Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_inode.h"
  14#include "xfs_trans.h"
  15#include "xfs_inode_item.h"
 
  16#include "xfs_trace.h"
  17#include "xfs_trans_priv.h"
  18#include "xfs_buf_item.h"
  19#include "xfs_log.h"
  20#include "xfs_log_priv.h"
  21#include "xfs_error.h"
  22
  23#include <linux/iversion.h>
  24
  25struct kmem_cache	*xfs_ili_cache;		/* inode log item */
  26
  27static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
  28{
  29	return container_of(lip, struct xfs_inode_log_item, ili_item);
  30}
  31
  32/*
  33 * The logged size of an inode fork is always the current size of the inode
  34 * fork. This means that when an inode fork is relogged, the size of the logged
  35 * region is determined by the current state, not the combination of the
  36 * previously logged state + the current state. This is different relogging
  37 * behaviour to most other log items which will retain the size of the
  38 * previously logged changes when smaller regions are relogged.
  39 *
  40 * Hence operations that remove data from the inode fork (e.g. shortform
  41 * dir/attr remove, extent form extent removal, etc), the size of the relogged
  42 * inode gets -smaller- rather than stays the same size as the previously logged
  43 * size and this can result in the committing transaction reducing the amount of
  44 * space being consumed by the CIL.
  45 */
  46STATIC void
  47xfs_inode_item_data_fork_size(
  48	struct xfs_inode_log_item *iip,
  49	int			*nvecs,
  50	int			*nbytes)
  51{
  52	struct xfs_inode	*ip = iip->ili_inode;
  53
  54	switch (ip->i_df.if_format) {
  55	case XFS_DINODE_FMT_EXTENTS:
  56		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
  57		    ip->i_df.if_nextents > 0 &&
  58		    ip->i_df.if_bytes > 0) {
  59			/* worst case, doesn't subtract delalloc extents */
  60			*nbytes += xfs_inode_data_fork_size(ip);
  61			*nvecs += 1;
  62		}
  63		break;
  64	case XFS_DINODE_FMT_BTREE:
  65		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
  66		    ip->i_df.if_broot_bytes > 0) {
  67			*nbytes += ip->i_df.if_broot_bytes;
  68			*nvecs += 1;
  69		}
  70		break;
  71	case XFS_DINODE_FMT_LOCAL:
  72		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
  73		    ip->i_df.if_bytes > 0) {
  74			*nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes);
  75			*nvecs += 1;
  76		}
  77		break;
  78
  79	case XFS_DINODE_FMT_DEV:
 
  80		break;
  81	default:
  82		ASSERT(0);
  83		break;
  84	}
  85}
  86
  87STATIC void
  88xfs_inode_item_attr_fork_size(
  89	struct xfs_inode_log_item *iip,
  90	int			*nvecs,
  91	int			*nbytes)
  92{
  93	struct xfs_inode	*ip = iip->ili_inode;
  94
  95	switch (ip->i_af.if_format) {
  96	case XFS_DINODE_FMT_EXTENTS:
  97		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
  98		    ip->i_af.if_nextents > 0 &&
  99		    ip->i_af.if_bytes > 0) {
 100			/* worst case, doesn't subtract unused space */
 101			*nbytes += xfs_inode_attr_fork_size(ip);
 102			*nvecs += 1;
 103		}
 104		break;
 105	case XFS_DINODE_FMT_BTREE:
 106		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
 107		    ip->i_af.if_broot_bytes > 0) {
 108			*nbytes += ip->i_af.if_broot_bytes;
 109			*nvecs += 1;
 110		}
 111		break;
 112	case XFS_DINODE_FMT_LOCAL:
 113		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
 114		    ip->i_af.if_bytes > 0) {
 115			*nbytes += xlog_calc_iovec_len(ip->i_af.if_bytes);
 116			*nvecs += 1;
 117		}
 118		break;
 119	default:
 120		ASSERT(0);
 121		break;
 122	}
 123}
 124
 125/*
 126 * This returns the number of iovecs needed to log the given inode item.
 127 *
 128 * We need one iovec for the inode log format structure, one for the
 129 * inode core, and possibly one for the inode data/extents/b-tree root
 130 * and one for the inode attribute data/extents/b-tree root.
 131 */
 132STATIC void
 133xfs_inode_item_size(
 134	struct xfs_log_item	*lip,
 135	int			*nvecs,
 136	int			*nbytes)
 137{
 138	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 139	struct xfs_inode	*ip = iip->ili_inode;
 140
 141	*nvecs += 2;
 142	*nbytes += sizeof(struct xfs_inode_log_format) +
 143		   xfs_log_dinode_size(ip->i_mount);
 144
 145	xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
 146	if (xfs_inode_has_attr_fork(ip))
 147		xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
 148}
 149
 150STATIC void
 151xfs_inode_item_format_data_fork(
 152	struct xfs_inode_log_item *iip,
 153	struct xfs_inode_log_format *ilf,
 154	struct xfs_log_vec	*lv,
 155	struct xfs_log_iovec	**vecp)
 156{
 157	struct xfs_inode	*ip = iip->ili_inode;
 158	size_t			data_bytes;
 159
 160	switch (ip->i_df.if_format) {
 161	case XFS_DINODE_FMT_EXTENTS:
 162		iip->ili_fields &=
 163			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
 
 164
 165		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
 166		    ip->i_df.if_nextents > 0 &&
 167		    ip->i_df.if_bytes > 0) {
 168			struct xfs_bmbt_rec *p;
 169
 
 170			ASSERT(xfs_iext_count(&ip->i_df) > 0);
 171
 172			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
 173			data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
 174			xlog_finish_iovec(lv, *vecp, data_bytes);
 175
 176			ASSERT(data_bytes <= ip->i_df.if_bytes);
 177
 178			ilf->ilf_dsize = data_bytes;
 179			ilf->ilf_size++;
 180		} else {
 181			iip->ili_fields &= ~XFS_ILOG_DEXT;
 182		}
 183		break;
 184	case XFS_DINODE_FMT_BTREE:
 185		iip->ili_fields &=
 186			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
 
 187
 188		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
 189		    ip->i_df.if_broot_bytes > 0) {
 190			ASSERT(ip->i_df.if_broot != NULL);
 191			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
 192					ip->i_df.if_broot,
 193					ip->i_df.if_broot_bytes);
 194			ilf->ilf_dsize = ip->i_df.if_broot_bytes;
 195			ilf->ilf_size++;
 196		} else {
 197			ASSERT(!(iip->ili_fields &
 198				 XFS_ILOG_DBROOT));
 199			iip->ili_fields &= ~XFS_ILOG_DBROOT;
 200		}
 201		break;
 202	case XFS_DINODE_FMT_LOCAL:
 203		iip->ili_fields &=
 204			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
 
 205		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
 206		    ip->i_df.if_bytes > 0) {
 
 
 
 
 
 
 
 
 207			ASSERT(ip->i_df.if_u1.if_data != NULL);
 208			ASSERT(ip->i_disk_size > 0);
 209			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
 210					ip->i_df.if_u1.if_data,
 211					ip->i_df.if_bytes);
 212			ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes;
 213			ilf->ilf_size++;
 214		} else {
 215			iip->ili_fields &= ~XFS_ILOG_DDATA;
 216		}
 217		break;
 218	case XFS_DINODE_FMT_DEV:
 219		iip->ili_fields &=
 220			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
 
 221		if (iip->ili_fields & XFS_ILOG_DEV)
 222			ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
 
 
 
 
 
 
 
 223		break;
 224	default:
 225		ASSERT(0);
 226		break;
 227	}
 228}
 229
 230STATIC void
 231xfs_inode_item_format_attr_fork(
 232	struct xfs_inode_log_item *iip,
 233	struct xfs_inode_log_format *ilf,
 234	struct xfs_log_vec	*lv,
 235	struct xfs_log_iovec	**vecp)
 236{
 237	struct xfs_inode	*ip = iip->ili_inode;
 238	size_t			data_bytes;
 239
 240	switch (ip->i_af.if_format) {
 241	case XFS_DINODE_FMT_EXTENTS:
 242		iip->ili_fields &=
 243			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
 244
 245		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
 246		    ip->i_af.if_nextents > 0 &&
 247		    ip->i_af.if_bytes > 0) {
 248			struct xfs_bmbt_rec *p;
 249
 250			ASSERT(xfs_iext_count(&ip->i_af) ==
 251				ip->i_af.if_nextents);
 
 252
 253			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
 254			data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
 255			xlog_finish_iovec(lv, *vecp, data_bytes);
 256
 257			ilf->ilf_asize = data_bytes;
 258			ilf->ilf_size++;
 259		} else {
 260			iip->ili_fields &= ~XFS_ILOG_AEXT;
 261		}
 262		break;
 263	case XFS_DINODE_FMT_BTREE:
 264		iip->ili_fields &=
 265			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
 266
 267		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
 268		    ip->i_af.if_broot_bytes > 0) {
 269			ASSERT(ip->i_af.if_broot != NULL);
 270
 271			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
 272					ip->i_af.if_broot,
 273					ip->i_af.if_broot_bytes);
 274			ilf->ilf_asize = ip->i_af.if_broot_bytes;
 275			ilf->ilf_size++;
 276		} else {
 277			iip->ili_fields &= ~XFS_ILOG_ABROOT;
 278		}
 279		break;
 280	case XFS_DINODE_FMT_LOCAL:
 281		iip->ili_fields &=
 282			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
 283
 284		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
 285		    ip->i_af.if_bytes > 0) {
 286			ASSERT(ip->i_af.if_u1.if_data != NULL);
 
 
 
 
 
 
 
 
 287			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
 288					ip->i_af.if_u1.if_data,
 289					ip->i_af.if_bytes);
 290			ilf->ilf_asize = (unsigned)ip->i_af.if_bytes;
 291			ilf->ilf_size++;
 292		} else {
 293			iip->ili_fields &= ~XFS_ILOG_ADATA;
 294		}
 295		break;
 296	default:
 297		ASSERT(0);
 298		break;
 299	}
 300}
 301
 302/*
 303 * Convert an incore timestamp to a log timestamp.  Note that the log format
 304 * specifies host endian format!
 305 */
 306static inline xfs_log_timestamp_t
 307xfs_inode_to_log_dinode_ts(
 308	struct xfs_inode		*ip,
 309	const struct timespec64		tv)
 310{
 311	struct xfs_log_legacy_timestamp	*lits;
 312	xfs_log_timestamp_t		its;
 313
 314	if (xfs_inode_has_bigtime(ip))
 315		return xfs_inode_encode_bigtime(tv);
 316
 317	lits = (struct xfs_log_legacy_timestamp *)&its;
 318	lits->t_sec = tv.tv_sec;
 319	lits->t_nsec = tv.tv_nsec;
 320
 321	return its;
 322}
 323
 324/*
 325 * The legacy DMAPI fields are only present in the on-disk and in-log inodes,
 326 * but not in the in-memory one.  But we are guaranteed to have an inode buffer
 327 * in memory when logging an inode, so we can just copy it from the on-disk
 328 * inode to the in-log inode here so that recovery of file system with these
 329 * fields set to non-zero values doesn't lose them.  For all other cases we zero
 330 * the fields.
 331 */
 332static void
 333xfs_copy_dm_fields_to_log_dinode(
 334	struct xfs_inode	*ip,
 335	struct xfs_log_dinode	*to)
 336{
 337	struct xfs_dinode	*dip;
 338
 339	dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf,
 340			     ip->i_imap.im_boffset);
 341
 342	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) {
 343		to->di_dmevmask = be32_to_cpu(dip->di_dmevmask);
 344		to->di_dmstate = be16_to_cpu(dip->di_dmstate);
 345	} else {
 346		to->di_dmevmask = 0;
 347		to->di_dmstate = 0;
 348	}
 349}
 350
 351static inline void
 352xfs_inode_to_log_dinode_iext_counters(
 353	struct xfs_inode	*ip,
 354	struct xfs_log_dinode	*to)
 355{
 356	if (xfs_inode_has_large_extent_counts(ip)) {
 357		to->di_big_nextents = xfs_ifork_nextents(&ip->i_df);
 358		to->di_big_anextents = xfs_ifork_nextents(&ip->i_af);
 359		to->di_nrext64_pad = 0;
 360	} else {
 361		to->di_nextents = xfs_ifork_nextents(&ip->i_df);
 362		to->di_anextents = xfs_ifork_nextents(&ip->i_af);
 363	}
 364}
 365
 366static void
 367xfs_inode_to_log_dinode(
 368	struct xfs_inode	*ip,
 369	struct xfs_log_dinode	*to,
 370	xfs_lsn_t		lsn)
 371{
 
 372	struct inode		*inode = VFS_I(ip);
 373
 374	to->di_magic = XFS_DINODE_MAGIC;
 375	to->di_format = xfs_ifork_format(&ip->i_df);
 376	to->di_uid = i_uid_read(inode);
 377	to->di_gid = i_gid_read(inode);
 378	to->di_projid_lo = ip->i_projid & 0xffff;
 379	to->di_projid_hi = ip->i_projid >> 16;
 380
 
 
 
 
 
 
 
 
 381	memset(to->di_pad3, 0, sizeof(to->di_pad3));
 382	to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode->i_atime);
 383	to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode->i_mtime);
 384	to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode->i_ctime);
 
 
 
 385	to->di_nlink = inode->i_nlink;
 386	to->di_gen = inode->i_generation;
 387	to->di_mode = inode->i_mode;
 388
 389	to->di_size = ip->i_disk_size;
 390	to->di_nblocks = ip->i_nblocks;
 391	to->di_extsize = ip->i_extsize;
 392	to->di_forkoff = ip->i_forkoff;
 393	to->di_aformat = xfs_ifork_format(&ip->i_af);
 394	to->di_flags = ip->i_diflags;
 395
 396	xfs_copy_dm_fields_to_log_dinode(ip, to);
 397
 398	/* log a dummy value to ensure log structure is fully initialised */
 399	to->di_next_unlinked = NULLAGINO;
 400
 401	if (xfs_has_v3inodes(ip->i_mount)) {
 402		to->di_version = 3;
 403		to->di_changecount = inode_peek_iversion(inode);
 404		to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime);
 405		to->di_flags2 = ip->i_diflags2;
 406		to->di_cowextsize = ip->i_cowextsize;
 407		to->di_ino = ip->i_ino;
 408		to->di_lsn = lsn;
 409		memset(to->di_pad2, 0, sizeof(to->di_pad2));
 410		uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
 411		to->di_v3_pad = 0;
 412	} else {
 413		to->di_version = 2;
 414		to->di_flushiter = ip->i_flushiter;
 415		memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad));
 416	}
 417
 418	xfs_inode_to_log_dinode_iext_counters(ip, to);
 419}
 420
 421/*
 422 * Format the inode core. Current timestamp data is only in the VFS inode
 423 * fields, so we need to grab them from there. Hence rather than just copying
 424 * the XFS inode core structure, format the fields directly into the iovec.
 425 */
 426static void
 427xfs_inode_item_format_core(
 428	struct xfs_inode	*ip,
 429	struct xfs_log_vec	*lv,
 430	struct xfs_log_iovec	**vecp)
 431{
 432	struct xfs_log_dinode	*dic;
 433
 434	dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
 435	xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
 436	xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
 437}
 438
 439/*
 440 * This is called to fill in the vector of log iovecs for the given inode
 441 * log item.  It fills the first item with an inode log format structure,
 442 * the second with the on-disk inode structure, and a possible third and/or
 443 * fourth with the inode data/extents/b-tree root and inode attributes
 444 * data/extents/b-tree root.
 445 *
 446 * Note: Always use the 64 bit inode log format structure so we don't
 447 * leave an uninitialised hole in the format item on 64 bit systems. Log
 448 * recovery on 32 bit systems handles this just fine, so there's no reason
 449 * for not using an initialising the properly padded structure all the time.
 450 */
 451STATIC void
 452xfs_inode_item_format(
 453	struct xfs_log_item	*lip,
 454	struct xfs_log_vec	*lv)
 455{
 456	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 457	struct xfs_inode	*ip = iip->ili_inode;
 458	struct xfs_log_iovec	*vecp = NULL;
 459	struct xfs_inode_log_format *ilf;
 
 
 
 460
 461	ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
 462	ilf->ilf_type = XFS_LI_INODE;
 463	ilf->ilf_ino = ip->i_ino;
 464	ilf->ilf_blkno = ip->i_imap.im_blkno;
 465	ilf->ilf_len = ip->i_imap.im_len;
 466	ilf->ilf_boffset = ip->i_imap.im_boffset;
 467	ilf->ilf_fields = XFS_ILOG_CORE;
 468	ilf->ilf_size = 2; /* format + core */
 469
 470	/*
 471	 * make sure we don't leak uninitialised data into the log in the case
 472	 * when we don't log every field in the inode.
 473	 */
 474	ilf->ilf_dsize = 0;
 475	ilf->ilf_asize = 0;
 476	ilf->ilf_pad = 0;
 477	memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
 478
 479	xlog_finish_iovec(lv, vecp, sizeof(*ilf));
 480
 481	xfs_inode_item_format_core(ip, lv, &vecp);
 482	xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
 483	if (xfs_inode_has_attr_fork(ip)) {
 484		xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
 485	} else {
 486		iip->ili_fields &=
 487			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
 488	}
 489
 490	/* update the format with the exact fields we actually logged */
 491	ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
 492}
 493
 494/*
 495 * This is called to pin the inode associated with the inode log
 496 * item in memory so it cannot be written out.
 497 */
 498STATIC void
 499xfs_inode_item_pin(
 500	struct xfs_log_item	*lip)
 501{
 502	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
 503
 504	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 505	ASSERT(lip->li_buf);
 506
 507	trace_xfs_inode_pin(ip, _RET_IP_);
 508	atomic_inc(&ip->i_pincount);
 509}
 510
 511
 512/*
 513 * This is called to unpin the inode associated with the inode log
 514 * item which was previously pinned with a call to xfs_inode_item_pin().
 515 *
 516 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
 517 *
 518 * Note that unpin can race with inode cluster buffer freeing marking the buffer
 519 * stale. In that case, flush completions are run from the buffer unpin call,
 520 * which may happen before the inode is unpinned. If we lose the race, there
 521 * will be no buffer attached to the log item, but the inode will be marked
 522 * XFS_ISTALE.
 523 */
 524STATIC void
 525xfs_inode_item_unpin(
 526	struct xfs_log_item	*lip,
 527	int			remove)
 528{
 529	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
 530
 531	trace_xfs_inode_unpin(ip, _RET_IP_);
 532	ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
 533	ASSERT(atomic_read(&ip->i_pincount) > 0);
 534	if (atomic_dec_and_test(&ip->i_pincount))
 535		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
 536}
 537
 538STATIC uint
 539xfs_inode_item_push(
 540	struct xfs_log_item	*lip,
 541	struct list_head	*buffer_list)
 542		__releases(&lip->li_ailp->ail_lock)
 543		__acquires(&lip->li_ailp->ail_lock)
 544{
 545	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 546	struct xfs_inode	*ip = iip->ili_inode;
 547	struct xfs_buf		*bp = lip->li_buf;
 548	uint			rval = XFS_ITEM_SUCCESS;
 549	int			error;
 550
 551	if (!bp || (ip->i_flags & XFS_ISTALE)) {
 552		/*
 553		 * Inode item/buffer is being aborted due to cluster
 554		 * buffer deletion. Trigger a log force to have that operation
 555		 * completed and items removed from the AIL before the next push
 556		 * attempt.
 557		 */
 558		return XFS_ITEM_PINNED;
 559	}
 560
 561	if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp))
 562		return XFS_ITEM_PINNED;
 563
 564	if (xfs_iflags_test(ip, XFS_IFLUSHING))
 565		return XFS_ITEM_FLUSHING;
 566
 567	if (!xfs_buf_trylock(bp))
 568		return XFS_ITEM_LOCKED;
 569
 570	spin_unlock(&lip->li_ailp->ail_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 571
 572	/*
 573	 * We need to hold a reference for flushing the cluster buffer as it may
 574	 * fail the buffer without IO submission. In which case, we better get a
 575	 * reference for that completion because otherwise we don't get a
 576	 * reference for IO until we queue the buffer for delwri submission.
 577	 */
 578	xfs_buf_hold(bp);
 579	error = xfs_iflush_cluster(bp);
 
 
 
 
 
 
 
 
 
 580	if (!error) {
 581		if (!xfs_buf_delwri_queue(bp, buffer_list))
 582			rval = XFS_ITEM_FLUSHING;
 583		xfs_buf_relse(bp);
 584	} else {
 585		/*
 586		 * Release the buffer if we were unable to flush anything. On
 587		 * any other error, the buffer has already been released.
 588		 */
 589		if (error == -EAGAIN)
 590			xfs_buf_relse(bp);
 591		rval = XFS_ITEM_LOCKED;
 592	}
 593
 594	spin_lock(&lip->li_ailp->ail_lock);
 
 
 595	return rval;
 596}
 597
 598/*
 599 * Unlock the inode associated with the inode log item.
 
 
 
 600 */
 601STATIC void
 602xfs_inode_item_release(
 603	struct xfs_log_item	*lip)
 604{
 605	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 606	struct xfs_inode	*ip = iip->ili_inode;
 607	unsigned short		lock_flags;
 608
 609	ASSERT(ip->i_itemp != NULL);
 610	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 611
 612	lock_flags = iip->ili_lock_flags;
 613	iip->ili_lock_flags = 0;
 614	if (lock_flags)
 615		xfs_iunlock(ip, lock_flags);
 616}
 617
 618/*
 619 * This is called to find out where the oldest active copy of the inode log
 620 * item in the on disk log resides now that the last log write of it completed
 621 * at the given lsn.  Since we always re-log all dirty data in an inode, the
 622 * latest copy in the on disk log is the only one that matters.  Therefore,
 623 * simply return the given lsn.
 624 *
 625 * If the inode has been marked stale because the cluster is being freed, we
 626 * don't want to (re-)insert this inode into the AIL. There is a race condition
 627 * where the cluster buffer may be unpinned before the inode is inserted into
 628 * the AIL during transaction committed processing. If the buffer is unpinned
 629 * before the inode item has been committed and inserted, then it is possible
 630 * for the buffer to be written and IO completes before the inode is inserted
 631 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
 632 * AIL which will never get removed. It will, however, get reclaimed which
 633 * triggers an assert in xfs_inode_free() complaining about freein an inode
 634 * still in the AIL.
 635 *
 636 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
 637 * transaction committed code knows that it does not need to do any further
 638 * processing on the item.
 639 */
 640STATIC xfs_lsn_t
 641xfs_inode_item_committed(
 642	struct xfs_log_item	*lip,
 643	xfs_lsn_t		lsn)
 644{
 645	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 646	struct xfs_inode	*ip = iip->ili_inode;
 647
 648	if (xfs_iflags_test(ip, XFS_ISTALE)) {
 649		xfs_inode_item_unpin(lip, 0);
 650		return -1;
 651	}
 652	return lsn;
 653}
 654
 
 
 
 
 655STATIC void
 656xfs_inode_item_committing(
 657	struct xfs_log_item	*lip,
 658	xfs_csn_t		seq)
 659{
 660	INODE_ITEM(lip)->ili_commit_seq = seq;
 661	return xfs_inode_item_release(lip);
 662}
 663
 
 
 
 664static const struct xfs_item_ops xfs_inode_item_ops = {
 665	.iop_size	= xfs_inode_item_size,
 666	.iop_format	= xfs_inode_item_format,
 667	.iop_pin	= xfs_inode_item_pin,
 668	.iop_unpin	= xfs_inode_item_unpin,
 669	.iop_release	= xfs_inode_item_release,
 670	.iop_committed	= xfs_inode_item_committed,
 671	.iop_push	= xfs_inode_item_push,
 672	.iop_committing	= xfs_inode_item_committing,
 673};
 674
 675
 676/*
 677 * Initialize the inode log item for a newly allocated (in-core) inode.
 678 */
 679void
 680xfs_inode_item_init(
 681	struct xfs_inode	*ip,
 682	struct xfs_mount	*mp)
 683{
 684	struct xfs_inode_log_item *iip;
 685
 686	ASSERT(ip->i_itemp == NULL);
 687	iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache,
 688					      GFP_KERNEL | __GFP_NOFAIL);
 689
 690	iip->ili_inode = ip;
 691	spin_lock_init(&iip->ili_lock);
 692	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
 693						&xfs_inode_item_ops);
 694}
 695
 696/*
 697 * Free the inode log item and any memory hanging off of it.
 698 */
 699void
 700xfs_inode_item_destroy(
 701	struct xfs_inode	*ip)
 702{
 703	struct xfs_inode_log_item *iip = ip->i_itemp;
 704
 705	ASSERT(iip->ili_item.li_buf == NULL);
 706
 707	ip->i_itemp = NULL;
 708	kmem_free(iip->ili_item.li_lv_shadow);
 709	kmem_cache_free(xfs_ili_cache, iip);
 710}
 711
 712
 713/*
 714 * We only want to pull the item from the AIL if it is actually there
 715 * and its location in the log has not changed since we started the
 716 * flush.  Thus, we only bother if the inode's lsn has not changed.
 717 */
 718static void
 719xfs_iflush_ail_updates(
 720	struct xfs_ail		*ailp,
 721	struct list_head	*list)
 722{
 723	struct xfs_log_item	*lip;
 724	xfs_lsn_t		tail_lsn = 0;
 725
 726	/* this is an opencoded batch version of xfs_trans_ail_delete */
 727	spin_lock(&ailp->ail_lock);
 728	list_for_each_entry(lip, list, li_bio_list) {
 729		xfs_lsn_t	lsn;
 730
 731		clear_bit(XFS_LI_FAILED, &lip->li_flags);
 732		if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
 733			continue;
 734
 735		/*
 736		 * dgc: Not sure how this happens, but it happens very
 737		 * occassionaly via generic/388.  xfs_iflush_abort() also
 738		 * silently handles this same "under writeback but not in AIL at
 739		 * shutdown" condition via xfs_trans_ail_delete().
 740		 */
 741		if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
 742			ASSERT(xlog_is_shutdown(lip->li_log));
 743			continue;
 744		}
 745
 746		lsn = xfs_ail_delete_one(ailp, lip);
 747		if (!tail_lsn && lsn)
 748			tail_lsn = lsn;
 749	}
 750	xfs_ail_update_finish(ailp, tail_lsn);
 751}
 752
 753/*
 754 * Walk the list of inodes that have completed their IOs. If they are clean
 755 * remove them from the list and dissociate them from the buffer. Buffers that
 756 * are still dirty remain linked to the buffer and on the list. Caller must
 757 * handle them appropriately.
 758 */
 759static void
 760xfs_iflush_finish(
 761	struct xfs_buf		*bp,
 762	struct list_head	*list)
 763{
 764	struct xfs_log_item	*lip, *n;
 765
 766	list_for_each_entry_safe(lip, n, list, li_bio_list) {
 767		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 768		bool	drop_buffer = false;
 769
 770		spin_lock(&iip->ili_lock);
 771
 772		/*
 773		 * Remove the reference to the cluster buffer if the inode is
 774		 * clean in memory and drop the buffer reference once we've
 775		 * dropped the locks we hold.
 776		 */
 777		ASSERT(iip->ili_item.li_buf == bp);
 778		if (!iip->ili_fields) {
 779			iip->ili_item.li_buf = NULL;
 780			list_del_init(&lip->li_bio_list);
 781			drop_buffer = true;
 782		}
 783		iip->ili_last_fields = 0;
 784		iip->ili_flush_lsn = 0;
 785		spin_unlock(&iip->ili_lock);
 786		xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING);
 787		if (drop_buffer)
 788			xfs_buf_rele(bp);
 789	}
 790}
 791
 792/*
 793 * Inode buffer IO completion routine.  It is responsible for removing inodes
 794 * attached to the buffer from the AIL if they have not been re-logged and
 795 * completing the inode flush.
 796 */
 797void
 798xfs_buf_inode_iodone(
 799	struct xfs_buf		*bp)
 
 800{
 801	struct xfs_log_item	*lip, *n;
 802	LIST_HEAD(flushed_inodes);
 803	LIST_HEAD(ail_updates);
 
 
 
 804
 805	/*
 806	 * Pull the attached inodes from the buffer one at a time and take the
 807	 * appropriate action on them.
 808	 */
 809	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
 810		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 811
 812		if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
 813			xfs_iflush_abort(iip->ili_inode);
 
 814			continue;
 815		}
 816		if (!iip->ili_last_fields)
 817			continue;
 818
 819		/* Do an unlocked check for needing the AIL lock. */
 820		if (iip->ili_flush_lsn == lip->li_lsn ||
 821		    test_bit(XFS_LI_FAILED, &lip->li_flags))
 822			list_move_tail(&lip->li_bio_list, &ail_updates);
 823		else
 824			list_move_tail(&lip->li_bio_list, &flushed_inodes);
 825	}
 826
 827	if (!list_empty(&ail_updates)) {
 828		xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
 829		list_splice_tail(&ail_updates, &flushed_inodes);
 830	}
 831
 832	xfs_iflush_finish(bp, &flushed_inodes);
 833	if (!list_empty(&flushed_inodes))
 834		list_splice_tail(&flushed_inodes, &bp->b_li_list);
 835}
 836
 837void
 838xfs_buf_inode_io_fail(
 839	struct xfs_buf		*bp)
 840{
 841	struct xfs_log_item	*lip;
 842
 843	list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
 844		set_bit(XFS_LI_FAILED, &lip->li_flags);
 845}
 846
 847/*
 848 * Clear the inode logging fields so no more flushes are attempted.  If we are
 849 * on a buffer list, it is now safe to remove it because the buffer is
 850 * guaranteed to be locked. The caller will drop the reference to the buffer
 851 * the log item held.
 852 */
 853static void
 854xfs_iflush_abort_clean(
 855	struct xfs_inode_log_item *iip)
 856{
 857	iip->ili_last_fields = 0;
 858	iip->ili_fields = 0;
 859	iip->ili_fsync_fields = 0;
 860	iip->ili_flush_lsn = 0;
 861	iip->ili_item.li_buf = NULL;
 862	list_del_init(&iip->ili_item.li_bio_list);
 863}
 864
 865/*
 866 * Abort flushing the inode from a context holding the cluster buffer locked.
 867 *
 868 * This is the normal runtime method of aborting writeback of an inode that is
 869 * attached to a cluster buffer. It occurs when the inode and the backing
 870 * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster
 871 * flushing or buffer IO completion encounters a log shutdown situation.
 872 *
 873 * If we need to abort inode writeback and we don't already hold the buffer
 874 * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be
 875 * necessary in a shutdown situation.
 876 */
 877void
 878xfs_iflush_abort(
 879	struct xfs_inode	*ip)
 880{
 881	struct xfs_inode_log_item *iip = ip->i_itemp;
 882	struct xfs_buf		*bp;
 883
 884	if (!iip) {
 885		/* clean inode, nothing to do */
 886		xfs_iflags_clear(ip, XFS_IFLUSHING);
 887		return;
 888	}
 889
 
 
 
 
 
 890	/*
 891	 * Remove the inode item from the AIL before we clear its internal
 892	 * state. Whilst the inode is in the AIL, it should have a valid buffer
 893	 * pointer for push operations to access - it is only safe to remove the
 894	 * inode from the buffer once it has been removed from the AIL.
 895	 *
 896	 * We also clear the failed bit before removing the item from the AIL
 897	 * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer
 898	 * references the inode item owns and needs to hold until we've fully
 899	 * aborted the inode log item and detached it from the buffer.
 900	 */
 901	clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
 902	xfs_trans_ail_delete(&iip->ili_item, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 903
 904	/*
 905	 * Grab the inode buffer so can we release the reference the inode log
 906	 * item holds on it.
 
 907	 */
 908	spin_lock(&iip->ili_lock);
 909	bp = iip->ili_item.li_buf;
 910	xfs_iflush_abort_clean(iip);
 911	spin_unlock(&iip->ili_lock);
 912
 913	xfs_iflags_clear(ip, XFS_IFLUSHING);
 914	if (bp)
 915		xfs_buf_rele(bp);
 
 
 916}
 917
 918/*
 919 * Abort an inode flush in the case of a shutdown filesystem. This can be called
 920 * from anywhere with just an inode reference and does not require holding the
 921 * inode cluster buffer locked. If the inode is attached to a cluster buffer,
 922 * it will grab and lock it safely, then abort the inode flush.
 923 */
 924void
 925xfs_iflush_shutdown_abort(
 926	struct xfs_inode	*ip)
 
 927{
 928	struct xfs_inode_log_item *iip = ip->i_itemp;
 929	struct xfs_buf		*bp;
 930
 931	if (!iip) {
 932		/* clean inode, nothing to do */
 933		xfs_iflags_clear(ip, XFS_IFLUSHING);
 934		return;
 935	}
 936
 937	spin_lock(&iip->ili_lock);
 938	bp = iip->ili_item.li_buf;
 939	if (!bp) {
 940		spin_unlock(&iip->ili_lock);
 941		xfs_iflush_abort(ip);
 942		return;
 943	}
 944
 945	/*
 946	 * We have to take a reference to the buffer so that it doesn't get
 947	 * freed when we drop the ili_lock and then wait to lock the buffer.
 948	 * We'll clean up the extra reference after we pick up the ili_lock
 949	 * again.
 950	 */
 951	xfs_buf_hold(bp);
 952	spin_unlock(&iip->ili_lock);
 953	xfs_buf_lock(bp);
 954
 955	spin_lock(&iip->ili_lock);
 956	if (!iip->ili_item.li_buf) {
 
 
 
 
 
 957		/*
 958		 * Raced with another removal, hold the only reference
 959		 * to bp now. Inode should not be in the AIL now, so just clean
 960		 * up and return;
 961		 */
 962		ASSERT(list_empty(&iip->ili_item.li_bio_list));
 963		ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags));
 964		xfs_iflush_abort_clean(iip);
 965		spin_unlock(&iip->ili_lock);
 966		xfs_iflags_clear(ip, XFS_IFLUSHING);
 967		xfs_buf_relse(bp);
 968		return;
 969	}
 970
 971	/*
 972	 * Got two references to bp. The first will get dropped by
 973	 * xfs_iflush_abort() when the item is removed from the buffer list, but
 974	 * we can't drop our reference until _abort() returns because we have to
 975	 * unlock the buffer as well. Hence we abort and then unlock and release
 976	 * our reference to the buffer.
 977	 */
 978	ASSERT(iip->ili_item.li_buf == bp);
 979	spin_unlock(&iip->ili_lock);
 980	xfs_iflush_abort(ip);
 981	xfs_buf_relse(bp);
 982}
 983
 
 
 
 
 
 
 
 984
 985/*
 986 * convert an xfs_inode_log_format struct from the old 32 bit version
 987 * (which can have different field alignments) to the native 64 bit version
 988 */
 989int
 990xfs_inode_item_format_convert(
 991	struct xfs_log_iovec		*buf,
 992	struct xfs_inode_log_format	*in_f)
 993{
 994	struct xfs_inode_log_format_32	*in_f32 = buf->i_addr;
 
 995
 996	if (buf->i_len != sizeof(*in_f32)) {
 997		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
 998		return -EFSCORRUPTED;
 999	}
1000
1001	in_f->ilf_type = in_f32->ilf_type;
1002	in_f->ilf_size = in_f32->ilf_size;
1003	in_f->ilf_fields = in_f32->ilf_fields;
1004	in_f->ilf_asize = in_f32->ilf_asize;
1005	in_f->ilf_dsize = in_f32->ilf_dsize;
1006	in_f->ilf_ino = in_f32->ilf_ino;
1007	memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
1008	in_f->ilf_blkno = in_f32->ilf_blkno;
1009	in_f->ilf_len = in_f32->ilf_len;
1010	in_f->ilf_boffset = in_f32->ilf_boffset;
1011	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1012}
v4.10.11
 
  1/*
  2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  3 * All Rights Reserved.
  4 *
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU General Public License as
  7 * published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope that it would be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write the Free Software Foundation,
 16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17 */
 18#include "xfs.h"
 19#include "xfs_fs.h"
 
 20#include "xfs_format.h"
 21#include "xfs_log_format.h"
 22#include "xfs_trans_resv.h"
 23#include "xfs_mount.h"
 24#include "xfs_inode.h"
 25#include "xfs_trans.h"
 26#include "xfs_inode_item.h"
 27#include "xfs_error.h"
 28#include "xfs_trace.h"
 29#include "xfs_trans_priv.h"
 
 30#include "xfs_log.h"
 
 
 31
 
 32
 33kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
 34
 35static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
 36{
 37	return container_of(lip, struct xfs_inode_log_item, ili_item);
 38}
 39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 40STATIC void
 41xfs_inode_item_data_fork_size(
 42	struct xfs_inode_log_item *iip,
 43	int			*nvecs,
 44	int			*nbytes)
 45{
 46	struct xfs_inode	*ip = iip->ili_inode;
 47
 48	switch (ip->i_d.di_format) {
 49	case XFS_DINODE_FMT_EXTENTS:
 50		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
 51		    ip->i_d.di_nextents > 0 &&
 52		    ip->i_df.if_bytes > 0) {
 53			/* worst case, doesn't subtract delalloc extents */
 54			*nbytes += XFS_IFORK_DSIZE(ip);
 55			*nvecs += 1;
 56		}
 57		break;
 58	case XFS_DINODE_FMT_BTREE:
 59		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
 60		    ip->i_df.if_broot_bytes > 0) {
 61			*nbytes += ip->i_df.if_broot_bytes;
 62			*nvecs += 1;
 63		}
 64		break;
 65	case XFS_DINODE_FMT_LOCAL:
 66		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
 67		    ip->i_df.if_bytes > 0) {
 68			*nbytes += roundup(ip->i_df.if_bytes, 4);
 69			*nvecs += 1;
 70		}
 71		break;
 72
 73	case XFS_DINODE_FMT_DEV:
 74	case XFS_DINODE_FMT_UUID:
 75		break;
 76	default:
 77		ASSERT(0);
 78		break;
 79	}
 80}
 81
 82STATIC void
 83xfs_inode_item_attr_fork_size(
 84	struct xfs_inode_log_item *iip,
 85	int			*nvecs,
 86	int			*nbytes)
 87{
 88	struct xfs_inode	*ip = iip->ili_inode;
 89
 90	switch (ip->i_d.di_aformat) {
 91	case XFS_DINODE_FMT_EXTENTS:
 92		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
 93		    ip->i_d.di_anextents > 0 &&
 94		    ip->i_afp->if_bytes > 0) {
 95			/* worst case, doesn't subtract unused space */
 96			*nbytes += XFS_IFORK_ASIZE(ip);
 97			*nvecs += 1;
 98		}
 99		break;
100	case XFS_DINODE_FMT_BTREE:
101		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
102		    ip->i_afp->if_broot_bytes > 0) {
103			*nbytes += ip->i_afp->if_broot_bytes;
104			*nvecs += 1;
105		}
106		break;
107	case XFS_DINODE_FMT_LOCAL:
108		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
109		    ip->i_afp->if_bytes > 0) {
110			*nbytes += roundup(ip->i_afp->if_bytes, 4);
111			*nvecs += 1;
112		}
113		break;
114	default:
115		ASSERT(0);
116		break;
117	}
118}
119
120/*
121 * This returns the number of iovecs needed to log the given inode item.
122 *
123 * We need one iovec for the inode log format structure, one for the
124 * inode core, and possibly one for the inode data/extents/b-tree root
125 * and one for the inode attribute data/extents/b-tree root.
126 */
127STATIC void
128xfs_inode_item_size(
129	struct xfs_log_item	*lip,
130	int			*nvecs,
131	int			*nbytes)
132{
133	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
134	struct xfs_inode	*ip = iip->ili_inode;
135
136	*nvecs += 2;
137	*nbytes += sizeof(struct xfs_inode_log_format) +
138		   xfs_log_dinode_size(ip->i_d.di_version);
139
140	xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
141	if (XFS_IFORK_Q(ip))
142		xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
143}
144
145STATIC void
146xfs_inode_item_format_data_fork(
147	struct xfs_inode_log_item *iip,
148	struct xfs_inode_log_format *ilf,
149	struct xfs_log_vec	*lv,
150	struct xfs_log_iovec	**vecp)
151{
152	struct xfs_inode	*ip = iip->ili_inode;
153	size_t			data_bytes;
154
155	switch (ip->i_d.di_format) {
156	case XFS_DINODE_FMT_EXTENTS:
157		iip->ili_fields &=
158			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
159			  XFS_ILOG_DEV | XFS_ILOG_UUID);
160
161		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
162		    ip->i_d.di_nextents > 0 &&
163		    ip->i_df.if_bytes > 0) {
164			struct xfs_bmbt_rec *p;
165
166			ASSERT(ip->i_df.if_u1.if_extents != NULL);
167			ASSERT(xfs_iext_count(&ip->i_df) > 0);
168
169			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
170			data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
171			xlog_finish_iovec(lv, *vecp, data_bytes);
172
173			ASSERT(data_bytes <= ip->i_df.if_bytes);
174
175			ilf->ilf_dsize = data_bytes;
176			ilf->ilf_size++;
177		} else {
178			iip->ili_fields &= ~XFS_ILOG_DEXT;
179		}
180		break;
181	case XFS_DINODE_FMT_BTREE:
182		iip->ili_fields &=
183			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
184			  XFS_ILOG_DEV | XFS_ILOG_UUID);
185
186		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
187		    ip->i_df.if_broot_bytes > 0) {
188			ASSERT(ip->i_df.if_broot != NULL);
189			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
190					ip->i_df.if_broot,
191					ip->i_df.if_broot_bytes);
192			ilf->ilf_dsize = ip->i_df.if_broot_bytes;
193			ilf->ilf_size++;
194		} else {
195			ASSERT(!(iip->ili_fields &
196				 XFS_ILOG_DBROOT));
197			iip->ili_fields &= ~XFS_ILOG_DBROOT;
198		}
199		break;
200	case XFS_DINODE_FMT_LOCAL:
201		iip->ili_fields &=
202			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
203			  XFS_ILOG_DEV | XFS_ILOG_UUID);
204		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
205		    ip->i_df.if_bytes > 0) {
206			/*
207			 * Round i_bytes up to a word boundary.
208			 * The underlying memory is guaranteed to
209			 * to be there by xfs_idata_realloc().
210			 */
211			data_bytes = roundup(ip->i_df.if_bytes, 4);
212			ASSERT(ip->i_df.if_real_bytes == 0 ||
213			       ip->i_df.if_real_bytes >= data_bytes);
214			ASSERT(ip->i_df.if_u1.if_data != NULL);
215			ASSERT(ip->i_d.di_size > 0);
216			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
217					ip->i_df.if_u1.if_data, data_bytes);
218			ilf->ilf_dsize = (unsigned)data_bytes;
 
219			ilf->ilf_size++;
220		} else {
221			iip->ili_fields &= ~XFS_ILOG_DDATA;
222		}
223		break;
224	case XFS_DINODE_FMT_DEV:
225		iip->ili_fields &=
226			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
227			  XFS_ILOG_DEXT | XFS_ILOG_UUID);
228		if (iip->ili_fields & XFS_ILOG_DEV)
229			ilf->ilf_u.ilfu_rdev = ip->i_df.if_u2.if_rdev;
230		break;
231	case XFS_DINODE_FMT_UUID:
232		iip->ili_fields &=
233			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
234			  XFS_ILOG_DEXT | XFS_ILOG_DEV);
235		if (iip->ili_fields & XFS_ILOG_UUID)
236			ilf->ilf_u.ilfu_uuid = ip->i_df.if_u2.if_uuid;
237		break;
238	default:
239		ASSERT(0);
240		break;
241	}
242}
243
244STATIC void
245xfs_inode_item_format_attr_fork(
246	struct xfs_inode_log_item *iip,
247	struct xfs_inode_log_format *ilf,
248	struct xfs_log_vec	*lv,
249	struct xfs_log_iovec	**vecp)
250{
251	struct xfs_inode	*ip = iip->ili_inode;
252	size_t			data_bytes;
253
254	switch (ip->i_d.di_aformat) {
255	case XFS_DINODE_FMT_EXTENTS:
256		iip->ili_fields &=
257			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
258
259		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
260		    ip->i_d.di_anextents > 0 &&
261		    ip->i_afp->if_bytes > 0) {
262			struct xfs_bmbt_rec *p;
263
264			ASSERT(xfs_iext_count(ip->i_afp) ==
265				ip->i_d.di_anextents);
266			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
267
268			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
269			data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
270			xlog_finish_iovec(lv, *vecp, data_bytes);
271
272			ilf->ilf_asize = data_bytes;
273			ilf->ilf_size++;
274		} else {
275			iip->ili_fields &= ~XFS_ILOG_AEXT;
276		}
277		break;
278	case XFS_DINODE_FMT_BTREE:
279		iip->ili_fields &=
280			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
281
282		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
283		    ip->i_afp->if_broot_bytes > 0) {
284			ASSERT(ip->i_afp->if_broot != NULL);
285
286			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
287					ip->i_afp->if_broot,
288					ip->i_afp->if_broot_bytes);
289			ilf->ilf_asize = ip->i_afp->if_broot_bytes;
290			ilf->ilf_size++;
291		} else {
292			iip->ili_fields &= ~XFS_ILOG_ABROOT;
293		}
294		break;
295	case XFS_DINODE_FMT_LOCAL:
296		iip->ili_fields &=
297			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
298
299		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
300		    ip->i_afp->if_bytes > 0) {
301			/*
302			 * Round i_bytes up to a word boundary.
303			 * The underlying memory is guaranteed to
304			 * to be there by xfs_idata_realloc().
305			 */
306			data_bytes = roundup(ip->i_afp->if_bytes, 4);
307			ASSERT(ip->i_afp->if_real_bytes == 0 ||
308			       ip->i_afp->if_real_bytes >= data_bytes);
309			ASSERT(ip->i_afp->if_u1.if_data != NULL);
310			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
311					ip->i_afp->if_u1.if_data,
312					data_bytes);
313			ilf->ilf_asize = (unsigned)data_bytes;
314			ilf->ilf_size++;
315		} else {
316			iip->ili_fields &= ~XFS_ILOG_ADATA;
317		}
318		break;
319	default:
320		ASSERT(0);
321		break;
322	}
323}
324
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325static void
326xfs_inode_to_log_dinode(
327	struct xfs_inode	*ip,
328	struct xfs_log_dinode	*to,
329	xfs_lsn_t		lsn)
330{
331	struct xfs_icdinode	*from = &ip->i_d;
332	struct inode		*inode = VFS_I(ip);
333
334	to->di_magic = XFS_DINODE_MAGIC;
 
 
 
 
 
335
336	to->di_version = from->di_version;
337	to->di_format = from->di_format;
338	to->di_uid = from->di_uid;
339	to->di_gid = from->di_gid;
340	to->di_projid_lo = from->di_projid_lo;
341	to->di_projid_hi = from->di_projid_hi;
342
343	memset(to->di_pad, 0, sizeof(to->di_pad));
344	memset(to->di_pad3, 0, sizeof(to->di_pad3));
345	to->di_atime.t_sec = inode->i_atime.tv_sec;
346	to->di_atime.t_nsec = inode->i_atime.tv_nsec;
347	to->di_mtime.t_sec = inode->i_mtime.tv_sec;
348	to->di_mtime.t_nsec = inode->i_mtime.tv_nsec;
349	to->di_ctime.t_sec = inode->i_ctime.tv_sec;
350	to->di_ctime.t_nsec = inode->i_ctime.tv_nsec;
351	to->di_nlink = inode->i_nlink;
352	to->di_gen = inode->i_generation;
353	to->di_mode = inode->i_mode;
354
355	to->di_size = from->di_size;
356	to->di_nblocks = from->di_nblocks;
357	to->di_extsize = from->di_extsize;
358	to->di_nextents = from->di_nextents;
359	to->di_anextents = from->di_anextents;
360	to->di_forkoff = from->di_forkoff;
361	to->di_aformat = from->di_aformat;
362	to->di_dmevmask = from->di_dmevmask;
363	to->di_dmstate = from->di_dmstate;
364	to->di_flags = from->di_flags;
365
366	if (from->di_version == 3) {
367		to->di_changecount = inode->i_version;
368		to->di_crtime.t_sec = from->di_crtime.t_sec;
369		to->di_crtime.t_nsec = from->di_crtime.t_nsec;
370		to->di_flags2 = from->di_flags2;
371		to->di_cowextsize = from->di_cowextsize;
 
372		to->di_ino = ip->i_ino;
373		to->di_lsn = lsn;
374		memset(to->di_pad2, 0, sizeof(to->di_pad2));
375		uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
376		to->di_flushiter = 0;
377	} else {
378		to->di_flushiter = from->di_flushiter;
 
 
379	}
 
 
380}
381
382/*
383 * Format the inode core. Current timestamp data is only in the VFS inode
384 * fields, so we need to grab them from there. Hence rather than just copying
385 * the XFS inode core structure, format the fields directly into the iovec.
386 */
387static void
388xfs_inode_item_format_core(
389	struct xfs_inode	*ip,
390	struct xfs_log_vec	*lv,
391	struct xfs_log_iovec	**vecp)
392{
393	struct xfs_log_dinode	*dic;
394
395	dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
396	xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
397	xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_d.di_version));
398}
399
400/*
401 * This is called to fill in the vector of log iovecs for the given inode
402 * log item.  It fills the first item with an inode log format structure,
403 * the second with the on-disk inode structure, and a possible third and/or
404 * fourth with the inode data/extents/b-tree root and inode attributes
405 * data/extents/b-tree root.
 
 
 
 
 
406 */
407STATIC void
408xfs_inode_item_format(
409	struct xfs_log_item	*lip,
410	struct xfs_log_vec	*lv)
411{
412	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
413	struct xfs_inode	*ip = iip->ili_inode;
 
414	struct xfs_inode_log_format *ilf;
415	struct xfs_log_iovec	*vecp = NULL;
416
417	ASSERT(ip->i_d.di_version > 1);
418
419	ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
420	ilf->ilf_type = XFS_LI_INODE;
421	ilf->ilf_ino = ip->i_ino;
422	ilf->ilf_blkno = ip->i_imap.im_blkno;
423	ilf->ilf_len = ip->i_imap.im_len;
424	ilf->ilf_boffset = ip->i_imap.im_boffset;
425	ilf->ilf_fields = XFS_ILOG_CORE;
426	ilf->ilf_size = 2; /* format + core */
427	xlog_finish_iovec(lv, vecp, sizeof(struct xfs_inode_log_format));
 
 
 
 
 
 
 
 
 
 
428
429	xfs_inode_item_format_core(ip, lv, &vecp);
430	xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
431	if (XFS_IFORK_Q(ip)) {
432		xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
433	} else {
434		iip->ili_fields &=
435			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
436	}
437
438	/* update the format with the exact fields we actually logged */
439	ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
440}
441
442/*
443 * This is called to pin the inode associated with the inode log
444 * item in memory so it cannot be written out.
445 */
446STATIC void
447xfs_inode_item_pin(
448	struct xfs_log_item	*lip)
449{
450	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
451
452	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 
453
454	trace_xfs_inode_pin(ip, _RET_IP_);
455	atomic_inc(&ip->i_pincount);
456}
457
458
459/*
460 * This is called to unpin the inode associated with the inode log
461 * item which was previously pinned with a call to xfs_inode_item_pin().
462 *
463 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
 
 
 
 
 
 
464 */
465STATIC void
466xfs_inode_item_unpin(
467	struct xfs_log_item	*lip,
468	int			remove)
469{
470	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
471
472	trace_xfs_inode_unpin(ip, _RET_IP_);
 
473	ASSERT(atomic_read(&ip->i_pincount) > 0);
474	if (atomic_dec_and_test(&ip->i_pincount))
475		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
476}
477
478STATIC uint
479xfs_inode_item_push(
480	struct xfs_log_item	*lip,
481	struct list_head	*buffer_list)
482		__releases(&lip->li_ailp->xa_lock)
483		__acquires(&lip->li_ailp->xa_lock)
484{
485	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
486	struct xfs_inode	*ip = iip->ili_inode;
487	struct xfs_buf		*bp = NULL;
488	uint			rval = XFS_ITEM_SUCCESS;
489	int			error;
490
491	if (xfs_ipincount(ip) > 0)
 
 
 
 
 
 
492		return XFS_ITEM_PINNED;
 
493
494	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
 
 
 
 
 
 
495		return XFS_ITEM_LOCKED;
496
497	/*
498	 * Re-check the pincount now that we stabilized the value by
499	 * taking the ilock.
500	 */
501	if (xfs_ipincount(ip) > 0) {
502		rval = XFS_ITEM_PINNED;
503		goto out_unlock;
504	}
505
506	/*
507	 * Stale inode items should force out the iclog.
508	 */
509	if (ip->i_flags & XFS_ISTALE) {
510		rval = XFS_ITEM_PINNED;
511		goto out_unlock;
512	}
513
514	/*
515	 * Someone else is already flushing the inode.  Nothing we can do
516	 * here but wait for the flush to finish and remove the item from
517	 * the AIL.
 
518	 */
519	if (!xfs_iflock_nowait(ip)) {
520		rval = XFS_ITEM_FLUSHING;
521		goto out_unlock;
522	}
523
524	ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
525	ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
526
527	spin_unlock(&lip->li_ailp->xa_lock);
528
529	error = xfs_iflush(ip, &bp);
530	if (!error) {
531		if (!xfs_buf_delwri_queue(bp, buffer_list))
532			rval = XFS_ITEM_FLUSHING;
533		xfs_buf_relse(bp);
 
 
 
 
 
 
 
 
534	}
535
536	spin_lock(&lip->li_ailp->xa_lock);
537out_unlock:
538	xfs_iunlock(ip, XFS_ILOCK_SHARED);
539	return rval;
540}
541
542/*
543 * Unlock the inode associated with the inode log item.
544 * Clear the fields of the inode and inode log item that
545 * are specific to the current transaction.  If the
546 * hold flags is set, do not unlock the inode.
547 */
548STATIC void
549xfs_inode_item_unlock(
550	struct xfs_log_item	*lip)
551{
552	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
553	struct xfs_inode	*ip = iip->ili_inode;
554	unsigned short		lock_flags;
555
556	ASSERT(ip->i_itemp != NULL);
557	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
558
559	lock_flags = iip->ili_lock_flags;
560	iip->ili_lock_flags = 0;
561	if (lock_flags)
562		xfs_iunlock(ip, lock_flags);
563}
564
565/*
566 * This is called to find out where the oldest active copy of the inode log
567 * item in the on disk log resides now that the last log write of it completed
568 * at the given lsn.  Since we always re-log all dirty data in an inode, the
569 * latest copy in the on disk log is the only one that matters.  Therefore,
570 * simply return the given lsn.
571 *
572 * If the inode has been marked stale because the cluster is being freed, we
573 * don't want to (re-)insert this inode into the AIL. There is a race condition
574 * where the cluster buffer may be unpinned before the inode is inserted into
575 * the AIL during transaction committed processing. If the buffer is unpinned
576 * before the inode item has been committed and inserted, then it is possible
577 * for the buffer to be written and IO completes before the inode is inserted
578 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
579 * AIL which will never get removed. It will, however, get reclaimed which
580 * triggers an assert in xfs_inode_free() complaining about freein an inode
581 * still in the AIL.
582 *
583 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
584 * transaction committed code knows that it does not need to do any further
585 * processing on the item.
586 */
587STATIC xfs_lsn_t
588xfs_inode_item_committed(
589	struct xfs_log_item	*lip,
590	xfs_lsn_t		lsn)
591{
592	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
593	struct xfs_inode	*ip = iip->ili_inode;
594
595	if (xfs_iflags_test(ip, XFS_ISTALE)) {
596		xfs_inode_item_unpin(lip, 0);
597		return -1;
598	}
599	return lsn;
600}
601
602/*
603 * XXX rcc - this one really has to do something.  Probably needs
604 * to stamp in a new field in the incore inode.
605 */
606STATIC void
607xfs_inode_item_committing(
608	struct xfs_log_item	*lip,
609	xfs_lsn_t		lsn)
610{
611	INODE_ITEM(lip)->ili_last_lsn = lsn;
 
612}
613
614/*
615 * This is the ops vector shared by all buf log items.
616 */
617static const struct xfs_item_ops xfs_inode_item_ops = {
618	.iop_size	= xfs_inode_item_size,
619	.iop_format	= xfs_inode_item_format,
620	.iop_pin	= xfs_inode_item_pin,
621	.iop_unpin	= xfs_inode_item_unpin,
622	.iop_unlock	= xfs_inode_item_unlock,
623	.iop_committed	= xfs_inode_item_committed,
624	.iop_push	= xfs_inode_item_push,
625	.iop_committing = xfs_inode_item_committing
626};
627
628
629/*
630 * Initialize the inode log item for a newly allocated (in-core) inode.
631 */
632void
633xfs_inode_item_init(
634	struct xfs_inode	*ip,
635	struct xfs_mount	*mp)
636{
637	struct xfs_inode_log_item *iip;
638
639	ASSERT(ip->i_itemp == NULL);
640	iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
 
641
642	iip->ili_inode = ip;
 
643	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
644						&xfs_inode_item_ops);
645}
646
647/*
648 * Free the inode log item and any memory hanging off of it.
649 */
650void
651xfs_inode_item_destroy(
652	xfs_inode_t	*ip)
653{
654	kmem_free(ip->i_itemp->ili_item.li_lv_shadow);
655	kmem_zone_free(xfs_ili_zone, ip->i_itemp);
 
 
 
 
 
656}
657
658
659/*
660 * This is the inode flushing I/O completion routine.  It is called
661 * from interrupt level when the buffer containing the inode is
662 * flushed to disk.  It is responsible for removing the inode item
663 * from the AIL if it has not been re-logged, and unlocking the inode's
664 * flush lock.
665 *
666 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
667 * list for other inodes that will run this function. We remove them from the
668 * buffer list so we can process all the inode IO completions in one AIL lock
669 * traversal.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
670 */
671void
672xfs_iflush_done(
673	struct xfs_buf		*bp,
674	struct xfs_log_item	*lip)
675{
676	struct xfs_inode_log_item *iip;
677	struct xfs_log_item	*blip;
678	struct xfs_log_item	*next;
679	struct xfs_log_item	*prev;
680	struct xfs_ail		*ailp = lip->li_ailp;
681	int			need_ail = 0;
682
683	/*
684	 * Scan the buffer IO completions for other inodes being completed and
685	 * attach them to the current inode log item.
686	 */
687	blip = bp->b_fspriv;
688	prev = NULL;
689	while (blip != NULL) {
690		if (blip->li_cb != xfs_iflush_done) {
691			prev = blip;
692			blip = blip->li_bio_list;
693			continue;
694		}
 
 
695
696		/* remove from list */
697		next = blip->li_bio_list;
698		if (!prev) {
699			bp->b_fspriv = next;
700		} else {
701			prev->li_bio_list = next;
702		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
703
704		/* add to current list */
705		blip->li_bio_list = lip->li_bio_list;
706		lip->li_bio_list = blip;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
707
708		/*
709		 * while we have the item, do the unlocked check for needing
710		 * the AIL lock.
711		 */
712		iip = INODE_ITEM(blip);
713		if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
714			need_ail++;
 
 
 
 
 
 
 
 
 
 
 
715
716		blip = next;
 
 
 
717	}
718
719	/* make sure we capture the state of the initial inode. */
720	iip = INODE_ITEM(lip);
721	if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
722		need_ail++;
723
724	/*
725	 * We only want to pull the item from the AIL if it is
726	 * actually there and its location in the log has not
727	 * changed since we started the flush.  Thus, we only bother
728	 * if the ili_logged flag is set and the inode's lsn has not
729	 * changed.  First we check the lsn outside
730	 * the lock since it's cheaper, and then we recheck while
731	 * holding the lock before removing the inode from the AIL.
 
 
732	 */
733	if (need_ail) {
734		struct xfs_log_item *log_items[need_ail];
735		int i = 0;
736		spin_lock(&ailp->xa_lock);
737		for (blip = lip; blip; blip = blip->li_bio_list) {
738			iip = INODE_ITEM(blip);
739			if (iip->ili_logged &&
740			    blip->li_lsn == iip->ili_flush_lsn) {
741				log_items[i++] = blip;
742			}
743			ASSERT(i <= need_ail);
744		}
745		/* xfs_trans_ail_delete_bulk() drops the AIL lock. */
746		xfs_trans_ail_delete_bulk(ailp, log_items, i,
747					  SHUTDOWN_CORRUPT_INCORE);
748	}
749
750
751	/*
752	 * clean up and unlock the flush lock now we are done. We can clear the
753	 * ili_last_fields bits now that we know that the data corresponding to
754	 * them is safely on disk.
755	 */
756	for (blip = lip; blip; blip = next) {
757		next = blip->li_bio_list;
758		blip->li_bio_list = NULL;
 
759
760		iip = INODE_ITEM(blip);
761		iip->ili_logged = 0;
762		iip->ili_last_fields = 0;
763		xfs_ifunlock(iip->ili_inode);
764	}
765}
766
767/*
768 * This is the inode flushing abort routine.  It is called from xfs_iflush when
769 * the filesystem is shutting down to clean up the inode state.  It is
770 * responsible for removing the inode item from the AIL if it has not been
771 * re-logged, and unlocking the inode's flush lock.
772 */
773void
774xfs_iflush_abort(
775	xfs_inode_t		*ip,
776	bool			stale)
777{
778	xfs_inode_log_item_t	*iip = ip->i_itemp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
779
780	if (iip) {
781		if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
782			xfs_trans_ail_remove(&iip->ili_item,
783					     stale ? SHUTDOWN_LOG_IO_ERROR :
784						     SHUTDOWN_CORRUPT_INCORE);
785		}
786		iip->ili_logged = 0;
787		/*
788		 * Clear the ili_last_fields bits now that we know that the
789		 * data corresponding to them is safely on disk.
 
790		 */
791		iip->ili_last_fields = 0;
792		/*
793		 * Clear the inode logging fields so no more flushes are
794		 * attempted.
795		 */
796		iip->ili_fields = 0;
797		iip->ili_fsync_fields = 0;
798	}
 
799	/*
800	 * Release the inode's flush lock since we're done with it.
 
 
 
 
801	 */
802	xfs_ifunlock(ip);
 
 
 
803}
804
805void
806xfs_istale_done(
807	struct xfs_buf		*bp,
808	struct xfs_log_item	*lip)
809{
810	xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
811}
812
813/*
814 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
815 * (which can have different field alignments) to the native version
816 */
817int
818xfs_inode_item_format_convert(
819	xfs_log_iovec_t		*buf,
820	xfs_inode_log_format_t	*in_f)
821{
822	if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
823		xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
824
825		in_f->ilf_type = in_f32->ilf_type;
826		in_f->ilf_size = in_f32->ilf_size;
827		in_f->ilf_fields = in_f32->ilf_fields;
828		in_f->ilf_asize = in_f32->ilf_asize;
829		in_f->ilf_dsize = in_f32->ilf_dsize;
830		in_f->ilf_ino = in_f32->ilf_ino;
831		/* copy biggest field of ilf_u */
832		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
833		       in_f32->ilf_u.ilfu_uuid.__u_bits,
834		       sizeof(uuid_t));
835		in_f->ilf_blkno = in_f32->ilf_blkno;
836		in_f->ilf_len = in_f32->ilf_len;
837		in_f->ilf_boffset = in_f32->ilf_boffset;
838		return 0;
839	} else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
840		xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
841
842		in_f->ilf_type = in_f64->ilf_type;
843		in_f->ilf_size = in_f64->ilf_size;
844		in_f->ilf_fields = in_f64->ilf_fields;
845		in_f->ilf_asize = in_f64->ilf_asize;
846		in_f->ilf_dsize = in_f64->ilf_dsize;
847		in_f->ilf_ino = in_f64->ilf_ino;
848		/* copy biggest field of ilf_u */
849		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
850		       in_f64->ilf_u.ilfu_uuid.__u_bits,
851		       sizeof(uuid_t));
852		in_f->ilf_blkno = in_f64->ilf_blkno;
853		in_f->ilf_len = in_f64->ilf_len;
854		in_f->ilf_boffset = in_f64->ilf_boffset;
855		return 0;
856	}
857	return -EFSCORRUPTED;
858}