Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include <linux/backing-dev.h>
8#include <linux/dax.h>
9
10#include "xfs_shared.h"
11#include "xfs_format.h"
12#include "xfs_log_format.h"
13#include "xfs_trans_resv.h"
14#include "xfs_mount.h"
15#include "xfs_trace.h"
16#include "xfs_log.h"
17#include "xfs_log_recover.h"
18#include "xfs_log_priv.h"
19#include "xfs_trans.h"
20#include "xfs_buf_item.h"
21#include "xfs_errortag.h"
22#include "xfs_error.h"
23#include "xfs_ag.h"
24
25struct kmem_cache *xfs_buf_cache;
26
27/*
28 * Locking orders
29 *
30 * xfs_buf_ioacct_inc:
31 * xfs_buf_ioacct_dec:
32 * b_sema (caller holds)
33 * b_lock
34 *
35 * xfs_buf_stale:
36 * b_sema (caller holds)
37 * b_lock
38 * lru_lock
39 *
40 * xfs_buf_rele:
41 * b_lock
42 * pag_buf_lock
43 * lru_lock
44 *
45 * xfs_buftarg_drain_rele
46 * lru_lock
47 * b_lock (trylock due to inversion)
48 *
49 * xfs_buftarg_isolate
50 * lru_lock
51 * b_lock (trylock due to inversion)
52 */
53
54static int __xfs_buf_submit(struct xfs_buf *bp, bool wait);
55
56static inline int
57xfs_buf_submit(
58 struct xfs_buf *bp)
59{
60 return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC));
61}
62
63static inline int
64xfs_buf_is_vmapped(
65 struct xfs_buf *bp)
66{
67 /*
68 * Return true if the buffer is vmapped.
69 *
70 * b_addr is null if the buffer is not mapped, but the code is clever
71 * enough to know it doesn't have to map a single page, so the check has
72 * to be both for b_addr and bp->b_page_count > 1.
73 */
74 return bp->b_addr && bp->b_page_count > 1;
75}
76
77static inline int
78xfs_buf_vmap_len(
79 struct xfs_buf *bp)
80{
81 return (bp->b_page_count * PAGE_SIZE);
82}
83
84/*
85 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
86 * this buffer. The count is incremented once per buffer (per hold cycle)
87 * because the corresponding decrement is deferred to buffer release. Buffers
88 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
89 * tracking adds unnecessary overhead. This is used for sychronization purposes
90 * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
91 * in-flight buffers.
92 *
93 * Buffers that are never released (e.g., superblock, iclog buffers) must set
94 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
95 * never reaches zero and unmount hangs indefinitely.
96 */
97static inline void
98xfs_buf_ioacct_inc(
99 struct xfs_buf *bp)
100{
101 if (bp->b_flags & XBF_NO_IOACCT)
102 return;
103
104 ASSERT(bp->b_flags & XBF_ASYNC);
105 spin_lock(&bp->b_lock);
106 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
107 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
108 percpu_counter_inc(&bp->b_target->bt_io_count);
109 }
110 spin_unlock(&bp->b_lock);
111}
112
113/*
114 * Clear the in-flight state on a buffer about to be released to the LRU or
115 * freed and unaccount from the buftarg.
116 */
117static inline void
118__xfs_buf_ioacct_dec(
119 struct xfs_buf *bp)
120{
121 lockdep_assert_held(&bp->b_lock);
122
123 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
124 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
125 percpu_counter_dec(&bp->b_target->bt_io_count);
126 }
127}
128
129static inline void
130xfs_buf_ioacct_dec(
131 struct xfs_buf *bp)
132{
133 spin_lock(&bp->b_lock);
134 __xfs_buf_ioacct_dec(bp);
135 spin_unlock(&bp->b_lock);
136}
137
138/*
139 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
140 * b_lru_ref count so that the buffer is freed immediately when the buffer
141 * reference count falls to zero. If the buffer is already on the LRU, we need
142 * to remove the reference that LRU holds on the buffer.
143 *
144 * This prevents build-up of stale buffers on the LRU.
145 */
146void
147xfs_buf_stale(
148 struct xfs_buf *bp)
149{
150 ASSERT(xfs_buf_islocked(bp));
151
152 bp->b_flags |= XBF_STALE;
153
154 /*
155 * Clear the delwri status so that a delwri queue walker will not
156 * flush this buffer to disk now that it is stale. The delwri queue has
157 * a reference to the buffer, so this is safe to do.
158 */
159 bp->b_flags &= ~_XBF_DELWRI_Q;
160
161 /*
162 * Once the buffer is marked stale and unlocked, a subsequent lookup
163 * could reset b_flags. There is no guarantee that the buffer is
164 * unaccounted (released to LRU) before that occurs. Drop in-flight
165 * status now to preserve accounting consistency.
166 */
167 spin_lock(&bp->b_lock);
168 __xfs_buf_ioacct_dec(bp);
169
170 atomic_set(&bp->b_lru_ref, 0);
171 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
172 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
173 atomic_dec(&bp->b_hold);
174
175 ASSERT(atomic_read(&bp->b_hold) >= 1);
176 spin_unlock(&bp->b_lock);
177}
178
179static int
180xfs_buf_get_maps(
181 struct xfs_buf *bp,
182 int map_count)
183{
184 ASSERT(bp->b_maps == NULL);
185 bp->b_map_count = map_count;
186
187 if (map_count == 1) {
188 bp->b_maps = &bp->__b_map;
189 return 0;
190 }
191
192 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
193 KM_NOFS);
194 if (!bp->b_maps)
195 return -ENOMEM;
196 return 0;
197}
198
199/*
200 * Frees b_pages if it was allocated.
201 */
202static void
203xfs_buf_free_maps(
204 struct xfs_buf *bp)
205{
206 if (bp->b_maps != &bp->__b_map) {
207 kmem_free(bp->b_maps);
208 bp->b_maps = NULL;
209 }
210}
211
212static int
213_xfs_buf_alloc(
214 struct xfs_buftarg *target,
215 struct xfs_buf_map *map,
216 int nmaps,
217 xfs_buf_flags_t flags,
218 struct xfs_buf **bpp)
219{
220 struct xfs_buf *bp;
221 int error;
222 int i;
223
224 *bpp = NULL;
225 bp = kmem_cache_zalloc(xfs_buf_cache, GFP_NOFS | __GFP_NOFAIL);
226
227 /*
228 * We don't want certain flags to appear in b_flags unless they are
229 * specifically set by later operations on the buffer.
230 */
231 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
232
233 atomic_set(&bp->b_hold, 1);
234 atomic_set(&bp->b_lru_ref, 1);
235 init_completion(&bp->b_iowait);
236 INIT_LIST_HEAD(&bp->b_lru);
237 INIT_LIST_HEAD(&bp->b_list);
238 INIT_LIST_HEAD(&bp->b_li_list);
239 sema_init(&bp->b_sema, 0); /* held, no waiters */
240 spin_lock_init(&bp->b_lock);
241 bp->b_target = target;
242 bp->b_mount = target->bt_mount;
243 bp->b_flags = flags;
244
245 /*
246 * Set length and io_length to the same value initially.
247 * I/O routines should use io_length, which will be the same in
248 * most cases but may be reset (e.g. XFS recovery).
249 */
250 error = xfs_buf_get_maps(bp, nmaps);
251 if (error) {
252 kmem_cache_free(xfs_buf_cache, bp);
253 return error;
254 }
255
256 bp->b_rhash_key = map[0].bm_bn;
257 bp->b_length = 0;
258 for (i = 0; i < nmaps; i++) {
259 bp->b_maps[i].bm_bn = map[i].bm_bn;
260 bp->b_maps[i].bm_len = map[i].bm_len;
261 bp->b_length += map[i].bm_len;
262 }
263
264 atomic_set(&bp->b_pin_count, 0);
265 init_waitqueue_head(&bp->b_waiters);
266
267 XFS_STATS_INC(bp->b_mount, xb_create);
268 trace_xfs_buf_init(bp, _RET_IP_);
269
270 *bpp = bp;
271 return 0;
272}
273
274static void
275xfs_buf_free_pages(
276 struct xfs_buf *bp)
277{
278 uint i;
279
280 ASSERT(bp->b_flags & _XBF_PAGES);
281
282 if (xfs_buf_is_vmapped(bp))
283 vm_unmap_ram(bp->b_addr, bp->b_page_count);
284
285 for (i = 0; i < bp->b_page_count; i++) {
286 if (bp->b_pages[i])
287 __free_page(bp->b_pages[i]);
288 }
289 if (current->reclaim_state)
290 current->reclaim_state->reclaimed_slab += bp->b_page_count;
291
292 if (bp->b_pages != bp->b_page_array)
293 kmem_free(bp->b_pages);
294 bp->b_pages = NULL;
295 bp->b_flags &= ~_XBF_PAGES;
296}
297
298static void
299xfs_buf_free_callback(
300 struct callback_head *cb)
301{
302 struct xfs_buf *bp = container_of(cb, struct xfs_buf, b_rcu);
303
304 xfs_buf_free_maps(bp);
305 kmem_cache_free(xfs_buf_cache, bp);
306}
307
308static void
309xfs_buf_free(
310 struct xfs_buf *bp)
311{
312 trace_xfs_buf_free(bp, _RET_IP_);
313
314 ASSERT(list_empty(&bp->b_lru));
315
316 if (bp->b_flags & _XBF_PAGES)
317 xfs_buf_free_pages(bp);
318 else if (bp->b_flags & _XBF_KMEM)
319 kmem_free(bp->b_addr);
320
321 call_rcu(&bp->b_rcu, xfs_buf_free_callback);
322}
323
324static int
325xfs_buf_alloc_kmem(
326 struct xfs_buf *bp,
327 xfs_buf_flags_t flags)
328{
329 xfs_km_flags_t kmflag_mask = KM_NOFS;
330 size_t size = BBTOB(bp->b_length);
331
332 /* Assure zeroed buffer for non-read cases. */
333 if (!(flags & XBF_READ))
334 kmflag_mask |= KM_ZERO;
335
336 bp->b_addr = kmem_alloc(size, kmflag_mask);
337 if (!bp->b_addr)
338 return -ENOMEM;
339
340 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
341 ((unsigned long)bp->b_addr & PAGE_MASK)) {
342 /* b_addr spans two pages - use alloc_page instead */
343 kmem_free(bp->b_addr);
344 bp->b_addr = NULL;
345 return -ENOMEM;
346 }
347 bp->b_offset = offset_in_page(bp->b_addr);
348 bp->b_pages = bp->b_page_array;
349 bp->b_pages[0] = kmem_to_page(bp->b_addr);
350 bp->b_page_count = 1;
351 bp->b_flags |= _XBF_KMEM;
352 return 0;
353}
354
355static int
356xfs_buf_alloc_pages(
357 struct xfs_buf *bp,
358 xfs_buf_flags_t flags)
359{
360 gfp_t gfp_mask = __GFP_NOWARN;
361 long filled = 0;
362
363 if (flags & XBF_READ_AHEAD)
364 gfp_mask |= __GFP_NORETRY;
365 else
366 gfp_mask |= GFP_NOFS;
367
368 /* Make sure that we have a page list */
369 bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE);
370 if (bp->b_page_count <= XB_PAGES) {
371 bp->b_pages = bp->b_page_array;
372 } else {
373 bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count,
374 gfp_mask);
375 if (!bp->b_pages)
376 return -ENOMEM;
377 }
378 bp->b_flags |= _XBF_PAGES;
379
380 /* Assure zeroed buffer for non-read cases. */
381 if (!(flags & XBF_READ))
382 gfp_mask |= __GFP_ZERO;
383
384 /*
385 * Bulk filling of pages can take multiple calls. Not filling the entire
386 * array is not an allocation failure, so don't back off if we get at
387 * least one extra page.
388 */
389 for (;;) {
390 long last = filled;
391
392 filled = alloc_pages_bulk_array(gfp_mask, bp->b_page_count,
393 bp->b_pages);
394 if (filled == bp->b_page_count) {
395 XFS_STATS_INC(bp->b_mount, xb_page_found);
396 break;
397 }
398
399 if (filled != last)
400 continue;
401
402 if (flags & XBF_READ_AHEAD) {
403 xfs_buf_free_pages(bp);
404 return -ENOMEM;
405 }
406
407 XFS_STATS_INC(bp->b_mount, xb_page_retries);
408 memalloc_retry_wait(gfp_mask);
409 }
410 return 0;
411}
412
413/*
414 * Map buffer into kernel address-space if necessary.
415 */
416STATIC int
417_xfs_buf_map_pages(
418 struct xfs_buf *bp,
419 xfs_buf_flags_t flags)
420{
421 ASSERT(bp->b_flags & _XBF_PAGES);
422 if (bp->b_page_count == 1) {
423 /* A single page buffer is always mappable */
424 bp->b_addr = page_address(bp->b_pages[0]);
425 } else if (flags & XBF_UNMAPPED) {
426 bp->b_addr = NULL;
427 } else {
428 int retried = 0;
429 unsigned nofs_flag;
430
431 /*
432 * vm_map_ram() will allocate auxiliary structures (e.g.
433 * pagetables) with GFP_KERNEL, yet we are likely to be under
434 * GFP_NOFS context here. Hence we need to tell memory reclaim
435 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
436 * memory reclaim re-entering the filesystem here and
437 * potentially deadlocking.
438 */
439 nofs_flag = memalloc_nofs_save();
440 do {
441 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
442 -1);
443 if (bp->b_addr)
444 break;
445 vm_unmap_aliases();
446 } while (retried++ <= 1);
447 memalloc_nofs_restore(nofs_flag);
448
449 if (!bp->b_addr)
450 return -ENOMEM;
451 }
452
453 return 0;
454}
455
456/*
457 * Finding and Reading Buffers
458 */
459static int
460_xfs_buf_obj_cmp(
461 struct rhashtable_compare_arg *arg,
462 const void *obj)
463{
464 const struct xfs_buf_map *map = arg->key;
465 const struct xfs_buf *bp = obj;
466
467 /*
468 * The key hashing in the lookup path depends on the key being the
469 * first element of the compare_arg, make sure to assert this.
470 */
471 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
472
473 if (bp->b_rhash_key != map->bm_bn)
474 return 1;
475
476 if (unlikely(bp->b_length != map->bm_len)) {
477 /*
478 * found a block number match. If the range doesn't
479 * match, the only way this is allowed is if the buffer
480 * in the cache is stale and the transaction that made
481 * it stale has not yet committed. i.e. we are
482 * reallocating a busy extent. Skip this buffer and
483 * continue searching for an exact match.
484 */
485 ASSERT(bp->b_flags & XBF_STALE);
486 return 1;
487 }
488 return 0;
489}
490
491static const struct rhashtable_params xfs_buf_hash_params = {
492 .min_size = 32, /* empty AGs have minimal footprint */
493 .nelem_hint = 16,
494 .key_len = sizeof(xfs_daddr_t),
495 .key_offset = offsetof(struct xfs_buf, b_rhash_key),
496 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
497 .automatic_shrinking = true,
498 .obj_cmpfn = _xfs_buf_obj_cmp,
499};
500
501int
502xfs_buf_hash_init(
503 struct xfs_perag *pag)
504{
505 spin_lock_init(&pag->pag_buf_lock);
506 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
507}
508
509void
510xfs_buf_hash_destroy(
511 struct xfs_perag *pag)
512{
513 rhashtable_destroy(&pag->pag_buf_hash);
514}
515
516static int
517xfs_buf_map_verify(
518 struct xfs_buftarg *btp,
519 struct xfs_buf_map *map)
520{
521 xfs_daddr_t eofs;
522
523 /* Check for IOs smaller than the sector size / not sector aligned */
524 ASSERT(!(BBTOB(map->bm_len) < btp->bt_meta_sectorsize));
525 ASSERT(!(BBTOB(map->bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
526
527 /*
528 * Corrupted block numbers can get through to here, unfortunately, so we
529 * have to check that the buffer falls within the filesystem bounds.
530 */
531 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
532 if (map->bm_bn < 0 || map->bm_bn >= eofs) {
533 xfs_alert(btp->bt_mount,
534 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
535 __func__, map->bm_bn, eofs);
536 WARN_ON(1);
537 return -EFSCORRUPTED;
538 }
539 return 0;
540}
541
542static int
543xfs_buf_find_lock(
544 struct xfs_buf *bp,
545 xfs_buf_flags_t flags)
546{
547 if (flags & XBF_TRYLOCK) {
548 if (!xfs_buf_trylock(bp)) {
549 XFS_STATS_INC(bp->b_mount, xb_busy_locked);
550 return -EAGAIN;
551 }
552 } else {
553 xfs_buf_lock(bp);
554 XFS_STATS_INC(bp->b_mount, xb_get_locked_waited);
555 }
556
557 /*
558 * if the buffer is stale, clear all the external state associated with
559 * it. We need to keep flags such as how we allocated the buffer memory
560 * intact here.
561 */
562 if (bp->b_flags & XBF_STALE) {
563 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
564 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
565 bp->b_ops = NULL;
566 }
567 return 0;
568}
569
570static inline int
571xfs_buf_lookup(
572 struct xfs_perag *pag,
573 struct xfs_buf_map *map,
574 xfs_buf_flags_t flags,
575 struct xfs_buf **bpp)
576{
577 struct xfs_buf *bp;
578 int error;
579
580 rcu_read_lock();
581 bp = rhashtable_lookup(&pag->pag_buf_hash, map, xfs_buf_hash_params);
582 if (!bp || !atomic_inc_not_zero(&bp->b_hold)) {
583 rcu_read_unlock();
584 return -ENOENT;
585 }
586 rcu_read_unlock();
587
588 error = xfs_buf_find_lock(bp, flags);
589 if (error) {
590 xfs_buf_rele(bp);
591 return error;
592 }
593
594 trace_xfs_buf_find(bp, flags, _RET_IP_);
595 *bpp = bp;
596 return 0;
597}
598
599/*
600 * Insert the new_bp into the hash table. This consumes the perag reference
601 * taken for the lookup regardless of the result of the insert.
602 */
603static int
604xfs_buf_find_insert(
605 struct xfs_buftarg *btp,
606 struct xfs_perag *pag,
607 struct xfs_buf_map *cmap,
608 struct xfs_buf_map *map,
609 int nmaps,
610 xfs_buf_flags_t flags,
611 struct xfs_buf **bpp)
612{
613 struct xfs_buf *new_bp;
614 struct xfs_buf *bp;
615 int error;
616
617 error = _xfs_buf_alloc(btp, map, nmaps, flags, &new_bp);
618 if (error)
619 goto out_drop_pag;
620
621 /*
622 * For buffers that fit entirely within a single page, first attempt to
623 * allocate the memory from the heap to minimise memory usage. If we
624 * can't get heap memory for these small buffers, we fall back to using
625 * the page allocator.
626 */
627 if (BBTOB(new_bp->b_length) >= PAGE_SIZE ||
628 xfs_buf_alloc_kmem(new_bp, flags) < 0) {
629 error = xfs_buf_alloc_pages(new_bp, flags);
630 if (error)
631 goto out_free_buf;
632 }
633
634 spin_lock(&pag->pag_buf_lock);
635 bp = rhashtable_lookup_get_insert_fast(&pag->pag_buf_hash,
636 &new_bp->b_rhash_head, xfs_buf_hash_params);
637 if (IS_ERR(bp)) {
638 error = PTR_ERR(bp);
639 spin_unlock(&pag->pag_buf_lock);
640 goto out_free_buf;
641 }
642 if (bp) {
643 /* found an existing buffer */
644 atomic_inc(&bp->b_hold);
645 spin_unlock(&pag->pag_buf_lock);
646 error = xfs_buf_find_lock(bp, flags);
647 if (error)
648 xfs_buf_rele(bp);
649 else
650 *bpp = bp;
651 goto out_free_buf;
652 }
653
654 /* The new buffer keeps the perag reference until it is freed. */
655 new_bp->b_pag = pag;
656 spin_unlock(&pag->pag_buf_lock);
657 *bpp = new_bp;
658 return 0;
659
660out_free_buf:
661 xfs_buf_free(new_bp);
662out_drop_pag:
663 xfs_perag_put(pag);
664 return error;
665}
666
667/*
668 * Assembles a buffer covering the specified range. The code is optimised for
669 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
670 * more hits than misses.
671 */
672int
673xfs_buf_get_map(
674 struct xfs_buftarg *btp,
675 struct xfs_buf_map *map,
676 int nmaps,
677 xfs_buf_flags_t flags,
678 struct xfs_buf **bpp)
679{
680 struct xfs_perag *pag;
681 struct xfs_buf *bp = NULL;
682 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
683 int error;
684 int i;
685
686 for (i = 0; i < nmaps; i++)
687 cmap.bm_len += map[i].bm_len;
688
689 error = xfs_buf_map_verify(btp, &cmap);
690 if (error)
691 return error;
692
693 pag = xfs_perag_get(btp->bt_mount,
694 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
695
696 error = xfs_buf_lookup(pag, &cmap, flags, &bp);
697 if (error && error != -ENOENT)
698 goto out_put_perag;
699
700 /* cache hits always outnumber misses by at least 10:1 */
701 if (unlikely(!bp)) {
702 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
703
704 if (flags & XBF_INCORE)
705 goto out_put_perag;
706
707 /* xfs_buf_find_insert() consumes the perag reference. */
708 error = xfs_buf_find_insert(btp, pag, &cmap, map, nmaps,
709 flags, &bp);
710 if (error)
711 return error;
712 } else {
713 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
714 xfs_perag_put(pag);
715 }
716
717 /* We do not hold a perag reference anymore. */
718 if (!bp->b_addr) {
719 error = _xfs_buf_map_pages(bp, flags);
720 if (unlikely(error)) {
721 xfs_warn_ratelimited(btp->bt_mount,
722 "%s: failed to map %u pages", __func__,
723 bp->b_page_count);
724 xfs_buf_relse(bp);
725 return error;
726 }
727 }
728
729 /*
730 * Clear b_error if this is a lookup from a caller that doesn't expect
731 * valid data to be found in the buffer.
732 */
733 if (!(flags & XBF_READ))
734 xfs_buf_ioerror(bp, 0);
735
736 XFS_STATS_INC(btp->bt_mount, xb_get);
737 trace_xfs_buf_get(bp, flags, _RET_IP_);
738 *bpp = bp;
739 return 0;
740
741out_put_perag:
742 xfs_perag_put(pag);
743 return error;
744}
745
746int
747_xfs_buf_read(
748 struct xfs_buf *bp,
749 xfs_buf_flags_t flags)
750{
751 ASSERT(!(flags & XBF_WRITE));
752 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
753
754 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
755 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
756
757 return xfs_buf_submit(bp);
758}
759
760/*
761 * Reverify a buffer found in cache without an attached ->b_ops.
762 *
763 * If the caller passed an ops structure and the buffer doesn't have ops
764 * assigned, set the ops and use it to verify the contents. If verification
765 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
766 * already in XBF_DONE state on entry.
767 *
768 * Under normal operations, every in-core buffer is verified on read I/O
769 * completion. There are two scenarios that can lead to in-core buffers without
770 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
771 * filesystem, though these buffers are purged at the end of recovery. The
772 * other is online repair, which intentionally reads with a NULL buffer ops to
773 * run several verifiers across an in-core buffer in order to establish buffer
774 * type. If repair can't establish that, the buffer will be left in memory
775 * with NULL buffer ops.
776 */
777int
778xfs_buf_reverify(
779 struct xfs_buf *bp,
780 const struct xfs_buf_ops *ops)
781{
782 ASSERT(bp->b_flags & XBF_DONE);
783 ASSERT(bp->b_error == 0);
784
785 if (!ops || bp->b_ops)
786 return 0;
787
788 bp->b_ops = ops;
789 bp->b_ops->verify_read(bp);
790 if (bp->b_error)
791 bp->b_flags &= ~XBF_DONE;
792 return bp->b_error;
793}
794
795int
796xfs_buf_read_map(
797 struct xfs_buftarg *target,
798 struct xfs_buf_map *map,
799 int nmaps,
800 xfs_buf_flags_t flags,
801 struct xfs_buf **bpp,
802 const struct xfs_buf_ops *ops,
803 xfs_failaddr_t fa)
804{
805 struct xfs_buf *bp;
806 int error;
807
808 flags |= XBF_READ;
809 *bpp = NULL;
810
811 error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
812 if (error)
813 return error;
814
815 trace_xfs_buf_read(bp, flags, _RET_IP_);
816
817 if (!(bp->b_flags & XBF_DONE)) {
818 /* Initiate the buffer read and wait. */
819 XFS_STATS_INC(target->bt_mount, xb_get_read);
820 bp->b_ops = ops;
821 error = _xfs_buf_read(bp, flags);
822
823 /* Readahead iodone already dropped the buffer, so exit. */
824 if (flags & XBF_ASYNC)
825 return 0;
826 } else {
827 /* Buffer already read; all we need to do is check it. */
828 error = xfs_buf_reverify(bp, ops);
829
830 /* Readahead already finished; drop the buffer and exit. */
831 if (flags & XBF_ASYNC) {
832 xfs_buf_relse(bp);
833 return 0;
834 }
835
836 /* We do not want read in the flags */
837 bp->b_flags &= ~XBF_READ;
838 ASSERT(bp->b_ops != NULL || ops == NULL);
839 }
840
841 /*
842 * If we've had a read error, then the contents of the buffer are
843 * invalid and should not be used. To ensure that a followup read tries
844 * to pull the buffer from disk again, we clear the XBF_DONE flag and
845 * mark the buffer stale. This ensures that anyone who has a current
846 * reference to the buffer will interpret it's contents correctly and
847 * future cache lookups will also treat it as an empty, uninitialised
848 * buffer.
849 */
850 if (error) {
851 /*
852 * Check against log shutdown for error reporting because
853 * metadata writeback may require a read first and we need to
854 * report errors in metadata writeback until the log is shut
855 * down. High level transaction read functions already check
856 * against mount shutdown, anyway, so we only need to be
857 * concerned about low level IO interactions here.
858 */
859 if (!xlog_is_shutdown(target->bt_mount->m_log))
860 xfs_buf_ioerror_alert(bp, fa);
861
862 bp->b_flags &= ~XBF_DONE;
863 xfs_buf_stale(bp);
864 xfs_buf_relse(bp);
865
866 /* bad CRC means corrupted metadata */
867 if (error == -EFSBADCRC)
868 error = -EFSCORRUPTED;
869 return error;
870 }
871
872 *bpp = bp;
873 return 0;
874}
875
876/*
877 * If we are not low on memory then do the readahead in a deadlock
878 * safe manner.
879 */
880void
881xfs_buf_readahead_map(
882 struct xfs_buftarg *target,
883 struct xfs_buf_map *map,
884 int nmaps,
885 const struct xfs_buf_ops *ops)
886{
887 struct xfs_buf *bp;
888
889 xfs_buf_read_map(target, map, nmaps,
890 XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
891 __this_address);
892}
893
894/*
895 * Read an uncached buffer from disk. Allocates and returns a locked
896 * buffer containing the disk contents or nothing. Uncached buffers always have
897 * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer
898 * is cached or uncached during fault diagnosis.
899 */
900int
901xfs_buf_read_uncached(
902 struct xfs_buftarg *target,
903 xfs_daddr_t daddr,
904 size_t numblks,
905 xfs_buf_flags_t flags,
906 struct xfs_buf **bpp,
907 const struct xfs_buf_ops *ops)
908{
909 struct xfs_buf *bp;
910 int error;
911
912 *bpp = NULL;
913
914 error = xfs_buf_get_uncached(target, numblks, flags, &bp);
915 if (error)
916 return error;
917
918 /* set up the buffer for a read IO */
919 ASSERT(bp->b_map_count == 1);
920 bp->b_rhash_key = XFS_BUF_DADDR_NULL;
921 bp->b_maps[0].bm_bn = daddr;
922 bp->b_flags |= XBF_READ;
923 bp->b_ops = ops;
924
925 xfs_buf_submit(bp);
926 if (bp->b_error) {
927 error = bp->b_error;
928 xfs_buf_relse(bp);
929 return error;
930 }
931
932 *bpp = bp;
933 return 0;
934}
935
936int
937xfs_buf_get_uncached(
938 struct xfs_buftarg *target,
939 size_t numblks,
940 xfs_buf_flags_t flags,
941 struct xfs_buf **bpp)
942{
943 int error;
944 struct xfs_buf *bp;
945 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
946
947 *bpp = NULL;
948
949 /* flags might contain irrelevant bits, pass only what we care about */
950 error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
951 if (error)
952 return error;
953
954 error = xfs_buf_alloc_pages(bp, flags);
955 if (error)
956 goto fail_free_buf;
957
958 error = _xfs_buf_map_pages(bp, 0);
959 if (unlikely(error)) {
960 xfs_warn(target->bt_mount,
961 "%s: failed to map pages", __func__);
962 goto fail_free_buf;
963 }
964
965 trace_xfs_buf_get_uncached(bp, _RET_IP_);
966 *bpp = bp;
967 return 0;
968
969fail_free_buf:
970 xfs_buf_free(bp);
971 return error;
972}
973
974/*
975 * Increment reference count on buffer, to hold the buffer concurrently
976 * with another thread which may release (free) the buffer asynchronously.
977 * Must hold the buffer already to call this function.
978 */
979void
980xfs_buf_hold(
981 struct xfs_buf *bp)
982{
983 trace_xfs_buf_hold(bp, _RET_IP_);
984 atomic_inc(&bp->b_hold);
985}
986
987/*
988 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
989 * placed on LRU or freed (depending on b_lru_ref).
990 */
991void
992xfs_buf_rele(
993 struct xfs_buf *bp)
994{
995 struct xfs_perag *pag = bp->b_pag;
996 bool release;
997 bool freebuf = false;
998
999 trace_xfs_buf_rele(bp, _RET_IP_);
1000
1001 if (!pag) {
1002 ASSERT(list_empty(&bp->b_lru));
1003 if (atomic_dec_and_test(&bp->b_hold)) {
1004 xfs_buf_ioacct_dec(bp);
1005 xfs_buf_free(bp);
1006 }
1007 return;
1008 }
1009
1010 ASSERT(atomic_read(&bp->b_hold) > 0);
1011
1012 /*
1013 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1014 * calls. The pag_buf_lock being taken on the last reference only
1015 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1016 * to last reference we drop here is not serialised against the last
1017 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1018 * first, the last "release" reference can win the race to the lock and
1019 * free the buffer before the second-to-last reference is processed,
1020 * leading to a use-after-free scenario.
1021 */
1022 spin_lock(&bp->b_lock);
1023 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1024 if (!release) {
1025 /*
1026 * Drop the in-flight state if the buffer is already on the LRU
1027 * and it holds the only reference. This is racy because we
1028 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1029 * ensures the decrement occurs only once per-buf.
1030 */
1031 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1032 __xfs_buf_ioacct_dec(bp);
1033 goto out_unlock;
1034 }
1035
1036 /* the last reference has been dropped ... */
1037 __xfs_buf_ioacct_dec(bp);
1038 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1039 /*
1040 * If the buffer is added to the LRU take a new reference to the
1041 * buffer for the LRU and clear the (now stale) dispose list
1042 * state flag
1043 */
1044 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1045 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1046 atomic_inc(&bp->b_hold);
1047 }
1048 spin_unlock(&pag->pag_buf_lock);
1049 } else {
1050 /*
1051 * most of the time buffers will already be removed from the
1052 * LRU, so optimise that case by checking for the
1053 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1054 * was on was the disposal list
1055 */
1056 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1057 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1058 } else {
1059 ASSERT(list_empty(&bp->b_lru));
1060 }
1061
1062 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1063 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1064 xfs_buf_hash_params);
1065 spin_unlock(&pag->pag_buf_lock);
1066 xfs_perag_put(pag);
1067 freebuf = true;
1068 }
1069
1070out_unlock:
1071 spin_unlock(&bp->b_lock);
1072
1073 if (freebuf)
1074 xfs_buf_free(bp);
1075}
1076
1077
1078/*
1079 * Lock a buffer object, if it is not already locked.
1080 *
1081 * If we come across a stale, pinned, locked buffer, we know that we are
1082 * being asked to lock a buffer that has been reallocated. Because it is
1083 * pinned, we know that the log has not been pushed to disk and hence it
1084 * will still be locked. Rather than continuing to have trylock attempts
1085 * fail until someone else pushes the log, push it ourselves before
1086 * returning. This means that the xfsaild will not get stuck trying
1087 * to push on stale inode buffers.
1088 */
1089int
1090xfs_buf_trylock(
1091 struct xfs_buf *bp)
1092{
1093 int locked;
1094
1095 locked = down_trylock(&bp->b_sema) == 0;
1096 if (locked)
1097 trace_xfs_buf_trylock(bp, _RET_IP_);
1098 else
1099 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1100 return locked;
1101}
1102
1103/*
1104 * Lock a buffer object.
1105 *
1106 * If we come across a stale, pinned, locked buffer, we know that we
1107 * are being asked to lock a buffer that has been reallocated. Because
1108 * it is pinned, we know that the log has not been pushed to disk and
1109 * hence it will still be locked. Rather than sleeping until someone
1110 * else pushes the log, push it ourselves before trying to get the lock.
1111 */
1112void
1113xfs_buf_lock(
1114 struct xfs_buf *bp)
1115{
1116 trace_xfs_buf_lock(bp, _RET_IP_);
1117
1118 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1119 xfs_log_force(bp->b_mount, 0);
1120 down(&bp->b_sema);
1121
1122 trace_xfs_buf_lock_done(bp, _RET_IP_);
1123}
1124
1125void
1126xfs_buf_unlock(
1127 struct xfs_buf *bp)
1128{
1129 ASSERT(xfs_buf_islocked(bp));
1130
1131 up(&bp->b_sema);
1132 trace_xfs_buf_unlock(bp, _RET_IP_);
1133}
1134
1135STATIC void
1136xfs_buf_wait_unpin(
1137 struct xfs_buf *bp)
1138{
1139 DECLARE_WAITQUEUE (wait, current);
1140
1141 if (atomic_read(&bp->b_pin_count) == 0)
1142 return;
1143
1144 add_wait_queue(&bp->b_waiters, &wait);
1145 for (;;) {
1146 set_current_state(TASK_UNINTERRUPTIBLE);
1147 if (atomic_read(&bp->b_pin_count) == 0)
1148 break;
1149 io_schedule();
1150 }
1151 remove_wait_queue(&bp->b_waiters, &wait);
1152 set_current_state(TASK_RUNNING);
1153}
1154
1155static void
1156xfs_buf_ioerror_alert_ratelimited(
1157 struct xfs_buf *bp)
1158{
1159 static unsigned long lasttime;
1160 static struct xfs_buftarg *lasttarg;
1161
1162 if (bp->b_target != lasttarg ||
1163 time_after(jiffies, (lasttime + 5*HZ))) {
1164 lasttime = jiffies;
1165 xfs_buf_ioerror_alert(bp, __this_address);
1166 }
1167 lasttarg = bp->b_target;
1168}
1169
1170/*
1171 * Account for this latest trip around the retry handler, and decide if
1172 * we've failed enough times to constitute a permanent failure.
1173 */
1174static bool
1175xfs_buf_ioerror_permanent(
1176 struct xfs_buf *bp,
1177 struct xfs_error_cfg *cfg)
1178{
1179 struct xfs_mount *mp = bp->b_mount;
1180
1181 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1182 ++bp->b_retries > cfg->max_retries)
1183 return true;
1184 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1185 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1186 return true;
1187
1188 /* At unmount we may treat errors differently */
1189 if (xfs_is_unmounting(mp) && mp->m_fail_unmount)
1190 return true;
1191
1192 return false;
1193}
1194
1195/*
1196 * On a sync write or shutdown we just want to stale the buffer and let the
1197 * caller handle the error in bp->b_error appropriately.
1198 *
1199 * If the write was asynchronous then no one will be looking for the error. If
1200 * this is the first failure of this type, clear the error state and write the
1201 * buffer out again. This means we always retry an async write failure at least
1202 * once, but we also need to set the buffer up to behave correctly now for
1203 * repeated failures.
1204 *
1205 * If we get repeated async write failures, then we take action according to the
1206 * error configuration we have been set up to use.
1207 *
1208 * Returns true if this function took care of error handling and the caller must
1209 * not touch the buffer again. Return false if the caller should proceed with
1210 * normal I/O completion handling.
1211 */
1212static bool
1213xfs_buf_ioend_handle_error(
1214 struct xfs_buf *bp)
1215{
1216 struct xfs_mount *mp = bp->b_mount;
1217 struct xfs_error_cfg *cfg;
1218
1219 /*
1220 * If we've already shutdown the journal because of I/O errors, there's
1221 * no point in giving this a retry.
1222 */
1223 if (xlog_is_shutdown(mp->m_log))
1224 goto out_stale;
1225
1226 xfs_buf_ioerror_alert_ratelimited(bp);
1227
1228 /*
1229 * We're not going to bother about retrying this during recovery.
1230 * One strike!
1231 */
1232 if (bp->b_flags & _XBF_LOGRECOVERY) {
1233 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1234 return false;
1235 }
1236
1237 /*
1238 * Synchronous writes will have callers process the error.
1239 */
1240 if (!(bp->b_flags & XBF_ASYNC))
1241 goto out_stale;
1242
1243 trace_xfs_buf_iodone_async(bp, _RET_IP_);
1244
1245 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1246 if (bp->b_last_error != bp->b_error ||
1247 !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1248 bp->b_last_error = bp->b_error;
1249 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1250 !bp->b_first_retry_time)
1251 bp->b_first_retry_time = jiffies;
1252 goto resubmit;
1253 }
1254
1255 /*
1256 * Permanent error - we need to trigger a shutdown if we haven't already
1257 * to indicate that inconsistency will result from this action.
1258 */
1259 if (xfs_buf_ioerror_permanent(bp, cfg)) {
1260 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1261 goto out_stale;
1262 }
1263
1264 /* Still considered a transient error. Caller will schedule retries. */
1265 if (bp->b_flags & _XBF_INODES)
1266 xfs_buf_inode_io_fail(bp);
1267 else if (bp->b_flags & _XBF_DQUOTS)
1268 xfs_buf_dquot_io_fail(bp);
1269 else
1270 ASSERT(list_empty(&bp->b_li_list));
1271 xfs_buf_ioerror(bp, 0);
1272 xfs_buf_relse(bp);
1273 return true;
1274
1275resubmit:
1276 xfs_buf_ioerror(bp, 0);
1277 bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
1278 xfs_buf_submit(bp);
1279 return true;
1280out_stale:
1281 xfs_buf_stale(bp);
1282 bp->b_flags |= XBF_DONE;
1283 bp->b_flags &= ~XBF_WRITE;
1284 trace_xfs_buf_error_relse(bp, _RET_IP_);
1285 return false;
1286}
1287
1288static void
1289xfs_buf_ioend(
1290 struct xfs_buf *bp)
1291{
1292 trace_xfs_buf_iodone(bp, _RET_IP_);
1293
1294 /*
1295 * Pull in IO completion errors now. We are guaranteed to be running
1296 * single threaded, so we don't need the lock to read b_io_error.
1297 */
1298 if (!bp->b_error && bp->b_io_error)
1299 xfs_buf_ioerror(bp, bp->b_io_error);
1300
1301 if (bp->b_flags & XBF_READ) {
1302 if (!bp->b_error && bp->b_ops)
1303 bp->b_ops->verify_read(bp);
1304 if (!bp->b_error)
1305 bp->b_flags |= XBF_DONE;
1306 } else {
1307 if (!bp->b_error) {
1308 bp->b_flags &= ~XBF_WRITE_FAIL;
1309 bp->b_flags |= XBF_DONE;
1310 }
1311
1312 if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
1313 return;
1314
1315 /* clear the retry state */
1316 bp->b_last_error = 0;
1317 bp->b_retries = 0;
1318 bp->b_first_retry_time = 0;
1319
1320 /*
1321 * Note that for things like remote attribute buffers, there may
1322 * not be a buffer log item here, so processing the buffer log
1323 * item must remain optional.
1324 */
1325 if (bp->b_log_item)
1326 xfs_buf_item_done(bp);
1327
1328 if (bp->b_flags & _XBF_INODES)
1329 xfs_buf_inode_iodone(bp);
1330 else if (bp->b_flags & _XBF_DQUOTS)
1331 xfs_buf_dquot_iodone(bp);
1332
1333 }
1334
1335 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1336 _XBF_LOGRECOVERY);
1337
1338 if (bp->b_flags & XBF_ASYNC)
1339 xfs_buf_relse(bp);
1340 else
1341 complete(&bp->b_iowait);
1342}
1343
1344static void
1345xfs_buf_ioend_work(
1346 struct work_struct *work)
1347{
1348 struct xfs_buf *bp =
1349 container_of(work, struct xfs_buf, b_ioend_work);
1350
1351 xfs_buf_ioend(bp);
1352}
1353
1354static void
1355xfs_buf_ioend_async(
1356 struct xfs_buf *bp)
1357{
1358 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1359 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1360}
1361
1362void
1363__xfs_buf_ioerror(
1364 struct xfs_buf *bp,
1365 int error,
1366 xfs_failaddr_t failaddr)
1367{
1368 ASSERT(error <= 0 && error >= -1000);
1369 bp->b_error = error;
1370 trace_xfs_buf_ioerror(bp, error, failaddr);
1371}
1372
1373void
1374xfs_buf_ioerror_alert(
1375 struct xfs_buf *bp,
1376 xfs_failaddr_t func)
1377{
1378 xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1379 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1380 func, (uint64_t)xfs_buf_daddr(bp),
1381 bp->b_length, -bp->b_error);
1382}
1383
1384/*
1385 * To simulate an I/O failure, the buffer must be locked and held with at least
1386 * three references. The LRU reference is dropped by the stale call. The buf
1387 * item reference is dropped via ioend processing. The third reference is owned
1388 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1389 */
1390void
1391xfs_buf_ioend_fail(
1392 struct xfs_buf *bp)
1393{
1394 bp->b_flags &= ~XBF_DONE;
1395 xfs_buf_stale(bp);
1396 xfs_buf_ioerror(bp, -EIO);
1397 xfs_buf_ioend(bp);
1398}
1399
1400int
1401xfs_bwrite(
1402 struct xfs_buf *bp)
1403{
1404 int error;
1405
1406 ASSERT(xfs_buf_islocked(bp));
1407
1408 bp->b_flags |= XBF_WRITE;
1409 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1410 XBF_DONE);
1411
1412 error = xfs_buf_submit(bp);
1413 if (error)
1414 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1415 return error;
1416}
1417
1418static void
1419xfs_buf_bio_end_io(
1420 struct bio *bio)
1421{
1422 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1423
1424 if (!bio->bi_status &&
1425 (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
1426 XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
1427 bio->bi_status = BLK_STS_IOERR;
1428
1429 /*
1430 * don't overwrite existing errors - otherwise we can lose errors on
1431 * buffers that require multiple bios to complete.
1432 */
1433 if (bio->bi_status) {
1434 int error = blk_status_to_errno(bio->bi_status);
1435
1436 cmpxchg(&bp->b_io_error, 0, error);
1437 }
1438
1439 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1440 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1441
1442 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1443 xfs_buf_ioend_async(bp);
1444 bio_put(bio);
1445}
1446
1447static void
1448xfs_buf_ioapply_map(
1449 struct xfs_buf *bp,
1450 int map,
1451 int *buf_offset,
1452 int *count,
1453 blk_opf_t op)
1454{
1455 int page_index;
1456 unsigned int total_nr_pages = bp->b_page_count;
1457 int nr_pages;
1458 struct bio *bio;
1459 sector_t sector = bp->b_maps[map].bm_bn;
1460 int size;
1461 int offset;
1462
1463 /* skip the pages in the buffer before the start offset */
1464 page_index = 0;
1465 offset = *buf_offset;
1466 while (offset >= PAGE_SIZE) {
1467 page_index++;
1468 offset -= PAGE_SIZE;
1469 }
1470
1471 /*
1472 * Limit the IO size to the length of the current vector, and update the
1473 * remaining IO count for the next time around.
1474 */
1475 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1476 *count -= size;
1477 *buf_offset += size;
1478
1479next_chunk:
1480 atomic_inc(&bp->b_io_remaining);
1481 nr_pages = bio_max_segs(total_nr_pages);
1482
1483 bio = bio_alloc(bp->b_target->bt_bdev, nr_pages, op, GFP_NOIO);
1484 bio->bi_iter.bi_sector = sector;
1485 bio->bi_end_io = xfs_buf_bio_end_io;
1486 bio->bi_private = bp;
1487
1488 for (; size && nr_pages; nr_pages--, page_index++) {
1489 int rbytes, nbytes = PAGE_SIZE - offset;
1490
1491 if (nbytes > size)
1492 nbytes = size;
1493
1494 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1495 offset);
1496 if (rbytes < nbytes)
1497 break;
1498
1499 offset = 0;
1500 sector += BTOBB(nbytes);
1501 size -= nbytes;
1502 total_nr_pages--;
1503 }
1504
1505 if (likely(bio->bi_iter.bi_size)) {
1506 if (xfs_buf_is_vmapped(bp)) {
1507 flush_kernel_vmap_range(bp->b_addr,
1508 xfs_buf_vmap_len(bp));
1509 }
1510 submit_bio(bio);
1511 if (size)
1512 goto next_chunk;
1513 } else {
1514 /*
1515 * This is guaranteed not to be the last io reference count
1516 * because the caller (xfs_buf_submit) holds a count itself.
1517 */
1518 atomic_dec(&bp->b_io_remaining);
1519 xfs_buf_ioerror(bp, -EIO);
1520 bio_put(bio);
1521 }
1522
1523}
1524
1525STATIC void
1526_xfs_buf_ioapply(
1527 struct xfs_buf *bp)
1528{
1529 struct blk_plug plug;
1530 blk_opf_t op;
1531 int offset;
1532 int size;
1533 int i;
1534
1535 /*
1536 * Make sure we capture only current IO errors rather than stale errors
1537 * left over from previous use of the buffer (e.g. failed readahead).
1538 */
1539 bp->b_error = 0;
1540
1541 if (bp->b_flags & XBF_WRITE) {
1542 op = REQ_OP_WRITE;
1543
1544 /*
1545 * Run the write verifier callback function if it exists. If
1546 * this function fails it will mark the buffer with an error and
1547 * the IO should not be dispatched.
1548 */
1549 if (bp->b_ops) {
1550 bp->b_ops->verify_write(bp);
1551 if (bp->b_error) {
1552 xfs_force_shutdown(bp->b_mount,
1553 SHUTDOWN_CORRUPT_INCORE);
1554 return;
1555 }
1556 } else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) {
1557 struct xfs_mount *mp = bp->b_mount;
1558
1559 /*
1560 * non-crc filesystems don't attach verifiers during
1561 * log recovery, so don't warn for such filesystems.
1562 */
1563 if (xfs_has_crc(mp)) {
1564 xfs_warn(mp,
1565 "%s: no buf ops on daddr 0x%llx len %d",
1566 __func__, xfs_buf_daddr(bp),
1567 bp->b_length);
1568 xfs_hex_dump(bp->b_addr,
1569 XFS_CORRUPTION_DUMP_LEN);
1570 dump_stack();
1571 }
1572 }
1573 } else {
1574 op = REQ_OP_READ;
1575 if (bp->b_flags & XBF_READ_AHEAD)
1576 op |= REQ_RAHEAD;
1577 }
1578
1579 /* we only use the buffer cache for meta-data */
1580 op |= REQ_META;
1581
1582 /*
1583 * Walk all the vectors issuing IO on them. Set up the initial offset
1584 * into the buffer and the desired IO size before we start -
1585 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1586 * subsequent call.
1587 */
1588 offset = bp->b_offset;
1589 size = BBTOB(bp->b_length);
1590 blk_start_plug(&plug);
1591 for (i = 0; i < bp->b_map_count; i++) {
1592 xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1593 if (bp->b_error)
1594 break;
1595 if (size <= 0)
1596 break; /* all done */
1597 }
1598 blk_finish_plug(&plug);
1599}
1600
1601/*
1602 * Wait for I/O completion of a sync buffer and return the I/O error code.
1603 */
1604static int
1605xfs_buf_iowait(
1606 struct xfs_buf *bp)
1607{
1608 ASSERT(!(bp->b_flags & XBF_ASYNC));
1609
1610 trace_xfs_buf_iowait(bp, _RET_IP_);
1611 wait_for_completion(&bp->b_iowait);
1612 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1613
1614 return bp->b_error;
1615}
1616
1617/*
1618 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1619 * the buffer lock ownership and the current reference to the IO. It is not
1620 * safe to reference the buffer after a call to this function unless the caller
1621 * holds an additional reference itself.
1622 */
1623static int
1624__xfs_buf_submit(
1625 struct xfs_buf *bp,
1626 bool wait)
1627{
1628 int error = 0;
1629
1630 trace_xfs_buf_submit(bp, _RET_IP_);
1631
1632 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1633
1634 /*
1635 * On log shutdown we stale and complete the buffer immediately. We can
1636 * be called to read the superblock before the log has been set up, so
1637 * be careful checking the log state.
1638 *
1639 * Checking the mount shutdown state here can result in the log tail
1640 * moving inappropriately on disk as the log may not yet be shut down.
1641 * i.e. failing this buffer on mount shutdown can remove it from the AIL
1642 * and move the tail of the log forwards without having written this
1643 * buffer to disk. This corrupts the log tail state in memory, and
1644 * because the log may not be shut down yet, it can then be propagated
1645 * to disk before the log is shutdown. Hence we check log shutdown
1646 * state here rather than mount state to avoid corrupting the log tail
1647 * on shutdown.
1648 */
1649 if (bp->b_mount->m_log &&
1650 xlog_is_shutdown(bp->b_mount->m_log)) {
1651 xfs_buf_ioend_fail(bp);
1652 return -EIO;
1653 }
1654
1655 /*
1656 * Grab a reference so the buffer does not go away underneath us. For
1657 * async buffers, I/O completion drops the callers reference, which
1658 * could occur before submission returns.
1659 */
1660 xfs_buf_hold(bp);
1661
1662 if (bp->b_flags & XBF_WRITE)
1663 xfs_buf_wait_unpin(bp);
1664
1665 /* clear the internal error state to avoid spurious errors */
1666 bp->b_io_error = 0;
1667
1668 /*
1669 * Set the count to 1 initially, this will stop an I/O completion
1670 * callout which happens before we have started all the I/O from calling
1671 * xfs_buf_ioend too early.
1672 */
1673 atomic_set(&bp->b_io_remaining, 1);
1674 if (bp->b_flags & XBF_ASYNC)
1675 xfs_buf_ioacct_inc(bp);
1676 _xfs_buf_ioapply(bp);
1677
1678 /*
1679 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1680 * reference we took above. If we drop it to zero, run completion so
1681 * that we don't return to the caller with completion still pending.
1682 */
1683 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1684 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1685 xfs_buf_ioend(bp);
1686 else
1687 xfs_buf_ioend_async(bp);
1688 }
1689
1690 if (wait)
1691 error = xfs_buf_iowait(bp);
1692
1693 /*
1694 * Release the hold that keeps the buffer referenced for the entire
1695 * I/O. Note that if the buffer is async, it is not safe to reference
1696 * after this release.
1697 */
1698 xfs_buf_rele(bp);
1699 return error;
1700}
1701
1702void *
1703xfs_buf_offset(
1704 struct xfs_buf *bp,
1705 size_t offset)
1706{
1707 struct page *page;
1708
1709 if (bp->b_addr)
1710 return bp->b_addr + offset;
1711
1712 page = bp->b_pages[offset >> PAGE_SHIFT];
1713 return page_address(page) + (offset & (PAGE_SIZE-1));
1714}
1715
1716void
1717xfs_buf_zero(
1718 struct xfs_buf *bp,
1719 size_t boff,
1720 size_t bsize)
1721{
1722 size_t bend;
1723
1724 bend = boff + bsize;
1725 while (boff < bend) {
1726 struct page *page;
1727 int page_index, page_offset, csize;
1728
1729 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1730 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1731 page = bp->b_pages[page_index];
1732 csize = min_t(size_t, PAGE_SIZE - page_offset,
1733 BBTOB(bp->b_length) - boff);
1734
1735 ASSERT((csize + page_offset) <= PAGE_SIZE);
1736
1737 memset(page_address(page) + page_offset, 0, csize);
1738
1739 boff += csize;
1740 }
1741}
1742
1743/*
1744 * Log a message about and stale a buffer that a caller has decided is corrupt.
1745 *
1746 * This function should be called for the kinds of metadata corruption that
1747 * cannot be detect from a verifier, such as incorrect inter-block relationship
1748 * data. Do /not/ call this function from a verifier function.
1749 *
1750 * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will
1751 * be marked stale, but b_error will not be set. The caller is responsible for
1752 * releasing the buffer or fixing it.
1753 */
1754void
1755__xfs_buf_mark_corrupt(
1756 struct xfs_buf *bp,
1757 xfs_failaddr_t fa)
1758{
1759 ASSERT(bp->b_flags & XBF_DONE);
1760
1761 xfs_buf_corruption_error(bp, fa);
1762 xfs_buf_stale(bp);
1763}
1764
1765/*
1766 * Handling of buffer targets (buftargs).
1767 */
1768
1769/*
1770 * Wait for any bufs with callbacks that have been submitted but have not yet
1771 * returned. These buffers will have an elevated hold count, so wait on those
1772 * while freeing all the buffers only held by the LRU.
1773 */
1774static enum lru_status
1775xfs_buftarg_drain_rele(
1776 struct list_head *item,
1777 struct list_lru_one *lru,
1778 spinlock_t *lru_lock,
1779 void *arg)
1780
1781{
1782 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1783 struct list_head *dispose = arg;
1784
1785 if (atomic_read(&bp->b_hold) > 1) {
1786 /* need to wait, so skip it this pass */
1787 trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
1788 return LRU_SKIP;
1789 }
1790 if (!spin_trylock(&bp->b_lock))
1791 return LRU_SKIP;
1792
1793 /*
1794 * clear the LRU reference count so the buffer doesn't get
1795 * ignored in xfs_buf_rele().
1796 */
1797 atomic_set(&bp->b_lru_ref, 0);
1798 bp->b_state |= XFS_BSTATE_DISPOSE;
1799 list_lru_isolate_move(lru, item, dispose);
1800 spin_unlock(&bp->b_lock);
1801 return LRU_REMOVED;
1802}
1803
1804/*
1805 * Wait for outstanding I/O on the buftarg to complete.
1806 */
1807void
1808xfs_buftarg_wait(
1809 struct xfs_buftarg *btp)
1810{
1811 /*
1812 * First wait on the buftarg I/O count for all in-flight buffers to be
1813 * released. This is critical as new buffers do not make the LRU until
1814 * they are released.
1815 *
1816 * Next, flush the buffer workqueue to ensure all completion processing
1817 * has finished. Just waiting on buffer locks is not sufficient for
1818 * async IO as the reference count held over IO is not released until
1819 * after the buffer lock is dropped. Hence we need to ensure here that
1820 * all reference counts have been dropped before we start walking the
1821 * LRU list.
1822 */
1823 while (percpu_counter_sum(&btp->bt_io_count))
1824 delay(100);
1825 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1826}
1827
1828void
1829xfs_buftarg_drain(
1830 struct xfs_buftarg *btp)
1831{
1832 LIST_HEAD(dispose);
1833 int loop = 0;
1834 bool write_fail = false;
1835
1836 xfs_buftarg_wait(btp);
1837
1838 /* loop until there is nothing left on the lru list. */
1839 while (list_lru_count(&btp->bt_lru)) {
1840 list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
1841 &dispose, LONG_MAX);
1842
1843 while (!list_empty(&dispose)) {
1844 struct xfs_buf *bp;
1845 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1846 list_del_init(&bp->b_lru);
1847 if (bp->b_flags & XBF_WRITE_FAIL) {
1848 write_fail = true;
1849 xfs_buf_alert_ratelimited(bp,
1850 "XFS: Corruption Alert",
1851"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1852 (long long)xfs_buf_daddr(bp));
1853 }
1854 xfs_buf_rele(bp);
1855 }
1856 if (loop++ != 0)
1857 delay(100);
1858 }
1859
1860 /*
1861 * If one or more failed buffers were freed, that means dirty metadata
1862 * was thrown away. This should only ever happen after I/O completion
1863 * handling has elevated I/O error(s) to permanent failures and shuts
1864 * down the journal.
1865 */
1866 if (write_fail) {
1867 ASSERT(xlog_is_shutdown(btp->bt_mount->m_log));
1868 xfs_alert(btp->bt_mount,
1869 "Please run xfs_repair to determine the extent of the problem.");
1870 }
1871}
1872
1873static enum lru_status
1874xfs_buftarg_isolate(
1875 struct list_head *item,
1876 struct list_lru_one *lru,
1877 spinlock_t *lru_lock,
1878 void *arg)
1879{
1880 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1881 struct list_head *dispose = arg;
1882
1883 /*
1884 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1885 * If we fail to get the lock, just skip it.
1886 */
1887 if (!spin_trylock(&bp->b_lock))
1888 return LRU_SKIP;
1889 /*
1890 * Decrement the b_lru_ref count unless the value is already
1891 * zero. If the value is already zero, we need to reclaim the
1892 * buffer, otherwise it gets another trip through the LRU.
1893 */
1894 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1895 spin_unlock(&bp->b_lock);
1896 return LRU_ROTATE;
1897 }
1898
1899 bp->b_state |= XFS_BSTATE_DISPOSE;
1900 list_lru_isolate_move(lru, item, dispose);
1901 spin_unlock(&bp->b_lock);
1902 return LRU_REMOVED;
1903}
1904
1905static unsigned long
1906xfs_buftarg_shrink_scan(
1907 struct shrinker *shrink,
1908 struct shrink_control *sc)
1909{
1910 struct xfs_buftarg *btp = container_of(shrink,
1911 struct xfs_buftarg, bt_shrinker);
1912 LIST_HEAD(dispose);
1913 unsigned long freed;
1914
1915 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1916 xfs_buftarg_isolate, &dispose);
1917
1918 while (!list_empty(&dispose)) {
1919 struct xfs_buf *bp;
1920 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1921 list_del_init(&bp->b_lru);
1922 xfs_buf_rele(bp);
1923 }
1924
1925 return freed;
1926}
1927
1928static unsigned long
1929xfs_buftarg_shrink_count(
1930 struct shrinker *shrink,
1931 struct shrink_control *sc)
1932{
1933 struct xfs_buftarg *btp = container_of(shrink,
1934 struct xfs_buftarg, bt_shrinker);
1935 return list_lru_shrink_count(&btp->bt_lru, sc);
1936}
1937
1938void
1939xfs_free_buftarg(
1940 struct xfs_buftarg *btp)
1941{
1942 unregister_shrinker(&btp->bt_shrinker);
1943 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1944 percpu_counter_destroy(&btp->bt_io_count);
1945 list_lru_destroy(&btp->bt_lru);
1946
1947 blkdev_issue_flush(btp->bt_bdev);
1948 invalidate_bdev(btp->bt_bdev);
1949 fs_put_dax(btp->bt_daxdev, btp->bt_mount);
1950
1951 kmem_free(btp);
1952}
1953
1954int
1955xfs_setsize_buftarg(
1956 xfs_buftarg_t *btp,
1957 unsigned int sectorsize)
1958{
1959 /* Set up metadata sector size info */
1960 btp->bt_meta_sectorsize = sectorsize;
1961 btp->bt_meta_sectormask = sectorsize - 1;
1962
1963 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1964 xfs_warn(btp->bt_mount,
1965 "Cannot set_blocksize to %u on device %pg",
1966 sectorsize, btp->bt_bdev);
1967 return -EINVAL;
1968 }
1969
1970 /* Set up device logical sector size mask */
1971 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1972 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1973
1974 return 0;
1975}
1976
1977/*
1978 * When allocating the initial buffer target we have not yet
1979 * read in the superblock, so don't know what sized sectors
1980 * are being used at this early stage. Play safe.
1981 */
1982STATIC int
1983xfs_setsize_buftarg_early(
1984 xfs_buftarg_t *btp,
1985 struct block_device *bdev)
1986{
1987 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1988}
1989
1990struct xfs_buftarg *
1991xfs_alloc_buftarg(
1992 struct xfs_mount *mp,
1993 struct block_device *bdev)
1994{
1995 xfs_buftarg_t *btp;
1996 const struct dax_holder_operations *ops = NULL;
1997
1998#if defined(CONFIG_FS_DAX) && defined(CONFIG_MEMORY_FAILURE)
1999 ops = &xfs_dax_holder_operations;
2000#endif
2001 btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
2002
2003 btp->bt_mount = mp;
2004 btp->bt_dev = bdev->bd_dev;
2005 btp->bt_bdev = bdev;
2006 btp->bt_daxdev = fs_dax_get_by_bdev(bdev, &btp->bt_dax_part_off,
2007 mp, ops);
2008
2009 /*
2010 * Buffer IO error rate limiting. Limit it to no more than 10 messages
2011 * per 30 seconds so as to not spam logs too much on repeated errors.
2012 */
2013 ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
2014 DEFAULT_RATELIMIT_BURST);
2015
2016 if (xfs_setsize_buftarg_early(btp, bdev))
2017 goto error_free;
2018
2019 if (list_lru_init(&btp->bt_lru))
2020 goto error_free;
2021
2022 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
2023 goto error_lru;
2024
2025 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
2026 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
2027 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
2028 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
2029 if (register_shrinker(&btp->bt_shrinker, "xfs-buf:%s",
2030 mp->m_super->s_id))
2031 goto error_pcpu;
2032 return btp;
2033
2034error_pcpu:
2035 percpu_counter_destroy(&btp->bt_io_count);
2036error_lru:
2037 list_lru_destroy(&btp->bt_lru);
2038error_free:
2039 kmem_free(btp);
2040 return NULL;
2041}
2042
2043/*
2044 * Cancel a delayed write list.
2045 *
2046 * Remove each buffer from the list, clear the delwri queue flag and drop the
2047 * associated buffer reference.
2048 */
2049void
2050xfs_buf_delwri_cancel(
2051 struct list_head *list)
2052{
2053 struct xfs_buf *bp;
2054
2055 while (!list_empty(list)) {
2056 bp = list_first_entry(list, struct xfs_buf, b_list);
2057
2058 xfs_buf_lock(bp);
2059 bp->b_flags &= ~_XBF_DELWRI_Q;
2060 list_del_init(&bp->b_list);
2061 xfs_buf_relse(bp);
2062 }
2063}
2064
2065/*
2066 * Add a buffer to the delayed write list.
2067 *
2068 * This queues a buffer for writeout if it hasn't already been. Note that
2069 * neither this routine nor the buffer list submission functions perform
2070 * any internal synchronization. It is expected that the lists are thread-local
2071 * to the callers.
2072 *
2073 * Returns true if we queued up the buffer, or false if it already had
2074 * been on the buffer list.
2075 */
2076bool
2077xfs_buf_delwri_queue(
2078 struct xfs_buf *bp,
2079 struct list_head *list)
2080{
2081 ASSERT(xfs_buf_islocked(bp));
2082 ASSERT(!(bp->b_flags & XBF_READ));
2083
2084 /*
2085 * If the buffer is already marked delwri it already is queued up
2086 * by someone else for imediate writeout. Just ignore it in that
2087 * case.
2088 */
2089 if (bp->b_flags & _XBF_DELWRI_Q) {
2090 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
2091 return false;
2092 }
2093
2094 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
2095
2096 /*
2097 * If a buffer gets written out synchronously or marked stale while it
2098 * is on a delwri list we lazily remove it. To do this, the other party
2099 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2100 * It remains referenced and on the list. In a rare corner case it
2101 * might get readded to a delwri list after the synchronous writeout, in
2102 * which case we need just need to re-add the flag here.
2103 */
2104 bp->b_flags |= _XBF_DELWRI_Q;
2105 if (list_empty(&bp->b_list)) {
2106 atomic_inc(&bp->b_hold);
2107 list_add_tail(&bp->b_list, list);
2108 }
2109
2110 return true;
2111}
2112
2113/*
2114 * Compare function is more complex than it needs to be because
2115 * the return value is only 32 bits and we are doing comparisons
2116 * on 64 bit values
2117 */
2118static int
2119xfs_buf_cmp(
2120 void *priv,
2121 const struct list_head *a,
2122 const struct list_head *b)
2123{
2124 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
2125 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
2126 xfs_daddr_t diff;
2127
2128 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
2129 if (diff < 0)
2130 return -1;
2131 if (diff > 0)
2132 return 1;
2133 return 0;
2134}
2135
2136/*
2137 * Submit buffers for write. If wait_list is specified, the buffers are
2138 * submitted using sync I/O and placed on the wait list such that the caller can
2139 * iowait each buffer. Otherwise async I/O is used and the buffers are released
2140 * at I/O completion time. In either case, buffers remain locked until I/O
2141 * completes and the buffer is released from the queue.
2142 */
2143static int
2144xfs_buf_delwri_submit_buffers(
2145 struct list_head *buffer_list,
2146 struct list_head *wait_list)
2147{
2148 struct xfs_buf *bp, *n;
2149 int pinned = 0;
2150 struct blk_plug plug;
2151
2152 list_sort(NULL, buffer_list, xfs_buf_cmp);
2153
2154 blk_start_plug(&plug);
2155 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2156 if (!wait_list) {
2157 if (!xfs_buf_trylock(bp))
2158 continue;
2159 if (xfs_buf_ispinned(bp)) {
2160 xfs_buf_unlock(bp);
2161 pinned++;
2162 continue;
2163 }
2164 } else {
2165 xfs_buf_lock(bp);
2166 }
2167
2168 /*
2169 * Someone else might have written the buffer synchronously or
2170 * marked it stale in the meantime. In that case only the
2171 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2172 * reference and remove it from the list here.
2173 */
2174 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2175 list_del_init(&bp->b_list);
2176 xfs_buf_relse(bp);
2177 continue;
2178 }
2179
2180 trace_xfs_buf_delwri_split(bp, _RET_IP_);
2181
2182 /*
2183 * If we have a wait list, each buffer (and associated delwri
2184 * queue reference) transfers to it and is submitted
2185 * synchronously. Otherwise, drop the buffer from the delwri
2186 * queue and submit async.
2187 */
2188 bp->b_flags &= ~_XBF_DELWRI_Q;
2189 bp->b_flags |= XBF_WRITE;
2190 if (wait_list) {
2191 bp->b_flags &= ~XBF_ASYNC;
2192 list_move_tail(&bp->b_list, wait_list);
2193 } else {
2194 bp->b_flags |= XBF_ASYNC;
2195 list_del_init(&bp->b_list);
2196 }
2197 __xfs_buf_submit(bp, false);
2198 }
2199 blk_finish_plug(&plug);
2200
2201 return pinned;
2202}
2203
2204/*
2205 * Write out a buffer list asynchronously.
2206 *
2207 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2208 * out and not wait for I/O completion on any of the buffers. This interface
2209 * is only safely useable for callers that can track I/O completion by higher
2210 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2211 * function.
2212 *
2213 * Note: this function will skip buffers it would block on, and in doing so
2214 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2215 * it is up to the caller to ensure that the buffer list is fully submitted or
2216 * cancelled appropriately when they are finished with the list. Failure to
2217 * cancel or resubmit the list until it is empty will result in leaked buffers
2218 * at unmount time.
2219 */
2220int
2221xfs_buf_delwri_submit_nowait(
2222 struct list_head *buffer_list)
2223{
2224 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2225}
2226
2227/*
2228 * Write out a buffer list synchronously.
2229 *
2230 * This will take the @buffer_list, write all buffers out and wait for I/O
2231 * completion on all of the buffers. @buffer_list is consumed by the function,
2232 * so callers must have some other way of tracking buffers if they require such
2233 * functionality.
2234 */
2235int
2236xfs_buf_delwri_submit(
2237 struct list_head *buffer_list)
2238{
2239 LIST_HEAD (wait_list);
2240 int error = 0, error2;
2241 struct xfs_buf *bp;
2242
2243 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2244
2245 /* Wait for IO to complete. */
2246 while (!list_empty(&wait_list)) {
2247 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2248
2249 list_del_init(&bp->b_list);
2250
2251 /*
2252 * Wait on the locked buffer, check for errors and unlock and
2253 * release the delwri queue reference.
2254 */
2255 error2 = xfs_buf_iowait(bp);
2256 xfs_buf_relse(bp);
2257 if (!error)
2258 error = error2;
2259 }
2260
2261 return error;
2262}
2263
2264/*
2265 * Push a single buffer on a delwri queue.
2266 *
2267 * The purpose of this function is to submit a single buffer of a delwri queue
2268 * and return with the buffer still on the original queue. The waiting delwri
2269 * buffer submission infrastructure guarantees transfer of the delwri queue
2270 * buffer reference to a temporary wait list. We reuse this infrastructure to
2271 * transfer the buffer back to the original queue.
2272 *
2273 * Note the buffer transitions from the queued state, to the submitted and wait
2274 * listed state and back to the queued state during this call. The buffer
2275 * locking and queue management logic between _delwri_pushbuf() and
2276 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2277 * before returning.
2278 */
2279int
2280xfs_buf_delwri_pushbuf(
2281 struct xfs_buf *bp,
2282 struct list_head *buffer_list)
2283{
2284 LIST_HEAD (submit_list);
2285 int error;
2286
2287 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2288
2289 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2290
2291 /*
2292 * Isolate the buffer to a new local list so we can submit it for I/O
2293 * independently from the rest of the original list.
2294 */
2295 xfs_buf_lock(bp);
2296 list_move(&bp->b_list, &submit_list);
2297 xfs_buf_unlock(bp);
2298
2299 /*
2300 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2301 * the buffer on the wait list with the original reference. Rather than
2302 * bounce the buffer from a local wait list back to the original list
2303 * after I/O completion, reuse the original list as the wait list.
2304 */
2305 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2306
2307 /*
2308 * The buffer is now locked, under I/O and wait listed on the original
2309 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2310 * return with the buffer unlocked and on the original queue.
2311 */
2312 error = xfs_buf_iowait(bp);
2313 bp->b_flags |= _XBF_DELWRI_Q;
2314 xfs_buf_unlock(bp);
2315
2316 return error;
2317}
2318
2319void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2320{
2321 /*
2322 * Set the lru reference count to 0 based on the error injection tag.
2323 * This allows userspace to disrupt buffer caching for debug/testing
2324 * purposes.
2325 */
2326 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2327 lru_ref = 0;
2328
2329 atomic_set(&bp->b_lru_ref, lru_ref);
2330}
2331
2332/*
2333 * Verify an on-disk magic value against the magic value specified in the
2334 * verifier structure. The verifier magic is in disk byte order so the caller is
2335 * expected to pass the value directly from disk.
2336 */
2337bool
2338xfs_verify_magic(
2339 struct xfs_buf *bp,
2340 __be32 dmagic)
2341{
2342 struct xfs_mount *mp = bp->b_mount;
2343 int idx;
2344
2345 idx = xfs_has_crc(mp);
2346 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2347 return false;
2348 return dmagic == bp->b_ops->magic[idx];
2349}
2350/*
2351 * Verify an on-disk magic value against the magic value specified in the
2352 * verifier structure. The verifier magic is in disk byte order so the caller is
2353 * expected to pass the value directly from disk.
2354 */
2355bool
2356xfs_verify_magic16(
2357 struct xfs_buf *bp,
2358 __be16 dmagic)
2359{
2360 struct xfs_mount *mp = bp->b_mount;
2361 int idx;
2362
2363 idx = xfs_has_crc(mp);
2364 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2365 return false;
2366 return dmagic == bp->b_ops->magic16[idx];
2367}
1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include <linux/stddef.h>
20#include <linux/errno.h>
21#include <linux/gfp.h>
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
32#include <linux/kthread.h>
33#include <linux/migrate.h>
34#include <linux/backing-dev.h>
35#include <linux/freezer.h>
36
37#include "xfs_format.h"
38#include "xfs_log_format.h"
39#include "xfs_trans_resv.h"
40#include "xfs_sb.h"
41#include "xfs_mount.h"
42#include "xfs_trace.h"
43#include "xfs_log.h"
44
45static kmem_zone_t *xfs_buf_zone;
46
47#ifdef XFS_BUF_LOCK_TRACKING
48# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
51#else
52# define XB_SET_OWNER(bp) do { } while (0)
53# define XB_CLEAR_OWNER(bp) do { } while (0)
54# define XB_GET_OWNER(bp) do { } while (0)
55#endif
56
57#define xb_to_gfp(flags) \
58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
59
60
61static inline int
62xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64{
65 /*
66 * Return true if the buffer is vmapped.
67 *
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
71 */
72 return bp->b_addr && bp->b_page_count > 1;
73}
74
75static inline int
76xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78{
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80}
81
82/*
83 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
84 * this buffer. The count is incremented once per buffer (per hold cycle)
85 * because the corresponding decrement is deferred to buffer release. Buffers
86 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
87 * tracking adds unnecessary overhead. This is used for sychronization purposes
88 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
89 * in-flight buffers.
90 *
91 * Buffers that are never released (e.g., superblock, iclog buffers) must set
92 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
93 * never reaches zero and unmount hangs indefinitely.
94 */
95static inline void
96xfs_buf_ioacct_inc(
97 struct xfs_buf *bp)
98{
99 if (bp->b_flags & (XBF_NO_IOACCT|_XBF_IN_FLIGHT))
100 return;
101
102 ASSERT(bp->b_flags & XBF_ASYNC);
103 bp->b_flags |= _XBF_IN_FLIGHT;
104 percpu_counter_inc(&bp->b_target->bt_io_count);
105}
106
107/*
108 * Clear the in-flight state on a buffer about to be released to the LRU or
109 * freed and unaccount from the buftarg.
110 */
111static inline void
112xfs_buf_ioacct_dec(
113 struct xfs_buf *bp)
114{
115 if (!(bp->b_flags & _XBF_IN_FLIGHT))
116 return;
117
118 bp->b_flags &= ~_XBF_IN_FLIGHT;
119 percpu_counter_dec(&bp->b_target->bt_io_count);
120}
121
122/*
123 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
124 * b_lru_ref count so that the buffer is freed immediately when the buffer
125 * reference count falls to zero. If the buffer is already on the LRU, we need
126 * to remove the reference that LRU holds on the buffer.
127 *
128 * This prevents build-up of stale buffers on the LRU.
129 */
130void
131xfs_buf_stale(
132 struct xfs_buf *bp)
133{
134 ASSERT(xfs_buf_islocked(bp));
135
136 bp->b_flags |= XBF_STALE;
137
138 /*
139 * Clear the delwri status so that a delwri queue walker will not
140 * flush this buffer to disk now that it is stale. The delwri queue has
141 * a reference to the buffer, so this is safe to do.
142 */
143 bp->b_flags &= ~_XBF_DELWRI_Q;
144
145 /*
146 * Once the buffer is marked stale and unlocked, a subsequent lookup
147 * could reset b_flags. There is no guarantee that the buffer is
148 * unaccounted (released to LRU) before that occurs. Drop in-flight
149 * status now to preserve accounting consistency.
150 */
151 xfs_buf_ioacct_dec(bp);
152
153 spin_lock(&bp->b_lock);
154 atomic_set(&bp->b_lru_ref, 0);
155 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
156 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
157 atomic_dec(&bp->b_hold);
158
159 ASSERT(atomic_read(&bp->b_hold) >= 1);
160 spin_unlock(&bp->b_lock);
161}
162
163static int
164xfs_buf_get_maps(
165 struct xfs_buf *bp,
166 int map_count)
167{
168 ASSERT(bp->b_maps == NULL);
169 bp->b_map_count = map_count;
170
171 if (map_count == 1) {
172 bp->b_maps = &bp->__b_map;
173 return 0;
174 }
175
176 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
177 KM_NOFS);
178 if (!bp->b_maps)
179 return -ENOMEM;
180 return 0;
181}
182
183/*
184 * Frees b_pages if it was allocated.
185 */
186static void
187xfs_buf_free_maps(
188 struct xfs_buf *bp)
189{
190 if (bp->b_maps != &bp->__b_map) {
191 kmem_free(bp->b_maps);
192 bp->b_maps = NULL;
193 }
194}
195
196struct xfs_buf *
197_xfs_buf_alloc(
198 struct xfs_buftarg *target,
199 struct xfs_buf_map *map,
200 int nmaps,
201 xfs_buf_flags_t flags)
202{
203 struct xfs_buf *bp;
204 int error;
205 int i;
206
207 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
208 if (unlikely(!bp))
209 return NULL;
210
211 /*
212 * We don't want certain flags to appear in b_flags unless they are
213 * specifically set by later operations on the buffer.
214 */
215 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
216
217 atomic_set(&bp->b_hold, 1);
218 atomic_set(&bp->b_lru_ref, 1);
219 init_completion(&bp->b_iowait);
220 INIT_LIST_HEAD(&bp->b_lru);
221 INIT_LIST_HEAD(&bp->b_list);
222 sema_init(&bp->b_sema, 0); /* held, no waiters */
223 spin_lock_init(&bp->b_lock);
224 XB_SET_OWNER(bp);
225 bp->b_target = target;
226 bp->b_flags = flags;
227
228 /*
229 * Set length and io_length to the same value initially.
230 * I/O routines should use io_length, which will be the same in
231 * most cases but may be reset (e.g. XFS recovery).
232 */
233 error = xfs_buf_get_maps(bp, nmaps);
234 if (error) {
235 kmem_zone_free(xfs_buf_zone, bp);
236 return NULL;
237 }
238
239 bp->b_bn = map[0].bm_bn;
240 bp->b_length = 0;
241 for (i = 0; i < nmaps; i++) {
242 bp->b_maps[i].bm_bn = map[i].bm_bn;
243 bp->b_maps[i].bm_len = map[i].bm_len;
244 bp->b_length += map[i].bm_len;
245 }
246 bp->b_io_length = bp->b_length;
247
248 atomic_set(&bp->b_pin_count, 0);
249 init_waitqueue_head(&bp->b_waiters);
250
251 XFS_STATS_INC(target->bt_mount, xb_create);
252 trace_xfs_buf_init(bp, _RET_IP_);
253
254 return bp;
255}
256
257/*
258 * Allocate a page array capable of holding a specified number
259 * of pages, and point the page buf at it.
260 */
261STATIC int
262_xfs_buf_get_pages(
263 xfs_buf_t *bp,
264 int page_count)
265{
266 /* Make sure that we have a page list */
267 if (bp->b_pages == NULL) {
268 bp->b_page_count = page_count;
269 if (page_count <= XB_PAGES) {
270 bp->b_pages = bp->b_page_array;
271 } else {
272 bp->b_pages = kmem_alloc(sizeof(struct page *) *
273 page_count, KM_NOFS);
274 if (bp->b_pages == NULL)
275 return -ENOMEM;
276 }
277 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
278 }
279 return 0;
280}
281
282/*
283 * Frees b_pages if it was allocated.
284 */
285STATIC void
286_xfs_buf_free_pages(
287 xfs_buf_t *bp)
288{
289 if (bp->b_pages != bp->b_page_array) {
290 kmem_free(bp->b_pages);
291 bp->b_pages = NULL;
292 }
293}
294
295/*
296 * Releases the specified buffer.
297 *
298 * The modification state of any associated pages is left unchanged.
299 * The buffer must not be on any hash - use xfs_buf_rele instead for
300 * hashed and refcounted buffers
301 */
302void
303xfs_buf_free(
304 xfs_buf_t *bp)
305{
306 trace_xfs_buf_free(bp, _RET_IP_);
307
308 ASSERT(list_empty(&bp->b_lru));
309
310 if (bp->b_flags & _XBF_PAGES) {
311 uint i;
312
313 if (xfs_buf_is_vmapped(bp))
314 vm_unmap_ram(bp->b_addr - bp->b_offset,
315 bp->b_page_count);
316
317 for (i = 0; i < bp->b_page_count; i++) {
318 struct page *page = bp->b_pages[i];
319
320 __free_page(page);
321 }
322 } else if (bp->b_flags & _XBF_KMEM)
323 kmem_free(bp->b_addr);
324 _xfs_buf_free_pages(bp);
325 xfs_buf_free_maps(bp);
326 kmem_zone_free(xfs_buf_zone, bp);
327}
328
329/*
330 * Allocates all the pages for buffer in question and builds it's page list.
331 */
332STATIC int
333xfs_buf_allocate_memory(
334 xfs_buf_t *bp,
335 uint flags)
336{
337 size_t size;
338 size_t nbytes, offset;
339 gfp_t gfp_mask = xb_to_gfp(flags);
340 unsigned short page_count, i;
341 xfs_off_t start, end;
342 int error;
343
344 /*
345 * for buffers that are contained within a single page, just allocate
346 * the memory from the heap - there's no need for the complexity of
347 * page arrays to keep allocation down to order 0.
348 */
349 size = BBTOB(bp->b_length);
350 if (size < PAGE_SIZE) {
351 bp->b_addr = kmem_alloc(size, KM_NOFS);
352 if (!bp->b_addr) {
353 /* low memory - use alloc_page loop instead */
354 goto use_alloc_page;
355 }
356
357 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
358 ((unsigned long)bp->b_addr & PAGE_MASK)) {
359 /* b_addr spans two pages - use alloc_page instead */
360 kmem_free(bp->b_addr);
361 bp->b_addr = NULL;
362 goto use_alloc_page;
363 }
364 bp->b_offset = offset_in_page(bp->b_addr);
365 bp->b_pages = bp->b_page_array;
366 bp->b_pages[0] = virt_to_page(bp->b_addr);
367 bp->b_page_count = 1;
368 bp->b_flags |= _XBF_KMEM;
369 return 0;
370 }
371
372use_alloc_page:
373 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
374 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
375 >> PAGE_SHIFT;
376 page_count = end - start;
377 error = _xfs_buf_get_pages(bp, page_count);
378 if (unlikely(error))
379 return error;
380
381 offset = bp->b_offset;
382 bp->b_flags |= _XBF_PAGES;
383
384 for (i = 0; i < bp->b_page_count; i++) {
385 struct page *page;
386 uint retries = 0;
387retry:
388 page = alloc_page(gfp_mask);
389 if (unlikely(page == NULL)) {
390 if (flags & XBF_READ_AHEAD) {
391 bp->b_page_count = i;
392 error = -ENOMEM;
393 goto out_free_pages;
394 }
395
396 /*
397 * This could deadlock.
398 *
399 * But until all the XFS lowlevel code is revamped to
400 * handle buffer allocation failures we can't do much.
401 */
402 if (!(++retries % 100))
403 xfs_err(NULL,
404 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
405 current->comm, current->pid,
406 __func__, gfp_mask);
407
408 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
409 congestion_wait(BLK_RW_ASYNC, HZ/50);
410 goto retry;
411 }
412
413 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
414
415 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
416 size -= nbytes;
417 bp->b_pages[i] = page;
418 offset = 0;
419 }
420 return 0;
421
422out_free_pages:
423 for (i = 0; i < bp->b_page_count; i++)
424 __free_page(bp->b_pages[i]);
425 bp->b_flags &= ~_XBF_PAGES;
426 return error;
427}
428
429/*
430 * Map buffer into kernel address-space if necessary.
431 */
432STATIC int
433_xfs_buf_map_pages(
434 xfs_buf_t *bp,
435 uint flags)
436{
437 ASSERT(bp->b_flags & _XBF_PAGES);
438 if (bp->b_page_count == 1) {
439 /* A single page buffer is always mappable */
440 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
441 } else if (flags & XBF_UNMAPPED) {
442 bp->b_addr = NULL;
443 } else {
444 int retried = 0;
445 unsigned noio_flag;
446
447 /*
448 * vm_map_ram() will allocate auxillary structures (e.g.
449 * pagetables) with GFP_KERNEL, yet we are likely to be under
450 * GFP_NOFS context here. Hence we need to tell memory reclaim
451 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
452 * memory reclaim re-entering the filesystem here and
453 * potentially deadlocking.
454 */
455 noio_flag = memalloc_noio_save();
456 do {
457 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
458 -1, PAGE_KERNEL);
459 if (bp->b_addr)
460 break;
461 vm_unmap_aliases();
462 } while (retried++ <= 1);
463 memalloc_noio_restore(noio_flag);
464
465 if (!bp->b_addr)
466 return -ENOMEM;
467 bp->b_addr += bp->b_offset;
468 }
469
470 return 0;
471}
472
473/*
474 * Finding and Reading Buffers
475 */
476static int
477_xfs_buf_obj_cmp(
478 struct rhashtable_compare_arg *arg,
479 const void *obj)
480{
481 const struct xfs_buf_map *map = arg->key;
482 const struct xfs_buf *bp = obj;
483
484 /*
485 * The key hashing in the lookup path depends on the key being the
486 * first element of the compare_arg, make sure to assert this.
487 */
488 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
489
490 if (bp->b_bn != map->bm_bn)
491 return 1;
492
493 if (unlikely(bp->b_length != map->bm_len)) {
494 /*
495 * found a block number match. If the range doesn't
496 * match, the only way this is allowed is if the buffer
497 * in the cache is stale and the transaction that made
498 * it stale has not yet committed. i.e. we are
499 * reallocating a busy extent. Skip this buffer and
500 * continue searching for an exact match.
501 */
502 ASSERT(bp->b_flags & XBF_STALE);
503 return 1;
504 }
505 return 0;
506}
507
508static const struct rhashtable_params xfs_buf_hash_params = {
509 .min_size = 32, /* empty AGs have minimal footprint */
510 .nelem_hint = 16,
511 .key_len = sizeof(xfs_daddr_t),
512 .key_offset = offsetof(struct xfs_buf, b_bn),
513 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
514 .automatic_shrinking = true,
515 .obj_cmpfn = _xfs_buf_obj_cmp,
516};
517
518int
519xfs_buf_hash_init(
520 struct xfs_perag *pag)
521{
522 spin_lock_init(&pag->pag_buf_lock);
523 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
524}
525
526void
527xfs_buf_hash_destroy(
528 struct xfs_perag *pag)
529{
530 rhashtable_destroy(&pag->pag_buf_hash);
531}
532
533/*
534 * Look up, and creates if absent, a lockable buffer for
535 * a given range of an inode. The buffer is returned
536 * locked. No I/O is implied by this call.
537 */
538xfs_buf_t *
539_xfs_buf_find(
540 struct xfs_buftarg *btp,
541 struct xfs_buf_map *map,
542 int nmaps,
543 xfs_buf_flags_t flags,
544 xfs_buf_t *new_bp)
545{
546 struct xfs_perag *pag;
547 xfs_buf_t *bp;
548 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
549 xfs_daddr_t eofs;
550 int i;
551
552 for (i = 0; i < nmaps; i++)
553 cmap.bm_len += map[i].bm_len;
554
555 /* Check for IOs smaller than the sector size / not sector aligned */
556 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
557 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
558
559 /*
560 * Corrupted block numbers can get through to here, unfortunately, so we
561 * have to check that the buffer falls within the filesystem bounds.
562 */
563 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
564 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
565 /*
566 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
567 * but none of the higher level infrastructure supports
568 * returning a specific error on buffer lookup failures.
569 */
570 xfs_alert(btp->bt_mount,
571 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
572 __func__, cmap.bm_bn, eofs);
573 WARN_ON(1);
574 return NULL;
575 }
576
577 pag = xfs_perag_get(btp->bt_mount,
578 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
579
580 spin_lock(&pag->pag_buf_lock);
581 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
582 xfs_buf_hash_params);
583 if (bp) {
584 atomic_inc(&bp->b_hold);
585 goto found;
586 }
587
588 /* No match found */
589 if (new_bp) {
590 /* the buffer keeps the perag reference until it is freed */
591 new_bp->b_pag = pag;
592 rhashtable_insert_fast(&pag->pag_buf_hash,
593 &new_bp->b_rhash_head,
594 xfs_buf_hash_params);
595 spin_unlock(&pag->pag_buf_lock);
596 } else {
597 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
598 spin_unlock(&pag->pag_buf_lock);
599 xfs_perag_put(pag);
600 }
601 return new_bp;
602
603found:
604 spin_unlock(&pag->pag_buf_lock);
605 xfs_perag_put(pag);
606
607 if (!xfs_buf_trylock(bp)) {
608 if (flags & XBF_TRYLOCK) {
609 xfs_buf_rele(bp);
610 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
611 return NULL;
612 }
613 xfs_buf_lock(bp);
614 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
615 }
616
617 /*
618 * if the buffer is stale, clear all the external state associated with
619 * it. We need to keep flags such as how we allocated the buffer memory
620 * intact here.
621 */
622 if (bp->b_flags & XBF_STALE) {
623 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
624 ASSERT(bp->b_iodone == NULL);
625 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
626 bp->b_ops = NULL;
627 }
628
629 trace_xfs_buf_find(bp, flags, _RET_IP_);
630 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
631 return bp;
632}
633
634/*
635 * Assembles a buffer covering the specified range. The code is optimised for
636 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
637 * more hits than misses.
638 */
639struct xfs_buf *
640xfs_buf_get_map(
641 struct xfs_buftarg *target,
642 struct xfs_buf_map *map,
643 int nmaps,
644 xfs_buf_flags_t flags)
645{
646 struct xfs_buf *bp;
647 struct xfs_buf *new_bp;
648 int error = 0;
649
650 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
651 if (likely(bp))
652 goto found;
653
654 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
655 if (unlikely(!new_bp))
656 return NULL;
657
658 error = xfs_buf_allocate_memory(new_bp, flags);
659 if (error) {
660 xfs_buf_free(new_bp);
661 return NULL;
662 }
663
664 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
665 if (!bp) {
666 xfs_buf_free(new_bp);
667 return NULL;
668 }
669
670 if (bp != new_bp)
671 xfs_buf_free(new_bp);
672
673found:
674 if (!bp->b_addr) {
675 error = _xfs_buf_map_pages(bp, flags);
676 if (unlikely(error)) {
677 xfs_warn(target->bt_mount,
678 "%s: failed to map pagesn", __func__);
679 xfs_buf_relse(bp);
680 return NULL;
681 }
682 }
683
684 /*
685 * Clear b_error if this is a lookup from a caller that doesn't expect
686 * valid data to be found in the buffer.
687 */
688 if (!(flags & XBF_READ))
689 xfs_buf_ioerror(bp, 0);
690
691 XFS_STATS_INC(target->bt_mount, xb_get);
692 trace_xfs_buf_get(bp, flags, _RET_IP_);
693 return bp;
694}
695
696STATIC int
697_xfs_buf_read(
698 xfs_buf_t *bp,
699 xfs_buf_flags_t flags)
700{
701 ASSERT(!(flags & XBF_WRITE));
702 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
703
704 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
705 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
706
707 if (flags & XBF_ASYNC) {
708 xfs_buf_submit(bp);
709 return 0;
710 }
711 return xfs_buf_submit_wait(bp);
712}
713
714xfs_buf_t *
715xfs_buf_read_map(
716 struct xfs_buftarg *target,
717 struct xfs_buf_map *map,
718 int nmaps,
719 xfs_buf_flags_t flags,
720 const struct xfs_buf_ops *ops)
721{
722 struct xfs_buf *bp;
723
724 flags |= XBF_READ;
725
726 bp = xfs_buf_get_map(target, map, nmaps, flags);
727 if (bp) {
728 trace_xfs_buf_read(bp, flags, _RET_IP_);
729
730 if (!(bp->b_flags & XBF_DONE)) {
731 XFS_STATS_INC(target->bt_mount, xb_get_read);
732 bp->b_ops = ops;
733 _xfs_buf_read(bp, flags);
734 } else if (flags & XBF_ASYNC) {
735 /*
736 * Read ahead call which is already satisfied,
737 * drop the buffer
738 */
739 xfs_buf_relse(bp);
740 return NULL;
741 } else {
742 /* We do not want read in the flags */
743 bp->b_flags &= ~XBF_READ;
744 }
745 }
746
747 return bp;
748}
749
750/*
751 * If we are not low on memory then do the readahead in a deadlock
752 * safe manner.
753 */
754void
755xfs_buf_readahead_map(
756 struct xfs_buftarg *target,
757 struct xfs_buf_map *map,
758 int nmaps,
759 const struct xfs_buf_ops *ops)
760{
761 if (bdi_read_congested(target->bt_bdi))
762 return;
763
764 xfs_buf_read_map(target, map, nmaps,
765 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
766}
767
768/*
769 * Read an uncached buffer from disk. Allocates and returns a locked
770 * buffer containing the disk contents or nothing.
771 */
772int
773xfs_buf_read_uncached(
774 struct xfs_buftarg *target,
775 xfs_daddr_t daddr,
776 size_t numblks,
777 int flags,
778 struct xfs_buf **bpp,
779 const struct xfs_buf_ops *ops)
780{
781 struct xfs_buf *bp;
782
783 *bpp = NULL;
784
785 bp = xfs_buf_get_uncached(target, numblks, flags);
786 if (!bp)
787 return -ENOMEM;
788
789 /* set up the buffer for a read IO */
790 ASSERT(bp->b_map_count == 1);
791 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
792 bp->b_maps[0].bm_bn = daddr;
793 bp->b_flags |= XBF_READ;
794 bp->b_ops = ops;
795
796 xfs_buf_submit_wait(bp);
797 if (bp->b_error) {
798 int error = bp->b_error;
799 xfs_buf_relse(bp);
800 return error;
801 }
802
803 *bpp = bp;
804 return 0;
805}
806
807/*
808 * Return a buffer allocated as an empty buffer and associated to external
809 * memory via xfs_buf_associate_memory() back to it's empty state.
810 */
811void
812xfs_buf_set_empty(
813 struct xfs_buf *bp,
814 size_t numblks)
815{
816 if (bp->b_pages)
817 _xfs_buf_free_pages(bp);
818
819 bp->b_pages = NULL;
820 bp->b_page_count = 0;
821 bp->b_addr = NULL;
822 bp->b_length = numblks;
823 bp->b_io_length = numblks;
824
825 ASSERT(bp->b_map_count == 1);
826 bp->b_bn = XFS_BUF_DADDR_NULL;
827 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
828 bp->b_maps[0].bm_len = bp->b_length;
829}
830
831static inline struct page *
832mem_to_page(
833 void *addr)
834{
835 if ((!is_vmalloc_addr(addr))) {
836 return virt_to_page(addr);
837 } else {
838 return vmalloc_to_page(addr);
839 }
840}
841
842int
843xfs_buf_associate_memory(
844 xfs_buf_t *bp,
845 void *mem,
846 size_t len)
847{
848 int rval;
849 int i = 0;
850 unsigned long pageaddr;
851 unsigned long offset;
852 size_t buflen;
853 int page_count;
854
855 pageaddr = (unsigned long)mem & PAGE_MASK;
856 offset = (unsigned long)mem - pageaddr;
857 buflen = PAGE_ALIGN(len + offset);
858 page_count = buflen >> PAGE_SHIFT;
859
860 /* Free any previous set of page pointers */
861 if (bp->b_pages)
862 _xfs_buf_free_pages(bp);
863
864 bp->b_pages = NULL;
865 bp->b_addr = mem;
866
867 rval = _xfs_buf_get_pages(bp, page_count);
868 if (rval)
869 return rval;
870
871 bp->b_offset = offset;
872
873 for (i = 0; i < bp->b_page_count; i++) {
874 bp->b_pages[i] = mem_to_page((void *)pageaddr);
875 pageaddr += PAGE_SIZE;
876 }
877
878 bp->b_io_length = BTOBB(len);
879 bp->b_length = BTOBB(buflen);
880
881 return 0;
882}
883
884xfs_buf_t *
885xfs_buf_get_uncached(
886 struct xfs_buftarg *target,
887 size_t numblks,
888 int flags)
889{
890 unsigned long page_count;
891 int error, i;
892 struct xfs_buf *bp;
893 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
894
895 /* flags might contain irrelevant bits, pass only what we care about */
896 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
897 if (unlikely(bp == NULL))
898 goto fail;
899
900 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
901 error = _xfs_buf_get_pages(bp, page_count);
902 if (error)
903 goto fail_free_buf;
904
905 for (i = 0; i < page_count; i++) {
906 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
907 if (!bp->b_pages[i])
908 goto fail_free_mem;
909 }
910 bp->b_flags |= _XBF_PAGES;
911
912 error = _xfs_buf_map_pages(bp, 0);
913 if (unlikely(error)) {
914 xfs_warn(target->bt_mount,
915 "%s: failed to map pages", __func__);
916 goto fail_free_mem;
917 }
918
919 trace_xfs_buf_get_uncached(bp, _RET_IP_);
920 return bp;
921
922 fail_free_mem:
923 while (--i >= 0)
924 __free_page(bp->b_pages[i]);
925 _xfs_buf_free_pages(bp);
926 fail_free_buf:
927 xfs_buf_free_maps(bp);
928 kmem_zone_free(xfs_buf_zone, bp);
929 fail:
930 return NULL;
931}
932
933/*
934 * Increment reference count on buffer, to hold the buffer concurrently
935 * with another thread which may release (free) the buffer asynchronously.
936 * Must hold the buffer already to call this function.
937 */
938void
939xfs_buf_hold(
940 xfs_buf_t *bp)
941{
942 trace_xfs_buf_hold(bp, _RET_IP_);
943 atomic_inc(&bp->b_hold);
944}
945
946/*
947 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
948 * placed on LRU or freed (depending on b_lru_ref).
949 */
950void
951xfs_buf_rele(
952 xfs_buf_t *bp)
953{
954 struct xfs_perag *pag = bp->b_pag;
955 bool release;
956 bool freebuf = false;
957
958 trace_xfs_buf_rele(bp, _RET_IP_);
959
960 if (!pag) {
961 ASSERT(list_empty(&bp->b_lru));
962 if (atomic_dec_and_test(&bp->b_hold)) {
963 xfs_buf_ioacct_dec(bp);
964 xfs_buf_free(bp);
965 }
966 return;
967 }
968
969 ASSERT(atomic_read(&bp->b_hold) > 0);
970
971 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
972 spin_lock(&bp->b_lock);
973 if (!release) {
974 /*
975 * Drop the in-flight state if the buffer is already on the LRU
976 * and it holds the only reference. This is racy because we
977 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
978 * ensures the decrement occurs only once per-buf.
979 */
980 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
981 xfs_buf_ioacct_dec(bp);
982 goto out_unlock;
983 }
984
985 /* the last reference has been dropped ... */
986 xfs_buf_ioacct_dec(bp);
987 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
988 /*
989 * If the buffer is added to the LRU take a new reference to the
990 * buffer for the LRU and clear the (now stale) dispose list
991 * state flag
992 */
993 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
994 bp->b_state &= ~XFS_BSTATE_DISPOSE;
995 atomic_inc(&bp->b_hold);
996 }
997 spin_unlock(&pag->pag_buf_lock);
998 } else {
999 /*
1000 * most of the time buffers will already be removed from the
1001 * LRU, so optimise that case by checking for the
1002 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1003 * was on was the disposal list
1004 */
1005 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1006 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1007 } else {
1008 ASSERT(list_empty(&bp->b_lru));
1009 }
1010
1011 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1012 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1013 xfs_buf_hash_params);
1014 spin_unlock(&pag->pag_buf_lock);
1015 xfs_perag_put(pag);
1016 freebuf = true;
1017 }
1018
1019out_unlock:
1020 spin_unlock(&bp->b_lock);
1021
1022 if (freebuf)
1023 xfs_buf_free(bp);
1024}
1025
1026
1027/*
1028 * Lock a buffer object, if it is not already locked.
1029 *
1030 * If we come across a stale, pinned, locked buffer, we know that we are
1031 * being asked to lock a buffer that has been reallocated. Because it is
1032 * pinned, we know that the log has not been pushed to disk and hence it
1033 * will still be locked. Rather than continuing to have trylock attempts
1034 * fail until someone else pushes the log, push it ourselves before
1035 * returning. This means that the xfsaild will not get stuck trying
1036 * to push on stale inode buffers.
1037 */
1038int
1039xfs_buf_trylock(
1040 struct xfs_buf *bp)
1041{
1042 int locked;
1043
1044 locked = down_trylock(&bp->b_sema) == 0;
1045 if (locked) {
1046 XB_SET_OWNER(bp);
1047 trace_xfs_buf_trylock(bp, _RET_IP_);
1048 } else {
1049 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1050 }
1051 return locked;
1052}
1053
1054/*
1055 * Lock a buffer object.
1056 *
1057 * If we come across a stale, pinned, locked buffer, we know that we
1058 * are being asked to lock a buffer that has been reallocated. Because
1059 * it is pinned, we know that the log has not been pushed to disk and
1060 * hence it will still be locked. Rather than sleeping until someone
1061 * else pushes the log, push it ourselves before trying to get the lock.
1062 */
1063void
1064xfs_buf_lock(
1065 struct xfs_buf *bp)
1066{
1067 trace_xfs_buf_lock(bp, _RET_IP_);
1068
1069 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1070 xfs_log_force(bp->b_target->bt_mount, 0);
1071 down(&bp->b_sema);
1072 XB_SET_OWNER(bp);
1073
1074 trace_xfs_buf_lock_done(bp, _RET_IP_);
1075}
1076
1077void
1078xfs_buf_unlock(
1079 struct xfs_buf *bp)
1080{
1081 XB_CLEAR_OWNER(bp);
1082 up(&bp->b_sema);
1083
1084 trace_xfs_buf_unlock(bp, _RET_IP_);
1085}
1086
1087STATIC void
1088xfs_buf_wait_unpin(
1089 xfs_buf_t *bp)
1090{
1091 DECLARE_WAITQUEUE (wait, current);
1092
1093 if (atomic_read(&bp->b_pin_count) == 0)
1094 return;
1095
1096 add_wait_queue(&bp->b_waiters, &wait);
1097 for (;;) {
1098 set_current_state(TASK_UNINTERRUPTIBLE);
1099 if (atomic_read(&bp->b_pin_count) == 0)
1100 break;
1101 io_schedule();
1102 }
1103 remove_wait_queue(&bp->b_waiters, &wait);
1104 set_current_state(TASK_RUNNING);
1105}
1106
1107/*
1108 * Buffer Utility Routines
1109 */
1110
1111void
1112xfs_buf_ioend(
1113 struct xfs_buf *bp)
1114{
1115 bool read = bp->b_flags & XBF_READ;
1116
1117 trace_xfs_buf_iodone(bp, _RET_IP_);
1118
1119 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1120
1121 /*
1122 * Pull in IO completion errors now. We are guaranteed to be running
1123 * single threaded, so we don't need the lock to read b_io_error.
1124 */
1125 if (!bp->b_error && bp->b_io_error)
1126 xfs_buf_ioerror(bp, bp->b_io_error);
1127
1128 /* Only validate buffers that were read without errors */
1129 if (read && !bp->b_error && bp->b_ops) {
1130 ASSERT(!bp->b_iodone);
1131 bp->b_ops->verify_read(bp);
1132 }
1133
1134 if (!bp->b_error)
1135 bp->b_flags |= XBF_DONE;
1136
1137 if (bp->b_iodone)
1138 (*(bp->b_iodone))(bp);
1139 else if (bp->b_flags & XBF_ASYNC)
1140 xfs_buf_relse(bp);
1141 else
1142 complete(&bp->b_iowait);
1143}
1144
1145static void
1146xfs_buf_ioend_work(
1147 struct work_struct *work)
1148{
1149 struct xfs_buf *bp =
1150 container_of(work, xfs_buf_t, b_ioend_work);
1151
1152 xfs_buf_ioend(bp);
1153}
1154
1155static void
1156xfs_buf_ioend_async(
1157 struct xfs_buf *bp)
1158{
1159 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1160 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1161}
1162
1163void
1164xfs_buf_ioerror(
1165 xfs_buf_t *bp,
1166 int error)
1167{
1168 ASSERT(error <= 0 && error >= -1000);
1169 bp->b_error = error;
1170 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1171}
1172
1173void
1174xfs_buf_ioerror_alert(
1175 struct xfs_buf *bp,
1176 const char *func)
1177{
1178 xfs_alert(bp->b_target->bt_mount,
1179"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1180 (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1181}
1182
1183int
1184xfs_bwrite(
1185 struct xfs_buf *bp)
1186{
1187 int error;
1188
1189 ASSERT(xfs_buf_islocked(bp));
1190
1191 bp->b_flags |= XBF_WRITE;
1192 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1193 XBF_WRITE_FAIL | XBF_DONE);
1194
1195 error = xfs_buf_submit_wait(bp);
1196 if (error) {
1197 xfs_force_shutdown(bp->b_target->bt_mount,
1198 SHUTDOWN_META_IO_ERROR);
1199 }
1200 return error;
1201}
1202
1203static void
1204xfs_buf_bio_end_io(
1205 struct bio *bio)
1206{
1207 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1208
1209 /*
1210 * don't overwrite existing errors - otherwise we can lose errors on
1211 * buffers that require multiple bios to complete.
1212 */
1213 if (bio->bi_error)
1214 cmpxchg(&bp->b_io_error, 0, bio->bi_error);
1215
1216 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1217 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1218
1219 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1220 xfs_buf_ioend_async(bp);
1221 bio_put(bio);
1222}
1223
1224static void
1225xfs_buf_ioapply_map(
1226 struct xfs_buf *bp,
1227 int map,
1228 int *buf_offset,
1229 int *count,
1230 int op,
1231 int op_flags)
1232{
1233 int page_index;
1234 int total_nr_pages = bp->b_page_count;
1235 int nr_pages;
1236 struct bio *bio;
1237 sector_t sector = bp->b_maps[map].bm_bn;
1238 int size;
1239 int offset;
1240
1241 total_nr_pages = bp->b_page_count;
1242
1243 /* skip the pages in the buffer before the start offset */
1244 page_index = 0;
1245 offset = *buf_offset;
1246 while (offset >= PAGE_SIZE) {
1247 page_index++;
1248 offset -= PAGE_SIZE;
1249 }
1250
1251 /*
1252 * Limit the IO size to the length of the current vector, and update the
1253 * remaining IO count for the next time around.
1254 */
1255 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1256 *count -= size;
1257 *buf_offset += size;
1258
1259next_chunk:
1260 atomic_inc(&bp->b_io_remaining);
1261 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1262
1263 bio = bio_alloc(GFP_NOIO, nr_pages);
1264 bio->bi_bdev = bp->b_target->bt_bdev;
1265 bio->bi_iter.bi_sector = sector;
1266 bio->bi_end_io = xfs_buf_bio_end_io;
1267 bio->bi_private = bp;
1268 bio_set_op_attrs(bio, op, op_flags);
1269
1270 for (; size && nr_pages; nr_pages--, page_index++) {
1271 int rbytes, nbytes = PAGE_SIZE - offset;
1272
1273 if (nbytes > size)
1274 nbytes = size;
1275
1276 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1277 offset);
1278 if (rbytes < nbytes)
1279 break;
1280
1281 offset = 0;
1282 sector += BTOBB(nbytes);
1283 size -= nbytes;
1284 total_nr_pages--;
1285 }
1286
1287 if (likely(bio->bi_iter.bi_size)) {
1288 if (xfs_buf_is_vmapped(bp)) {
1289 flush_kernel_vmap_range(bp->b_addr,
1290 xfs_buf_vmap_len(bp));
1291 }
1292 submit_bio(bio);
1293 if (size)
1294 goto next_chunk;
1295 } else {
1296 /*
1297 * This is guaranteed not to be the last io reference count
1298 * because the caller (xfs_buf_submit) holds a count itself.
1299 */
1300 atomic_dec(&bp->b_io_remaining);
1301 xfs_buf_ioerror(bp, -EIO);
1302 bio_put(bio);
1303 }
1304
1305}
1306
1307STATIC void
1308_xfs_buf_ioapply(
1309 struct xfs_buf *bp)
1310{
1311 struct blk_plug plug;
1312 int op;
1313 int op_flags = 0;
1314 int offset;
1315 int size;
1316 int i;
1317
1318 /*
1319 * Make sure we capture only current IO errors rather than stale errors
1320 * left over from previous use of the buffer (e.g. failed readahead).
1321 */
1322 bp->b_error = 0;
1323
1324 /*
1325 * Initialize the I/O completion workqueue if we haven't yet or the
1326 * submitter has not opted to specify a custom one.
1327 */
1328 if (!bp->b_ioend_wq)
1329 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1330
1331 if (bp->b_flags & XBF_WRITE) {
1332 op = REQ_OP_WRITE;
1333 if (bp->b_flags & XBF_SYNCIO)
1334 op_flags = REQ_SYNC;
1335 if (bp->b_flags & XBF_FUA)
1336 op_flags |= REQ_FUA;
1337 if (bp->b_flags & XBF_FLUSH)
1338 op_flags |= REQ_PREFLUSH;
1339
1340 /*
1341 * Run the write verifier callback function if it exists. If
1342 * this function fails it will mark the buffer with an error and
1343 * the IO should not be dispatched.
1344 */
1345 if (bp->b_ops) {
1346 bp->b_ops->verify_write(bp);
1347 if (bp->b_error) {
1348 xfs_force_shutdown(bp->b_target->bt_mount,
1349 SHUTDOWN_CORRUPT_INCORE);
1350 return;
1351 }
1352 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1353 struct xfs_mount *mp = bp->b_target->bt_mount;
1354
1355 /*
1356 * non-crc filesystems don't attach verifiers during
1357 * log recovery, so don't warn for such filesystems.
1358 */
1359 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1360 xfs_warn(mp,
1361 "%s: no ops on block 0x%llx/0x%x",
1362 __func__, bp->b_bn, bp->b_length);
1363 xfs_hex_dump(bp->b_addr, 64);
1364 dump_stack();
1365 }
1366 }
1367 } else if (bp->b_flags & XBF_READ_AHEAD) {
1368 op = REQ_OP_READ;
1369 op_flags = REQ_RAHEAD;
1370 } else {
1371 op = REQ_OP_READ;
1372 }
1373
1374 /* we only use the buffer cache for meta-data */
1375 op_flags |= REQ_META;
1376
1377 /*
1378 * Walk all the vectors issuing IO on them. Set up the initial offset
1379 * into the buffer and the desired IO size before we start -
1380 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1381 * subsequent call.
1382 */
1383 offset = bp->b_offset;
1384 size = BBTOB(bp->b_io_length);
1385 blk_start_plug(&plug);
1386 for (i = 0; i < bp->b_map_count; i++) {
1387 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1388 if (bp->b_error)
1389 break;
1390 if (size <= 0)
1391 break; /* all done */
1392 }
1393 blk_finish_plug(&plug);
1394}
1395
1396/*
1397 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1398 * the current reference to the IO. It is not safe to reference the buffer after
1399 * a call to this function unless the caller holds an additional reference
1400 * itself.
1401 */
1402void
1403xfs_buf_submit(
1404 struct xfs_buf *bp)
1405{
1406 trace_xfs_buf_submit(bp, _RET_IP_);
1407
1408 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1409 ASSERT(bp->b_flags & XBF_ASYNC);
1410
1411 /* on shutdown we stale and complete the buffer immediately */
1412 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1413 xfs_buf_ioerror(bp, -EIO);
1414 bp->b_flags &= ~XBF_DONE;
1415 xfs_buf_stale(bp);
1416 xfs_buf_ioend(bp);
1417 return;
1418 }
1419
1420 if (bp->b_flags & XBF_WRITE)
1421 xfs_buf_wait_unpin(bp);
1422
1423 /* clear the internal error state to avoid spurious errors */
1424 bp->b_io_error = 0;
1425
1426 /*
1427 * The caller's reference is released during I/O completion.
1428 * This occurs some time after the last b_io_remaining reference is
1429 * released, so after we drop our Io reference we have to have some
1430 * other reference to ensure the buffer doesn't go away from underneath
1431 * us. Take a direct reference to ensure we have safe access to the
1432 * buffer until we are finished with it.
1433 */
1434 xfs_buf_hold(bp);
1435
1436 /*
1437 * Set the count to 1 initially, this will stop an I/O completion
1438 * callout which happens before we have started all the I/O from calling
1439 * xfs_buf_ioend too early.
1440 */
1441 atomic_set(&bp->b_io_remaining, 1);
1442 xfs_buf_ioacct_inc(bp);
1443 _xfs_buf_ioapply(bp);
1444
1445 /*
1446 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1447 * reference we took above. If we drop it to zero, run completion so
1448 * that we don't return to the caller with completion still pending.
1449 */
1450 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1451 if (bp->b_error)
1452 xfs_buf_ioend(bp);
1453 else
1454 xfs_buf_ioend_async(bp);
1455 }
1456
1457 xfs_buf_rele(bp);
1458 /* Note: it is not safe to reference bp now we've dropped our ref */
1459}
1460
1461/*
1462 * Synchronous buffer IO submission path, read or write.
1463 */
1464int
1465xfs_buf_submit_wait(
1466 struct xfs_buf *bp)
1467{
1468 int error;
1469
1470 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1471
1472 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1473
1474 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1475 xfs_buf_ioerror(bp, -EIO);
1476 xfs_buf_stale(bp);
1477 bp->b_flags &= ~XBF_DONE;
1478 return -EIO;
1479 }
1480
1481 if (bp->b_flags & XBF_WRITE)
1482 xfs_buf_wait_unpin(bp);
1483
1484 /* clear the internal error state to avoid spurious errors */
1485 bp->b_io_error = 0;
1486
1487 /*
1488 * For synchronous IO, the IO does not inherit the submitters reference
1489 * count, nor the buffer lock. Hence we cannot release the reference we
1490 * are about to take until we've waited for all IO completion to occur,
1491 * including any xfs_buf_ioend_async() work that may be pending.
1492 */
1493 xfs_buf_hold(bp);
1494
1495 /*
1496 * Set the count to 1 initially, this will stop an I/O completion
1497 * callout which happens before we have started all the I/O from calling
1498 * xfs_buf_ioend too early.
1499 */
1500 atomic_set(&bp->b_io_remaining, 1);
1501 _xfs_buf_ioapply(bp);
1502
1503 /*
1504 * make sure we run completion synchronously if it raced with us and is
1505 * already complete.
1506 */
1507 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1508 xfs_buf_ioend(bp);
1509
1510 /* wait for completion before gathering the error from the buffer */
1511 trace_xfs_buf_iowait(bp, _RET_IP_);
1512 wait_for_completion(&bp->b_iowait);
1513 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1514 error = bp->b_error;
1515
1516 /*
1517 * all done now, we can release the hold that keeps the buffer
1518 * referenced for the entire IO.
1519 */
1520 xfs_buf_rele(bp);
1521 return error;
1522}
1523
1524void *
1525xfs_buf_offset(
1526 struct xfs_buf *bp,
1527 size_t offset)
1528{
1529 struct page *page;
1530
1531 if (bp->b_addr)
1532 return bp->b_addr + offset;
1533
1534 offset += bp->b_offset;
1535 page = bp->b_pages[offset >> PAGE_SHIFT];
1536 return page_address(page) + (offset & (PAGE_SIZE-1));
1537}
1538
1539/*
1540 * Move data into or out of a buffer.
1541 */
1542void
1543xfs_buf_iomove(
1544 xfs_buf_t *bp, /* buffer to process */
1545 size_t boff, /* starting buffer offset */
1546 size_t bsize, /* length to copy */
1547 void *data, /* data address */
1548 xfs_buf_rw_t mode) /* read/write/zero flag */
1549{
1550 size_t bend;
1551
1552 bend = boff + bsize;
1553 while (boff < bend) {
1554 struct page *page;
1555 int page_index, page_offset, csize;
1556
1557 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1558 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1559 page = bp->b_pages[page_index];
1560 csize = min_t(size_t, PAGE_SIZE - page_offset,
1561 BBTOB(bp->b_io_length) - boff);
1562
1563 ASSERT((csize + page_offset) <= PAGE_SIZE);
1564
1565 switch (mode) {
1566 case XBRW_ZERO:
1567 memset(page_address(page) + page_offset, 0, csize);
1568 break;
1569 case XBRW_READ:
1570 memcpy(data, page_address(page) + page_offset, csize);
1571 break;
1572 case XBRW_WRITE:
1573 memcpy(page_address(page) + page_offset, data, csize);
1574 }
1575
1576 boff += csize;
1577 data += csize;
1578 }
1579}
1580
1581/*
1582 * Handling of buffer targets (buftargs).
1583 */
1584
1585/*
1586 * Wait for any bufs with callbacks that have been submitted but have not yet
1587 * returned. These buffers will have an elevated hold count, so wait on those
1588 * while freeing all the buffers only held by the LRU.
1589 */
1590static enum lru_status
1591xfs_buftarg_wait_rele(
1592 struct list_head *item,
1593 struct list_lru_one *lru,
1594 spinlock_t *lru_lock,
1595 void *arg)
1596
1597{
1598 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1599 struct list_head *dispose = arg;
1600
1601 if (atomic_read(&bp->b_hold) > 1) {
1602 /* need to wait, so skip it this pass */
1603 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1604 return LRU_SKIP;
1605 }
1606 if (!spin_trylock(&bp->b_lock))
1607 return LRU_SKIP;
1608
1609 /*
1610 * clear the LRU reference count so the buffer doesn't get
1611 * ignored in xfs_buf_rele().
1612 */
1613 atomic_set(&bp->b_lru_ref, 0);
1614 bp->b_state |= XFS_BSTATE_DISPOSE;
1615 list_lru_isolate_move(lru, item, dispose);
1616 spin_unlock(&bp->b_lock);
1617 return LRU_REMOVED;
1618}
1619
1620void
1621xfs_wait_buftarg(
1622 struct xfs_buftarg *btp)
1623{
1624 LIST_HEAD(dispose);
1625 int loop = 0;
1626
1627 /*
1628 * First wait on the buftarg I/O count for all in-flight buffers to be
1629 * released. This is critical as new buffers do not make the LRU until
1630 * they are released.
1631 *
1632 * Next, flush the buffer workqueue to ensure all completion processing
1633 * has finished. Just waiting on buffer locks is not sufficient for
1634 * async IO as the reference count held over IO is not released until
1635 * after the buffer lock is dropped. Hence we need to ensure here that
1636 * all reference counts have been dropped before we start walking the
1637 * LRU list.
1638 */
1639 while (percpu_counter_sum(&btp->bt_io_count))
1640 delay(100);
1641 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1642
1643 /* loop until there is nothing left on the lru list. */
1644 while (list_lru_count(&btp->bt_lru)) {
1645 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1646 &dispose, LONG_MAX);
1647
1648 while (!list_empty(&dispose)) {
1649 struct xfs_buf *bp;
1650 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1651 list_del_init(&bp->b_lru);
1652 if (bp->b_flags & XBF_WRITE_FAIL) {
1653 xfs_alert(btp->bt_mount,
1654"Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1655 (long long)bp->b_bn);
1656 xfs_alert(btp->bt_mount,
1657"Please run xfs_repair to determine the extent of the problem.");
1658 }
1659 xfs_buf_rele(bp);
1660 }
1661 if (loop++ != 0)
1662 delay(100);
1663 }
1664}
1665
1666static enum lru_status
1667xfs_buftarg_isolate(
1668 struct list_head *item,
1669 struct list_lru_one *lru,
1670 spinlock_t *lru_lock,
1671 void *arg)
1672{
1673 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1674 struct list_head *dispose = arg;
1675
1676 /*
1677 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1678 * If we fail to get the lock, just skip it.
1679 */
1680 if (!spin_trylock(&bp->b_lock))
1681 return LRU_SKIP;
1682 /*
1683 * Decrement the b_lru_ref count unless the value is already
1684 * zero. If the value is already zero, we need to reclaim the
1685 * buffer, otherwise it gets another trip through the LRU.
1686 */
1687 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1688 spin_unlock(&bp->b_lock);
1689 return LRU_ROTATE;
1690 }
1691
1692 bp->b_state |= XFS_BSTATE_DISPOSE;
1693 list_lru_isolate_move(lru, item, dispose);
1694 spin_unlock(&bp->b_lock);
1695 return LRU_REMOVED;
1696}
1697
1698static unsigned long
1699xfs_buftarg_shrink_scan(
1700 struct shrinker *shrink,
1701 struct shrink_control *sc)
1702{
1703 struct xfs_buftarg *btp = container_of(shrink,
1704 struct xfs_buftarg, bt_shrinker);
1705 LIST_HEAD(dispose);
1706 unsigned long freed;
1707
1708 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1709 xfs_buftarg_isolate, &dispose);
1710
1711 while (!list_empty(&dispose)) {
1712 struct xfs_buf *bp;
1713 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1714 list_del_init(&bp->b_lru);
1715 xfs_buf_rele(bp);
1716 }
1717
1718 return freed;
1719}
1720
1721static unsigned long
1722xfs_buftarg_shrink_count(
1723 struct shrinker *shrink,
1724 struct shrink_control *sc)
1725{
1726 struct xfs_buftarg *btp = container_of(shrink,
1727 struct xfs_buftarg, bt_shrinker);
1728 return list_lru_shrink_count(&btp->bt_lru, sc);
1729}
1730
1731void
1732xfs_free_buftarg(
1733 struct xfs_mount *mp,
1734 struct xfs_buftarg *btp)
1735{
1736 unregister_shrinker(&btp->bt_shrinker);
1737 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1738 percpu_counter_destroy(&btp->bt_io_count);
1739 list_lru_destroy(&btp->bt_lru);
1740
1741 xfs_blkdev_issue_flush(btp);
1742
1743 kmem_free(btp);
1744}
1745
1746int
1747xfs_setsize_buftarg(
1748 xfs_buftarg_t *btp,
1749 unsigned int sectorsize)
1750{
1751 /* Set up metadata sector size info */
1752 btp->bt_meta_sectorsize = sectorsize;
1753 btp->bt_meta_sectormask = sectorsize - 1;
1754
1755 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1756 xfs_warn(btp->bt_mount,
1757 "Cannot set_blocksize to %u on device %pg",
1758 sectorsize, btp->bt_bdev);
1759 return -EINVAL;
1760 }
1761
1762 /* Set up device logical sector size mask */
1763 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1764 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1765
1766 return 0;
1767}
1768
1769/*
1770 * When allocating the initial buffer target we have not yet
1771 * read in the superblock, so don't know what sized sectors
1772 * are being used at this early stage. Play safe.
1773 */
1774STATIC int
1775xfs_setsize_buftarg_early(
1776 xfs_buftarg_t *btp,
1777 struct block_device *bdev)
1778{
1779 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1780}
1781
1782xfs_buftarg_t *
1783xfs_alloc_buftarg(
1784 struct xfs_mount *mp,
1785 struct block_device *bdev)
1786{
1787 xfs_buftarg_t *btp;
1788
1789 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1790
1791 btp->bt_mount = mp;
1792 btp->bt_dev = bdev->bd_dev;
1793 btp->bt_bdev = bdev;
1794 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1795
1796 if (xfs_setsize_buftarg_early(btp, bdev))
1797 goto error;
1798
1799 if (list_lru_init(&btp->bt_lru))
1800 goto error;
1801
1802 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1803 goto error;
1804
1805 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1806 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1807 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1808 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1809 register_shrinker(&btp->bt_shrinker);
1810 return btp;
1811
1812error:
1813 kmem_free(btp);
1814 return NULL;
1815}
1816
1817/*
1818 * Add a buffer to the delayed write list.
1819 *
1820 * This queues a buffer for writeout if it hasn't already been. Note that
1821 * neither this routine nor the buffer list submission functions perform
1822 * any internal synchronization. It is expected that the lists are thread-local
1823 * to the callers.
1824 *
1825 * Returns true if we queued up the buffer, or false if it already had
1826 * been on the buffer list.
1827 */
1828bool
1829xfs_buf_delwri_queue(
1830 struct xfs_buf *bp,
1831 struct list_head *list)
1832{
1833 ASSERT(xfs_buf_islocked(bp));
1834 ASSERT(!(bp->b_flags & XBF_READ));
1835
1836 /*
1837 * If the buffer is already marked delwri it already is queued up
1838 * by someone else for imediate writeout. Just ignore it in that
1839 * case.
1840 */
1841 if (bp->b_flags & _XBF_DELWRI_Q) {
1842 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1843 return false;
1844 }
1845
1846 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1847
1848 /*
1849 * If a buffer gets written out synchronously or marked stale while it
1850 * is on a delwri list we lazily remove it. To do this, the other party
1851 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1852 * It remains referenced and on the list. In a rare corner case it
1853 * might get readded to a delwri list after the synchronous writeout, in
1854 * which case we need just need to re-add the flag here.
1855 */
1856 bp->b_flags |= _XBF_DELWRI_Q;
1857 if (list_empty(&bp->b_list)) {
1858 atomic_inc(&bp->b_hold);
1859 list_add_tail(&bp->b_list, list);
1860 }
1861
1862 return true;
1863}
1864
1865/*
1866 * Compare function is more complex than it needs to be because
1867 * the return value is only 32 bits and we are doing comparisons
1868 * on 64 bit values
1869 */
1870static int
1871xfs_buf_cmp(
1872 void *priv,
1873 struct list_head *a,
1874 struct list_head *b)
1875{
1876 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1877 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1878 xfs_daddr_t diff;
1879
1880 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1881 if (diff < 0)
1882 return -1;
1883 if (diff > 0)
1884 return 1;
1885 return 0;
1886}
1887
1888/*
1889 * submit buffers for write.
1890 *
1891 * When we have a large buffer list, we do not want to hold all the buffers
1892 * locked while we block on the request queue waiting for IO dispatch. To avoid
1893 * this problem, we lock and submit buffers in groups of 50, thereby minimising
1894 * the lock hold times for lists which may contain thousands of objects.
1895 *
1896 * To do this, we sort the buffer list before we walk the list to lock and
1897 * submit buffers, and we plug and unplug around each group of buffers we
1898 * submit.
1899 */
1900static int
1901xfs_buf_delwri_submit_buffers(
1902 struct list_head *buffer_list,
1903 struct list_head *wait_list)
1904{
1905 struct xfs_buf *bp, *n;
1906 LIST_HEAD (submit_list);
1907 int pinned = 0;
1908 struct blk_plug plug;
1909
1910 list_sort(NULL, buffer_list, xfs_buf_cmp);
1911
1912 blk_start_plug(&plug);
1913 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1914 if (!wait_list) {
1915 if (xfs_buf_ispinned(bp)) {
1916 pinned++;
1917 continue;
1918 }
1919 if (!xfs_buf_trylock(bp))
1920 continue;
1921 } else {
1922 xfs_buf_lock(bp);
1923 }
1924
1925 /*
1926 * Someone else might have written the buffer synchronously or
1927 * marked it stale in the meantime. In that case only the
1928 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1929 * reference and remove it from the list here.
1930 */
1931 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1932 list_del_init(&bp->b_list);
1933 xfs_buf_relse(bp);
1934 continue;
1935 }
1936
1937 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1938
1939 /*
1940 * We do all IO submission async. This means if we need
1941 * to wait for IO completion we need to take an extra
1942 * reference so the buffer is still valid on the other
1943 * side. We need to move the buffer onto the io_list
1944 * at this point so the caller can still access it.
1945 */
1946 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1947 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1948 if (wait_list) {
1949 xfs_buf_hold(bp);
1950 list_move_tail(&bp->b_list, wait_list);
1951 } else
1952 list_del_init(&bp->b_list);
1953
1954 xfs_buf_submit(bp);
1955 }
1956 blk_finish_plug(&plug);
1957
1958 return pinned;
1959}
1960
1961/*
1962 * Write out a buffer list asynchronously.
1963 *
1964 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1965 * out and not wait for I/O completion on any of the buffers. This interface
1966 * is only safely useable for callers that can track I/O completion by higher
1967 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1968 * function.
1969 */
1970int
1971xfs_buf_delwri_submit_nowait(
1972 struct list_head *buffer_list)
1973{
1974 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
1975}
1976
1977/*
1978 * Write out a buffer list synchronously.
1979 *
1980 * This will take the @buffer_list, write all buffers out and wait for I/O
1981 * completion on all of the buffers. @buffer_list is consumed by the function,
1982 * so callers must have some other way of tracking buffers if they require such
1983 * functionality.
1984 */
1985int
1986xfs_buf_delwri_submit(
1987 struct list_head *buffer_list)
1988{
1989 LIST_HEAD (wait_list);
1990 int error = 0, error2;
1991 struct xfs_buf *bp;
1992
1993 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1994
1995 /* Wait for IO to complete. */
1996 while (!list_empty(&wait_list)) {
1997 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1998
1999 list_del_init(&bp->b_list);
2000
2001 /* locking the buffer will wait for async IO completion. */
2002 xfs_buf_lock(bp);
2003 error2 = bp->b_error;
2004 xfs_buf_relse(bp);
2005 if (!error)
2006 error = error2;
2007 }
2008
2009 return error;
2010}
2011
2012int __init
2013xfs_buf_init(void)
2014{
2015 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2016 KM_ZONE_HWALIGN, NULL);
2017 if (!xfs_buf_zone)
2018 goto out;
2019
2020 return 0;
2021
2022 out:
2023 return -ENOMEM;
2024}
2025
2026void
2027xfs_buf_terminate(void)
2028{
2029 kmem_zone_destroy(xfs_buf_zone);
2030}