Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_inode.h"
  14#include "xfs_trans.h"
  15#include "xfs_inode_item.h"
  16#include "xfs_trace.h"
  17#include "xfs_trans_priv.h"
  18#include "xfs_buf_item.h"
  19#include "xfs_log.h"
  20#include "xfs_log_priv.h"
  21#include "xfs_error.h"
  22
  23#include <linux/iversion.h>
  24
  25struct kmem_cache	*xfs_ili_cache;		/* inode log item */
  26
  27static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
  28{
  29	return container_of(lip, struct xfs_inode_log_item, ili_item);
  30}
  31
  32/*
  33 * The logged size of an inode fork is always the current size of the inode
  34 * fork. This means that when an inode fork is relogged, the size of the logged
  35 * region is determined by the current state, not the combination of the
  36 * previously logged state + the current state. This is different relogging
  37 * behaviour to most other log items which will retain the size of the
  38 * previously logged changes when smaller regions are relogged.
  39 *
  40 * Hence operations that remove data from the inode fork (e.g. shortform
  41 * dir/attr remove, extent form extent removal, etc), the size of the relogged
  42 * inode gets -smaller- rather than stays the same size as the previously logged
  43 * size and this can result in the committing transaction reducing the amount of
  44 * space being consumed by the CIL.
  45 */
  46STATIC void
  47xfs_inode_item_data_fork_size(
  48	struct xfs_inode_log_item *iip,
  49	int			*nvecs,
  50	int			*nbytes)
  51{
  52	struct xfs_inode	*ip = iip->ili_inode;
  53
  54	switch (ip->i_df.if_format) {
  55	case XFS_DINODE_FMT_EXTENTS:
  56		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
  57		    ip->i_df.if_nextents > 0 &&
  58		    ip->i_df.if_bytes > 0) {
  59			/* worst case, doesn't subtract delalloc extents */
  60			*nbytes += xfs_inode_data_fork_size(ip);
  61			*nvecs += 1;
  62		}
  63		break;
  64	case XFS_DINODE_FMT_BTREE:
  65		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
  66		    ip->i_df.if_broot_bytes > 0) {
  67			*nbytes += ip->i_df.if_broot_bytes;
  68			*nvecs += 1;
  69		}
  70		break;
  71	case XFS_DINODE_FMT_LOCAL:
  72		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
  73		    ip->i_df.if_bytes > 0) {
  74			*nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes);
  75			*nvecs += 1;
  76		}
  77		break;
  78
  79	case XFS_DINODE_FMT_DEV:
  80		break;
  81	default:
  82		ASSERT(0);
  83		break;
  84	}
  85}
  86
  87STATIC void
  88xfs_inode_item_attr_fork_size(
  89	struct xfs_inode_log_item *iip,
  90	int			*nvecs,
  91	int			*nbytes)
  92{
  93	struct xfs_inode	*ip = iip->ili_inode;
  94
  95	switch (ip->i_af.if_format) {
  96	case XFS_DINODE_FMT_EXTENTS:
  97		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
  98		    ip->i_af.if_nextents > 0 &&
  99		    ip->i_af.if_bytes > 0) {
 100			/* worst case, doesn't subtract unused space */
 101			*nbytes += xfs_inode_attr_fork_size(ip);
 102			*nvecs += 1;
 103		}
 104		break;
 105	case XFS_DINODE_FMT_BTREE:
 106		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
 107		    ip->i_af.if_broot_bytes > 0) {
 108			*nbytes += ip->i_af.if_broot_bytes;
 109			*nvecs += 1;
 110		}
 111		break;
 112	case XFS_DINODE_FMT_LOCAL:
 113		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
 114		    ip->i_af.if_bytes > 0) {
 115			*nbytes += xlog_calc_iovec_len(ip->i_af.if_bytes);
 116			*nvecs += 1;
 117		}
 118		break;
 119	default:
 120		ASSERT(0);
 121		break;
 122	}
 123}
 124
 125/*
 126 * This returns the number of iovecs needed to log the given inode item.
 127 *
 128 * We need one iovec for the inode log format structure, one for the
 129 * inode core, and possibly one for the inode data/extents/b-tree root
 130 * and one for the inode attribute data/extents/b-tree root.
 131 */
 132STATIC void
 133xfs_inode_item_size(
 134	struct xfs_log_item	*lip,
 135	int			*nvecs,
 136	int			*nbytes)
 137{
 138	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 139	struct xfs_inode	*ip = iip->ili_inode;
 140
 141	*nvecs += 2;
 142	*nbytes += sizeof(struct xfs_inode_log_format) +
 143		   xfs_log_dinode_size(ip->i_mount);
 144
 145	xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
 146	if (xfs_inode_has_attr_fork(ip))
 147		xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
 148}
 149
 150STATIC void
 151xfs_inode_item_format_data_fork(
 152	struct xfs_inode_log_item *iip,
 153	struct xfs_inode_log_format *ilf,
 154	struct xfs_log_vec	*lv,
 155	struct xfs_log_iovec	**vecp)
 156{
 157	struct xfs_inode	*ip = iip->ili_inode;
 158	size_t			data_bytes;
 159
 160	switch (ip->i_df.if_format) {
 161	case XFS_DINODE_FMT_EXTENTS:
 162		iip->ili_fields &=
 163			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
 164
 165		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
 166		    ip->i_df.if_nextents > 0 &&
 167		    ip->i_df.if_bytes > 0) {
 168			struct xfs_bmbt_rec *p;
 169
 170			ASSERT(xfs_iext_count(&ip->i_df) > 0);
 171
 172			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
 173			data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
 174			xlog_finish_iovec(lv, *vecp, data_bytes);
 175
 176			ASSERT(data_bytes <= ip->i_df.if_bytes);
 177
 178			ilf->ilf_dsize = data_bytes;
 179			ilf->ilf_size++;
 180		} else {
 181			iip->ili_fields &= ~XFS_ILOG_DEXT;
 182		}
 183		break;
 184	case XFS_DINODE_FMT_BTREE:
 185		iip->ili_fields &=
 186			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
 187
 188		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
 189		    ip->i_df.if_broot_bytes > 0) {
 190			ASSERT(ip->i_df.if_broot != NULL);
 191			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
 192					ip->i_df.if_broot,
 193					ip->i_df.if_broot_bytes);
 194			ilf->ilf_dsize = ip->i_df.if_broot_bytes;
 195			ilf->ilf_size++;
 196		} else {
 197			ASSERT(!(iip->ili_fields &
 198				 XFS_ILOG_DBROOT));
 199			iip->ili_fields &= ~XFS_ILOG_DBROOT;
 200		}
 201		break;
 202	case XFS_DINODE_FMT_LOCAL:
 203		iip->ili_fields &=
 204			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
 205		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
 206		    ip->i_df.if_bytes > 0) {
 
 
 
 
 
 
 207			ASSERT(ip->i_df.if_u1.if_data != NULL);
 208			ASSERT(ip->i_disk_size > 0);
 209			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
 210					ip->i_df.if_u1.if_data,
 211					ip->i_df.if_bytes);
 212			ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes;
 213			ilf->ilf_size++;
 214		} else {
 215			iip->ili_fields &= ~XFS_ILOG_DDATA;
 216		}
 217		break;
 218	case XFS_DINODE_FMT_DEV:
 219		iip->ili_fields &=
 220			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
 221		if (iip->ili_fields & XFS_ILOG_DEV)
 222			ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
 223		break;
 224	default:
 225		ASSERT(0);
 226		break;
 227	}
 228}
 229
 230STATIC void
 231xfs_inode_item_format_attr_fork(
 232	struct xfs_inode_log_item *iip,
 233	struct xfs_inode_log_format *ilf,
 234	struct xfs_log_vec	*lv,
 235	struct xfs_log_iovec	**vecp)
 236{
 237	struct xfs_inode	*ip = iip->ili_inode;
 238	size_t			data_bytes;
 239
 240	switch (ip->i_af.if_format) {
 241	case XFS_DINODE_FMT_EXTENTS:
 242		iip->ili_fields &=
 243			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
 244
 245		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
 246		    ip->i_af.if_nextents > 0 &&
 247		    ip->i_af.if_bytes > 0) {
 248			struct xfs_bmbt_rec *p;
 249
 250			ASSERT(xfs_iext_count(&ip->i_af) ==
 251				ip->i_af.if_nextents);
 252
 253			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
 254			data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
 255			xlog_finish_iovec(lv, *vecp, data_bytes);
 256
 257			ilf->ilf_asize = data_bytes;
 258			ilf->ilf_size++;
 259		} else {
 260			iip->ili_fields &= ~XFS_ILOG_AEXT;
 261		}
 262		break;
 263	case XFS_DINODE_FMT_BTREE:
 264		iip->ili_fields &=
 265			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
 266
 267		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
 268		    ip->i_af.if_broot_bytes > 0) {
 269			ASSERT(ip->i_af.if_broot != NULL);
 270
 271			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
 272					ip->i_af.if_broot,
 273					ip->i_af.if_broot_bytes);
 274			ilf->ilf_asize = ip->i_af.if_broot_bytes;
 275			ilf->ilf_size++;
 276		} else {
 277			iip->ili_fields &= ~XFS_ILOG_ABROOT;
 278		}
 279		break;
 280	case XFS_DINODE_FMT_LOCAL:
 281		iip->ili_fields &=
 282			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
 283
 284		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
 285		    ip->i_af.if_bytes > 0) {
 286			ASSERT(ip->i_af.if_u1.if_data != NULL);
 
 
 
 
 
 
 287			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
 288					ip->i_af.if_u1.if_data,
 289					ip->i_af.if_bytes);
 290			ilf->ilf_asize = (unsigned)ip->i_af.if_bytes;
 291			ilf->ilf_size++;
 292		} else {
 293			iip->ili_fields &= ~XFS_ILOG_ADATA;
 294		}
 295		break;
 296	default:
 297		ASSERT(0);
 298		break;
 299	}
 300}
 301
 302/*
 303 * Convert an incore timestamp to a log timestamp.  Note that the log format
 304 * specifies host endian format!
 305 */
 306static inline xfs_log_timestamp_t
 307xfs_inode_to_log_dinode_ts(
 308	struct xfs_inode		*ip,
 309	const struct timespec64		tv)
 310{
 311	struct xfs_log_legacy_timestamp	*lits;
 312	xfs_log_timestamp_t		its;
 313
 314	if (xfs_inode_has_bigtime(ip))
 315		return xfs_inode_encode_bigtime(tv);
 316
 317	lits = (struct xfs_log_legacy_timestamp *)&its;
 318	lits->t_sec = tv.tv_sec;
 319	lits->t_nsec = tv.tv_nsec;
 320
 321	return its;
 322}
 323
 324/*
 325 * The legacy DMAPI fields are only present in the on-disk and in-log inodes,
 326 * but not in the in-memory one.  But we are guaranteed to have an inode buffer
 327 * in memory when logging an inode, so we can just copy it from the on-disk
 328 * inode to the in-log inode here so that recovery of file system with these
 329 * fields set to non-zero values doesn't lose them.  For all other cases we zero
 330 * the fields.
 331 */
 332static void
 333xfs_copy_dm_fields_to_log_dinode(
 334	struct xfs_inode	*ip,
 335	struct xfs_log_dinode	*to)
 336{
 337	struct xfs_dinode	*dip;
 338
 339	dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf,
 340			     ip->i_imap.im_boffset);
 341
 342	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) {
 343		to->di_dmevmask = be32_to_cpu(dip->di_dmevmask);
 344		to->di_dmstate = be16_to_cpu(dip->di_dmstate);
 345	} else {
 346		to->di_dmevmask = 0;
 347		to->di_dmstate = 0;
 348	}
 349}
 350
 351static inline void
 352xfs_inode_to_log_dinode_iext_counters(
 353	struct xfs_inode	*ip,
 354	struct xfs_log_dinode	*to)
 355{
 356	if (xfs_inode_has_large_extent_counts(ip)) {
 357		to->di_big_nextents = xfs_ifork_nextents(&ip->i_df);
 358		to->di_big_anextents = xfs_ifork_nextents(&ip->i_af);
 359		to->di_nrext64_pad = 0;
 360	} else {
 361		to->di_nextents = xfs_ifork_nextents(&ip->i_df);
 362		to->di_anextents = xfs_ifork_nextents(&ip->i_af);
 363	}
 364}
 365
 366static void
 367xfs_inode_to_log_dinode(
 368	struct xfs_inode	*ip,
 369	struct xfs_log_dinode	*to,
 370	xfs_lsn_t		lsn)
 371{
 
 372	struct inode		*inode = VFS_I(ip);
 373
 374	to->di_magic = XFS_DINODE_MAGIC;
 375	to->di_format = xfs_ifork_format(&ip->i_df);
 376	to->di_uid = i_uid_read(inode);
 377	to->di_gid = i_gid_read(inode);
 378	to->di_projid_lo = ip->i_projid & 0xffff;
 379	to->di_projid_hi = ip->i_projid >> 16;
 380
 
 
 
 
 
 
 
 
 381	memset(to->di_pad3, 0, sizeof(to->di_pad3));
 382	to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode->i_atime);
 383	to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode->i_mtime);
 384	to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode->i_ctime);
 
 
 
 385	to->di_nlink = inode->i_nlink;
 386	to->di_gen = inode->i_generation;
 387	to->di_mode = inode->i_mode;
 388
 389	to->di_size = ip->i_disk_size;
 390	to->di_nblocks = ip->i_nblocks;
 391	to->di_extsize = ip->i_extsize;
 392	to->di_forkoff = ip->i_forkoff;
 393	to->di_aformat = xfs_ifork_format(&ip->i_af);
 394	to->di_flags = ip->i_diflags;
 395
 396	xfs_copy_dm_fields_to_log_dinode(ip, to);
 
 
 397
 398	/* log a dummy value to ensure log structure is fully initialised */
 399	to->di_next_unlinked = NULLAGINO;
 400
 401	if (xfs_has_v3inodes(ip->i_mount)) {
 402		to->di_version = 3;
 403		to->di_changecount = inode_peek_iversion(inode);
 404		to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime);
 405		to->di_flags2 = ip->i_diflags2;
 406		to->di_cowextsize = ip->i_cowextsize;
 
 407		to->di_ino = ip->i_ino;
 408		to->di_lsn = lsn;
 409		memset(to->di_pad2, 0, sizeof(to->di_pad2));
 410		uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
 411		to->di_v3_pad = 0;
 412	} else {
 413		to->di_version = 2;
 414		to->di_flushiter = ip->i_flushiter;
 415		memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad));
 416	}
 417
 418	xfs_inode_to_log_dinode_iext_counters(ip, to);
 419}
 420
 421/*
 422 * Format the inode core. Current timestamp data is only in the VFS inode
 423 * fields, so we need to grab them from there. Hence rather than just copying
 424 * the XFS inode core structure, format the fields directly into the iovec.
 425 */
 426static void
 427xfs_inode_item_format_core(
 428	struct xfs_inode	*ip,
 429	struct xfs_log_vec	*lv,
 430	struct xfs_log_iovec	**vecp)
 431{
 432	struct xfs_log_dinode	*dic;
 433
 434	dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
 435	xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
 436	xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
 437}
 438
 439/*
 440 * This is called to fill in the vector of log iovecs for the given inode
 441 * log item.  It fills the first item with an inode log format structure,
 442 * the second with the on-disk inode structure, and a possible third and/or
 443 * fourth with the inode data/extents/b-tree root and inode attributes
 444 * data/extents/b-tree root.
 445 *
 446 * Note: Always use the 64 bit inode log format structure so we don't
 447 * leave an uninitialised hole in the format item on 64 bit systems. Log
 448 * recovery on 32 bit systems handles this just fine, so there's no reason
 449 * for not using an initialising the properly padded structure all the time.
 450 */
 451STATIC void
 452xfs_inode_item_format(
 453	struct xfs_log_item	*lip,
 454	struct xfs_log_vec	*lv)
 455{
 456	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 457	struct xfs_inode	*ip = iip->ili_inode;
 458	struct xfs_log_iovec	*vecp = NULL;
 459	struct xfs_inode_log_format *ilf;
 460
 
 
 461	ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
 462	ilf->ilf_type = XFS_LI_INODE;
 463	ilf->ilf_ino = ip->i_ino;
 464	ilf->ilf_blkno = ip->i_imap.im_blkno;
 465	ilf->ilf_len = ip->i_imap.im_len;
 466	ilf->ilf_boffset = ip->i_imap.im_boffset;
 467	ilf->ilf_fields = XFS_ILOG_CORE;
 468	ilf->ilf_size = 2; /* format + core */
 469
 470	/*
 471	 * make sure we don't leak uninitialised data into the log in the case
 472	 * when we don't log every field in the inode.
 473	 */
 474	ilf->ilf_dsize = 0;
 475	ilf->ilf_asize = 0;
 476	ilf->ilf_pad = 0;
 477	memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
 478
 479	xlog_finish_iovec(lv, vecp, sizeof(*ilf));
 480
 481	xfs_inode_item_format_core(ip, lv, &vecp);
 482	xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
 483	if (xfs_inode_has_attr_fork(ip)) {
 484		xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
 485	} else {
 486		iip->ili_fields &=
 487			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
 488	}
 489
 490	/* update the format with the exact fields we actually logged */
 491	ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
 492}
 493
 494/*
 495 * This is called to pin the inode associated with the inode log
 496 * item in memory so it cannot be written out.
 497 */
 498STATIC void
 499xfs_inode_item_pin(
 500	struct xfs_log_item	*lip)
 501{
 502	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
 503
 504	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 505	ASSERT(lip->li_buf);
 506
 507	trace_xfs_inode_pin(ip, _RET_IP_);
 508	atomic_inc(&ip->i_pincount);
 509}
 510
 511
 512/*
 513 * This is called to unpin the inode associated with the inode log
 514 * item which was previously pinned with a call to xfs_inode_item_pin().
 515 *
 516 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
 517 *
 518 * Note that unpin can race with inode cluster buffer freeing marking the buffer
 519 * stale. In that case, flush completions are run from the buffer unpin call,
 520 * which may happen before the inode is unpinned. If we lose the race, there
 521 * will be no buffer attached to the log item, but the inode will be marked
 522 * XFS_ISTALE.
 523 */
 524STATIC void
 525xfs_inode_item_unpin(
 526	struct xfs_log_item	*lip,
 527	int			remove)
 528{
 529	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
 530
 531	trace_xfs_inode_unpin(ip, _RET_IP_);
 532	ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
 533	ASSERT(atomic_read(&ip->i_pincount) > 0);
 534	if (atomic_dec_and_test(&ip->i_pincount))
 535		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
 536}
 537
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 538STATIC uint
 539xfs_inode_item_push(
 540	struct xfs_log_item	*lip,
 541	struct list_head	*buffer_list)
 542		__releases(&lip->li_ailp->ail_lock)
 543		__acquires(&lip->li_ailp->ail_lock)
 544{
 545	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 546	struct xfs_inode	*ip = iip->ili_inode;
 547	struct xfs_buf		*bp = lip->li_buf;
 548	uint			rval = XFS_ITEM_SUCCESS;
 549	int			error;
 550
 551	if (!bp || (ip->i_flags & XFS_ISTALE)) {
 552		/*
 553		 * Inode item/buffer is being aborted due to cluster
 554		 * buffer deletion. Trigger a log force to have that operation
 555		 * completed and items removed from the AIL before the next push
 556		 * attempt.
 557		 */
 558		return XFS_ITEM_PINNED;
 559	}
 560
 561	if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp))
 562		return XFS_ITEM_PINNED;
 
 
 
 
 
 563
 564	if (xfs_iflags_test(ip, XFS_IFLUSHING))
 565		return XFS_ITEM_FLUSHING;
 566
 567	if (!xfs_buf_trylock(bp))
 
 
 
 
 568		return XFS_ITEM_LOCKED;
 569
 570	spin_unlock(&lip->li_ailp->ail_lock);
 
 
 
 
 
 
 
 571
 572	/*
 573	 * We need to hold a reference for flushing the cluster buffer as it may
 574	 * fail the buffer without IO submission. In which case, we better get a
 575	 * reference for that completion because otherwise we don't get a
 576	 * reference for IO until we queue the buffer for delwri submission.
 577	 */
 578	xfs_buf_hold(bp);
 579	error = xfs_iflush_cluster(bp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 580	if (!error) {
 581		if (!xfs_buf_delwri_queue(bp, buffer_list))
 582			rval = XFS_ITEM_FLUSHING;
 583		xfs_buf_relse(bp);
 584	} else {
 585		/*
 586		 * Release the buffer if we were unable to flush anything. On
 587		 * any other error, the buffer has already been released.
 588		 */
 589		if (error == -EAGAIN)
 590			xfs_buf_relse(bp);
 591		rval = XFS_ITEM_LOCKED;
 592	}
 593
 594	spin_lock(&lip->li_ailp->ail_lock);
 
 
 595	return rval;
 596}
 597
 598/*
 599 * Unlock the inode associated with the inode log item.
 600 */
 601STATIC void
 602xfs_inode_item_release(
 603	struct xfs_log_item	*lip)
 604{
 605	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 606	struct xfs_inode	*ip = iip->ili_inode;
 607	unsigned short		lock_flags;
 608
 609	ASSERT(ip->i_itemp != NULL);
 610	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 611
 612	lock_flags = iip->ili_lock_flags;
 613	iip->ili_lock_flags = 0;
 614	if (lock_flags)
 615		xfs_iunlock(ip, lock_flags);
 616}
 617
 618/*
 619 * This is called to find out where the oldest active copy of the inode log
 620 * item in the on disk log resides now that the last log write of it completed
 621 * at the given lsn.  Since we always re-log all dirty data in an inode, the
 622 * latest copy in the on disk log is the only one that matters.  Therefore,
 623 * simply return the given lsn.
 624 *
 625 * If the inode has been marked stale because the cluster is being freed, we
 626 * don't want to (re-)insert this inode into the AIL. There is a race condition
 627 * where the cluster buffer may be unpinned before the inode is inserted into
 628 * the AIL during transaction committed processing. If the buffer is unpinned
 629 * before the inode item has been committed and inserted, then it is possible
 630 * for the buffer to be written and IO completes before the inode is inserted
 631 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
 632 * AIL which will never get removed. It will, however, get reclaimed which
 633 * triggers an assert in xfs_inode_free() complaining about freein an inode
 634 * still in the AIL.
 635 *
 636 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
 637 * transaction committed code knows that it does not need to do any further
 638 * processing on the item.
 639 */
 640STATIC xfs_lsn_t
 641xfs_inode_item_committed(
 642	struct xfs_log_item	*lip,
 643	xfs_lsn_t		lsn)
 644{
 645	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 646	struct xfs_inode	*ip = iip->ili_inode;
 647
 648	if (xfs_iflags_test(ip, XFS_ISTALE)) {
 649		xfs_inode_item_unpin(lip, 0);
 650		return -1;
 651	}
 652	return lsn;
 653}
 654
 655STATIC void
 656xfs_inode_item_committing(
 657	struct xfs_log_item	*lip,
 658	xfs_csn_t		seq)
 659{
 660	INODE_ITEM(lip)->ili_commit_seq = seq;
 661	return xfs_inode_item_release(lip);
 662}
 663
 664static const struct xfs_item_ops xfs_inode_item_ops = {
 665	.iop_size	= xfs_inode_item_size,
 666	.iop_format	= xfs_inode_item_format,
 667	.iop_pin	= xfs_inode_item_pin,
 668	.iop_unpin	= xfs_inode_item_unpin,
 669	.iop_release	= xfs_inode_item_release,
 670	.iop_committed	= xfs_inode_item_committed,
 671	.iop_push	= xfs_inode_item_push,
 672	.iop_committing	= xfs_inode_item_committing,
 
 673};
 674
 675
 676/*
 677 * Initialize the inode log item for a newly allocated (in-core) inode.
 678 */
 679void
 680xfs_inode_item_init(
 681	struct xfs_inode	*ip,
 682	struct xfs_mount	*mp)
 683{
 684	struct xfs_inode_log_item *iip;
 685
 686	ASSERT(ip->i_itemp == NULL);
 687	iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache,
 688					      GFP_KERNEL | __GFP_NOFAIL);
 689
 690	iip->ili_inode = ip;
 691	spin_lock_init(&iip->ili_lock);
 692	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
 693						&xfs_inode_item_ops);
 694}
 695
 696/*
 697 * Free the inode log item and any memory hanging off of it.
 698 */
 699void
 700xfs_inode_item_destroy(
 701	struct xfs_inode	*ip)
 702{
 703	struct xfs_inode_log_item *iip = ip->i_itemp;
 704
 705	ASSERT(iip->ili_item.li_buf == NULL);
 706
 707	ip->i_itemp = NULL;
 708	kmem_free(iip->ili_item.li_lv_shadow);
 709	kmem_cache_free(xfs_ili_cache, iip);
 710}
 711
 712
 713/*
 714 * We only want to pull the item from the AIL if it is actually there
 715 * and its location in the log has not changed since we started the
 716 * flush.  Thus, we only bother if the inode's lsn has not changed.
 717 */
 718static void
 719xfs_iflush_ail_updates(
 720	struct xfs_ail		*ailp,
 721	struct list_head	*list)
 722{
 723	struct xfs_log_item	*lip;
 724	xfs_lsn_t		tail_lsn = 0;
 725
 726	/* this is an opencoded batch version of xfs_trans_ail_delete */
 727	spin_lock(&ailp->ail_lock);
 728	list_for_each_entry(lip, list, li_bio_list) {
 729		xfs_lsn_t	lsn;
 730
 731		clear_bit(XFS_LI_FAILED, &lip->li_flags);
 732		if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
 733			continue;
 734
 735		/*
 736		 * dgc: Not sure how this happens, but it happens very
 737		 * occassionaly via generic/388.  xfs_iflush_abort() also
 738		 * silently handles this same "under writeback but not in AIL at
 739		 * shutdown" condition via xfs_trans_ail_delete().
 740		 */
 741		if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
 742			ASSERT(xlog_is_shutdown(lip->li_log));
 743			continue;
 744		}
 745
 746		lsn = xfs_ail_delete_one(ailp, lip);
 747		if (!tail_lsn && lsn)
 748			tail_lsn = lsn;
 749	}
 750	xfs_ail_update_finish(ailp, tail_lsn);
 751}
 752
 753/*
 754 * Walk the list of inodes that have completed their IOs. If they are clean
 755 * remove them from the list and dissociate them from the buffer. Buffers that
 756 * are still dirty remain linked to the buffer and on the list. Caller must
 757 * handle them appropriately.
 758 */
 759static void
 760xfs_iflush_finish(
 761	struct xfs_buf		*bp,
 762	struct list_head	*list)
 763{
 764	struct xfs_log_item	*lip, *n;
 
 
 
 
 765
 766	list_for_each_entry_safe(lip, n, list, li_bio_list) {
 767		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 768		bool	drop_buffer = false;
 
 
 
 769
 770		spin_lock(&iip->ili_lock);
 
 
 771
 
 772		/*
 773		 * Remove the reference to the cluster buffer if the inode is
 774		 * clean in memory and drop the buffer reference once we've
 775		 * dropped the locks we hold.
 776		 */
 777		ASSERT(iip->ili_item.li_buf == bp);
 778		if (!iip->ili_fields) {
 779			iip->ili_item.li_buf = NULL;
 780			list_del_init(&lip->li_bio_list);
 781			drop_buffer = true;
 782		}
 783		iip->ili_last_fields = 0;
 784		iip->ili_flush_lsn = 0;
 785		spin_unlock(&iip->ili_lock);
 786		xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING);
 787		if (drop_buffer)
 788			xfs_buf_rele(bp);
 789	}
 790}
 791
 792/*
 793 * Inode buffer IO completion routine.  It is responsible for removing inodes
 794 * attached to the buffer from the AIL if they have not been re-logged and
 795 * completing the inode flush.
 796 */
 797void
 798xfs_buf_inode_iodone(
 799	struct xfs_buf		*bp)
 800{
 801	struct xfs_log_item	*lip, *n;
 802	LIST_HEAD(flushed_inodes);
 803	LIST_HEAD(ail_updates);
 804
 805	/*
 806	 * Pull the attached inodes from the buffer one at a time and take the
 807	 * appropriate action on them.
 
 
 
 
 
 808	 */
 809	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
 810		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 811
 812		if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
 813			xfs_iflush_abort(iip->ili_inode);
 814			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 815		}
 816		if (!iip->ili_last_fields)
 817			continue;
 818
 819		/* Do an unlocked check for needing the AIL lock. */
 820		if (iip->ili_flush_lsn == lip->li_lsn ||
 821		    test_bit(XFS_LI_FAILED, &lip->li_flags))
 822			list_move_tail(&lip->li_bio_list, &ail_updates);
 823		else
 824			list_move_tail(&lip->li_bio_list, &flushed_inodes);
 825	}
 826
 827	if (!list_empty(&ail_updates)) {
 828		xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
 829		list_splice_tail(&ail_updates, &flushed_inodes);
 830	}
 831
 832	xfs_iflush_finish(bp, &flushed_inodes);
 833	if (!list_empty(&flushed_inodes))
 834		list_splice_tail(&flushed_inodes, &bp->b_li_list);
 835}
 836
 837void
 838xfs_buf_inode_io_fail(
 839	struct xfs_buf		*bp)
 840{
 841	struct xfs_log_item	*lip;
 842
 843	list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
 844		set_bit(XFS_LI_FAILED, &lip->li_flags);
 845}
 846
 847/*
 848 * Clear the inode logging fields so no more flushes are attempted.  If we are
 849 * on a buffer list, it is now safe to remove it because the buffer is
 850 * guaranteed to be locked. The caller will drop the reference to the buffer
 851 * the log item held.
 852 */
 853static void
 854xfs_iflush_abort_clean(
 855	struct xfs_inode_log_item *iip)
 856{
 857	iip->ili_last_fields = 0;
 858	iip->ili_fields = 0;
 859	iip->ili_fsync_fields = 0;
 860	iip->ili_flush_lsn = 0;
 861	iip->ili_item.li_buf = NULL;
 862	list_del_init(&iip->ili_item.li_bio_list);
 863}
 864
 865/*
 866 * Abort flushing the inode from a context holding the cluster buffer locked.
 867 *
 868 * This is the normal runtime method of aborting writeback of an inode that is
 869 * attached to a cluster buffer. It occurs when the inode and the backing
 870 * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster
 871 * flushing or buffer IO completion encounters a log shutdown situation.
 872 *
 873 * If we need to abort inode writeback and we don't already hold the buffer
 874 * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be
 875 * necessary in a shutdown situation.
 876 */
 877void
 878xfs_iflush_abort(
 879	struct xfs_inode	*ip)
 880{
 881	struct xfs_inode_log_item *iip = ip->i_itemp;
 882	struct xfs_buf		*bp;
 883
 884	if (!iip) {
 885		/* clean inode, nothing to do */
 886		xfs_iflags_clear(ip, XFS_IFLUSHING);
 887		return;
 888	}
 889
 890	/*
 891	 * Remove the inode item from the AIL before we clear its internal
 892	 * state. Whilst the inode is in the AIL, it should have a valid buffer
 893	 * pointer for push operations to access - it is only safe to remove the
 894	 * inode from the buffer once it has been removed from the AIL.
 895	 *
 896	 * We also clear the failed bit before removing the item from the AIL
 897	 * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer
 898	 * references the inode item owns and needs to hold until we've fully
 899	 * aborted the inode log item and detached it from the buffer.
 900	 */
 901	clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
 902	xfs_trans_ail_delete(&iip->ili_item, 0);
 903
 904	/*
 905	 * Grab the inode buffer so can we release the reference the inode log
 906	 * item holds on it.
 907	 */
 908	spin_lock(&iip->ili_lock);
 909	bp = iip->ili_item.li_buf;
 910	xfs_iflush_abort_clean(iip);
 911	spin_unlock(&iip->ili_lock);
 912
 913	xfs_iflags_clear(ip, XFS_IFLUSHING);
 914	if (bp)
 915		xfs_buf_rele(bp);
 916}
 917
 918/*
 919 * Abort an inode flush in the case of a shutdown filesystem. This can be called
 920 * from anywhere with just an inode reference and does not require holding the
 921 * inode cluster buffer locked. If the inode is attached to a cluster buffer,
 922 * it will grab and lock it safely, then abort the inode flush.
 923 */
 924void
 925xfs_iflush_shutdown_abort(
 926	struct xfs_inode	*ip)
 
 927{
 928	struct xfs_inode_log_item *iip = ip->i_itemp;
 929	struct xfs_buf		*bp;
 930
 931	if (!iip) {
 932		/* clean inode, nothing to do */
 933		xfs_iflags_clear(ip, XFS_IFLUSHING);
 934		return;
 935	}
 936
 937	spin_lock(&iip->ili_lock);
 938	bp = iip->ili_item.li_buf;
 939	if (!bp) {
 940		spin_unlock(&iip->ili_lock);
 941		xfs_iflush_abort(ip);
 942		return;
 943	}
 944
 945	/*
 946	 * We have to take a reference to the buffer so that it doesn't get
 947	 * freed when we drop the ili_lock and then wait to lock the buffer.
 948	 * We'll clean up the extra reference after we pick up the ili_lock
 949	 * again.
 950	 */
 951	xfs_buf_hold(bp);
 952	spin_unlock(&iip->ili_lock);
 953	xfs_buf_lock(bp);
 954
 955	spin_lock(&iip->ili_lock);
 956	if (!iip->ili_item.li_buf) {
 957		/*
 958		 * Raced with another removal, hold the only reference
 959		 * to bp now. Inode should not be in the AIL now, so just clean
 960		 * up and return;
 961		 */
 962		ASSERT(list_empty(&iip->ili_item.li_bio_list));
 963		ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags));
 964		xfs_iflush_abort_clean(iip);
 965		spin_unlock(&iip->ili_lock);
 966		xfs_iflags_clear(ip, XFS_IFLUSHING);
 967		xfs_buf_relse(bp);
 968		return;
 969	}
 970
 971	/*
 972	 * Got two references to bp. The first will get dropped by
 973	 * xfs_iflush_abort() when the item is removed from the buffer list, but
 974	 * we can't drop our reference until _abort() returns because we have to
 975	 * unlock the buffer as well. Hence we abort and then unlock and release
 976	 * our reference to the buffer.
 977	 */
 978	ASSERT(iip->ili_item.li_buf == bp);
 979	spin_unlock(&iip->ili_lock);
 980	xfs_iflush_abort(ip);
 981	xfs_buf_relse(bp);
 982}
 983
 
 
 
 
 
 
 
 984
 985/*
 986 * convert an xfs_inode_log_format struct from the old 32 bit version
 987 * (which can have different field alignments) to the native 64 bit version
 988 */
 989int
 990xfs_inode_item_format_convert(
 991	struct xfs_log_iovec		*buf,
 992	struct xfs_inode_log_format	*in_f)
 993{
 994	struct xfs_inode_log_format_32	*in_f32 = buf->i_addr;
 995
 996	if (buf->i_len != sizeof(*in_f32)) {
 997		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
 998		return -EFSCORRUPTED;
 999	}
1000
1001	in_f->ilf_type = in_f32->ilf_type;
1002	in_f->ilf_size = in_f32->ilf_size;
1003	in_f->ilf_fields = in_f32->ilf_fields;
1004	in_f->ilf_asize = in_f32->ilf_asize;
1005	in_f->ilf_dsize = in_f32->ilf_dsize;
1006	in_f->ilf_ino = in_f32->ilf_ino;
1007	memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
1008	in_f->ilf_blkno = in_f32->ilf_blkno;
1009	in_f->ilf_len = in_f32->ilf_len;
1010	in_f->ilf_boffset = in_f32->ilf_boffset;
1011	return 0;
1012}
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  4 * All Rights Reserved.
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 12#include "xfs_mount.h"
 13#include "xfs_inode.h"
 14#include "xfs_trans.h"
 15#include "xfs_inode_item.h"
 16#include "xfs_trace.h"
 17#include "xfs_trans_priv.h"
 18#include "xfs_buf_item.h"
 19#include "xfs_log.h"
 
 
 20
 21#include <linux/iversion.h>
 22
 23kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
 24
 25static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
 26{
 27	return container_of(lip, struct xfs_inode_log_item, ili_item);
 28}
 29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 30STATIC void
 31xfs_inode_item_data_fork_size(
 32	struct xfs_inode_log_item *iip,
 33	int			*nvecs,
 34	int			*nbytes)
 35{
 36	struct xfs_inode	*ip = iip->ili_inode;
 37
 38	switch (ip->i_d.di_format) {
 39	case XFS_DINODE_FMT_EXTENTS:
 40		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
 41		    ip->i_d.di_nextents > 0 &&
 42		    ip->i_df.if_bytes > 0) {
 43			/* worst case, doesn't subtract delalloc extents */
 44			*nbytes += XFS_IFORK_DSIZE(ip);
 45			*nvecs += 1;
 46		}
 47		break;
 48	case XFS_DINODE_FMT_BTREE:
 49		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
 50		    ip->i_df.if_broot_bytes > 0) {
 51			*nbytes += ip->i_df.if_broot_bytes;
 52			*nvecs += 1;
 53		}
 54		break;
 55	case XFS_DINODE_FMT_LOCAL:
 56		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
 57		    ip->i_df.if_bytes > 0) {
 58			*nbytes += roundup(ip->i_df.if_bytes, 4);
 59			*nvecs += 1;
 60		}
 61		break;
 62
 63	case XFS_DINODE_FMT_DEV:
 64		break;
 65	default:
 66		ASSERT(0);
 67		break;
 68	}
 69}
 70
 71STATIC void
 72xfs_inode_item_attr_fork_size(
 73	struct xfs_inode_log_item *iip,
 74	int			*nvecs,
 75	int			*nbytes)
 76{
 77	struct xfs_inode	*ip = iip->ili_inode;
 78
 79	switch (ip->i_d.di_aformat) {
 80	case XFS_DINODE_FMT_EXTENTS:
 81		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
 82		    ip->i_d.di_anextents > 0 &&
 83		    ip->i_afp->if_bytes > 0) {
 84			/* worst case, doesn't subtract unused space */
 85			*nbytes += XFS_IFORK_ASIZE(ip);
 86			*nvecs += 1;
 87		}
 88		break;
 89	case XFS_DINODE_FMT_BTREE:
 90		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
 91		    ip->i_afp->if_broot_bytes > 0) {
 92			*nbytes += ip->i_afp->if_broot_bytes;
 93			*nvecs += 1;
 94		}
 95		break;
 96	case XFS_DINODE_FMT_LOCAL:
 97		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
 98		    ip->i_afp->if_bytes > 0) {
 99			*nbytes += roundup(ip->i_afp->if_bytes, 4);
100			*nvecs += 1;
101		}
102		break;
103	default:
104		ASSERT(0);
105		break;
106	}
107}
108
109/*
110 * This returns the number of iovecs needed to log the given inode item.
111 *
112 * We need one iovec for the inode log format structure, one for the
113 * inode core, and possibly one for the inode data/extents/b-tree root
114 * and one for the inode attribute data/extents/b-tree root.
115 */
116STATIC void
117xfs_inode_item_size(
118	struct xfs_log_item	*lip,
119	int			*nvecs,
120	int			*nbytes)
121{
122	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
123	struct xfs_inode	*ip = iip->ili_inode;
124
125	*nvecs += 2;
126	*nbytes += sizeof(struct xfs_inode_log_format) +
127		   xfs_log_dinode_size(ip->i_d.di_version);
128
129	xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
130	if (XFS_IFORK_Q(ip))
131		xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
132}
133
134STATIC void
135xfs_inode_item_format_data_fork(
136	struct xfs_inode_log_item *iip,
137	struct xfs_inode_log_format *ilf,
138	struct xfs_log_vec	*lv,
139	struct xfs_log_iovec	**vecp)
140{
141	struct xfs_inode	*ip = iip->ili_inode;
142	size_t			data_bytes;
143
144	switch (ip->i_d.di_format) {
145	case XFS_DINODE_FMT_EXTENTS:
146		iip->ili_fields &=
147			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
148
149		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
150		    ip->i_d.di_nextents > 0 &&
151		    ip->i_df.if_bytes > 0) {
152			struct xfs_bmbt_rec *p;
153
154			ASSERT(xfs_iext_count(&ip->i_df) > 0);
155
156			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
157			data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
158			xlog_finish_iovec(lv, *vecp, data_bytes);
159
160			ASSERT(data_bytes <= ip->i_df.if_bytes);
161
162			ilf->ilf_dsize = data_bytes;
163			ilf->ilf_size++;
164		} else {
165			iip->ili_fields &= ~XFS_ILOG_DEXT;
166		}
167		break;
168	case XFS_DINODE_FMT_BTREE:
169		iip->ili_fields &=
170			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
171
172		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
173		    ip->i_df.if_broot_bytes > 0) {
174			ASSERT(ip->i_df.if_broot != NULL);
175			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
176					ip->i_df.if_broot,
177					ip->i_df.if_broot_bytes);
178			ilf->ilf_dsize = ip->i_df.if_broot_bytes;
179			ilf->ilf_size++;
180		} else {
181			ASSERT(!(iip->ili_fields &
182				 XFS_ILOG_DBROOT));
183			iip->ili_fields &= ~XFS_ILOG_DBROOT;
184		}
185		break;
186	case XFS_DINODE_FMT_LOCAL:
187		iip->ili_fields &=
188			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
189		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
190		    ip->i_df.if_bytes > 0) {
191			/*
192			 * Round i_bytes up to a word boundary.
193			 * The underlying memory is guaranteed to
194			 * to be there by xfs_idata_realloc().
195			 */
196			data_bytes = roundup(ip->i_df.if_bytes, 4);
197			ASSERT(ip->i_df.if_u1.if_data != NULL);
198			ASSERT(ip->i_d.di_size > 0);
199			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
200					ip->i_df.if_u1.if_data, data_bytes);
201			ilf->ilf_dsize = (unsigned)data_bytes;
 
202			ilf->ilf_size++;
203		} else {
204			iip->ili_fields &= ~XFS_ILOG_DDATA;
205		}
206		break;
207	case XFS_DINODE_FMT_DEV:
208		iip->ili_fields &=
209			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
210		if (iip->ili_fields & XFS_ILOG_DEV)
211			ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
212		break;
213	default:
214		ASSERT(0);
215		break;
216	}
217}
218
219STATIC void
220xfs_inode_item_format_attr_fork(
221	struct xfs_inode_log_item *iip,
222	struct xfs_inode_log_format *ilf,
223	struct xfs_log_vec	*lv,
224	struct xfs_log_iovec	**vecp)
225{
226	struct xfs_inode	*ip = iip->ili_inode;
227	size_t			data_bytes;
228
229	switch (ip->i_d.di_aformat) {
230	case XFS_DINODE_FMT_EXTENTS:
231		iip->ili_fields &=
232			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
233
234		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
235		    ip->i_d.di_anextents > 0 &&
236		    ip->i_afp->if_bytes > 0) {
237			struct xfs_bmbt_rec *p;
238
239			ASSERT(xfs_iext_count(ip->i_afp) ==
240				ip->i_d.di_anextents);
241
242			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
243			data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
244			xlog_finish_iovec(lv, *vecp, data_bytes);
245
246			ilf->ilf_asize = data_bytes;
247			ilf->ilf_size++;
248		} else {
249			iip->ili_fields &= ~XFS_ILOG_AEXT;
250		}
251		break;
252	case XFS_DINODE_FMT_BTREE:
253		iip->ili_fields &=
254			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
255
256		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
257		    ip->i_afp->if_broot_bytes > 0) {
258			ASSERT(ip->i_afp->if_broot != NULL);
259
260			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
261					ip->i_afp->if_broot,
262					ip->i_afp->if_broot_bytes);
263			ilf->ilf_asize = ip->i_afp->if_broot_bytes;
264			ilf->ilf_size++;
265		} else {
266			iip->ili_fields &= ~XFS_ILOG_ABROOT;
267		}
268		break;
269	case XFS_DINODE_FMT_LOCAL:
270		iip->ili_fields &=
271			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
272
273		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
274		    ip->i_afp->if_bytes > 0) {
275			/*
276			 * Round i_bytes up to a word boundary.
277			 * The underlying memory is guaranteed to
278			 * to be there by xfs_idata_realloc().
279			 */
280			data_bytes = roundup(ip->i_afp->if_bytes, 4);
281			ASSERT(ip->i_afp->if_u1.if_data != NULL);
282			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
283					ip->i_afp->if_u1.if_data,
284					data_bytes);
285			ilf->ilf_asize = (unsigned)data_bytes;
286			ilf->ilf_size++;
287		} else {
288			iip->ili_fields &= ~XFS_ILOG_ADATA;
289		}
290		break;
291	default:
292		ASSERT(0);
293		break;
294	}
295}
296
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
297static void
298xfs_inode_to_log_dinode(
299	struct xfs_inode	*ip,
300	struct xfs_log_dinode	*to,
301	xfs_lsn_t		lsn)
302{
303	struct xfs_icdinode	*from = &ip->i_d;
304	struct inode		*inode = VFS_I(ip);
305
306	to->di_magic = XFS_DINODE_MAGIC;
 
 
 
 
 
307
308	to->di_version = from->di_version;
309	to->di_format = from->di_format;
310	to->di_uid = from->di_uid;
311	to->di_gid = from->di_gid;
312	to->di_projid_lo = from->di_projid_lo;
313	to->di_projid_hi = from->di_projid_hi;
314
315	memset(to->di_pad, 0, sizeof(to->di_pad));
316	memset(to->di_pad3, 0, sizeof(to->di_pad3));
317	to->di_atime.t_sec = inode->i_atime.tv_sec;
318	to->di_atime.t_nsec = inode->i_atime.tv_nsec;
319	to->di_mtime.t_sec = inode->i_mtime.tv_sec;
320	to->di_mtime.t_nsec = inode->i_mtime.tv_nsec;
321	to->di_ctime.t_sec = inode->i_ctime.tv_sec;
322	to->di_ctime.t_nsec = inode->i_ctime.tv_nsec;
323	to->di_nlink = inode->i_nlink;
324	to->di_gen = inode->i_generation;
325	to->di_mode = inode->i_mode;
326
327	to->di_size = from->di_size;
328	to->di_nblocks = from->di_nblocks;
329	to->di_extsize = from->di_extsize;
330	to->di_nextents = from->di_nextents;
331	to->di_anextents = from->di_anextents;
332	to->di_forkoff = from->di_forkoff;
333	to->di_aformat = from->di_aformat;
334	to->di_dmevmask = from->di_dmevmask;
335	to->di_dmstate = from->di_dmstate;
336	to->di_flags = from->di_flags;
337
338	/* log a dummy value to ensure log structure is fully initialised */
339	to->di_next_unlinked = NULLAGINO;
340
341	if (from->di_version == 3) {
 
342		to->di_changecount = inode_peek_iversion(inode);
343		to->di_crtime.t_sec = from->di_crtime.t_sec;
344		to->di_crtime.t_nsec = from->di_crtime.t_nsec;
345		to->di_flags2 = from->di_flags2;
346		to->di_cowextsize = from->di_cowextsize;
347		to->di_ino = ip->i_ino;
348		to->di_lsn = lsn;
349		memset(to->di_pad2, 0, sizeof(to->di_pad2));
350		uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
351		to->di_flushiter = 0;
352	} else {
353		to->di_flushiter = from->di_flushiter;
 
 
354	}
 
 
355}
356
357/*
358 * Format the inode core. Current timestamp data is only in the VFS inode
359 * fields, so we need to grab them from there. Hence rather than just copying
360 * the XFS inode core structure, format the fields directly into the iovec.
361 */
362static void
363xfs_inode_item_format_core(
364	struct xfs_inode	*ip,
365	struct xfs_log_vec	*lv,
366	struct xfs_log_iovec	**vecp)
367{
368	struct xfs_log_dinode	*dic;
369
370	dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
371	xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
372	xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_d.di_version));
373}
374
375/*
376 * This is called to fill in the vector of log iovecs for the given inode
377 * log item.  It fills the first item with an inode log format structure,
378 * the second with the on-disk inode structure, and a possible third and/or
379 * fourth with the inode data/extents/b-tree root and inode attributes
380 * data/extents/b-tree root.
381 *
382 * Note: Always use the 64 bit inode log format structure so we don't
383 * leave an uninitialised hole in the format item on 64 bit systems. Log
384 * recovery on 32 bit systems handles this just fine, so there's no reason
385 * for not using an initialising the properly padded structure all the time.
386 */
387STATIC void
388xfs_inode_item_format(
389	struct xfs_log_item	*lip,
390	struct xfs_log_vec	*lv)
391{
392	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
393	struct xfs_inode	*ip = iip->ili_inode;
394	struct xfs_log_iovec	*vecp = NULL;
395	struct xfs_inode_log_format *ilf;
396
397	ASSERT(ip->i_d.di_version > 1);
398
399	ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
400	ilf->ilf_type = XFS_LI_INODE;
401	ilf->ilf_ino = ip->i_ino;
402	ilf->ilf_blkno = ip->i_imap.im_blkno;
403	ilf->ilf_len = ip->i_imap.im_len;
404	ilf->ilf_boffset = ip->i_imap.im_boffset;
405	ilf->ilf_fields = XFS_ILOG_CORE;
406	ilf->ilf_size = 2; /* format + core */
407
408	/*
409	 * make sure we don't leak uninitialised data into the log in the case
410	 * when we don't log every field in the inode.
411	 */
412	ilf->ilf_dsize = 0;
413	ilf->ilf_asize = 0;
414	ilf->ilf_pad = 0;
415	memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
416
417	xlog_finish_iovec(lv, vecp, sizeof(*ilf));
418
419	xfs_inode_item_format_core(ip, lv, &vecp);
420	xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
421	if (XFS_IFORK_Q(ip)) {
422		xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
423	} else {
424		iip->ili_fields &=
425			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
426	}
427
428	/* update the format with the exact fields we actually logged */
429	ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
430}
431
432/*
433 * This is called to pin the inode associated with the inode log
434 * item in memory so it cannot be written out.
435 */
436STATIC void
437xfs_inode_item_pin(
438	struct xfs_log_item	*lip)
439{
440	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
441
442	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 
443
444	trace_xfs_inode_pin(ip, _RET_IP_);
445	atomic_inc(&ip->i_pincount);
446}
447
448
449/*
450 * This is called to unpin the inode associated with the inode log
451 * item which was previously pinned with a call to xfs_inode_item_pin().
452 *
453 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
 
 
 
 
 
 
454 */
455STATIC void
456xfs_inode_item_unpin(
457	struct xfs_log_item	*lip,
458	int			remove)
459{
460	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
461
462	trace_xfs_inode_unpin(ip, _RET_IP_);
 
463	ASSERT(atomic_read(&ip->i_pincount) > 0);
464	if (atomic_dec_and_test(&ip->i_pincount))
465		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
466}
467
468/*
469 * Callback used to mark a buffer with XFS_LI_FAILED when items in the buffer
470 * have been failed during writeback
471 *
472 * This informs the AIL that the inode is already flush locked on the next push,
473 * and acquires a hold on the buffer to ensure that it isn't reclaimed before
474 * dirty data makes it to disk.
475 */
476STATIC void
477xfs_inode_item_error(
478	struct xfs_log_item	*lip,
479	struct xfs_buf		*bp)
480{
481	ASSERT(xfs_isiflocked(INODE_ITEM(lip)->ili_inode));
482	xfs_set_li_failed(lip, bp);
483}
484
485STATIC uint
486xfs_inode_item_push(
487	struct xfs_log_item	*lip,
488	struct list_head	*buffer_list)
489		__releases(&lip->li_ailp->ail_lock)
490		__acquires(&lip->li_ailp->ail_lock)
491{
492	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
493	struct xfs_inode	*ip = iip->ili_inode;
494	struct xfs_buf		*bp = lip->li_buf;
495	uint			rval = XFS_ITEM_SUCCESS;
496	int			error;
497
498	if (xfs_ipincount(ip) > 0)
 
 
 
 
 
 
499		return XFS_ITEM_PINNED;
 
500
501	/*
502	 * The buffer containing this item failed to be written back
503	 * previously. Resubmit the buffer for IO.
504	 */
505	if (test_bit(XFS_LI_FAILED, &lip->li_flags)) {
506		if (!xfs_buf_trylock(bp))
507			return XFS_ITEM_LOCKED;
508
509		if (!xfs_buf_resubmit_failed_buffers(bp, buffer_list))
510			rval = XFS_ITEM_FLUSHING;
511
512		xfs_buf_unlock(bp);
513		return rval;
514	}
515
516	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
517		return XFS_ITEM_LOCKED;
518
519	/*
520	 * Re-check the pincount now that we stabilized the value by
521	 * taking the ilock.
522	 */
523	if (xfs_ipincount(ip) > 0) {
524		rval = XFS_ITEM_PINNED;
525		goto out_unlock;
526	}
527
528	/*
529	 * Stale inode items should force out the iclog.
 
 
 
530	 */
531	if (ip->i_flags & XFS_ISTALE) {
532		rval = XFS_ITEM_PINNED;
533		goto out_unlock;
534	}
535
536	/*
537	 * Someone else is already flushing the inode.  Nothing we can do
538	 * here but wait for the flush to finish and remove the item from
539	 * the AIL.
540	 */
541	if (!xfs_iflock_nowait(ip)) {
542		rval = XFS_ITEM_FLUSHING;
543		goto out_unlock;
544	}
545
546	ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
547	ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
548
549	spin_unlock(&lip->li_ailp->ail_lock);
550
551	error = xfs_iflush(ip, &bp);
552	if (!error) {
553		if (!xfs_buf_delwri_queue(bp, buffer_list))
554			rval = XFS_ITEM_FLUSHING;
555		xfs_buf_relse(bp);
 
 
 
 
 
 
 
 
556	}
557
558	spin_lock(&lip->li_ailp->ail_lock);
559out_unlock:
560	xfs_iunlock(ip, XFS_ILOCK_SHARED);
561	return rval;
562}
563
564/*
565 * Unlock the inode associated with the inode log item.
566 */
567STATIC void
568xfs_inode_item_release(
569	struct xfs_log_item	*lip)
570{
571	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
572	struct xfs_inode	*ip = iip->ili_inode;
573	unsigned short		lock_flags;
574
575	ASSERT(ip->i_itemp != NULL);
576	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
577
578	lock_flags = iip->ili_lock_flags;
579	iip->ili_lock_flags = 0;
580	if (lock_flags)
581		xfs_iunlock(ip, lock_flags);
582}
583
584/*
585 * This is called to find out where the oldest active copy of the inode log
586 * item in the on disk log resides now that the last log write of it completed
587 * at the given lsn.  Since we always re-log all dirty data in an inode, the
588 * latest copy in the on disk log is the only one that matters.  Therefore,
589 * simply return the given lsn.
590 *
591 * If the inode has been marked stale because the cluster is being freed, we
592 * don't want to (re-)insert this inode into the AIL. There is a race condition
593 * where the cluster buffer may be unpinned before the inode is inserted into
594 * the AIL during transaction committed processing. If the buffer is unpinned
595 * before the inode item has been committed and inserted, then it is possible
596 * for the buffer to be written and IO completes before the inode is inserted
597 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
598 * AIL which will never get removed. It will, however, get reclaimed which
599 * triggers an assert in xfs_inode_free() complaining about freein an inode
600 * still in the AIL.
601 *
602 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
603 * transaction committed code knows that it does not need to do any further
604 * processing on the item.
605 */
606STATIC xfs_lsn_t
607xfs_inode_item_committed(
608	struct xfs_log_item	*lip,
609	xfs_lsn_t		lsn)
610{
611	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
612	struct xfs_inode	*ip = iip->ili_inode;
613
614	if (xfs_iflags_test(ip, XFS_ISTALE)) {
615		xfs_inode_item_unpin(lip, 0);
616		return -1;
617	}
618	return lsn;
619}
620
621STATIC void
622xfs_inode_item_committing(
623	struct xfs_log_item	*lip,
624	xfs_lsn_t		commit_lsn)
625{
626	INODE_ITEM(lip)->ili_last_lsn = commit_lsn;
627	return xfs_inode_item_release(lip);
628}
629
630static const struct xfs_item_ops xfs_inode_item_ops = {
631	.iop_size	= xfs_inode_item_size,
632	.iop_format	= xfs_inode_item_format,
633	.iop_pin	= xfs_inode_item_pin,
634	.iop_unpin	= xfs_inode_item_unpin,
635	.iop_release	= xfs_inode_item_release,
636	.iop_committed	= xfs_inode_item_committed,
637	.iop_push	= xfs_inode_item_push,
638	.iop_committing	= xfs_inode_item_committing,
639	.iop_error	= xfs_inode_item_error
640};
641
642
643/*
644 * Initialize the inode log item for a newly allocated (in-core) inode.
645 */
646void
647xfs_inode_item_init(
648	struct xfs_inode	*ip,
649	struct xfs_mount	*mp)
650{
651	struct xfs_inode_log_item *iip;
652
653	ASSERT(ip->i_itemp == NULL);
654	iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, 0);
 
655
656	iip->ili_inode = ip;
 
657	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
658						&xfs_inode_item_ops);
659}
660
661/*
662 * Free the inode log item and any memory hanging off of it.
663 */
664void
665xfs_inode_item_destroy(
666	xfs_inode_t	*ip)
667{
668	kmem_free(ip->i_itemp->ili_item.li_lv_shadow);
669	kmem_zone_free(xfs_ili_zone, ip->i_itemp);
 
 
 
 
 
670}
671
672
673/*
674 * This is the inode flushing I/O completion routine.  It is called
675 * from interrupt level when the buffer containing the inode is
676 * flushed to disk.  It is responsible for removing the inode item
677 * from the AIL if it has not been re-logged, and unlocking the inode's
678 * flush lock.
679 *
680 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
681 * list for other inodes that will run this function. We remove them from the
682 * buffer list so we can process all the inode IO completions in one AIL lock
683 * traversal.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
684 */
685void
686xfs_iflush_done(
687	struct xfs_buf		*bp,
688	struct xfs_log_item	*lip)
689{
690	struct xfs_inode_log_item *iip;
691	struct xfs_log_item	*blip, *n;
692	struct xfs_ail		*ailp = lip->li_ailp;
693	int			need_ail = 0;
694	LIST_HEAD(tmp);
695
696	/*
697	 * Scan the buffer IO completions for other inodes being completed and
698	 * attach them to the current inode log item.
699	 */
700
701	list_add_tail(&lip->li_bio_list, &tmp);
702
703	list_for_each_entry_safe(blip, n, &bp->b_li_list, li_bio_list) {
704		if (lip->li_cb != xfs_iflush_done)
705			continue;
706
707		list_move_tail(&blip->li_bio_list, &tmp);
708		/*
709		 * while we have the item, do the unlocked check for needing
710		 * the AIL lock.
 
711		 */
712		iip = INODE_ITEM(blip);
713		if ((iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) ||
714		    test_bit(XFS_LI_FAILED, &blip->li_flags))
715			need_ail++;
 
 
 
 
 
 
 
 
716	}
 
717
718	/* make sure we capture the state of the initial inode. */
719	iip = INODE_ITEM(lip);
720	if ((iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) ||
721	    test_bit(XFS_LI_FAILED, &lip->li_flags))
722		need_ail++;
 
 
 
 
 
 
 
723
724	/*
725	 * We only want to pull the item from the AIL if it is
726	 * actually there and its location in the log has not
727	 * changed since we started the flush.  Thus, we only bother
728	 * if the ili_logged flag is set and the inode's lsn has not
729	 * changed.  First we check the lsn outside
730	 * the lock since it's cheaper, and then we recheck while
731	 * holding the lock before removing the inode from the AIL.
732	 */
733	if (need_ail) {
734		bool			mlip_changed = false;
735
736		/* this is an opencoded batch version of xfs_trans_ail_delete */
737		spin_lock(&ailp->ail_lock);
738		list_for_each_entry(blip, &tmp, li_bio_list) {
739			if (INODE_ITEM(blip)->ili_logged &&
740			    blip->li_lsn == INODE_ITEM(blip)->ili_flush_lsn)
741				mlip_changed |= xfs_ail_delete_one(ailp, blip);
742			else {
743				xfs_clear_li_failed(blip);
744			}
745		}
746
747		if (mlip_changed) {
748			if (!XFS_FORCED_SHUTDOWN(ailp->ail_mount))
749				xlog_assign_tail_lsn_locked(ailp->ail_mount);
750			if (list_empty(&ailp->ail_head))
751				wake_up_all(&ailp->ail_empty);
752		}
753		spin_unlock(&ailp->ail_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
754
755		if (mlip_changed)
756			xfs_log_space_wake(ailp->ail_mount);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
757	}
758
759	/*
760	 * clean up and unlock the flush lock now we are done. We can clear the
761	 * ili_last_fields bits now that we know that the data corresponding to
762	 * them is safely on disk.
 
 
 
 
 
 
763	 */
764	list_for_each_entry_safe(blip, n, &tmp, li_bio_list) {
765		list_del_init(&blip->li_bio_list);
766		iip = INODE_ITEM(blip);
767		iip->ili_logged = 0;
768		iip->ili_last_fields = 0;
769		xfs_ifunlock(iip->ili_inode);
770	}
771	list_del(&tmp);
 
 
 
 
 
 
 
772}
773
774/*
775 * This is the inode flushing abort routine.  It is called from xfs_iflush when
776 * the filesystem is shutting down to clean up the inode state.  It is
777 * responsible for removing the inode item from the AIL if it has not been
778 * re-logged, and unlocking the inode's flush lock.
779 */
780void
781xfs_iflush_abort(
782	xfs_inode_t		*ip,
783	bool			stale)
784{
785	xfs_inode_log_item_t	*iip = ip->i_itemp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
786
787	if (iip) {
788		if (test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags)) {
789			xfs_trans_ail_remove(&iip->ili_item,
790					     stale ? SHUTDOWN_LOG_IO_ERROR :
791						     SHUTDOWN_CORRUPT_INCORE);
792		}
793		iip->ili_logged = 0;
 
 
 
 
 
794		/*
795		 * Clear the ili_last_fields bits now that we know that the
796		 * data corresponding to them is safely on disk.
 
797		 */
798		iip->ili_last_fields = 0;
799		/*
800		 * Clear the inode logging fields so no more flushes are
801		 * attempted.
802		 */
803		iip->ili_fields = 0;
804		iip->ili_fsync_fields = 0;
805	}
 
806	/*
807	 * Release the inode's flush lock since we're done with it.
 
 
 
 
808	 */
809	xfs_ifunlock(ip);
 
 
 
810}
811
812void
813xfs_istale_done(
814	struct xfs_buf		*bp,
815	struct xfs_log_item	*lip)
816{
817	xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
818}
819
820/*
821 * convert an xfs_inode_log_format struct from the old 32 bit version
822 * (which can have different field alignments) to the native 64 bit version
823 */
824int
825xfs_inode_item_format_convert(
826	struct xfs_log_iovec		*buf,
827	struct xfs_inode_log_format	*in_f)
828{
829	struct xfs_inode_log_format_32	*in_f32 = buf->i_addr;
830
831	if (buf->i_len != sizeof(*in_f32))
 
832		return -EFSCORRUPTED;
 
833
834	in_f->ilf_type = in_f32->ilf_type;
835	in_f->ilf_size = in_f32->ilf_size;
836	in_f->ilf_fields = in_f32->ilf_fields;
837	in_f->ilf_asize = in_f32->ilf_asize;
838	in_f->ilf_dsize = in_f32->ilf_dsize;
839	in_f->ilf_ino = in_f32->ilf_ino;
840	memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
841	in_f->ilf_blkno = in_f32->ilf_blkno;
842	in_f->ilf_len = in_f32->ilf_len;
843	in_f->ilf_boffset = in_f32->ilf_boffset;
844	return 0;
845}