Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_inode.h"
14#include "xfs_trans.h"
15#include "xfs_inode_item.h"
16#include "xfs_trace.h"
17#include "xfs_trans_priv.h"
18#include "xfs_buf_item.h"
19#include "xfs_log.h"
20#include "xfs_log_priv.h"
21#include "xfs_error.h"
22
23#include <linux/iversion.h>
24
25struct kmem_cache *xfs_ili_cache; /* inode log item */
26
27static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
28{
29 return container_of(lip, struct xfs_inode_log_item, ili_item);
30}
31
32/*
33 * The logged size of an inode fork is always the current size of the inode
34 * fork. This means that when an inode fork is relogged, the size of the logged
35 * region is determined by the current state, not the combination of the
36 * previously logged state + the current state. This is different relogging
37 * behaviour to most other log items which will retain the size of the
38 * previously logged changes when smaller regions are relogged.
39 *
40 * Hence operations that remove data from the inode fork (e.g. shortform
41 * dir/attr remove, extent form extent removal, etc), the size of the relogged
42 * inode gets -smaller- rather than stays the same size as the previously logged
43 * size and this can result in the committing transaction reducing the amount of
44 * space being consumed by the CIL.
45 */
46STATIC void
47xfs_inode_item_data_fork_size(
48 struct xfs_inode_log_item *iip,
49 int *nvecs,
50 int *nbytes)
51{
52 struct xfs_inode *ip = iip->ili_inode;
53
54 switch (ip->i_df.if_format) {
55 case XFS_DINODE_FMT_EXTENTS:
56 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
57 ip->i_df.if_nextents > 0 &&
58 ip->i_df.if_bytes > 0) {
59 /* worst case, doesn't subtract delalloc extents */
60 *nbytes += xfs_inode_data_fork_size(ip);
61 *nvecs += 1;
62 }
63 break;
64 case XFS_DINODE_FMT_BTREE:
65 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
66 ip->i_df.if_broot_bytes > 0) {
67 *nbytes += ip->i_df.if_broot_bytes;
68 *nvecs += 1;
69 }
70 break;
71 case XFS_DINODE_FMT_LOCAL:
72 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
73 ip->i_df.if_bytes > 0) {
74 *nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes);
75 *nvecs += 1;
76 }
77 break;
78
79 case XFS_DINODE_FMT_DEV:
80 break;
81 default:
82 ASSERT(0);
83 break;
84 }
85}
86
87STATIC void
88xfs_inode_item_attr_fork_size(
89 struct xfs_inode_log_item *iip,
90 int *nvecs,
91 int *nbytes)
92{
93 struct xfs_inode *ip = iip->ili_inode;
94
95 switch (ip->i_af.if_format) {
96 case XFS_DINODE_FMT_EXTENTS:
97 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
98 ip->i_af.if_nextents > 0 &&
99 ip->i_af.if_bytes > 0) {
100 /* worst case, doesn't subtract unused space */
101 *nbytes += xfs_inode_attr_fork_size(ip);
102 *nvecs += 1;
103 }
104 break;
105 case XFS_DINODE_FMT_BTREE:
106 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
107 ip->i_af.if_broot_bytes > 0) {
108 *nbytes += ip->i_af.if_broot_bytes;
109 *nvecs += 1;
110 }
111 break;
112 case XFS_DINODE_FMT_LOCAL:
113 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
114 ip->i_af.if_bytes > 0) {
115 *nbytes += xlog_calc_iovec_len(ip->i_af.if_bytes);
116 *nvecs += 1;
117 }
118 break;
119 default:
120 ASSERT(0);
121 break;
122 }
123}
124
125/*
126 * This returns the number of iovecs needed to log the given inode item.
127 *
128 * We need one iovec for the inode log format structure, one for the
129 * inode core, and possibly one for the inode data/extents/b-tree root
130 * and one for the inode attribute data/extents/b-tree root.
131 */
132STATIC void
133xfs_inode_item_size(
134 struct xfs_log_item *lip,
135 int *nvecs,
136 int *nbytes)
137{
138 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
139 struct xfs_inode *ip = iip->ili_inode;
140
141 *nvecs += 2;
142 *nbytes += sizeof(struct xfs_inode_log_format) +
143 xfs_log_dinode_size(ip->i_mount);
144
145 xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
146 if (xfs_inode_has_attr_fork(ip))
147 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
148}
149
150STATIC void
151xfs_inode_item_format_data_fork(
152 struct xfs_inode_log_item *iip,
153 struct xfs_inode_log_format *ilf,
154 struct xfs_log_vec *lv,
155 struct xfs_log_iovec **vecp)
156{
157 struct xfs_inode *ip = iip->ili_inode;
158 size_t data_bytes;
159
160 switch (ip->i_df.if_format) {
161 case XFS_DINODE_FMT_EXTENTS:
162 iip->ili_fields &=
163 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
164
165 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
166 ip->i_df.if_nextents > 0 &&
167 ip->i_df.if_bytes > 0) {
168 struct xfs_bmbt_rec *p;
169
170 ASSERT(xfs_iext_count(&ip->i_df) > 0);
171
172 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
173 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
174 xlog_finish_iovec(lv, *vecp, data_bytes);
175
176 ASSERT(data_bytes <= ip->i_df.if_bytes);
177
178 ilf->ilf_dsize = data_bytes;
179 ilf->ilf_size++;
180 } else {
181 iip->ili_fields &= ~XFS_ILOG_DEXT;
182 }
183 break;
184 case XFS_DINODE_FMT_BTREE:
185 iip->ili_fields &=
186 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
187
188 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
189 ip->i_df.if_broot_bytes > 0) {
190 ASSERT(ip->i_df.if_broot != NULL);
191 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
192 ip->i_df.if_broot,
193 ip->i_df.if_broot_bytes);
194 ilf->ilf_dsize = ip->i_df.if_broot_bytes;
195 ilf->ilf_size++;
196 } else {
197 ASSERT(!(iip->ili_fields &
198 XFS_ILOG_DBROOT));
199 iip->ili_fields &= ~XFS_ILOG_DBROOT;
200 }
201 break;
202 case XFS_DINODE_FMT_LOCAL:
203 iip->ili_fields &=
204 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
205 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
206 ip->i_df.if_bytes > 0) {
207 ASSERT(ip->i_df.if_u1.if_data != NULL);
208 ASSERT(ip->i_disk_size > 0);
209 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
210 ip->i_df.if_u1.if_data,
211 ip->i_df.if_bytes);
212 ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes;
213 ilf->ilf_size++;
214 } else {
215 iip->ili_fields &= ~XFS_ILOG_DDATA;
216 }
217 break;
218 case XFS_DINODE_FMT_DEV:
219 iip->ili_fields &=
220 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
221 if (iip->ili_fields & XFS_ILOG_DEV)
222 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
223 break;
224 default:
225 ASSERT(0);
226 break;
227 }
228}
229
230STATIC void
231xfs_inode_item_format_attr_fork(
232 struct xfs_inode_log_item *iip,
233 struct xfs_inode_log_format *ilf,
234 struct xfs_log_vec *lv,
235 struct xfs_log_iovec **vecp)
236{
237 struct xfs_inode *ip = iip->ili_inode;
238 size_t data_bytes;
239
240 switch (ip->i_af.if_format) {
241 case XFS_DINODE_FMT_EXTENTS:
242 iip->ili_fields &=
243 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
244
245 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
246 ip->i_af.if_nextents > 0 &&
247 ip->i_af.if_bytes > 0) {
248 struct xfs_bmbt_rec *p;
249
250 ASSERT(xfs_iext_count(&ip->i_af) ==
251 ip->i_af.if_nextents);
252
253 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
254 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
255 xlog_finish_iovec(lv, *vecp, data_bytes);
256
257 ilf->ilf_asize = data_bytes;
258 ilf->ilf_size++;
259 } else {
260 iip->ili_fields &= ~XFS_ILOG_AEXT;
261 }
262 break;
263 case XFS_DINODE_FMT_BTREE:
264 iip->ili_fields &=
265 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
266
267 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
268 ip->i_af.if_broot_bytes > 0) {
269 ASSERT(ip->i_af.if_broot != NULL);
270
271 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
272 ip->i_af.if_broot,
273 ip->i_af.if_broot_bytes);
274 ilf->ilf_asize = ip->i_af.if_broot_bytes;
275 ilf->ilf_size++;
276 } else {
277 iip->ili_fields &= ~XFS_ILOG_ABROOT;
278 }
279 break;
280 case XFS_DINODE_FMT_LOCAL:
281 iip->ili_fields &=
282 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
283
284 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
285 ip->i_af.if_bytes > 0) {
286 ASSERT(ip->i_af.if_u1.if_data != NULL);
287 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
288 ip->i_af.if_u1.if_data,
289 ip->i_af.if_bytes);
290 ilf->ilf_asize = (unsigned)ip->i_af.if_bytes;
291 ilf->ilf_size++;
292 } else {
293 iip->ili_fields &= ~XFS_ILOG_ADATA;
294 }
295 break;
296 default:
297 ASSERT(0);
298 break;
299 }
300}
301
302/*
303 * Convert an incore timestamp to a log timestamp. Note that the log format
304 * specifies host endian format!
305 */
306static inline xfs_log_timestamp_t
307xfs_inode_to_log_dinode_ts(
308 struct xfs_inode *ip,
309 const struct timespec64 tv)
310{
311 struct xfs_log_legacy_timestamp *lits;
312 xfs_log_timestamp_t its;
313
314 if (xfs_inode_has_bigtime(ip))
315 return xfs_inode_encode_bigtime(tv);
316
317 lits = (struct xfs_log_legacy_timestamp *)&its;
318 lits->t_sec = tv.tv_sec;
319 lits->t_nsec = tv.tv_nsec;
320
321 return its;
322}
323
324/*
325 * The legacy DMAPI fields are only present in the on-disk and in-log inodes,
326 * but not in the in-memory one. But we are guaranteed to have an inode buffer
327 * in memory when logging an inode, so we can just copy it from the on-disk
328 * inode to the in-log inode here so that recovery of file system with these
329 * fields set to non-zero values doesn't lose them. For all other cases we zero
330 * the fields.
331 */
332static void
333xfs_copy_dm_fields_to_log_dinode(
334 struct xfs_inode *ip,
335 struct xfs_log_dinode *to)
336{
337 struct xfs_dinode *dip;
338
339 dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf,
340 ip->i_imap.im_boffset);
341
342 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) {
343 to->di_dmevmask = be32_to_cpu(dip->di_dmevmask);
344 to->di_dmstate = be16_to_cpu(dip->di_dmstate);
345 } else {
346 to->di_dmevmask = 0;
347 to->di_dmstate = 0;
348 }
349}
350
351static inline void
352xfs_inode_to_log_dinode_iext_counters(
353 struct xfs_inode *ip,
354 struct xfs_log_dinode *to)
355{
356 if (xfs_inode_has_large_extent_counts(ip)) {
357 to->di_big_nextents = xfs_ifork_nextents(&ip->i_df);
358 to->di_big_anextents = xfs_ifork_nextents(&ip->i_af);
359 to->di_nrext64_pad = 0;
360 } else {
361 to->di_nextents = xfs_ifork_nextents(&ip->i_df);
362 to->di_anextents = xfs_ifork_nextents(&ip->i_af);
363 }
364}
365
366static void
367xfs_inode_to_log_dinode(
368 struct xfs_inode *ip,
369 struct xfs_log_dinode *to,
370 xfs_lsn_t lsn)
371{
372 struct inode *inode = VFS_I(ip);
373
374 to->di_magic = XFS_DINODE_MAGIC;
375 to->di_format = xfs_ifork_format(&ip->i_df);
376 to->di_uid = i_uid_read(inode);
377 to->di_gid = i_gid_read(inode);
378 to->di_projid_lo = ip->i_projid & 0xffff;
379 to->di_projid_hi = ip->i_projid >> 16;
380
381 memset(to->di_pad3, 0, sizeof(to->di_pad3));
382 to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode->i_atime);
383 to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode->i_mtime);
384 to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode->i_ctime);
385 to->di_nlink = inode->i_nlink;
386 to->di_gen = inode->i_generation;
387 to->di_mode = inode->i_mode;
388
389 to->di_size = ip->i_disk_size;
390 to->di_nblocks = ip->i_nblocks;
391 to->di_extsize = ip->i_extsize;
392 to->di_forkoff = ip->i_forkoff;
393 to->di_aformat = xfs_ifork_format(&ip->i_af);
394 to->di_flags = ip->i_diflags;
395
396 xfs_copy_dm_fields_to_log_dinode(ip, to);
397
398 /* log a dummy value to ensure log structure is fully initialised */
399 to->di_next_unlinked = NULLAGINO;
400
401 if (xfs_has_v3inodes(ip->i_mount)) {
402 to->di_version = 3;
403 to->di_changecount = inode_peek_iversion(inode);
404 to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime);
405 to->di_flags2 = ip->i_diflags2;
406 to->di_cowextsize = ip->i_cowextsize;
407 to->di_ino = ip->i_ino;
408 to->di_lsn = lsn;
409 memset(to->di_pad2, 0, sizeof(to->di_pad2));
410 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
411 to->di_v3_pad = 0;
412 } else {
413 to->di_version = 2;
414 to->di_flushiter = ip->i_flushiter;
415 memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad));
416 }
417
418 xfs_inode_to_log_dinode_iext_counters(ip, to);
419}
420
421/*
422 * Format the inode core. Current timestamp data is only in the VFS inode
423 * fields, so we need to grab them from there. Hence rather than just copying
424 * the XFS inode core structure, format the fields directly into the iovec.
425 */
426static void
427xfs_inode_item_format_core(
428 struct xfs_inode *ip,
429 struct xfs_log_vec *lv,
430 struct xfs_log_iovec **vecp)
431{
432 struct xfs_log_dinode *dic;
433
434 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
435 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
436 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
437}
438
439/*
440 * This is called to fill in the vector of log iovecs for the given inode
441 * log item. It fills the first item with an inode log format structure,
442 * the second with the on-disk inode structure, and a possible third and/or
443 * fourth with the inode data/extents/b-tree root and inode attributes
444 * data/extents/b-tree root.
445 *
446 * Note: Always use the 64 bit inode log format structure so we don't
447 * leave an uninitialised hole in the format item on 64 bit systems. Log
448 * recovery on 32 bit systems handles this just fine, so there's no reason
449 * for not using an initialising the properly padded structure all the time.
450 */
451STATIC void
452xfs_inode_item_format(
453 struct xfs_log_item *lip,
454 struct xfs_log_vec *lv)
455{
456 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
457 struct xfs_inode *ip = iip->ili_inode;
458 struct xfs_log_iovec *vecp = NULL;
459 struct xfs_inode_log_format *ilf;
460
461 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
462 ilf->ilf_type = XFS_LI_INODE;
463 ilf->ilf_ino = ip->i_ino;
464 ilf->ilf_blkno = ip->i_imap.im_blkno;
465 ilf->ilf_len = ip->i_imap.im_len;
466 ilf->ilf_boffset = ip->i_imap.im_boffset;
467 ilf->ilf_fields = XFS_ILOG_CORE;
468 ilf->ilf_size = 2; /* format + core */
469
470 /*
471 * make sure we don't leak uninitialised data into the log in the case
472 * when we don't log every field in the inode.
473 */
474 ilf->ilf_dsize = 0;
475 ilf->ilf_asize = 0;
476 ilf->ilf_pad = 0;
477 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
478
479 xlog_finish_iovec(lv, vecp, sizeof(*ilf));
480
481 xfs_inode_item_format_core(ip, lv, &vecp);
482 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
483 if (xfs_inode_has_attr_fork(ip)) {
484 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
485 } else {
486 iip->ili_fields &=
487 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
488 }
489
490 /* update the format with the exact fields we actually logged */
491 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
492}
493
494/*
495 * This is called to pin the inode associated with the inode log
496 * item in memory so it cannot be written out.
497 */
498STATIC void
499xfs_inode_item_pin(
500 struct xfs_log_item *lip)
501{
502 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
503
504 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
505 ASSERT(lip->li_buf);
506
507 trace_xfs_inode_pin(ip, _RET_IP_);
508 atomic_inc(&ip->i_pincount);
509}
510
511
512/*
513 * This is called to unpin the inode associated with the inode log
514 * item which was previously pinned with a call to xfs_inode_item_pin().
515 *
516 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
517 *
518 * Note that unpin can race with inode cluster buffer freeing marking the buffer
519 * stale. In that case, flush completions are run from the buffer unpin call,
520 * which may happen before the inode is unpinned. If we lose the race, there
521 * will be no buffer attached to the log item, but the inode will be marked
522 * XFS_ISTALE.
523 */
524STATIC void
525xfs_inode_item_unpin(
526 struct xfs_log_item *lip,
527 int remove)
528{
529 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
530
531 trace_xfs_inode_unpin(ip, _RET_IP_);
532 ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
533 ASSERT(atomic_read(&ip->i_pincount) > 0);
534 if (atomic_dec_and_test(&ip->i_pincount))
535 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
536}
537
538STATIC uint
539xfs_inode_item_push(
540 struct xfs_log_item *lip,
541 struct list_head *buffer_list)
542 __releases(&lip->li_ailp->ail_lock)
543 __acquires(&lip->li_ailp->ail_lock)
544{
545 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
546 struct xfs_inode *ip = iip->ili_inode;
547 struct xfs_buf *bp = lip->li_buf;
548 uint rval = XFS_ITEM_SUCCESS;
549 int error;
550
551 if (!bp || (ip->i_flags & XFS_ISTALE)) {
552 /*
553 * Inode item/buffer is being aborted due to cluster
554 * buffer deletion. Trigger a log force to have that operation
555 * completed and items removed from the AIL before the next push
556 * attempt.
557 */
558 return XFS_ITEM_PINNED;
559 }
560
561 if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp))
562 return XFS_ITEM_PINNED;
563
564 if (xfs_iflags_test(ip, XFS_IFLUSHING))
565 return XFS_ITEM_FLUSHING;
566
567 if (!xfs_buf_trylock(bp))
568 return XFS_ITEM_LOCKED;
569
570 spin_unlock(&lip->li_ailp->ail_lock);
571
572 /*
573 * We need to hold a reference for flushing the cluster buffer as it may
574 * fail the buffer without IO submission. In which case, we better get a
575 * reference for that completion because otherwise we don't get a
576 * reference for IO until we queue the buffer for delwri submission.
577 */
578 xfs_buf_hold(bp);
579 error = xfs_iflush_cluster(bp);
580 if (!error) {
581 if (!xfs_buf_delwri_queue(bp, buffer_list))
582 rval = XFS_ITEM_FLUSHING;
583 xfs_buf_relse(bp);
584 } else {
585 /*
586 * Release the buffer if we were unable to flush anything. On
587 * any other error, the buffer has already been released.
588 */
589 if (error == -EAGAIN)
590 xfs_buf_relse(bp);
591 rval = XFS_ITEM_LOCKED;
592 }
593
594 spin_lock(&lip->li_ailp->ail_lock);
595 return rval;
596}
597
598/*
599 * Unlock the inode associated with the inode log item.
600 */
601STATIC void
602xfs_inode_item_release(
603 struct xfs_log_item *lip)
604{
605 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
606 struct xfs_inode *ip = iip->ili_inode;
607 unsigned short lock_flags;
608
609 ASSERT(ip->i_itemp != NULL);
610 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
611
612 lock_flags = iip->ili_lock_flags;
613 iip->ili_lock_flags = 0;
614 if (lock_flags)
615 xfs_iunlock(ip, lock_flags);
616}
617
618/*
619 * This is called to find out where the oldest active copy of the inode log
620 * item in the on disk log resides now that the last log write of it completed
621 * at the given lsn. Since we always re-log all dirty data in an inode, the
622 * latest copy in the on disk log is the only one that matters. Therefore,
623 * simply return the given lsn.
624 *
625 * If the inode has been marked stale because the cluster is being freed, we
626 * don't want to (re-)insert this inode into the AIL. There is a race condition
627 * where the cluster buffer may be unpinned before the inode is inserted into
628 * the AIL during transaction committed processing. If the buffer is unpinned
629 * before the inode item has been committed and inserted, then it is possible
630 * for the buffer to be written and IO completes before the inode is inserted
631 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
632 * AIL which will never get removed. It will, however, get reclaimed which
633 * triggers an assert in xfs_inode_free() complaining about freein an inode
634 * still in the AIL.
635 *
636 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
637 * transaction committed code knows that it does not need to do any further
638 * processing on the item.
639 */
640STATIC xfs_lsn_t
641xfs_inode_item_committed(
642 struct xfs_log_item *lip,
643 xfs_lsn_t lsn)
644{
645 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
646 struct xfs_inode *ip = iip->ili_inode;
647
648 if (xfs_iflags_test(ip, XFS_ISTALE)) {
649 xfs_inode_item_unpin(lip, 0);
650 return -1;
651 }
652 return lsn;
653}
654
655STATIC void
656xfs_inode_item_committing(
657 struct xfs_log_item *lip,
658 xfs_csn_t seq)
659{
660 INODE_ITEM(lip)->ili_commit_seq = seq;
661 return xfs_inode_item_release(lip);
662}
663
664static const struct xfs_item_ops xfs_inode_item_ops = {
665 .iop_size = xfs_inode_item_size,
666 .iop_format = xfs_inode_item_format,
667 .iop_pin = xfs_inode_item_pin,
668 .iop_unpin = xfs_inode_item_unpin,
669 .iop_release = xfs_inode_item_release,
670 .iop_committed = xfs_inode_item_committed,
671 .iop_push = xfs_inode_item_push,
672 .iop_committing = xfs_inode_item_committing,
673};
674
675
676/*
677 * Initialize the inode log item for a newly allocated (in-core) inode.
678 */
679void
680xfs_inode_item_init(
681 struct xfs_inode *ip,
682 struct xfs_mount *mp)
683{
684 struct xfs_inode_log_item *iip;
685
686 ASSERT(ip->i_itemp == NULL);
687 iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache,
688 GFP_KERNEL | __GFP_NOFAIL);
689
690 iip->ili_inode = ip;
691 spin_lock_init(&iip->ili_lock);
692 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
693 &xfs_inode_item_ops);
694}
695
696/*
697 * Free the inode log item and any memory hanging off of it.
698 */
699void
700xfs_inode_item_destroy(
701 struct xfs_inode *ip)
702{
703 struct xfs_inode_log_item *iip = ip->i_itemp;
704
705 ASSERT(iip->ili_item.li_buf == NULL);
706
707 ip->i_itemp = NULL;
708 kmem_free(iip->ili_item.li_lv_shadow);
709 kmem_cache_free(xfs_ili_cache, iip);
710}
711
712
713/*
714 * We only want to pull the item from the AIL if it is actually there
715 * and its location in the log has not changed since we started the
716 * flush. Thus, we only bother if the inode's lsn has not changed.
717 */
718static void
719xfs_iflush_ail_updates(
720 struct xfs_ail *ailp,
721 struct list_head *list)
722{
723 struct xfs_log_item *lip;
724 xfs_lsn_t tail_lsn = 0;
725
726 /* this is an opencoded batch version of xfs_trans_ail_delete */
727 spin_lock(&ailp->ail_lock);
728 list_for_each_entry(lip, list, li_bio_list) {
729 xfs_lsn_t lsn;
730
731 clear_bit(XFS_LI_FAILED, &lip->li_flags);
732 if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
733 continue;
734
735 /*
736 * dgc: Not sure how this happens, but it happens very
737 * occassionaly via generic/388. xfs_iflush_abort() also
738 * silently handles this same "under writeback but not in AIL at
739 * shutdown" condition via xfs_trans_ail_delete().
740 */
741 if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
742 ASSERT(xlog_is_shutdown(lip->li_log));
743 continue;
744 }
745
746 lsn = xfs_ail_delete_one(ailp, lip);
747 if (!tail_lsn && lsn)
748 tail_lsn = lsn;
749 }
750 xfs_ail_update_finish(ailp, tail_lsn);
751}
752
753/*
754 * Walk the list of inodes that have completed their IOs. If they are clean
755 * remove them from the list and dissociate them from the buffer. Buffers that
756 * are still dirty remain linked to the buffer and on the list. Caller must
757 * handle them appropriately.
758 */
759static void
760xfs_iflush_finish(
761 struct xfs_buf *bp,
762 struct list_head *list)
763{
764 struct xfs_log_item *lip, *n;
765
766 list_for_each_entry_safe(lip, n, list, li_bio_list) {
767 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
768 bool drop_buffer = false;
769
770 spin_lock(&iip->ili_lock);
771
772 /*
773 * Remove the reference to the cluster buffer if the inode is
774 * clean in memory and drop the buffer reference once we've
775 * dropped the locks we hold.
776 */
777 ASSERT(iip->ili_item.li_buf == bp);
778 if (!iip->ili_fields) {
779 iip->ili_item.li_buf = NULL;
780 list_del_init(&lip->li_bio_list);
781 drop_buffer = true;
782 }
783 iip->ili_last_fields = 0;
784 iip->ili_flush_lsn = 0;
785 spin_unlock(&iip->ili_lock);
786 xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING);
787 if (drop_buffer)
788 xfs_buf_rele(bp);
789 }
790}
791
792/*
793 * Inode buffer IO completion routine. It is responsible for removing inodes
794 * attached to the buffer from the AIL if they have not been re-logged and
795 * completing the inode flush.
796 */
797void
798xfs_buf_inode_iodone(
799 struct xfs_buf *bp)
800{
801 struct xfs_log_item *lip, *n;
802 LIST_HEAD(flushed_inodes);
803 LIST_HEAD(ail_updates);
804
805 /*
806 * Pull the attached inodes from the buffer one at a time and take the
807 * appropriate action on them.
808 */
809 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
810 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
811
812 if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
813 xfs_iflush_abort(iip->ili_inode);
814 continue;
815 }
816 if (!iip->ili_last_fields)
817 continue;
818
819 /* Do an unlocked check for needing the AIL lock. */
820 if (iip->ili_flush_lsn == lip->li_lsn ||
821 test_bit(XFS_LI_FAILED, &lip->li_flags))
822 list_move_tail(&lip->li_bio_list, &ail_updates);
823 else
824 list_move_tail(&lip->li_bio_list, &flushed_inodes);
825 }
826
827 if (!list_empty(&ail_updates)) {
828 xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
829 list_splice_tail(&ail_updates, &flushed_inodes);
830 }
831
832 xfs_iflush_finish(bp, &flushed_inodes);
833 if (!list_empty(&flushed_inodes))
834 list_splice_tail(&flushed_inodes, &bp->b_li_list);
835}
836
837void
838xfs_buf_inode_io_fail(
839 struct xfs_buf *bp)
840{
841 struct xfs_log_item *lip;
842
843 list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
844 set_bit(XFS_LI_FAILED, &lip->li_flags);
845}
846
847/*
848 * Clear the inode logging fields so no more flushes are attempted. If we are
849 * on a buffer list, it is now safe to remove it because the buffer is
850 * guaranteed to be locked. The caller will drop the reference to the buffer
851 * the log item held.
852 */
853static void
854xfs_iflush_abort_clean(
855 struct xfs_inode_log_item *iip)
856{
857 iip->ili_last_fields = 0;
858 iip->ili_fields = 0;
859 iip->ili_fsync_fields = 0;
860 iip->ili_flush_lsn = 0;
861 iip->ili_item.li_buf = NULL;
862 list_del_init(&iip->ili_item.li_bio_list);
863}
864
865/*
866 * Abort flushing the inode from a context holding the cluster buffer locked.
867 *
868 * This is the normal runtime method of aborting writeback of an inode that is
869 * attached to a cluster buffer. It occurs when the inode and the backing
870 * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster
871 * flushing or buffer IO completion encounters a log shutdown situation.
872 *
873 * If we need to abort inode writeback and we don't already hold the buffer
874 * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be
875 * necessary in a shutdown situation.
876 */
877void
878xfs_iflush_abort(
879 struct xfs_inode *ip)
880{
881 struct xfs_inode_log_item *iip = ip->i_itemp;
882 struct xfs_buf *bp;
883
884 if (!iip) {
885 /* clean inode, nothing to do */
886 xfs_iflags_clear(ip, XFS_IFLUSHING);
887 return;
888 }
889
890 /*
891 * Remove the inode item from the AIL before we clear its internal
892 * state. Whilst the inode is in the AIL, it should have a valid buffer
893 * pointer for push operations to access - it is only safe to remove the
894 * inode from the buffer once it has been removed from the AIL.
895 *
896 * We also clear the failed bit before removing the item from the AIL
897 * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer
898 * references the inode item owns and needs to hold until we've fully
899 * aborted the inode log item and detached it from the buffer.
900 */
901 clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
902 xfs_trans_ail_delete(&iip->ili_item, 0);
903
904 /*
905 * Grab the inode buffer so can we release the reference the inode log
906 * item holds on it.
907 */
908 spin_lock(&iip->ili_lock);
909 bp = iip->ili_item.li_buf;
910 xfs_iflush_abort_clean(iip);
911 spin_unlock(&iip->ili_lock);
912
913 xfs_iflags_clear(ip, XFS_IFLUSHING);
914 if (bp)
915 xfs_buf_rele(bp);
916}
917
918/*
919 * Abort an inode flush in the case of a shutdown filesystem. This can be called
920 * from anywhere with just an inode reference and does not require holding the
921 * inode cluster buffer locked. If the inode is attached to a cluster buffer,
922 * it will grab and lock it safely, then abort the inode flush.
923 */
924void
925xfs_iflush_shutdown_abort(
926 struct xfs_inode *ip)
927{
928 struct xfs_inode_log_item *iip = ip->i_itemp;
929 struct xfs_buf *bp;
930
931 if (!iip) {
932 /* clean inode, nothing to do */
933 xfs_iflags_clear(ip, XFS_IFLUSHING);
934 return;
935 }
936
937 spin_lock(&iip->ili_lock);
938 bp = iip->ili_item.li_buf;
939 if (!bp) {
940 spin_unlock(&iip->ili_lock);
941 xfs_iflush_abort(ip);
942 return;
943 }
944
945 /*
946 * We have to take a reference to the buffer so that it doesn't get
947 * freed when we drop the ili_lock and then wait to lock the buffer.
948 * We'll clean up the extra reference after we pick up the ili_lock
949 * again.
950 */
951 xfs_buf_hold(bp);
952 spin_unlock(&iip->ili_lock);
953 xfs_buf_lock(bp);
954
955 spin_lock(&iip->ili_lock);
956 if (!iip->ili_item.li_buf) {
957 /*
958 * Raced with another removal, hold the only reference
959 * to bp now. Inode should not be in the AIL now, so just clean
960 * up and return;
961 */
962 ASSERT(list_empty(&iip->ili_item.li_bio_list));
963 ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags));
964 xfs_iflush_abort_clean(iip);
965 spin_unlock(&iip->ili_lock);
966 xfs_iflags_clear(ip, XFS_IFLUSHING);
967 xfs_buf_relse(bp);
968 return;
969 }
970
971 /*
972 * Got two references to bp. The first will get dropped by
973 * xfs_iflush_abort() when the item is removed from the buffer list, but
974 * we can't drop our reference until _abort() returns because we have to
975 * unlock the buffer as well. Hence we abort and then unlock and release
976 * our reference to the buffer.
977 */
978 ASSERT(iip->ili_item.li_buf == bp);
979 spin_unlock(&iip->ili_lock);
980 xfs_iflush_abort(ip);
981 xfs_buf_relse(bp);
982}
983
984
985/*
986 * convert an xfs_inode_log_format struct from the old 32 bit version
987 * (which can have different field alignments) to the native 64 bit version
988 */
989int
990xfs_inode_item_format_convert(
991 struct xfs_log_iovec *buf,
992 struct xfs_inode_log_format *in_f)
993{
994 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr;
995
996 if (buf->i_len != sizeof(*in_f32)) {
997 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
998 return -EFSCORRUPTED;
999 }
1000
1001 in_f->ilf_type = in_f32->ilf_type;
1002 in_f->ilf_size = in_f32->ilf_size;
1003 in_f->ilf_fields = in_f32->ilf_fields;
1004 in_f->ilf_asize = in_f32->ilf_asize;
1005 in_f->ilf_dsize = in_f32->ilf_dsize;
1006 in_f->ilf_ino = in_f32->ilf_ino;
1007 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
1008 in_f->ilf_blkno = in_f32->ilf_blkno;
1009 in_f->ilf_len = in_f32->ilf_len;
1010 in_f->ilf_boffset = in_f32->ilf_boffset;
1011 return 0;
1012}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_inode.h"
14#include "xfs_trans.h"
15#include "xfs_inode_item.h"
16#include "xfs_trace.h"
17#include "xfs_trans_priv.h"
18#include "xfs_buf_item.h"
19#include "xfs_log.h"
20
21#include <linux/iversion.h>
22
23kmem_zone_t *xfs_ili_zone; /* inode log item zone */
24
25static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
26{
27 return container_of(lip, struct xfs_inode_log_item, ili_item);
28}
29
30STATIC void
31xfs_inode_item_data_fork_size(
32 struct xfs_inode_log_item *iip,
33 int *nvecs,
34 int *nbytes)
35{
36 struct xfs_inode *ip = iip->ili_inode;
37
38 switch (ip->i_d.di_format) {
39 case XFS_DINODE_FMT_EXTENTS:
40 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
41 ip->i_d.di_nextents > 0 &&
42 ip->i_df.if_bytes > 0) {
43 /* worst case, doesn't subtract delalloc extents */
44 *nbytes += XFS_IFORK_DSIZE(ip);
45 *nvecs += 1;
46 }
47 break;
48 case XFS_DINODE_FMT_BTREE:
49 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
50 ip->i_df.if_broot_bytes > 0) {
51 *nbytes += ip->i_df.if_broot_bytes;
52 *nvecs += 1;
53 }
54 break;
55 case XFS_DINODE_FMT_LOCAL:
56 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
57 ip->i_df.if_bytes > 0) {
58 *nbytes += roundup(ip->i_df.if_bytes, 4);
59 *nvecs += 1;
60 }
61 break;
62
63 case XFS_DINODE_FMT_DEV:
64 break;
65 default:
66 ASSERT(0);
67 break;
68 }
69}
70
71STATIC void
72xfs_inode_item_attr_fork_size(
73 struct xfs_inode_log_item *iip,
74 int *nvecs,
75 int *nbytes)
76{
77 struct xfs_inode *ip = iip->ili_inode;
78
79 switch (ip->i_d.di_aformat) {
80 case XFS_DINODE_FMT_EXTENTS:
81 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
82 ip->i_d.di_anextents > 0 &&
83 ip->i_afp->if_bytes > 0) {
84 /* worst case, doesn't subtract unused space */
85 *nbytes += XFS_IFORK_ASIZE(ip);
86 *nvecs += 1;
87 }
88 break;
89 case XFS_DINODE_FMT_BTREE:
90 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
91 ip->i_afp->if_broot_bytes > 0) {
92 *nbytes += ip->i_afp->if_broot_bytes;
93 *nvecs += 1;
94 }
95 break;
96 case XFS_DINODE_FMT_LOCAL:
97 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
98 ip->i_afp->if_bytes > 0) {
99 *nbytes += roundup(ip->i_afp->if_bytes, 4);
100 *nvecs += 1;
101 }
102 break;
103 default:
104 ASSERT(0);
105 break;
106 }
107}
108
109/*
110 * This returns the number of iovecs needed to log the given inode item.
111 *
112 * We need one iovec for the inode log format structure, one for the
113 * inode core, and possibly one for the inode data/extents/b-tree root
114 * and one for the inode attribute data/extents/b-tree root.
115 */
116STATIC void
117xfs_inode_item_size(
118 struct xfs_log_item *lip,
119 int *nvecs,
120 int *nbytes)
121{
122 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
123 struct xfs_inode *ip = iip->ili_inode;
124
125 *nvecs += 2;
126 *nbytes += sizeof(struct xfs_inode_log_format) +
127 xfs_log_dinode_size(ip->i_d.di_version);
128
129 xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
130 if (XFS_IFORK_Q(ip))
131 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
132}
133
134STATIC void
135xfs_inode_item_format_data_fork(
136 struct xfs_inode_log_item *iip,
137 struct xfs_inode_log_format *ilf,
138 struct xfs_log_vec *lv,
139 struct xfs_log_iovec **vecp)
140{
141 struct xfs_inode *ip = iip->ili_inode;
142 size_t data_bytes;
143
144 switch (ip->i_d.di_format) {
145 case XFS_DINODE_FMT_EXTENTS:
146 iip->ili_fields &=
147 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
148
149 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
150 ip->i_d.di_nextents > 0 &&
151 ip->i_df.if_bytes > 0) {
152 struct xfs_bmbt_rec *p;
153
154 ASSERT(xfs_iext_count(&ip->i_df) > 0);
155
156 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
157 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
158 xlog_finish_iovec(lv, *vecp, data_bytes);
159
160 ASSERT(data_bytes <= ip->i_df.if_bytes);
161
162 ilf->ilf_dsize = data_bytes;
163 ilf->ilf_size++;
164 } else {
165 iip->ili_fields &= ~XFS_ILOG_DEXT;
166 }
167 break;
168 case XFS_DINODE_FMT_BTREE:
169 iip->ili_fields &=
170 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
171
172 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
173 ip->i_df.if_broot_bytes > 0) {
174 ASSERT(ip->i_df.if_broot != NULL);
175 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
176 ip->i_df.if_broot,
177 ip->i_df.if_broot_bytes);
178 ilf->ilf_dsize = ip->i_df.if_broot_bytes;
179 ilf->ilf_size++;
180 } else {
181 ASSERT(!(iip->ili_fields &
182 XFS_ILOG_DBROOT));
183 iip->ili_fields &= ~XFS_ILOG_DBROOT;
184 }
185 break;
186 case XFS_DINODE_FMT_LOCAL:
187 iip->ili_fields &=
188 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
189 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
190 ip->i_df.if_bytes > 0) {
191 /*
192 * Round i_bytes up to a word boundary.
193 * The underlying memory is guaranteed to
194 * to be there by xfs_idata_realloc().
195 */
196 data_bytes = roundup(ip->i_df.if_bytes, 4);
197 ASSERT(ip->i_df.if_u1.if_data != NULL);
198 ASSERT(ip->i_d.di_size > 0);
199 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
200 ip->i_df.if_u1.if_data, data_bytes);
201 ilf->ilf_dsize = (unsigned)data_bytes;
202 ilf->ilf_size++;
203 } else {
204 iip->ili_fields &= ~XFS_ILOG_DDATA;
205 }
206 break;
207 case XFS_DINODE_FMT_DEV:
208 iip->ili_fields &=
209 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
210 if (iip->ili_fields & XFS_ILOG_DEV)
211 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
212 break;
213 default:
214 ASSERT(0);
215 break;
216 }
217}
218
219STATIC void
220xfs_inode_item_format_attr_fork(
221 struct xfs_inode_log_item *iip,
222 struct xfs_inode_log_format *ilf,
223 struct xfs_log_vec *lv,
224 struct xfs_log_iovec **vecp)
225{
226 struct xfs_inode *ip = iip->ili_inode;
227 size_t data_bytes;
228
229 switch (ip->i_d.di_aformat) {
230 case XFS_DINODE_FMT_EXTENTS:
231 iip->ili_fields &=
232 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
233
234 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
235 ip->i_d.di_anextents > 0 &&
236 ip->i_afp->if_bytes > 0) {
237 struct xfs_bmbt_rec *p;
238
239 ASSERT(xfs_iext_count(ip->i_afp) ==
240 ip->i_d.di_anextents);
241
242 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
243 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
244 xlog_finish_iovec(lv, *vecp, data_bytes);
245
246 ilf->ilf_asize = data_bytes;
247 ilf->ilf_size++;
248 } else {
249 iip->ili_fields &= ~XFS_ILOG_AEXT;
250 }
251 break;
252 case XFS_DINODE_FMT_BTREE:
253 iip->ili_fields &=
254 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
255
256 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
257 ip->i_afp->if_broot_bytes > 0) {
258 ASSERT(ip->i_afp->if_broot != NULL);
259
260 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
261 ip->i_afp->if_broot,
262 ip->i_afp->if_broot_bytes);
263 ilf->ilf_asize = ip->i_afp->if_broot_bytes;
264 ilf->ilf_size++;
265 } else {
266 iip->ili_fields &= ~XFS_ILOG_ABROOT;
267 }
268 break;
269 case XFS_DINODE_FMT_LOCAL:
270 iip->ili_fields &=
271 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
272
273 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
274 ip->i_afp->if_bytes > 0) {
275 /*
276 * Round i_bytes up to a word boundary.
277 * The underlying memory is guaranteed to
278 * to be there by xfs_idata_realloc().
279 */
280 data_bytes = roundup(ip->i_afp->if_bytes, 4);
281 ASSERT(ip->i_afp->if_u1.if_data != NULL);
282 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
283 ip->i_afp->if_u1.if_data,
284 data_bytes);
285 ilf->ilf_asize = (unsigned)data_bytes;
286 ilf->ilf_size++;
287 } else {
288 iip->ili_fields &= ~XFS_ILOG_ADATA;
289 }
290 break;
291 default:
292 ASSERT(0);
293 break;
294 }
295}
296
297static void
298xfs_inode_to_log_dinode(
299 struct xfs_inode *ip,
300 struct xfs_log_dinode *to,
301 xfs_lsn_t lsn)
302{
303 struct xfs_icdinode *from = &ip->i_d;
304 struct inode *inode = VFS_I(ip);
305
306 to->di_magic = XFS_DINODE_MAGIC;
307
308 to->di_version = from->di_version;
309 to->di_format = from->di_format;
310 to->di_uid = from->di_uid;
311 to->di_gid = from->di_gid;
312 to->di_projid_lo = from->di_projid_lo;
313 to->di_projid_hi = from->di_projid_hi;
314
315 memset(to->di_pad, 0, sizeof(to->di_pad));
316 memset(to->di_pad3, 0, sizeof(to->di_pad3));
317 to->di_atime.t_sec = inode->i_atime.tv_sec;
318 to->di_atime.t_nsec = inode->i_atime.tv_nsec;
319 to->di_mtime.t_sec = inode->i_mtime.tv_sec;
320 to->di_mtime.t_nsec = inode->i_mtime.tv_nsec;
321 to->di_ctime.t_sec = inode->i_ctime.tv_sec;
322 to->di_ctime.t_nsec = inode->i_ctime.tv_nsec;
323 to->di_nlink = inode->i_nlink;
324 to->di_gen = inode->i_generation;
325 to->di_mode = inode->i_mode;
326
327 to->di_size = from->di_size;
328 to->di_nblocks = from->di_nblocks;
329 to->di_extsize = from->di_extsize;
330 to->di_nextents = from->di_nextents;
331 to->di_anextents = from->di_anextents;
332 to->di_forkoff = from->di_forkoff;
333 to->di_aformat = from->di_aformat;
334 to->di_dmevmask = from->di_dmevmask;
335 to->di_dmstate = from->di_dmstate;
336 to->di_flags = from->di_flags;
337
338 /* log a dummy value to ensure log structure is fully initialised */
339 to->di_next_unlinked = NULLAGINO;
340
341 if (from->di_version == 3) {
342 to->di_changecount = inode_peek_iversion(inode);
343 to->di_crtime.t_sec = from->di_crtime.t_sec;
344 to->di_crtime.t_nsec = from->di_crtime.t_nsec;
345 to->di_flags2 = from->di_flags2;
346 to->di_cowextsize = from->di_cowextsize;
347 to->di_ino = ip->i_ino;
348 to->di_lsn = lsn;
349 memset(to->di_pad2, 0, sizeof(to->di_pad2));
350 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
351 to->di_flushiter = 0;
352 } else {
353 to->di_flushiter = from->di_flushiter;
354 }
355}
356
357/*
358 * Format the inode core. Current timestamp data is only in the VFS inode
359 * fields, so we need to grab them from there. Hence rather than just copying
360 * the XFS inode core structure, format the fields directly into the iovec.
361 */
362static void
363xfs_inode_item_format_core(
364 struct xfs_inode *ip,
365 struct xfs_log_vec *lv,
366 struct xfs_log_iovec **vecp)
367{
368 struct xfs_log_dinode *dic;
369
370 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
371 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
372 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_d.di_version));
373}
374
375/*
376 * This is called to fill in the vector of log iovecs for the given inode
377 * log item. It fills the first item with an inode log format structure,
378 * the second with the on-disk inode structure, and a possible third and/or
379 * fourth with the inode data/extents/b-tree root and inode attributes
380 * data/extents/b-tree root.
381 *
382 * Note: Always use the 64 bit inode log format structure so we don't
383 * leave an uninitialised hole in the format item on 64 bit systems. Log
384 * recovery on 32 bit systems handles this just fine, so there's no reason
385 * for not using an initialising the properly padded structure all the time.
386 */
387STATIC void
388xfs_inode_item_format(
389 struct xfs_log_item *lip,
390 struct xfs_log_vec *lv)
391{
392 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
393 struct xfs_inode *ip = iip->ili_inode;
394 struct xfs_log_iovec *vecp = NULL;
395 struct xfs_inode_log_format *ilf;
396
397 ASSERT(ip->i_d.di_version > 1);
398
399 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
400 ilf->ilf_type = XFS_LI_INODE;
401 ilf->ilf_ino = ip->i_ino;
402 ilf->ilf_blkno = ip->i_imap.im_blkno;
403 ilf->ilf_len = ip->i_imap.im_len;
404 ilf->ilf_boffset = ip->i_imap.im_boffset;
405 ilf->ilf_fields = XFS_ILOG_CORE;
406 ilf->ilf_size = 2; /* format + core */
407
408 /*
409 * make sure we don't leak uninitialised data into the log in the case
410 * when we don't log every field in the inode.
411 */
412 ilf->ilf_dsize = 0;
413 ilf->ilf_asize = 0;
414 ilf->ilf_pad = 0;
415 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
416
417 xlog_finish_iovec(lv, vecp, sizeof(*ilf));
418
419 xfs_inode_item_format_core(ip, lv, &vecp);
420 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
421 if (XFS_IFORK_Q(ip)) {
422 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
423 } else {
424 iip->ili_fields &=
425 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
426 }
427
428 /* update the format with the exact fields we actually logged */
429 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
430}
431
432/*
433 * This is called to pin the inode associated with the inode log
434 * item in memory so it cannot be written out.
435 */
436STATIC void
437xfs_inode_item_pin(
438 struct xfs_log_item *lip)
439{
440 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
441
442 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
443
444 trace_xfs_inode_pin(ip, _RET_IP_);
445 atomic_inc(&ip->i_pincount);
446}
447
448
449/*
450 * This is called to unpin the inode associated with the inode log
451 * item which was previously pinned with a call to xfs_inode_item_pin().
452 *
453 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
454 */
455STATIC void
456xfs_inode_item_unpin(
457 struct xfs_log_item *lip,
458 int remove)
459{
460 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
461
462 trace_xfs_inode_unpin(ip, _RET_IP_);
463 ASSERT(atomic_read(&ip->i_pincount) > 0);
464 if (atomic_dec_and_test(&ip->i_pincount))
465 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
466}
467
468/*
469 * Callback used to mark a buffer with XFS_LI_FAILED when items in the buffer
470 * have been failed during writeback
471 *
472 * This informs the AIL that the inode is already flush locked on the next push,
473 * and acquires a hold on the buffer to ensure that it isn't reclaimed before
474 * dirty data makes it to disk.
475 */
476STATIC void
477xfs_inode_item_error(
478 struct xfs_log_item *lip,
479 struct xfs_buf *bp)
480{
481 ASSERT(xfs_isiflocked(INODE_ITEM(lip)->ili_inode));
482 xfs_set_li_failed(lip, bp);
483}
484
485STATIC uint
486xfs_inode_item_push(
487 struct xfs_log_item *lip,
488 struct list_head *buffer_list)
489 __releases(&lip->li_ailp->ail_lock)
490 __acquires(&lip->li_ailp->ail_lock)
491{
492 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
493 struct xfs_inode *ip = iip->ili_inode;
494 struct xfs_buf *bp = lip->li_buf;
495 uint rval = XFS_ITEM_SUCCESS;
496 int error;
497
498 if (xfs_ipincount(ip) > 0)
499 return XFS_ITEM_PINNED;
500
501 /*
502 * The buffer containing this item failed to be written back
503 * previously. Resubmit the buffer for IO.
504 */
505 if (test_bit(XFS_LI_FAILED, &lip->li_flags)) {
506 if (!xfs_buf_trylock(bp))
507 return XFS_ITEM_LOCKED;
508
509 if (!xfs_buf_resubmit_failed_buffers(bp, buffer_list))
510 rval = XFS_ITEM_FLUSHING;
511
512 xfs_buf_unlock(bp);
513 return rval;
514 }
515
516 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
517 return XFS_ITEM_LOCKED;
518
519 /*
520 * Re-check the pincount now that we stabilized the value by
521 * taking the ilock.
522 */
523 if (xfs_ipincount(ip) > 0) {
524 rval = XFS_ITEM_PINNED;
525 goto out_unlock;
526 }
527
528 /*
529 * Stale inode items should force out the iclog.
530 */
531 if (ip->i_flags & XFS_ISTALE) {
532 rval = XFS_ITEM_PINNED;
533 goto out_unlock;
534 }
535
536 /*
537 * Someone else is already flushing the inode. Nothing we can do
538 * here but wait for the flush to finish and remove the item from
539 * the AIL.
540 */
541 if (!xfs_iflock_nowait(ip)) {
542 rval = XFS_ITEM_FLUSHING;
543 goto out_unlock;
544 }
545
546 ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
547 ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
548
549 spin_unlock(&lip->li_ailp->ail_lock);
550
551 error = xfs_iflush(ip, &bp);
552 if (!error) {
553 if (!xfs_buf_delwri_queue(bp, buffer_list))
554 rval = XFS_ITEM_FLUSHING;
555 xfs_buf_relse(bp);
556 }
557
558 spin_lock(&lip->li_ailp->ail_lock);
559out_unlock:
560 xfs_iunlock(ip, XFS_ILOCK_SHARED);
561 return rval;
562}
563
564/*
565 * Unlock the inode associated with the inode log item.
566 */
567STATIC void
568xfs_inode_item_release(
569 struct xfs_log_item *lip)
570{
571 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
572 struct xfs_inode *ip = iip->ili_inode;
573 unsigned short lock_flags;
574
575 ASSERT(ip->i_itemp != NULL);
576 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
577
578 lock_flags = iip->ili_lock_flags;
579 iip->ili_lock_flags = 0;
580 if (lock_flags)
581 xfs_iunlock(ip, lock_flags);
582}
583
584/*
585 * This is called to find out where the oldest active copy of the inode log
586 * item in the on disk log resides now that the last log write of it completed
587 * at the given lsn. Since we always re-log all dirty data in an inode, the
588 * latest copy in the on disk log is the only one that matters. Therefore,
589 * simply return the given lsn.
590 *
591 * If the inode has been marked stale because the cluster is being freed, we
592 * don't want to (re-)insert this inode into the AIL. There is a race condition
593 * where the cluster buffer may be unpinned before the inode is inserted into
594 * the AIL during transaction committed processing. If the buffer is unpinned
595 * before the inode item has been committed and inserted, then it is possible
596 * for the buffer to be written and IO completes before the inode is inserted
597 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
598 * AIL which will never get removed. It will, however, get reclaimed which
599 * triggers an assert in xfs_inode_free() complaining about freein an inode
600 * still in the AIL.
601 *
602 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
603 * transaction committed code knows that it does not need to do any further
604 * processing on the item.
605 */
606STATIC xfs_lsn_t
607xfs_inode_item_committed(
608 struct xfs_log_item *lip,
609 xfs_lsn_t lsn)
610{
611 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
612 struct xfs_inode *ip = iip->ili_inode;
613
614 if (xfs_iflags_test(ip, XFS_ISTALE)) {
615 xfs_inode_item_unpin(lip, 0);
616 return -1;
617 }
618 return lsn;
619}
620
621STATIC void
622xfs_inode_item_committing(
623 struct xfs_log_item *lip,
624 xfs_lsn_t commit_lsn)
625{
626 INODE_ITEM(lip)->ili_last_lsn = commit_lsn;
627 return xfs_inode_item_release(lip);
628}
629
630static const struct xfs_item_ops xfs_inode_item_ops = {
631 .iop_size = xfs_inode_item_size,
632 .iop_format = xfs_inode_item_format,
633 .iop_pin = xfs_inode_item_pin,
634 .iop_unpin = xfs_inode_item_unpin,
635 .iop_release = xfs_inode_item_release,
636 .iop_committed = xfs_inode_item_committed,
637 .iop_push = xfs_inode_item_push,
638 .iop_committing = xfs_inode_item_committing,
639 .iop_error = xfs_inode_item_error
640};
641
642
643/*
644 * Initialize the inode log item for a newly allocated (in-core) inode.
645 */
646void
647xfs_inode_item_init(
648 struct xfs_inode *ip,
649 struct xfs_mount *mp)
650{
651 struct xfs_inode_log_item *iip;
652
653 ASSERT(ip->i_itemp == NULL);
654 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, 0);
655
656 iip->ili_inode = ip;
657 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
658 &xfs_inode_item_ops);
659}
660
661/*
662 * Free the inode log item and any memory hanging off of it.
663 */
664void
665xfs_inode_item_destroy(
666 xfs_inode_t *ip)
667{
668 kmem_free(ip->i_itemp->ili_item.li_lv_shadow);
669 kmem_zone_free(xfs_ili_zone, ip->i_itemp);
670}
671
672
673/*
674 * This is the inode flushing I/O completion routine. It is called
675 * from interrupt level when the buffer containing the inode is
676 * flushed to disk. It is responsible for removing the inode item
677 * from the AIL if it has not been re-logged, and unlocking the inode's
678 * flush lock.
679 *
680 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
681 * list for other inodes that will run this function. We remove them from the
682 * buffer list so we can process all the inode IO completions in one AIL lock
683 * traversal.
684 */
685void
686xfs_iflush_done(
687 struct xfs_buf *bp,
688 struct xfs_log_item *lip)
689{
690 struct xfs_inode_log_item *iip;
691 struct xfs_log_item *blip, *n;
692 struct xfs_ail *ailp = lip->li_ailp;
693 int need_ail = 0;
694 LIST_HEAD(tmp);
695
696 /*
697 * Scan the buffer IO completions for other inodes being completed and
698 * attach them to the current inode log item.
699 */
700
701 list_add_tail(&lip->li_bio_list, &tmp);
702
703 list_for_each_entry_safe(blip, n, &bp->b_li_list, li_bio_list) {
704 if (lip->li_cb != xfs_iflush_done)
705 continue;
706
707 list_move_tail(&blip->li_bio_list, &tmp);
708 /*
709 * while we have the item, do the unlocked check for needing
710 * the AIL lock.
711 */
712 iip = INODE_ITEM(blip);
713 if ((iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) ||
714 test_bit(XFS_LI_FAILED, &blip->li_flags))
715 need_ail++;
716 }
717
718 /* make sure we capture the state of the initial inode. */
719 iip = INODE_ITEM(lip);
720 if ((iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) ||
721 test_bit(XFS_LI_FAILED, &lip->li_flags))
722 need_ail++;
723
724 /*
725 * We only want to pull the item from the AIL if it is
726 * actually there and its location in the log has not
727 * changed since we started the flush. Thus, we only bother
728 * if the ili_logged flag is set and the inode's lsn has not
729 * changed. First we check the lsn outside
730 * the lock since it's cheaper, and then we recheck while
731 * holding the lock before removing the inode from the AIL.
732 */
733 if (need_ail) {
734 bool mlip_changed = false;
735
736 /* this is an opencoded batch version of xfs_trans_ail_delete */
737 spin_lock(&ailp->ail_lock);
738 list_for_each_entry(blip, &tmp, li_bio_list) {
739 if (INODE_ITEM(blip)->ili_logged &&
740 blip->li_lsn == INODE_ITEM(blip)->ili_flush_lsn)
741 mlip_changed |= xfs_ail_delete_one(ailp, blip);
742 else {
743 xfs_clear_li_failed(blip);
744 }
745 }
746
747 if (mlip_changed) {
748 if (!XFS_FORCED_SHUTDOWN(ailp->ail_mount))
749 xlog_assign_tail_lsn_locked(ailp->ail_mount);
750 if (list_empty(&ailp->ail_head))
751 wake_up_all(&ailp->ail_empty);
752 }
753 spin_unlock(&ailp->ail_lock);
754
755 if (mlip_changed)
756 xfs_log_space_wake(ailp->ail_mount);
757 }
758
759 /*
760 * clean up and unlock the flush lock now we are done. We can clear the
761 * ili_last_fields bits now that we know that the data corresponding to
762 * them is safely on disk.
763 */
764 list_for_each_entry_safe(blip, n, &tmp, li_bio_list) {
765 list_del_init(&blip->li_bio_list);
766 iip = INODE_ITEM(blip);
767 iip->ili_logged = 0;
768 iip->ili_last_fields = 0;
769 xfs_ifunlock(iip->ili_inode);
770 }
771 list_del(&tmp);
772}
773
774/*
775 * This is the inode flushing abort routine. It is called from xfs_iflush when
776 * the filesystem is shutting down to clean up the inode state. It is
777 * responsible for removing the inode item from the AIL if it has not been
778 * re-logged, and unlocking the inode's flush lock.
779 */
780void
781xfs_iflush_abort(
782 xfs_inode_t *ip,
783 bool stale)
784{
785 xfs_inode_log_item_t *iip = ip->i_itemp;
786
787 if (iip) {
788 if (test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags)) {
789 xfs_trans_ail_remove(&iip->ili_item,
790 stale ? SHUTDOWN_LOG_IO_ERROR :
791 SHUTDOWN_CORRUPT_INCORE);
792 }
793 iip->ili_logged = 0;
794 /*
795 * Clear the ili_last_fields bits now that we know that the
796 * data corresponding to them is safely on disk.
797 */
798 iip->ili_last_fields = 0;
799 /*
800 * Clear the inode logging fields so no more flushes are
801 * attempted.
802 */
803 iip->ili_fields = 0;
804 iip->ili_fsync_fields = 0;
805 }
806 /*
807 * Release the inode's flush lock since we're done with it.
808 */
809 xfs_ifunlock(ip);
810}
811
812void
813xfs_istale_done(
814 struct xfs_buf *bp,
815 struct xfs_log_item *lip)
816{
817 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
818}
819
820/*
821 * convert an xfs_inode_log_format struct from the old 32 bit version
822 * (which can have different field alignments) to the native 64 bit version
823 */
824int
825xfs_inode_item_format_convert(
826 struct xfs_log_iovec *buf,
827 struct xfs_inode_log_format *in_f)
828{
829 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr;
830
831 if (buf->i_len != sizeof(*in_f32))
832 return -EFSCORRUPTED;
833
834 in_f->ilf_type = in_f32->ilf_type;
835 in_f->ilf_size = in_f32->ilf_size;
836 in_f->ilf_fields = in_f32->ilf_fields;
837 in_f->ilf_asize = in_f32->ilf_asize;
838 in_f->ilf_dsize = in_f32->ilf_dsize;
839 in_f->ilf_ino = in_f32->ilf_ino;
840 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
841 in_f->ilf_blkno = in_f32->ilf_blkno;
842 in_f->ilf_len = in_f32->ilf_len;
843 in_f->ilf_boffset = in_f32->ilf_boffset;
844 return 0;
845}