Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11#include <linux/usb.h>
12#include <linux/pci.h>
13#include <linux/slab.h>
14#include <linux/dmapool.h>
15#include <linux/dma-mapping.h>
16
17#include "xhci.h"
18#include "xhci-trace.h"
19#include "xhci-debugfs.h"
20
21/*
22 * Allocates a generic ring segment from the ring pool, sets the dma address,
23 * initializes the segment to zero, and sets the private next pointer to NULL.
24 *
25 * Section 4.11.1.1:
26 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
27 */
28static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29 unsigned int cycle_state,
30 unsigned int max_packet,
31 gfp_t flags)
32{
33 struct xhci_segment *seg;
34 dma_addr_t dma;
35 int i;
36 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
37
38 seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
39 if (!seg)
40 return NULL;
41
42 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
43 if (!seg->trbs) {
44 kfree(seg);
45 return NULL;
46 }
47
48 if (max_packet) {
49 seg->bounce_buf = kzalloc_node(max_packet, flags,
50 dev_to_node(dev));
51 if (!seg->bounce_buf) {
52 dma_pool_free(xhci->segment_pool, seg->trbs, dma);
53 kfree(seg);
54 return NULL;
55 }
56 }
57 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58 if (cycle_state == 0) {
59 for (i = 0; i < TRBS_PER_SEGMENT; i++)
60 seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE);
61 }
62 seg->dma = dma;
63 seg->next = NULL;
64
65 return seg;
66}
67
68static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69{
70 if (seg->trbs) {
71 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72 seg->trbs = NULL;
73 }
74 kfree(seg->bounce_buf);
75 kfree(seg);
76}
77
78static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
79 struct xhci_segment *first)
80{
81 struct xhci_segment *seg;
82
83 seg = first->next;
84 while (seg != first) {
85 struct xhci_segment *next = seg->next;
86 xhci_segment_free(xhci, seg);
87 seg = next;
88 }
89 xhci_segment_free(xhci, first);
90}
91
92/*
93 * Make the prev segment point to the next segment.
94 *
95 * Change the last TRB in the prev segment to be a Link TRB which points to the
96 * DMA address of the next segment. The caller needs to set any Link TRB
97 * related flags, such as End TRB, Toggle Cycle, and no snoop.
98 */
99static void xhci_link_segments(struct xhci_segment *prev,
100 struct xhci_segment *next,
101 enum xhci_ring_type type, bool chain_links)
102{
103 u32 val;
104
105 if (!prev || !next)
106 return;
107 prev->next = next;
108 if (type != TYPE_EVENT) {
109 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
110 cpu_to_le64(next->dma);
111
112 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
113 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
114 val &= ~TRB_TYPE_BITMASK;
115 val |= TRB_TYPE(TRB_LINK);
116 if (chain_links)
117 val |= TRB_CHAIN;
118 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
119 }
120}
121
122/*
123 * Link the ring to the new segments.
124 * Set Toggle Cycle for the new ring if needed.
125 */
126static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127 struct xhci_segment *first, struct xhci_segment *last,
128 unsigned int num_segs)
129{
130 struct xhci_segment *next;
131 bool chain_links;
132
133 if (!ring || !first || !last)
134 return;
135
136 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
137 chain_links = !!(xhci_link_trb_quirk(xhci) ||
138 (ring->type == TYPE_ISOC &&
139 (xhci->quirks & XHCI_AMD_0x96_HOST)));
140
141 next = ring->enq_seg->next;
142 xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
143 xhci_link_segments(last, next, ring->type, chain_links);
144 ring->num_segs += num_segs;
145 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
146
147 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
148 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
149 &= ~cpu_to_le32(LINK_TOGGLE);
150 last->trbs[TRBS_PER_SEGMENT-1].link.control
151 |= cpu_to_le32(LINK_TOGGLE);
152 ring->last_seg = last;
153 }
154}
155
156/*
157 * We need a radix tree for mapping physical addresses of TRBs to which stream
158 * ID they belong to. We need to do this because the host controller won't tell
159 * us which stream ring the TRB came from. We could store the stream ID in an
160 * event data TRB, but that doesn't help us for the cancellation case, since the
161 * endpoint may stop before it reaches that event data TRB.
162 *
163 * The radix tree maps the upper portion of the TRB DMA address to a ring
164 * segment that has the same upper portion of DMA addresses. For example, say I
165 * have segments of size 1KB, that are always 1KB aligned. A segment may
166 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
167 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
168 * pass the radix tree a key to get the right stream ID:
169 *
170 * 0x10c90fff >> 10 = 0x43243
171 * 0x10c912c0 >> 10 = 0x43244
172 * 0x10c91400 >> 10 = 0x43245
173 *
174 * Obviously, only those TRBs with DMA addresses that are within the segment
175 * will make the radix tree return the stream ID for that ring.
176 *
177 * Caveats for the radix tree:
178 *
179 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
180 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
181 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
182 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
183 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
184 * extended systems (where the DMA address can be bigger than 32-bits),
185 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
186 */
187static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
188 struct xhci_ring *ring,
189 struct xhci_segment *seg,
190 gfp_t mem_flags)
191{
192 unsigned long key;
193 int ret;
194
195 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
196 /* Skip any segments that were already added. */
197 if (radix_tree_lookup(trb_address_map, key))
198 return 0;
199
200 ret = radix_tree_maybe_preload(mem_flags);
201 if (ret)
202 return ret;
203 ret = radix_tree_insert(trb_address_map,
204 key, ring);
205 radix_tree_preload_end();
206 return ret;
207}
208
209static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
210 struct xhci_segment *seg)
211{
212 unsigned long key;
213
214 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
215 if (radix_tree_lookup(trb_address_map, key))
216 radix_tree_delete(trb_address_map, key);
217}
218
219static int xhci_update_stream_segment_mapping(
220 struct radix_tree_root *trb_address_map,
221 struct xhci_ring *ring,
222 struct xhci_segment *first_seg,
223 struct xhci_segment *last_seg,
224 gfp_t mem_flags)
225{
226 struct xhci_segment *seg;
227 struct xhci_segment *failed_seg;
228 int ret;
229
230 if (WARN_ON_ONCE(trb_address_map == NULL))
231 return 0;
232
233 seg = first_seg;
234 do {
235 ret = xhci_insert_segment_mapping(trb_address_map,
236 ring, seg, mem_flags);
237 if (ret)
238 goto remove_streams;
239 if (seg == last_seg)
240 return 0;
241 seg = seg->next;
242 } while (seg != first_seg);
243
244 return 0;
245
246remove_streams:
247 failed_seg = seg;
248 seg = first_seg;
249 do {
250 xhci_remove_segment_mapping(trb_address_map, seg);
251 if (seg == failed_seg)
252 return ret;
253 seg = seg->next;
254 } while (seg != first_seg);
255
256 return ret;
257}
258
259static void xhci_remove_stream_mapping(struct xhci_ring *ring)
260{
261 struct xhci_segment *seg;
262
263 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
264 return;
265
266 seg = ring->first_seg;
267 do {
268 xhci_remove_segment_mapping(ring->trb_address_map, seg);
269 seg = seg->next;
270 } while (seg != ring->first_seg);
271}
272
273static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
274{
275 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
276 ring->first_seg, ring->last_seg, mem_flags);
277}
278
279/* XXX: Do we need the hcd structure in all these functions? */
280void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
281{
282 if (!ring)
283 return;
284
285 trace_xhci_ring_free(ring);
286
287 if (ring->first_seg) {
288 if (ring->type == TYPE_STREAM)
289 xhci_remove_stream_mapping(ring);
290 xhci_free_segments_for_ring(xhci, ring->first_seg);
291 }
292
293 kfree(ring);
294}
295
296void xhci_initialize_ring_info(struct xhci_ring *ring,
297 unsigned int cycle_state)
298{
299 /* The ring is empty, so the enqueue pointer == dequeue pointer */
300 ring->enqueue = ring->first_seg->trbs;
301 ring->enq_seg = ring->first_seg;
302 ring->dequeue = ring->enqueue;
303 ring->deq_seg = ring->first_seg;
304 /* The ring is initialized to 0. The producer must write 1 to the cycle
305 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
306 * compare CCS to the cycle bit to check ownership, so CCS = 1.
307 *
308 * New rings are initialized with cycle state equal to 1; if we are
309 * handling ring expansion, set the cycle state equal to the old ring.
310 */
311 ring->cycle_state = cycle_state;
312
313 /*
314 * Each segment has a link TRB, and leave an extra TRB for SW
315 * accounting purpose
316 */
317 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
318}
319
320/* Allocate segments and link them for a ring */
321static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
322 struct xhci_segment **first, struct xhci_segment **last,
323 unsigned int num_segs, unsigned int cycle_state,
324 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
325{
326 struct xhci_segment *prev;
327 bool chain_links;
328
329 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
330 chain_links = !!(xhci_link_trb_quirk(xhci) ||
331 (type == TYPE_ISOC &&
332 (xhci->quirks & XHCI_AMD_0x96_HOST)));
333
334 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
335 if (!prev)
336 return -ENOMEM;
337 num_segs--;
338
339 *first = prev;
340 while (num_segs > 0) {
341 struct xhci_segment *next;
342
343 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
344 if (!next) {
345 prev = *first;
346 while (prev) {
347 next = prev->next;
348 xhci_segment_free(xhci, prev);
349 prev = next;
350 }
351 return -ENOMEM;
352 }
353 xhci_link_segments(prev, next, type, chain_links);
354
355 prev = next;
356 num_segs--;
357 }
358 xhci_link_segments(prev, *first, type, chain_links);
359 *last = prev;
360
361 return 0;
362}
363
364/*
365 * Create a new ring with zero or more segments.
366 *
367 * Link each segment together into a ring.
368 * Set the end flag and the cycle toggle bit on the last segment.
369 * See section 4.9.1 and figures 15 and 16.
370 */
371struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
372 unsigned int num_segs, unsigned int cycle_state,
373 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
374{
375 struct xhci_ring *ring;
376 int ret;
377 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
378
379 ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
380 if (!ring)
381 return NULL;
382
383 ring->num_segs = num_segs;
384 ring->bounce_buf_len = max_packet;
385 INIT_LIST_HEAD(&ring->td_list);
386 ring->type = type;
387 if (num_segs == 0)
388 return ring;
389
390 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
391 &ring->last_seg, num_segs, cycle_state, type,
392 max_packet, flags);
393 if (ret)
394 goto fail;
395
396 /* Only event ring does not use link TRB */
397 if (type != TYPE_EVENT) {
398 /* See section 4.9.2.1 and 6.4.4.1 */
399 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
400 cpu_to_le32(LINK_TOGGLE);
401 }
402 xhci_initialize_ring_info(ring, cycle_state);
403 trace_xhci_ring_alloc(ring);
404 return ring;
405
406fail:
407 kfree(ring);
408 return NULL;
409}
410
411void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
412 struct xhci_virt_device *virt_dev,
413 unsigned int ep_index)
414{
415 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
416 virt_dev->eps[ep_index].ring = NULL;
417}
418
419/*
420 * Expand an existing ring.
421 * Allocate a new ring which has same segment numbers and link the two rings.
422 */
423int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
424 unsigned int num_trbs, gfp_t flags)
425{
426 struct xhci_segment *first;
427 struct xhci_segment *last;
428 unsigned int num_segs;
429 unsigned int num_segs_needed;
430 int ret;
431
432 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
433 (TRBS_PER_SEGMENT - 1);
434
435 /* Allocate number of segments we needed, or double the ring size */
436 num_segs = max(ring->num_segs, num_segs_needed);
437
438 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
439 num_segs, ring->cycle_state, ring->type,
440 ring->bounce_buf_len, flags);
441 if (ret)
442 return -ENOMEM;
443
444 if (ring->type == TYPE_STREAM)
445 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
446 ring, first, last, flags);
447 if (ret) {
448 struct xhci_segment *next;
449 do {
450 next = first->next;
451 xhci_segment_free(xhci, first);
452 if (first == last)
453 break;
454 first = next;
455 } while (true);
456 return ret;
457 }
458
459 xhci_link_rings(xhci, ring, first, last, num_segs);
460 trace_xhci_ring_expansion(ring);
461 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
462 "ring expansion succeed, now has %d segments",
463 ring->num_segs);
464
465 return 0;
466}
467
468struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
469 int type, gfp_t flags)
470{
471 struct xhci_container_ctx *ctx;
472 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
473
474 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
475 return NULL;
476
477 ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
478 if (!ctx)
479 return NULL;
480
481 ctx->type = type;
482 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
483 if (type == XHCI_CTX_TYPE_INPUT)
484 ctx->size += CTX_SIZE(xhci->hcc_params);
485
486 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
487 if (!ctx->bytes) {
488 kfree(ctx);
489 return NULL;
490 }
491 return ctx;
492}
493
494void xhci_free_container_ctx(struct xhci_hcd *xhci,
495 struct xhci_container_ctx *ctx)
496{
497 if (!ctx)
498 return;
499 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
500 kfree(ctx);
501}
502
503struct xhci_input_control_ctx *xhci_get_input_control_ctx(
504 struct xhci_container_ctx *ctx)
505{
506 if (ctx->type != XHCI_CTX_TYPE_INPUT)
507 return NULL;
508
509 return (struct xhci_input_control_ctx *)ctx->bytes;
510}
511
512struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
513 struct xhci_container_ctx *ctx)
514{
515 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
516 return (struct xhci_slot_ctx *)ctx->bytes;
517
518 return (struct xhci_slot_ctx *)
519 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
520}
521
522struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
523 struct xhci_container_ctx *ctx,
524 unsigned int ep_index)
525{
526 /* increment ep index by offset of start of ep ctx array */
527 ep_index++;
528 if (ctx->type == XHCI_CTX_TYPE_INPUT)
529 ep_index++;
530
531 return (struct xhci_ep_ctx *)
532 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
533}
534EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
535
536/***************** Streams structures manipulation *************************/
537
538static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
539 unsigned int num_stream_ctxs,
540 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
541{
542 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
543 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
544
545 if (size > MEDIUM_STREAM_ARRAY_SIZE)
546 dma_free_coherent(dev, size,
547 stream_ctx, dma);
548 else if (size <= SMALL_STREAM_ARRAY_SIZE)
549 return dma_pool_free(xhci->small_streams_pool,
550 stream_ctx, dma);
551 else
552 return dma_pool_free(xhci->medium_streams_pool,
553 stream_ctx, dma);
554}
555
556/*
557 * The stream context array for each endpoint with bulk streams enabled can
558 * vary in size, based on:
559 * - how many streams the endpoint supports,
560 * - the maximum primary stream array size the host controller supports,
561 * - and how many streams the device driver asks for.
562 *
563 * The stream context array must be a power of 2, and can be as small as
564 * 64 bytes or as large as 1MB.
565 */
566static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
567 unsigned int num_stream_ctxs, dma_addr_t *dma,
568 gfp_t mem_flags)
569{
570 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
571 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
572
573 if (size > MEDIUM_STREAM_ARRAY_SIZE)
574 return dma_alloc_coherent(dev, size,
575 dma, mem_flags);
576 else if (size <= SMALL_STREAM_ARRAY_SIZE)
577 return dma_pool_alloc(xhci->small_streams_pool,
578 mem_flags, dma);
579 else
580 return dma_pool_alloc(xhci->medium_streams_pool,
581 mem_flags, dma);
582}
583
584struct xhci_ring *xhci_dma_to_transfer_ring(
585 struct xhci_virt_ep *ep,
586 u64 address)
587{
588 if (ep->ep_state & EP_HAS_STREAMS)
589 return radix_tree_lookup(&ep->stream_info->trb_address_map,
590 address >> TRB_SEGMENT_SHIFT);
591 return ep->ring;
592}
593
594/*
595 * Change an endpoint's internal structure so it supports stream IDs. The
596 * number of requested streams includes stream 0, which cannot be used by device
597 * drivers.
598 *
599 * The number of stream contexts in the stream context array may be bigger than
600 * the number of streams the driver wants to use. This is because the number of
601 * stream context array entries must be a power of two.
602 */
603struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
604 unsigned int num_stream_ctxs,
605 unsigned int num_streams,
606 unsigned int max_packet, gfp_t mem_flags)
607{
608 struct xhci_stream_info *stream_info;
609 u32 cur_stream;
610 struct xhci_ring *cur_ring;
611 u64 addr;
612 int ret;
613 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
614
615 xhci_dbg(xhci, "Allocating %u streams and %u "
616 "stream context array entries.\n",
617 num_streams, num_stream_ctxs);
618 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
619 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
620 return NULL;
621 }
622 xhci->cmd_ring_reserved_trbs++;
623
624 stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
625 dev_to_node(dev));
626 if (!stream_info)
627 goto cleanup_trbs;
628
629 stream_info->num_streams = num_streams;
630 stream_info->num_stream_ctxs = num_stream_ctxs;
631
632 /* Initialize the array of virtual pointers to stream rings. */
633 stream_info->stream_rings = kcalloc_node(
634 num_streams, sizeof(struct xhci_ring *), mem_flags,
635 dev_to_node(dev));
636 if (!stream_info->stream_rings)
637 goto cleanup_info;
638
639 /* Initialize the array of DMA addresses for stream rings for the HW. */
640 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
641 num_stream_ctxs, &stream_info->ctx_array_dma,
642 mem_flags);
643 if (!stream_info->stream_ctx_array)
644 goto cleanup_ring_array;
645 memset(stream_info->stream_ctx_array, 0,
646 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
647
648 /* Allocate everything needed to free the stream rings later */
649 stream_info->free_streams_command =
650 xhci_alloc_command_with_ctx(xhci, true, mem_flags);
651 if (!stream_info->free_streams_command)
652 goto cleanup_ctx;
653
654 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
655
656 /* Allocate rings for all the streams that the driver will use,
657 * and add their segment DMA addresses to the radix tree.
658 * Stream 0 is reserved.
659 */
660
661 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
662 stream_info->stream_rings[cur_stream] =
663 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
664 mem_flags);
665 cur_ring = stream_info->stream_rings[cur_stream];
666 if (!cur_ring)
667 goto cleanup_rings;
668 cur_ring->stream_id = cur_stream;
669 cur_ring->trb_address_map = &stream_info->trb_address_map;
670 /* Set deq ptr, cycle bit, and stream context type */
671 addr = cur_ring->first_seg->dma |
672 SCT_FOR_CTX(SCT_PRI_TR) |
673 cur_ring->cycle_state;
674 stream_info->stream_ctx_array[cur_stream].stream_ring =
675 cpu_to_le64(addr);
676 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
677 cur_stream, (unsigned long long) addr);
678
679 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
680 if (ret) {
681 xhci_ring_free(xhci, cur_ring);
682 stream_info->stream_rings[cur_stream] = NULL;
683 goto cleanup_rings;
684 }
685 }
686 /* Leave the other unused stream ring pointers in the stream context
687 * array initialized to zero. This will cause the xHC to give us an
688 * error if the device asks for a stream ID we don't have setup (if it
689 * was any other way, the host controller would assume the ring is
690 * "empty" and wait forever for data to be queued to that stream ID).
691 */
692
693 return stream_info;
694
695cleanup_rings:
696 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
697 cur_ring = stream_info->stream_rings[cur_stream];
698 if (cur_ring) {
699 xhci_ring_free(xhci, cur_ring);
700 stream_info->stream_rings[cur_stream] = NULL;
701 }
702 }
703 xhci_free_command(xhci, stream_info->free_streams_command);
704cleanup_ctx:
705 xhci_free_stream_ctx(xhci,
706 stream_info->num_stream_ctxs,
707 stream_info->stream_ctx_array,
708 stream_info->ctx_array_dma);
709cleanup_ring_array:
710 kfree(stream_info->stream_rings);
711cleanup_info:
712 kfree(stream_info);
713cleanup_trbs:
714 xhci->cmd_ring_reserved_trbs--;
715 return NULL;
716}
717/*
718 * Sets the MaxPStreams field and the Linear Stream Array field.
719 * Sets the dequeue pointer to the stream context array.
720 */
721void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
722 struct xhci_ep_ctx *ep_ctx,
723 struct xhci_stream_info *stream_info)
724{
725 u32 max_primary_streams;
726 /* MaxPStreams is the number of stream context array entries, not the
727 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
728 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
729 */
730 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
731 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
732 "Setting number of stream ctx array entries to %u",
733 1 << (max_primary_streams + 1));
734 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
735 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
736 | EP_HAS_LSA);
737 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
738}
739
740/*
741 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
742 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
743 * not at the beginning of the ring).
744 */
745void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
746 struct xhci_virt_ep *ep)
747{
748 dma_addr_t addr;
749 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
750 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
751 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
752}
753
754/* Frees all stream contexts associated with the endpoint,
755 *
756 * Caller should fix the endpoint context streams fields.
757 */
758void xhci_free_stream_info(struct xhci_hcd *xhci,
759 struct xhci_stream_info *stream_info)
760{
761 int cur_stream;
762 struct xhci_ring *cur_ring;
763
764 if (!stream_info)
765 return;
766
767 for (cur_stream = 1; cur_stream < stream_info->num_streams;
768 cur_stream++) {
769 cur_ring = stream_info->stream_rings[cur_stream];
770 if (cur_ring) {
771 xhci_ring_free(xhci, cur_ring);
772 stream_info->stream_rings[cur_stream] = NULL;
773 }
774 }
775 xhci_free_command(xhci, stream_info->free_streams_command);
776 xhci->cmd_ring_reserved_trbs--;
777 if (stream_info->stream_ctx_array)
778 xhci_free_stream_ctx(xhci,
779 stream_info->num_stream_ctxs,
780 stream_info->stream_ctx_array,
781 stream_info->ctx_array_dma);
782
783 kfree(stream_info->stream_rings);
784 kfree(stream_info);
785}
786
787
788/***************** Device context manipulation *************************/
789
790static void xhci_free_tt_info(struct xhci_hcd *xhci,
791 struct xhci_virt_device *virt_dev,
792 int slot_id)
793{
794 struct list_head *tt_list_head;
795 struct xhci_tt_bw_info *tt_info, *next;
796 bool slot_found = false;
797
798 /* If the device never made it past the Set Address stage,
799 * it may not have the real_port set correctly.
800 */
801 if (virt_dev->real_port == 0 ||
802 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
803 xhci_dbg(xhci, "Bad real port.\n");
804 return;
805 }
806
807 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
808 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
809 /* Multi-TT hubs will have more than one entry */
810 if (tt_info->slot_id == slot_id) {
811 slot_found = true;
812 list_del(&tt_info->tt_list);
813 kfree(tt_info);
814 } else if (slot_found) {
815 break;
816 }
817 }
818}
819
820int xhci_alloc_tt_info(struct xhci_hcd *xhci,
821 struct xhci_virt_device *virt_dev,
822 struct usb_device *hdev,
823 struct usb_tt *tt, gfp_t mem_flags)
824{
825 struct xhci_tt_bw_info *tt_info;
826 unsigned int num_ports;
827 int i, j;
828 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
829
830 if (!tt->multi)
831 num_ports = 1;
832 else
833 num_ports = hdev->maxchild;
834
835 for (i = 0; i < num_ports; i++, tt_info++) {
836 struct xhci_interval_bw_table *bw_table;
837
838 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
839 dev_to_node(dev));
840 if (!tt_info)
841 goto free_tts;
842 INIT_LIST_HEAD(&tt_info->tt_list);
843 list_add(&tt_info->tt_list,
844 &xhci->rh_bw[virt_dev->real_port - 1].tts);
845 tt_info->slot_id = virt_dev->udev->slot_id;
846 if (tt->multi)
847 tt_info->ttport = i+1;
848 bw_table = &tt_info->bw_table;
849 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
850 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
851 }
852 return 0;
853
854free_tts:
855 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
856 return -ENOMEM;
857}
858
859
860/* All the xhci_tds in the ring's TD list should be freed at this point.
861 * Should be called with xhci->lock held if there is any chance the TT lists
862 * will be manipulated by the configure endpoint, allocate device, or update
863 * hub functions while this function is removing the TT entries from the list.
864 */
865void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
866{
867 struct xhci_virt_device *dev;
868 int i;
869 int old_active_eps = 0;
870
871 /* Slot ID 0 is reserved */
872 if (slot_id == 0 || !xhci->devs[slot_id])
873 return;
874
875 dev = xhci->devs[slot_id];
876
877 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
878 if (!dev)
879 return;
880
881 trace_xhci_free_virt_device(dev);
882
883 if (dev->tt_info)
884 old_active_eps = dev->tt_info->active_eps;
885
886 for (i = 0; i < 31; i++) {
887 if (dev->eps[i].ring)
888 xhci_ring_free(xhci, dev->eps[i].ring);
889 if (dev->eps[i].stream_info)
890 xhci_free_stream_info(xhci,
891 dev->eps[i].stream_info);
892 /*
893 * Endpoints are normally deleted from the bandwidth list when
894 * endpoints are dropped, before device is freed.
895 * If host is dying or being removed then endpoints aren't
896 * dropped cleanly, so delete the endpoint from list here.
897 * Only applicable for hosts with software bandwidth checking.
898 */
899
900 if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
901 list_del_init(&dev->eps[i].bw_endpoint_list);
902 xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
903 slot_id, i);
904 }
905 }
906 /* If this is a hub, free the TT(s) from the TT list */
907 xhci_free_tt_info(xhci, dev, slot_id);
908 /* If necessary, update the number of active TTs on this root port */
909 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
910
911 if (dev->in_ctx)
912 xhci_free_container_ctx(xhci, dev->in_ctx);
913 if (dev->out_ctx)
914 xhci_free_container_ctx(xhci, dev->out_ctx);
915
916 if (dev->udev && dev->udev->slot_id)
917 dev->udev->slot_id = 0;
918 kfree(xhci->devs[slot_id]);
919 xhci->devs[slot_id] = NULL;
920}
921
922/*
923 * Free a virt_device structure.
924 * If the virt_device added a tt_info (a hub) and has children pointing to
925 * that tt_info, then free the child first. Recursive.
926 * We can't rely on udev at this point to find child-parent relationships.
927 */
928static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
929{
930 struct xhci_virt_device *vdev;
931 struct list_head *tt_list_head;
932 struct xhci_tt_bw_info *tt_info, *next;
933 int i;
934
935 vdev = xhci->devs[slot_id];
936 if (!vdev)
937 return;
938
939 if (vdev->real_port == 0 ||
940 vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
941 xhci_dbg(xhci, "Bad vdev->real_port.\n");
942 goto out;
943 }
944
945 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
946 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
947 /* is this a hub device that added a tt_info to the tts list */
948 if (tt_info->slot_id == slot_id) {
949 /* are any devices using this tt_info? */
950 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
951 vdev = xhci->devs[i];
952 if (vdev && (vdev->tt_info == tt_info))
953 xhci_free_virt_devices_depth_first(
954 xhci, i);
955 }
956 }
957 }
958out:
959 /* we are now at a leaf device */
960 xhci_debugfs_remove_slot(xhci, slot_id);
961 xhci_free_virt_device(xhci, slot_id);
962}
963
964int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
965 struct usb_device *udev, gfp_t flags)
966{
967 struct xhci_virt_device *dev;
968 int i;
969
970 /* Slot ID 0 is reserved */
971 if (slot_id == 0 || xhci->devs[slot_id]) {
972 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
973 return 0;
974 }
975
976 dev = kzalloc(sizeof(*dev), flags);
977 if (!dev)
978 return 0;
979
980 dev->slot_id = slot_id;
981
982 /* Allocate the (output) device context that will be used in the HC. */
983 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
984 if (!dev->out_ctx)
985 goto fail;
986
987 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
988 (unsigned long long)dev->out_ctx->dma);
989
990 /* Allocate the (input) device context for address device command */
991 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
992 if (!dev->in_ctx)
993 goto fail;
994
995 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
996 (unsigned long long)dev->in_ctx->dma);
997
998 /* Initialize the cancellation and bandwidth list for each ep */
999 for (i = 0; i < 31; i++) {
1000 dev->eps[i].ep_index = i;
1001 dev->eps[i].vdev = dev;
1002 dev->eps[i].xhci = xhci;
1003 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1004 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1005 }
1006
1007 /* Allocate endpoint 0 ring */
1008 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1009 if (!dev->eps[0].ring)
1010 goto fail;
1011
1012 dev->udev = udev;
1013
1014 /* Point to output device context in dcbaa. */
1015 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1016 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1017 slot_id,
1018 &xhci->dcbaa->dev_context_ptrs[slot_id],
1019 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1020
1021 trace_xhci_alloc_virt_device(dev);
1022
1023 xhci->devs[slot_id] = dev;
1024
1025 return 1;
1026fail:
1027
1028 if (dev->in_ctx)
1029 xhci_free_container_ctx(xhci, dev->in_ctx);
1030 if (dev->out_ctx)
1031 xhci_free_container_ctx(xhci, dev->out_ctx);
1032 kfree(dev);
1033
1034 return 0;
1035}
1036
1037void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1038 struct usb_device *udev)
1039{
1040 struct xhci_virt_device *virt_dev;
1041 struct xhci_ep_ctx *ep0_ctx;
1042 struct xhci_ring *ep_ring;
1043
1044 virt_dev = xhci->devs[udev->slot_id];
1045 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1046 ep_ring = virt_dev->eps[0].ring;
1047 /*
1048 * FIXME we don't keep track of the dequeue pointer very well after a
1049 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1050 * host to our enqueue pointer. This should only be called after a
1051 * configured device has reset, so all control transfers should have
1052 * been completed or cancelled before the reset.
1053 */
1054 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1055 ep_ring->enqueue)
1056 | ep_ring->cycle_state);
1057}
1058
1059/*
1060 * The xHCI roothub may have ports of differing speeds in any order in the port
1061 * status registers.
1062 *
1063 * The xHCI hardware wants to know the roothub port number that the USB device
1064 * is attached to (or the roothub port its ancestor hub is attached to). All we
1065 * know is the index of that port under either the USB 2.0 or the USB 3.0
1066 * roothub, but that doesn't give us the real index into the HW port status
1067 * registers. Call xhci_find_raw_port_number() to get real index.
1068 */
1069static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1070 struct usb_device *udev)
1071{
1072 struct usb_device *top_dev;
1073 struct usb_hcd *hcd;
1074
1075 if (udev->speed >= USB_SPEED_SUPER)
1076 hcd = xhci_get_usb3_hcd(xhci);
1077 else
1078 hcd = xhci->main_hcd;
1079
1080 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1081 top_dev = top_dev->parent)
1082 /* Found device below root hub */;
1083
1084 return xhci_find_raw_port_number(hcd, top_dev->portnum);
1085}
1086
1087/* Setup an xHCI virtual device for a Set Address command */
1088int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1089{
1090 struct xhci_virt_device *dev;
1091 struct xhci_ep_ctx *ep0_ctx;
1092 struct xhci_slot_ctx *slot_ctx;
1093 u32 port_num;
1094 u32 max_packets;
1095 struct usb_device *top_dev;
1096
1097 dev = xhci->devs[udev->slot_id];
1098 /* Slot ID 0 is reserved */
1099 if (udev->slot_id == 0 || !dev) {
1100 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1101 udev->slot_id);
1102 return -EINVAL;
1103 }
1104 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1105 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1106
1107 /* 3) Only the control endpoint is valid - one endpoint context */
1108 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1109 switch (udev->speed) {
1110 case USB_SPEED_SUPER_PLUS:
1111 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1112 max_packets = MAX_PACKET(512);
1113 break;
1114 case USB_SPEED_SUPER:
1115 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1116 max_packets = MAX_PACKET(512);
1117 break;
1118 case USB_SPEED_HIGH:
1119 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1120 max_packets = MAX_PACKET(64);
1121 break;
1122 /* USB core guesses at a 64-byte max packet first for FS devices */
1123 case USB_SPEED_FULL:
1124 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1125 max_packets = MAX_PACKET(64);
1126 break;
1127 case USB_SPEED_LOW:
1128 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1129 max_packets = MAX_PACKET(8);
1130 break;
1131 case USB_SPEED_WIRELESS:
1132 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1133 return -EINVAL;
1134 default:
1135 /* Speed was set earlier, this shouldn't happen. */
1136 return -EINVAL;
1137 }
1138 /* Find the root hub port this device is under */
1139 port_num = xhci_find_real_port_number(xhci, udev);
1140 if (!port_num)
1141 return -EINVAL;
1142 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1143 /* Set the port number in the virtual_device to the faked port number */
1144 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1145 top_dev = top_dev->parent)
1146 /* Found device below root hub */;
1147 dev->fake_port = top_dev->portnum;
1148 dev->real_port = port_num;
1149 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1150 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1151
1152 /* Find the right bandwidth table that this device will be a part of.
1153 * If this is a full speed device attached directly to a root port (or a
1154 * decendent of one), it counts as a primary bandwidth domain, not a
1155 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1156 * will never be created for the HS root hub.
1157 */
1158 if (!udev->tt || !udev->tt->hub->parent) {
1159 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1160 } else {
1161 struct xhci_root_port_bw_info *rh_bw;
1162 struct xhci_tt_bw_info *tt_bw;
1163
1164 rh_bw = &xhci->rh_bw[port_num - 1];
1165 /* Find the right TT. */
1166 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1167 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1168 continue;
1169
1170 if (!dev->udev->tt->multi ||
1171 (udev->tt->multi &&
1172 tt_bw->ttport == dev->udev->ttport)) {
1173 dev->bw_table = &tt_bw->bw_table;
1174 dev->tt_info = tt_bw;
1175 break;
1176 }
1177 }
1178 if (!dev->tt_info)
1179 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1180 }
1181
1182 /* Is this a LS/FS device under an external HS hub? */
1183 if (udev->tt && udev->tt->hub->parent) {
1184 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1185 (udev->ttport << 8));
1186 if (udev->tt->multi)
1187 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1188 }
1189 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1190 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1191
1192 /* Step 4 - ring already allocated */
1193 /* Step 5 */
1194 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1195
1196 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1197 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1198 max_packets);
1199
1200 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1201 dev->eps[0].ring->cycle_state);
1202
1203 trace_xhci_setup_addressable_virt_device(dev);
1204
1205 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1206
1207 return 0;
1208}
1209
1210/*
1211 * Convert interval expressed as 2^(bInterval - 1) == interval into
1212 * straight exponent value 2^n == interval.
1213 *
1214 */
1215static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1216 struct usb_host_endpoint *ep)
1217{
1218 unsigned int interval;
1219
1220 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1221 if (interval != ep->desc.bInterval - 1)
1222 dev_warn(&udev->dev,
1223 "ep %#x - rounding interval to %d %sframes\n",
1224 ep->desc.bEndpointAddress,
1225 1 << interval,
1226 udev->speed == USB_SPEED_FULL ? "" : "micro");
1227
1228 if (udev->speed == USB_SPEED_FULL) {
1229 /*
1230 * Full speed isoc endpoints specify interval in frames,
1231 * not microframes. We are using microframes everywhere,
1232 * so adjust accordingly.
1233 */
1234 interval += 3; /* 1 frame = 2^3 uframes */
1235 }
1236
1237 return interval;
1238}
1239
1240/*
1241 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1242 * microframes, rounded down to nearest power of 2.
1243 */
1244static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1245 struct usb_host_endpoint *ep, unsigned int desc_interval,
1246 unsigned int min_exponent, unsigned int max_exponent)
1247{
1248 unsigned int interval;
1249
1250 interval = fls(desc_interval) - 1;
1251 interval = clamp_val(interval, min_exponent, max_exponent);
1252 if ((1 << interval) != desc_interval)
1253 dev_dbg(&udev->dev,
1254 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1255 ep->desc.bEndpointAddress,
1256 1 << interval,
1257 desc_interval);
1258
1259 return interval;
1260}
1261
1262static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1263 struct usb_host_endpoint *ep)
1264{
1265 if (ep->desc.bInterval == 0)
1266 return 0;
1267 return xhci_microframes_to_exponent(udev, ep,
1268 ep->desc.bInterval, 0, 15);
1269}
1270
1271
1272static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1273 struct usb_host_endpoint *ep)
1274{
1275 return xhci_microframes_to_exponent(udev, ep,
1276 ep->desc.bInterval * 8, 3, 10);
1277}
1278
1279/* Return the polling or NAK interval.
1280 *
1281 * The polling interval is expressed in "microframes". If xHCI's Interval field
1282 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1283 *
1284 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1285 * is set to 0.
1286 */
1287static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1288 struct usb_host_endpoint *ep)
1289{
1290 unsigned int interval = 0;
1291
1292 switch (udev->speed) {
1293 case USB_SPEED_HIGH:
1294 /* Max NAK rate */
1295 if (usb_endpoint_xfer_control(&ep->desc) ||
1296 usb_endpoint_xfer_bulk(&ep->desc)) {
1297 interval = xhci_parse_microframe_interval(udev, ep);
1298 break;
1299 }
1300 fallthrough; /* SS and HS isoc/int have same decoding */
1301
1302 case USB_SPEED_SUPER_PLUS:
1303 case USB_SPEED_SUPER:
1304 if (usb_endpoint_xfer_int(&ep->desc) ||
1305 usb_endpoint_xfer_isoc(&ep->desc)) {
1306 interval = xhci_parse_exponent_interval(udev, ep);
1307 }
1308 break;
1309
1310 case USB_SPEED_FULL:
1311 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1312 interval = xhci_parse_exponent_interval(udev, ep);
1313 break;
1314 }
1315 /*
1316 * Fall through for interrupt endpoint interval decoding
1317 * since it uses the same rules as low speed interrupt
1318 * endpoints.
1319 */
1320 fallthrough;
1321
1322 case USB_SPEED_LOW:
1323 if (usb_endpoint_xfer_int(&ep->desc) ||
1324 usb_endpoint_xfer_isoc(&ep->desc)) {
1325
1326 interval = xhci_parse_frame_interval(udev, ep);
1327 }
1328 break;
1329
1330 default:
1331 BUG();
1332 }
1333 return interval;
1334}
1335
1336/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1337 * High speed endpoint descriptors can define "the number of additional
1338 * transaction opportunities per microframe", but that goes in the Max Burst
1339 * endpoint context field.
1340 */
1341static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1342 struct usb_host_endpoint *ep)
1343{
1344 if (udev->speed < USB_SPEED_SUPER ||
1345 !usb_endpoint_xfer_isoc(&ep->desc))
1346 return 0;
1347 return ep->ss_ep_comp.bmAttributes;
1348}
1349
1350static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1351 struct usb_host_endpoint *ep)
1352{
1353 /* Super speed and Plus have max burst in ep companion desc */
1354 if (udev->speed >= USB_SPEED_SUPER)
1355 return ep->ss_ep_comp.bMaxBurst;
1356
1357 if (udev->speed == USB_SPEED_HIGH &&
1358 (usb_endpoint_xfer_isoc(&ep->desc) ||
1359 usb_endpoint_xfer_int(&ep->desc)))
1360 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1361
1362 return 0;
1363}
1364
1365static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1366{
1367 int in;
1368
1369 in = usb_endpoint_dir_in(&ep->desc);
1370
1371 switch (usb_endpoint_type(&ep->desc)) {
1372 case USB_ENDPOINT_XFER_CONTROL:
1373 return CTRL_EP;
1374 case USB_ENDPOINT_XFER_BULK:
1375 return in ? BULK_IN_EP : BULK_OUT_EP;
1376 case USB_ENDPOINT_XFER_ISOC:
1377 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1378 case USB_ENDPOINT_XFER_INT:
1379 return in ? INT_IN_EP : INT_OUT_EP;
1380 }
1381 return 0;
1382}
1383
1384/* Return the maximum endpoint service interval time (ESIT) payload.
1385 * Basically, this is the maxpacket size, multiplied by the burst size
1386 * and mult size.
1387 */
1388static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1389 struct usb_host_endpoint *ep)
1390{
1391 int max_burst;
1392 int max_packet;
1393
1394 /* Only applies for interrupt or isochronous endpoints */
1395 if (usb_endpoint_xfer_control(&ep->desc) ||
1396 usb_endpoint_xfer_bulk(&ep->desc))
1397 return 0;
1398
1399 /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1400 if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1401 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1402 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1403 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1404 else if (udev->speed >= USB_SPEED_SUPER)
1405 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1406
1407 max_packet = usb_endpoint_maxp(&ep->desc);
1408 max_burst = usb_endpoint_maxp_mult(&ep->desc);
1409 /* A 0 in max burst means 1 transfer per ESIT */
1410 return max_packet * max_burst;
1411}
1412
1413/* Set up an endpoint with one ring segment. Do not allocate stream rings.
1414 * Drivers will have to call usb_alloc_streams() to do that.
1415 */
1416int xhci_endpoint_init(struct xhci_hcd *xhci,
1417 struct xhci_virt_device *virt_dev,
1418 struct usb_device *udev,
1419 struct usb_host_endpoint *ep,
1420 gfp_t mem_flags)
1421{
1422 unsigned int ep_index;
1423 struct xhci_ep_ctx *ep_ctx;
1424 struct xhci_ring *ep_ring;
1425 unsigned int max_packet;
1426 enum xhci_ring_type ring_type;
1427 u32 max_esit_payload;
1428 u32 endpoint_type;
1429 unsigned int max_burst;
1430 unsigned int interval;
1431 unsigned int mult;
1432 unsigned int avg_trb_len;
1433 unsigned int err_count = 0;
1434
1435 ep_index = xhci_get_endpoint_index(&ep->desc);
1436 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1437
1438 endpoint_type = xhci_get_endpoint_type(ep);
1439 if (!endpoint_type)
1440 return -EINVAL;
1441
1442 ring_type = usb_endpoint_type(&ep->desc);
1443
1444 /*
1445 * Get values to fill the endpoint context, mostly from ep descriptor.
1446 * The average TRB buffer lengt for bulk endpoints is unclear as we
1447 * have no clue on scatter gather list entry size. For Isoc and Int,
1448 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1449 */
1450 max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1451 interval = xhci_get_endpoint_interval(udev, ep);
1452
1453 /* Periodic endpoint bInterval limit quirk */
1454 if (usb_endpoint_xfer_int(&ep->desc) ||
1455 usb_endpoint_xfer_isoc(&ep->desc)) {
1456 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1457 udev->speed >= USB_SPEED_HIGH &&
1458 interval >= 7) {
1459 interval = 6;
1460 }
1461 }
1462
1463 mult = xhci_get_endpoint_mult(udev, ep);
1464 max_packet = usb_endpoint_maxp(&ep->desc);
1465 max_burst = xhci_get_endpoint_max_burst(udev, ep);
1466 avg_trb_len = max_esit_payload;
1467
1468 /* FIXME dig Mult and streams info out of ep companion desc */
1469
1470 /* Allow 3 retries for everything but isoc, set CErr = 3 */
1471 if (!usb_endpoint_xfer_isoc(&ep->desc))
1472 err_count = 3;
1473 /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1474 if (usb_endpoint_xfer_bulk(&ep->desc)) {
1475 if (udev->speed == USB_SPEED_HIGH)
1476 max_packet = 512;
1477 if (udev->speed == USB_SPEED_FULL) {
1478 max_packet = rounddown_pow_of_two(max_packet);
1479 max_packet = clamp_val(max_packet, 8, 64);
1480 }
1481 }
1482 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1483 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1484 avg_trb_len = 8;
1485 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1486 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1487 mult = 0;
1488
1489 /* Set up the endpoint ring */
1490 virt_dev->eps[ep_index].new_ring =
1491 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1492 if (!virt_dev->eps[ep_index].new_ring)
1493 return -ENOMEM;
1494
1495 virt_dev->eps[ep_index].skip = false;
1496 ep_ring = virt_dev->eps[ep_index].new_ring;
1497
1498 /* Fill the endpoint context */
1499 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1500 EP_INTERVAL(interval) |
1501 EP_MULT(mult));
1502 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1503 MAX_PACKET(max_packet) |
1504 MAX_BURST(max_burst) |
1505 ERROR_COUNT(err_count));
1506 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1507 ep_ring->cycle_state);
1508
1509 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1510 EP_AVG_TRB_LENGTH(avg_trb_len));
1511
1512 return 0;
1513}
1514
1515void xhci_endpoint_zero(struct xhci_hcd *xhci,
1516 struct xhci_virt_device *virt_dev,
1517 struct usb_host_endpoint *ep)
1518{
1519 unsigned int ep_index;
1520 struct xhci_ep_ctx *ep_ctx;
1521
1522 ep_index = xhci_get_endpoint_index(&ep->desc);
1523 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1524
1525 ep_ctx->ep_info = 0;
1526 ep_ctx->ep_info2 = 0;
1527 ep_ctx->deq = 0;
1528 ep_ctx->tx_info = 0;
1529 /* Don't free the endpoint ring until the set interface or configuration
1530 * request succeeds.
1531 */
1532}
1533
1534void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1535{
1536 bw_info->ep_interval = 0;
1537 bw_info->mult = 0;
1538 bw_info->num_packets = 0;
1539 bw_info->max_packet_size = 0;
1540 bw_info->type = 0;
1541 bw_info->max_esit_payload = 0;
1542}
1543
1544void xhci_update_bw_info(struct xhci_hcd *xhci,
1545 struct xhci_container_ctx *in_ctx,
1546 struct xhci_input_control_ctx *ctrl_ctx,
1547 struct xhci_virt_device *virt_dev)
1548{
1549 struct xhci_bw_info *bw_info;
1550 struct xhci_ep_ctx *ep_ctx;
1551 unsigned int ep_type;
1552 int i;
1553
1554 for (i = 1; i < 31; i++) {
1555 bw_info = &virt_dev->eps[i].bw_info;
1556
1557 /* We can't tell what endpoint type is being dropped, but
1558 * unconditionally clearing the bandwidth info for non-periodic
1559 * endpoints should be harmless because the info will never be
1560 * set in the first place.
1561 */
1562 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1563 /* Dropped endpoint */
1564 xhci_clear_endpoint_bw_info(bw_info);
1565 continue;
1566 }
1567
1568 if (EP_IS_ADDED(ctrl_ctx, i)) {
1569 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1570 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1571
1572 /* Ignore non-periodic endpoints */
1573 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1574 ep_type != ISOC_IN_EP &&
1575 ep_type != INT_IN_EP)
1576 continue;
1577
1578 /* Added or changed endpoint */
1579 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1580 le32_to_cpu(ep_ctx->ep_info));
1581 /* Number of packets and mult are zero-based in the
1582 * input context, but we want one-based for the
1583 * interval table.
1584 */
1585 bw_info->mult = CTX_TO_EP_MULT(
1586 le32_to_cpu(ep_ctx->ep_info)) + 1;
1587 bw_info->num_packets = CTX_TO_MAX_BURST(
1588 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1589 bw_info->max_packet_size = MAX_PACKET_DECODED(
1590 le32_to_cpu(ep_ctx->ep_info2));
1591 bw_info->type = ep_type;
1592 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1593 le32_to_cpu(ep_ctx->tx_info));
1594 }
1595 }
1596}
1597
1598/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1599 * Useful when you want to change one particular aspect of the endpoint and then
1600 * issue a configure endpoint command.
1601 */
1602void xhci_endpoint_copy(struct xhci_hcd *xhci,
1603 struct xhci_container_ctx *in_ctx,
1604 struct xhci_container_ctx *out_ctx,
1605 unsigned int ep_index)
1606{
1607 struct xhci_ep_ctx *out_ep_ctx;
1608 struct xhci_ep_ctx *in_ep_ctx;
1609
1610 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1611 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1612
1613 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1614 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1615 in_ep_ctx->deq = out_ep_ctx->deq;
1616 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1617 if (xhci->quirks & XHCI_MTK_HOST) {
1618 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1619 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1620 }
1621}
1622
1623/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1624 * Useful when you want to change one particular aspect of the endpoint and then
1625 * issue a configure endpoint command. Only the context entries field matters,
1626 * but we'll copy the whole thing anyway.
1627 */
1628void xhci_slot_copy(struct xhci_hcd *xhci,
1629 struct xhci_container_ctx *in_ctx,
1630 struct xhci_container_ctx *out_ctx)
1631{
1632 struct xhci_slot_ctx *in_slot_ctx;
1633 struct xhci_slot_ctx *out_slot_ctx;
1634
1635 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1636 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1637
1638 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1639 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1640 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1641 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1642}
1643
1644/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1645static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1646{
1647 int i;
1648 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1649 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1650
1651 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1652 "Allocating %d scratchpad buffers", num_sp);
1653
1654 if (!num_sp)
1655 return 0;
1656
1657 xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1658 dev_to_node(dev));
1659 if (!xhci->scratchpad)
1660 goto fail_sp;
1661
1662 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1663 num_sp * sizeof(u64),
1664 &xhci->scratchpad->sp_dma, flags);
1665 if (!xhci->scratchpad->sp_array)
1666 goto fail_sp2;
1667
1668 xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1669 flags, dev_to_node(dev));
1670 if (!xhci->scratchpad->sp_buffers)
1671 goto fail_sp3;
1672
1673 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1674 for (i = 0; i < num_sp; i++) {
1675 dma_addr_t dma;
1676 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1677 flags);
1678 if (!buf)
1679 goto fail_sp4;
1680
1681 xhci->scratchpad->sp_array[i] = dma;
1682 xhci->scratchpad->sp_buffers[i] = buf;
1683 }
1684
1685 return 0;
1686
1687 fail_sp4:
1688 for (i = i - 1; i >= 0; i--) {
1689 dma_free_coherent(dev, xhci->page_size,
1690 xhci->scratchpad->sp_buffers[i],
1691 xhci->scratchpad->sp_array[i]);
1692 }
1693
1694 kfree(xhci->scratchpad->sp_buffers);
1695
1696 fail_sp3:
1697 dma_free_coherent(dev, num_sp * sizeof(u64),
1698 xhci->scratchpad->sp_array,
1699 xhci->scratchpad->sp_dma);
1700
1701 fail_sp2:
1702 kfree(xhci->scratchpad);
1703 xhci->scratchpad = NULL;
1704
1705 fail_sp:
1706 return -ENOMEM;
1707}
1708
1709static void scratchpad_free(struct xhci_hcd *xhci)
1710{
1711 int num_sp;
1712 int i;
1713 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1714
1715 if (!xhci->scratchpad)
1716 return;
1717
1718 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1719
1720 for (i = 0; i < num_sp; i++) {
1721 dma_free_coherent(dev, xhci->page_size,
1722 xhci->scratchpad->sp_buffers[i],
1723 xhci->scratchpad->sp_array[i]);
1724 }
1725 kfree(xhci->scratchpad->sp_buffers);
1726 dma_free_coherent(dev, num_sp * sizeof(u64),
1727 xhci->scratchpad->sp_array,
1728 xhci->scratchpad->sp_dma);
1729 kfree(xhci->scratchpad);
1730 xhci->scratchpad = NULL;
1731}
1732
1733struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1734 bool allocate_completion, gfp_t mem_flags)
1735{
1736 struct xhci_command *command;
1737 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1738
1739 command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1740 if (!command)
1741 return NULL;
1742
1743 if (allocate_completion) {
1744 command->completion =
1745 kzalloc_node(sizeof(struct completion), mem_flags,
1746 dev_to_node(dev));
1747 if (!command->completion) {
1748 kfree(command);
1749 return NULL;
1750 }
1751 init_completion(command->completion);
1752 }
1753
1754 command->status = 0;
1755 INIT_LIST_HEAD(&command->cmd_list);
1756 return command;
1757}
1758
1759struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1760 bool allocate_completion, gfp_t mem_flags)
1761{
1762 struct xhci_command *command;
1763
1764 command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1765 if (!command)
1766 return NULL;
1767
1768 command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1769 mem_flags);
1770 if (!command->in_ctx) {
1771 kfree(command->completion);
1772 kfree(command);
1773 return NULL;
1774 }
1775 return command;
1776}
1777
1778void xhci_urb_free_priv(struct urb_priv *urb_priv)
1779{
1780 kfree(urb_priv);
1781}
1782
1783void xhci_free_command(struct xhci_hcd *xhci,
1784 struct xhci_command *command)
1785{
1786 xhci_free_container_ctx(xhci,
1787 command->in_ctx);
1788 kfree(command->completion);
1789 kfree(command);
1790}
1791
1792int xhci_alloc_erst(struct xhci_hcd *xhci,
1793 struct xhci_ring *evt_ring,
1794 struct xhci_erst *erst,
1795 gfp_t flags)
1796{
1797 size_t size;
1798 unsigned int val;
1799 struct xhci_segment *seg;
1800 struct xhci_erst_entry *entry;
1801
1802 size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1803 erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1804 size, &erst->erst_dma_addr, flags);
1805 if (!erst->entries)
1806 return -ENOMEM;
1807
1808 erst->num_entries = evt_ring->num_segs;
1809
1810 seg = evt_ring->first_seg;
1811 for (val = 0; val < evt_ring->num_segs; val++) {
1812 entry = &erst->entries[val];
1813 entry->seg_addr = cpu_to_le64(seg->dma);
1814 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1815 entry->rsvd = 0;
1816 seg = seg->next;
1817 }
1818
1819 return 0;
1820}
1821
1822void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1823{
1824 size_t size;
1825 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1826
1827 size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1828 if (erst->entries)
1829 dma_free_coherent(dev, size,
1830 erst->entries,
1831 erst->erst_dma_addr);
1832 erst->entries = NULL;
1833}
1834
1835void xhci_mem_cleanup(struct xhci_hcd *xhci)
1836{
1837 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1838 int i, j, num_ports;
1839
1840 cancel_delayed_work_sync(&xhci->cmd_timer);
1841
1842 xhci_free_erst(xhci, &xhci->erst);
1843
1844 if (xhci->event_ring)
1845 xhci_ring_free(xhci, xhci->event_ring);
1846 xhci->event_ring = NULL;
1847 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1848
1849 if (xhci->cmd_ring)
1850 xhci_ring_free(xhci, xhci->cmd_ring);
1851 xhci->cmd_ring = NULL;
1852 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1853 xhci_cleanup_command_queue(xhci);
1854
1855 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1856 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1857 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1858 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1859 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1860 while (!list_empty(ep))
1861 list_del_init(ep->next);
1862 }
1863 }
1864
1865 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1866 xhci_free_virt_devices_depth_first(xhci, i);
1867
1868 dma_pool_destroy(xhci->segment_pool);
1869 xhci->segment_pool = NULL;
1870 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1871
1872 dma_pool_destroy(xhci->device_pool);
1873 xhci->device_pool = NULL;
1874 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1875
1876 dma_pool_destroy(xhci->small_streams_pool);
1877 xhci->small_streams_pool = NULL;
1878 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1879 "Freed small stream array pool");
1880
1881 dma_pool_destroy(xhci->medium_streams_pool);
1882 xhci->medium_streams_pool = NULL;
1883 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1884 "Freed medium stream array pool");
1885
1886 if (xhci->dcbaa)
1887 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1888 xhci->dcbaa, xhci->dcbaa->dma);
1889 xhci->dcbaa = NULL;
1890
1891 scratchpad_free(xhci);
1892
1893 if (!xhci->rh_bw)
1894 goto no_bw;
1895
1896 for (i = 0; i < num_ports; i++) {
1897 struct xhci_tt_bw_info *tt, *n;
1898 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1899 list_del(&tt->tt_list);
1900 kfree(tt);
1901 }
1902 }
1903
1904no_bw:
1905 xhci->cmd_ring_reserved_trbs = 0;
1906 xhci->usb2_rhub.num_ports = 0;
1907 xhci->usb3_rhub.num_ports = 0;
1908 xhci->num_active_eps = 0;
1909 kfree(xhci->usb2_rhub.ports);
1910 kfree(xhci->usb3_rhub.ports);
1911 kfree(xhci->hw_ports);
1912 kfree(xhci->rh_bw);
1913 kfree(xhci->ext_caps);
1914 for (i = 0; i < xhci->num_port_caps; i++)
1915 kfree(xhci->port_caps[i].psi);
1916 kfree(xhci->port_caps);
1917 xhci->num_port_caps = 0;
1918
1919 xhci->usb2_rhub.ports = NULL;
1920 xhci->usb3_rhub.ports = NULL;
1921 xhci->hw_ports = NULL;
1922 xhci->rh_bw = NULL;
1923 xhci->ext_caps = NULL;
1924 xhci->port_caps = NULL;
1925
1926 xhci->page_size = 0;
1927 xhci->page_shift = 0;
1928 xhci->usb2_rhub.bus_state.bus_suspended = 0;
1929 xhci->usb3_rhub.bus_state.bus_suspended = 0;
1930}
1931
1932static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1933 struct xhci_segment *input_seg,
1934 union xhci_trb *start_trb,
1935 union xhci_trb *end_trb,
1936 dma_addr_t input_dma,
1937 struct xhci_segment *result_seg,
1938 char *test_name, int test_number)
1939{
1940 unsigned long long start_dma;
1941 unsigned long long end_dma;
1942 struct xhci_segment *seg;
1943
1944 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1945 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1946
1947 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1948 if (seg != result_seg) {
1949 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1950 test_name, test_number);
1951 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1952 "input DMA 0x%llx\n",
1953 input_seg,
1954 (unsigned long long) input_dma);
1955 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1956 "ending TRB %p (0x%llx DMA)\n",
1957 start_trb, start_dma,
1958 end_trb, end_dma);
1959 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1960 result_seg, seg);
1961 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1962 true);
1963 return -1;
1964 }
1965 return 0;
1966}
1967
1968/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1969static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1970{
1971 struct {
1972 dma_addr_t input_dma;
1973 struct xhci_segment *result_seg;
1974 } simple_test_vector [] = {
1975 /* A zeroed DMA field should fail */
1976 { 0, NULL },
1977 /* One TRB before the ring start should fail */
1978 { xhci->event_ring->first_seg->dma - 16, NULL },
1979 /* One byte before the ring start should fail */
1980 { xhci->event_ring->first_seg->dma - 1, NULL },
1981 /* Starting TRB should succeed */
1982 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1983 /* Ending TRB should succeed */
1984 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1985 xhci->event_ring->first_seg },
1986 /* One byte after the ring end should fail */
1987 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1988 /* One TRB after the ring end should fail */
1989 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1990 /* An address of all ones should fail */
1991 { (dma_addr_t) (~0), NULL },
1992 };
1993 struct {
1994 struct xhci_segment *input_seg;
1995 union xhci_trb *start_trb;
1996 union xhci_trb *end_trb;
1997 dma_addr_t input_dma;
1998 struct xhci_segment *result_seg;
1999 } complex_test_vector [] = {
2000 /* Test feeding a valid DMA address from a different ring */
2001 { .input_seg = xhci->event_ring->first_seg,
2002 .start_trb = xhci->event_ring->first_seg->trbs,
2003 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2004 .input_dma = xhci->cmd_ring->first_seg->dma,
2005 .result_seg = NULL,
2006 },
2007 /* Test feeding a valid end TRB from a different ring */
2008 { .input_seg = xhci->event_ring->first_seg,
2009 .start_trb = xhci->event_ring->first_seg->trbs,
2010 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2011 .input_dma = xhci->cmd_ring->first_seg->dma,
2012 .result_seg = NULL,
2013 },
2014 /* Test feeding a valid start and end TRB from a different ring */
2015 { .input_seg = xhci->event_ring->first_seg,
2016 .start_trb = xhci->cmd_ring->first_seg->trbs,
2017 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2018 .input_dma = xhci->cmd_ring->first_seg->dma,
2019 .result_seg = NULL,
2020 },
2021 /* TRB in this ring, but after this TD */
2022 { .input_seg = xhci->event_ring->first_seg,
2023 .start_trb = &xhci->event_ring->first_seg->trbs[0],
2024 .end_trb = &xhci->event_ring->first_seg->trbs[3],
2025 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2026 .result_seg = NULL,
2027 },
2028 /* TRB in this ring, but before this TD */
2029 { .input_seg = xhci->event_ring->first_seg,
2030 .start_trb = &xhci->event_ring->first_seg->trbs[3],
2031 .end_trb = &xhci->event_ring->first_seg->trbs[6],
2032 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2033 .result_seg = NULL,
2034 },
2035 /* TRB in this ring, but after this wrapped TD */
2036 { .input_seg = xhci->event_ring->first_seg,
2037 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2038 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2039 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2040 .result_seg = NULL,
2041 },
2042 /* TRB in this ring, but before this wrapped TD */
2043 { .input_seg = xhci->event_ring->first_seg,
2044 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2045 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2046 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2047 .result_seg = NULL,
2048 },
2049 /* TRB not in this ring, and we have a wrapped TD */
2050 { .input_seg = xhci->event_ring->first_seg,
2051 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2052 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2053 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2054 .result_seg = NULL,
2055 },
2056 };
2057
2058 unsigned int num_tests;
2059 int i, ret;
2060
2061 num_tests = ARRAY_SIZE(simple_test_vector);
2062 for (i = 0; i < num_tests; i++) {
2063 ret = xhci_test_trb_in_td(xhci,
2064 xhci->event_ring->first_seg,
2065 xhci->event_ring->first_seg->trbs,
2066 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2067 simple_test_vector[i].input_dma,
2068 simple_test_vector[i].result_seg,
2069 "Simple", i);
2070 if (ret < 0)
2071 return ret;
2072 }
2073
2074 num_tests = ARRAY_SIZE(complex_test_vector);
2075 for (i = 0; i < num_tests; i++) {
2076 ret = xhci_test_trb_in_td(xhci,
2077 complex_test_vector[i].input_seg,
2078 complex_test_vector[i].start_trb,
2079 complex_test_vector[i].end_trb,
2080 complex_test_vector[i].input_dma,
2081 complex_test_vector[i].result_seg,
2082 "Complex", i);
2083 if (ret < 0)
2084 return ret;
2085 }
2086 xhci_dbg(xhci, "TRB math tests passed.\n");
2087 return 0;
2088}
2089
2090static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2091{
2092 u64 temp;
2093 dma_addr_t deq;
2094
2095 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2096 xhci->event_ring->dequeue);
2097 if (!deq)
2098 xhci_warn(xhci, "WARN something wrong with SW event ring "
2099 "dequeue ptr.\n");
2100 /* Update HC event ring dequeue pointer */
2101 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2102 temp &= ERST_PTR_MASK;
2103 /* Don't clear the EHB bit (which is RW1C) because
2104 * there might be more events to service.
2105 */
2106 temp &= ~ERST_EHB;
2107 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2108 "// Write event ring dequeue pointer, "
2109 "preserving EHB bit");
2110 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2111 &xhci->ir_set->erst_dequeue);
2112}
2113
2114static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2115 __le32 __iomem *addr, int max_caps)
2116{
2117 u32 temp, port_offset, port_count;
2118 int i;
2119 u8 major_revision, minor_revision;
2120 struct xhci_hub *rhub;
2121 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2122 struct xhci_port_cap *port_cap;
2123
2124 temp = readl(addr);
2125 major_revision = XHCI_EXT_PORT_MAJOR(temp);
2126 minor_revision = XHCI_EXT_PORT_MINOR(temp);
2127
2128 if (major_revision == 0x03) {
2129 rhub = &xhci->usb3_rhub;
2130 /*
2131 * Some hosts incorrectly use sub-minor version for minor
2132 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2133 * for bcdUSB 0x310). Since there is no USB release with sub
2134 * minor version 0x301 to 0x309, we can assume that they are
2135 * incorrect and fix it here.
2136 */
2137 if (minor_revision > 0x00 && minor_revision < 0x10)
2138 minor_revision <<= 4;
2139 } else if (major_revision <= 0x02) {
2140 rhub = &xhci->usb2_rhub;
2141 } else {
2142 xhci_warn(xhci, "Ignoring unknown port speed, "
2143 "Ext Cap %p, revision = 0x%x\n",
2144 addr, major_revision);
2145 /* Ignoring port protocol we can't understand. FIXME */
2146 return;
2147 }
2148 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2149
2150 if (rhub->min_rev < minor_revision)
2151 rhub->min_rev = minor_revision;
2152
2153 /* Port offset and count in the third dword, see section 7.2 */
2154 temp = readl(addr + 2);
2155 port_offset = XHCI_EXT_PORT_OFF(temp);
2156 port_count = XHCI_EXT_PORT_COUNT(temp);
2157 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2158 "Ext Cap %p, port offset = %u, "
2159 "count = %u, revision = 0x%x",
2160 addr, port_offset, port_count, major_revision);
2161 /* Port count includes the current port offset */
2162 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2163 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2164 return;
2165
2166 port_cap = &xhci->port_caps[xhci->num_port_caps++];
2167 if (xhci->num_port_caps > max_caps)
2168 return;
2169
2170 port_cap->maj_rev = major_revision;
2171 port_cap->min_rev = minor_revision;
2172 port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2173
2174 if (port_cap->psi_count) {
2175 port_cap->psi = kcalloc_node(port_cap->psi_count,
2176 sizeof(*port_cap->psi),
2177 GFP_KERNEL, dev_to_node(dev));
2178 if (!port_cap->psi)
2179 port_cap->psi_count = 0;
2180
2181 port_cap->psi_uid_count++;
2182 for (i = 0; i < port_cap->psi_count; i++) {
2183 port_cap->psi[i] = readl(addr + 4 + i);
2184
2185 /* count unique ID values, two consecutive entries can
2186 * have the same ID if link is assymetric
2187 */
2188 if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2189 XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2190 port_cap->psi_uid_count++;
2191
2192 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2193 XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2194 XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2195 XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2196 XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2197 XHCI_EXT_PORT_LP(port_cap->psi[i]),
2198 XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2199 }
2200 }
2201 /* cache usb2 port capabilities */
2202 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2203 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2204
2205 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2206 (temp & XHCI_HLC)) {
2207 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2208 "xHCI 1.0: support USB2 hardware lpm");
2209 xhci->hw_lpm_support = 1;
2210 }
2211
2212 port_offset--;
2213 for (i = port_offset; i < (port_offset + port_count); i++) {
2214 struct xhci_port *hw_port = &xhci->hw_ports[i];
2215 /* Duplicate entry. Ignore the port if the revisions differ. */
2216 if (hw_port->rhub) {
2217 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2218 " port %u\n", addr, i);
2219 xhci_warn(xhci, "Port was marked as USB %u, "
2220 "duplicated as USB %u\n",
2221 hw_port->rhub->maj_rev, major_revision);
2222 /* Only adjust the roothub port counts if we haven't
2223 * found a similar duplicate.
2224 */
2225 if (hw_port->rhub != rhub &&
2226 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2227 hw_port->rhub->num_ports--;
2228 hw_port->hcd_portnum = DUPLICATE_ENTRY;
2229 }
2230 continue;
2231 }
2232 hw_port->rhub = rhub;
2233 hw_port->port_cap = port_cap;
2234 rhub->num_ports++;
2235 }
2236 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2237}
2238
2239static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2240 struct xhci_hub *rhub, gfp_t flags)
2241{
2242 int port_index = 0;
2243 int i;
2244 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2245
2246 if (!rhub->num_ports)
2247 return;
2248 rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2249 flags, dev_to_node(dev));
2250 if (!rhub->ports)
2251 return;
2252
2253 for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2254 if (xhci->hw_ports[i].rhub != rhub ||
2255 xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2256 continue;
2257 xhci->hw_ports[i].hcd_portnum = port_index;
2258 rhub->ports[port_index] = &xhci->hw_ports[i];
2259 port_index++;
2260 if (port_index == rhub->num_ports)
2261 break;
2262 }
2263}
2264
2265/*
2266 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2267 * specify what speeds each port is supposed to be. We can't count on the port
2268 * speed bits in the PORTSC register being correct until a device is connected,
2269 * but we need to set up the two fake roothubs with the correct number of USB
2270 * 3.0 and USB 2.0 ports at host controller initialization time.
2271 */
2272static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2273{
2274 void __iomem *base;
2275 u32 offset;
2276 unsigned int num_ports;
2277 int i, j;
2278 int cap_count = 0;
2279 u32 cap_start;
2280 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2281
2282 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2283 xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2284 flags, dev_to_node(dev));
2285 if (!xhci->hw_ports)
2286 return -ENOMEM;
2287
2288 for (i = 0; i < num_ports; i++) {
2289 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2290 NUM_PORT_REGS * i;
2291 xhci->hw_ports[i].hw_portnum = i;
2292 }
2293
2294 xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2295 dev_to_node(dev));
2296 if (!xhci->rh_bw)
2297 return -ENOMEM;
2298 for (i = 0; i < num_ports; i++) {
2299 struct xhci_interval_bw_table *bw_table;
2300
2301 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2302 bw_table = &xhci->rh_bw[i].bw_table;
2303 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2304 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2305 }
2306 base = &xhci->cap_regs->hc_capbase;
2307
2308 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2309 if (!cap_start) {
2310 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2311 return -ENODEV;
2312 }
2313
2314 offset = cap_start;
2315 /* count extended protocol capability entries for later caching */
2316 while (offset) {
2317 cap_count++;
2318 offset = xhci_find_next_ext_cap(base, offset,
2319 XHCI_EXT_CAPS_PROTOCOL);
2320 }
2321
2322 xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2323 flags, dev_to_node(dev));
2324 if (!xhci->ext_caps)
2325 return -ENOMEM;
2326
2327 xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2328 flags, dev_to_node(dev));
2329 if (!xhci->port_caps)
2330 return -ENOMEM;
2331
2332 offset = cap_start;
2333
2334 while (offset) {
2335 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2336 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2337 num_ports)
2338 break;
2339 offset = xhci_find_next_ext_cap(base, offset,
2340 XHCI_EXT_CAPS_PROTOCOL);
2341 }
2342 if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2343 xhci_warn(xhci, "No ports on the roothubs?\n");
2344 return -ENODEV;
2345 }
2346 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2347 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2348 xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2349
2350 /* Place limits on the number of roothub ports so that the hub
2351 * descriptors aren't longer than the USB core will allocate.
2352 */
2353 if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2354 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2355 "Limiting USB 3.0 roothub ports to %u.",
2356 USB_SS_MAXPORTS);
2357 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2358 }
2359 if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2360 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2361 "Limiting USB 2.0 roothub ports to %u.",
2362 USB_MAXCHILDREN);
2363 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2364 }
2365
2366 if (!xhci->usb2_rhub.num_ports)
2367 xhci_info(xhci, "USB2 root hub has no ports\n");
2368
2369 if (!xhci->usb3_rhub.num_ports)
2370 xhci_info(xhci, "USB3 root hub has no ports\n");
2371
2372 xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2373 xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2374
2375 return 0;
2376}
2377
2378int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2379{
2380 dma_addr_t dma;
2381 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2382 unsigned int val, val2;
2383 u64 val_64;
2384 u32 page_size, temp;
2385 int i, ret;
2386
2387 INIT_LIST_HEAD(&xhci->cmd_list);
2388
2389 /* init command timeout work */
2390 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2391 init_completion(&xhci->cmd_ring_stop_completion);
2392
2393 page_size = readl(&xhci->op_regs->page_size);
2394 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2395 "Supported page size register = 0x%x", page_size);
2396 i = ffs(page_size);
2397 if (i < 16)
2398 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2399 "Supported page size of %iK", (1 << (i+12)) / 1024);
2400 else
2401 xhci_warn(xhci, "WARN: no supported page size\n");
2402 /* Use 4K pages, since that's common and the minimum the HC supports */
2403 xhci->page_shift = 12;
2404 xhci->page_size = 1 << xhci->page_shift;
2405 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2406 "HCD page size set to %iK", xhci->page_size / 1024);
2407
2408 /*
2409 * Program the Number of Device Slots Enabled field in the CONFIG
2410 * register with the max value of slots the HC can handle.
2411 */
2412 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2413 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2414 "// xHC can handle at most %d device slots.", val);
2415 val2 = readl(&xhci->op_regs->config_reg);
2416 val |= (val2 & ~HCS_SLOTS_MASK);
2417 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2418 "// Setting Max device slots reg = 0x%x.", val);
2419 writel(val, &xhci->op_regs->config_reg);
2420
2421 /*
2422 * xHCI section 5.4.6 - Device Context array must be
2423 * "physically contiguous and 64-byte (cache line) aligned".
2424 */
2425 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2426 flags);
2427 if (!xhci->dcbaa)
2428 goto fail;
2429 xhci->dcbaa->dma = dma;
2430 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2431 "// Device context base array address = 0x%llx (DMA), %p (virt)",
2432 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2433 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2434
2435 /*
2436 * Initialize the ring segment pool. The ring must be a contiguous
2437 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2438 * however, the command ring segment needs 64-byte aligned segments
2439 * and our use of dma addresses in the trb_address_map radix tree needs
2440 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2441 */
2442 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2443 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2444
2445 /* See Table 46 and Note on Figure 55 */
2446 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2447 2112, 64, xhci->page_size);
2448 if (!xhci->segment_pool || !xhci->device_pool)
2449 goto fail;
2450
2451 /* Linear stream context arrays don't have any boundary restrictions,
2452 * and only need to be 16-byte aligned.
2453 */
2454 xhci->small_streams_pool =
2455 dma_pool_create("xHCI 256 byte stream ctx arrays",
2456 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2457 xhci->medium_streams_pool =
2458 dma_pool_create("xHCI 1KB stream ctx arrays",
2459 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2460 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2461 * will be allocated with dma_alloc_coherent()
2462 */
2463
2464 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2465 goto fail;
2466
2467 /* Set up the command ring to have one segments for now. */
2468 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2469 if (!xhci->cmd_ring)
2470 goto fail;
2471 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2472 "Allocated command ring at %p", xhci->cmd_ring);
2473 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2474 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2475
2476 /* Set the address in the Command Ring Control register */
2477 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2478 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2479 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2480 xhci->cmd_ring->cycle_state;
2481 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2482 "// Setting command ring address to 0x%016llx", val_64);
2483 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2484
2485 /* Reserve one command ring TRB for disabling LPM.
2486 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2487 * disabling LPM, we only need to reserve one TRB for all devices.
2488 */
2489 xhci->cmd_ring_reserved_trbs++;
2490
2491 val = readl(&xhci->cap_regs->db_off);
2492 val &= DBOFF_MASK;
2493 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2494 "// Doorbell array is located at offset 0x%x"
2495 " from cap regs base addr", val);
2496 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2497 /* Set ir_set to interrupt register set 0 */
2498 xhci->ir_set = &xhci->run_regs->ir_set[0];
2499
2500 /*
2501 * Event ring setup: Allocate a normal ring, but also setup
2502 * the event ring segment table (ERST). Section 4.9.3.
2503 */
2504 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2505 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2506 0, flags);
2507 if (!xhci->event_ring)
2508 goto fail;
2509 if (xhci_check_trb_in_td_math(xhci) < 0)
2510 goto fail;
2511
2512 ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2513 if (ret)
2514 goto fail;
2515
2516 /* set ERST count with the number of entries in the segment table */
2517 val = readl(&xhci->ir_set->erst_size);
2518 val &= ERST_SIZE_MASK;
2519 val |= ERST_NUM_SEGS;
2520 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2521 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2522 val);
2523 writel(val, &xhci->ir_set->erst_size);
2524
2525 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2526 "// Set ERST entries to point to event ring.");
2527 /* set the segment table base address */
2528 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2529 "// Set ERST base address for ir_set 0 = 0x%llx",
2530 (unsigned long long)xhci->erst.erst_dma_addr);
2531 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2532 val_64 &= ERST_PTR_MASK;
2533 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2534 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2535
2536 /* Set the event ring dequeue address */
2537 xhci_set_hc_event_deq(xhci);
2538 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2539 "Wrote ERST address to ir_set 0.");
2540
2541 xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2542
2543 /*
2544 * XXX: Might need to set the Interrupter Moderation Register to
2545 * something other than the default (~1ms minimum between interrupts).
2546 * See section 5.5.1.2.
2547 */
2548 for (i = 0; i < MAX_HC_SLOTS; i++)
2549 xhci->devs[i] = NULL;
2550 for (i = 0; i < USB_MAXCHILDREN; i++) {
2551 xhci->usb2_rhub.bus_state.resume_done[i] = 0;
2552 xhci->usb3_rhub.bus_state.resume_done[i] = 0;
2553 /* Only the USB 2.0 completions will ever be used. */
2554 init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
2555 init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]);
2556 }
2557
2558 if (scratchpad_alloc(xhci, flags))
2559 goto fail;
2560 if (xhci_setup_port_arrays(xhci, flags))
2561 goto fail;
2562
2563 /* Enable USB 3.0 device notifications for function remote wake, which
2564 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2565 * U3 (device suspend).
2566 */
2567 temp = readl(&xhci->op_regs->dev_notification);
2568 temp &= ~DEV_NOTE_MASK;
2569 temp |= DEV_NOTE_FWAKE;
2570 writel(temp, &xhci->op_regs->dev_notification);
2571
2572 return 0;
2573
2574fail:
2575 xhci_halt(xhci);
2576 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2577 xhci_mem_cleanup(xhci);
2578 return -ENOMEM;
2579}
1/*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23#include <linux/usb.h>
24#include <linux/pci.h>
25#include <linux/slab.h>
26#include <linux/dmapool.h>
27#include <linux/dma-mapping.h>
28
29#include "xhci.h"
30#include "xhci-trace.h"
31
32/*
33 * Allocates a generic ring segment from the ring pool, sets the dma address,
34 * initializes the segment to zero, and sets the private next pointer to NULL.
35 *
36 * Section 4.11.1.1:
37 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
38 */
39static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40 unsigned int cycle_state,
41 unsigned int max_packet,
42 gfp_t flags)
43{
44 struct xhci_segment *seg;
45 dma_addr_t dma;
46 int i;
47
48 seg = kzalloc(sizeof *seg, flags);
49 if (!seg)
50 return NULL;
51
52 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
53 if (!seg->trbs) {
54 kfree(seg);
55 return NULL;
56 }
57
58 if (max_packet) {
59 seg->bounce_buf = kzalloc(max_packet, flags | GFP_DMA);
60 if (!seg->bounce_buf) {
61 dma_pool_free(xhci->segment_pool, seg->trbs, dma);
62 kfree(seg);
63 return NULL;
64 }
65 }
66 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
67 if (cycle_state == 0) {
68 for (i = 0; i < TRBS_PER_SEGMENT; i++)
69 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
70 }
71 seg->dma = dma;
72 seg->next = NULL;
73
74 return seg;
75}
76
77static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
78{
79 if (seg->trbs) {
80 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
81 seg->trbs = NULL;
82 }
83 kfree(seg->bounce_buf);
84 kfree(seg);
85}
86
87static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
88 struct xhci_segment *first)
89{
90 struct xhci_segment *seg;
91
92 seg = first->next;
93 while (seg != first) {
94 struct xhci_segment *next = seg->next;
95 xhci_segment_free(xhci, seg);
96 seg = next;
97 }
98 xhci_segment_free(xhci, first);
99}
100
101/*
102 * Make the prev segment point to the next segment.
103 *
104 * Change the last TRB in the prev segment to be a Link TRB which points to the
105 * DMA address of the next segment. The caller needs to set any Link TRB
106 * related flags, such as End TRB, Toggle Cycle, and no snoop.
107 */
108static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
109 struct xhci_segment *next, enum xhci_ring_type type)
110{
111 u32 val;
112
113 if (!prev || !next)
114 return;
115 prev->next = next;
116 if (type != TYPE_EVENT) {
117 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
118 cpu_to_le64(next->dma);
119
120 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
121 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
122 val &= ~TRB_TYPE_BITMASK;
123 val |= TRB_TYPE(TRB_LINK);
124 /* Always set the chain bit with 0.95 hardware */
125 /* Set chain bit for isoc rings on AMD 0.96 host */
126 if (xhci_link_trb_quirk(xhci) ||
127 (type == TYPE_ISOC &&
128 (xhci->quirks & XHCI_AMD_0x96_HOST)))
129 val |= TRB_CHAIN;
130 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
131 }
132}
133
134/*
135 * Link the ring to the new segments.
136 * Set Toggle Cycle for the new ring if needed.
137 */
138static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
139 struct xhci_segment *first, struct xhci_segment *last,
140 unsigned int num_segs)
141{
142 struct xhci_segment *next;
143
144 if (!ring || !first || !last)
145 return;
146
147 next = ring->enq_seg->next;
148 xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
149 xhci_link_segments(xhci, last, next, ring->type);
150 ring->num_segs += num_segs;
151 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
152
153 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
154 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
155 &= ~cpu_to_le32(LINK_TOGGLE);
156 last->trbs[TRBS_PER_SEGMENT-1].link.control
157 |= cpu_to_le32(LINK_TOGGLE);
158 ring->last_seg = last;
159 }
160}
161
162/*
163 * We need a radix tree for mapping physical addresses of TRBs to which stream
164 * ID they belong to. We need to do this because the host controller won't tell
165 * us which stream ring the TRB came from. We could store the stream ID in an
166 * event data TRB, but that doesn't help us for the cancellation case, since the
167 * endpoint may stop before it reaches that event data TRB.
168 *
169 * The radix tree maps the upper portion of the TRB DMA address to a ring
170 * segment that has the same upper portion of DMA addresses. For example, say I
171 * have segments of size 1KB, that are always 1KB aligned. A segment may
172 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
173 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
174 * pass the radix tree a key to get the right stream ID:
175 *
176 * 0x10c90fff >> 10 = 0x43243
177 * 0x10c912c0 >> 10 = 0x43244
178 * 0x10c91400 >> 10 = 0x43245
179 *
180 * Obviously, only those TRBs with DMA addresses that are within the segment
181 * will make the radix tree return the stream ID for that ring.
182 *
183 * Caveats for the radix tree:
184 *
185 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
186 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
187 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
188 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
189 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
190 * extended systems (where the DMA address can be bigger than 32-bits),
191 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
192 */
193static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
194 struct xhci_ring *ring,
195 struct xhci_segment *seg,
196 gfp_t mem_flags)
197{
198 unsigned long key;
199 int ret;
200
201 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
202 /* Skip any segments that were already added. */
203 if (radix_tree_lookup(trb_address_map, key))
204 return 0;
205
206 ret = radix_tree_maybe_preload(mem_flags);
207 if (ret)
208 return ret;
209 ret = radix_tree_insert(trb_address_map,
210 key, ring);
211 radix_tree_preload_end();
212 return ret;
213}
214
215static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
216 struct xhci_segment *seg)
217{
218 unsigned long key;
219
220 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
221 if (radix_tree_lookup(trb_address_map, key))
222 radix_tree_delete(trb_address_map, key);
223}
224
225static int xhci_update_stream_segment_mapping(
226 struct radix_tree_root *trb_address_map,
227 struct xhci_ring *ring,
228 struct xhci_segment *first_seg,
229 struct xhci_segment *last_seg,
230 gfp_t mem_flags)
231{
232 struct xhci_segment *seg;
233 struct xhci_segment *failed_seg;
234 int ret;
235
236 if (WARN_ON_ONCE(trb_address_map == NULL))
237 return 0;
238
239 seg = first_seg;
240 do {
241 ret = xhci_insert_segment_mapping(trb_address_map,
242 ring, seg, mem_flags);
243 if (ret)
244 goto remove_streams;
245 if (seg == last_seg)
246 return 0;
247 seg = seg->next;
248 } while (seg != first_seg);
249
250 return 0;
251
252remove_streams:
253 failed_seg = seg;
254 seg = first_seg;
255 do {
256 xhci_remove_segment_mapping(trb_address_map, seg);
257 if (seg == failed_seg)
258 return ret;
259 seg = seg->next;
260 } while (seg != first_seg);
261
262 return ret;
263}
264
265static void xhci_remove_stream_mapping(struct xhci_ring *ring)
266{
267 struct xhci_segment *seg;
268
269 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
270 return;
271
272 seg = ring->first_seg;
273 do {
274 xhci_remove_segment_mapping(ring->trb_address_map, seg);
275 seg = seg->next;
276 } while (seg != ring->first_seg);
277}
278
279static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
280{
281 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
282 ring->first_seg, ring->last_seg, mem_flags);
283}
284
285/* XXX: Do we need the hcd structure in all these functions? */
286void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
287{
288 if (!ring)
289 return;
290
291 if (ring->first_seg) {
292 if (ring->type == TYPE_STREAM)
293 xhci_remove_stream_mapping(ring);
294 xhci_free_segments_for_ring(xhci, ring->first_seg);
295 }
296
297 kfree(ring);
298}
299
300static void xhci_initialize_ring_info(struct xhci_ring *ring,
301 unsigned int cycle_state)
302{
303 /* The ring is empty, so the enqueue pointer == dequeue pointer */
304 ring->enqueue = ring->first_seg->trbs;
305 ring->enq_seg = ring->first_seg;
306 ring->dequeue = ring->enqueue;
307 ring->deq_seg = ring->first_seg;
308 /* The ring is initialized to 0. The producer must write 1 to the cycle
309 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
310 * compare CCS to the cycle bit to check ownership, so CCS = 1.
311 *
312 * New rings are initialized with cycle state equal to 1; if we are
313 * handling ring expansion, set the cycle state equal to the old ring.
314 */
315 ring->cycle_state = cycle_state;
316 /* Not necessary for new rings, but needed for re-initialized rings */
317 ring->enq_updates = 0;
318 ring->deq_updates = 0;
319
320 /*
321 * Each segment has a link TRB, and leave an extra TRB for SW
322 * accounting purpose
323 */
324 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
325}
326
327/* Allocate segments and link them for a ring */
328static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
329 struct xhci_segment **first, struct xhci_segment **last,
330 unsigned int num_segs, unsigned int cycle_state,
331 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
332{
333 struct xhci_segment *prev;
334
335 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
336 if (!prev)
337 return -ENOMEM;
338 num_segs--;
339
340 *first = prev;
341 while (num_segs > 0) {
342 struct xhci_segment *next;
343
344 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
345 if (!next) {
346 prev = *first;
347 while (prev) {
348 next = prev->next;
349 xhci_segment_free(xhci, prev);
350 prev = next;
351 }
352 return -ENOMEM;
353 }
354 xhci_link_segments(xhci, prev, next, type);
355
356 prev = next;
357 num_segs--;
358 }
359 xhci_link_segments(xhci, prev, *first, type);
360 *last = prev;
361
362 return 0;
363}
364
365/**
366 * Create a new ring with zero or more segments.
367 *
368 * Link each segment together into a ring.
369 * Set the end flag and the cycle toggle bit on the last segment.
370 * See section 4.9.1 and figures 15 and 16.
371 */
372static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
373 unsigned int num_segs, unsigned int cycle_state,
374 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
375{
376 struct xhci_ring *ring;
377 int ret;
378
379 ring = kzalloc(sizeof *(ring), flags);
380 if (!ring)
381 return NULL;
382
383 ring->num_segs = num_segs;
384 ring->bounce_buf_len = max_packet;
385 INIT_LIST_HEAD(&ring->td_list);
386 ring->type = type;
387 if (num_segs == 0)
388 return ring;
389
390 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
391 &ring->last_seg, num_segs, cycle_state, type,
392 max_packet, flags);
393 if (ret)
394 goto fail;
395
396 /* Only event ring does not use link TRB */
397 if (type != TYPE_EVENT) {
398 /* See section 4.9.2.1 and 6.4.4.1 */
399 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
400 cpu_to_le32(LINK_TOGGLE);
401 }
402 xhci_initialize_ring_info(ring, cycle_state);
403 return ring;
404
405fail:
406 kfree(ring);
407 return NULL;
408}
409
410void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
411 struct xhci_virt_device *virt_dev,
412 unsigned int ep_index)
413{
414 int rings_cached;
415
416 rings_cached = virt_dev->num_rings_cached;
417 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
418 virt_dev->ring_cache[rings_cached] =
419 virt_dev->eps[ep_index].ring;
420 virt_dev->num_rings_cached++;
421 xhci_dbg(xhci, "Cached old ring, "
422 "%d ring%s cached\n",
423 virt_dev->num_rings_cached,
424 (virt_dev->num_rings_cached > 1) ? "s" : "");
425 } else {
426 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
427 xhci_dbg(xhci, "Ring cache full (%d rings), "
428 "freeing ring\n",
429 virt_dev->num_rings_cached);
430 }
431 virt_dev->eps[ep_index].ring = NULL;
432}
433
434/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
435 * pointers to the beginning of the ring.
436 */
437static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
438 struct xhci_ring *ring, unsigned int cycle_state,
439 enum xhci_ring_type type)
440{
441 struct xhci_segment *seg = ring->first_seg;
442 int i;
443
444 do {
445 memset(seg->trbs, 0,
446 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
447 if (cycle_state == 0) {
448 for (i = 0; i < TRBS_PER_SEGMENT; i++)
449 seg->trbs[i].link.control |=
450 cpu_to_le32(TRB_CYCLE);
451 }
452 /* All endpoint rings have link TRBs */
453 xhci_link_segments(xhci, seg, seg->next, type);
454 seg = seg->next;
455 } while (seg != ring->first_seg);
456 ring->type = type;
457 xhci_initialize_ring_info(ring, cycle_state);
458 /* td list should be empty since all URBs have been cancelled,
459 * but just in case...
460 */
461 INIT_LIST_HEAD(&ring->td_list);
462}
463
464/*
465 * Expand an existing ring.
466 * Look for a cached ring or allocate a new ring which has same segment numbers
467 * and link the two rings.
468 */
469int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
470 unsigned int num_trbs, gfp_t flags)
471{
472 struct xhci_segment *first;
473 struct xhci_segment *last;
474 unsigned int num_segs;
475 unsigned int num_segs_needed;
476 int ret;
477
478 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
479 (TRBS_PER_SEGMENT - 1);
480
481 /* Allocate number of segments we needed, or double the ring size */
482 num_segs = ring->num_segs > num_segs_needed ?
483 ring->num_segs : num_segs_needed;
484
485 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
486 num_segs, ring->cycle_state, ring->type,
487 ring->bounce_buf_len, flags);
488 if (ret)
489 return -ENOMEM;
490
491 if (ring->type == TYPE_STREAM)
492 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
493 ring, first, last, flags);
494 if (ret) {
495 struct xhci_segment *next;
496 do {
497 next = first->next;
498 xhci_segment_free(xhci, first);
499 if (first == last)
500 break;
501 first = next;
502 } while (true);
503 return ret;
504 }
505
506 xhci_link_rings(xhci, ring, first, last, num_segs);
507 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
508 "ring expansion succeed, now has %d segments",
509 ring->num_segs);
510
511 return 0;
512}
513
514#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
515
516static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
517 int type, gfp_t flags)
518{
519 struct xhci_container_ctx *ctx;
520
521 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
522 return NULL;
523
524 ctx = kzalloc(sizeof(*ctx), flags);
525 if (!ctx)
526 return NULL;
527
528 ctx->type = type;
529 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
530 if (type == XHCI_CTX_TYPE_INPUT)
531 ctx->size += CTX_SIZE(xhci->hcc_params);
532
533 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
534 if (!ctx->bytes) {
535 kfree(ctx);
536 return NULL;
537 }
538 return ctx;
539}
540
541static void xhci_free_container_ctx(struct xhci_hcd *xhci,
542 struct xhci_container_ctx *ctx)
543{
544 if (!ctx)
545 return;
546 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
547 kfree(ctx);
548}
549
550struct xhci_input_control_ctx *xhci_get_input_control_ctx(
551 struct xhci_container_ctx *ctx)
552{
553 if (ctx->type != XHCI_CTX_TYPE_INPUT)
554 return NULL;
555
556 return (struct xhci_input_control_ctx *)ctx->bytes;
557}
558
559struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
560 struct xhci_container_ctx *ctx)
561{
562 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
563 return (struct xhci_slot_ctx *)ctx->bytes;
564
565 return (struct xhci_slot_ctx *)
566 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
567}
568
569struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
570 struct xhci_container_ctx *ctx,
571 unsigned int ep_index)
572{
573 /* increment ep index by offset of start of ep ctx array */
574 ep_index++;
575 if (ctx->type == XHCI_CTX_TYPE_INPUT)
576 ep_index++;
577
578 return (struct xhci_ep_ctx *)
579 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
580}
581
582
583/***************** Streams structures manipulation *************************/
584
585static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
586 unsigned int num_stream_ctxs,
587 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
588{
589 struct device *dev = xhci_to_hcd(xhci)->self.controller;
590 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
591
592 if (size > MEDIUM_STREAM_ARRAY_SIZE)
593 dma_free_coherent(dev, size,
594 stream_ctx, dma);
595 else if (size <= SMALL_STREAM_ARRAY_SIZE)
596 return dma_pool_free(xhci->small_streams_pool,
597 stream_ctx, dma);
598 else
599 return dma_pool_free(xhci->medium_streams_pool,
600 stream_ctx, dma);
601}
602
603/*
604 * The stream context array for each endpoint with bulk streams enabled can
605 * vary in size, based on:
606 * - how many streams the endpoint supports,
607 * - the maximum primary stream array size the host controller supports,
608 * - and how many streams the device driver asks for.
609 *
610 * The stream context array must be a power of 2, and can be as small as
611 * 64 bytes or as large as 1MB.
612 */
613static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
614 unsigned int num_stream_ctxs, dma_addr_t *dma,
615 gfp_t mem_flags)
616{
617 struct device *dev = xhci_to_hcd(xhci)->self.controller;
618 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
619
620 if (size > MEDIUM_STREAM_ARRAY_SIZE)
621 return dma_alloc_coherent(dev, size,
622 dma, mem_flags);
623 else if (size <= SMALL_STREAM_ARRAY_SIZE)
624 return dma_pool_alloc(xhci->small_streams_pool,
625 mem_flags, dma);
626 else
627 return dma_pool_alloc(xhci->medium_streams_pool,
628 mem_flags, dma);
629}
630
631struct xhci_ring *xhci_dma_to_transfer_ring(
632 struct xhci_virt_ep *ep,
633 u64 address)
634{
635 if (ep->ep_state & EP_HAS_STREAMS)
636 return radix_tree_lookup(&ep->stream_info->trb_address_map,
637 address >> TRB_SEGMENT_SHIFT);
638 return ep->ring;
639}
640
641struct xhci_ring *xhci_stream_id_to_ring(
642 struct xhci_virt_device *dev,
643 unsigned int ep_index,
644 unsigned int stream_id)
645{
646 struct xhci_virt_ep *ep = &dev->eps[ep_index];
647
648 if (stream_id == 0)
649 return ep->ring;
650 if (!ep->stream_info)
651 return NULL;
652
653 if (stream_id > ep->stream_info->num_streams)
654 return NULL;
655 return ep->stream_info->stream_rings[stream_id];
656}
657
658/*
659 * Change an endpoint's internal structure so it supports stream IDs. The
660 * number of requested streams includes stream 0, which cannot be used by device
661 * drivers.
662 *
663 * The number of stream contexts in the stream context array may be bigger than
664 * the number of streams the driver wants to use. This is because the number of
665 * stream context array entries must be a power of two.
666 */
667struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
668 unsigned int num_stream_ctxs,
669 unsigned int num_streams,
670 unsigned int max_packet, gfp_t mem_flags)
671{
672 struct xhci_stream_info *stream_info;
673 u32 cur_stream;
674 struct xhci_ring *cur_ring;
675 u64 addr;
676 int ret;
677
678 xhci_dbg(xhci, "Allocating %u streams and %u "
679 "stream context array entries.\n",
680 num_streams, num_stream_ctxs);
681 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
682 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
683 return NULL;
684 }
685 xhci->cmd_ring_reserved_trbs++;
686
687 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
688 if (!stream_info)
689 goto cleanup_trbs;
690
691 stream_info->num_streams = num_streams;
692 stream_info->num_stream_ctxs = num_stream_ctxs;
693
694 /* Initialize the array of virtual pointers to stream rings. */
695 stream_info->stream_rings = kzalloc(
696 sizeof(struct xhci_ring *)*num_streams,
697 mem_flags);
698 if (!stream_info->stream_rings)
699 goto cleanup_info;
700
701 /* Initialize the array of DMA addresses for stream rings for the HW. */
702 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
703 num_stream_ctxs, &stream_info->ctx_array_dma,
704 mem_flags);
705 if (!stream_info->stream_ctx_array)
706 goto cleanup_ctx;
707 memset(stream_info->stream_ctx_array, 0,
708 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
709
710 /* Allocate everything needed to free the stream rings later */
711 stream_info->free_streams_command =
712 xhci_alloc_command(xhci, true, true, mem_flags);
713 if (!stream_info->free_streams_command)
714 goto cleanup_ctx;
715
716 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
717
718 /* Allocate rings for all the streams that the driver will use,
719 * and add their segment DMA addresses to the radix tree.
720 * Stream 0 is reserved.
721 */
722
723 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
724 stream_info->stream_rings[cur_stream] =
725 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
726 mem_flags);
727 cur_ring = stream_info->stream_rings[cur_stream];
728 if (!cur_ring)
729 goto cleanup_rings;
730 cur_ring->stream_id = cur_stream;
731 cur_ring->trb_address_map = &stream_info->trb_address_map;
732 /* Set deq ptr, cycle bit, and stream context type */
733 addr = cur_ring->first_seg->dma |
734 SCT_FOR_CTX(SCT_PRI_TR) |
735 cur_ring->cycle_state;
736 stream_info->stream_ctx_array[cur_stream].stream_ring =
737 cpu_to_le64(addr);
738 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
739 cur_stream, (unsigned long long) addr);
740
741 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
742 if (ret) {
743 xhci_ring_free(xhci, cur_ring);
744 stream_info->stream_rings[cur_stream] = NULL;
745 goto cleanup_rings;
746 }
747 }
748 /* Leave the other unused stream ring pointers in the stream context
749 * array initialized to zero. This will cause the xHC to give us an
750 * error if the device asks for a stream ID we don't have setup (if it
751 * was any other way, the host controller would assume the ring is
752 * "empty" and wait forever for data to be queued to that stream ID).
753 */
754
755 return stream_info;
756
757cleanup_rings:
758 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
759 cur_ring = stream_info->stream_rings[cur_stream];
760 if (cur_ring) {
761 xhci_ring_free(xhci, cur_ring);
762 stream_info->stream_rings[cur_stream] = NULL;
763 }
764 }
765 xhci_free_command(xhci, stream_info->free_streams_command);
766cleanup_ctx:
767 kfree(stream_info->stream_rings);
768cleanup_info:
769 kfree(stream_info);
770cleanup_trbs:
771 xhci->cmd_ring_reserved_trbs--;
772 return NULL;
773}
774/*
775 * Sets the MaxPStreams field and the Linear Stream Array field.
776 * Sets the dequeue pointer to the stream context array.
777 */
778void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
779 struct xhci_ep_ctx *ep_ctx,
780 struct xhci_stream_info *stream_info)
781{
782 u32 max_primary_streams;
783 /* MaxPStreams is the number of stream context array entries, not the
784 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
785 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
786 */
787 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
788 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
789 "Setting number of stream ctx array entries to %u",
790 1 << (max_primary_streams + 1));
791 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
792 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
793 | EP_HAS_LSA);
794 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
795}
796
797/*
798 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
799 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
800 * not at the beginning of the ring).
801 */
802void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
803 struct xhci_virt_ep *ep)
804{
805 dma_addr_t addr;
806 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
807 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
808 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
809}
810
811/* Frees all stream contexts associated with the endpoint,
812 *
813 * Caller should fix the endpoint context streams fields.
814 */
815void xhci_free_stream_info(struct xhci_hcd *xhci,
816 struct xhci_stream_info *stream_info)
817{
818 int cur_stream;
819 struct xhci_ring *cur_ring;
820
821 if (!stream_info)
822 return;
823
824 for (cur_stream = 1; cur_stream < stream_info->num_streams;
825 cur_stream++) {
826 cur_ring = stream_info->stream_rings[cur_stream];
827 if (cur_ring) {
828 xhci_ring_free(xhci, cur_ring);
829 stream_info->stream_rings[cur_stream] = NULL;
830 }
831 }
832 xhci_free_command(xhci, stream_info->free_streams_command);
833 xhci->cmd_ring_reserved_trbs--;
834 if (stream_info->stream_ctx_array)
835 xhci_free_stream_ctx(xhci,
836 stream_info->num_stream_ctxs,
837 stream_info->stream_ctx_array,
838 stream_info->ctx_array_dma);
839
840 kfree(stream_info->stream_rings);
841 kfree(stream_info);
842}
843
844
845/***************** Device context manipulation *************************/
846
847static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
848 struct xhci_virt_ep *ep)
849{
850 setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
851 (unsigned long)ep);
852 ep->xhci = xhci;
853}
854
855static void xhci_free_tt_info(struct xhci_hcd *xhci,
856 struct xhci_virt_device *virt_dev,
857 int slot_id)
858{
859 struct list_head *tt_list_head;
860 struct xhci_tt_bw_info *tt_info, *next;
861 bool slot_found = false;
862
863 /* If the device never made it past the Set Address stage,
864 * it may not have the real_port set correctly.
865 */
866 if (virt_dev->real_port == 0 ||
867 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
868 xhci_dbg(xhci, "Bad real port.\n");
869 return;
870 }
871
872 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
873 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
874 /* Multi-TT hubs will have more than one entry */
875 if (tt_info->slot_id == slot_id) {
876 slot_found = true;
877 list_del(&tt_info->tt_list);
878 kfree(tt_info);
879 } else if (slot_found) {
880 break;
881 }
882 }
883}
884
885int xhci_alloc_tt_info(struct xhci_hcd *xhci,
886 struct xhci_virt_device *virt_dev,
887 struct usb_device *hdev,
888 struct usb_tt *tt, gfp_t mem_flags)
889{
890 struct xhci_tt_bw_info *tt_info;
891 unsigned int num_ports;
892 int i, j;
893
894 if (!tt->multi)
895 num_ports = 1;
896 else
897 num_ports = hdev->maxchild;
898
899 for (i = 0; i < num_ports; i++, tt_info++) {
900 struct xhci_interval_bw_table *bw_table;
901
902 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
903 if (!tt_info)
904 goto free_tts;
905 INIT_LIST_HEAD(&tt_info->tt_list);
906 list_add(&tt_info->tt_list,
907 &xhci->rh_bw[virt_dev->real_port - 1].tts);
908 tt_info->slot_id = virt_dev->udev->slot_id;
909 if (tt->multi)
910 tt_info->ttport = i+1;
911 bw_table = &tt_info->bw_table;
912 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
913 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
914 }
915 return 0;
916
917free_tts:
918 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
919 return -ENOMEM;
920}
921
922
923/* All the xhci_tds in the ring's TD list should be freed at this point.
924 * Should be called with xhci->lock held if there is any chance the TT lists
925 * will be manipulated by the configure endpoint, allocate device, or update
926 * hub functions while this function is removing the TT entries from the list.
927 */
928void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
929{
930 struct xhci_virt_device *dev;
931 int i;
932 int old_active_eps = 0;
933
934 /* Slot ID 0 is reserved */
935 if (slot_id == 0 || !xhci->devs[slot_id])
936 return;
937
938 dev = xhci->devs[slot_id];
939 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
940 if (!dev)
941 return;
942
943 if (dev->tt_info)
944 old_active_eps = dev->tt_info->active_eps;
945
946 for (i = 0; i < 31; ++i) {
947 if (dev->eps[i].ring)
948 xhci_ring_free(xhci, dev->eps[i].ring);
949 if (dev->eps[i].stream_info)
950 xhci_free_stream_info(xhci,
951 dev->eps[i].stream_info);
952 /* Endpoints on the TT/root port lists should have been removed
953 * when usb_disable_device() was called for the device.
954 * We can't drop them anyway, because the udev might have gone
955 * away by this point, and we can't tell what speed it was.
956 */
957 if (!list_empty(&dev->eps[i].bw_endpoint_list))
958 xhci_warn(xhci, "Slot %u endpoint %u "
959 "not removed from BW list!\n",
960 slot_id, i);
961 }
962 /* If this is a hub, free the TT(s) from the TT list */
963 xhci_free_tt_info(xhci, dev, slot_id);
964 /* If necessary, update the number of active TTs on this root port */
965 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
966
967 if (dev->ring_cache) {
968 for (i = 0; i < dev->num_rings_cached; i++)
969 xhci_ring_free(xhci, dev->ring_cache[i]);
970 kfree(dev->ring_cache);
971 }
972
973 if (dev->in_ctx)
974 xhci_free_container_ctx(xhci, dev->in_ctx);
975 if (dev->out_ctx)
976 xhci_free_container_ctx(xhci, dev->out_ctx);
977
978 kfree(xhci->devs[slot_id]);
979 xhci->devs[slot_id] = NULL;
980}
981
982/*
983 * Free a virt_device structure.
984 * If the virt_device added a tt_info (a hub) and has children pointing to
985 * that tt_info, then free the child first. Recursive.
986 * We can't rely on udev at this point to find child-parent relationships.
987 */
988void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
989{
990 struct xhci_virt_device *vdev;
991 struct list_head *tt_list_head;
992 struct xhci_tt_bw_info *tt_info, *next;
993 int i;
994
995 vdev = xhci->devs[slot_id];
996 if (!vdev)
997 return;
998
999 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
1000 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
1001 /* is this a hub device that added a tt_info to the tts list */
1002 if (tt_info->slot_id == slot_id) {
1003 /* are any devices using this tt_info? */
1004 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
1005 vdev = xhci->devs[i];
1006 if (vdev && (vdev->tt_info == tt_info))
1007 xhci_free_virt_devices_depth_first(
1008 xhci, i);
1009 }
1010 }
1011 }
1012 /* we are now at a leaf device */
1013 xhci_free_virt_device(xhci, slot_id);
1014}
1015
1016int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
1017 struct usb_device *udev, gfp_t flags)
1018{
1019 struct xhci_virt_device *dev;
1020 int i;
1021
1022 /* Slot ID 0 is reserved */
1023 if (slot_id == 0 || xhci->devs[slot_id]) {
1024 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
1025 return 0;
1026 }
1027
1028 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
1029 if (!xhci->devs[slot_id])
1030 return 0;
1031 dev = xhci->devs[slot_id];
1032
1033 /* Allocate the (output) device context that will be used in the HC. */
1034 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
1035 if (!dev->out_ctx)
1036 goto fail;
1037
1038 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1039 (unsigned long long)dev->out_ctx->dma);
1040
1041 /* Allocate the (input) device context for address device command */
1042 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1043 if (!dev->in_ctx)
1044 goto fail;
1045
1046 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1047 (unsigned long long)dev->in_ctx->dma);
1048
1049 /* Initialize the cancellation list and watchdog timers for each ep */
1050 for (i = 0; i < 31; i++) {
1051 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1052 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1053 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1054 }
1055
1056 /* Allocate endpoint 0 ring */
1057 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1058 if (!dev->eps[0].ring)
1059 goto fail;
1060
1061 /* Allocate pointers to the ring cache */
1062 dev->ring_cache = kzalloc(
1063 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
1064 flags);
1065 if (!dev->ring_cache)
1066 goto fail;
1067 dev->num_rings_cached = 0;
1068
1069 dev->udev = udev;
1070
1071 /* Point to output device context in dcbaa. */
1072 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1073 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1074 slot_id,
1075 &xhci->dcbaa->dev_context_ptrs[slot_id],
1076 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1077
1078 return 1;
1079fail:
1080 xhci_free_virt_device(xhci, slot_id);
1081 return 0;
1082}
1083
1084void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1085 struct usb_device *udev)
1086{
1087 struct xhci_virt_device *virt_dev;
1088 struct xhci_ep_ctx *ep0_ctx;
1089 struct xhci_ring *ep_ring;
1090
1091 virt_dev = xhci->devs[udev->slot_id];
1092 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1093 ep_ring = virt_dev->eps[0].ring;
1094 /*
1095 * FIXME we don't keep track of the dequeue pointer very well after a
1096 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1097 * host to our enqueue pointer. This should only be called after a
1098 * configured device has reset, so all control transfers should have
1099 * been completed or cancelled before the reset.
1100 */
1101 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1102 ep_ring->enqueue)
1103 | ep_ring->cycle_state);
1104}
1105
1106/*
1107 * The xHCI roothub may have ports of differing speeds in any order in the port
1108 * status registers. xhci->port_array provides an array of the port speed for
1109 * each offset into the port status registers.
1110 *
1111 * The xHCI hardware wants to know the roothub port number that the USB device
1112 * is attached to (or the roothub port its ancestor hub is attached to). All we
1113 * know is the index of that port under either the USB 2.0 or the USB 3.0
1114 * roothub, but that doesn't give us the real index into the HW port status
1115 * registers. Call xhci_find_raw_port_number() to get real index.
1116 */
1117static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1118 struct usb_device *udev)
1119{
1120 struct usb_device *top_dev;
1121 struct usb_hcd *hcd;
1122
1123 if (udev->speed >= USB_SPEED_SUPER)
1124 hcd = xhci->shared_hcd;
1125 else
1126 hcd = xhci->main_hcd;
1127
1128 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1129 top_dev = top_dev->parent)
1130 /* Found device below root hub */;
1131
1132 return xhci_find_raw_port_number(hcd, top_dev->portnum);
1133}
1134
1135/* Setup an xHCI virtual device for a Set Address command */
1136int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1137{
1138 struct xhci_virt_device *dev;
1139 struct xhci_ep_ctx *ep0_ctx;
1140 struct xhci_slot_ctx *slot_ctx;
1141 u32 port_num;
1142 u32 max_packets;
1143 struct usb_device *top_dev;
1144
1145 dev = xhci->devs[udev->slot_id];
1146 /* Slot ID 0 is reserved */
1147 if (udev->slot_id == 0 || !dev) {
1148 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1149 udev->slot_id);
1150 return -EINVAL;
1151 }
1152 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1153 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1154
1155 /* 3) Only the control endpoint is valid - one endpoint context */
1156 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1157 switch (udev->speed) {
1158 case USB_SPEED_SUPER_PLUS:
1159 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1160 max_packets = MAX_PACKET(512);
1161 break;
1162 case USB_SPEED_SUPER:
1163 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1164 max_packets = MAX_PACKET(512);
1165 break;
1166 case USB_SPEED_HIGH:
1167 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1168 max_packets = MAX_PACKET(64);
1169 break;
1170 /* USB core guesses at a 64-byte max packet first for FS devices */
1171 case USB_SPEED_FULL:
1172 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1173 max_packets = MAX_PACKET(64);
1174 break;
1175 case USB_SPEED_LOW:
1176 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1177 max_packets = MAX_PACKET(8);
1178 break;
1179 case USB_SPEED_WIRELESS:
1180 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1181 return -EINVAL;
1182 break;
1183 default:
1184 /* Speed was set earlier, this shouldn't happen. */
1185 return -EINVAL;
1186 }
1187 /* Find the root hub port this device is under */
1188 port_num = xhci_find_real_port_number(xhci, udev);
1189 if (!port_num)
1190 return -EINVAL;
1191 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1192 /* Set the port number in the virtual_device to the faked port number */
1193 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1194 top_dev = top_dev->parent)
1195 /* Found device below root hub */;
1196 dev->fake_port = top_dev->portnum;
1197 dev->real_port = port_num;
1198 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1199 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1200
1201 /* Find the right bandwidth table that this device will be a part of.
1202 * If this is a full speed device attached directly to a root port (or a
1203 * decendent of one), it counts as a primary bandwidth domain, not a
1204 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1205 * will never be created for the HS root hub.
1206 */
1207 if (!udev->tt || !udev->tt->hub->parent) {
1208 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1209 } else {
1210 struct xhci_root_port_bw_info *rh_bw;
1211 struct xhci_tt_bw_info *tt_bw;
1212
1213 rh_bw = &xhci->rh_bw[port_num - 1];
1214 /* Find the right TT. */
1215 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1216 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1217 continue;
1218
1219 if (!dev->udev->tt->multi ||
1220 (udev->tt->multi &&
1221 tt_bw->ttport == dev->udev->ttport)) {
1222 dev->bw_table = &tt_bw->bw_table;
1223 dev->tt_info = tt_bw;
1224 break;
1225 }
1226 }
1227 if (!dev->tt_info)
1228 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1229 }
1230
1231 /* Is this a LS/FS device under an external HS hub? */
1232 if (udev->tt && udev->tt->hub->parent) {
1233 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1234 (udev->ttport << 8));
1235 if (udev->tt->multi)
1236 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1237 }
1238 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1239 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1240
1241 /* Step 4 - ring already allocated */
1242 /* Step 5 */
1243 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1244
1245 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1246 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1247 max_packets);
1248
1249 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1250 dev->eps[0].ring->cycle_state);
1251
1252 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1253
1254 return 0;
1255}
1256
1257/*
1258 * Convert interval expressed as 2^(bInterval - 1) == interval into
1259 * straight exponent value 2^n == interval.
1260 *
1261 */
1262static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1263 struct usb_host_endpoint *ep)
1264{
1265 unsigned int interval;
1266
1267 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1268 if (interval != ep->desc.bInterval - 1)
1269 dev_warn(&udev->dev,
1270 "ep %#x - rounding interval to %d %sframes\n",
1271 ep->desc.bEndpointAddress,
1272 1 << interval,
1273 udev->speed == USB_SPEED_FULL ? "" : "micro");
1274
1275 if (udev->speed == USB_SPEED_FULL) {
1276 /*
1277 * Full speed isoc endpoints specify interval in frames,
1278 * not microframes. We are using microframes everywhere,
1279 * so adjust accordingly.
1280 */
1281 interval += 3; /* 1 frame = 2^3 uframes */
1282 }
1283
1284 return interval;
1285}
1286
1287/*
1288 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1289 * microframes, rounded down to nearest power of 2.
1290 */
1291static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1292 struct usb_host_endpoint *ep, unsigned int desc_interval,
1293 unsigned int min_exponent, unsigned int max_exponent)
1294{
1295 unsigned int interval;
1296
1297 interval = fls(desc_interval) - 1;
1298 interval = clamp_val(interval, min_exponent, max_exponent);
1299 if ((1 << interval) != desc_interval)
1300 dev_dbg(&udev->dev,
1301 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1302 ep->desc.bEndpointAddress,
1303 1 << interval,
1304 desc_interval);
1305
1306 return interval;
1307}
1308
1309static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1310 struct usb_host_endpoint *ep)
1311{
1312 if (ep->desc.bInterval == 0)
1313 return 0;
1314 return xhci_microframes_to_exponent(udev, ep,
1315 ep->desc.bInterval, 0, 15);
1316}
1317
1318
1319static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1320 struct usb_host_endpoint *ep)
1321{
1322 return xhci_microframes_to_exponent(udev, ep,
1323 ep->desc.bInterval * 8, 3, 10);
1324}
1325
1326/* Return the polling or NAK interval.
1327 *
1328 * The polling interval is expressed in "microframes". If xHCI's Interval field
1329 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1330 *
1331 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1332 * is set to 0.
1333 */
1334static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1335 struct usb_host_endpoint *ep)
1336{
1337 unsigned int interval = 0;
1338
1339 switch (udev->speed) {
1340 case USB_SPEED_HIGH:
1341 /* Max NAK rate */
1342 if (usb_endpoint_xfer_control(&ep->desc) ||
1343 usb_endpoint_xfer_bulk(&ep->desc)) {
1344 interval = xhci_parse_microframe_interval(udev, ep);
1345 break;
1346 }
1347 /* Fall through - SS and HS isoc/int have same decoding */
1348
1349 case USB_SPEED_SUPER_PLUS:
1350 case USB_SPEED_SUPER:
1351 if (usb_endpoint_xfer_int(&ep->desc) ||
1352 usb_endpoint_xfer_isoc(&ep->desc)) {
1353 interval = xhci_parse_exponent_interval(udev, ep);
1354 }
1355 break;
1356
1357 case USB_SPEED_FULL:
1358 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1359 interval = xhci_parse_exponent_interval(udev, ep);
1360 break;
1361 }
1362 /*
1363 * Fall through for interrupt endpoint interval decoding
1364 * since it uses the same rules as low speed interrupt
1365 * endpoints.
1366 */
1367
1368 case USB_SPEED_LOW:
1369 if (usb_endpoint_xfer_int(&ep->desc) ||
1370 usb_endpoint_xfer_isoc(&ep->desc)) {
1371
1372 interval = xhci_parse_frame_interval(udev, ep);
1373 }
1374 break;
1375
1376 default:
1377 BUG();
1378 }
1379 return interval;
1380}
1381
1382/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1383 * High speed endpoint descriptors can define "the number of additional
1384 * transaction opportunities per microframe", but that goes in the Max Burst
1385 * endpoint context field.
1386 */
1387static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1388 struct usb_host_endpoint *ep)
1389{
1390 if (udev->speed < USB_SPEED_SUPER ||
1391 !usb_endpoint_xfer_isoc(&ep->desc))
1392 return 0;
1393 return ep->ss_ep_comp.bmAttributes;
1394}
1395
1396static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1397 struct usb_host_endpoint *ep)
1398{
1399 /* Super speed and Plus have max burst in ep companion desc */
1400 if (udev->speed >= USB_SPEED_SUPER)
1401 return ep->ss_ep_comp.bMaxBurst;
1402
1403 if (udev->speed == USB_SPEED_HIGH &&
1404 (usb_endpoint_xfer_isoc(&ep->desc) ||
1405 usb_endpoint_xfer_int(&ep->desc)))
1406 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1407
1408 return 0;
1409}
1410
1411static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1412{
1413 int in;
1414
1415 in = usb_endpoint_dir_in(&ep->desc);
1416
1417 if (usb_endpoint_xfer_control(&ep->desc))
1418 return CTRL_EP;
1419 if (usb_endpoint_xfer_bulk(&ep->desc))
1420 return in ? BULK_IN_EP : BULK_OUT_EP;
1421 if (usb_endpoint_xfer_isoc(&ep->desc))
1422 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1423 if (usb_endpoint_xfer_int(&ep->desc))
1424 return in ? INT_IN_EP : INT_OUT_EP;
1425 return 0;
1426}
1427
1428/* Return the maximum endpoint service interval time (ESIT) payload.
1429 * Basically, this is the maxpacket size, multiplied by the burst size
1430 * and mult size.
1431 */
1432static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1433 struct usb_host_endpoint *ep)
1434{
1435 int max_burst;
1436 int max_packet;
1437
1438 /* Only applies for interrupt or isochronous endpoints */
1439 if (usb_endpoint_xfer_control(&ep->desc) ||
1440 usb_endpoint_xfer_bulk(&ep->desc))
1441 return 0;
1442
1443 /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1444 if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1445 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1446 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1447 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1448 else if (udev->speed >= USB_SPEED_SUPER)
1449 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1450
1451 max_packet = usb_endpoint_maxp(&ep->desc);
1452 max_burst = usb_endpoint_maxp_mult(&ep->desc);
1453 /* A 0 in max burst means 1 transfer per ESIT */
1454 return max_packet * max_burst;
1455}
1456
1457/* Set up an endpoint with one ring segment. Do not allocate stream rings.
1458 * Drivers will have to call usb_alloc_streams() to do that.
1459 */
1460int xhci_endpoint_init(struct xhci_hcd *xhci,
1461 struct xhci_virt_device *virt_dev,
1462 struct usb_device *udev,
1463 struct usb_host_endpoint *ep,
1464 gfp_t mem_flags)
1465{
1466 unsigned int ep_index;
1467 struct xhci_ep_ctx *ep_ctx;
1468 struct xhci_ring *ep_ring;
1469 unsigned int max_packet;
1470 enum xhci_ring_type ring_type;
1471 u32 max_esit_payload;
1472 u32 endpoint_type;
1473 unsigned int max_burst;
1474 unsigned int interval;
1475 unsigned int mult;
1476 unsigned int avg_trb_len;
1477 unsigned int err_count = 0;
1478
1479 ep_index = xhci_get_endpoint_index(&ep->desc);
1480 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1481
1482 endpoint_type = xhci_get_endpoint_type(ep);
1483 if (!endpoint_type)
1484 return -EINVAL;
1485
1486 ring_type = usb_endpoint_type(&ep->desc);
1487
1488 /*
1489 * Get values to fill the endpoint context, mostly from ep descriptor.
1490 * The average TRB buffer lengt for bulk endpoints is unclear as we
1491 * have no clue on scatter gather list entry size. For Isoc and Int,
1492 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1493 */
1494 max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1495 interval = xhci_get_endpoint_interval(udev, ep);
1496 mult = xhci_get_endpoint_mult(udev, ep);
1497 max_packet = usb_endpoint_maxp(&ep->desc);
1498 max_burst = xhci_get_endpoint_max_burst(udev, ep);
1499 avg_trb_len = max_esit_payload;
1500
1501 /* FIXME dig Mult and streams info out of ep companion desc */
1502
1503 /* Allow 3 retries for everything but isoc, set CErr = 3 */
1504 if (!usb_endpoint_xfer_isoc(&ep->desc))
1505 err_count = 3;
1506 /* Some devices get this wrong */
1507 if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
1508 max_packet = 512;
1509 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1510 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1511 avg_trb_len = 8;
1512 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1513 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1514 mult = 0;
1515
1516 /* Set up the endpoint ring */
1517 virt_dev->eps[ep_index].new_ring =
1518 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1519 if (!virt_dev->eps[ep_index].new_ring) {
1520 /* Attempt to use the ring cache */
1521 if (virt_dev->num_rings_cached == 0)
1522 return -ENOMEM;
1523 virt_dev->num_rings_cached--;
1524 virt_dev->eps[ep_index].new_ring =
1525 virt_dev->ring_cache[virt_dev->num_rings_cached];
1526 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1527 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1528 1, ring_type);
1529 }
1530 virt_dev->eps[ep_index].skip = false;
1531 ep_ring = virt_dev->eps[ep_index].new_ring;
1532
1533 /* Fill the endpoint context */
1534 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1535 EP_INTERVAL(interval) |
1536 EP_MULT(mult));
1537 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1538 MAX_PACKET(max_packet) |
1539 MAX_BURST(max_burst) |
1540 ERROR_COUNT(err_count));
1541 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1542 ep_ring->cycle_state);
1543
1544 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1545 EP_AVG_TRB_LENGTH(avg_trb_len));
1546
1547 /* FIXME Debug endpoint context */
1548 return 0;
1549}
1550
1551void xhci_endpoint_zero(struct xhci_hcd *xhci,
1552 struct xhci_virt_device *virt_dev,
1553 struct usb_host_endpoint *ep)
1554{
1555 unsigned int ep_index;
1556 struct xhci_ep_ctx *ep_ctx;
1557
1558 ep_index = xhci_get_endpoint_index(&ep->desc);
1559 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1560
1561 ep_ctx->ep_info = 0;
1562 ep_ctx->ep_info2 = 0;
1563 ep_ctx->deq = 0;
1564 ep_ctx->tx_info = 0;
1565 /* Don't free the endpoint ring until the set interface or configuration
1566 * request succeeds.
1567 */
1568}
1569
1570void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1571{
1572 bw_info->ep_interval = 0;
1573 bw_info->mult = 0;
1574 bw_info->num_packets = 0;
1575 bw_info->max_packet_size = 0;
1576 bw_info->type = 0;
1577 bw_info->max_esit_payload = 0;
1578}
1579
1580void xhci_update_bw_info(struct xhci_hcd *xhci,
1581 struct xhci_container_ctx *in_ctx,
1582 struct xhci_input_control_ctx *ctrl_ctx,
1583 struct xhci_virt_device *virt_dev)
1584{
1585 struct xhci_bw_info *bw_info;
1586 struct xhci_ep_ctx *ep_ctx;
1587 unsigned int ep_type;
1588 int i;
1589
1590 for (i = 1; i < 31; ++i) {
1591 bw_info = &virt_dev->eps[i].bw_info;
1592
1593 /* We can't tell what endpoint type is being dropped, but
1594 * unconditionally clearing the bandwidth info for non-periodic
1595 * endpoints should be harmless because the info will never be
1596 * set in the first place.
1597 */
1598 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1599 /* Dropped endpoint */
1600 xhci_clear_endpoint_bw_info(bw_info);
1601 continue;
1602 }
1603
1604 if (EP_IS_ADDED(ctrl_ctx, i)) {
1605 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1606 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1607
1608 /* Ignore non-periodic endpoints */
1609 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1610 ep_type != ISOC_IN_EP &&
1611 ep_type != INT_IN_EP)
1612 continue;
1613
1614 /* Added or changed endpoint */
1615 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1616 le32_to_cpu(ep_ctx->ep_info));
1617 /* Number of packets and mult are zero-based in the
1618 * input context, but we want one-based for the
1619 * interval table.
1620 */
1621 bw_info->mult = CTX_TO_EP_MULT(
1622 le32_to_cpu(ep_ctx->ep_info)) + 1;
1623 bw_info->num_packets = CTX_TO_MAX_BURST(
1624 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1625 bw_info->max_packet_size = MAX_PACKET_DECODED(
1626 le32_to_cpu(ep_ctx->ep_info2));
1627 bw_info->type = ep_type;
1628 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1629 le32_to_cpu(ep_ctx->tx_info));
1630 }
1631 }
1632}
1633
1634/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1635 * Useful when you want to change one particular aspect of the endpoint and then
1636 * issue a configure endpoint command.
1637 */
1638void xhci_endpoint_copy(struct xhci_hcd *xhci,
1639 struct xhci_container_ctx *in_ctx,
1640 struct xhci_container_ctx *out_ctx,
1641 unsigned int ep_index)
1642{
1643 struct xhci_ep_ctx *out_ep_ctx;
1644 struct xhci_ep_ctx *in_ep_ctx;
1645
1646 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1647 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1648
1649 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1650 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1651 in_ep_ctx->deq = out_ep_ctx->deq;
1652 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1653}
1654
1655/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1656 * Useful when you want to change one particular aspect of the endpoint and then
1657 * issue a configure endpoint command. Only the context entries field matters,
1658 * but we'll copy the whole thing anyway.
1659 */
1660void xhci_slot_copy(struct xhci_hcd *xhci,
1661 struct xhci_container_ctx *in_ctx,
1662 struct xhci_container_ctx *out_ctx)
1663{
1664 struct xhci_slot_ctx *in_slot_ctx;
1665 struct xhci_slot_ctx *out_slot_ctx;
1666
1667 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1668 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1669
1670 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1671 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1672 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1673 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1674}
1675
1676/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1677static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1678{
1679 int i;
1680 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1681 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1682
1683 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1684 "Allocating %d scratchpad buffers", num_sp);
1685
1686 if (!num_sp)
1687 return 0;
1688
1689 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1690 if (!xhci->scratchpad)
1691 goto fail_sp;
1692
1693 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1694 num_sp * sizeof(u64),
1695 &xhci->scratchpad->sp_dma, flags);
1696 if (!xhci->scratchpad->sp_array)
1697 goto fail_sp2;
1698
1699 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1700 if (!xhci->scratchpad->sp_buffers)
1701 goto fail_sp3;
1702
1703 xhci->scratchpad->sp_dma_buffers =
1704 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1705
1706 if (!xhci->scratchpad->sp_dma_buffers)
1707 goto fail_sp4;
1708
1709 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1710 for (i = 0; i < num_sp; i++) {
1711 dma_addr_t dma;
1712 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1713 flags);
1714 if (!buf)
1715 goto fail_sp5;
1716
1717 xhci->scratchpad->sp_array[i] = dma;
1718 xhci->scratchpad->sp_buffers[i] = buf;
1719 xhci->scratchpad->sp_dma_buffers[i] = dma;
1720 }
1721
1722 return 0;
1723
1724 fail_sp5:
1725 for (i = i - 1; i >= 0; i--) {
1726 dma_free_coherent(dev, xhci->page_size,
1727 xhci->scratchpad->sp_buffers[i],
1728 xhci->scratchpad->sp_dma_buffers[i]);
1729 }
1730 kfree(xhci->scratchpad->sp_dma_buffers);
1731
1732 fail_sp4:
1733 kfree(xhci->scratchpad->sp_buffers);
1734
1735 fail_sp3:
1736 dma_free_coherent(dev, num_sp * sizeof(u64),
1737 xhci->scratchpad->sp_array,
1738 xhci->scratchpad->sp_dma);
1739
1740 fail_sp2:
1741 kfree(xhci->scratchpad);
1742 xhci->scratchpad = NULL;
1743
1744 fail_sp:
1745 return -ENOMEM;
1746}
1747
1748static void scratchpad_free(struct xhci_hcd *xhci)
1749{
1750 int num_sp;
1751 int i;
1752 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1753
1754 if (!xhci->scratchpad)
1755 return;
1756
1757 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1758
1759 for (i = 0; i < num_sp; i++) {
1760 dma_free_coherent(dev, xhci->page_size,
1761 xhci->scratchpad->sp_buffers[i],
1762 xhci->scratchpad->sp_dma_buffers[i]);
1763 }
1764 kfree(xhci->scratchpad->sp_dma_buffers);
1765 kfree(xhci->scratchpad->sp_buffers);
1766 dma_free_coherent(dev, num_sp * sizeof(u64),
1767 xhci->scratchpad->sp_array,
1768 xhci->scratchpad->sp_dma);
1769 kfree(xhci->scratchpad);
1770 xhci->scratchpad = NULL;
1771}
1772
1773struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1774 bool allocate_in_ctx, bool allocate_completion,
1775 gfp_t mem_flags)
1776{
1777 struct xhci_command *command;
1778
1779 command = kzalloc(sizeof(*command), mem_flags);
1780 if (!command)
1781 return NULL;
1782
1783 if (allocate_in_ctx) {
1784 command->in_ctx =
1785 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1786 mem_flags);
1787 if (!command->in_ctx) {
1788 kfree(command);
1789 return NULL;
1790 }
1791 }
1792
1793 if (allocate_completion) {
1794 command->completion =
1795 kzalloc(sizeof(struct completion), mem_flags);
1796 if (!command->completion) {
1797 xhci_free_container_ctx(xhci, command->in_ctx);
1798 kfree(command);
1799 return NULL;
1800 }
1801 init_completion(command->completion);
1802 }
1803
1804 command->status = 0;
1805 INIT_LIST_HEAD(&command->cmd_list);
1806 return command;
1807}
1808
1809void xhci_urb_free_priv(struct urb_priv *urb_priv)
1810{
1811 if (urb_priv) {
1812 kfree(urb_priv->td[0]);
1813 kfree(urb_priv);
1814 }
1815}
1816
1817void xhci_free_command(struct xhci_hcd *xhci,
1818 struct xhci_command *command)
1819{
1820 xhci_free_container_ctx(xhci,
1821 command->in_ctx);
1822 kfree(command->completion);
1823 kfree(command);
1824}
1825
1826void xhci_mem_cleanup(struct xhci_hcd *xhci)
1827{
1828 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1829 int size;
1830 int i, j, num_ports;
1831
1832 cancel_delayed_work_sync(&xhci->cmd_timer);
1833
1834 /* Free the Event Ring Segment Table and the actual Event Ring */
1835 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1836 if (xhci->erst.entries)
1837 dma_free_coherent(dev, size,
1838 xhci->erst.entries, xhci->erst.erst_dma_addr);
1839 xhci->erst.entries = NULL;
1840 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1841 if (xhci->event_ring)
1842 xhci_ring_free(xhci, xhci->event_ring);
1843 xhci->event_ring = NULL;
1844 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1845
1846 if (xhci->lpm_command)
1847 xhci_free_command(xhci, xhci->lpm_command);
1848 xhci->lpm_command = NULL;
1849 if (xhci->cmd_ring)
1850 xhci_ring_free(xhci, xhci->cmd_ring);
1851 xhci->cmd_ring = NULL;
1852 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1853 xhci_cleanup_command_queue(xhci);
1854
1855 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1856 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1857 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1858 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1859 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1860 while (!list_empty(ep))
1861 list_del_init(ep->next);
1862 }
1863 }
1864
1865 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1866 xhci_free_virt_devices_depth_first(xhci, i);
1867
1868 dma_pool_destroy(xhci->segment_pool);
1869 xhci->segment_pool = NULL;
1870 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1871
1872 dma_pool_destroy(xhci->device_pool);
1873 xhci->device_pool = NULL;
1874 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1875
1876 dma_pool_destroy(xhci->small_streams_pool);
1877 xhci->small_streams_pool = NULL;
1878 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1879 "Freed small stream array pool");
1880
1881 dma_pool_destroy(xhci->medium_streams_pool);
1882 xhci->medium_streams_pool = NULL;
1883 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1884 "Freed medium stream array pool");
1885
1886 if (xhci->dcbaa)
1887 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1888 xhci->dcbaa, xhci->dcbaa->dma);
1889 xhci->dcbaa = NULL;
1890
1891 scratchpad_free(xhci);
1892
1893 if (!xhci->rh_bw)
1894 goto no_bw;
1895
1896 for (i = 0; i < num_ports; i++) {
1897 struct xhci_tt_bw_info *tt, *n;
1898 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1899 list_del(&tt->tt_list);
1900 kfree(tt);
1901 }
1902 }
1903
1904no_bw:
1905 xhci->cmd_ring_reserved_trbs = 0;
1906 xhci->num_usb2_ports = 0;
1907 xhci->num_usb3_ports = 0;
1908 xhci->num_active_eps = 0;
1909 kfree(xhci->usb2_ports);
1910 kfree(xhci->usb3_ports);
1911 kfree(xhci->port_array);
1912 kfree(xhci->rh_bw);
1913 kfree(xhci->ext_caps);
1914
1915 xhci->usb2_ports = NULL;
1916 xhci->usb3_ports = NULL;
1917 xhci->port_array = NULL;
1918 xhci->rh_bw = NULL;
1919 xhci->ext_caps = NULL;
1920
1921 xhci->page_size = 0;
1922 xhci->page_shift = 0;
1923 xhci->bus_state[0].bus_suspended = 0;
1924 xhci->bus_state[1].bus_suspended = 0;
1925}
1926
1927static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1928 struct xhci_segment *input_seg,
1929 union xhci_trb *start_trb,
1930 union xhci_trb *end_trb,
1931 dma_addr_t input_dma,
1932 struct xhci_segment *result_seg,
1933 char *test_name, int test_number)
1934{
1935 unsigned long long start_dma;
1936 unsigned long long end_dma;
1937 struct xhci_segment *seg;
1938
1939 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1940 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1941
1942 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1943 if (seg != result_seg) {
1944 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1945 test_name, test_number);
1946 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1947 "input DMA 0x%llx\n",
1948 input_seg,
1949 (unsigned long long) input_dma);
1950 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1951 "ending TRB %p (0x%llx DMA)\n",
1952 start_trb, start_dma,
1953 end_trb, end_dma);
1954 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1955 result_seg, seg);
1956 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1957 true);
1958 return -1;
1959 }
1960 return 0;
1961}
1962
1963/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1964static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1965{
1966 struct {
1967 dma_addr_t input_dma;
1968 struct xhci_segment *result_seg;
1969 } simple_test_vector [] = {
1970 /* A zeroed DMA field should fail */
1971 { 0, NULL },
1972 /* One TRB before the ring start should fail */
1973 { xhci->event_ring->first_seg->dma - 16, NULL },
1974 /* One byte before the ring start should fail */
1975 { xhci->event_ring->first_seg->dma - 1, NULL },
1976 /* Starting TRB should succeed */
1977 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1978 /* Ending TRB should succeed */
1979 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1980 xhci->event_ring->first_seg },
1981 /* One byte after the ring end should fail */
1982 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1983 /* One TRB after the ring end should fail */
1984 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1985 /* An address of all ones should fail */
1986 { (dma_addr_t) (~0), NULL },
1987 };
1988 struct {
1989 struct xhci_segment *input_seg;
1990 union xhci_trb *start_trb;
1991 union xhci_trb *end_trb;
1992 dma_addr_t input_dma;
1993 struct xhci_segment *result_seg;
1994 } complex_test_vector [] = {
1995 /* Test feeding a valid DMA address from a different ring */
1996 { .input_seg = xhci->event_ring->first_seg,
1997 .start_trb = xhci->event_ring->first_seg->trbs,
1998 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1999 .input_dma = xhci->cmd_ring->first_seg->dma,
2000 .result_seg = NULL,
2001 },
2002 /* Test feeding a valid end TRB from a different ring */
2003 { .input_seg = xhci->event_ring->first_seg,
2004 .start_trb = xhci->event_ring->first_seg->trbs,
2005 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2006 .input_dma = xhci->cmd_ring->first_seg->dma,
2007 .result_seg = NULL,
2008 },
2009 /* Test feeding a valid start and end TRB from a different ring */
2010 { .input_seg = xhci->event_ring->first_seg,
2011 .start_trb = xhci->cmd_ring->first_seg->trbs,
2012 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2013 .input_dma = xhci->cmd_ring->first_seg->dma,
2014 .result_seg = NULL,
2015 },
2016 /* TRB in this ring, but after this TD */
2017 { .input_seg = xhci->event_ring->first_seg,
2018 .start_trb = &xhci->event_ring->first_seg->trbs[0],
2019 .end_trb = &xhci->event_ring->first_seg->trbs[3],
2020 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2021 .result_seg = NULL,
2022 },
2023 /* TRB in this ring, but before this TD */
2024 { .input_seg = xhci->event_ring->first_seg,
2025 .start_trb = &xhci->event_ring->first_seg->trbs[3],
2026 .end_trb = &xhci->event_ring->first_seg->trbs[6],
2027 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2028 .result_seg = NULL,
2029 },
2030 /* TRB in this ring, but after this wrapped TD */
2031 { .input_seg = xhci->event_ring->first_seg,
2032 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2033 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2034 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2035 .result_seg = NULL,
2036 },
2037 /* TRB in this ring, but before this wrapped TD */
2038 { .input_seg = xhci->event_ring->first_seg,
2039 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2040 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2041 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2042 .result_seg = NULL,
2043 },
2044 /* TRB not in this ring, and we have a wrapped TD */
2045 { .input_seg = xhci->event_ring->first_seg,
2046 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2047 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2048 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2049 .result_seg = NULL,
2050 },
2051 };
2052
2053 unsigned int num_tests;
2054 int i, ret;
2055
2056 num_tests = ARRAY_SIZE(simple_test_vector);
2057 for (i = 0; i < num_tests; i++) {
2058 ret = xhci_test_trb_in_td(xhci,
2059 xhci->event_ring->first_seg,
2060 xhci->event_ring->first_seg->trbs,
2061 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2062 simple_test_vector[i].input_dma,
2063 simple_test_vector[i].result_seg,
2064 "Simple", i);
2065 if (ret < 0)
2066 return ret;
2067 }
2068
2069 num_tests = ARRAY_SIZE(complex_test_vector);
2070 for (i = 0; i < num_tests; i++) {
2071 ret = xhci_test_trb_in_td(xhci,
2072 complex_test_vector[i].input_seg,
2073 complex_test_vector[i].start_trb,
2074 complex_test_vector[i].end_trb,
2075 complex_test_vector[i].input_dma,
2076 complex_test_vector[i].result_seg,
2077 "Complex", i);
2078 if (ret < 0)
2079 return ret;
2080 }
2081 xhci_dbg(xhci, "TRB math tests passed.\n");
2082 return 0;
2083}
2084
2085static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2086{
2087 u64 temp;
2088 dma_addr_t deq;
2089
2090 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2091 xhci->event_ring->dequeue);
2092 if (deq == 0 && !in_interrupt())
2093 xhci_warn(xhci, "WARN something wrong with SW event ring "
2094 "dequeue ptr.\n");
2095 /* Update HC event ring dequeue pointer */
2096 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2097 temp &= ERST_PTR_MASK;
2098 /* Don't clear the EHB bit (which is RW1C) because
2099 * there might be more events to service.
2100 */
2101 temp &= ~ERST_EHB;
2102 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2103 "// Write event ring dequeue pointer, "
2104 "preserving EHB bit");
2105 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2106 &xhci->ir_set->erst_dequeue);
2107}
2108
2109static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2110 __le32 __iomem *addr, int max_caps)
2111{
2112 u32 temp, port_offset, port_count;
2113 int i;
2114 u8 major_revision;
2115 struct xhci_hub *rhub;
2116
2117 temp = readl(addr);
2118 major_revision = XHCI_EXT_PORT_MAJOR(temp);
2119
2120 if (major_revision == 0x03) {
2121 rhub = &xhci->usb3_rhub;
2122 } else if (major_revision <= 0x02) {
2123 rhub = &xhci->usb2_rhub;
2124 } else {
2125 xhci_warn(xhci, "Ignoring unknown port speed, "
2126 "Ext Cap %p, revision = 0x%x\n",
2127 addr, major_revision);
2128 /* Ignoring port protocol we can't understand. FIXME */
2129 return;
2130 }
2131 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2132 rhub->min_rev = XHCI_EXT_PORT_MINOR(temp);
2133
2134 /* Port offset and count in the third dword, see section 7.2 */
2135 temp = readl(addr + 2);
2136 port_offset = XHCI_EXT_PORT_OFF(temp);
2137 port_count = XHCI_EXT_PORT_COUNT(temp);
2138 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2139 "Ext Cap %p, port offset = %u, "
2140 "count = %u, revision = 0x%x",
2141 addr, port_offset, port_count, major_revision);
2142 /* Port count includes the current port offset */
2143 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2144 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2145 return;
2146
2147 rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2148 if (rhub->psi_count) {
2149 rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2150 GFP_KERNEL);
2151 if (!rhub->psi)
2152 rhub->psi_count = 0;
2153
2154 rhub->psi_uid_count++;
2155 for (i = 0; i < rhub->psi_count; i++) {
2156 rhub->psi[i] = readl(addr + 4 + i);
2157
2158 /* count unique ID values, two consecutive entries can
2159 * have the same ID if link is assymetric
2160 */
2161 if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2162 XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2163 rhub->psi_uid_count++;
2164
2165 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2166 XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2167 XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2168 XHCI_EXT_PORT_PLT(rhub->psi[i]),
2169 XHCI_EXT_PORT_PFD(rhub->psi[i]),
2170 XHCI_EXT_PORT_LP(rhub->psi[i]),
2171 XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2172 }
2173 }
2174 /* cache usb2 port capabilities */
2175 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2176 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2177
2178 /* Check the host's USB2 LPM capability */
2179 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2180 (temp & XHCI_L1C)) {
2181 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2182 "xHCI 0.96: support USB2 software lpm");
2183 xhci->sw_lpm_support = 1;
2184 }
2185
2186 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2187 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2188 "xHCI 1.0: support USB2 software lpm");
2189 xhci->sw_lpm_support = 1;
2190 if (temp & XHCI_HLC) {
2191 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2192 "xHCI 1.0: support USB2 hardware lpm");
2193 xhci->hw_lpm_support = 1;
2194 }
2195 }
2196
2197 port_offset--;
2198 for (i = port_offset; i < (port_offset + port_count); i++) {
2199 /* Duplicate entry. Ignore the port if the revisions differ. */
2200 if (xhci->port_array[i] != 0) {
2201 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2202 " port %u\n", addr, i);
2203 xhci_warn(xhci, "Port was marked as USB %u, "
2204 "duplicated as USB %u\n",
2205 xhci->port_array[i], major_revision);
2206 /* Only adjust the roothub port counts if we haven't
2207 * found a similar duplicate.
2208 */
2209 if (xhci->port_array[i] != major_revision &&
2210 xhci->port_array[i] != DUPLICATE_ENTRY) {
2211 if (xhci->port_array[i] == 0x03)
2212 xhci->num_usb3_ports--;
2213 else
2214 xhci->num_usb2_ports--;
2215 xhci->port_array[i] = DUPLICATE_ENTRY;
2216 }
2217 /* FIXME: Should we disable the port? */
2218 continue;
2219 }
2220 xhci->port_array[i] = major_revision;
2221 if (major_revision == 0x03)
2222 xhci->num_usb3_ports++;
2223 else
2224 xhci->num_usb2_ports++;
2225 }
2226 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2227}
2228
2229/*
2230 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2231 * specify what speeds each port is supposed to be. We can't count on the port
2232 * speed bits in the PORTSC register being correct until a device is connected,
2233 * but we need to set up the two fake roothubs with the correct number of USB
2234 * 3.0 and USB 2.0 ports at host controller initialization time.
2235 */
2236static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2237{
2238 void __iomem *base;
2239 u32 offset;
2240 unsigned int num_ports;
2241 int i, j, port_index;
2242 int cap_count = 0;
2243 u32 cap_start;
2244
2245 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2246 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2247 if (!xhci->port_array)
2248 return -ENOMEM;
2249
2250 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2251 if (!xhci->rh_bw)
2252 return -ENOMEM;
2253 for (i = 0; i < num_ports; i++) {
2254 struct xhci_interval_bw_table *bw_table;
2255
2256 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2257 bw_table = &xhci->rh_bw[i].bw_table;
2258 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2259 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2260 }
2261 base = &xhci->cap_regs->hc_capbase;
2262
2263 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2264 if (!cap_start) {
2265 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2266 return -ENODEV;
2267 }
2268
2269 offset = cap_start;
2270 /* count extended protocol capability entries for later caching */
2271 while (offset) {
2272 cap_count++;
2273 offset = xhci_find_next_ext_cap(base, offset,
2274 XHCI_EXT_CAPS_PROTOCOL);
2275 }
2276
2277 xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2278 if (!xhci->ext_caps)
2279 return -ENOMEM;
2280
2281 offset = cap_start;
2282
2283 while (offset) {
2284 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2285 if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2286 break;
2287 offset = xhci_find_next_ext_cap(base, offset,
2288 XHCI_EXT_CAPS_PROTOCOL);
2289 }
2290
2291 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2292 xhci_warn(xhci, "No ports on the roothubs?\n");
2293 return -ENODEV;
2294 }
2295 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2296 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2297 xhci->num_usb2_ports, xhci->num_usb3_ports);
2298
2299 /* Place limits on the number of roothub ports so that the hub
2300 * descriptors aren't longer than the USB core will allocate.
2301 */
2302 if (xhci->num_usb3_ports > 15) {
2303 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2304 "Limiting USB 3.0 roothub ports to 15.");
2305 xhci->num_usb3_ports = 15;
2306 }
2307 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2308 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2309 "Limiting USB 2.0 roothub ports to %u.",
2310 USB_MAXCHILDREN);
2311 xhci->num_usb2_ports = USB_MAXCHILDREN;
2312 }
2313
2314 /*
2315 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2316 * Not sure how the USB core will handle a hub with no ports...
2317 */
2318 if (xhci->num_usb2_ports) {
2319 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2320 xhci->num_usb2_ports, flags);
2321 if (!xhci->usb2_ports)
2322 return -ENOMEM;
2323
2324 port_index = 0;
2325 for (i = 0; i < num_ports; i++) {
2326 if (xhci->port_array[i] == 0x03 ||
2327 xhci->port_array[i] == 0 ||
2328 xhci->port_array[i] == DUPLICATE_ENTRY)
2329 continue;
2330
2331 xhci->usb2_ports[port_index] =
2332 &xhci->op_regs->port_status_base +
2333 NUM_PORT_REGS*i;
2334 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2335 "USB 2.0 port at index %u, "
2336 "addr = %p", i,
2337 xhci->usb2_ports[port_index]);
2338 port_index++;
2339 if (port_index == xhci->num_usb2_ports)
2340 break;
2341 }
2342 }
2343 if (xhci->num_usb3_ports) {
2344 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2345 xhci->num_usb3_ports, flags);
2346 if (!xhci->usb3_ports)
2347 return -ENOMEM;
2348
2349 port_index = 0;
2350 for (i = 0; i < num_ports; i++)
2351 if (xhci->port_array[i] == 0x03) {
2352 xhci->usb3_ports[port_index] =
2353 &xhci->op_regs->port_status_base +
2354 NUM_PORT_REGS*i;
2355 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2356 "USB 3.0 port at index %u, "
2357 "addr = %p", i,
2358 xhci->usb3_ports[port_index]);
2359 port_index++;
2360 if (port_index == xhci->num_usb3_ports)
2361 break;
2362 }
2363 }
2364 return 0;
2365}
2366
2367int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2368{
2369 dma_addr_t dma;
2370 struct device *dev = xhci_to_hcd(xhci)->self.controller;
2371 unsigned int val, val2;
2372 u64 val_64;
2373 struct xhci_segment *seg;
2374 u32 page_size, temp;
2375 int i;
2376
2377 INIT_LIST_HEAD(&xhci->cmd_list);
2378
2379 /* init command timeout work */
2380 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2381 init_completion(&xhci->cmd_ring_stop_completion);
2382
2383 page_size = readl(&xhci->op_regs->page_size);
2384 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2385 "Supported page size register = 0x%x", page_size);
2386 for (i = 0; i < 16; i++) {
2387 if ((0x1 & page_size) != 0)
2388 break;
2389 page_size = page_size >> 1;
2390 }
2391 if (i < 16)
2392 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2393 "Supported page size of %iK", (1 << (i+12)) / 1024);
2394 else
2395 xhci_warn(xhci, "WARN: no supported page size\n");
2396 /* Use 4K pages, since that's common and the minimum the HC supports */
2397 xhci->page_shift = 12;
2398 xhci->page_size = 1 << xhci->page_shift;
2399 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2400 "HCD page size set to %iK", xhci->page_size / 1024);
2401
2402 /*
2403 * Program the Number of Device Slots Enabled field in the CONFIG
2404 * register with the max value of slots the HC can handle.
2405 */
2406 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2407 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2408 "// xHC can handle at most %d device slots.", val);
2409 val2 = readl(&xhci->op_regs->config_reg);
2410 val |= (val2 & ~HCS_SLOTS_MASK);
2411 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2412 "// Setting Max device slots reg = 0x%x.", val);
2413 writel(val, &xhci->op_regs->config_reg);
2414
2415 /*
2416 * Section 5.4.8 - doorbell array must be
2417 * "physically contiguous and 64-byte (cache line) aligned".
2418 */
2419 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2420 flags);
2421 if (!xhci->dcbaa)
2422 goto fail;
2423 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2424 xhci->dcbaa->dma = dma;
2425 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2426 "// Device context base array address = 0x%llx (DMA), %p (virt)",
2427 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2428 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2429
2430 /*
2431 * Initialize the ring segment pool. The ring must be a contiguous
2432 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2433 * however, the command ring segment needs 64-byte aligned segments
2434 * and our use of dma addresses in the trb_address_map radix tree needs
2435 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2436 */
2437 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2438 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2439
2440 /* See Table 46 and Note on Figure 55 */
2441 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2442 2112, 64, xhci->page_size);
2443 if (!xhci->segment_pool || !xhci->device_pool)
2444 goto fail;
2445
2446 /* Linear stream context arrays don't have any boundary restrictions,
2447 * and only need to be 16-byte aligned.
2448 */
2449 xhci->small_streams_pool =
2450 dma_pool_create("xHCI 256 byte stream ctx arrays",
2451 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2452 xhci->medium_streams_pool =
2453 dma_pool_create("xHCI 1KB stream ctx arrays",
2454 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2455 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2456 * will be allocated with dma_alloc_coherent()
2457 */
2458
2459 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2460 goto fail;
2461
2462 /* Set up the command ring to have one segments for now. */
2463 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2464 if (!xhci->cmd_ring)
2465 goto fail;
2466 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2467 "Allocated command ring at %p", xhci->cmd_ring);
2468 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2469 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2470
2471 /* Set the address in the Command Ring Control register */
2472 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2473 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2474 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2475 xhci->cmd_ring->cycle_state;
2476 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2477 "// Setting command ring address to 0x%x", val);
2478 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2479 xhci_dbg_cmd_ptrs(xhci);
2480
2481 xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2482 if (!xhci->lpm_command)
2483 goto fail;
2484
2485 /* Reserve one command ring TRB for disabling LPM.
2486 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2487 * disabling LPM, we only need to reserve one TRB for all devices.
2488 */
2489 xhci->cmd_ring_reserved_trbs++;
2490
2491 val = readl(&xhci->cap_regs->db_off);
2492 val &= DBOFF_MASK;
2493 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2494 "// Doorbell array is located at offset 0x%x"
2495 " from cap regs base addr", val);
2496 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2497 xhci_dbg_regs(xhci);
2498 xhci_print_run_regs(xhci);
2499 /* Set ir_set to interrupt register set 0 */
2500 xhci->ir_set = &xhci->run_regs->ir_set[0];
2501
2502 /*
2503 * Event ring setup: Allocate a normal ring, but also setup
2504 * the event ring segment table (ERST). Section 4.9.3.
2505 */
2506 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2507 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2508 0, flags);
2509 if (!xhci->event_ring)
2510 goto fail;
2511 if (xhci_check_trb_in_td_math(xhci) < 0)
2512 goto fail;
2513
2514 xhci->erst.entries = dma_alloc_coherent(dev,
2515 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2516 flags);
2517 if (!xhci->erst.entries)
2518 goto fail;
2519 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2520 "// Allocated event ring segment table at 0x%llx",
2521 (unsigned long long)dma);
2522
2523 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2524 xhci->erst.num_entries = ERST_NUM_SEGS;
2525 xhci->erst.erst_dma_addr = dma;
2526 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2527 "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2528 xhci->erst.num_entries,
2529 xhci->erst.entries,
2530 (unsigned long long)xhci->erst.erst_dma_addr);
2531
2532 /* set ring base address and size for each segment table entry */
2533 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2534 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2535 entry->seg_addr = cpu_to_le64(seg->dma);
2536 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2537 entry->rsvd = 0;
2538 seg = seg->next;
2539 }
2540
2541 /* set ERST count with the number of entries in the segment table */
2542 val = readl(&xhci->ir_set->erst_size);
2543 val &= ERST_SIZE_MASK;
2544 val |= ERST_NUM_SEGS;
2545 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2546 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2547 val);
2548 writel(val, &xhci->ir_set->erst_size);
2549
2550 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2551 "// Set ERST entries to point to event ring.");
2552 /* set the segment table base address */
2553 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2554 "// Set ERST base address for ir_set 0 = 0x%llx",
2555 (unsigned long long)xhci->erst.erst_dma_addr);
2556 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2557 val_64 &= ERST_PTR_MASK;
2558 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2559 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2560
2561 /* Set the event ring dequeue address */
2562 xhci_set_hc_event_deq(xhci);
2563 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2564 "Wrote ERST address to ir_set 0.");
2565 xhci_print_ir_set(xhci, 0);
2566
2567 /*
2568 * XXX: Might need to set the Interrupter Moderation Register to
2569 * something other than the default (~1ms minimum between interrupts).
2570 * See section 5.5.1.2.
2571 */
2572 for (i = 0; i < MAX_HC_SLOTS; ++i)
2573 xhci->devs[i] = NULL;
2574 for (i = 0; i < USB_MAXCHILDREN; ++i) {
2575 xhci->bus_state[0].resume_done[i] = 0;
2576 xhci->bus_state[1].resume_done[i] = 0;
2577 /* Only the USB 2.0 completions will ever be used. */
2578 init_completion(&xhci->bus_state[1].rexit_done[i]);
2579 }
2580
2581 if (scratchpad_alloc(xhci, flags))
2582 goto fail;
2583 if (xhci_setup_port_arrays(xhci, flags))
2584 goto fail;
2585
2586 /* Enable USB 3.0 device notifications for function remote wake, which
2587 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2588 * U3 (device suspend).
2589 */
2590 temp = readl(&xhci->op_regs->dev_notification);
2591 temp &= ~DEV_NOTE_MASK;
2592 temp |= DEV_NOTE_FWAKE;
2593 writel(temp, &xhci->op_regs->dev_notification);
2594
2595 return 0;
2596
2597fail:
2598 xhci_warn(xhci, "Couldn't initialize memory\n");
2599 xhci_halt(xhci);
2600 xhci_reset(xhci);
2601 xhci_mem_cleanup(xhci);
2602 return -ENOMEM;
2603}