (struct hid_usage *)(field + 1);
 112	field->value = (s32 *)(field->usage + usages);
 113	field->new_value = (s32 *)(field->value + usages);
 114	field->usages_priorities = (s32 *)(field->new_value + usages);
 115	field->report = report;
 116
 117	return field;
 118}
 119
 120/*
 121 * Open a collection. The type/usage is pushed on the stack.
 122 */
 123
 124static int open_collection(struct hid_parser *parser, unsigned type)
 125{
 126	struct hid_collection *collection;
 127	unsigned usage;
 128	int collection_index;
 129
 130	usage = parser->local.usage[0];
 131
 132	if (parser->collection_stack_ptr == parser->collection_stack_size) {
 133		unsigned int *collection_stack;
 134		unsigned int new_size = parser->collection_stack_size +
 135					HID_COLLECTION_STACK_SIZE;
 136
 137		collection_stack = krealloc(parser->collection_stack,
 138					    new_size * sizeof(unsigned int),
 139					    GFP_KERNEL);
 140		if (!collection_stack)
 141			return -ENOMEM;
 142
 143		parser->collection_stack = collection_stack;
 144		parser->collection_stack_size = new_size;
 145	}
 146
 147	if (parser->device->maxcollection == parser->device->collection_size) {
 148		collection = kmalloc(
 149				array3_size(sizeof(struct hid_collection),
 150					    parser->device->collection_size,
 151					    2),
 152				GFP_KERNEL);
 153		if (collection == NULL) {
 154			hid_err(parser->device, "failed to reallocate collection array\n");
 155			return -ENOMEM;
 156		}
 157		memcpy(collection, parser->device->collection,
 158			sizeof(struct hid_collection) *
 159			parser->device->collection_size);
 160		memset(collection + parser->device->collection_size, 0,
 161			sizeof(struct hid_collection) *
 162			parser->device->collection_size);
 163		kfree(parser->device->collection);
 164		parser->device->collection = collection;
 165		parser->device->collection_size *= 2;
 166	}
 167
 168	parser->collection_stack[parser->collection_stack_ptr++] =
 169		parser->device->maxcollection;
 170
 171	collection_index = parser->device->maxcollection++;
 172	collection = parser->device->collection + collection_index;
 173	collection->type = type;
 174	collection->usage = usage;
 175	collection->level = parser->collection_stack_ptr - 1;
 176	collection->parent_idx = (collection->level == 0) ? -1 :
 177		parser->collection_stack[collection->level - 1];
 178
 179	if (type == HID_COLLECTION_APPLICATION)
 180		parser->device->maxapplication++;
 181
 182	return 0;
 183}
 184
 185/*
 186 * Close a collection.
 187 */
 188
 189static int close_collection(struct hid_parser *parser)
 190{
 191	if (!parser->collection_stack_ptr) {
 192		hid_err(parser->device, "collection stack underflow\n");
 193		return -EINVAL;
 194	}
 195	parser->collection_stack_ptr--;
 196	return 0;
 197}
 198
 199/*
 200 * Climb up the stack, search for the specified collection type
 201 * and return the usage.
 202 */
 203
 204static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
 205{
 206	struct hid_collection *collection = parser->device->collection;
 207	int n;
 208
 209	for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
 210		unsigned index = parser->collection_stack[n];
 211		if (collection[index].type == type)
 212			return collection[index].usage;
 213	}
 214	return 0; /* we know nothing about this usage type */
 215}
 216
 217/*
 218 * Concatenate usage which defines 16 bits or less with the
 219 * currently defined usage page to form a 32 bit usage
 220 */
 221
 222static void complete_usage(struct hid_parser *parser, unsigned int index)
 223{
 224	parser->local.usage[index] &= 0xFFFF;
 225	parser->local.usage[index] |=
 226		(parser->global.usage_page & 0xFFFF) << 16;
 227}
 228
 229/*
 230 * Add a usage to the temporary parser table.
 231 */
 232
 233static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
 234{
 235	if (parser->local.usage_index >= HID_MAX_USAGES) {
 236		hid_err(parser->device, "usage index exceeded\n");
 237		return -1;
 238	}
 239	parser->local.usage[parser->local.usage_index] = usage;
 240
 241	/*
 242	 * If Usage item only includes usage id, concatenate it with
 243	 * currently defined usage page
 244	 */
 245	if (size <= 2)
 246		complete_usage(parser, parser->local.usage_index);
 247
 248	parser->local.usage_size[parser->local.usage_index] = size;
 249	parser->local.collection_index[parser->local.usage_index] =
 250		parser->collection_stack_ptr ?
 251		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
 252	parser->local.usage_index++;
 253	return 0;
 254}
 255
 256/*
 257 * Register a new field for this report.
 258 */
 259
 260static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
 261{
 262	struct hid_report *report;
 263	struct hid_field *field;
 264	unsigned int usages;
 265	unsigned int offset;
 266	unsigned int i;
 267	unsigned int application;
 268
 269	application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
 270
 271	report = hid_register_report(parser->device, report_type,
 272				     parser->global.report_id, application);
 273	if (!report) {
 274		hid_err(parser->device, "hid_register_report failed\n");
 275		return -1;
 276	}
 277
 278	/* Handle both signed and unsigned cases properly */
 279	if ((parser->global.logical_minimum < 0 &&
 280		parser->global.logical_maximum <
 281		parser->global.logical_minimum) ||
 282		(parser->global.logical_minimum >= 0 &&
 283		(__u32)parser->global.logical_maximum <
 284		(__u32)parser->global.logical_minimum)) {
 285		dbg_hid("logical range invalid 0x%x 0x%x\n",
 286			parser->global.logical_minimum,
 287			parser->global.logical_maximum);
 288		return -1;
 289	}
 290
 291	offset = report->size;
 292	report->size += parser->global.report_size * parser->global.report_count;
 293
 294	/* Total size check: Allow for possible report index byte */
 295	if (report->size > (HID_MAX_BUFFER_SIZE - 1) << 3) {
 296		hid_err(parser->device, "report is too long\n");
 297		return -1;
 298	}
 299
 300	if (!parser->local.usage_index) /* Ignore padding fields */
 301		return 0;
 302
 303	usages = max_t(unsigned, parser->local.usage_index,
 304				 parser->global.report_count);
 305
 306	field = hid_register_field(report, usages);
 307	if (!field)
 308		return 0;
 309
 310	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
 311	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
 312	field->application = application;
 313
 314	for (i = 0; i < usages; i++) {
 315		unsigned j = i;
 316		/* Duplicate the last usage we parsed if we have excess values */
 317		if (i >= parser->local.usage_index)
 318			j = parser->local.usage_index - 1;
 319		field->usage[i].hid = parser->local.usage[j];
 320		field->usage[i].collection_index =
 321			parser->local.collection_index[j];
 322		field->usage[i].usage_index = i;
 323		field->usage[i].resolution_multiplier = 1;
 324	}
 325
 326	field->maxusage = usages;
 327	field->flags = flags;
 328	field->report_offset = offset;
 329	field->report_type = report_type;
 330	field->report_size = parser->global.report_size;
 331	field->report_count = parser->global.report_count;
 332	field->logical_minimum = parser->global.logical_minimum;
 333	field->logical_maximum = parser->global.logical_maximum;
 334	field->physical_minimum = parser->global.physical_minimum;
 335	field->physical_maximum = parser->global.physical_maximum;
 336	field->unit_exponent = parser->global.unit_exponent;
 337	field->unit = parser->global.unit;
 338
 339	return 0;
 340}
 341
 342/*
 343 * Read data value from item.
 344 */
 345
 346static u32 item_udata(struct hid_item *item)
 347{
 348	switch (item->size) {
 349	case 1: return item->data.u8;
 350	case 2: return item->data.u16;
 351	case 4: return item->data.u32;
 352	}
 353	return 0;
 354}
 355
 356static s32 item_sdata(struct hid_item *item)
 357{
 358	switch (item->size) {
 359	case 1: return item->data.s8;
 360	case 2: return item->data.s16;
 361	case 4: return item->data.s32;
 362	}
 363	return 0;
 364}
 365
 366/*
 367 * Process a global item.
 368 */
 369
 370static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
 371{
 372	__s32 raw_value;
 373	switch (item->tag) {
 374	case HID_GLOBAL_ITEM_TAG_PUSH:
 375
 376		if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
 377			hid_err(parser->device, "global environment stack overflow\n");
 378			return -1;
 379		}
 380
 381		memcpy(parser->global_stack + parser->global_stack_ptr++,
 382			&parser->global, sizeof(struct hid_global));
 383		return 0;
 384
 385	case HID_GLOBAL_ITEM_TAG_POP:
 386
 387		if (!parser->global_stack_ptr) {
 388			hid_err(parser->device, "global environment stack underflow\n");
 389			return -1;
 390		}
 391
 392		memcpy(&parser->global, parser->global_stack +
 393			--parser->global_stack_ptr, sizeof(struct hid_global));
 394		return 0;
 395
 396	case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
 397		parser->global.usage_page = item_udata(item);
 398		return 0;
 399
 400	case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
 401		parser->global.logical_minimum = item_sdata(item);
 402		return 0;
 403
 404	case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
 405		if (parser->global.logical_minimum < 0)
 406			parser->global.logical_maximum = item_sdata(item);
 407		else
 408			parser->global.logical_maximum = item_udata(item);
 409		return 0;
 410
 411	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
 412		parser->global.physical_minimum = item_sdata(item);
 413		return 0;
 414
 415	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
 416		if (parser->global.physical_minimum < 0)
 417			parser->global.physical_maximum = item_sdata(item);
 418		else
 419			parser->global.physical_maximum = item_udata(item);
 420		return 0;
 421
 422	case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
 423		/* Many devices provide unit exponent as a two's complement
 424		 * nibble due to the common misunderstanding of HID
 425		 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
 426		 * both this and the standard encoding. */
 427		raw_value = item_sdata(item);
 428		if (!(raw_value & 0xfffffff0))
 429			parser->global.unit_exponent = hid_snto32(raw_value, 4);
 430		else
 431			parser->global.unit_exponent = raw_value;
 432		return 0;
 433
 434	case HID_GLOBAL_ITEM_TAG_UNIT:
 435		parser->global.unit = item_udata(item);
 436		return 0;
 437
 438	case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
 439		parser->global.report_size = item_udata(item);
 440		if (parser->global.report_size > 256) {
 441			hid_err(parser->device, "invalid report_size %d\n",
 442					parser->global.report_size);
 443			return -1;
 444		}
 445		return 0;
 446
 447	case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
 448		parser->global.report_count = item_udata(item);
 449		if (parser->global.report_count > HID_MAX_USAGES) {
 450			hid_err(parser->device, "invalid report_count %d\n",
 451					parser->global.report_count);
 452			return -1;
 453		}
 454		return 0;
 455
 456	case HID_GLOBAL_ITEM_TAG_REPORT_ID:
 457		parser->global.report_id = item_udata(item);
 458		if (parser->global.report_id == 0 ||
 459		    parser->global.report_id >= HID_MAX_IDS) {
 460			hid_err(parser->device, "report_id %u is invalid\n",
 461				parser->global.report_id);
 462			return -1;
 463		}
 464		return 0;
 465
 466	default:
 467		hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
 468		return -1;
 469	}
 470}
 471
 472/*
 473 * Process a local item.
 474 */
 475
 476static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
 477{
 478	__u32 data;
 479	unsigned n;
 480	__u32 count;
 481
 482	data = item_udata(item);
 483
 484	switch (item->tag) {
 485	case HID_LOCAL_ITEM_TAG_DELIMITER:
 486
 487		if (data) {
 488			/*
 489			 * We treat items before the first delimiter
 490			 * as global to all usage sets (branch 0).
 491			 * In the moment we process only these global
 492			 * items and the first delimiter set.
 493			 */
 494			if (parser->local.delimiter_depth != 0) {
 495				hid_err(parser->device, "nested delimiters\n");
 496				return -1;
 497			}
 498			parser->local.delimiter_depth++;
 499			parser->local.delimiter_branch++;
 500		} else {
 501			if (parser->local.delimiter_depth < 1) {
 502				hid_err(parser->device, "bogus close delimiter\n");
 503				return -1;
 504			}
 505			parser->local.delimiter_depth--;
 506		}
 507		return 0;
 508
 509	case HID_LOCAL_ITEM_TAG_USAGE:
 510
 511		if (parser->local.delimiter_branch > 1) {
 512			dbg_hid("alternative usage ignored\n");
 513			return 0;
 514		}
 515
 516		return hid_add_usage(parser, data, item->size);
 
 
 
 517
 518	case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
 519
 520		if (parser->local.delimiter_branch > 1) {
 521			dbg_hid("alternative usage ignored\n");
 522			return 0;
 523		}
 524
 
 
 
 525		parser->local.usage_minimum = data;
 526		return 0;
 527
 528	case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
 529
 530		if (parser->local.delimiter_branch > 1) {
 531			dbg_hid("alternative usage ignored\n");
 532			return 0;
 533		}
 534
 535		count = data - parser->local.usage_minimum;
 536		if (count + parser->local.usage_index >= HID_MAX_USAGES) {
 537			/*
 538			 * We do not warn if the name is not set, we are
 539			 * actually pre-scanning the device.
 540			 */
 541			if (dev_name(&parser->device->dev))
 542				hid_warn(parser->device,
 543					 "ignoring exceeding usage max\n");
 544			data = HID_MAX_USAGES - parser->local.usage_index +
 545				parser->local.usage_minimum - 1;
 546			if (data <= 0) {
 547				hid_err(parser->device,
 548					"no more usage index available\n");
 549				return -1;
 550			}
 551		}
 552
 553		for (n = parser->local.usage_minimum; n <= data; n++)
 554			if (hid_add_usage(parser, n, item->size)) {
 555				dbg_hid("hid_add_usage failed\n");
 556				return -1;
 557			}
 558		return 0;
 559
 560	default:
 561
 562		dbg_hid("unknown local item tag 0x%x\n", item->tag);
 563		return 0;
 564	}
 565	return 0;
 566}
 567
 568/*
 569 * Concatenate Usage Pages into Usages where relevant:
 570 * As per specification, 6.2.2.8: "When the parser encounters a main item it
 571 * concatenates the last declared Usage Page with a Usage to form a complete
 572 * usage value."
 573 */
 574
 575static void hid_concatenate_last_usage_page(struct hid_parser *parser)
 576{
 577	int i;
 578	unsigned int usage_page;
 579	unsigned int current_page;
 580
 581	if (!parser->local.usage_index)
 582		return;
 583
 584	usage_page = parser->global.usage_page;
 585
 586	/*
 587	 * Concatenate usage page again only if last declared Usage Page
 588	 * has not been already used in previous usages concatenation
 589	 */
 590	for (i = parser->local.usage_index - 1; i >= 0; i--) {
 591		if (parser->local.usage_size[i] > 2)
 592			/* Ignore extended usages */
 593			continue;
 594
 595		current_page = parser->local.usage[i] >> 16;
 596		if (current_page == usage_page)
 597			break;
 598
 599		complete_usage(parser, i);
 600	}
 601}
 602
 603/*
 604 * Process a main item.
 605 */
 606
 607static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
 608{
 609	__u32 data;
 610	int ret;
 611
 612	hid_concatenate_last_usage_page(parser);
 613
 614	data = item_udata(item);
 615
 616	switch (item->tag) {
 617	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
 618		ret = open_collection(parser, data & 0xff);
 619		break;
 620	case HID_MAIN_ITEM_TAG_END_COLLECTION:
 621		ret = close_collection(parser);
 622		break;
 623	case HID_MAIN_ITEM_TAG_INPUT:
 624		ret = hid_add_field(parser, HID_INPUT_REPORT, data);
 625		break;
 626	case HID_MAIN_ITEM_TAG_OUTPUT:
 627		ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
 628		break;
 629	case HID_MAIN_ITEM_TAG_FEATURE:
 630		ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
 631		break;
 632	default:
 633		hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
 634		ret = 0;
 635	}
 636
 637	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
 638
 639	return ret;
 640}
 641
 642/*
 643 * Process a reserved item.
 644 */
 645
 646static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
 647{
 648	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
 649	return 0;
 650}
 651
 652/*
 653 * Free a report and all registered fields. The field->usage and
 654 * field->value table's are allocated behind the field, so we need
 655 * only to free(field) itself.
 656 */
 657
 658static void hid_free_report(struct hid_report *report)
 659{
 660	unsigned n;
 661
 662	kfree(report->field_entries);
 663
 664	for (n = 0; n < report->maxfield; n++)
 665		kfree(report->field[n]);
 666	kfree(report);
 667}
 668
 669/*
 670 * Close report. This function returns the device
 671 * state to the point prior to hid_open_report().
 672 */
 673static void hid_close_report(struct hid_device *device)
 
 674{
 
 675	unsigned i, j;
 676
 677	for (i = 0; i < HID_REPORT_TYPES; i++) {
 678		struct hid_report_enum *report_enum = device->report_enum + i;
 679
 680		for (j = 0; j < HID_MAX_IDS; j++) {
 681			struct hid_report *report = report_enum->report_id_hash[j];
 682			if (report)
 683				hid_free_report(report);
 684		}
 685		memset(report_enum, 0, sizeof(*report_enum));
 686		INIT_LIST_HEAD(&report_enum->report_list);
 687	}
 688
 689	kfree(device->rdesc);
 690	device->rdesc = NULL;
 691	device->rsize = 0;
 692
 693	kfree(device->collection);
 694	device->collection = NULL;
 695	device->collection_size = 0;
 696	device->maxcollection = 0;
 697	device->maxapplication = 0;
 698
 699	device->status &= ~HID_STAT_PARSED;
 700}
 701
 702/*
 703 * Free a device structure, all reports, and all fields.
 704 */
 705
 706static void hid_device_release(struct device *dev)
 707{
 708	struct hid_device *hid = to_hid_device(dev);
 709
 710	hid_close_report(hid);
 711	kfree(hid->dev_rdesc);
 712	kfree(hid);
 713}
 714
 715/*
 716 * Fetch a report description item from the data stream. We support long
 717 * items, though they are not used yet.
 718 */
 719
 720static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
 721{
 722	u8 b;
 723
 724	if ((end - start) <= 0)
 725		return NULL;
 726
 727	b = *start++;
 728
 729	item->type = (b >> 2) & 3;
 730	item->tag  = (b >> 4) & 15;
 731
 732	if (item->tag == HID_ITEM_TAG_LONG) {
 733
 734		item->format = HID_ITEM_FORMAT_LONG;
 735
 736		if ((end - start) < 2)
 737			return NULL;
 738
 739		item->size = *start++;
 740		item->tag  = *start++;
 741
 742		if ((end - start) < item->size)
 743			return NULL;
 744
 745		item->data.longdata = start;
 746		start += item->size;
 747		return start;
 748	}
 749
 750	item->format = HID_ITEM_FORMAT_SHORT;
 751	item->size = b & 3;
 752
 753	switch (item->size) {
 754	case 0:
 755		return start;
 756
 757	case 1:
 758		if ((end - start) < 1)
 759			return NULL;
 760		item->data.u8 = *start++;
 761		return start;
 762
 763	case 2:
 764		if ((end - start) < 2)
 765			return NULL;
 766		item->data.u16 = get_unaligned_le16(start);
 767		start = (__u8 *)((__le16 *)start + 1);
 768		return start;
 769
 770	case 3:
 771		item->size++;
 772		if ((end - start) < 4)
 773			return NULL;
 774		item->data.u32 = get_unaligned_le32(start);
 775		start = (__u8 *)((__le32 *)start + 1);
 776		return start;
 777	}
 778
 779	return NULL;
 780}
 781
 782static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
 783{
 784	struct hid_device *hid = parser->device;
 785
 786	if (usage == HID_DG_CONTACTID)
 787		hid->group = HID_GROUP_MULTITOUCH;
 788}
 789
 790static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
 791{
 792	if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
 793	    parser->global.report_size == 8)
 794		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
 795
 796	if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
 797	    parser->global.report_size == 8)
 798		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
 799}
 800
 801static void hid_scan_collection(struct hid_parser *parser, unsigned type)
 802{
 803	struct hid_device *hid = parser->device;
 804	int i;
 805
 806	if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
 807	    type == HID_COLLECTION_PHYSICAL)
 808		hid->group = HID_GROUP_SENSOR_HUB;
 809
 810	if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
 811	    hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
 812	    hid->group == HID_GROUP_MULTITOUCH)
 813		hid->group = HID_GROUP_GENERIC;
 814
 815	if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
 816		for (i = 0; i < parser->local.usage_index; i++)
 817			if (parser->local.usage[i] == HID_GD_POINTER)
 818				parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
 819
 820	if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
 821		parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
 822
 823	if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
 824		for (i = 0; i < parser->local.usage_index; i++)
 825			if (parser->local.usage[i] ==
 826					(HID_UP_GOOGLEVENDOR | 0x0001))
 827				parser->device->group =
 828					HID_GROUP_VIVALDI;
 829}
 830
 831static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
 832{
 833	__u32 data;
 834	int i;
 835
 836	hid_concatenate_last_usage_page(parser);
 837
 838	data = item_udata(item);
 839
 840	switch (item->tag) {
 841	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
 842		hid_scan_collection(parser, data & 0xff);
 843		break;
 844	case HID_MAIN_ITEM_TAG_END_COLLECTION:
 845		break;
 846	case HID_MAIN_ITEM_TAG_INPUT:
 847		/* ignore constant inputs, they will be ignored by hid-input */
 848		if (data & HID_MAIN_ITEM_CONSTANT)
 849			break;
 850		for (i = 0; i < parser->local.usage_index; i++)
 851			hid_scan_input_usage(parser, parser->local.usage[i]);
 852		break;
 853	case HID_MAIN_ITEM_TAG_OUTPUT:
 854		break;
 855	case HID_MAIN_ITEM_TAG_FEATURE:
 856		for (i = 0; i < parser->local.usage_index; i++)
 857			hid_scan_feature_usage(parser, parser->local.usage[i]);
 858		break;
 859	}
 860
 861	/* Reset the local parser environment */
 862	memset(&parser->local, 0, sizeof(parser->local));
 863
 864	return 0;
 865}
 866
 867/*
 868 * Scan a report descriptor before the device is added to the bus.
 869 * Sets device groups and other properties that determine what driver
 870 * to load.
 871 */
 872static int hid_scan_report(struct hid_device *hid)
 873{
 874	struct hid_parser *parser;
 875	struct hid_item item;
 876	__u8 *start = hid->dev_rdesc;
 877	__u8 *end = start + hid->dev_rsize;
 878	static int (*dispatch_type[])(struct hid_parser *parser,
 879				      struct hid_item *item) = {
 880		hid_scan_main,
 881		hid_parser_global,
 882		hid_parser_local,
 883		hid_parser_reserved
 884	};
 885
 886	parser = vzalloc(sizeof(struct hid_parser));
 887	if (!parser)
 888		return -ENOMEM;
 889
 890	parser->device = hid;
 891	hid->group = HID_GROUP_GENERIC;
 892
 893	/*
 894	 * The parsing is simpler than the one in hid_open_report() as we should
 895	 * be robust against hid errors. Those errors will be raised by
 896	 * hid_open_report() anyway.
 897	 */
 898	while ((start = fetch_item(start, end, &item)) != NULL)
 899		dispatch_type[item.type](parser, &item);
 900
 901	/*
 902	 * Handle special flags set during scanning.
 903	 */
 904	if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
 905	    (hid->group == HID_GROUP_MULTITOUCH))
 906		hid->group = HID_GROUP_MULTITOUCH_WIN_8;
 907
 908	/*
 909	 * Vendor specific handlings
 910	 */
 911	switch (hid->vendor) {
 912	case USB_VENDOR_ID_WACOM:
 913		hid->group = HID_GROUP_WACOM;
 914		break;
 915	case USB_VENDOR_ID_SYNAPTICS:
 916		if (hid->group == HID_GROUP_GENERIC)
 917			if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
 918			    && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
 919				/*
 920				 * hid-rmi should take care of them,
 921				 * not hid-generic
 922				 */
 923				hid->group = HID_GROUP_RMI;
 924		break;
 925	}
 926
 927	kfree(parser->collection_stack);
 928	vfree(parser);
 929	return 0;
 930}
 931
 932/**
 933 * hid_parse_report - parse device report
 934 *
 935 * @hid: hid device
 936 * @start: report start
 937 * @size: report size
 938 *
 939 * Allocate the device report as read by the bus driver. This function should
 940 * only be called from parse() in ll drivers.
 941 */
 942int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
 943{
 944	hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
 945	if (!hid->dev_rdesc)
 946		return -ENOMEM;
 947	hid->dev_rsize = size;
 948	return 0;
 949}
 950EXPORT_SYMBOL_GPL(hid_parse_report);
 951
 952static const char * const hid_report_names[] = {
 953	"HID_INPUT_REPORT",
 954	"HID_OUTPUT_REPORT",
 955	"HID_FEATURE_REPORT",
 956};
 957/**
 958 * hid_validate_values - validate existing device report's value indexes
 959 *
 960 * @hid: hid device
 961 * @type: which report type to examine
 962 * @id: which report ID to examine (0 for first)
 963 * @field_index: which report field to examine
 964 * @report_counts: expected number of values
 965 *
 966 * Validate the number of values in a given field of a given report, after
 967 * parsing.
 968 */
 969struct hid_report *hid_validate_values(struct hid_device *hid,
 970				       enum hid_report_type type, unsigned int id,
 971				       unsigned int field_index,
 972				       unsigned int report_counts)
 973{
 974	struct hid_report *report;
 975
 976	if (type > HID_FEATURE_REPORT) {
 977		hid_err(hid, "invalid HID report type %u\n", type);
 978		return NULL;
 979	}
 980
 981	if (id >= HID_MAX_IDS) {
 982		hid_err(hid, "invalid HID report id %u\n", id);
 983		return NULL;
 984	}
 985
 986	/*
 987	 * Explicitly not using hid_get_report() here since it depends on
 988	 * ->numbered being checked, which may not always be the case when
 989	 * drivers go to access report values.
 990	 */
 991	if (id == 0) {
 992		/*
 993		 * Validating on id 0 means we should examine the first
 994		 * report in the list.
 995		 */
 996		report = list_first_entry_or_null(
 997				&hid->report_enum[type].report_list,
 998				struct hid_report, list);
 999	} else {
1000		report = hid->report_enum[type].report_id_hash[id];
1001	}
1002	if (!report) {
1003		hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1004		return NULL;
1005	}
1006	if (report->maxfield <= field_index) {
1007		hid_err(hid, "not enough fields in %s %u\n",
1008			hid_report_names[type], id);
1009		return NULL;
1010	}
1011	if (report->field[field_index]->report_count < report_counts) {
1012		hid_err(hid, "not enough values in %s %u field %u\n",
1013			hid_report_names[type], id, field_index);
1014		return NULL;
1015	}
1016	return report;
1017}
1018EXPORT_SYMBOL_GPL(hid_validate_values);
1019
1020static int hid_calculate_multiplier(struct hid_device *hid,
1021				     struct hid_field *multiplier)
1022{
1023	int m;
1024	__s32 v = *multiplier->value;
1025	__s32 lmin = multiplier->logical_minimum;
1026	__s32 lmax = multiplier->logical_maximum;
1027	__s32 pmin = multiplier->physical_minimum;
1028	__s32 pmax = multiplier->physical_maximum;
1029
1030	/*
1031	 * "Because OS implementations will generally divide the control's
1032	 * reported count by the Effective Resolution Multiplier, designers
1033	 * should take care not to establish a potential Effective
1034	 * Resolution Multiplier of zero."
1035	 * HID Usage Table, v1.12, Section 4.3.1, p31
1036	 */
1037	if (lmax - lmin == 0)
1038		return 1;
1039	/*
1040	 * Handling the unit exponent is left as an exercise to whoever
1041	 * finds a device where that exponent is not 0.
1042	 */
1043	m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1044	if (unlikely(multiplier->unit_exponent != 0)) {
1045		hid_warn(hid,
1046			 "unsupported Resolution Multiplier unit exponent %d\n",
1047			 multiplier->unit_exponent);
1048	}
1049
1050	/* There are no devices with an effective multiplier > 255 */
1051	if (unlikely(m == 0 || m > 255 || m < -255)) {
1052		hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1053		m = 1;
1054	}
1055
1056	return m;
1057}
1058
1059static void hid_apply_multiplier_to_field(struct hid_device *hid,
1060					  struct hid_field *field,
1061					  struct hid_collection *multiplier_collection,
1062					  int effective_multiplier)
1063{
1064	struct hid_collection *collection;
1065	struct hid_usage *usage;
1066	int i;
1067
1068	/*
1069	 * If multiplier_collection is NULL, the multiplier applies
1070	 * to all fields in the report.
1071	 * Otherwise, it is the Logical Collection the multiplier applies to
1072	 * but our field may be in a subcollection of that collection.
1073	 */
1074	for (i = 0; i < field->maxusage; i++) {
1075		usage = &field->usage[i];
1076
1077		collection = &hid->collection[usage->collection_index];
1078		while (collection->parent_idx != -1 &&
1079		       collection != multiplier_collection)
1080			collection = &hid->collection[collection->parent_idx];
1081
1082		if (collection->parent_idx != -1 ||
1083		    multiplier_collection == NULL)
1084			usage->resolution_multiplier = effective_multiplier;
1085
1086	}
1087}
1088
1089static void hid_apply_multiplier(struct hid_device *hid,
1090				 struct hid_field *multiplier)
1091{
1092	struct hid_report_enum *rep_enum;
1093	struct hid_report *rep;
1094	struct hid_field *field;
1095	struct hid_collection *multiplier_collection;
1096	int effective_multiplier;
1097	int i;
1098
1099	/*
1100	 * "The Resolution Multiplier control must be contained in the same
1101	 * Logical Collection as the control(s) to which it is to be applied.
1102	 * If no Resolution Multiplier is defined, then the Resolution
1103	 * Multiplier defaults to 1.  If more than one control exists in a
1104	 * Logical Collection, the Resolution Multiplier is associated with
1105	 * all controls in the collection. If no Logical Collection is
1106	 * defined, the Resolution Multiplier is associated with all
1107	 * controls in the report."
1108	 * HID Usage Table, v1.12, Section 4.3.1, p30
1109	 *
1110	 * Thus, search from the current collection upwards until we find a
1111	 * logical collection. Then search all fields for that same parent
1112	 * collection. Those are the fields the multiplier applies to.
1113	 *
1114	 * If we have more than one multiplier, it will overwrite the
1115	 * applicable fields later.
1116	 */
1117	multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1118	while (multiplier_collection->parent_idx != -1 &&
1119	       multiplier_collection->type != HID_COLLECTION_LOGICAL)
1120		multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1121
1122	effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1123
1124	rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1125	list_for_each_entry(rep, &rep_enum->report_list, list) {
1126		for (i = 0; i < rep->maxfield; i++) {
1127			field = rep->field[i];
1128			hid_apply_multiplier_to_field(hid, field,
1129						      multiplier_collection,
1130						      effective_multiplier);
1131		}
1132	}
1133}
1134
1135/*
1136 * hid_setup_resolution_multiplier - set up all resolution multipliers
1137 *
1138 * @device: hid device
1139 *
1140 * Search for all Resolution Multiplier Feature Reports and apply their
1141 * value to all matching Input items. This only updates the internal struct
1142 * fields.
1143 *
1144 * The Resolution Multiplier is applied by the hardware. If the multiplier
1145 * is anything other than 1, the hardware will send pre-multiplied events
1146 * so that the same physical interaction generates an accumulated
1147 *	accumulated_value = value * * multiplier
1148 * This may be achieved by sending
1149 * - "value * multiplier" for each event, or
1150 * - "value" but "multiplier" times as frequently, or
1151 * - a combination of the above
1152 * The only guarantee is that the same physical interaction always generates
1153 * an accumulated 'value * multiplier'.
1154 *
1155 * This function must be called before any event processing and after
1156 * any SetRequest to the Resolution Multiplier.
1157 */
1158void hid_setup_resolution_multiplier(struct hid_device *hid)
1159{
1160	struct hid_report_enum *rep_enum;
1161	struct hid_report *rep;
1162	struct hid_usage *usage;
1163	int i, j;
1164
1165	rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1166	list_for_each_entry(rep, &rep_enum->report_list, list) {
1167		for (i = 0; i < rep->maxfield; i++) {
1168			/* Ignore if report count is out of bounds. */
1169			if (rep->field[i]->report_count < 1)
1170				continue;
1171
1172			for (j = 0; j < rep->field[i]->maxusage; j++) {
1173				usage = &rep->field[i]->usage[j];
1174				if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1175					hid_apply_multiplier(hid,
1176							     rep->field[i]);
1177			}
1178		}
1179	}
1180}
1181EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1182
1183/**
1184 * hid_open_report - open a driver-specific device report
1185 *
1186 * @device: hid device
1187 *
1188 * Parse a report description into a hid_device structure. Reports are
1189 * enumerated, fields are attached to these reports.
1190 * 0 returned on success, otherwise nonzero error value.
1191 *
1192 * This function (or the equivalent hid_parse() macro) should only be
1193 * called from probe() in drivers, before starting the device.
1194 */
1195int hid_open_report(struct hid_device *device)
 
1196{
1197	struct hid_parser *parser;
1198	struct hid_item item;
1199	unsigned int size;
1200	__u8 *start;
1201	__u8 *buf;
1202	__u8 *end;
1203	__u8 *next;
1204	int ret;
1205	int i;
1206	static int (*dispatch_type[])(struct hid_parser *parser,
1207				      struct hid_item *item) = {
1208		hid_parser_main,
1209		hid_parser_global,
1210		hid_parser_local,
1211		hid_parser_reserved
1212	};
1213
1214	if (WARN_ON(device->status & HID_STAT_PARSED))
1215		return -EBUSY;
1216
1217	start = device->dev_rdesc;
1218	if (WARN_ON(!start))
1219		return -ENODEV;
1220	size = device->dev_rsize;
1221
1222	buf = kmemdup(start, size, GFP_KERNEL);
1223	if (buf == NULL)
1224		return -ENOMEM;
1225
1226	if (device->driver->report_fixup)
1227		start = device->driver->report_fixup(device, buf, &size);
1228	else
1229		start = buf;
1230
1231	start = kmemdup(start, size, GFP_KERNEL);
1232	kfree(buf);
1233	if (start == NULL)
1234		return -ENOMEM;
1235
1236	device->rdesc = start;
1237	device->rsize = size;
1238
1239	parser = vzalloc(sizeof(struct hid_parser));
1240	if (!parser) {
1241		ret = -ENOMEM;
1242		goto alloc_err;
1243	}
1244
1245	parser->device = device;
1246
1247	end = start + size;
1248
1249	device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1250				     sizeof(struct hid_collection), GFP_KERNEL);
1251	if (!device->collection) {
1252		ret = -ENOMEM;
1253		goto err;
1254	}
1255	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1256	for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++)
1257		device->collection[i].parent_idx = -1;
1258
1259	ret = -EINVAL;
1260	while ((next = fetch_item(start, end, &item)) != NULL) {
1261		start = next;
1262
1263		if (item.format != HID_ITEM_FORMAT_SHORT) {
1264			hid_err(device, "unexpected long global item\n");
1265			goto err;
1266		}
1267
1268		if (dispatch_type[item.type](parser, &item)) {
1269			hid_err(device, "item %u %u %u %u parsing failed\n",
1270				item.format, (unsigned)item.size,
1271				(unsigned)item.type, (unsigned)item.tag);
1272			goto err;
1273		}
1274
1275		if (start == end) {
1276			if (parser->collection_stack_ptr) {
1277				hid_err(device, "unbalanced collection at end of report description\n");
1278				goto err;
1279			}
1280			if (parser->local.delimiter_depth) {
1281				hid_err(device, "unbalanced delimiter at end of report description\n");
1282				goto err;
1283			}
1284
1285			/*
1286			 * fetch initial values in case the device's
1287			 * default multiplier isn't the recommended 1
1288			 */
1289			hid_setup_resolution_multiplier(device);
1290
1291			kfree(parser->collection_stack);
1292			vfree(parser);
1293			device->status |= HID_STAT_PARSED;
1294
1295			return 0;
1296		}
1297	}
1298
1299	hid_err(device, "item fetching failed at offset %u/%u\n",
1300		size - (unsigned int)(end - start), size);
1301err:
1302	kfree(parser->collection_stack);
1303alloc_err:
1304	vfree(parser);
1305	hid_close_report(device);
1306	return ret;
1307}
1308EXPORT_SYMBOL_GPL(hid_open_report);
1309
1310/*
1311 * Convert a signed n-bit integer to signed 32-bit integer. Common
1312 * cases are done through the compiler, the screwed things has to be
1313 * done by hand.
1314 */
1315
1316static s32 snto32(__u32 value, unsigned n)
1317{
1318	if (!value || !n)
1319		return 0;
1320
1321	if (n > 32)
1322		n = 32;
1323
1324	switch (n) {
1325	case 8:  return ((__s8)value);
1326	case 16: return ((__s16)value);
1327	case 32: return ((__s32)value);
1328	}
1329	return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1330}
1331
1332s32 hid_snto32(__u32 value, unsigned n)
1333{
1334	return snto32(value, n);
1335}
1336EXPORT_SYMBOL_GPL(hid_snto32);
1337
1338/*
1339 * Convert a signed 32-bit integer to a signed n-bit integer.
1340 */
1341
1342static u32 s32ton(__s32 value, unsigned n)
1343{
1344	s32 a = value >> (n - 1);
1345	if (a && a != -1)
1346		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1347	return value & ((1 << n) - 1);
1348}
1349
1350/*
1351 * Extract/implement a data field from/to a little endian report (bit array).
1352 *
1353 * Code sort-of follows HID spec:
1354 *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1355 *
1356 * While the USB HID spec allows unlimited length bit fields in "report
1357 * descriptors", most devices never use more than 16 bits.
1358 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1359 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1360 */
1361
1362static u32 __extract(u8 *report, unsigned offset, int n)
 
1363{
1364	unsigned int idx = offset / 8;
1365	unsigned int bit_nr = 0;
1366	unsigned int bit_shift = offset % 8;
1367	int bits_to_copy = 8 - bit_shift;
1368	u32 value = 0;
1369	u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1370
1371	while (n > 0) {
1372		value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1373		n -= bits_to_copy;
1374		bit_nr += bits_to_copy;
1375		bits_to_copy = 8;
1376		bit_shift = 0;
1377		idx++;
1378	}
1379
1380	return value & mask;
1381}
1382
1383u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1384			unsigned offset, unsigned n)
1385{
1386	if (n > 32) {
1387		hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1388			      __func__, n, current->comm);
1389		n = 32;
1390	}
1391
1392	return __extract(report, offset, n);
 
 
 
 
1393}
1394EXPORT_SYMBOL_GPL(hid_field_extract);
1395
1396/*
1397 * "implement" : set bits in a little endian bit stream.
1398 * Same concepts as "extract" (see comments above).
1399 * The data mangled in the bit stream remains in little endian
1400 * order the whole time. It make more sense to talk about
1401 * endianness of register values by considering a register
1402 * a "cached" copy of the little endian bit stream.
1403 */
1404
1405static void __implement(u8 *report, unsigned offset, int n, u32 value)
1406{
1407	unsigned int idx = offset / 8;
1408	unsigned int bit_shift = offset % 8;
1409	int bits_to_set = 8 - bit_shift;
1410
1411	while (n - bits_to_set >= 0) {
1412		report[idx] &= ~(0xff << bit_shift);
1413		report[idx] |= value << bit_shift;
1414		value >>= bits_to_set;
1415		n -= bits_to_set;
1416		bits_to_set = 8;
1417		bit_shift = 0;
1418		idx++;
1419	}
1420
1421	/* last nibble */
1422	if (n) {
1423		u8 bit_mask = ((1U << n) - 1);
1424		report[idx] &= ~(bit_mask << bit_shift);
1425		report[idx] |= value << bit_shift;
1426	}
1427}
1428
1429static void implement(const struct hid_device *hid, u8 *report,
1430		      unsigned offset, unsigned n, u32 value)
1431{
1432	if (unlikely(n > 32)) {
1433		hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1434			 __func__, n, current->comm);
1435		n = 32;
1436	} else if (n < 32) {
1437		u32 m = (1U << n) - 1;
1438
1439		if (unlikely(value > m)) {
1440			hid_warn(hid,
1441				 "%s() called with too large value %d (n: %d)! (%s)\n",
1442				 __func__, value, n, current->comm);
1443			WARN_ON(1);
1444			value &= m;
1445		}
1446	}
1447
1448	__implement(report, offset, n, value);
 
 
 
 
 
 
 
 
 
 
 
 
1449}
1450
1451/*
1452 * Search an array for a value.
1453 */
1454
1455static int search(__s32 *array, __s32 value, unsigned n)
1456{
1457	while (n--) {
1458		if (*array++ == value)
1459			return 0;
1460	}
1461	return -1;
1462}
1463
1464/**
1465 * hid_match_report - check if driver's raw_event should be called
1466 *
1467 * @hid: hid device
1468 * @report: hid report to match against
1469 *
1470 * compare hid->driver->report_table->report_type to report->type
1471 */
1472static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1473{
1474	const struct hid_report_id *id = hid->driver->report_table;
1475
1476	if (!id) /* NULL means all */
1477		return 1;
1478
1479	for (; id->report_type != HID_TERMINATOR; id++)
1480		if (id->report_type == HID_ANY_ID ||
1481				id->report_type == report->type)
1482			return 1;
1483	return 0;
1484}
1485
1486/**
1487 * hid_match_usage - check if driver's event should be called
1488 *
1489 * @hid: hid device
1490 * @usage: usage to match against
1491 *
1492 * compare hid->driver->usage_table->usage_{type,code} to
1493 * usage->usage_{type,code}
1494 */
1495static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1496{
1497	const struct hid_usage_id *id = hid->driver->usage_table;
1498
1499	if (!id) /* NULL means all */
1500		return 1;
1501
1502	for (; id->usage_type != HID_ANY_ID - 1; id++)
1503		if ((id->usage_hid == HID_ANY_ID ||
1504				id->usage_hid == usage->hid) &&
1505				(id->usage_type == HID_ANY_ID ||
1506				id->usage_type == usage->type) &&
1507				(id->usage_code == HID_ANY_ID ||
1508				 id->usage_code == usage->code))
1509			return 1;
1510	return 0;
1511}
1512
1513static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1514		struct hid_usage *usage, __s32 value, int interrupt)
1515{
1516	struct hid_driver *hdrv = hid->driver;
1517	int ret;
1518
1519	if (!list_empty(&hid->debug_list))
1520		hid_dump_input(hid, usage, value);
1521
1522	if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1523		ret = hdrv->event(hid, field, usage, value);
1524		if (ret != 0) {
1525			if (ret < 0)
1526				hid_err(hid, "%s's event failed with %d\n",
1527						hdrv->name, ret);
1528			return;
1529		}
1530	}
1531
1532	if (hid->claimed & HID_CLAIMED_INPUT)
1533		hidinput_hid_event(hid, field, usage, value);
1534	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1535		hid->hiddev_hid_event(hid, field, usage, value);
1536}
1537
1538/*
1539 * Checks if the given value is valid within this field
 
 
1540 */
1541static inline int hid_array_value_is_valid(struct hid_field *field,
1542					   __s32 value)
1543{
1544	__s32 min = field->logical_minimum;
1545
1546	/*
1547	 * Value needs to be between logical min and max, and
1548	 * (value - min) is used as an index in the usage array.
1549	 * This array is of size field->maxusage
1550	 */
1551	return value >= min &&
1552	       value <= field->logical_maximum &&
1553	       value - min < field->maxusage;
1554}
1555
1556/*
1557 * Fetch the field from the data. The field content is stored for next
1558 * report processing (we do differential reporting to the layer).
1559 */
1560static void hid_input_fetch_field(struct hid_device *hid,
1561				  struct hid_field *field,
1562				  __u8 *data)
1563{
1564	unsigned n;
1565	unsigned count = field->report_count;
1566	unsigned offset = field->report_offset;
1567	unsigned size = field->report_size;
1568	__s32 min = field->logical_minimum;
 
1569	__s32 *value;
1570
1571	value = field->new_value;
1572	memset(value, 0, count * sizeof(__s32));
1573	field->ignored = false;
1574
1575	for (n = 0; n < count; n++) {
1576
1577		value[n] = min < 0 ?
1578			snto32(hid_field_extract(hid, data, offset + n * size,
1579			       size), size) :
1580			hid_field_extract(hid, data, offset + n * size, size);
1581
1582		/* Ignore report if ErrorRollOver */
1583		if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1584		    hid_array_value_is_valid(field, value[n]) &&
1585		    field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) {
1586			field->ignored = true;
1587			return;
1588		}
1589	}
1590}
1591
1592/*
1593 * Process a received variable field.
1594 */
1595
1596static void hid_input_var_field(struct hid_device *hid,
1597				struct hid_field *field,
1598				int interrupt)
1599{
1600	unsigned int count = field->report_count;
1601	__s32 *value = field->new_value;
1602	unsigned int n;
1603
1604	for (n = 0; n < count; n++)
1605		hid_process_event(hid,
1606				  field,
1607				  &field->usage[n],
1608				  value[n],
1609				  interrupt);
1610
1611	memcpy(field->value, value, count * sizeof(__s32));
1612}
1613
1614/*
1615 * Process a received array field. The field content is stored for
1616 * next report processing (we do differential reporting to the layer).
1617 */
1618
1619static void hid_input_array_field(struct hid_device *hid,
1620				  struct hid_field *field,
1621				  int interrupt)
1622{
1623	unsigned int n;
1624	unsigned int count = field->report_count;
1625	__s32 min = field->logical_minimum;
1626	__s32 *value;
1627
1628	value = field->new_value;
1629
1630	/* ErrorRollOver */
1631	if (field->ignored)
1632		return;
1633
1634	for (n = 0; n < count; n++) {
1635		if (hid_array_value_is_valid(field, field->value[n]) &&
1636		    search(value, field->value[n], count))
1637			hid_process_event(hid,
1638					  field,
1639					  &field->usage[field->value[n] - min],
1640					  0,
1641					  interrupt);
1642
1643		if (hid_array_value_is_valid(field, value[n]) &&
1644		    search(field->value, value[n], count))
1645			hid_process_event(hid,
1646					  field,
1647					  &field->usage[value[n] - min],
1648					  1,
1649					  interrupt);
1650	}
1651
1652	memcpy(field->value, value, count * sizeof(__s32));
1653}
1654
1655/*
1656 * Analyse a received report, and fetch the data from it. The field
1657 * content is stored for next report processing (we do differential
1658 * reporting to the layer).
1659 */
1660static void hid_process_report(struct hid_device *hid,
1661			       struct hid_report *report,
1662			       __u8 *data,
1663			       int interrupt)
1664{
1665	unsigned int a;
1666	struct hid_field_entry *entry;
1667	struct hid_field *field;
1668
1669	/* first retrieve all incoming values in data */
1670	for (a = 0; a < report->maxfield; a++)
1671		hid_input_fetch_field(hid, report->field[a], data);
1672
1673	if (!list_empty(&report->field_entry_list)) {
1674		/* INPUT_REPORT, we have a priority list of fields */
1675		list_for_each_entry(entry,
1676				    &report->field_entry_list,
1677				    list) {
1678			field = entry->field;
1679
1680			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1681				hid_process_event(hid,
1682						  field,
1683						  &field->usage[entry->index],
1684						  field->new_value[entry->index],
1685						  interrupt);
1686			else
1687				hid_input_array_field(hid, field, interrupt);
1688		}
1689
1690		/* we need to do the memcpy at the end for var items */
1691		for (a = 0; a < report->maxfield; a++) {
1692			field = report->field[a];
1693
1694			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1695				memcpy(field->value, field->new_value,
1696				       field->report_count * sizeof(__s32));
1697		}
1698	} else {
1699		/* FEATURE_REPORT, regular processing */
1700		for (a = 0; a < report->maxfield; a++) {
1701			field = report->field[a];
1702
1703			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1704				hid_input_var_field(hid, field, interrupt);
1705			else
1706				hid_input_array_field(hid, field, interrupt);
1707		}
1708	}
1709}
1710
1711/*
1712 * Insert a given usage_index in a field in the list
1713 * of processed usages in the report.
1714 *
1715 * The elements of lower priority score are processed
1716 * first.
1717 */
1718static void __hid_insert_field_entry(struct hid_device *hid,
1719				     struct hid_report *report,
1720				     struct hid_field_entry *entry,
1721				     struct hid_field *field,
1722				     unsigned int usage_index)
1723{
1724	struct hid_field_entry *next;
1725
1726	entry->field = field;
1727	entry->index = usage_index;
1728	entry->priority = field->usages_priorities[usage_index];
1729
1730	/* insert the element at the correct position */
1731	list_for_each_entry(next,
1732			    &report->field_entry_list,
1733			    list) {
1734		/*
1735		 * the priority of our element is strictly higher
1736		 * than the next one, insert it before
1737		 */
1738		if (entry->priority > next->priority) {
1739			list_add_tail(&entry->list, &next->list);
1740			return;
1741		}
1742	}
1743
1744	/* lowest priority score: insert at the end */
1745	list_add_tail(&entry->list, &report->field_entry_list);
1746}
1747
1748static void hid_report_process_ordering(struct hid_device *hid,
1749					struct hid_report *report)
1750{
1751	struct hid_field *field;
1752	struct hid_field_entry *entries;
1753	unsigned int a, u, usages;
1754	unsigned int count = 0;
1755
1756	/* count the number of individual fields in the report */
1757	for (a = 0; a < report->maxfield; a++) {
1758		field = report->field[a];
1759
1760		if (field->flags & HID_MAIN_ITEM_VARIABLE)
1761			count += field->report_count;
1762		else
1763			count++;
1764	}
1765
1766	/* allocate the memory to process the fields */
1767	entries = kcalloc(count, sizeof(*entries), GFP_KERNEL);
1768	if (!entries)
1769		return;
1770
1771	report->field_entries = entries;
1772
1773	/*
1774	 * walk through all fields in the report and
1775	 * store them by priority order in report->field_entry_list
1776	 *
1777	 * - Var elements are individualized (field + usage_index)
1778	 * - Arrays are taken as one, we can not chose an order for them
1779	 */
1780	usages = 0;
1781	for (a = 0; a < report->maxfield; a++) {
1782		field = report->field[a];
1783
1784		if (field->flags & HID_MAIN_ITEM_VARIABLE) {
1785			for (u = 0; u < field->report_count; u++) {
1786				__hid_insert_field_entry(hid, report,
1787							 &entries[usages],
1788							 field, u);
1789				usages++;
1790			}
1791		} else {
1792			__hid_insert_field_entry(hid, report, &entries[usages],
1793						 field, 0);
1794			usages++;
1795		}
1796	}
1797}
1798
1799static void hid_process_ordering(struct hid_device *hid)
1800{
1801	struct hid_report *report;
1802	struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT];
1803
1804	list_for_each_entry(report, &report_enum->report_list, list)
1805		hid_report_process_ordering(hid, report);
1806}
1807
1808/*
1809 * Output the field into the report.
1810 */
1811
1812static void hid_output_field(const struct hid_device *hid,
1813			     struct hid_field *field, __u8 *data)
1814{
1815	unsigned count = field->report_count;
1816	unsigned offset = field->report_offset;
1817	unsigned size = field->report_size;
1818	unsigned n;
1819
1820	for (n = 0; n < count; n++) {
1821		if (field->logical_minimum < 0)	/* signed values */
1822			implement(hid, data, offset + n * size, size,
1823				  s32ton(field->value[n], size));
1824		else				/* unsigned values */
1825			implement(hid, data, offset + n * size, size,
1826				  field->value[n]);
1827	}
1828}
1829
1830/*
1831 * Compute the size of a report.
1832 */
1833static size_t hid_compute_report_size(struct hid_report *report)
1834{
1835	if (report->size)
1836		return ((report->size - 1) >> 3) + 1;
1837
1838	return 0;
1839}
1840
1841/*
1842 * Create a report. 'data' has to be allocated using
1843 * hid_alloc_report_buf() so that it has proper size.
1844 */
1845
1846void hid_output_report(struct hid_report *report, __u8 *data)
1847{
1848	unsigned n;
1849
1850	if (report->id > 0)
1851		*data++ = report->id;
1852
1853	memset(data, 0, hid_compute_report_size(report));
1854	for (n = 0; n < report->maxfield; n++)
1855		hid_output_field(report->device, report->field[n], data);
1856}
1857EXPORT_SYMBOL_GPL(hid_output_report);
1858
1859/*
1860 * Allocator for buffer that is going to be passed to hid_output_report()
1861 */
1862u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1863{
1864	/*
1865	 * 7 extra bytes are necessary to achieve proper functionality
1866	 * of implement() working on 8 byte chunks
1867	 */
1868
1869	u32 len = hid_report_len(report) + 7;
1870
1871	return kmalloc(len, flags);
1872}
1873EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1874
1875/*
1876 * Set a field value. The report this field belongs to has to be
1877 * created and transferred to the device, to set this value in the
1878 * device.
1879 */
1880
1881int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1882{
1883	unsigned size;
1884
1885	if (!field)
1886		return -1;
1887
1888	size = field->report_size;
1889
1890	hid_dump_input(field->report->device, field->usage + offset, value);
1891
1892	if (offset >= field->report_count) {
1893		hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1894				offset, field->report_count);
1895		return -1;
1896	}
1897	if (field->logical_minimum < 0) {
1898		if (value != snto32(s32ton(value, size), size)) {
1899			hid_err(field->report->device, "value %d is out of range\n", value);
1900			return -1;
1901		}
1902	}
1903	field->value[offset] = value;
1904	return 0;
1905}
1906EXPORT_SYMBOL_GPL(hid_set_field);
1907
1908static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1909		const u8 *data)
1910{
1911	struct hid_report *report;
1912	unsigned int n = 0;	/* Normally report number is 0 */
1913
1914	/* Device uses numbered reports, data[0] is report number */
1915	if (report_enum->numbered)
1916		n = *data;
1917
1918	report = report_enum->report_id_hash[n];
1919	if (report == NULL)
1920		dbg_hid("undefined report_id %u received\n", n);
1921
1922	return report;
1923}
1924
1925/*
1926 * Implement a generic .request() callback, using .raw_request()
1927 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1928 */
1929int __hid_request(struct hid_device *hid, struct hid_report *report,
1930		enum hid_class_request reqtype)
1931{
1932	char *buf;
1933	int ret;
1934	u32 len;
1935
1936	buf = hid_alloc_report_buf(report, GFP_KERNEL);
1937	if (!buf)
1938		return -ENOMEM;
1939
1940	len = hid_report_len(report);
1941
1942	if (reqtype == HID_REQ_SET_REPORT)
1943		hid_output_report(report, buf);
1944
1945	ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1946					  report->type, reqtype);
1947	if (ret < 0) {
1948		dbg_hid("unable to complete request: %d\n", ret);
1949		goto out;
1950	}
1951
1952	if (reqtype == HID_REQ_GET_REPORT)
1953		hid_input_report(hid, report->type, buf, ret, 0);
1954
1955	ret = 0;
1956
1957out:
1958	kfree(buf);
1959	return ret;
1960}
1961EXPORT_SYMBOL_GPL(__hid_request);
1962
1963int hid_report_raw_event(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
1964			 int interrupt)
1965{
1966	struct hid_report_enum *report_enum = hid->report_enum + type;
1967	struct hid_report *report;
1968	struct hid_driver *hdrv;
1969	u32 rsize, csize = size;
1970	u8 *cdata = data;
1971	int ret = 0;
1972
1973	report = hid_get_report(report_enum, data);
1974	if (!report)
1975		goto out;
1976
1977	if (report_enum->numbered) {
1978		cdata++;
1979		csize--;
1980	}
1981
1982	rsize = hid_compute_report_size(report);
1983
1984	if (report_enum->numbered && rsize >= HID_MAX_BUFFER_SIZE)
1985		rsize = HID_MAX_BUFFER_SIZE - 1;
1986	else if (rsize > HID_MAX_BUFFER_SIZE)
1987		rsize = HID_MAX_BUFFER_SIZE;
1988
1989	if (csize < rsize) {
1990		dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1991				csize, rsize);
1992		memset(cdata + csize, 0, rsize - csize);
1993	}
1994
1995	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1996		hid->hiddev_report_event(hid, report);
1997	if (hid->claimed & HID_CLAIMED_HIDRAW) {
1998		ret = hidraw_report_event(hid, data, size);
1999		if (ret)
2000			goto out;
2001	}
2002
2003	if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
2004		hid_process_report(hid, report, cdata, interrupt);
2005		hdrv = hid->driver;
2006		if (hdrv && hdrv->report)
2007			hdrv->report(hid, report);
2008	}
2009
2010	if (hid->claimed & HID_CLAIMED_INPUT)
2011		hidinput_report_event(hid, report);
2012out:
2013	return ret;
2014}
2015EXPORT_SYMBOL_GPL(hid_report_raw_event);
2016
2017/**
2018 * hid_input_report - report data from lower layer (usb, bt...)
2019 *
2020 * @hid: hid device
2021 * @type: HID report type (HID_*_REPORT)
2022 * @data: report contents
2023 * @size: size of data parameter
2024 * @interrupt: distinguish between interrupt and control transfers
2025 *
2026 * This is data entry for lower layers.
2027 */
2028int hid_input_report(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2029		     int interrupt)
2030{
2031	struct hid_report_enum *report_enum;
2032	struct hid_driver *hdrv;
2033	struct hid_report *report;
2034	int ret = 0;
 
 
2035
2036	if (!hid)
2037		return -ENODEV;
2038
2039	if (down_trylock(&hid->driver_input_lock))
2040		return -EBUSY;
2041
2042	if (!hid->driver) {
2043		ret = -ENODEV;
2044		goto unlock;
2045	}
2046	report_enum = hid->report_enum + type;
2047	hdrv = hid->driver;
2048
2049	if (!size) {
2050		dbg_hid("empty report\n");
2051		ret = -1;
2052		goto unlock;
2053	}
2054
2055	/* Avoid unnecessary overhead if debugfs is disabled */
2056	if (!list_empty(&hid->debug_list))
2057		hid_dump_report(hid, type, data, size);
2058
2059	report = hid_get_report(report_enum, data);
 
2060
2061	if (!report) {
2062		ret = -1;
2063		goto unlock;
 
 
 
 
 
 
2064	}
 
 
 
 
 
 
 
 
2065
2066	if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
2067		ret = hdrv->raw_event(hid, report, data, size);
2068		if (ret < 0)
2069			goto unlock;
2070	}
2071
2072	ret = hid_report_raw_event(hid, type, data, size, interrupt);
2073
2074unlock:
2075	up(&hid->driver_input_lock);
2076	return ret;
2077}
2078EXPORT_SYMBOL_GPL(hid_input_report);
2079
2080bool hid_match_one_id(const struct hid_device *hdev,
2081		      const struct hid_device_id *id)
2082{
2083	return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
2084		(id->group == HID_GROUP_ANY || id->group == hdev->group) &&
2085		(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
2086		(id->product == HID_ANY_ID || id->product == hdev->product);
2087}
2088
2089const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
2090		const struct hid_device_id *id)
2091{
2092	for (; id->bus; id++)
2093		if (hid_match_one_id(hdev, id))
2094			return id;
2095
2096	return NULL;
2097}
2098EXPORT_SYMBOL_GPL(hid_match_id);
2099
2100static const struct hid_device_id hid_hiddev_list[] = {
2101	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
2102	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
2103	{ }
2104};
2105
2106static bool hid_hiddev(struct hid_device *hdev)
2107{
2108	return !!hid_match_id(hdev, hid_hiddev_list);
2109}
2110
2111
2112static ssize_t
2113read_report_descriptor(struct file *filp, struct kobject *kobj,
2114		struct bin_attribute *attr,
2115		char *buf, loff_t off, size_t count)
2116{
2117	struct device *dev = kobj_to_dev(kobj);
2118	struct hid_device *hdev = to_hid_device(dev);
2119
2120	if (off >= hdev->rsize)
2121		return 0;
2122
2123	if (off + count > hdev->rsize)
2124		count = hdev->rsize - off;
2125
2126	memcpy(buf, hdev->rdesc + off, count);
2127
2128	return count;
2129}
2130
2131static ssize_t
2132show_country(struct device *dev, struct device_attribute *attr,
2133		char *buf)
2134{
2135	struct hid_device *hdev = to_hid_device(dev);
2136
2137	return sprintf(buf, "%02x\n", hdev->country & 0xff);
2138}
2139
2140static struct bin_attribute dev_bin_attr_report_desc = {
2141	.attr = { .name = "report_descriptor", .mode = 0444 },
2142	.read = read_report_descriptor,
2143	.size = HID_MAX_DESCRIPTOR_SIZE,
2144};
2145
2146static const struct device_attribute dev_attr_country = {
2147	.attr = { .name = "country", .mode = 0444 },
2148	.show = show_country,
2149};
2150
2151int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
2152{
2153	static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
2154		"Joystick", "Gamepad", "Keyboard", "Keypad",
2155		"Multi-Axis Controller"
2156	};
2157	const char *type, *bus;
2158	char buf[64] = "";
2159	unsigned int i;
2160	int len;
2161	int ret;
2162
2163	if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
2164		connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
2165	if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
2166		connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
2167	if (hdev->bus != BUS_USB)
2168		connect_mask &= ~HID_CONNECT_HIDDEV;
2169	if (hid_hiddev(hdev))
2170		connect_mask |= HID_CONNECT_HIDDEV_FORCE;
2171
2172	if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
2173				connect_mask & HID_CONNECT_HIDINPUT_FORCE))
2174		hdev->claimed |= HID_CLAIMED_INPUT;
2175
2176	if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
2177			!hdev->hiddev_connect(hdev,
2178				connect_mask & HID_CONNECT_HIDDEV_FORCE))
2179		hdev->claimed |= HID_CLAIMED_HIDDEV;
2180	if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
2181		hdev->claimed |= HID_CLAIMED_HIDRAW;
2182
2183	if (connect_mask & HID_CONNECT_DRIVER)
2184		hdev->claimed |= HID_CLAIMED_DRIVER;
2185
2186	/* Drivers with the ->raw_event callback set are not required to connect
2187	 * to any other listener. */
2188	if (!hdev->claimed && !hdev->driver->raw_event) {
2189		hid_err(hdev, "device has no listeners, quitting\n");
2190		return -ENODEV;
2191	}
2192
2193	hid_process_ordering(hdev);
2194
2195	if ((hdev->claimed & HID_CLAIMED_INPUT) &&
2196			(connect_mask & HID_CONNECT_FF) && hdev->ff_init)
2197		hdev->ff_init(hdev);
2198
2199	len = 0;
2200	if (hdev->claimed & HID_CLAIMED_INPUT)
2201		len += sprintf(buf + len, "input");
2202	if (hdev->claimed & HID_CLAIMED_HIDDEV)
2203		len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
2204				((struct hiddev *)hdev->hiddev)->minor);
2205	if (hdev->claimed & HID_CLAIMED_HIDRAW)
2206		len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
2207				((struct hidraw *)hdev->hidraw)->minor);
2208
2209	type = "Device";
2210	for (i = 0; i < hdev->maxcollection; i++) {
2211		struct hid_collection *col = &hdev->collection[i];
2212		if (col->type == HID_COLLECTION_APPLICATION &&
2213		   (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2214		   (col->usage & 0xffff) < ARRAY_SIZE(types)) {
2215			type = types[col->usage & 0xffff];
2216			break;
2217		}
2218	}
2219
2220	switch (hdev->bus) {
2221	case BUS_USB:
2222		bus = "USB";
2223		break;
2224	case BUS_BLUETOOTH:
2225		bus = "BLUETOOTH";
2226		break;
2227	case BUS_I2C:
2228		bus = "I2C";
2229		break;
2230	case BUS_VIRTUAL:
2231		bus = "VIRTUAL";
2232		break;
2233	case BUS_INTEL_ISHTP:
2234	case BUS_AMD_SFH:
2235		bus = "SENSOR HUB";
2236		break;
2237	default:
2238		bus = "<UNKNOWN>";
2239	}
2240
2241	ret = device_create_file(&hdev->dev, &dev_attr_country);
2242	if (ret)
2243		hid_warn(hdev,
2244			 "can't create sysfs country code attribute err: %d\n", ret);
2245
2246	hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2247		 buf, bus, hdev->version >> 8, hdev->version & 0xff,
2248		 type, hdev->name, hdev->phys);
2249
2250	return 0;
2251}
2252EXPORT_SYMBOL_GPL(hid_connect);
2253
2254void hid_disconnect(struct hid_device *hdev)
2255{
2256	device_remove_file(&hdev->dev, &dev_attr_country);
2257	if (hdev->claimed & HID_CLAIMED_INPUT)
2258		hidinput_disconnect(hdev);
2259	if (hdev->claimed & HID_CLAIMED_HIDDEV)
2260		hdev->hiddev_disconnect(hdev);
2261	if (hdev->claimed & HID_CLAIMED_HIDRAW)
2262		hidraw_disconnect(hdev);
2263	hdev->claimed = 0;
2264}
2265EXPORT_SYMBOL_GPL(hid_disconnect);
2266
2267/**
2268 * hid_hw_start - start underlying HW
2269 * @hdev: hid device
2270 * @connect_mask: which outputs to connect, see HID_CONNECT_*
2271 *
2272 * Call this in probe function *after* hid_parse. This will setup HW
2273 * buffers and start the device (if not defeirred to device open).
2274 * hid_hw_stop must be called if this was successful.
2275 */
2276int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2277{
2278	int error;
2279
2280	error = hdev->ll_driver->start(hdev);
2281	if (error)
2282		return error;
2283
2284	if (connect_mask) {
2285		error = hid_connect(hdev, connect_mask);
2286		if (error) {
2287			hdev->ll_driver->stop(hdev);
2288			return error;
2289		}
2290	}
2291
2292	return 0;
2293}
2294EXPORT_SYMBOL_GPL(hid_hw_start);
2295
2296/**
2297 * hid_hw_stop - stop underlying HW
2298 * @hdev: hid device
2299 *
2300 * This is usually called from remove function or from probe when something
2301 * failed and hid_hw_start was called already.
2302 */
2303void hid_hw_stop(struct hid_device *hdev)
2304{
2305	hid_disconnect(hdev);
2306	hdev->ll_driver->stop(hdev);
2307}
2308EXPORT_SYMBOL_GPL(hid_hw_stop);
2309
2310/**
2311 * hid_hw_open - signal underlying HW to start delivering events
2312 * @hdev: hid device
2313 *
2314 * Tell underlying HW to start delivering events from the device.
2315 * This function should be called sometime after successful call
2316 * to hid_hw_start().
2317 */
2318int hid_hw_open(struct hid_device *hdev)
2319{
2320	int ret;
2321
2322	ret = mutex_lock_killable(&hdev->ll_open_lock);
2323	if (ret)
2324		return ret;
2325
2326	if (!hdev->ll_open_count++) {
2327		ret = hdev->ll_driver->open(hdev);
2328		if (ret)
2329			hdev->ll_open_count--;
2330	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2331
2332	mutex_unlock(&hdev->ll_open_lock);
2333	return ret;
2334}
2335EXPORT_SYMBOL_GPL(hid_hw_open);
2336
2337/**
2338 * hid_hw_close - signal underlaying HW to stop delivering events
2339 *
2340 * @hdev: hid device
2341 *
2342 * This function indicates that we are not interested in the events
2343 * from this device anymore. Delivery of events may or may not stop,
2344 * depending on the number of users still outstanding.
2345 */
2346void hid_hw_close(struct hid_device *hdev)
2347{
2348	mutex_lock(&hdev->ll_open_lock);
2349	if (!--hdev->ll_open_count)
2350		hdev->ll_driver->close(hdev);
2351	mutex_unlock(&hdev->ll_open_lock);
2352}
2353EXPORT_SYMBOL_GPL(hid_hw_close);
2354
2355/**
2356 * hid_hw_request - send report request to device
2357 *
2358 * @hdev: hid device
2359 * @report: report to send
2360 * @reqtype: hid request type
2361 */
2362void hid_hw_request(struct hid_device *hdev,
2363		    struct hid_report *report, enum hid_class_request reqtype)
2364{
2365	if (hdev->ll_driver->request)
2366		return hdev->ll_driver->request(hdev, report, reqtype);
2367
2368	__hid_request(hdev, report, reqtype);
2369}
2370EXPORT_SYMBOL_GPL(hid_hw_request);
2371
2372/**
2373 * hid_hw_raw_request - send report request to device
2374 *
2375 * @hdev: hid device
2376 * @reportnum: report ID
2377 * @buf: in/out data to transfer
2378 * @len: length of buf
2379 * @rtype: HID report type
2380 * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT
2381 *
2382 * Return: count of data transferred, negative if error
2383 *
2384 * Same behavior as hid_hw_request, but with raw buffers instead.
2385 */
2386int hid_hw_raw_request(struct hid_device *hdev,
2387		       unsigned char reportnum, __u8 *buf,
2388		       size_t len, enum hid_report_type rtype, enum hid_class_request reqtype)
2389{
2390	if (len < 1 || len > HID_MAX_BUFFER_SIZE || !buf)
2391		return -EINVAL;
2392
2393	return hdev->ll_driver->raw_request(hdev, reportnum, buf, len,
2394					    rtype, reqtype);
2395}
2396EXPORT_SYMBOL_GPL(hid_hw_raw_request);
2397
2398/**
2399 * hid_hw_output_report - send output report to device
2400 *
2401 * @hdev: hid device
2402 * @buf: raw data to transfer
2403 * @len: length of buf
2404 *
2405 * Return: count of data transferred, negative if error
2406 */
2407int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len)
2408{
2409	if (len < 1 || len > HID_MAX_BUFFER_SIZE || !buf)
2410		return -EINVAL;
2411
2412	if (hdev->ll_driver->output_report)
2413		return hdev->ll_driver->output_report(hdev, buf, len);
2414
2415	return -ENOSYS;
2416}
2417EXPORT_SYMBOL_GPL(hid_hw_output_report);
2418
2419#ifdef CONFIG_PM
2420int hid_driver_suspend(struct hid_device *hdev, pm_message_t state)
2421{
2422	if (hdev->driver && hdev->driver->suspend)
2423		return hdev->driver->suspend(hdev, state);
2424
2425	return 0;
2426}
2427EXPORT_SYMBOL_GPL(hid_driver_suspend);
2428
2429int hid_driver_reset_resume(struct hid_device *hdev)
2430{
2431	if (hdev->driver && hdev->driver->reset_resume)
2432		return hdev->driver->reset_resume(hdev);
2433
2434	return 0;
2435}
2436EXPORT_SYMBOL_GPL(hid_driver_reset_resume);
2437
2438int hid_driver_resume(struct hid_device *hdev)
2439{
2440	if (hdev->driver && hdev->driver->resume)
2441		return hdev->driver->resume(hdev);
2442
2443	return 0;
2444}
2445EXPORT_SYMBOL_GPL(hid_driver_resume);
2446#endif /* CONFIG_PM */
2447
2448struct hid_dynid {
2449	struct list_head list;
2450	struct hid_device_id id;
2451};
2452
2453/**
2454 * new_id_store - add a new HID device ID to this driver and re-probe devices
2455 * @drv: target device driver
2456 * @buf: buffer for scanning device ID data
2457 * @count: input size
2458 *
2459 * Adds a new dynamic hid device ID to this driver,
2460 * and causes the driver to probe for all devices again.
2461 */
2462static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2463		size_t count)
2464{
2465	struct hid_driver *hdrv = to_hid_driver(drv);
2466	struct hid_dynid *dynid;
2467	__u32 bus, vendor, product;
2468	unsigned long driver_data = 0;
2469	int ret;
2470
2471	ret = sscanf(buf, "%x %x %x %lx",
2472			&bus, &vendor, &product, &driver_data);
2473	if (ret < 3)
2474		return -EINVAL;
2475
2476	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2477	if (!dynid)
2478		return -ENOMEM;
2479
2480	dynid->id.bus = bus;
2481	dynid->id.group = HID_GROUP_ANY;
2482	dynid->id.vendor = vendor;
2483	dynid->id.product = product;
2484	dynid->id.driver_data = driver_data;
2485
2486	spin_lock(&hdrv->dyn_lock);
2487	list_add_tail(&dynid->list, &hdrv->dyn_list);
2488	spin_unlock(&hdrv->dyn_lock);
2489
2490	ret = driver_attach(&hdrv->driver);
 
 
 
 
2491
2492	return ret ? : count;
2493}
2494static DRIVER_ATTR_WO(new_id);
2495
2496static struct attribute *hid_drv_attrs[] = {
2497	&driver_attr_new_id.attr,
2498	NULL,
2499};
2500ATTRIBUTE_GROUPS(hid_drv);
2501
2502static void hid_free_dynids(struct hid_driver *hdrv)
2503{
2504	struct hid_dynid *dynid, *n;
2505
2506	spin_lock(&hdrv->dyn_lock);
2507	list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2508		list_del(&dynid->list);
2509		kfree(dynid);
2510	}
2511	spin_unlock(&hdrv->dyn_lock);
2512}
2513
2514const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2515					     struct hid_driver *hdrv)
2516{
2517	struct hid_dynid *dynid;
2518
2519	spin_lock(&hdrv->dyn_lock);
2520	list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2521		if (hid_match_one_id(hdev, &dynid->id)) {
2522			spin_unlock(&hdrv->dyn_lock);
2523			return &dynid->id;
2524		}
2525	}
2526	spin_unlock(&hdrv->dyn_lock);
2527
2528	return hid_match_id(hdev, hdrv->id_table);
2529}
2530EXPORT_SYMBOL_GPL(hid_match_device);
2531
2532static int hid_bus_match(struct device *dev, struct device_driver *drv)
2533{
2534	struct hid_driver *hdrv = to_hid_driver(drv);
2535	struct hid_device *hdev = to_hid_device(dev);
2536
2537	return hid_match_device(hdev, hdrv) != NULL;
2538}
2539
2540/**
2541 * hid_compare_device_paths - check if both devices share the same path
2542 * @hdev_a: hid device
2543 * @hdev_b: hid device
2544 * @separator: char to use as separator
2545 *
2546 * Check if two devices share the same path up to the last occurrence of
2547 * the separator char. Both paths must exist (i.e., zero-length paths
2548 * don't match).
2549 */
2550bool hid_compare_device_paths(struct hid_device *hdev_a,
2551			      struct hid_device *hdev_b, char separator)
2552{
2553	int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2554	int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2555
2556	if (n1 != n2 || n1 <= 0 || n2 <= 0)
2557		return false;
 
2558
2559	return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2560}
2561EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2562
2563static int hid_device_probe(struct device *dev)
2564{
2565	struct hid_driver *hdrv = to_hid_driver(dev->driver);
2566	struct hid_device *hdev = to_hid_device(dev);
 
2567	const struct hid_device_id *id;
2568	int ret = 0;
2569
2570	if (down_interruptible(&hdev->driver_input_lock)) {
2571		ret = -EINTR;
2572		goto end;
2573	}
2574	hdev->io_started = false;
2575
2576	clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2577
2578	if (!hdev->driver) {
2579		id = hid_match_device(hdev, hdrv);
2580		if (id == NULL) {
2581			ret = -ENODEV;
2582			goto unlock;
2583		}
2584
2585		if (hdrv->match) {
2586			if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2587				ret = -ENODEV;
2588				goto unlock;
2589			}
2590		} else {
2591			/*
2592			 * hid-generic implements .match(), so if
2593			 * hid_ignore_special_drivers is set, we can safely
2594			 * return.
2595			 */
2596			if (hid_ignore_special_drivers) {
2597				ret = -ENODEV;
2598				goto unlock;
2599			}
2600		}
2601
2602		/* reset the quirks that has been previously set */
2603		hdev->quirks = hid_lookup_quirk(hdev);
2604		hdev->driver = hdrv;
2605		if (hdrv->probe) {
2606			ret = hdrv->probe(hdev, id);
2607		} else { /* default probe */
2608			ret = hid_open_report(hdev);
2609			if (!ret)
2610				ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2611		}
2612		if (ret) {
2613			hid_close_report(hdev);
2614			hdev->driver = NULL;
2615		}
2616	}
2617unlock:
2618	if (!hdev->io_started)
2619		up(&hdev->driver_input_lock);
2620end:
2621	return ret;
2622}
2623
2624static void hid_device_remove(struct device *dev)
2625{
2626	struct hid_device *hdev = to_hid_device(dev);
2627	struct hid_driver *hdrv;
2628
2629	down(&hdev->driver_input_lock);
2630	hdev->io_started = false;
2631
2632	hdrv = hdev->driver;
2633	if (hdrv) {
2634		if (hdrv->remove)
2635			hdrv->remove(hdev);
2636		else /* default remove */
2637			hid_hw_stop(hdev);
2638		hid_close_report(hdev);
2639		hdev->driver = NULL;
2640	}
2641
2642	if (!hdev->io_started)
2643		up(&hdev->driver_input_lock);
2644}
2645
2646static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2647			     char *buf)
2648{
2649	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2650
2651	return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2652			 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2653}
2654static DEVICE_ATTR_RO(modalias);
2655
2656static struct attribute *hid_dev_attrs[] = {
2657	&dev_attr_modalias.attr,
2658	NULL,
2659};
2660static struct bin_attribute *hid_dev_bin_attrs[] = {
2661	&dev_bin_attr_report_desc,
2662	NULL
2663};
2664static const struct attribute_group hid_dev_group = {
2665	.attrs = hid_dev_attrs,
2666	.bin_attrs = hid_dev_bin_attrs,
2667};
2668__ATTRIBUTE_GROUPS(hid_dev);
2669
2670static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2671{
2672	struct hid_device *hdev = to_hid_device(dev);
2673
2674	if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2675			hdev->bus, hdev->vendor, hdev->product))
2676		return -ENOMEM;
2677
2678	if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2679		return -ENOMEM;
2680
2681	if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2682		return -ENOMEM;
2683
2684	if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2685		return -ENOMEM;
2686
2687	if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2688			   hdev->bus, hdev->group, hdev->vendor, hdev->product))
2689		return -ENOMEM;
2690
2691	return 0;
2692}
2693
2694struct bus_type hid_bus_type = {
2695	.name		= "hid",
2696	.dev_groups	= hid_dev_groups,
2697	.drv_groups	= hid_drv_groups,
2698	.match		= hid_bus_match,
2699	.probe		= hid_device_probe,
2700	.remove		= hid_device_remove,
2701	.uevent		= hid_uevent,
2702};
2703EXPORT_SYMBOL(hid_bus_type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2704
2705int hid_add_device(struct hid_device *hdev)
2706{
2707	static atomic_t id = ATOMIC_INIT(0);
2708	int ret;
2709
2710	if (WARN_ON(hdev->status & HID_STAT_ADDED))
2711		return -EBUSY;
2712
2713	hdev->quirks = hid_lookup_quirk(hdev);
2714
2715	/* we need to kill them here, otherwise they will stay allocated to
2716	 * wait for coming driver */
2717	if (hid_ignore(hdev))
2718		return -ENODEV;
2719
2720	/*
2721	 * Check for the mandatory transport channel.
2722	 */
2723	 if (!hdev->ll_driver->raw_request) {
2724		hid_err(hdev, "transport driver missing .raw_request()\n");
2725		return -EINVAL;
2726	 }
2727
2728	/*
2729	 * Read the device report descriptor once and use as template
2730	 * for the driver-specific modifications.
2731	 */
2732	ret = hdev->ll_driver->parse(hdev);
2733	if (ret)
2734		return ret;
2735	if (!hdev->dev_rdesc)
2736		return -ENODEV;
2737
2738	/*
2739	 * Scan generic devices for group information
2740	 */
2741	if (hid_ignore_special_drivers) {
2742		hdev->group = HID_GROUP_GENERIC;
2743	} else if (!hdev->group &&
2744		   !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2745		ret = hid_scan_report(hdev);
2746		if (ret)
2747			hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2748	}
2749
2750	hdev->id = atomic_inc_return(&id);
2751
2752	/* XXX hack, any other cleaner solution after the driver core
2753	 * is converted to allow more than 20 bytes as the device name? */
2754	dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2755		     hdev->vendor, hdev->product, hdev->id);
2756
2757	hid_debug_register(hdev, dev_name(&hdev->dev));
2758	ret = device_add(&hdev->dev);
2759	if (!ret)
2760		hdev->status |= HID_STAT_ADDED;
2761	else
2762		hid_debug_unregister(hdev);
2763
2764	return ret;
2765}
2766EXPORT_SYMBOL_GPL(hid_add_device);
2767
2768/**
2769 * hid_allocate_device - allocate new hid device descriptor
2770 *
2771 * Allocate and initialize hid device, so that hid_destroy_device might be
2772 * used to free it.
2773 *
2774 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2775 * error value.
2776 */
2777struct hid_device *hid_allocate_device(void)
2778{
2779	struct hid_device *hdev;
 
2780	int ret = -ENOMEM;
2781
2782	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2783	if (hdev == NULL)
2784		return ERR_PTR(ret);
2785
2786	device_initialize(&hdev->dev);
2787	hdev->dev.release = hid_device_release;
2788	hdev->dev.bus = &hid_bus_type;
2789	device_enable_async_suspend(&hdev->dev);
2790
2791	hid_close_report(hdev);
 
 
 
 
 
 
 
2792
2793	init_waitqueue_head(&hdev->debug_wait);
2794	INIT_LIST_HEAD(&hdev->debug_list);
2795	spin_lock_init(&hdev->debug_list_lock);
2796	sema_init(&hdev->driver_input_lock, 1);
2797	mutex_init(&hdev->ll_open_lock);
2798
2799	return hdev;
 
 
 
2800}
2801EXPORT_SYMBOL_GPL(hid_allocate_device);
2802
2803static void hid_remove_device(struct hid_device *hdev)
2804{
2805	if (hdev->status & HID_STAT_ADDED) {
2806		device_del(&hdev->dev);
2807		hid_debug_unregister(hdev);
2808		hdev->status &= ~HID_STAT_ADDED;
2809	}
2810	kfree(hdev->dev_rdesc);
2811	hdev->dev_rdesc = NULL;
2812	hdev->dev_rsize = 0;
2813}
2814
2815/**
2816 * hid_destroy_device - free previously allocated device
2817 *
2818 * @hdev: hid device
2819 *
2820 * If you allocate hid_device through hid_allocate_device, you should ever
2821 * free by this function.
2822 */
2823void hid_destroy_device(struct hid_device *hdev)
2824{
2825	hid_remove_device(hdev);
2826	put_device(&hdev->dev);
2827}
2828EXPORT_SYMBOL_GPL(hid_destroy_device);
2829
2830
2831static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2832{
2833	struct hid_driver *hdrv = data;
2834	struct hid_device *hdev = to_hid_device(dev);
2835
2836	if (hdev->driver == hdrv &&
2837	    !hdrv->match(hdev, hid_ignore_special_drivers) &&
2838	    !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2839		return device_reprobe(dev);
2840
2841	return 0;
2842}
2843
2844static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2845{
2846	struct hid_driver *hdrv = to_hid_driver(drv);
2847
2848	if (hdrv->match) {
2849		bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2850				 __hid_bus_reprobe_drivers);
2851	}
2852
2853	return 0;
2854}
2855
2856static int __bus_removed_driver(struct device_driver *drv, void *data)
2857{
2858	return bus_rescan_devices(&hid_bus_type);
2859}
2860
2861int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2862		const char *mod_name)
2863{
2864	int ret;
2865
2866	hdrv->driver.name = hdrv->name;
2867	hdrv->driver.bus = &hid_bus_type;
2868	hdrv->driver.owner = owner;
2869	hdrv->driver.mod_name = mod_name;
2870
2871	INIT_LIST_HEAD(&hdrv->dyn_list);
2872	spin_lock_init(&hdrv->dyn_lock);
2873
2874	ret = driver_register(&hdrv->driver);
 
 
2875
2876	if (ret == 0)
2877		bus_for_each_drv(&hid_bus_type, NULL, NULL,
2878				 __hid_bus_driver_added);
2879
2880	return ret;
2881}
2882EXPORT_SYMBOL_GPL(__hid_register_driver);
2883
2884void hid_unregister_driver(struct hid_driver *hdrv)
2885{
 
2886	driver_unregister(&hdrv->driver);
2887	hid_free_dynids(hdrv);
2888
2889	bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2890}
2891EXPORT_SYMBOL_GPL(hid_unregister_driver);
2892
2893int hid_check_keys_pressed(struct hid_device *hid)
2894{
2895	struct hid_input *hidinput;
2896	int i;
2897
2898	if (!(hid->claimed & HID_CLAIMED_INPUT))
2899		return 0;
2900
2901	list_for_each_entry(hidinput, &hid->inputs, list) {
2902		for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2903			if (hidinput->input->key[i])
2904				return 1;
2905	}
2906
2907	return 0;
2908}
 
2909EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2910
2911static int __init hid_init(void)
2912{
2913	int ret;
2914
2915	if (hid_debug)
2916		pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2917			"debugfs is now used for inspecting the device (report descriptor, reports)\n");
2918
2919	ret = bus_register(&hid_bus_type);
2920	if (ret) {
2921		pr_err("can't register hid bus\n");
2922		goto err;
2923	}
2924
2925	ret = hidraw_init();
2926	if (ret)
2927		goto err_bus;
2928
2929	hid_debug_init();
2930
2931	return 0;
2932err_bus:
2933	bus_unregister(&hid_bus_type);
2934err:
2935	return ret;
2936}
2937
2938static void __exit hid_exit(void)
2939{
2940	hid_debug_exit();
2941	hidraw_exit();
2942	bus_unregister(&hid_bus_type);
2943	hid_quirks_exit(HID_BUS_ANY);
2944}
2945
2946module_init(hid_init);
2947module_exit(hid_exit);
2948
2949MODULE_AUTHOR("Andreas Gal");
2950MODULE_AUTHOR("Vojtech Pavlik");
2951MODULE_AUTHOR("Jiri Kosina");
2952MODULE_LICENSE("GPL");
 
v3.1
 
   1/*
   2 *  HID support for Linux
   3 *
   4 *  Copyright (c) 1999 Andreas Gal
   5 *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
   6 *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
   7 *  Copyright (c) 2006-2010 Jiri Kosina
   8 */
   9
  10/*
  11 * This program is free software; you can redistribute it and/or modify it
  12 * under the terms of the GNU General Public License as published by the Free
  13 * Software Foundation; either version 2 of the License, or (at your option)
  14 * any later version.
  15 */
  16
  17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18
  19#include <linux/module.h>
  20#include <linux/slab.h>
  21#include <linux/init.h>
  22#include <linux/kernel.h>
  23#include <linux/list.h>
  24#include <linux/mm.h>
  25#include <linux/spinlock.h>
  26#include <asm/unaligned.h>
  27#include <asm/byteorder.h>
  28#include <linux/input.h>
  29#include <linux/wait.h>
  30#include <linux/vmalloc.h>
  31#include <linux/sched.h>
 
  32
  33#include <linux/hid.h>
  34#include <linux/hiddev.h>
  35#include <linux/hid-debug.h>
  36#include <linux/hidraw.h>
  37
  38#include "hid-ids.h"
  39
  40/*
  41 * Version Information
  42 */
  43
  44#define DRIVER_DESC "HID core driver"
  45#define DRIVER_LICENSE "GPL"
  46
  47int hid_debug = 0;
  48module_param_named(debug, hid_debug, int, 0600);
  49MODULE_PARM_DESC(debug, "toggle HID debugging messages");
  50EXPORT_SYMBOL_GPL(hid_debug);
  51
 
 
 
 
  52/*
  53 * Register a new report for a device.
  54 */
  55
  56struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
 
 
  57{
  58	struct hid_report_enum *report_enum = device->report_enum + type;
  59	struct hid_report *report;
  60
 
 
  61	if (report_enum->report_id_hash[id])
  62		return report_enum->report_id_hash[id];
  63
  64	report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
  65	if (!report)
  66		return NULL;
  67
  68	if (id != 0)
  69		report_enum->numbered = 1;
  70
  71	report->id = id;
  72	report->type = type;
  73	report->size = 0;
  74	report->device = device;
 
  75	report_enum->report_id_hash[id] = report;
  76
  77	list_add_tail(&report->list, &report_enum->report_list);
 
  78
  79	return report;
  80}
  81EXPORT_SYMBOL_GPL(hid_register_report);
  82
  83/*
  84 * Register a new field for this report.
  85 */
  86
  87static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
  88{
  89	struct hid_field *field;
  90
  91	if (report->maxfield == HID_MAX_FIELDS) {
  92		dbg_hid("too many fields in report\n");
  93		return NULL;
  94	}
  95
  96	field = kzalloc((sizeof(struct hid_field) +
  97			 usages * sizeof(struct hid_usage) +
  98			 values * sizeof(unsigned)), GFP_KERNEL);
  99	if (!field)
 100		return NULL;
 101
 102	field->index = report->maxfield++;
 103	report->field[field->index] = field;
 104	field->usage = (struct hid_usage *)(field + 1);
 105	field->value = (s32 *)(field->usage + usages);
 
 
 106	field->report = report;
 107
 108	return field;
 109}
 110
 111/*
 112 * Open a collection. The type/usage is pushed on the stack.
 113 */
 114
 115static int open_collection(struct hid_parser *parser, unsigned type)
 116{
 117	struct hid_collection *collection;
 118	unsigned usage;
 
 119
 120	usage = parser->local.usage[0];
 121
 122	if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
 123		dbg_hid("collection stack overflow\n");
 124		return -1;
 
 
 
 
 
 
 
 
 
 
 125	}
 126
 127	if (parser->device->maxcollection == parser->device->collection_size) {
 128		collection = kmalloc(sizeof(struct hid_collection) *
 129				parser->device->collection_size * 2, GFP_KERNEL);
 
 
 
 130		if (collection == NULL) {
 131			dbg_hid("failed to reallocate collection array\n");
 132			return -1;
 133		}
 134		memcpy(collection, parser->device->collection,
 135			sizeof(struct hid_collection) *
 136			parser->device->collection_size);
 137		memset(collection + parser->device->collection_size, 0,
 138			sizeof(struct hid_collection) *
 139			parser->device->collection_size);
 140		kfree(parser->device->collection);
 141		parser->device->collection = collection;
 142		parser->device->collection_size *= 2;
 143	}
 144
 145	parser->collection_stack[parser->collection_stack_ptr++] =
 146		parser->device->maxcollection;
 147
 148	collection = parser->device->collection +
 149		parser->device->maxcollection++;
 150	collection->type = type;
 151	collection->usage = usage;
 152	collection->level = parser->collection_stack_ptr - 1;
 
 
 153
 154	if (type == HID_COLLECTION_APPLICATION)
 155		parser->device->maxapplication++;
 156
 157	return 0;
 158}
 159
 160/*
 161 * Close a collection.
 162 */
 163
 164static int close_collection(struct hid_parser *parser)
 165{
 166	if (!parser->collection_stack_ptr) {
 167		dbg_hid("collection stack underflow\n");
 168		return -1;
 169	}
 170	parser->collection_stack_ptr--;
 171	return 0;
 172}
 173
 174/*
 175 * Climb up the stack, search for the specified collection type
 176 * and return the usage.
 177 */
 178
 179static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
 180{
 181	struct hid_collection *collection = parser->device->collection;
 182	int n;
 183
 184	for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
 185		unsigned index = parser->collection_stack[n];
 186		if (collection[index].type == type)
 187			return collection[index].usage;
 188	}
 189	return 0; /* we know nothing about this usage type */
 190}
 191
 192/*
 
 
 
 
 
 
 
 
 
 
 
 
 193 * Add a usage to the temporary parser table.
 194 */
 195
 196static int hid_add_usage(struct hid_parser *parser, unsigned usage)
 197{
 198	if (parser->local.usage_index >= HID_MAX_USAGES) {
 199		dbg_hid("usage index exceeded\n");
 200		return -1;
 201	}
 202	parser->local.usage[parser->local.usage_index] = usage;
 
 
 
 
 
 
 
 
 
 203	parser->local.collection_index[parser->local.usage_index] =
 204		parser->collection_stack_ptr ?
 205		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
 206	parser->local.usage_index++;
 207	return 0;
 208}
 209
 210/*
 211 * Register a new field for this report.
 212 */
 213
 214static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
 215{
 216	struct hid_report *report;
 217	struct hid_field *field;
 218	int usages;
 219	unsigned offset;
 220	int i;
 
 
 
 221
 222	report = hid_register_report(parser->device, report_type, parser->global.report_id);
 
 223	if (!report) {
 224		dbg_hid("hid_register_report failed\n");
 225		return -1;
 226	}
 227
 228	if (parser->global.logical_maximum < parser->global.logical_minimum) {
 229		dbg_hid("logical range invalid %d %d\n", parser->global.logical_minimum, parser->global.logical_maximum);
 
 
 
 
 
 
 
 
 230		return -1;
 231	}
 232
 233	offset = report->size;
 234	report->size += parser->global.report_size * parser->global.report_count;
 235
 
 
 
 
 
 
 236	if (!parser->local.usage_index) /* Ignore padding fields */
 237		return 0;
 238
 239	usages = max_t(int, parser->local.usage_index, parser->global.report_count);
 
 240
 241	field = hid_register_field(report, usages, parser->global.report_count);
 242	if (!field)
 243		return 0;
 244
 245	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
 246	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
 247	field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
 248
 249	for (i = 0; i < usages; i++) {
 250		int j = i;
 251		/* Duplicate the last usage we parsed if we have excess values */
 252		if (i >= parser->local.usage_index)
 253			j = parser->local.usage_index - 1;
 254		field->usage[i].hid = parser->local.usage[j];
 255		field->usage[i].collection_index =
 256			parser->local.collection_index[j];
 
 
 257	}
 258
 259	field->maxusage = usages;
 260	field->flags = flags;
 261	field->report_offset = offset;
 262	field->report_type = report_type;
 263	field->report_size = parser->global.report_size;
 264	field->report_count = parser->global.report_count;
 265	field->logical_minimum = parser->global.logical_minimum;
 266	field->logical_maximum = parser->global.logical_maximum;
 267	field->physical_minimum = parser->global.physical_minimum;
 268	field->physical_maximum = parser->global.physical_maximum;
 269	field->unit_exponent = parser->global.unit_exponent;
 270	field->unit = parser->global.unit;
 271
 272	return 0;
 273}
 274
 275/*
 276 * Read data value from item.
 277 */
 278
 279static u32 item_udata(struct hid_item *item)
 280{
 281	switch (item->size) {
 282	case 1: return item->data.u8;
 283	case 2: return item->data.u16;
 284	case 4: return item->data.u32;
 285	}
 286	return 0;
 287}
 288
 289static s32 item_sdata(struct hid_item *item)
 290{
 291	switch (item->size) {
 292	case 1: return item->data.s8;
 293	case 2: return item->data.s16;
 294	case 4: return item->data.s32;
 295	}
 296	return 0;
 297}
 298
 299/*
 300 * Process a global item.
 301 */
 302
 303static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
 304{
 
 305	switch (item->tag) {
 306	case HID_GLOBAL_ITEM_TAG_PUSH:
 307
 308		if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
 309			dbg_hid("global environment stack overflow\n");
 310			return -1;
 311		}
 312
 313		memcpy(parser->global_stack + parser->global_stack_ptr++,
 314			&parser->global, sizeof(struct hid_global));
 315		return 0;
 316
 317	case HID_GLOBAL_ITEM_TAG_POP:
 318
 319		if (!parser->global_stack_ptr) {
 320			dbg_hid("global environment stack underflow\n");
 321			return -1;
 322		}
 323
 324		memcpy(&parser->global, parser->global_stack +
 325			--parser->global_stack_ptr, sizeof(struct hid_global));
 326		return 0;
 327
 328	case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
 329		parser->global.usage_page = item_udata(item);
 330		return 0;
 331
 332	case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
 333		parser->global.logical_minimum = item_sdata(item);
 334		return 0;
 335
 336	case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
 337		if (parser->global.logical_minimum < 0)
 338			parser->global.logical_maximum = item_sdata(item);
 339		else
 340			parser->global.logical_maximum = item_udata(item);
 341		return 0;
 342
 343	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
 344		parser->global.physical_minimum = item_sdata(item);
 345		return 0;
 346
 347	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
 348		if (parser->global.physical_minimum < 0)
 349			parser->global.physical_maximum = item_sdata(item);
 350		else
 351			parser->global.physical_maximum = item_udata(item);
 352		return 0;
 353
 354	case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
 355		parser->global.unit_exponent = item_sdata(item);
 
 
 
 
 
 
 
 
 356		return 0;
 357
 358	case HID_GLOBAL_ITEM_TAG_UNIT:
 359		parser->global.unit = item_udata(item);
 360		return 0;
 361
 362	case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
 363		parser->global.report_size = item_udata(item);
 364		if (parser->global.report_size > 32) {
 365			dbg_hid("invalid report_size %d\n",
 366					parser->global.report_size);
 367			return -1;
 368		}
 369		return 0;
 370
 371	case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
 372		parser->global.report_count = item_udata(item);
 373		if (parser->global.report_count > HID_MAX_USAGES) {
 374			dbg_hid("invalid report_count %d\n",
 375					parser->global.report_count);
 376			return -1;
 377		}
 378		return 0;
 379
 380	case HID_GLOBAL_ITEM_TAG_REPORT_ID:
 381		parser->global.report_id = item_udata(item);
 382		if (parser->global.report_id == 0) {
 383			dbg_hid("report_id 0 is invalid\n");
 
 
 384			return -1;
 385		}
 386		return 0;
 387
 388	default:
 389		dbg_hid("unknown global tag 0x%x\n", item->tag);
 390		return -1;
 391	}
 392}
 393
 394/*
 395 * Process a local item.
 396 */
 397
 398static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
 399{
 400	__u32 data;
 401	unsigned n;
 
 402
 403	data = item_udata(item);
 404
 405	switch (item->tag) {
 406	case HID_LOCAL_ITEM_TAG_DELIMITER:
 407
 408		if (data) {
 409			/*
 410			 * We treat items before the first delimiter
 411			 * as global to all usage sets (branch 0).
 412			 * In the moment we process only these global
 413			 * items and the first delimiter set.
 414			 */
 415			if (parser->local.delimiter_depth != 0) {
 416				dbg_hid("nested delimiters\n");
 417				return -1;
 418			}
 419			parser->local.delimiter_depth++;
 420			parser->local.delimiter_branch++;
 421		} else {
 422			if (parser->local.delimiter_depth < 1) {
 423				dbg_hid("bogus close delimiter\n");
 424				return -1;
 425			}
 426			parser->local.delimiter_depth--;
 427		}
 428		return 1;
 429
 430	case HID_LOCAL_ITEM_TAG_USAGE:
 431
 432		if (parser->local.delimiter_branch > 1) {
 433			dbg_hid("alternative usage ignored\n");
 434			return 0;
 435		}
 436
 437		if (item->size <= 2)
 438			data = (parser->global.usage_page << 16) + data;
 439
 440		return hid_add_usage(parser, data);
 441
 442	case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
 443
 444		if (parser->local.delimiter_branch > 1) {
 445			dbg_hid("alternative usage ignored\n");
 446			return 0;
 447		}
 448
 449		if (item->size <= 2)
 450			data = (parser->global.usage_page << 16) + data;
 451
 452		parser->local.usage_minimum = data;
 453		return 0;
 454
 455	case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
 456
 457		if (parser->local.delimiter_branch > 1) {
 458			dbg_hid("alternative usage ignored\n");
 459			return 0;
 460		}
 461
 462		if (item->size <= 2)
 463			data = (parser->global.usage_page << 16) + data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 464
 465		for (n = parser->local.usage_minimum; n <= data; n++)
 466			if (hid_add_usage(parser, n)) {
 467				dbg_hid("hid_add_usage failed\n");
 468				return -1;
 469			}
 470		return 0;
 471
 472	default:
 473
 474		dbg_hid("unknown local item tag 0x%x\n", item->tag);
 475		return 0;
 476	}
 477	return 0;
 478}
 479
 480/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 481 * Process a main item.
 482 */
 483
 484static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
 485{
 486	__u32 data;
 487	int ret;
 488
 
 
 489	data = item_udata(item);
 490
 491	switch (item->tag) {
 492	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
 493		ret = open_collection(parser, data & 0xff);
 494		break;
 495	case HID_MAIN_ITEM_TAG_END_COLLECTION:
 496		ret = close_collection(parser);
 497		break;
 498	case HID_MAIN_ITEM_TAG_INPUT:
 499		ret = hid_add_field(parser, HID_INPUT_REPORT, data);
 500		break;
 501	case HID_MAIN_ITEM_TAG_OUTPUT:
 502		ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
 503		break;
 504	case HID_MAIN_ITEM_TAG_FEATURE:
 505		ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
 506		break;
 507	default:
 508		dbg_hid("unknown main item tag 0x%x\n", item->tag);
 509		ret = 0;
 510	}
 511
 512	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
 513
 514	return ret;
 515}
 516
 517/*
 518 * Process a reserved item.
 519 */
 520
 521static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
 522{
 523	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
 524	return 0;
 525}
 526
 527/*
 528 * Free a report and all registered fields. The field->usage and
 529 * field->value table's are allocated behind the field, so we need
 530 * only to free(field) itself.
 531 */
 532
 533static void hid_free_report(struct hid_report *report)
 534{
 535	unsigned n;
 536
 
 
 537	for (n = 0; n < report->maxfield; n++)
 538		kfree(report->field[n]);
 539	kfree(report);
 540}
 541
 542/*
 543 * Free a device structure, all reports, and all fields.
 
 544 */
 545
 546static void hid_device_release(struct device *dev)
 547{
 548	struct hid_device *device = container_of(dev, struct hid_device, dev);
 549	unsigned i, j;
 550
 551	for (i = 0; i < HID_REPORT_TYPES; i++) {
 552		struct hid_report_enum *report_enum = device->report_enum + i;
 553
 554		for (j = 0; j < 256; j++) {
 555			struct hid_report *report = report_enum->report_id_hash[j];
 556			if (report)
 557				hid_free_report(report);
 558		}
 
 
 559	}
 560
 561	kfree(device->rdesc);
 
 
 
 562	kfree(device->collection);
 563	kfree(device);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 564}
 565
 566/*
 567 * Fetch a report description item from the data stream. We support long
 568 * items, though they are not used yet.
 569 */
 570
 571static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
 572{
 573	u8 b;
 574
 575	if ((end - start) <= 0)
 576		return NULL;
 577
 578	b = *start++;
 579
 580	item->type = (b >> 2) & 3;
 581	item->tag  = (b >> 4) & 15;
 582
 583	if (item->tag == HID_ITEM_TAG_LONG) {
 584
 585		item->format = HID_ITEM_FORMAT_LONG;
 586
 587		if ((end - start) < 2)
 588			return NULL;
 589
 590		item->size = *start++;
 591		item->tag  = *start++;
 592
 593		if ((end - start) < item->size)
 594			return NULL;
 595
 596		item->data.longdata = start;
 597		start += item->size;
 598		return start;
 599	}
 600
 601	item->format = HID_ITEM_FORMAT_SHORT;
 602	item->size = b & 3;
 603
 604	switch (item->size) {
 605	case 0:
 606		return start;
 607
 608	case 1:
 609		if ((end - start) < 1)
 610			return NULL;
 611		item->data.u8 = *start++;
 612		return start;
 613
 614	case 2:
 615		if ((end - start) < 2)
 616			return NULL;
 617		item->data.u16 = get_unaligned_le16(start);
 618		start = (__u8 *)((__le16 *)start + 1);
 619		return start;
 620
 621	case 3:
 622		item->size++;
 623		if ((end - start) < 4)
 624			return NULL;
 625		item->data.u32 = get_unaligned_le32(start);
 626		start = (__u8 *)((__le32 *)start + 1);
 627		return start;
 628	}
 629
 630	return NULL;
 631}
 632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 633/**
 634 * hid_parse_report - parse device report
 635 *
 636 * @device: hid device
 637 * @start: report start
 638 * @size: report size
 639 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 640 * Parse a report description into a hid_device structure. Reports are
 641 * enumerated, fields are attached to these reports.
 642 * 0 returned on success, otherwise nonzero error value.
 
 
 
 643 */
 644int hid_parse_report(struct hid_device *device, __u8 *start,
 645		unsigned size)
 646{
 647	struct hid_parser *parser;
 648	struct hid_item item;
 
 
 
 649	__u8 *end;
 
 650	int ret;
 
 651	static int (*dispatch_type[])(struct hid_parser *parser,
 652				      struct hid_item *item) = {
 653		hid_parser_main,
 654		hid_parser_global,
 655		hid_parser_local,
 656		hid_parser_reserved
 657	};
 658
 
 
 
 
 
 
 
 
 
 
 
 
 659	if (device->driver->report_fixup)
 660		start = device->driver->report_fixup(device, start, &size);
 
 
 661
 662	device->rdesc = kmemdup(start, size, GFP_KERNEL);
 663	if (device->rdesc == NULL)
 
 664		return -ENOMEM;
 
 
 665	device->rsize = size;
 666
 667	parser = vzalloc(sizeof(struct hid_parser));
 668	if (!parser) {
 669		ret = -ENOMEM;
 670		goto err;
 671	}
 672
 673	parser->device = device;
 674
 675	end = start + size;
 
 
 
 
 
 
 
 
 
 
 
 676	ret = -EINVAL;
 677	while ((start = fetch_item(start, end, &item)) != NULL) {
 
 678
 679		if (item.format != HID_ITEM_FORMAT_SHORT) {
 680			dbg_hid("unexpected long global item\n");
 681			goto err;
 682		}
 683
 684		if (dispatch_type[item.type](parser, &item)) {
 685			dbg_hid("item %u %u %u %u parsing failed\n",
 686				item.format, (unsigned)item.size,
 687				(unsigned)item.type, (unsigned)item.tag);
 688			goto err;
 689		}
 690
 691		if (start == end) {
 692			if (parser->collection_stack_ptr) {
 693				dbg_hid("unbalanced collection at end of report description\n");
 694				goto err;
 695			}
 696			if (parser->local.delimiter_depth) {
 697				dbg_hid("unbalanced delimiter at end of report description\n");
 698				goto err;
 699			}
 
 
 
 
 
 
 
 
 700			vfree(parser);
 
 
 701			return 0;
 702		}
 703	}
 704
 705	dbg_hid("item fetching failed at offset %d\n", (int)(end - start));
 
 706err:
 
 
 707	vfree(parser);
 
 708	return ret;
 709}
 710EXPORT_SYMBOL_GPL(hid_parse_report);
 711
 712/*
 713 * Convert a signed n-bit integer to signed 32-bit integer. Common
 714 * cases are done through the compiler, the screwed things has to be
 715 * done by hand.
 716 */
 717
 718static s32 snto32(__u32 value, unsigned n)
 719{
 
 
 
 
 
 
 720	switch (n) {
 721	case 8:  return ((__s8)value);
 722	case 16: return ((__s16)value);
 723	case 32: return ((__s32)value);
 724	}
 725	return value & (1 << (n - 1)) ? value | (-1 << n) : value;
 726}
 727
 
 
 
 
 
 
 728/*
 729 * Convert a signed 32-bit integer to a signed n-bit integer.
 730 */
 731
 732static u32 s32ton(__s32 value, unsigned n)
 733{
 734	s32 a = value >> (n - 1);
 735	if (a && a != -1)
 736		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
 737	return value & ((1 << n) - 1);
 738}
 739
 740/*
 741 * Extract/implement a data field from/to a little endian report (bit array).
 742 *
 743 * Code sort-of follows HID spec:
 744 *     http://www.usb.org/developers/devclass_docs/HID1_11.pdf
 745 *
 746 * While the USB HID spec allows unlimited length bit fields in "report
 747 * descriptors", most devices never use more than 16 bits.
 748 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
 749 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
 750 */
 751
 752static __u32 extract(const struct hid_device *hid, __u8 *report,
 753		     unsigned offset, unsigned n)
 754{
 755	u64 x;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 756
 757	if (n > 32)
 758		hid_warn(hid, "extract() called with n (%d) > 32! (%s)\n",
 759			 n, current->comm);
 
 
 
 
 
 760
 761	report += offset >> 3;  /* adjust byte index */
 762	offset &= 7;            /* now only need bit offset into one byte */
 763	x = get_unaligned_le64(report);
 764	x = (x >> offset) & ((1ULL << n) - 1);  /* extract bit field */
 765	return (u32) x;
 766}
 
 767
 768/*
 769 * "implement" : set bits in a little endian bit stream.
 770 * Same concepts as "extract" (see comments above).
 771 * The data mangled in the bit stream remains in little endian
 772 * order the whole time. It make more sense to talk about
 773 * endianness of register values by considering a register
 774 * a "cached" copy of the little endiad bit stream.
 775 */
 776static void implement(const struct hid_device *hid, __u8 *report,
 777		      unsigned offset, unsigned n, __u32 value)
 778{
 779	u64 x;
 780	u64 m = (1ULL << n) - 1;
 
 
 
 
 
 
 
 
 
 
 
 781
 782	if (n > 32)
 
 
 
 
 
 
 
 
 
 
 
 783		hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
 784			 __func__, n, current->comm);
 
 
 
 
 
 
 
 
 
 
 
 
 785
 786	if (value > m)
 787		hid_warn(hid, "%s() called with too large value %d! (%s)\n",
 788			 __func__, value, current->comm);
 789	WARN_ON(value > m);
 790	value &= m;
 791
 792	report += offset >> 3;
 793	offset &= 7;
 794
 795	x = get_unaligned_le64(report);
 796	x &= ~(m << offset);
 797	x |= ((u64)value) << offset;
 798	put_unaligned_le64(x, report);
 799}
 800
 801/*
 802 * Search an array for a value.
 803 */
 804
 805static int search(__s32 *array, __s32 value, unsigned n)
 806{
 807	while (n--) {
 808		if (*array++ == value)
 809			return 0;
 810	}
 811	return -1;
 812}
 813
 814/**
 815 * hid_match_report - check if driver's raw_event should be called
 816 *
 817 * @hid: hid device
 818 * @report_type: type to match against
 819 *
 820 * compare hid->driver->report_table->report_type to report->type
 821 */
 822static int hid_match_report(struct hid_device *hid, struct hid_report *report)
 823{
 824	const struct hid_report_id *id = hid->driver->report_table;
 825
 826	if (!id) /* NULL means all */
 827		return 1;
 828
 829	for (; id->report_type != HID_TERMINATOR; id++)
 830		if (id->report_type == HID_ANY_ID ||
 831				id->report_type == report->type)
 832			return 1;
 833	return 0;
 834}
 835
 836/**
 837 * hid_match_usage - check if driver's event should be called
 838 *
 839 * @hid: hid device
 840 * @usage: usage to match against
 841 *
 842 * compare hid->driver->usage_table->usage_{type,code} to
 843 * usage->usage_{type,code}
 844 */
 845static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
 846{
 847	const struct hid_usage_id *id = hid->driver->usage_table;
 848
 849	if (!id) /* NULL means all */
 850		return 1;
 851
 852	for (; id->usage_type != HID_ANY_ID - 1; id++)
 853		if ((id->usage_hid == HID_ANY_ID ||
 854				id->usage_hid == usage->hid) &&
 855				(id->usage_type == HID_ANY_ID ||
 856				id->usage_type == usage->type) &&
 857				(id->usage_code == HID_ANY_ID ||
 858				 id->usage_code == usage->code))
 859			return 1;
 860	return 0;
 861}
 862
 863static void hid_process_event(struct hid_device *hid, struct hid_field *field,
 864		struct hid_usage *usage, __s32 value, int interrupt)
 865{
 866	struct hid_driver *hdrv = hid->driver;
 867	int ret;
 868
 869	hid_dump_input(hid, usage, value);
 
 870
 871	if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
 872		ret = hdrv->event(hid, field, usage, value);
 873		if (ret != 0) {
 874			if (ret < 0)
 875				dbg_hid("%s's event failed with %d\n",
 876						hdrv->name, ret);
 877			return;
 878		}
 879	}
 880
 881	if (hid->claimed & HID_CLAIMED_INPUT)
 882		hidinput_hid_event(hid, field, usage, value);
 883	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
 884		hid->hiddev_hid_event(hid, field, usage, value);
 885}
 886
 887/*
 888 * Analyse a received field, and fetch the data from it. The field
 889 * content is stored for next report processing (we do differential
 890 * reporting to the layer).
 891 */
 
 
 
 
 892
 893static void hid_input_field(struct hid_device *hid, struct hid_field *field,
 894			    __u8 *data, int interrupt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 895{
 896	unsigned n;
 897	unsigned count = field->report_count;
 898	unsigned offset = field->report_offset;
 899	unsigned size = field->report_size;
 900	__s32 min = field->logical_minimum;
 901	__s32 max = field->logical_maximum;
 902	__s32 *value;
 903
 904	value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC);
 905	if (!value)
 906		return;
 907
 908	for (n = 0; n < count; n++) {
 909
 910		value[n] = min < 0 ?
 911			snto32(extract(hid, data, offset + n * size, size),
 912			       size) :
 913			extract(hid, data, offset + n * size, size);
 914
 915		/* Ignore report if ErrorRollOver */
 916		if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
 917		    value[n] >= min && value[n] <= max &&
 918		    field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
 919			goto exit;
 
 
 920	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 921
 922	for (n = 0; n < count; n++) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 923
 924		if (HID_MAIN_ITEM_VARIABLE & field->flags) {
 925			hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
 926			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 927		}
 
 
 
 
 
 928
 929		if (field->value[n] >= min && field->value[n] <= max
 930			&& field->usage[field->value[n] - min].hid
 931			&& search(value, field->value[n], count))
 932				hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
 933
 934		if (value[n] >= min && value[n] <= max
 935			&& field->usage[value[n] - min].hid
 936			&& search(field->value, value[n], count))
 937				hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
 
 
 
 
 
 
 
 938	}
 939
 940	memcpy(field->value, value, count * sizeof(__s32));
 941exit:
 942	kfree(value);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943}
 944
 945/*
 946 * Output the field into the report.
 947 */
 948
 949static void hid_output_field(const struct hid_device *hid,
 950			     struct hid_field *field, __u8 *data)
 951{
 952	unsigned count = field->report_count;
 953	unsigned offset = field->report_offset;
 954	unsigned size = field->report_size;
 955	unsigned n;
 956
 957	for (n = 0; n < count; n++) {
 958		if (field->logical_minimum < 0)	/* signed values */
 959			implement(hid, data, offset + n * size, size,
 960				  s32ton(field->value[n], size));
 961		else				/* unsigned values */
 962			implement(hid, data, offset + n * size, size,
 963				  field->value[n]);
 964	}
 965}
 966
 967/*
 968 * Create a report.
 
 
 
 
 
 
 
 
 
 
 
 
 969 */
 970
 971void hid_output_report(struct hid_report *report, __u8 *data)
 972{
 973	unsigned n;
 974
 975	if (report->id > 0)
 976		*data++ = report->id;
 977
 978	memset(data, 0, ((report->size - 1) >> 3) + 1);
 979	for (n = 0; n < report->maxfield; n++)
 980		hid_output_field(report->device, report->field[n], data);
 981}
 982EXPORT_SYMBOL_GPL(hid_output_report);
 983
 984/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 985 * Set a field value. The report this field belongs to has to be
 986 * created and transferred to the device, to set this value in the
 987 * device.
 988 */
 989
 990int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
 991{
 992	unsigned size = field->report_size;
 
 
 
 
 
 993
 994	hid_dump_input(field->report->device, field->usage + offset, value);
 995
 996	if (offset >= field->report_count) {
 997		dbg_hid("offset (%d) exceeds report_count (%d)\n", offset, field->report_count);
 
 998		return -1;
 999	}
1000	if (field->logical_minimum < 0) {
1001		if (value != snto32(s32ton(value, size), size)) {
1002			dbg_hid("value %d is out of range\n", value);
1003			return -1;
1004		}
1005	}
1006	field->value[offset] = value;
1007	return 0;
1008}
1009EXPORT_SYMBOL_GPL(hid_set_field);
1010
1011static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1012		const u8 *data)
1013{
1014	struct hid_report *report;
1015	unsigned int n = 0;	/* Normally report number is 0 */
1016
1017	/* Device uses numbered reports, data[0] is report number */
1018	if (report_enum->numbered)
1019		n = *data;
1020
1021	report = report_enum->report_id_hash[n];
1022	if (report == NULL)
1023		dbg_hid("undefined report_id %u received\n", n);
1024
1025	return report;
1026}
1027
1028void hid_report_raw_event(struct hid_device *hid, int type, u8 *data, int size,
1029		int interrupt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1030{
1031	struct hid_report_enum *report_enum = hid->report_enum + type;
1032	struct hid_report *report;
1033	unsigned int a;
1034	int rsize, csize = size;
1035	u8 *cdata = data;
 
1036
1037	report = hid_get_report(report_enum, data);
1038	if (!report)
1039		return;
1040
1041	if (report_enum->numbered) {
1042		cdata++;
1043		csize--;
1044	}
1045
1046	rsize = ((report->size - 1) >> 3) + 1;
1047
1048	if (rsize > HID_MAX_BUFFER_SIZE)
 
 
1049		rsize = HID_MAX_BUFFER_SIZE;
1050
1051	if (csize < rsize) {
1052		dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1053				csize, rsize);
1054		memset(cdata + csize, 0, rsize - csize);
1055	}
1056
1057	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1058		hid->hiddev_report_event(hid, report);
1059	if (hid->claimed & HID_CLAIMED_HIDRAW)
1060		hidraw_report_event(hid, data, size);
 
 
 
1061
1062	for (a = 0; a < report->maxfield; a++)
1063		hid_input_field(hid, report->field[a], cdata, interrupt);
 
 
 
 
1064
1065	if (hid->claimed & HID_CLAIMED_INPUT)
1066		hidinput_report_event(hid, report);
 
 
1067}
1068EXPORT_SYMBOL_GPL(hid_report_raw_event);
1069
1070/**
1071 * hid_input_report - report data from lower layer (usb, bt...)
1072 *
1073 * @hid: hid device
1074 * @type: HID report type (HID_*_REPORT)
1075 * @data: report contents
1076 * @size: size of data parameter
1077 * @interrupt: distinguish between interrupt and control transfers
1078 *
1079 * This is data entry for lower layers.
1080 */
1081int hid_input_report(struct hid_device *hid, int type, u8 *data, int size, int interrupt)
 
1082{
1083	struct hid_report_enum *report_enum;
1084	struct hid_driver *hdrv;
1085	struct hid_report *report;
1086	char *buf;
1087	unsigned int i;
1088	int ret;
1089
1090	if (!hid || !hid->driver)
1091		return -ENODEV;
 
 
 
 
 
 
 
 
1092	report_enum = hid->report_enum + type;
1093	hdrv = hid->driver;
1094
1095	if (!size) {
1096		dbg_hid("empty report\n");
1097		return -1;
 
1098	}
1099
1100	buf = kmalloc(sizeof(char) * HID_DEBUG_BUFSIZE, GFP_ATOMIC);
 
 
1101
1102	if (!buf)
1103		goto nomem;
1104
1105	/* dump the report */
1106	snprintf(buf, HID_DEBUG_BUFSIZE - 1,
1107			"\nreport (size %u) (%snumbered) = ", size, report_enum->numbered ? "" : "un");
1108	hid_debug_event(hid, buf);
1109
1110	for (i = 0; i < size; i++) {
1111		snprintf(buf, HID_DEBUG_BUFSIZE - 1,
1112				" %02x", data[i]);
1113		hid_debug_event(hid, buf);
1114	}
1115	hid_debug_event(hid, "\n");
1116	kfree(buf);
1117
1118nomem:
1119	report = hid_get_report(report_enum, data);
1120
1121	if (!report)
1122		return -1;
1123
1124	if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1125		ret = hdrv->raw_event(hid, report, data, size);
1126		if (ret != 0)
1127			return ret < 0 ? ret : 0;
1128	}
1129
1130	hid_report_raw_event(hid, type, data, size, interrupt);
1131
1132	return 0;
 
 
1133}
1134EXPORT_SYMBOL_GPL(hid_input_report);
1135
1136static bool hid_match_one_id(struct hid_device *hdev,
1137		const struct hid_device_id *id)
1138{
1139	return id->bus == hdev->bus &&
 
1140		(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1141		(id->product == HID_ANY_ID || id->product == hdev->product);
1142}
1143
1144static const struct hid_device_id *hid_match_id(struct hid_device *hdev,
1145		const struct hid_device_id *id)
1146{
1147	for (; id->bus; id++)
1148		if (hid_match_one_id(hdev, id))
1149			return id;
1150
1151	return NULL;
1152}
 
1153
1154static const struct hid_device_id hid_hiddev_list[] = {
1155	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1156	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1157	{ }
1158};
1159
1160static bool hid_hiddev(struct hid_device *hdev)
1161{
1162	return !!hid_match_id(hdev, hid_hiddev_list);
1163}
1164
1165
1166static ssize_t
1167read_report_descriptor(struct file *filp, struct kobject *kobj,
1168		struct bin_attribute *attr,
1169		char *buf, loff_t off, size_t count)
1170{
1171	struct device *dev = container_of(kobj, struct device, kobj);
1172	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1173
1174	if (off >= hdev->rsize)
1175		return 0;
1176
1177	if (off + count > hdev->rsize)
1178		count = hdev->rsize - off;
1179
1180	memcpy(buf, hdev->rdesc + off, count);
1181
1182	return count;
1183}
1184
 
 
 
 
 
 
 
 
 
1185static struct bin_attribute dev_bin_attr_report_desc = {
1186	.attr = { .name = "report_descriptor", .mode = 0444 },
1187	.read = read_report_descriptor,
1188	.size = HID_MAX_DESCRIPTOR_SIZE,
1189};
1190
 
 
 
 
 
1191int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1192{
1193	static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1194		"Joystick", "Gamepad", "Keyboard", "Keypad",
1195		"Multi-Axis Controller"
1196	};
1197	const char *type, *bus;
1198	char buf[64];
1199	unsigned int i;
1200	int len;
1201	int ret;
1202
1203	if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1204		connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1205	if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1206		connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1207	if (hdev->bus != BUS_USB)
1208		connect_mask &= ~HID_CONNECT_HIDDEV;
1209	if (hid_hiddev(hdev))
1210		connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1211
1212	if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1213				connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1214		hdev->claimed |= HID_CLAIMED_INPUT;
 
1215	if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1216			!hdev->hiddev_connect(hdev,
1217				connect_mask & HID_CONNECT_HIDDEV_FORCE))
1218		hdev->claimed |= HID_CLAIMED_HIDDEV;
1219	if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1220		hdev->claimed |= HID_CLAIMED_HIDRAW;
1221
1222	if (!hdev->claimed) {
1223		hid_err(hdev, "claimed by neither input, hiddev nor hidraw\n");
 
 
 
 
 
1224		return -ENODEV;
1225	}
1226
 
 
1227	if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1228			(connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1229		hdev->ff_init(hdev);
1230
1231	len = 0;
1232	if (hdev->claimed & HID_CLAIMED_INPUT)
1233		len += sprintf(buf + len, "input");
1234	if (hdev->claimed & HID_CLAIMED_HIDDEV)
1235		len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1236				hdev->minor);
1237	if (hdev->claimed & HID_CLAIMED_HIDRAW)
1238		len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1239				((struct hidraw *)hdev->hidraw)->minor);
1240
1241	type = "Device";
1242	for (i = 0; i < hdev->maxcollection; i++) {
1243		struct hid_collection *col = &hdev->collection[i];
1244		if (col->type == HID_COLLECTION_APPLICATION &&
1245		   (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1246		   (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1247			type = types[col->usage & 0xffff];
1248			break;
1249		}
1250	}
1251
1252	switch (hdev->bus) {
1253	case BUS_USB:
1254		bus = "USB";
1255		break;
1256	case BUS_BLUETOOTH:
1257		bus = "BLUETOOTH";
1258		break;
 
 
 
 
 
 
 
 
 
 
1259	default:
1260		bus = "<UNKNOWN>";
1261	}
1262
1263	ret = device_create_bin_file(&hdev->dev, &dev_bin_attr_report_desc);
1264	if (ret)
1265		hid_warn(hdev,
1266			 "can't create sysfs report descriptor attribute err: %d\n", ret);
1267
1268	hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1269		 buf, bus, hdev->version >> 8, hdev->version & 0xff,
1270		 type, hdev->name, hdev->phys);
1271
1272	return 0;
1273}
1274EXPORT_SYMBOL_GPL(hid_connect);
1275
1276void hid_disconnect(struct hid_device *hdev)
1277{
1278	device_remove_bin_file(&hdev->dev, &dev_bin_attr_report_desc);
1279	if (hdev->claimed & HID_CLAIMED_INPUT)
1280		hidinput_disconnect(hdev);
1281	if (hdev->claimed & HID_CLAIMED_HIDDEV)
1282		hdev->hiddev_disconnect(hdev);
1283	if (hdev->claimed & HID_CLAIMED_HIDRAW)
1284		hidraw_disconnect(hdev);
 
1285}
1286EXPORT_SYMBOL_GPL(hid_disconnect);
1287
1288/* a list of devices for which there is a specialized driver on HID bus */
1289static const struct hid_device_id hid_have_special_driver[] = {
1290	{ HID_USB_DEVICE(USB_VENDOR_ID_3M, USB_DEVICE_ID_3M1968) },
1291	{ HID_USB_DEVICE(USB_VENDOR_ID_3M, USB_DEVICE_ID_3M2256) },
1292	{ HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_WCP32PU) },
1293	{ HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_X5_005D) },
1294	{ HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_RP_649) },
1295	{ HID_USB_DEVICE(USB_VENDOR_ID_ACRUX, 0x0802) },
1296	{ HID_USB_DEVICE(USB_VENDOR_ID_ACTIONSTAR, USB_DEVICE_ID_ACTIONSTAR_1011) },
1297	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ATV_IRCONTROL) },
1298	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_IRCONTROL4) },
1299	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MIGHTYMOUSE) },
1300	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MAGICMOUSE) },
1301	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MAGICTRACKPAD) },
1302	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ANSI) },
1303	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ISO) },
1304	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ANSI) },
1305	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ISO) },
1306	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_JIS) },
1307	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ANSI) },
1308	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ISO) },
1309	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_JIS) },
1310	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ANSI) },
1311	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ISO) },
1312	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_JIS) },
1313	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_ANSI) },
1314	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_ISO) },
1315	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_JIS) },
1316	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_ANSI) },
1317	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_ISO) },
1318	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_JIS) },
1319	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ANSI) },
1320	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ISO) },
1321	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_JIS) },
1322	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_ANSI) },
1323	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_ISO) },
1324	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_JIS) },
1325	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ANSI) },
1326	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ISO) },
1327	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_JIS) },
1328	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ANSI) },
1329	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ISO) },
1330	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_JIS) },
1331	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ANSI) },
1332	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ISO) },
1333	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_JIS) },
1334	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ANSI) },
1335	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ISO) },
1336	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_JIS) },
1337	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ANSI) },
1338	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ISO) },
1339	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_JIS) },
1340	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ANSI) },
1341	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ISO) },
1342	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_JIS) },
1343	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_ANSI) },
1344	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_ISO) },
1345	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_JIS) },
1346	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_ANSI) },
1347	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_ISO) },
1348	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_JIS) },
1349	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_TP_ONLY) },
1350	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER1_TP_ONLY) },
1351	{ HID_USB_DEVICE(USB_VENDOR_ID_ASUS, USB_DEVICE_ID_ASUS_T91MT) },
1352	{ HID_USB_DEVICE(USB_VENDOR_ID_ASUS, USB_DEVICE_ID_ASUSTEK_MULTITOUCH_YFO) },
1353	{ HID_USB_DEVICE(USB_VENDOR_ID_BELKIN, USB_DEVICE_ID_FLIP_KVM) },
1354	{ HID_USB_DEVICE(USB_VENDOR_ID_BTC, USB_DEVICE_ID_BTC_EMPREX_REMOTE) },
1355	{ HID_USB_DEVICE(USB_VENDOR_ID_BTC, USB_DEVICE_ID_BTC_EMPREX_REMOTE_2) },
1356	{ HID_USB_DEVICE(USB_VENDOR_ID_CANDO, USB_DEVICE_ID_CANDO_PIXCIR_MULTI_TOUCH) },
1357	{ HID_USB_DEVICE(USB_VENDOR_ID_CANDO, USB_DEVICE_ID_CANDO_MULTI_TOUCH) },
1358	{ HID_USB_DEVICE(USB_VENDOR_ID_CANDO, USB_DEVICE_ID_CANDO_MULTI_TOUCH_10_1) },
1359	{ HID_USB_DEVICE(USB_VENDOR_ID_CANDO, USB_DEVICE_ID_CANDO_MULTI_TOUCH_11_6) },
1360	{ HID_USB_DEVICE(USB_VENDOR_ID_CANDO, USB_DEVICE_ID_CANDO_MULTI_TOUCH_15_6) },
1361	{ HID_USB_DEVICE(USB_VENDOR_ID_CHERRY, USB_DEVICE_ID_CHERRY_CYMOTION) },
1362	{ HID_USB_DEVICE(USB_VENDOR_ID_CHERRY, USB_DEVICE_ID_CHERRY_CYMOTION_SOLAR) },
1363	{ HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_TACTICAL_PAD) },
1364	{ HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_WIRELESS) },
1365	{ HID_USB_DEVICE(USB_VENDOR_ID_CHUNGHWAT, USB_DEVICE_ID_CHUNGHWAT_MULTITOUCH) },
1366	{ HID_USB_DEVICE(USB_VENDOR_ID_CREATIVELABS, USB_DEVICE_ID_PRODIKEYS_PCMIDI) },
1367	{ HID_USB_DEVICE(USB_VENDOR_ID_CVTOUCH, USB_DEVICE_ID_CVTOUCH_SCREEN) },
1368	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_1) },
1369	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_2) },
1370	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_3) },
1371	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_MOUSE) },
1372	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_TRUETOUCH) },
1373	{ HID_USB_DEVICE(USB_VENDOR_ID_DRAGONRISE, 0x0006) },
1374	{ HID_USB_DEVICE(USB_VENDOR_ID_DRAGONRISE, 0x0011) },
1375	{ HID_USB_DEVICE(USB_VENDOR_ID_DWAV, USB_DEVICE_ID_DWAV_EGALAX_MULTITOUCH) },
1376	{ HID_USB_DEVICE(USB_VENDOR_ID_DWAV, USB_DEVICE_ID_DWAV_EGALAX_MULTITOUCH1) },
1377	{ HID_USB_DEVICE(USB_VENDOR_ID_DWAV, USB_DEVICE_ID_DWAV_EGALAX_MULTITOUCH2) },
1378	{ HID_USB_DEVICE(USB_VENDOR_ID_DWAV, USB_DEVICE_ID_DWAV_EGALAX_MULTITOUCH3) },
1379	{ HID_USB_DEVICE(USB_VENDOR_ID_DWAV, USB_DEVICE_ID_DWAV_EGALAX_MULTITOUCH4) },
1380	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_ELECOM, USB_DEVICE_ID_ELECOM_BM084) },
1381	{ HID_USB_DEVICE(USB_VENDOR_ID_ELO, USB_DEVICE_ID_ELO_TS2515) },
1382	{ HID_USB_DEVICE(USB_VENDOR_ID_EMS, USB_DEVICE_ID_EMS_TRIO_LINKER_PLUS_II) },
1383	{ HID_USB_DEVICE(USB_VENDOR_ID_EZKEY, USB_DEVICE_ID_BTC_8193) },
1384	{ HID_USB_DEVICE(USB_VENDOR_ID_GAMERON, USB_DEVICE_ID_GAMERON_DUAL_PSX_ADAPTOR) },
1385	{ HID_USB_DEVICE(USB_VENDOR_ID_GAMERON, USB_DEVICE_ID_GAMERON_DUAL_PCS_ADAPTOR) },
1386	{ HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, USB_DEVICE_ID_GENERAL_TOUCH_WIN7_TWOFINGERS) },
1387	{ HID_USB_DEVICE(USB_VENDOR_ID_GOODTOUCH, USB_DEVICE_ID_GOODTOUCH_000f) },
1388	{ HID_USB_DEVICE(USB_VENDOR_ID_GREENASIA, 0x0003) },
1389	{ HID_USB_DEVICE(USB_VENDOR_ID_GREENASIA, 0x0012) },
1390	{ HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE) },
1391	{ HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE_2) },
1392	{ HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE_3) },
1393	{ HID_USB_DEVICE(USB_VENDOR_ID_HANVON, USB_DEVICE_ID_HANVON_MULTITOUCH) },
1394	{ HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK, USB_DEVICE_ID_HOLTEK_ON_LINE_GRIP) },
1395	{ HID_USB_DEVICE(USB_VENDOR_ID_ILITEK, USB_DEVICE_ID_ILITEK_MULTITOUCH) },
1396	{ HID_USB_DEVICE(USB_VENDOR_ID_IRTOUCHSYSTEMS, USB_DEVICE_ID_IRTOUCH_INFRARED_USB) },
1397	{ HID_USB_DEVICE(USB_VENDOR_ID_KENSINGTON, USB_DEVICE_ID_KS_SLIMBLADE) },
1398	{ HID_USB_DEVICE(USB_VENDOR_ID_KEYTOUCH, USB_DEVICE_ID_KEYTOUCH_IEC) },
1399	{ HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_ERGO_525V) },
1400	{ HID_USB_DEVICE(USB_VENDOR_ID_LABTEC, USB_DEVICE_ID_LABTEC_WIRELESS_KEYBOARD) },
1401	{ HID_USB_DEVICE(USB_VENDOR_ID_LCPOWER, USB_DEVICE_ID_LCPOWER_LC1000 ) },
1402	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_MX3000_RECEIVER) },
1403	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_S510_RECEIVER) },
1404	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_S510_RECEIVER_2) },
1405	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RECEIVER) },
1406	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_DESKTOP) },
1407	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_EDGE) },
1408	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_MINI) },
1409	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_ELITE_KBD) },
1410	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_CORDLESS_DESKTOP_LX500) },
1411	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_EXTREME_3D) },
1412	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WHEEL) },
1413	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD_CORD) },
1414	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD) },
1415	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD2_2) },
1416	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WINGMAN_F3D) },
1417	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WINGMAN_FFG ) },
1418	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_FORCE3D_PRO) },
1419	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_FLIGHT_SYSTEM_G940) },
1420	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_MOMO_WHEEL) },
1421	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_MOMO_WHEEL2) },
1422	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_DFP_WHEEL) },
1423	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G25_WHEEL) },
1424	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G27_WHEEL) },
1425	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WII_WHEEL) },
1426	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD2) },
1427	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_SPACETRAVELLER) },
1428	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_SPACENAVIGATOR) },
1429	{ HID_USB_DEVICE(USB_VENDOR_ID_LUMIO, USB_DEVICE_ID_CRYSTALTOUCH) },
1430	{ HID_USB_DEVICE(USB_VENDOR_ID_LUMIO, USB_DEVICE_ID_CRYSTALTOUCH_DUAL) },
1431	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICOLCD) },
1432	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICOLCD_BOOTLOADER) },
1433	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_COMFORT_MOUSE_4500) },
1434	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_SIDEWINDER_GV) },
1435	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_NE4K) },
1436	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_LK6K) },
1437	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_PRESENTER_8K_USB) },
1438	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_DIGITAL_MEDIA_3K) },
1439	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_WIRELESS_OPTICAL_DESKTOP_3_0) },
1440	{ HID_USB_DEVICE(USB_VENDOR_ID_MONTEREY, USB_DEVICE_ID_GENIUS_KB29E) },
1441	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN) },
1442	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_1) },
1443	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_2) },
1444	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_3) },
1445	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_4) },
1446	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_5) },
1447	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_6) },
1448	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_7) },
1449	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_8) },
1450	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_9) },
1451	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_10) },
1452	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_11) },
1453	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_12) },
1454	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_13) },
1455	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_14) },
1456	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_15) },
1457	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_16) },
1458	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_17) },
1459	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_18) },
1460	{ HID_USB_DEVICE(USB_VENDOR_ID_ORTEK, USB_DEVICE_ID_ORTEK_PKB1700) },
1461	{ HID_USB_DEVICE(USB_VENDOR_ID_ORTEK, USB_DEVICE_ID_ORTEK_WKB2000) },
1462	{ HID_USB_DEVICE(USB_VENDOR_ID_PENMOUNT, USB_DEVICE_ID_PENMOUNT_PCI) },
1463	{ HID_USB_DEVICE(USB_VENDOR_ID_PETALYNX, USB_DEVICE_ID_PETALYNX_MAXTER_REMOTE) },
1464	{ HID_USB_DEVICE(USB_VENDOR_ID_QUANTA, USB_DEVICE_ID_QUANTA_OPTICAL_TOUCH) },
1465	{ HID_USB_DEVICE(USB_VENDOR_ID_QUANTA, USB_DEVICE_ID_PIXART_IMAGING_INC_OPTICAL_TOUCH_SCREEN) },
1466	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONE) },
1467	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_ARVO) },
1468	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONEPLUS) },
1469	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KOVAPLUS) },
1470	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_PYRA_WIRED) },
1471	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_PYRA_WIRELESS) },
1472	{ HID_USB_DEVICE(USB_VENDOR_ID_SAMSUNG, USB_DEVICE_ID_SAMSUNG_IR_REMOTE) },
1473	{ HID_USB_DEVICE(USB_VENDOR_ID_SAMSUNG, USB_DEVICE_ID_SAMSUNG_WIRELESS_KBD_MOUSE) },
1474	{ HID_USB_DEVICE(USB_VENDOR_ID_SKYCABLE, USB_DEVICE_ID_SKYCABLE_WIRELESS_PRESENTER) },
1475	{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS3_CONTROLLER) },
1476	{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_NAVIGATION_CONTROLLER) },
1477	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS3_CONTROLLER) },
1478	{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_VAIO_VGX_MOUSE) },
1479	{ HID_USB_DEVICE(USB_VENDOR_ID_STANTUM, USB_DEVICE_ID_MTP) },
1480	{ HID_USB_DEVICE(USB_VENDOR_ID_STANTUM_STM, USB_DEVICE_ID_MTP_STM) },
1481	{ HID_USB_DEVICE(USB_VENDOR_ID_STANTUM_SITRONIX, USB_DEVICE_ID_MTP_SITRONIX) },
1482	{ HID_USB_DEVICE(USB_VENDOR_ID_SUNPLUS, USB_DEVICE_ID_SUNPLUS_WDESKTOP) },
1483	{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb300) },
1484	{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb304) },
1485	{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb323) },
1486	{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb324) },
1487	{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb651) },
1488	{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb653) },
1489	{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb654) },
1490	{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb65a) },
1491	{ HID_USB_DEVICE(USB_VENDOR_ID_TOPSEED, USB_DEVICE_ID_TOPSEED_CYBERLINK) },
1492	{ HID_USB_DEVICE(USB_VENDOR_ID_TOPSEED2, USB_DEVICE_ID_TOPSEED2_RF_COMBO) },
1493	{ HID_USB_DEVICE(USB_VENDOR_ID_TOUCH_INTL, USB_DEVICE_ID_TOUCH_INTL_MULTI_TOUCH) },
1494	{ HID_USB_DEVICE(USB_VENDOR_ID_TWINHAN, USB_DEVICE_ID_TWINHAN_IR_REMOTE) },
1495	{ HID_USB_DEVICE(USB_VENDOR_ID_TURBOX, USB_DEVICE_ID_TURBOX_TOUCHSCREEN_MOSART) },
1496	{ HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_PF1209) },
1497	{ HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP4030U) },
1498	{ HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP5540U) },
1499	{ HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP8060U) },
1500	{ HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP1062) },
1501	{ HID_USB_DEVICE(USB_VENDOR_ID_UNITEC, USB_DEVICE_ID_UNITEC_USB_TOUCH_0709) },
1502	{ HID_USB_DEVICE(USB_VENDOR_ID_UNITEC, USB_DEVICE_ID_UNITEC_USB_TOUCH_0A19) },
1503	{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_SMARTJOY_PLUS) },
1504	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE_BLUETOOTH) },
1505	{ HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_SLIM_TABLET_5_8_INCH) },
1506	{ HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_SLIM_TABLET_12_1_INCH) },
1507	{ HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_MEDIA_TABLET_10_6_INCH) },
1508	{ HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_MEDIA_TABLET_14_1_INCH) },
1509	{ HID_USB_DEVICE(USB_VENDOR_ID_XAT, USB_DEVICE_ID_XAT_CSR) },
1510	{ HID_USB_DEVICE(USB_VENDOR_ID_X_TENSIONS, USB_DEVICE_ID_SPEEDLINK_VAD_CEZANNE) },
1511	{ HID_USB_DEVICE(USB_VENDOR_ID_ZEROPLUS, 0x0005) },
1512	{ HID_USB_DEVICE(USB_VENDOR_ID_ZEROPLUS, 0x0030) },
1513	{ HID_USB_DEVICE(USB_VENDOR_ID_ZYDACRON, USB_DEVICE_ID_ZYDACRON_REMOTE_CONTROL) },
1514
1515	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_PRESENTER_8K_BT) },
1516	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_NINTENDO, USB_DEVICE_ID_NINTENDO_WIIMOTE) },
1517	{ }
1518};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1519
1520struct hid_dynid {
1521	struct list_head list;
1522	struct hid_device_id id;
1523};
1524
1525/**
1526 * store_new_id - add a new HID device ID to this driver and re-probe devices
1527 * @driver: target device driver
1528 * @buf: buffer for scanning device ID data
1529 * @count: input size
1530 *
1531 * Adds a new dynamic hid device ID to this driver,
1532 * and causes the driver to probe for all devices again.
1533 */
1534static ssize_t store_new_id(struct device_driver *drv, const char *buf,
1535		size_t count)
1536{
1537	struct hid_driver *hdrv = container_of(drv, struct hid_driver, driver);
1538	struct hid_dynid *dynid;
1539	__u32 bus, vendor, product;
1540	unsigned long driver_data = 0;
1541	int ret;
1542
1543	ret = sscanf(buf, "%x %x %x %lx",
1544			&bus, &vendor, &product, &driver_data);
1545	if (ret < 3)
1546		return -EINVAL;
1547
1548	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
1549	if (!dynid)
1550		return -ENOMEM;
1551
1552	dynid->id.bus = bus;
 
1553	dynid->id.vendor = vendor;
1554	dynid->id.product = product;
1555	dynid->id.driver_data = driver_data;
1556
1557	spin_lock(&hdrv->dyn_lock);
1558	list_add_tail(&dynid->list, &hdrv->dyn_list);
1559	spin_unlock(&hdrv->dyn_lock);
1560
1561	ret = 0;
1562	if (get_driver(&hdrv->driver)) {
1563		ret = driver_attach(&hdrv->driver);
1564		put_driver(&hdrv->driver);
1565	}
1566
1567	return ret ? : count;
1568}
1569static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
 
 
 
 
 
 
1570
1571static void hid_free_dynids(struct hid_driver *hdrv)
1572{
1573	struct hid_dynid *dynid, *n;
1574
1575	spin_lock(&hdrv->dyn_lock);
1576	list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
1577		list_del(&dynid->list);
1578		kfree(dynid);
1579	}
1580	spin_unlock(&hdrv->dyn_lock);
1581}
1582
1583static const struct hid_device_id *hid_match_device(struct hid_device *hdev,
1584		struct hid_driver *hdrv)
1585{
1586	struct hid_dynid *dynid;
1587
1588	spin_lock(&hdrv->dyn_lock);
1589	list_for_each_entry(dynid, &hdrv->dyn_list, list) {
1590		if (hid_match_one_id(hdev, &dynid->id)) {
1591			spin_unlock(&hdrv->dyn_lock);
1592			return &dynid->id;
1593		}
1594	}
1595	spin_unlock(&hdrv->dyn_lock);
1596
1597	return hid_match_id(hdev, hdrv->id_table);
1598}
 
1599
1600static int hid_bus_match(struct device *dev, struct device_driver *drv)
1601{
1602	struct hid_driver *hdrv = container_of(drv, struct hid_driver, driver);
1603	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
 
 
 
1604
1605	if (!hid_match_device(hdev, hdrv))
1606		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1607
1608	/* generic wants all that don't have specialized driver */
1609	if (!strncmp(hdrv->name, "generic-", 8))
1610		return !hid_match_id(hdev, hid_have_special_driver);
1611
1612	return 1;
1613}
 
1614
1615static int hid_device_probe(struct device *dev)
1616{
1617	struct hid_driver *hdrv = container_of(dev->driver,
1618			struct hid_driver, driver);
1619	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1620	const struct hid_device_id *id;
1621	int ret = 0;
1622
 
 
 
 
 
 
 
 
1623	if (!hdev->driver) {
1624		id = hid_match_device(hdev, hdrv);
1625		if (id == NULL)
1626			return -ENODEV;
 
 
1627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1628		hdev->driver = hdrv;
1629		if (hdrv->probe) {
1630			ret = hdrv->probe(hdev, id);
1631		} else { /* default probe */
1632			ret = hid_parse(hdev);
1633			if (!ret)
1634				ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
1635		}
1636		if (ret)
 
1637			hdev->driver = NULL;
 
1638	}
 
 
 
 
1639	return ret;
1640}
1641
1642static int hid_device_remove(struct device *dev)
1643{
1644	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1645	struct hid_driver *hdrv = hdev->driver;
 
 
 
1646
 
1647	if (hdrv) {
1648		if (hdrv->remove)
1649			hdrv->remove(hdev);
1650		else /* default remove */
1651			hid_hw_stop(hdev);
 
1652		hdev->driver = NULL;
1653	}
1654
1655	return 0;
 
 
 
 
 
 
 
 
 
 
1656}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1657
1658static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
1659{
1660	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1661
1662	if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
1663			hdev->bus, hdev->vendor, hdev->product))
1664		return -ENOMEM;
1665
1666	if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
1667		return -ENOMEM;
1668
1669	if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
1670		return -ENOMEM;
1671
1672	if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
1673		return -ENOMEM;
1674
1675	if (add_uevent_var(env, "MODALIAS=hid:b%04Xv%08Xp%08X",
1676			hdev->bus, hdev->vendor, hdev->product))
1677		return -ENOMEM;
1678
1679	return 0;
1680}
1681
1682static struct bus_type hid_bus_type = {
1683	.name		= "hid",
 
 
1684	.match		= hid_bus_match,
1685	.probe		= hid_device_probe,
1686	.remove		= hid_device_remove,
1687	.uevent		= hid_uevent,
1688};
1689
1690/* a list of devices that shouldn't be handled by HID core at all */
1691static const struct hid_device_id hid_ignore_list[] = {
1692	{ HID_USB_DEVICE(USB_VENDOR_ID_ACECAD, USB_DEVICE_ID_ACECAD_FLAIR) },
1693	{ HID_USB_DEVICE(USB_VENDOR_ID_ACECAD, USB_DEVICE_ID_ACECAD_302) },
1694	{ HID_USB_DEVICE(USB_VENDOR_ID_ADS_TECH, USB_DEVICE_ID_ADS_TECH_RADIO_SI470X) },
1695	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_01) },
1696	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_10) },
1697	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_20) },
1698	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_21) },
1699	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_22) },
1700	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_23) },
1701	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_24) },
1702	{ HID_USB_DEVICE(USB_VENDOR_ID_AIRCABLE, USB_DEVICE_ID_AIRCABLE1) },
1703	{ HID_USB_DEVICE(USB_VENDOR_ID_ALCOR, USB_DEVICE_ID_ALCOR_USBRS232) },
1704	{ HID_USB_DEVICE(USB_VENDOR_ID_ASUSTEK, USB_DEVICE_ID_ASUSTEK_LCM)},
1705	{ HID_USB_DEVICE(USB_VENDOR_ID_ASUSTEK, USB_DEVICE_ID_ASUSTEK_LCM2)},
1706	{ HID_USB_DEVICE(USB_VENDOR_ID_AVERMEDIA, USB_DEVICE_ID_AVER_FM_MR800) },
1707	{ HID_USB_DEVICE(USB_VENDOR_ID_BERKSHIRE, USB_DEVICE_ID_BERKSHIRE_PCWD) },
1708	{ HID_USB_DEVICE(USB_VENDOR_ID_CIDC, 0x0103) },
1709	{ HID_USB_DEVICE(USB_VENDOR_ID_CYGNAL, USB_DEVICE_ID_CYGNAL_RADIO_SI470X) },
1710	{ HID_USB_DEVICE(USB_VENDOR_ID_CMEDIA, USB_DEVICE_ID_CM109) },
1711	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_HIDCOM) },
1712	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_ULTRAMOUSE) },
1713	{ HID_USB_DEVICE(USB_VENDOR_ID_DEALEXTREAME, USB_DEVICE_ID_DEALEXTREAME_RADIO_SI4701) },
1714	{ HID_USB_DEVICE(USB_VENDOR_ID_DELORME, USB_DEVICE_ID_DELORME_EARTHMATE) },
1715	{ HID_USB_DEVICE(USB_VENDOR_ID_DELORME, USB_DEVICE_ID_DELORME_EM_LT20) },
1716	{ HID_USB_DEVICE(USB_VENDOR_ID_DREAM_CHEEKY, 0x0004) },
1717	{ HID_USB_DEVICE(USB_VENDOR_ID_ESSENTIAL_REALITY, USB_DEVICE_ID_ESSENTIAL_REALITY_P5) },
1718	{ HID_USB_DEVICE(USB_VENDOR_ID_ETT, USB_DEVICE_ID_TC5UH) },
1719	{ HID_USB_DEVICE(USB_VENDOR_ID_ETT, USB_DEVICE_ID_TC4UM) },
1720	{ HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0002) },
1721	{ HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0003) },
1722	{ HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0004) },
1723	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_4_PHIDGETSERVO_30) },
1724	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_1_PHIDGETSERVO_30) },
1725	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_0_4_IF_KIT) },
1726	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_16_16_IF_KIT) },
1727	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_8_8_8_IF_KIT) },
1728	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_8_7_IF_KIT) },
1729	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_8_8_IF_KIT) },
1730	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_PHIDGET_MOTORCONTROL) },
1731	{ HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_SUPER_Q2) },
1732	{ HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_GOGOPEN) },
1733	{ HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_PENPOWER) },
1734	{ HID_USB_DEVICE(USB_VENDOR_ID_GRETAGMACBETH, USB_DEVICE_ID_GRETAGMACBETH_HUEY) },
1735	{ HID_USB_DEVICE(USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_POWERMATE) },
1736	{ HID_USB_DEVICE(USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_SOUNDKNOB) },
1737	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_90) },
1738	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_100) },
1739	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_101) },
1740	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_103) },
1741	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_104) },
1742	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_105) },
1743	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_106) },
1744	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_107) },
1745	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_108) },
1746	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_200) },
1747	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_201) },
1748	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_202) },
1749	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_203) },
1750	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_204) },
1751	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_205) },
1752	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_206) },
1753	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_207) },
1754	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_300) },
1755	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_301) },
1756	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_302) },
1757	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_303) },
1758	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_304) },
1759	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_305) },
1760	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_306) },
1761	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_307) },
1762	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_308) },
1763	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_309) },
1764	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_400) },
1765	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_401) },
1766	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_402) },
1767	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_403) },
1768	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_404) },
1769	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_405) },
1770	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_500) },
1771	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_501) },
1772	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_502) },
1773	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_503) },
1774	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_504) },
1775	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1000) },
1776	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1001) },
1777	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1002) },
1778	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1003) },
1779	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1004) },
1780	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1005) },
1781	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1006) },
1782	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1007) },
1783	{ HID_USB_DEVICE(USB_VENDOR_ID_IMATION, USB_DEVICE_ID_DISC_STAKKA) },
1784	{ HID_USB_DEVICE(USB_VENDOR_ID_KBGEAR, USB_DEVICE_ID_KBGEAR_JAMSTUDIO) },
1785	{ HID_USB_DEVICE(USB_VENDOR_ID_KWORLD, USB_DEVICE_ID_KWORLD_RADIO_FM700) },
1786	{ HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_GPEN_560) },
1787	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_KYE, 0x0058) },
1788	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_CASSY) },
1789	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_CASSY2) },
1790	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POCKETCASSY) },
1791	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POCKETCASSY2) },
1792	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOBILECASSY) },
1793	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOBILECASSY2) },
1794	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYVOLTAGE) },
1795	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYCURRENT) },
1796	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYTIME) },
1797	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYTEMPERATURE) },
1798	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYPH) },
1799	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_JWM) },
1800	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_DMMP) },
1801	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIP) },
1802	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIC) },
1803	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIB) },
1804	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_XRAY) },
1805	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_XRAY2) },
1806	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_VIDEOCOM) },
1807	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOTOR) },
1808	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_COM3LAB) },
1809	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_TELEPORT) },
1810	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_NETWORKANALYSER) },
1811	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POWERCONTROL) },
1812	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MACHINETEST) },
1813	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOSTANALYSER) },
1814	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOSTANALYSER2) },
1815	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_ABSESP) },
1816	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_AUTODATABUS) },
1817	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MCT) },
1818	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_HYBRID) },
1819	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_HEATCONTROL) },
1820	{ HID_USB_DEVICE(USB_VENDOR_ID_MCC, USB_DEVICE_ID_MCC_PMD1024LS) },
1821	{ HID_USB_DEVICE(USB_VENDOR_ID_MCC, USB_DEVICE_ID_MCC_PMD1208LS) },
1822	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICKIT1) },
1823	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICKIT2) },
1824	{ HID_USB_DEVICE(USB_VENDOR_ID_NATIONAL_SEMICONDUCTOR, USB_DEVICE_ID_N_S_HARMONY) },
1825	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100) },
1826	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 20) },
1827	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 30) },
1828	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 100) },
1829	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 108) },
1830	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 118) },
1831	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 200) },
1832	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 300) },
1833	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 400) },
1834	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 500) },
1835	{ HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0001) },
1836	{ HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0002) },
1837	{ HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0003) },
1838	{ HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0004) },
1839	{ HID_USB_DEVICE(USB_VENDOR_ID_PHILIPS, USB_DEVICE_ID_PHILIPS_IEEE802154_DONGLE) },
1840	{ HID_USB_DEVICE(USB_VENDOR_ID_POWERCOM, USB_DEVICE_ID_POWERCOM_UPS) },
1841	{ HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_LABPRO) },
1842	{ HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_GOTEMP) },
1843	{ HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_SKIP) },
1844	{ HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_CYCLOPS) },
1845	{ HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_LCSPEC) },
1846	{ HID_USB_DEVICE(USB_VENDOR_ID_WACOM, HID_ANY_ID) },
1847	{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_4_PHIDGETSERVO_20) },
1848	{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_1_PHIDGETSERVO_20) },
1849	{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_8_8_4_IF_KIT) },
1850	{ HID_USB_DEVICE(USB_VENDOR_ID_YEALINK, USB_DEVICE_ID_YEALINK_P1K_P4K_B2K) },
1851	{ }
1852};
1853
1854/**
1855 * hid_mouse_ignore_list - mouse devices which should not be handled by the hid layer
1856 *
1857 * There are composite devices for which we want to ignore only a certain
1858 * interface. This is a list of devices for which only the mouse interface will
1859 * be ignored. This allows a dedicated driver to take care of the interface.
1860 */
1861static const struct hid_device_id hid_mouse_ignore_list[] = {
1862	/* appletouch driver */
1863	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ANSI) },
1864	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ISO) },
1865	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ANSI) },
1866	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ISO) },
1867	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_JIS) },
1868	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ANSI) },
1869	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ISO) },
1870	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_JIS) },
1871	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ANSI) },
1872	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ISO) },
1873	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_JIS) },
1874	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ANSI) },
1875	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ISO) },
1876	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_JIS) },
1877	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ANSI) },
1878	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ISO) },
1879	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_JIS) },
1880	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ANSI) },
1881	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ISO) },
1882	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_JIS) },
1883	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ANSI) },
1884	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ISO) },
1885	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_JIS) },
1886	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ANSI) },
1887	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ISO) },
1888	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_JIS) },
1889	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ANSI) },
1890	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ISO) },
1891	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_JIS) },
1892	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ANSI) },
1893	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ISO) },
1894	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_JIS) },
1895	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_TP_ONLY) },
1896	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER1_TP_ONLY) },
1897	{ }
1898};
1899
1900static bool hid_ignore(struct hid_device *hdev)
1901{
1902	switch (hdev->vendor) {
1903	case USB_VENDOR_ID_CODEMERCS:
1904		/* ignore all Code Mercenaries IOWarrior devices */
1905		if (hdev->product >= USB_DEVICE_ID_CODEMERCS_IOW_FIRST &&
1906				hdev->product <= USB_DEVICE_ID_CODEMERCS_IOW_LAST)
1907			return true;
1908		break;
1909	case USB_VENDOR_ID_LOGITECH:
1910		if (hdev->product >= USB_DEVICE_ID_LOGITECH_HARMONY_FIRST &&
1911				hdev->product <= USB_DEVICE_ID_LOGITECH_HARMONY_LAST)
1912			return true;
1913		break;
1914	case USB_VENDOR_ID_SOUNDGRAPH:
1915		if (hdev->product >= USB_DEVICE_ID_SOUNDGRAPH_IMON_FIRST &&
1916		    hdev->product <= USB_DEVICE_ID_SOUNDGRAPH_IMON_LAST)
1917			return true;
1918		break;
1919	case USB_VENDOR_ID_HANWANG:
1920		if (hdev->product >= USB_DEVICE_ID_HANWANG_TABLET_FIRST &&
1921		    hdev->product <= USB_DEVICE_ID_HANWANG_TABLET_LAST)
1922			return true;
1923		break;
1924	case USB_VENDOR_ID_JESS:
1925		if (hdev->product == USB_DEVICE_ID_JESS_YUREX &&
1926				hdev->type == HID_TYPE_USBNONE)
1927			return true;
1928	break;
1929	}
1930
1931	if (hdev->type == HID_TYPE_USBMOUSE &&
1932			hid_match_id(hdev, hid_mouse_ignore_list))
1933		return true;
1934
1935	return !!hid_match_id(hdev, hid_ignore_list);
1936}
1937
1938int hid_add_device(struct hid_device *hdev)
1939{
1940	static atomic_t id = ATOMIC_INIT(0);
1941	int ret;
1942
1943	if (WARN_ON(hdev->status & HID_STAT_ADDED))
1944		return -EBUSY;
1945
 
 
1946	/* we need to kill them here, otherwise they will stay allocated to
1947	 * wait for coming driver */
1948	if (!(hdev->quirks & HID_QUIRK_NO_IGNORE)
1949            && (hid_ignore(hdev) || (hdev->quirks & HID_QUIRK_IGNORE)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1950		return -ENODEV;
1951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1952	/* XXX hack, any other cleaner solution after the driver core
1953	 * is converted to allow more than 20 bytes as the device name? */
1954	dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
1955		     hdev->vendor, hdev->product, atomic_inc_return(&id));
1956
1957	hid_debug_register(hdev, dev_name(&hdev->dev));
1958	ret = device_add(&hdev->dev);
1959	if (!ret)
1960		hdev->status |= HID_STAT_ADDED;
1961	else
1962		hid_debug_unregister(hdev);
1963
1964	return ret;
1965}
1966EXPORT_SYMBOL_GPL(hid_add_device);
1967
1968/**
1969 * hid_allocate_device - allocate new hid device descriptor
1970 *
1971 * Allocate and initialize hid device, so that hid_destroy_device might be
1972 * used to free it.
1973 *
1974 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
1975 * error value.
1976 */
1977struct hid_device *hid_allocate_device(void)
1978{
1979	struct hid_device *hdev;
1980	unsigned int i;
1981	int ret = -ENOMEM;
1982
1983	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
1984	if (hdev == NULL)
1985		return ERR_PTR(ret);
1986
1987	device_initialize(&hdev->dev);
1988	hdev->dev.release = hid_device_release;
1989	hdev->dev.bus = &hid_bus_type;
 
1990
1991	hdev->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1992			sizeof(struct hid_collection), GFP_KERNEL);
1993	if (hdev->collection == NULL)
1994		goto err;
1995	hdev->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1996
1997	for (i = 0; i < HID_REPORT_TYPES; i++)
1998		INIT_LIST_HEAD(&hdev->report_enum[i].report_list);
1999
2000	init_waitqueue_head(&hdev->debug_wait);
2001	INIT_LIST_HEAD(&hdev->debug_list);
 
 
 
2002
2003	return hdev;
2004err:
2005	put_device(&hdev->dev);
2006	return ERR_PTR(ret);
2007}
2008EXPORT_SYMBOL_GPL(hid_allocate_device);
2009
2010static void hid_remove_device(struct hid_device *hdev)
2011{
2012	if (hdev->status & HID_STAT_ADDED) {
2013		device_del(&hdev->dev);
2014		hid_debug_unregister(hdev);
2015		hdev->status &= ~HID_STAT_ADDED;
2016	}
 
 
 
2017}
2018
2019/**
2020 * hid_destroy_device - free previously allocated device
2021 *
2022 * @hdev: hid device
2023 *
2024 * If you allocate hid_device through hid_allocate_device, you should ever
2025 * free by this function.
2026 */
2027void hid_destroy_device(struct hid_device *hdev)
2028{
2029	hid_remove_device(hdev);
2030	put_device(&hdev->dev);
2031}
2032EXPORT_SYMBOL_GPL(hid_destroy_device);
2033
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2034int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2035		const char *mod_name)
2036{
2037	int ret;
2038
2039	hdrv->driver.name = hdrv->name;
2040	hdrv->driver.bus = &hid_bus_type;
2041	hdrv->driver.owner = owner;
2042	hdrv->driver.mod_name = mod_name;
2043
2044	INIT_LIST_HEAD(&hdrv->dyn_list);
2045	spin_lock_init(&hdrv->dyn_lock);
2046
2047	ret = driver_register(&hdrv->driver);
2048	if (ret)
2049		return ret;
2050
2051	ret = driver_create_file(&hdrv->driver, &driver_attr_new_id);
2052	if (ret)
2053		driver_unregister(&hdrv->driver);
2054
2055	return ret;
2056}
2057EXPORT_SYMBOL_GPL(__hid_register_driver);
2058
2059void hid_unregister_driver(struct hid_driver *hdrv)
2060{
2061	driver_remove_file(&hdrv->driver, &driver_attr_new_id);
2062	driver_unregister(&hdrv->driver);
2063	hid_free_dynids(hdrv);
 
 
2064}
2065EXPORT_SYMBOL_GPL(hid_unregister_driver);
2066
2067int hid_check_keys_pressed(struct hid_device *hid)
2068{
2069	struct hid_input *hidinput;
2070	int i;
2071
2072	if (!(hid->claimed & HID_CLAIMED_INPUT))
2073		return 0;
2074
2075	list_for_each_entry(hidinput, &hid->inputs, list) {
2076		for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2077			if (hidinput->input->key[i])
2078				return 1;
2079	}
2080
2081	return 0;
2082}
2083
2084EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2085
2086static int __init hid_init(void)
2087{
2088	int ret;
2089
2090	if (hid_debug)
2091		pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2092			"debugfs is now used for inspecting the device (report descriptor, reports)\n");
2093
2094	ret = bus_register(&hid_bus_type);
2095	if (ret) {
2096		pr_err("can't register hid bus\n");
2097		goto err;
2098	}
2099
2100	ret = hidraw_init();
2101	if (ret)
2102		goto err_bus;
2103
2104	hid_debug_init();
2105
2106	return 0;
2107err_bus:
2108	bus_unregister(&hid_bus_type);
2109err:
2110	return ret;
2111}
2112
2113static void __exit hid_exit(void)
2114{
2115	hid_debug_exit();
2116	hidraw_exit();
2117	bus_unregister(&hid_bus_type);
 
2118}
2119
2120module_init(hid_init);
2121module_exit(hid_exit);
2122
2123MODULE_AUTHOR("Andreas Gal");
2124MODULE_AUTHOR("Vojtech Pavlik");
2125MODULE_AUTHOR("Jiri Kosina");
2126MODULE_LICENSE(DRIVER_LICENSE);
2127