Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * xHCI host controller driver
   4 *
   5 * Copyright (C) 2008 Intel Corp.
   6 *
   7 * Author: Sarah Sharp
   8 * Some code borrowed from the Linux EHCI driver.
   9 */
  10
  11#include <linux/usb.h>
 
  12#include <linux/pci.h>
  13#include <linux/slab.h>
  14#include <linux/dmapool.h>
  15#include <linux/dma-mapping.h>
  16
  17#include "xhci.h"
  18#include "xhci-trace.h"
  19#include "xhci-debugfs.h"
  20
  21/*
  22 * Allocates a generic ring segment from the ring pool, sets the dma address,
  23 * initializes the segment to zero, and sets the private next pointer to NULL.
  24 *
  25 * Section 4.11.1.1:
  26 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  27 */
  28static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
  29					       unsigned int cycle_state,
  30					       unsigned int max_packet,
 
  31					       gfp_t flags)
  32{
  33	struct xhci_segment *seg;
  34	dma_addr_t	dma;
  35	int		i;
  36	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
  37
  38	seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
  39	if (!seg)
  40		return NULL;
  41
  42	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
  43	if (!seg->trbs) {
  44		kfree(seg);
  45		return NULL;
  46	}
  47
  48	if (max_packet) {
  49		seg->bounce_buf = kzalloc_node(max_packet, flags,
  50					dev_to_node(dev));
  51		if (!seg->bounce_buf) {
  52			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
  53			kfree(seg);
  54			return NULL;
  55		}
  56	}
  57	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
  58	if (cycle_state == 0) {
  59		for (i = 0; i < TRBS_PER_SEGMENT; i++)
  60			seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE);
  61	}
 
  62	seg->dma = dma;
  63	seg->next = NULL;
  64
  65	return seg;
  66}
  67
  68static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  69{
  70	if (seg->trbs) {
  71		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  72		seg->trbs = NULL;
  73	}
  74	kfree(seg->bounce_buf);
  75	kfree(seg);
  76}
  77
  78static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
  79				struct xhci_segment *first)
  80{
  81	struct xhci_segment *seg;
  82
  83	seg = first->next;
  84	while (seg != first) {
  85		struct xhci_segment *next = seg->next;
  86		xhci_segment_free(xhci, seg);
  87		seg = next;
  88	}
  89	xhci_segment_free(xhci, first);
  90}
  91
  92/*
  93 * Make the prev segment point to the next segment.
  94 *
  95 * Change the last TRB in the prev segment to be a Link TRB which points to the
  96 * DMA address of the next segment.  The caller needs to set any Link TRB
  97 * related flags, such as End TRB, Toggle Cycle, and no snoop.
  98 */
  99static void xhci_link_segments(struct xhci_segment *prev,
 100			       struct xhci_segment *next,
 101			       enum xhci_ring_type type, bool chain_links)
 102{
 103	u32 val;
 104
 105	if (!prev || !next)
 106		return;
 107	prev->next = next;
 108	if (type != TYPE_EVENT) {
 109		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
 110			cpu_to_le64(next->dma);
 111
 112		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
 113		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
 114		val &= ~TRB_TYPE_BITMASK;
 115		val |= TRB_TYPE(TRB_LINK);
 116		if (chain_links)
 117			val |= TRB_CHAIN;
 118		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
 119	}
 120}
 121
 122/*
 123 * Link the ring to the new segments.
 124 * Set Toggle Cycle for the new ring if needed.
 125 */
 126static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
 127		struct xhci_segment *first, struct xhci_segment *last,
 128		unsigned int num_segs)
 129{
 130	struct xhci_segment *next;
 131	bool chain_links;
 132
 133	if (!ring || !first || !last)
 134		return;
 135
 136	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
 137	chain_links = !!(xhci_link_trb_quirk(xhci) ||
 138			 (ring->type == TYPE_ISOC &&
 139			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
 140
 141	next = ring->enq_seg->next;
 142	xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
 143	xhci_link_segments(last, next, ring->type, chain_links);
 144	ring->num_segs += num_segs;
 145	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
 146
 147	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
 148		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
 149			&= ~cpu_to_le32(LINK_TOGGLE);
 150		last->trbs[TRBS_PER_SEGMENT-1].link.control
 151			|= cpu_to_le32(LINK_TOGGLE);
 
 
 152		ring->last_seg = last;
 153	}
 
 
 
 154}
 155
 156/*
 157 * We need a radix tree for mapping physical addresses of TRBs to which stream
 158 * ID they belong to.  We need to do this because the host controller won't tell
 159 * us which stream ring the TRB came from.  We could store the stream ID in an
 160 * event data TRB, but that doesn't help us for the cancellation case, since the
 161 * endpoint may stop before it reaches that event data TRB.
 162 *
 163 * The radix tree maps the upper portion of the TRB DMA address to a ring
 164 * segment that has the same upper portion of DMA addresses.  For example, say I
 165 * have segments of size 1KB, that are always 1KB aligned.  A segment may
 166 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 167 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 168 * pass the radix tree a key to get the right stream ID:
 169 *
 170 *	0x10c90fff >> 10 = 0x43243
 171 *	0x10c912c0 >> 10 = 0x43244
 172 *	0x10c91400 >> 10 = 0x43245
 173 *
 174 * Obviously, only those TRBs with DMA addresses that are within the segment
 175 * will make the radix tree return the stream ID for that ring.
 176 *
 177 * Caveats for the radix tree:
 178 *
 179 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 180 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 181 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 182 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 183 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 184 * extended systems (where the DMA address can be bigger than 32-bits),
 185 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 186 */
 187static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
 188		struct xhci_ring *ring,
 189		struct xhci_segment *seg,
 190		gfp_t mem_flags)
 191{
 192	unsigned long key;
 193	int ret;
 194
 195	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 196	/* Skip any segments that were already added. */
 197	if (radix_tree_lookup(trb_address_map, key))
 198		return 0;
 199
 200	ret = radix_tree_maybe_preload(mem_flags);
 201	if (ret)
 202		return ret;
 203	ret = radix_tree_insert(trb_address_map,
 204			key, ring);
 205	radix_tree_preload_end();
 206	return ret;
 207}
 208
 209static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
 210		struct xhci_segment *seg)
 211{
 212	unsigned long key;
 213
 214	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 215	if (radix_tree_lookup(trb_address_map, key))
 216		radix_tree_delete(trb_address_map, key);
 217}
 218
 219static int xhci_update_stream_segment_mapping(
 220		struct radix_tree_root *trb_address_map,
 221		struct xhci_ring *ring,
 222		struct xhci_segment *first_seg,
 223		struct xhci_segment *last_seg,
 224		gfp_t mem_flags)
 225{
 226	struct xhci_segment *seg;
 227	struct xhci_segment *failed_seg;
 228	int ret;
 229
 230	if (WARN_ON_ONCE(trb_address_map == NULL))
 231		return 0;
 232
 233	seg = first_seg;
 234	do {
 235		ret = xhci_insert_segment_mapping(trb_address_map,
 236				ring, seg, mem_flags);
 237		if (ret)
 238			goto remove_streams;
 239		if (seg == last_seg)
 240			return 0;
 241		seg = seg->next;
 242	} while (seg != first_seg);
 243
 244	return 0;
 245
 246remove_streams:
 247	failed_seg = seg;
 248	seg = first_seg;
 249	do {
 250		xhci_remove_segment_mapping(trb_address_map, seg);
 251		if (seg == failed_seg)
 252			return ret;
 253		seg = seg->next;
 254	} while (seg != first_seg);
 255
 256	return ret;
 257}
 258
 259static void xhci_remove_stream_mapping(struct xhci_ring *ring)
 260{
 261	struct xhci_segment *seg;
 262
 263	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
 264		return;
 265
 266	seg = ring->first_seg;
 267	do {
 268		xhci_remove_segment_mapping(ring->trb_address_map, seg);
 269		seg = seg->next;
 270	} while (seg != ring->first_seg);
 271}
 272
 273static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
 274{
 275	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
 276			ring->first_seg, ring->last_seg, mem_flags);
 277}
 278
 279/* XXX: Do we need the hcd structure in all these functions? */
 280void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 281{
 282	if (!ring)
 283		return;
 284
 285	trace_xhci_ring_free(ring);
 286
 287	if (ring->first_seg) {
 288		if (ring->type == TYPE_STREAM)
 289			xhci_remove_stream_mapping(ring);
 290		xhci_free_segments_for_ring(xhci, ring->first_seg);
 291	}
 292
 293	kfree(ring);
 294}
 295
 296void xhci_initialize_ring_info(struct xhci_ring *ring,
 297			       unsigned int cycle_state)
 298{
 299	/* The ring is empty, so the enqueue pointer == dequeue pointer */
 300	ring->enqueue = ring->first_seg->trbs;
 301	ring->enq_seg = ring->first_seg;
 302	ring->dequeue = ring->enqueue;
 303	ring->deq_seg = ring->first_seg;
 304	/* The ring is initialized to 0. The producer must write 1 to the cycle
 305	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 306	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
 307	 *
 308	 * New rings are initialized with cycle state equal to 1; if we are
 309	 * handling ring expansion, set the cycle state equal to the old ring.
 310	 */
 311	ring->cycle_state = cycle_state;
 312
 313	/*
 314	 * Each segment has a link TRB, and leave an extra TRB for SW
 315	 * accounting purpose
 316	 */
 317	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 318}
 
 319
 320/* Allocate segments and link them for a ring */
 321static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
 322		struct xhci_segment **first, struct xhci_segment **last,
 323		unsigned int num_segs, unsigned int cycle_state,
 324		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
 
 325{
 326	struct xhci_segment *prev;
 327	bool chain_links;
 328
 329	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
 330	chain_links = !!(xhci_link_trb_quirk(xhci) ||
 331			 (type == TYPE_ISOC &&
 332			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
 333
 334	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
 335	if (!prev)
 336		return -ENOMEM;
 337	num_segs--;
 338
 339	*first = prev;
 340	while (num_segs > 0) {
 341		struct xhci_segment	*next;
 342
 343		next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
 344		if (!next) {
 345			prev = *first;
 346			while (prev) {
 347				next = prev->next;
 348				xhci_segment_free(xhci, prev);
 349				prev = next;
 350			}
 351			return -ENOMEM;
 352		}
 353		xhci_link_segments(prev, next, type, chain_links);
 354
 
 355		prev = next;
 356		num_segs--;
 357	}
 358	xhci_link_segments(prev, *first, type, chain_links);
 359	*last = prev;
 360
 361	return 0;
 
 
 
 
 362}
 363
 364/*
 365 * Create a new ring with zero or more segments.
 366 *
 367 * Link each segment together into a ring.
 368 * Set the end flag and the cycle toggle bit on the last segment.
 369 * See section 4.9.1 and figures 15 and 16.
 370 */
 371struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
 372		unsigned int num_segs, unsigned int cycle_state,
 373		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
 374{
 375	struct xhci_ring	*ring;
 376	int ret;
 377	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 378
 379	ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
 380	if (!ring)
 381		return NULL;
 382
 383	ring->num_segs = num_segs;
 384	ring->bounce_buf_len = max_packet;
 385	INIT_LIST_HEAD(&ring->td_list);
 386	ring->type = type;
 387	if (num_segs == 0)
 388		return ring;
 389
 390	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
 391			&ring->last_seg, num_segs, cycle_state, type,
 392			max_packet, flags);
 393	if (ret)
 394		goto fail;
 395
 396	/* Only event ring does not use link TRB */
 397	if (type != TYPE_EVENT) {
 398		/* See section 4.9.2.1 and 6.4.4.1 */
 399		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
 400			cpu_to_le32(LINK_TOGGLE);
 401	}
 402	xhci_initialize_ring_info(ring, cycle_state);
 403	trace_xhci_ring_alloc(ring);
 404	return ring;
 405
 406fail:
 407	kfree(ring);
 408	return NULL;
 409}
 410
 411void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
 412		struct xhci_virt_device *virt_dev,
 413		unsigned int ep_index)
 414{
 415	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 416	virt_dev->eps[ep_index].ring = NULL;
 417}
 418
 419/*
 420 * Expand an existing ring.
 421 * Allocate a new ring which has same segment numbers and link the two rings.
 422 */
 423int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
 424				unsigned int num_trbs, gfp_t flags)
 425{
 426	struct xhci_segment	*first;
 427	struct xhci_segment	*last;
 428	unsigned int		num_segs;
 429	unsigned int		num_segs_needed;
 430	int			ret;
 431
 432	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
 433				(TRBS_PER_SEGMENT - 1);
 434
 435	/* Allocate number of segments we needed, or double the ring size */
 436	num_segs = max(ring->num_segs, num_segs_needed);
 437
 438	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
 439			num_segs, ring->cycle_state, ring->type,
 
 440			ring->bounce_buf_len, flags);
 441	if (ret)
 442		return -ENOMEM;
 443
 444	if (ring->type == TYPE_STREAM)
 445		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
 446						ring, first, last, flags);
 447	if (ret) {
 448		struct xhci_segment *next;
 449		do {
 450			next = first->next;
 451			xhci_segment_free(xhci, first);
 452			if (first == last)
 453				break;
 454			first = next;
 455		} while (true);
 456		return ret;
 457	}
 458
 459	xhci_link_rings(xhci, ring, first, last, num_segs);
 460	trace_xhci_ring_expansion(ring);
 461	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
 462			"ring expansion succeed, now has %d segments",
 463			ring->num_segs);
 464
 465	return 0;
 
 
 
 
 466}
 467
 468struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 469						    int type, gfp_t flags)
 470{
 471	struct xhci_container_ctx *ctx;
 472	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 473
 474	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
 475		return NULL;
 476
 477	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
 478	if (!ctx)
 479		return NULL;
 480
 481	ctx->type = type;
 482	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 483	if (type == XHCI_CTX_TYPE_INPUT)
 484		ctx->size += CTX_SIZE(xhci->hcc_params);
 485
 486	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
 487	if (!ctx->bytes) {
 488		kfree(ctx);
 489		return NULL;
 490	}
 491	return ctx;
 492}
 493
 494void xhci_free_container_ctx(struct xhci_hcd *xhci,
 495			     struct xhci_container_ctx *ctx)
 496{
 497	if (!ctx)
 498		return;
 499	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 500	kfree(ctx);
 501}
 502
 503struct xhci_input_control_ctx *xhci_get_input_control_ctx(
 504					      struct xhci_container_ctx *ctx)
 505{
 506	if (ctx->type != XHCI_CTX_TYPE_INPUT)
 507		return NULL;
 508
 509	return (struct xhci_input_control_ctx *)ctx->bytes;
 510}
 511
 512struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 513					struct xhci_container_ctx *ctx)
 514{
 515	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 516		return (struct xhci_slot_ctx *)ctx->bytes;
 517
 518	return (struct xhci_slot_ctx *)
 519		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
 520}
 521
 522struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 523				    struct xhci_container_ctx *ctx,
 524				    unsigned int ep_index)
 525{
 526	/* increment ep index by offset of start of ep ctx array */
 527	ep_index++;
 528	if (ctx->type == XHCI_CTX_TYPE_INPUT)
 529		ep_index++;
 530
 531	return (struct xhci_ep_ctx *)
 532		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 533}
 534EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
 535
 536/***************** Streams structures manipulation *************************/
 537
 538static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 539		unsigned int num_stream_ctxs,
 540		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 541{
 542	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 543	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 544
 545	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 546		dma_free_coherent(dev, size,
 547				stream_ctx, dma);
 548	else if (size <= SMALL_STREAM_ARRAY_SIZE)
 549		return dma_pool_free(xhci->small_streams_pool,
 550				stream_ctx, dma);
 551	else
 552		return dma_pool_free(xhci->medium_streams_pool,
 553				stream_ctx, dma);
 554}
 555
 556/*
 557 * The stream context array for each endpoint with bulk streams enabled can
 558 * vary in size, based on:
 559 *  - how many streams the endpoint supports,
 560 *  - the maximum primary stream array size the host controller supports,
 561 *  - and how many streams the device driver asks for.
 562 *
 563 * The stream context array must be a power of 2, and can be as small as
 564 * 64 bytes or as large as 1MB.
 565 */
 566static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 567		unsigned int num_stream_ctxs, dma_addr_t *dma,
 568		gfp_t mem_flags)
 569{
 570	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 571	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 572
 573	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 574		return dma_alloc_coherent(dev, size,
 575				dma, mem_flags);
 576	else if (size <= SMALL_STREAM_ARRAY_SIZE)
 577		return dma_pool_alloc(xhci->small_streams_pool,
 578				mem_flags, dma);
 579	else
 580		return dma_pool_alloc(xhci->medium_streams_pool,
 581				mem_flags, dma);
 582}
 583
 584struct xhci_ring *xhci_dma_to_transfer_ring(
 585		struct xhci_virt_ep *ep,
 586		u64 address)
 587{
 588	if (ep->ep_state & EP_HAS_STREAMS)
 589		return radix_tree_lookup(&ep->stream_info->trb_address_map,
 590				address >> TRB_SEGMENT_SHIFT);
 591	return ep->ring;
 592}
 593
 594/*
 595 * Change an endpoint's internal structure so it supports stream IDs.  The
 596 * number of requested streams includes stream 0, which cannot be used by device
 597 * drivers.
 598 *
 599 * The number of stream contexts in the stream context array may be bigger than
 600 * the number of streams the driver wants to use.  This is because the number of
 601 * stream context array entries must be a power of two.
 602 */
 603struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 604		unsigned int num_stream_ctxs,
 605		unsigned int num_streams,
 606		unsigned int max_packet, gfp_t mem_flags)
 607{
 608	struct xhci_stream_info *stream_info;
 609	u32 cur_stream;
 610	struct xhci_ring *cur_ring;
 611	u64 addr;
 612	int ret;
 613	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 614
 615	xhci_dbg(xhci, "Allocating %u streams and %u "
 616			"stream context array entries.\n",
 617			num_streams, num_stream_ctxs);
 618	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 619		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 620		return NULL;
 621	}
 622	xhci->cmd_ring_reserved_trbs++;
 623
 624	stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
 625			dev_to_node(dev));
 626	if (!stream_info)
 627		goto cleanup_trbs;
 628
 629	stream_info->num_streams = num_streams;
 630	stream_info->num_stream_ctxs = num_stream_ctxs;
 631
 632	/* Initialize the array of virtual pointers to stream rings. */
 633	stream_info->stream_rings = kcalloc_node(
 634			num_streams, sizeof(struct xhci_ring *), mem_flags,
 635			dev_to_node(dev));
 636	if (!stream_info->stream_rings)
 637		goto cleanup_info;
 638
 639	/* Initialize the array of DMA addresses for stream rings for the HW. */
 640	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 641			num_stream_ctxs, &stream_info->ctx_array_dma,
 642			mem_flags);
 643	if (!stream_info->stream_ctx_array)
 644		goto cleanup_ring_array;
 645	memset(stream_info->stream_ctx_array, 0,
 646			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
 647
 648	/* Allocate everything needed to free the stream rings later */
 649	stream_info->free_streams_command =
 650		xhci_alloc_command_with_ctx(xhci, true, mem_flags);
 651	if (!stream_info->free_streams_command)
 652		goto cleanup_ctx;
 653
 654	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 655
 656	/* Allocate rings for all the streams that the driver will use,
 657	 * and add their segment DMA addresses to the radix tree.
 658	 * Stream 0 is reserved.
 659	 */
 660
 661	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 662		stream_info->stream_rings[cur_stream] =
 663			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
 664					mem_flags);
 665		cur_ring = stream_info->stream_rings[cur_stream];
 666		if (!cur_ring)
 667			goto cleanup_rings;
 668		cur_ring->stream_id = cur_stream;
 669		cur_ring->trb_address_map = &stream_info->trb_address_map;
 670		/* Set deq ptr, cycle bit, and stream context type */
 671		addr = cur_ring->first_seg->dma |
 672			SCT_FOR_CTX(SCT_PRI_TR) |
 673			cur_ring->cycle_state;
 674		stream_info->stream_ctx_array[cur_stream].stream_ring =
 675			cpu_to_le64(addr);
 676		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
 677				cur_stream, (unsigned long long) addr);
 678
 679		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
 680		if (ret) {
 681			xhci_ring_free(xhci, cur_ring);
 682			stream_info->stream_rings[cur_stream] = NULL;
 683			goto cleanup_rings;
 684		}
 685	}
 686	/* Leave the other unused stream ring pointers in the stream context
 687	 * array initialized to zero.  This will cause the xHC to give us an
 688	 * error if the device asks for a stream ID we don't have setup (if it
 689	 * was any other way, the host controller would assume the ring is
 690	 * "empty" and wait forever for data to be queued to that stream ID).
 691	 */
 692
 693	return stream_info;
 694
 695cleanup_rings:
 696	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 697		cur_ring = stream_info->stream_rings[cur_stream];
 698		if (cur_ring) {
 699			xhci_ring_free(xhci, cur_ring);
 700			stream_info->stream_rings[cur_stream] = NULL;
 701		}
 702	}
 703	xhci_free_command(xhci, stream_info->free_streams_command);
 704cleanup_ctx:
 705	xhci_free_stream_ctx(xhci,
 706		stream_info->num_stream_ctxs,
 707		stream_info->stream_ctx_array,
 708		stream_info->ctx_array_dma);
 709cleanup_ring_array:
 710	kfree(stream_info->stream_rings);
 711cleanup_info:
 712	kfree(stream_info);
 713cleanup_trbs:
 714	xhci->cmd_ring_reserved_trbs--;
 715	return NULL;
 716}
 717/*
 718 * Sets the MaxPStreams field and the Linear Stream Array field.
 719 * Sets the dequeue pointer to the stream context array.
 720 */
 721void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 722		struct xhci_ep_ctx *ep_ctx,
 723		struct xhci_stream_info *stream_info)
 724{
 725	u32 max_primary_streams;
 726	/* MaxPStreams is the number of stream context array entries, not the
 727	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 728	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 729	 */
 730	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 731	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
 732			"Setting number of stream ctx array entries to %u",
 733			1 << (max_primary_streams + 1));
 734	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
 735	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
 736				       | EP_HAS_LSA);
 737	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
 738}
 739
 740/*
 741 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 742 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 743 * not at the beginning of the ring).
 744 */
 745void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
 746		struct xhci_virt_ep *ep)
 747{
 748	dma_addr_t addr;
 749	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
 750	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 751	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
 752}
 753
 754/* Frees all stream contexts associated with the endpoint,
 755 *
 756 * Caller should fix the endpoint context streams fields.
 757 */
 758void xhci_free_stream_info(struct xhci_hcd *xhci,
 759		struct xhci_stream_info *stream_info)
 760{
 761	int cur_stream;
 762	struct xhci_ring *cur_ring;
 763
 764	if (!stream_info)
 765		return;
 766
 767	for (cur_stream = 1; cur_stream < stream_info->num_streams;
 768			cur_stream++) {
 769		cur_ring = stream_info->stream_rings[cur_stream];
 770		if (cur_ring) {
 771			xhci_ring_free(xhci, cur_ring);
 772			stream_info->stream_rings[cur_stream] = NULL;
 773		}
 774	}
 775	xhci_free_command(xhci, stream_info->free_streams_command);
 776	xhci->cmd_ring_reserved_trbs--;
 777	if (stream_info->stream_ctx_array)
 778		xhci_free_stream_ctx(xhci,
 779				stream_info->num_stream_ctxs,
 780				stream_info->stream_ctx_array,
 781				stream_info->ctx_array_dma);
 782
 783	kfree(stream_info->stream_rings);
 784	kfree(stream_info);
 785}
 786
 787
 788/***************** Device context manipulation *************************/
 789
 790static void xhci_free_tt_info(struct xhci_hcd *xhci,
 791		struct xhci_virt_device *virt_dev,
 792		int slot_id)
 793{
 794	struct list_head *tt_list_head;
 795	struct xhci_tt_bw_info *tt_info, *next;
 796	bool slot_found = false;
 797
 798	/* If the device never made it past the Set Address stage,
 799	 * it may not have the real_port set correctly.
 800	 */
 801	if (virt_dev->real_port == 0 ||
 802			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 803		xhci_dbg(xhci, "Bad real port.\n");
 804		return;
 805	}
 806
 807	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
 808	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 809		/* Multi-TT hubs will have more than one entry */
 810		if (tt_info->slot_id == slot_id) {
 811			slot_found = true;
 812			list_del(&tt_info->tt_list);
 813			kfree(tt_info);
 814		} else if (slot_found) {
 815			break;
 816		}
 817	}
 818}
 819
 820int xhci_alloc_tt_info(struct xhci_hcd *xhci,
 821		struct xhci_virt_device *virt_dev,
 822		struct usb_device *hdev,
 823		struct usb_tt *tt, gfp_t mem_flags)
 824{
 825	struct xhci_tt_bw_info		*tt_info;
 826	unsigned int			num_ports;
 827	int				i, j;
 828	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 829
 830	if (!tt->multi)
 831		num_ports = 1;
 832	else
 833		num_ports = hdev->maxchild;
 834
 835	for (i = 0; i < num_ports; i++, tt_info++) {
 836		struct xhci_interval_bw_table *bw_table;
 837
 838		tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
 839				dev_to_node(dev));
 840		if (!tt_info)
 841			goto free_tts;
 842		INIT_LIST_HEAD(&tt_info->tt_list);
 843		list_add(&tt_info->tt_list,
 844				&xhci->rh_bw[virt_dev->real_port - 1].tts);
 845		tt_info->slot_id = virt_dev->udev->slot_id;
 846		if (tt->multi)
 847			tt_info->ttport = i+1;
 848		bw_table = &tt_info->bw_table;
 849		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
 850			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
 851	}
 852	return 0;
 853
 854free_tts:
 855	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
 856	return -ENOMEM;
 857}
 858
 859
 860/* All the xhci_tds in the ring's TD list should be freed at this point.
 861 * Should be called with xhci->lock held if there is any chance the TT lists
 862 * will be manipulated by the configure endpoint, allocate device, or update
 863 * hub functions while this function is removing the TT entries from the list.
 864 */
 865void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 866{
 867	struct xhci_virt_device *dev;
 868	int i;
 869	int old_active_eps = 0;
 870
 871	/* Slot ID 0 is reserved */
 872	if (slot_id == 0 || !xhci->devs[slot_id])
 873		return;
 874
 875	dev = xhci->devs[slot_id];
 876
 877	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 878	if (!dev)
 879		return;
 880
 881	trace_xhci_free_virt_device(dev);
 882
 883	if (dev->tt_info)
 884		old_active_eps = dev->tt_info->active_eps;
 885
 886	for (i = 0; i < 31; i++) {
 887		if (dev->eps[i].ring)
 888			xhci_ring_free(xhci, dev->eps[i].ring);
 889		if (dev->eps[i].stream_info)
 890			xhci_free_stream_info(xhci,
 891					dev->eps[i].stream_info);
 892		/*
 893		 * Endpoints are normally deleted from the bandwidth list when
 894		 * endpoints are dropped, before device is freed.
 895		 * If host is dying or being removed then endpoints aren't
 896		 * dropped cleanly, so delete the endpoint from list here.
 897		 * Only applicable for hosts with software bandwidth checking.
 898		 */
 899
 900		if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
 901			list_del_init(&dev->eps[i].bw_endpoint_list);
 902			xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
 903				 slot_id, i);
 904		}
 905	}
 906	/* If this is a hub, free the TT(s) from the TT list */
 907	xhci_free_tt_info(xhci, dev, slot_id);
 908	/* If necessary, update the number of active TTs on this root port */
 909	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
 910
 911	if (dev->in_ctx)
 912		xhci_free_container_ctx(xhci, dev->in_ctx);
 913	if (dev->out_ctx)
 914		xhci_free_container_ctx(xhci, dev->out_ctx);
 915
 916	if (dev->udev && dev->udev->slot_id)
 917		dev->udev->slot_id = 0;
 
 
 918	kfree(xhci->devs[slot_id]);
 919	xhci->devs[slot_id] = NULL;
 920}
 921
 922/*
 923 * Free a virt_device structure.
 924 * If the virt_device added a tt_info (a hub) and has children pointing to
 925 * that tt_info, then free the child first. Recursive.
 926 * We can't rely on udev at this point to find child-parent relationships.
 927 */
 928static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
 929{
 930	struct xhci_virt_device *vdev;
 931	struct list_head *tt_list_head;
 932	struct xhci_tt_bw_info *tt_info, *next;
 933	int i;
 934
 935	vdev = xhci->devs[slot_id];
 936	if (!vdev)
 937		return;
 938
 939	if (vdev->real_port == 0 ||
 940			vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 941		xhci_dbg(xhci, "Bad vdev->real_port.\n");
 942		goto out;
 943	}
 944
 945	tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
 946	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 947		/* is this a hub device that added a tt_info to the tts list */
 948		if (tt_info->slot_id == slot_id) {
 949			/* are any devices using this tt_info? */
 950			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
 951				vdev = xhci->devs[i];
 952				if (vdev && (vdev->tt_info == tt_info))
 953					xhci_free_virt_devices_depth_first(
 954						xhci, i);
 955			}
 956		}
 957	}
 958out:
 959	/* we are now at a leaf device */
 960	xhci_debugfs_remove_slot(xhci, slot_id);
 961	xhci_free_virt_device(xhci, slot_id);
 962}
 963
 964int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
 965		struct usb_device *udev, gfp_t flags)
 966{
 967	struct xhci_virt_device *dev;
 968	int i;
 969
 970	/* Slot ID 0 is reserved */
 971	if (slot_id == 0 || xhci->devs[slot_id]) {
 972		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
 973		return 0;
 974	}
 975
 976	dev = kzalloc(sizeof(*dev), flags);
 977	if (!dev)
 978		return 0;
 979
 980	dev->slot_id = slot_id;
 981
 982	/* Allocate the (output) device context that will be used in the HC. */
 983	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
 984	if (!dev->out_ctx)
 985		goto fail;
 986
 987	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
 988			(unsigned long long)dev->out_ctx->dma);
 989
 990	/* Allocate the (input) device context for address device command */
 991	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
 992	if (!dev->in_ctx)
 993		goto fail;
 994
 995	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
 996			(unsigned long long)dev->in_ctx->dma);
 997
 998	/* Initialize the cancellation and bandwidth list for each ep */
 999	for (i = 0; i < 31; i++) {
1000		dev->eps[i].ep_index = i;
1001		dev->eps[i].vdev = dev;
1002		dev->eps[i].xhci = xhci;
1003		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1004		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1005	}
1006
1007	/* Allocate endpoint 0 ring */
1008	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1009	if (!dev->eps[0].ring)
1010		goto fail;
1011
1012	dev->udev = udev;
1013
1014	/* Point to output device context in dcbaa. */
1015	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1016	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1017		 slot_id,
1018		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1019		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1020
1021	trace_xhci_alloc_virt_device(dev);
1022
1023	xhci->devs[slot_id] = dev;
1024
1025	return 1;
1026fail:
1027
1028	if (dev->in_ctx)
1029		xhci_free_container_ctx(xhci, dev->in_ctx);
1030	if (dev->out_ctx)
1031		xhci_free_container_ctx(xhci, dev->out_ctx);
1032	kfree(dev);
1033
1034	return 0;
1035}
1036
1037void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1038		struct usb_device *udev)
1039{
1040	struct xhci_virt_device *virt_dev;
1041	struct xhci_ep_ctx	*ep0_ctx;
1042	struct xhci_ring	*ep_ring;
1043
1044	virt_dev = xhci->devs[udev->slot_id];
1045	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1046	ep_ring = virt_dev->eps[0].ring;
1047	/*
1048	 * FIXME we don't keep track of the dequeue pointer very well after a
1049	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1050	 * host to our enqueue pointer.  This should only be called after a
1051	 * configured device has reset, so all control transfers should have
1052	 * been completed or cancelled before the reset.
1053	 */
1054	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1055							ep_ring->enqueue)
1056				   | ep_ring->cycle_state);
1057}
1058
1059/*
1060 * The xHCI roothub may have ports of differing speeds in any order in the port
1061 * status registers.
1062 *
1063 * The xHCI hardware wants to know the roothub port number that the USB device
1064 * is attached to (or the roothub port its ancestor hub is attached to).  All we
1065 * know is the index of that port under either the USB 2.0 or the USB 3.0
1066 * roothub, but that doesn't give us the real index into the HW port status
1067 * registers. Call xhci_find_raw_port_number() to get real index.
1068 */
1069static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1070		struct usb_device *udev)
1071{
1072	struct usb_device *top_dev;
 
1073	struct usb_hcd *hcd;
1074
1075	if (udev->speed >= USB_SPEED_SUPER)
1076		hcd = xhci_get_usb3_hcd(xhci);
1077	else
1078		hcd = xhci->main_hcd;
1079
1080	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1081			top_dev = top_dev->parent)
1082		/* Found device below root hub */;
1083
1084	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
 
1085}
1086
1087/* Setup an xHCI virtual device for a Set Address command */
1088int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1089{
1090	struct xhci_virt_device *dev;
1091	struct xhci_ep_ctx	*ep0_ctx;
1092	struct xhci_slot_ctx    *slot_ctx;
1093	u32			port_num;
1094	u32			max_packets;
1095	struct usb_device *top_dev;
1096
1097	dev = xhci->devs[udev->slot_id];
1098	/* Slot ID 0 is reserved */
1099	if (udev->slot_id == 0 || !dev) {
1100		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1101				udev->slot_id);
1102		return -EINVAL;
1103	}
1104	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1105	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1106
1107	/* 3) Only the control endpoint is valid - one endpoint context */
1108	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1109	switch (udev->speed) {
1110	case USB_SPEED_SUPER_PLUS:
1111		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1112		max_packets = MAX_PACKET(512);
1113		break;
1114	case USB_SPEED_SUPER:
1115		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1116		max_packets = MAX_PACKET(512);
1117		break;
1118	case USB_SPEED_HIGH:
1119		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1120		max_packets = MAX_PACKET(64);
1121		break;
1122	/* USB core guesses at a 64-byte max packet first for FS devices */
1123	case USB_SPEED_FULL:
1124		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1125		max_packets = MAX_PACKET(64);
1126		break;
1127	case USB_SPEED_LOW:
1128		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1129		max_packets = MAX_PACKET(8);
1130		break;
1131	case USB_SPEED_WIRELESS:
1132		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1133		return -EINVAL;
1134	default:
1135		/* Speed was set earlier, this shouldn't happen. */
1136		return -EINVAL;
1137	}
1138	/* Find the root hub port this device is under */
1139	port_num = xhci_find_real_port_number(xhci, udev);
1140	if (!port_num)
1141		return -EINVAL;
1142	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1143	/* Set the port number in the virtual_device to the faked port number */
1144	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1145			top_dev = top_dev->parent)
1146		/* Found device below root hub */;
1147	dev->fake_port = top_dev->portnum;
1148	dev->real_port = port_num;
1149	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1150	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1151
1152	/* Find the right bandwidth table that this device will be a part of.
1153	 * If this is a full speed device attached directly to a root port (or a
1154	 * decendent of one), it counts as a primary bandwidth domain, not a
1155	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1156	 * will never be created for the HS root hub.
1157	 */
1158	if (!udev->tt || !udev->tt->hub->parent) {
1159		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1160	} else {
1161		struct xhci_root_port_bw_info *rh_bw;
1162		struct xhci_tt_bw_info *tt_bw;
1163
1164		rh_bw = &xhci->rh_bw[port_num - 1];
1165		/* Find the right TT. */
1166		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1167			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1168				continue;
1169
1170			if (!dev->udev->tt->multi ||
1171					(udev->tt->multi &&
1172					 tt_bw->ttport == dev->udev->ttport)) {
1173				dev->bw_table = &tt_bw->bw_table;
1174				dev->tt_info = tt_bw;
1175				break;
1176			}
1177		}
1178		if (!dev->tt_info)
1179			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1180	}
1181
1182	/* Is this a LS/FS device under an external HS hub? */
1183	if (udev->tt && udev->tt->hub->parent) {
1184		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1185						(udev->ttport << 8));
1186		if (udev->tt->multi)
1187			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1188	}
1189	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1190	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1191
1192	/* Step 4 - ring already allocated */
1193	/* Step 5 */
1194	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1195
1196	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1197	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1198					 max_packets);
1199
1200	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1201				   dev->eps[0].ring->cycle_state);
1202
1203	trace_xhci_setup_addressable_virt_device(dev);
1204
1205	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1206
1207	return 0;
1208}
1209
1210/*
1211 * Convert interval expressed as 2^(bInterval - 1) == interval into
1212 * straight exponent value 2^n == interval.
1213 *
1214 */
1215static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1216		struct usb_host_endpoint *ep)
1217{
1218	unsigned int interval;
1219
1220	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1221	if (interval != ep->desc.bInterval - 1)
1222		dev_warn(&udev->dev,
1223			 "ep %#x - rounding interval to %d %sframes\n",
1224			 ep->desc.bEndpointAddress,
1225			 1 << interval,
1226			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1227
1228	if (udev->speed == USB_SPEED_FULL) {
1229		/*
1230		 * Full speed isoc endpoints specify interval in frames,
1231		 * not microframes. We are using microframes everywhere,
1232		 * so adjust accordingly.
1233		 */
1234		interval += 3;	/* 1 frame = 2^3 uframes */
1235	}
1236
1237	return interval;
1238}
1239
1240/*
1241 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1242 * microframes, rounded down to nearest power of 2.
1243 */
1244static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1245		struct usb_host_endpoint *ep, unsigned int desc_interval,
1246		unsigned int min_exponent, unsigned int max_exponent)
1247{
1248	unsigned int interval;
1249
1250	interval = fls(desc_interval) - 1;
1251	interval = clamp_val(interval, min_exponent, max_exponent);
1252	if ((1 << interval) != desc_interval)
1253		dev_dbg(&udev->dev,
1254			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1255			 ep->desc.bEndpointAddress,
1256			 1 << interval,
1257			 desc_interval);
1258
1259	return interval;
1260}
1261
1262static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1263		struct usb_host_endpoint *ep)
1264{
1265	if (ep->desc.bInterval == 0)
1266		return 0;
1267	return xhci_microframes_to_exponent(udev, ep,
1268			ep->desc.bInterval, 0, 15);
1269}
1270
1271
1272static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1273		struct usb_host_endpoint *ep)
1274{
1275	return xhci_microframes_to_exponent(udev, ep,
1276			ep->desc.bInterval * 8, 3, 10);
1277}
1278
1279/* Return the polling or NAK interval.
1280 *
1281 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1282 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1283 *
1284 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1285 * is set to 0.
1286 */
1287static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1288		struct usb_host_endpoint *ep)
1289{
1290	unsigned int interval = 0;
1291
1292	switch (udev->speed) {
1293	case USB_SPEED_HIGH:
1294		/* Max NAK rate */
1295		if (usb_endpoint_xfer_control(&ep->desc) ||
1296		    usb_endpoint_xfer_bulk(&ep->desc)) {
1297			interval = xhci_parse_microframe_interval(udev, ep);
1298			break;
1299		}
1300		fallthrough;	/* SS and HS isoc/int have same decoding */
1301
1302	case USB_SPEED_SUPER_PLUS:
1303	case USB_SPEED_SUPER:
1304		if (usb_endpoint_xfer_int(&ep->desc) ||
1305		    usb_endpoint_xfer_isoc(&ep->desc)) {
1306			interval = xhci_parse_exponent_interval(udev, ep);
1307		}
1308		break;
1309
1310	case USB_SPEED_FULL:
1311		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1312			interval = xhci_parse_exponent_interval(udev, ep);
1313			break;
1314		}
1315		/*
1316		 * Fall through for interrupt endpoint interval decoding
1317		 * since it uses the same rules as low speed interrupt
1318		 * endpoints.
1319		 */
1320		fallthrough;
1321
1322	case USB_SPEED_LOW:
1323		if (usb_endpoint_xfer_int(&ep->desc) ||
1324		    usb_endpoint_xfer_isoc(&ep->desc)) {
1325
1326			interval = xhci_parse_frame_interval(udev, ep);
1327		}
1328		break;
1329
1330	default:
1331		BUG();
1332	}
1333	return interval;
1334}
1335
1336/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1337 * High speed endpoint descriptors can define "the number of additional
1338 * transaction opportunities per microframe", but that goes in the Max Burst
1339 * endpoint context field.
1340 */
1341static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1342		struct usb_host_endpoint *ep)
1343{
1344	if (udev->speed < USB_SPEED_SUPER ||
1345			!usb_endpoint_xfer_isoc(&ep->desc))
1346		return 0;
1347	return ep->ss_ep_comp.bmAttributes;
1348}
1349
1350static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1351				       struct usb_host_endpoint *ep)
1352{
1353	/* Super speed and Plus have max burst in ep companion desc */
1354	if (udev->speed >= USB_SPEED_SUPER)
1355		return ep->ss_ep_comp.bMaxBurst;
1356
1357	if (udev->speed == USB_SPEED_HIGH &&
1358	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1359	     usb_endpoint_xfer_int(&ep->desc)))
1360		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1361
1362	return 0;
1363}
1364
1365static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1366{
1367	int in;
1368
1369	in = usb_endpoint_dir_in(&ep->desc);
1370
1371	switch (usb_endpoint_type(&ep->desc)) {
1372	case USB_ENDPOINT_XFER_CONTROL:
1373		return CTRL_EP;
1374	case USB_ENDPOINT_XFER_BULK:
1375		return in ? BULK_IN_EP : BULK_OUT_EP;
1376	case USB_ENDPOINT_XFER_ISOC:
1377		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1378	case USB_ENDPOINT_XFER_INT:
1379		return in ? INT_IN_EP : INT_OUT_EP;
1380	}
1381	return 0;
1382}
1383
1384/* Return the maximum endpoint service interval time (ESIT) payload.
1385 * Basically, this is the maxpacket size, multiplied by the burst size
1386 * and mult size.
1387 */
1388static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1389		struct usb_host_endpoint *ep)
1390{
1391	int max_burst;
1392	int max_packet;
1393
1394	/* Only applies for interrupt or isochronous endpoints */
1395	if (usb_endpoint_xfer_control(&ep->desc) ||
1396			usb_endpoint_xfer_bulk(&ep->desc))
1397		return 0;
1398
1399	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1400	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1401	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1402		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
 
1403	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1404	else if (udev->speed >= USB_SPEED_SUPER)
1405		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1406
1407	max_packet = usb_endpoint_maxp(&ep->desc);
1408	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1409	/* A 0 in max burst means 1 transfer per ESIT */
1410	return max_packet * max_burst;
1411}
1412
1413/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1414 * Drivers will have to call usb_alloc_streams() to do that.
1415 */
1416int xhci_endpoint_init(struct xhci_hcd *xhci,
1417		struct xhci_virt_device *virt_dev,
1418		struct usb_device *udev,
1419		struct usb_host_endpoint *ep,
1420		gfp_t mem_flags)
1421{
1422	unsigned int ep_index;
1423	struct xhci_ep_ctx *ep_ctx;
1424	struct xhci_ring *ep_ring;
1425	unsigned int max_packet;
1426	enum xhci_ring_type ring_type;
1427	u32 max_esit_payload;
1428	u32 endpoint_type;
1429	unsigned int max_burst;
1430	unsigned int interval;
1431	unsigned int mult;
1432	unsigned int avg_trb_len;
1433	unsigned int err_count = 0;
1434
1435	ep_index = xhci_get_endpoint_index(&ep->desc);
1436	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1437
1438	endpoint_type = xhci_get_endpoint_type(ep);
1439	if (!endpoint_type)
1440		return -EINVAL;
1441
1442	ring_type = usb_endpoint_type(&ep->desc);
1443
1444	/*
1445	 * Get values to fill the endpoint context, mostly from ep descriptor.
1446	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1447	 * have no clue on scatter gather list entry size. For Isoc and Int,
1448	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1449	 */
1450	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1451	interval = xhci_get_endpoint_interval(udev, ep);
1452
1453	/* Periodic endpoint bInterval limit quirk */
1454	if (usb_endpoint_xfer_int(&ep->desc) ||
1455	    usb_endpoint_xfer_isoc(&ep->desc)) {
1456		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1457		    udev->speed >= USB_SPEED_HIGH &&
1458		    interval >= 7) {
1459			interval = 6;
1460		}
1461	}
1462
1463	mult = xhci_get_endpoint_mult(udev, ep);
1464	max_packet = usb_endpoint_maxp(&ep->desc);
1465	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1466	avg_trb_len = max_esit_payload;
1467
1468	/* FIXME dig Mult and streams info out of ep companion desc */
1469
1470	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1471	if (!usb_endpoint_xfer_isoc(&ep->desc))
1472		err_count = 3;
1473	/* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1474	if (usb_endpoint_xfer_bulk(&ep->desc)) {
1475		if (udev->speed == USB_SPEED_HIGH)
1476			max_packet = 512;
1477		if (udev->speed == USB_SPEED_FULL) {
1478			max_packet = rounddown_pow_of_two(max_packet);
1479			max_packet = clamp_val(max_packet, 8, 64);
1480		}
1481	}
1482	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1483	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1484		avg_trb_len = 8;
1485	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1486	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1487		mult = 0;
1488
1489	/* Set up the endpoint ring */
1490	virt_dev->eps[ep_index].new_ring =
1491		xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1492	if (!virt_dev->eps[ep_index].new_ring)
1493		return -ENOMEM;
1494
1495	virt_dev->eps[ep_index].skip = false;
1496	ep_ring = virt_dev->eps[ep_index].new_ring;
1497
1498	/* Fill the endpoint context */
1499	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1500				      EP_INTERVAL(interval) |
1501				      EP_MULT(mult));
1502	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1503				       MAX_PACKET(max_packet) |
1504				       MAX_BURST(max_burst) |
1505				       ERROR_COUNT(err_count));
1506	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1507				  ep_ring->cycle_state);
1508
1509	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1510				      EP_AVG_TRB_LENGTH(avg_trb_len));
1511
1512	return 0;
1513}
1514
1515void xhci_endpoint_zero(struct xhci_hcd *xhci,
1516		struct xhci_virt_device *virt_dev,
1517		struct usb_host_endpoint *ep)
1518{
1519	unsigned int ep_index;
1520	struct xhci_ep_ctx *ep_ctx;
1521
1522	ep_index = xhci_get_endpoint_index(&ep->desc);
1523	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1524
1525	ep_ctx->ep_info = 0;
1526	ep_ctx->ep_info2 = 0;
1527	ep_ctx->deq = 0;
1528	ep_ctx->tx_info = 0;
1529	/* Don't free the endpoint ring until the set interface or configuration
1530	 * request succeeds.
1531	 */
1532}
1533
1534void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1535{
1536	bw_info->ep_interval = 0;
1537	bw_info->mult = 0;
1538	bw_info->num_packets = 0;
1539	bw_info->max_packet_size = 0;
1540	bw_info->type = 0;
1541	bw_info->max_esit_payload = 0;
1542}
1543
1544void xhci_update_bw_info(struct xhci_hcd *xhci,
1545		struct xhci_container_ctx *in_ctx,
1546		struct xhci_input_control_ctx *ctrl_ctx,
1547		struct xhci_virt_device *virt_dev)
1548{
1549	struct xhci_bw_info *bw_info;
1550	struct xhci_ep_ctx *ep_ctx;
1551	unsigned int ep_type;
1552	int i;
1553
1554	for (i = 1; i < 31; i++) {
1555		bw_info = &virt_dev->eps[i].bw_info;
1556
1557		/* We can't tell what endpoint type is being dropped, but
1558		 * unconditionally clearing the bandwidth info for non-periodic
1559		 * endpoints should be harmless because the info will never be
1560		 * set in the first place.
1561		 */
1562		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1563			/* Dropped endpoint */
1564			xhci_clear_endpoint_bw_info(bw_info);
1565			continue;
1566		}
1567
1568		if (EP_IS_ADDED(ctrl_ctx, i)) {
1569			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1570			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1571
1572			/* Ignore non-periodic endpoints */
1573			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1574					ep_type != ISOC_IN_EP &&
1575					ep_type != INT_IN_EP)
1576				continue;
1577
1578			/* Added or changed endpoint */
1579			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1580					le32_to_cpu(ep_ctx->ep_info));
1581			/* Number of packets and mult are zero-based in the
1582			 * input context, but we want one-based for the
1583			 * interval table.
1584			 */
1585			bw_info->mult = CTX_TO_EP_MULT(
1586					le32_to_cpu(ep_ctx->ep_info)) + 1;
1587			bw_info->num_packets = CTX_TO_MAX_BURST(
1588					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1589			bw_info->max_packet_size = MAX_PACKET_DECODED(
1590					le32_to_cpu(ep_ctx->ep_info2));
1591			bw_info->type = ep_type;
1592			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1593					le32_to_cpu(ep_ctx->tx_info));
1594		}
1595	}
1596}
1597
1598/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1599 * Useful when you want to change one particular aspect of the endpoint and then
1600 * issue a configure endpoint command.
1601 */
1602void xhci_endpoint_copy(struct xhci_hcd *xhci,
1603		struct xhci_container_ctx *in_ctx,
1604		struct xhci_container_ctx *out_ctx,
1605		unsigned int ep_index)
1606{
1607	struct xhci_ep_ctx *out_ep_ctx;
1608	struct xhci_ep_ctx *in_ep_ctx;
1609
1610	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1611	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1612
1613	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1614	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1615	in_ep_ctx->deq = out_ep_ctx->deq;
1616	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1617	if (xhci->quirks & XHCI_MTK_HOST) {
1618		in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1619		in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1620	}
1621}
1622
1623/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1624 * Useful when you want to change one particular aspect of the endpoint and then
1625 * issue a configure endpoint command.  Only the context entries field matters,
1626 * but we'll copy the whole thing anyway.
1627 */
1628void xhci_slot_copy(struct xhci_hcd *xhci,
1629		struct xhci_container_ctx *in_ctx,
1630		struct xhci_container_ctx *out_ctx)
1631{
1632	struct xhci_slot_ctx *in_slot_ctx;
1633	struct xhci_slot_ctx *out_slot_ctx;
1634
1635	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1636	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1637
1638	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1639	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1640	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1641	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1642}
1643
1644/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1645static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1646{
1647	int i;
1648	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1649	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1650
1651	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1652			"Allocating %d scratchpad buffers", num_sp);
1653
1654	if (!num_sp)
1655		return 0;
1656
1657	xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1658				dev_to_node(dev));
1659	if (!xhci->scratchpad)
1660		goto fail_sp;
1661
1662	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1663				     num_sp * sizeof(u64),
1664				     &xhci->scratchpad->sp_dma, flags);
1665	if (!xhci->scratchpad->sp_array)
1666		goto fail_sp2;
1667
1668	xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1669					flags, dev_to_node(dev));
1670	if (!xhci->scratchpad->sp_buffers)
1671		goto fail_sp3;
1672
1673	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1674	for (i = 0; i < num_sp; i++) {
1675		dma_addr_t dma;
1676		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1677					       flags);
1678		if (!buf)
1679			goto fail_sp4;
1680
1681		xhci->scratchpad->sp_array[i] = dma;
1682		xhci->scratchpad->sp_buffers[i] = buf;
1683	}
1684
1685	return 0;
1686
1687 fail_sp4:
1688	for (i = i - 1; i >= 0; i--) {
1689		dma_free_coherent(dev, xhci->page_size,
1690				    xhci->scratchpad->sp_buffers[i],
1691				    xhci->scratchpad->sp_array[i]);
1692	}
1693
1694	kfree(xhci->scratchpad->sp_buffers);
1695
1696 fail_sp3:
1697	dma_free_coherent(dev, num_sp * sizeof(u64),
1698			    xhci->scratchpad->sp_array,
1699			    xhci->scratchpad->sp_dma);
1700
1701 fail_sp2:
1702	kfree(xhci->scratchpad);
1703	xhci->scratchpad = NULL;
1704
1705 fail_sp:
1706	return -ENOMEM;
1707}
1708
1709static void scratchpad_free(struct xhci_hcd *xhci)
1710{
1711	int num_sp;
1712	int i;
1713	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1714
1715	if (!xhci->scratchpad)
1716		return;
1717
1718	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1719
1720	for (i = 0; i < num_sp; i++) {
1721		dma_free_coherent(dev, xhci->page_size,
1722				    xhci->scratchpad->sp_buffers[i],
1723				    xhci->scratchpad->sp_array[i]);
1724	}
1725	kfree(xhci->scratchpad->sp_buffers);
1726	dma_free_coherent(dev, num_sp * sizeof(u64),
1727			    xhci->scratchpad->sp_array,
1728			    xhci->scratchpad->sp_dma);
1729	kfree(xhci->scratchpad);
1730	xhci->scratchpad = NULL;
1731}
1732
1733struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1734		bool allocate_completion, gfp_t mem_flags)
1735{
1736	struct xhci_command *command;
1737	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1738
1739	command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1740	if (!command)
1741		return NULL;
1742
1743	if (allocate_completion) {
1744		command->completion =
1745			kzalloc_node(sizeof(struct completion), mem_flags,
1746				dev_to_node(dev));
1747		if (!command->completion) {
1748			kfree(command);
1749			return NULL;
1750		}
1751		init_completion(command->completion);
1752	}
1753
1754	command->status = 0;
 
 
1755	INIT_LIST_HEAD(&command->cmd_list);
1756	return command;
1757}
1758
1759struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1760		bool allocate_completion, gfp_t mem_flags)
1761{
1762	struct xhci_command *command;
1763
1764	command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1765	if (!command)
1766		return NULL;
1767
1768	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1769						   mem_flags);
1770	if (!command->in_ctx) {
1771		kfree(command->completion);
1772		kfree(command);
1773		return NULL;
1774	}
1775	return command;
1776}
1777
1778void xhci_urb_free_priv(struct urb_priv *urb_priv)
1779{
1780	kfree(urb_priv);
1781}
1782
1783void xhci_free_command(struct xhci_hcd *xhci,
1784		struct xhci_command *command)
1785{
1786	xhci_free_container_ctx(xhci,
1787			command->in_ctx);
1788	kfree(command->completion);
1789	kfree(command);
1790}
1791
1792int xhci_alloc_erst(struct xhci_hcd *xhci,
1793		    struct xhci_ring *evt_ring,
1794		    struct xhci_erst *erst,
1795		    gfp_t flags)
1796{
1797	size_t size;
1798	unsigned int val;
1799	struct xhci_segment *seg;
1800	struct xhci_erst_entry *entry;
1801
1802	size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1803	erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1804					   size, &erst->erst_dma_addr, flags);
1805	if (!erst->entries)
1806		return -ENOMEM;
1807
1808	erst->num_entries = evt_ring->num_segs;
1809
1810	seg = evt_ring->first_seg;
1811	for (val = 0; val < evt_ring->num_segs; val++) {
1812		entry = &erst->entries[val];
1813		entry->seg_addr = cpu_to_le64(seg->dma);
1814		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1815		entry->rsvd = 0;
1816		seg = seg->next;
1817	}
1818
1819	return 0;
1820}
1821
1822void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1823{
1824	size_t size;
1825	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1826
1827	size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1828	if (erst->entries)
1829		dma_free_coherent(dev, size,
1830				erst->entries,
1831				erst->erst_dma_addr);
1832	erst->entries = NULL;
1833}
1834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1835void xhci_mem_cleanup(struct xhci_hcd *xhci)
1836{
1837	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
1838	int i, j, num_ports;
1839
1840	cancel_delayed_work_sync(&xhci->cmd_timer);
1841
1842	xhci_free_erst(xhci, &xhci->erst);
1843
1844	if (xhci->event_ring)
1845		xhci_ring_free(xhci, xhci->event_ring);
1846	xhci->event_ring = NULL;
1847	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
 
 
1848
1849	if (xhci->cmd_ring)
1850		xhci_ring_free(xhci, xhci->cmd_ring);
1851	xhci->cmd_ring = NULL;
1852	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1853	xhci_cleanup_command_queue(xhci);
1854
1855	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1856	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1857		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1858		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1859			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1860			while (!list_empty(ep))
1861				list_del_init(ep->next);
1862		}
1863	}
1864
1865	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1866		xhci_free_virt_devices_depth_first(xhci, i);
1867
1868	dma_pool_destroy(xhci->segment_pool);
1869	xhci->segment_pool = NULL;
1870	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1871
1872	dma_pool_destroy(xhci->device_pool);
1873	xhci->device_pool = NULL;
1874	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1875
1876	dma_pool_destroy(xhci->small_streams_pool);
1877	xhci->small_streams_pool = NULL;
1878	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1879			"Freed small stream array pool");
1880
1881	dma_pool_destroy(xhci->medium_streams_pool);
1882	xhci->medium_streams_pool = NULL;
1883	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1884			"Freed medium stream array pool");
1885
1886	if (xhci->dcbaa)
1887		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1888				xhci->dcbaa, xhci->dcbaa->dma);
1889	xhci->dcbaa = NULL;
1890
1891	scratchpad_free(xhci);
1892
1893	if (!xhci->rh_bw)
1894		goto no_bw;
1895
1896	for (i = 0; i < num_ports; i++) {
1897		struct xhci_tt_bw_info *tt, *n;
1898		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1899			list_del(&tt->tt_list);
1900			kfree(tt);
1901		}
1902	}
1903
1904no_bw:
1905	xhci->cmd_ring_reserved_trbs = 0;
1906	xhci->usb2_rhub.num_ports = 0;
1907	xhci->usb3_rhub.num_ports = 0;
1908	xhci->num_active_eps = 0;
1909	kfree(xhci->usb2_rhub.ports);
1910	kfree(xhci->usb3_rhub.ports);
1911	kfree(xhci->hw_ports);
1912	kfree(xhci->rh_bw);
1913	kfree(xhci->ext_caps);
1914	for (i = 0; i < xhci->num_port_caps; i++)
1915		kfree(xhci->port_caps[i].psi);
1916	kfree(xhci->port_caps);
 
1917	xhci->num_port_caps = 0;
1918
1919	xhci->usb2_rhub.ports = NULL;
1920	xhci->usb3_rhub.ports = NULL;
1921	xhci->hw_ports = NULL;
1922	xhci->rh_bw = NULL;
1923	xhci->ext_caps = NULL;
1924	xhci->port_caps = NULL;
 
1925
1926	xhci->page_size = 0;
1927	xhci->page_shift = 0;
1928	xhci->usb2_rhub.bus_state.bus_suspended = 0;
1929	xhci->usb3_rhub.bus_state.bus_suspended = 0;
1930}
1931
1932static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1933		struct xhci_segment *input_seg,
1934		union xhci_trb *start_trb,
1935		union xhci_trb *end_trb,
1936		dma_addr_t input_dma,
1937		struct xhci_segment *result_seg,
1938		char *test_name, int test_number)
1939{
1940	unsigned long long start_dma;
1941	unsigned long long end_dma;
1942	struct xhci_segment *seg;
1943
1944	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1945	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1946
1947	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1948	if (seg != result_seg) {
1949		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1950				test_name, test_number);
1951		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1952				"input DMA 0x%llx\n",
1953				input_seg,
1954				(unsigned long long) input_dma);
1955		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1956				"ending TRB %p (0x%llx DMA)\n",
1957				start_trb, start_dma,
1958				end_trb, end_dma);
1959		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1960				result_seg, seg);
1961		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1962			  true);
1963		return -1;
1964	}
1965	return 0;
1966}
1967
1968/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1969static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1970{
1971	struct {
1972		dma_addr_t		input_dma;
1973		struct xhci_segment	*result_seg;
1974	} simple_test_vector [] = {
1975		/* A zeroed DMA field should fail */
1976		{ 0, NULL },
1977		/* One TRB before the ring start should fail */
1978		{ xhci->event_ring->first_seg->dma - 16, NULL },
1979		/* One byte before the ring start should fail */
1980		{ xhci->event_ring->first_seg->dma - 1, NULL },
1981		/* Starting TRB should succeed */
1982		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1983		/* Ending TRB should succeed */
1984		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1985			xhci->event_ring->first_seg },
1986		/* One byte after the ring end should fail */
1987		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1988		/* One TRB after the ring end should fail */
1989		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1990		/* An address of all ones should fail */
1991		{ (dma_addr_t) (~0), NULL },
1992	};
1993	struct {
1994		struct xhci_segment	*input_seg;
1995		union xhci_trb		*start_trb;
1996		union xhci_trb		*end_trb;
1997		dma_addr_t		input_dma;
1998		struct xhci_segment	*result_seg;
1999	} complex_test_vector [] = {
2000		/* Test feeding a valid DMA address from a different ring */
2001		{	.input_seg = xhci->event_ring->first_seg,
2002			.start_trb = xhci->event_ring->first_seg->trbs,
2003			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2004			.input_dma = xhci->cmd_ring->first_seg->dma,
2005			.result_seg = NULL,
2006		},
2007		/* Test feeding a valid end TRB from a different ring */
2008		{	.input_seg = xhci->event_ring->first_seg,
2009			.start_trb = xhci->event_ring->first_seg->trbs,
2010			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2011			.input_dma = xhci->cmd_ring->first_seg->dma,
2012			.result_seg = NULL,
2013		},
2014		/* Test feeding a valid start and end TRB from a different ring */
2015		{	.input_seg = xhci->event_ring->first_seg,
2016			.start_trb = xhci->cmd_ring->first_seg->trbs,
2017			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2018			.input_dma = xhci->cmd_ring->first_seg->dma,
2019			.result_seg = NULL,
2020		},
2021		/* TRB in this ring, but after this TD */
2022		{	.input_seg = xhci->event_ring->first_seg,
2023			.start_trb = &xhci->event_ring->first_seg->trbs[0],
2024			.end_trb = &xhci->event_ring->first_seg->trbs[3],
2025			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
2026			.result_seg = NULL,
2027		},
2028		/* TRB in this ring, but before this TD */
2029		{	.input_seg = xhci->event_ring->first_seg,
2030			.start_trb = &xhci->event_ring->first_seg->trbs[3],
2031			.end_trb = &xhci->event_ring->first_seg->trbs[6],
2032			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2033			.result_seg = NULL,
2034		},
2035		/* TRB in this ring, but after this wrapped TD */
2036		{	.input_seg = xhci->event_ring->first_seg,
2037			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2038			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2039			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2040			.result_seg = NULL,
2041		},
2042		/* TRB in this ring, but before this wrapped TD */
2043		{	.input_seg = xhci->event_ring->first_seg,
2044			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2045			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2046			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2047			.result_seg = NULL,
2048		},
2049		/* TRB not in this ring, and we have a wrapped TD */
2050		{	.input_seg = xhci->event_ring->first_seg,
2051			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2052			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2053			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2054			.result_seg = NULL,
2055		},
2056	};
2057
2058	unsigned int num_tests;
2059	int i, ret;
2060
2061	num_tests = ARRAY_SIZE(simple_test_vector);
2062	for (i = 0; i < num_tests; i++) {
2063		ret = xhci_test_trb_in_td(xhci,
2064				xhci->event_ring->first_seg,
2065				xhci->event_ring->first_seg->trbs,
2066				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2067				simple_test_vector[i].input_dma,
2068				simple_test_vector[i].result_seg,
2069				"Simple", i);
2070		if (ret < 0)
2071			return ret;
2072	}
2073
2074	num_tests = ARRAY_SIZE(complex_test_vector);
2075	for (i = 0; i < num_tests; i++) {
2076		ret = xhci_test_trb_in_td(xhci,
2077				complex_test_vector[i].input_seg,
2078				complex_test_vector[i].start_trb,
2079				complex_test_vector[i].end_trb,
2080				complex_test_vector[i].input_dma,
2081				complex_test_vector[i].result_seg,
2082				"Complex", i);
2083		if (ret < 0)
2084			return ret;
2085	}
2086	xhci_dbg(xhci, "TRB math tests passed.\n");
2087	return 0;
2088}
2089
2090static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2091{
2092	u64 temp;
2093	dma_addr_t deq;
2094
2095	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2096			xhci->event_ring->dequeue);
2097	if (!deq)
2098		xhci_warn(xhci, "WARN something wrong with SW event ring "
2099				"dequeue ptr.\n");
2100	/* Update HC event ring dequeue pointer */
2101	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2102	temp &= ERST_PTR_MASK;
2103	/* Don't clear the EHB bit (which is RW1C) because
2104	 * there might be more events to service.
2105	 */
2106	temp &= ~ERST_EHB;
2107	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2108			"// Write event ring dequeue pointer, "
2109			"preserving EHB bit");
2110	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2111			&xhci->ir_set->erst_dequeue);
2112}
2113
2114static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2115		__le32 __iomem *addr, int max_caps)
2116{
2117	u32 temp, port_offset, port_count;
2118	int i;
2119	u8 major_revision, minor_revision;
2120	struct xhci_hub *rhub;
2121	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2122	struct xhci_port_cap *port_cap;
2123
2124	temp = readl(addr);
2125	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2126	minor_revision = XHCI_EXT_PORT_MINOR(temp);
2127
2128	if (major_revision == 0x03) {
2129		rhub = &xhci->usb3_rhub;
2130		/*
2131		 * Some hosts incorrectly use sub-minor version for minor
2132		 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2133		 * for bcdUSB 0x310). Since there is no USB release with sub
2134		 * minor version 0x301 to 0x309, we can assume that they are
2135		 * incorrect and fix it here.
2136		 */
2137		if (minor_revision > 0x00 && minor_revision < 0x10)
2138			minor_revision <<= 4;
 
 
 
 
 
 
 
 
 
2139	} else if (major_revision <= 0x02) {
2140		rhub = &xhci->usb2_rhub;
2141	} else {
2142		xhci_warn(xhci, "Ignoring unknown port speed, "
2143				"Ext Cap %p, revision = 0x%x\n",
2144				addr, major_revision);
2145		/* Ignoring port protocol we can't understand. FIXME */
2146		return;
2147	}
2148	rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2149
2150	if (rhub->min_rev < minor_revision)
2151		rhub->min_rev = minor_revision;
2152
2153	/* Port offset and count in the third dword, see section 7.2 */
2154	temp = readl(addr + 2);
2155	port_offset = XHCI_EXT_PORT_OFF(temp);
2156	port_count = XHCI_EXT_PORT_COUNT(temp);
2157	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2158			"Ext Cap %p, port offset = %u, "
2159			"count = %u, revision = 0x%x",
2160			addr, port_offset, port_count, major_revision);
2161	/* Port count includes the current port offset */
2162	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2163		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2164		return;
2165
2166	port_cap = &xhci->port_caps[xhci->num_port_caps++];
2167	if (xhci->num_port_caps > max_caps)
2168		return;
2169
2170	port_cap->maj_rev = major_revision;
2171	port_cap->min_rev = minor_revision;
2172	port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2173
2174	if (port_cap->psi_count) {
2175		port_cap->psi = kcalloc_node(port_cap->psi_count,
2176					     sizeof(*port_cap->psi),
2177					     GFP_KERNEL, dev_to_node(dev));
2178		if (!port_cap->psi)
2179			port_cap->psi_count = 0;
2180
2181		port_cap->psi_uid_count++;
2182		for (i = 0; i < port_cap->psi_count; i++) {
2183			port_cap->psi[i] = readl(addr + 4 + i);
2184
2185			/* count unique ID values, two consecutive entries can
2186			 * have the same ID if link is assymetric
2187			 */
2188			if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2189				  XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2190				port_cap->psi_uid_count++;
2191
 
 
 
 
 
2192			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2193				  XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2194				  XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2195				  XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2196				  XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2197				  XHCI_EXT_PORT_LP(port_cap->psi[i]),
2198				  XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2199		}
2200	}
 
 
 
 
 
 
 
 
 
2201	/* cache usb2 port capabilities */
2202	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2203		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2204
2205	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2206		 (temp & XHCI_HLC)) {
2207		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2208			       "xHCI 1.0: support USB2 hardware lpm");
2209		xhci->hw_lpm_support = 1;
2210	}
2211
2212	port_offset--;
2213	for (i = port_offset; i < (port_offset + port_count); i++) {
2214		struct xhci_port *hw_port = &xhci->hw_ports[i];
2215		/* Duplicate entry.  Ignore the port if the revisions differ. */
2216		if (hw_port->rhub) {
2217			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2218					" port %u\n", addr, i);
2219			xhci_warn(xhci, "Port was marked as USB %u, "
2220					"duplicated as USB %u\n",
2221					hw_port->rhub->maj_rev, major_revision);
2222			/* Only adjust the roothub port counts if we haven't
2223			 * found a similar duplicate.
2224			 */
2225			if (hw_port->rhub != rhub &&
2226				 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2227				hw_port->rhub->num_ports--;
2228				hw_port->hcd_portnum = DUPLICATE_ENTRY;
2229			}
2230			continue;
2231		}
2232		hw_port->rhub = rhub;
2233		hw_port->port_cap = port_cap;
2234		rhub->num_ports++;
2235	}
2236	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2237}
2238
2239static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2240					struct xhci_hub *rhub, gfp_t flags)
2241{
2242	int port_index = 0;
2243	int i;
2244	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2245
2246	if (!rhub->num_ports)
2247		return;
2248	rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2249			flags, dev_to_node(dev));
2250	if (!rhub->ports)
2251		return;
2252
2253	for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2254		if (xhci->hw_ports[i].rhub != rhub ||
2255		    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2256			continue;
2257		xhci->hw_ports[i].hcd_portnum = port_index;
2258		rhub->ports[port_index] = &xhci->hw_ports[i];
2259		port_index++;
2260		if (port_index == rhub->num_ports)
2261			break;
2262	}
2263}
2264
2265/*
2266 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2267 * specify what speeds each port is supposed to be.  We can't count on the port
2268 * speed bits in the PORTSC register being correct until a device is connected,
2269 * but we need to set up the two fake roothubs with the correct number of USB
2270 * 3.0 and USB 2.0 ports at host controller initialization time.
2271 */
2272static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2273{
2274	void __iomem *base;
2275	u32 offset;
2276	unsigned int num_ports;
2277	int i, j;
2278	int cap_count = 0;
2279	u32 cap_start;
2280	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2281
2282	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2283	xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2284				flags, dev_to_node(dev));
2285	if (!xhci->hw_ports)
2286		return -ENOMEM;
2287
2288	for (i = 0; i < num_ports; i++) {
2289		xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2290			NUM_PORT_REGS * i;
2291		xhci->hw_ports[i].hw_portnum = i;
 
 
 
2292	}
2293
2294	xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2295				   dev_to_node(dev));
2296	if (!xhci->rh_bw)
2297		return -ENOMEM;
2298	for (i = 0; i < num_ports; i++) {
2299		struct xhci_interval_bw_table *bw_table;
2300
2301		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2302		bw_table = &xhci->rh_bw[i].bw_table;
2303		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2304			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2305	}
2306	base = &xhci->cap_regs->hc_capbase;
2307
2308	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2309	if (!cap_start) {
2310		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2311		return -ENODEV;
2312	}
2313
2314	offset = cap_start;
2315	/* count extended protocol capability entries for later caching */
2316	while (offset) {
2317		cap_count++;
2318		offset = xhci_find_next_ext_cap(base, offset,
2319						      XHCI_EXT_CAPS_PROTOCOL);
2320	}
2321
2322	xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2323				flags, dev_to_node(dev));
2324	if (!xhci->ext_caps)
2325		return -ENOMEM;
2326
2327	xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2328				flags, dev_to_node(dev));
2329	if (!xhci->port_caps)
2330		return -ENOMEM;
2331
2332	offset = cap_start;
2333
2334	while (offset) {
2335		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2336		if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2337		    num_ports)
2338			break;
2339		offset = xhci_find_next_ext_cap(base, offset,
2340						XHCI_EXT_CAPS_PROTOCOL);
2341	}
2342	if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2343		xhci_warn(xhci, "No ports on the roothubs?\n");
2344		return -ENODEV;
2345	}
2346	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2347		       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2348		       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2349
2350	/* Place limits on the number of roothub ports so that the hub
2351	 * descriptors aren't longer than the USB core will allocate.
2352	 */
2353	if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2354		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2355				"Limiting USB 3.0 roothub ports to %u.",
2356				USB_SS_MAXPORTS);
2357		xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2358	}
2359	if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2360		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2361				"Limiting USB 2.0 roothub ports to %u.",
2362				USB_MAXCHILDREN);
2363		xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2364	}
2365
2366	if (!xhci->usb2_rhub.num_ports)
2367		xhci_info(xhci, "USB2 root hub has no ports\n");
2368
2369	if (!xhci->usb3_rhub.num_ports)
2370		xhci_info(xhci, "USB3 root hub has no ports\n");
2371
2372	xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2373	xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2374
2375	return 0;
2376}
2377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2378int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2379{
2380	dma_addr_t	dma;
2381	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
 
2382	unsigned int	val, val2;
2383	u64		val_64;
2384	u32		page_size, temp;
2385	int		i, ret;
2386
2387	INIT_LIST_HEAD(&xhci->cmd_list);
2388
2389	/* init command timeout work */
2390	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2391	init_completion(&xhci->cmd_ring_stop_completion);
2392
2393	page_size = readl(&xhci->op_regs->page_size);
2394	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2395			"Supported page size register = 0x%x", page_size);
2396	i = ffs(page_size);
2397	if (i < 16)
2398		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2399			"Supported page size of %iK", (1 << (i+12)) / 1024);
2400	else
2401		xhci_warn(xhci, "WARN: no supported page size\n");
2402	/* Use 4K pages, since that's common and the minimum the HC supports */
2403	xhci->page_shift = 12;
2404	xhci->page_size = 1 << xhci->page_shift;
2405	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2406			"HCD page size set to %iK", xhci->page_size / 1024);
2407
2408	/*
2409	 * Program the Number of Device Slots Enabled field in the CONFIG
2410	 * register with the max value of slots the HC can handle.
2411	 */
2412	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2413	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2414			"// xHC can handle at most %d device slots.", val);
2415	val2 = readl(&xhci->op_regs->config_reg);
2416	val |= (val2 & ~HCS_SLOTS_MASK);
2417	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2418			"// Setting Max device slots reg = 0x%x.", val);
2419	writel(val, &xhci->op_regs->config_reg);
2420
2421	/*
2422	 * xHCI section 5.4.6 - Device Context array must be
2423	 * "physically contiguous and 64-byte (cache line) aligned".
2424	 */
2425	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2426			flags);
2427	if (!xhci->dcbaa)
2428		goto fail;
2429	xhci->dcbaa->dma = dma;
2430	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2431			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2432			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2433	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2434
2435	/*
2436	 * Initialize the ring segment pool.  The ring must be a contiguous
2437	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2438	 * however, the command ring segment needs 64-byte aligned segments
2439	 * and our use of dma addresses in the trb_address_map radix tree needs
2440	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2441	 */
2442	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2443			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
 
 
 
 
2444
2445	/* See Table 46 and Note on Figure 55 */
2446	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2447			2112, 64, xhci->page_size);
2448	if (!xhci->segment_pool || !xhci->device_pool)
2449		goto fail;
2450
2451	/* Linear stream context arrays don't have any boundary restrictions,
2452	 * and only need to be 16-byte aligned.
2453	 */
2454	xhci->small_streams_pool =
2455		dma_pool_create("xHCI 256 byte stream ctx arrays",
2456			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2457	xhci->medium_streams_pool =
2458		dma_pool_create("xHCI 1KB stream ctx arrays",
2459			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2460	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2461	 * will be allocated with dma_alloc_coherent()
2462	 */
2463
2464	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2465		goto fail;
2466
2467	/* Set up the command ring to have one segments for now. */
2468	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2469	if (!xhci->cmd_ring)
2470		goto fail;
2471	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2472			"Allocated command ring at %p", xhci->cmd_ring);
2473	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2474			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2475
2476	/* Set the address in the Command Ring Control register */
2477	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2478	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2479		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2480		xhci->cmd_ring->cycle_state;
2481	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2482			"// Setting command ring address to 0x%016llx", val_64);
2483	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2484
2485	/* Reserve one command ring TRB for disabling LPM.
2486	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2487	 * disabling LPM, we only need to reserve one TRB for all devices.
2488	 */
2489	xhci->cmd_ring_reserved_trbs++;
2490
2491	val = readl(&xhci->cap_regs->db_off);
2492	val &= DBOFF_MASK;
2493	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2494			"// Doorbell array is located at offset 0x%x"
2495			" from cap regs base addr", val);
2496	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2497	/* Set ir_set to interrupt register set 0 */
2498	xhci->ir_set = &xhci->run_regs->ir_set[0];
2499
2500	/*
2501	 * Event ring setup: Allocate a normal ring, but also setup
2502	 * the event ring segment table (ERST).  Section 4.9.3.
2503	 */
2504	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2505	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2506					0, flags);
2507	if (!xhci->event_ring)
2508		goto fail;
2509	if (xhci_check_trb_in_td_math(xhci) < 0)
2510		goto fail;
2511
2512	ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2513	if (ret)
2514		goto fail;
2515
2516	/* set ERST count with the number of entries in the segment table */
2517	val = readl(&xhci->ir_set->erst_size);
2518	val &= ERST_SIZE_MASK;
2519	val |= ERST_NUM_SEGS;
2520	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2521			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2522			val);
2523	writel(val, &xhci->ir_set->erst_size);
2524
2525	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2526			"// Set ERST entries to point to event ring.");
2527	/* set the segment table base address */
2528	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2529			"// Set ERST base address for ir_set 0 = 0x%llx",
2530			(unsigned long long)xhci->erst.erst_dma_addr);
2531	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2532	val_64 &= ERST_PTR_MASK;
2533	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2534	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2535
2536	/* Set the event ring dequeue address */
2537	xhci_set_hc_event_deq(xhci);
2538	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2539			"Wrote ERST address to ir_set 0.");
2540
2541	xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2542
2543	/*
2544	 * XXX: Might need to set the Interrupter Moderation Register to
2545	 * something other than the default (~1ms minimum between interrupts).
2546	 * See section 5.5.1.2.
2547	 */
2548	for (i = 0; i < MAX_HC_SLOTS; i++)
2549		xhci->devs[i] = NULL;
2550	for (i = 0; i < USB_MAXCHILDREN; i++) {
2551		xhci->usb2_rhub.bus_state.resume_done[i] = 0;
2552		xhci->usb3_rhub.bus_state.resume_done[i] = 0;
2553		/* Only the USB 2.0 completions will ever be used. */
2554		init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
2555		init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]);
2556	}
2557
2558	if (scratchpad_alloc(xhci, flags))
2559		goto fail;
2560	if (xhci_setup_port_arrays(xhci, flags))
2561		goto fail;
2562
2563	/* Enable USB 3.0 device notifications for function remote wake, which
2564	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2565	 * U3 (device suspend).
2566	 */
2567	temp = readl(&xhci->op_regs->dev_notification);
2568	temp &= ~DEV_NOTE_MASK;
2569	temp |= DEV_NOTE_FWAKE;
2570	writel(temp, &xhci->op_regs->dev_notification);
2571
2572	return 0;
2573
2574fail:
2575	xhci_halt(xhci);
2576	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2577	xhci_mem_cleanup(xhci);
2578	return -ENOMEM;
2579}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * xHCI host controller driver
   4 *
   5 * Copyright (C) 2008 Intel Corp.
   6 *
   7 * Author: Sarah Sharp
   8 * Some code borrowed from the Linux EHCI driver.
   9 */
  10
  11#include <linux/usb.h>
  12#include <linux/overflow.h>
  13#include <linux/pci.h>
  14#include <linux/slab.h>
  15#include <linux/dmapool.h>
  16#include <linux/dma-mapping.h>
  17
  18#include "xhci.h"
  19#include "xhci-trace.h"
  20#include "xhci-debugfs.h"
  21
  22/*
  23 * Allocates a generic ring segment from the ring pool, sets the dma address,
  24 * initializes the segment to zero, and sets the private next pointer to NULL.
  25 *
  26 * Section 4.11.1.1:
  27 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  28 */
  29static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
  30					       unsigned int cycle_state,
  31					       unsigned int max_packet,
  32					       unsigned int num,
  33					       gfp_t flags)
  34{
  35	struct xhci_segment *seg;
  36	dma_addr_t	dma;
  37	int		i;
  38	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
  39
  40	seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
  41	if (!seg)
  42		return NULL;
  43
  44	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
  45	if (!seg->trbs) {
  46		kfree(seg);
  47		return NULL;
  48	}
  49
  50	if (max_packet) {
  51		seg->bounce_buf = kzalloc_node(max_packet, flags,
  52					dev_to_node(dev));
  53		if (!seg->bounce_buf) {
  54			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
  55			kfree(seg);
  56			return NULL;
  57		}
  58	}
  59	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
  60	if (cycle_state == 0) {
  61		for (i = 0; i < TRBS_PER_SEGMENT; i++)
  62			seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE);
  63	}
  64	seg->num = num;
  65	seg->dma = dma;
  66	seg->next = NULL;
  67
  68	return seg;
  69}
  70
  71static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  72{
  73	if (seg->trbs) {
  74		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  75		seg->trbs = NULL;
  76	}
  77	kfree(seg->bounce_buf);
  78	kfree(seg);
  79}
  80
  81static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
  82				struct xhci_segment *first)
  83{
  84	struct xhci_segment *seg;
  85
  86	seg = first->next;
  87	while (seg && seg != first) {
  88		struct xhci_segment *next = seg->next;
  89		xhci_segment_free(xhci, seg);
  90		seg = next;
  91	}
  92	xhci_segment_free(xhci, first);
  93}
  94
  95/*
  96 * Make the prev segment point to the next segment.
  97 *
  98 * Change the last TRB in the prev segment to be a Link TRB which points to the
  99 * DMA address of the next segment.  The caller needs to set any Link TRB
 100 * related flags, such as End TRB, Toggle Cycle, and no snoop.
 101 */
 102static void xhci_link_segments(struct xhci_segment *prev,
 103			       struct xhci_segment *next,
 104			       enum xhci_ring_type type, bool chain_links)
 105{
 106	u32 val;
 107
 108	if (!prev || !next)
 109		return;
 110	prev->next = next;
 111	if (type != TYPE_EVENT) {
 112		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
 113			cpu_to_le64(next->dma);
 114
 115		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
 116		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
 117		val &= ~TRB_TYPE_BITMASK;
 118		val |= TRB_TYPE(TRB_LINK);
 119		if (chain_links)
 120			val |= TRB_CHAIN;
 121		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
 122	}
 123}
 124
 125/*
 126 * Link the ring to the new segments.
 127 * Set Toggle Cycle for the new ring if needed.
 128 */
 129static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
 130		struct xhci_segment *first, struct xhci_segment *last,
 131		unsigned int num_segs)
 132{
 133	struct xhci_segment *next, *seg;
 134	bool chain_links;
 135
 136	if (!ring || !first || !last)
 137		return;
 138
 139	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
 140	chain_links = !!(xhci_link_trb_quirk(xhci) ||
 141			 (ring->type == TYPE_ISOC &&
 142			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
 143
 144	next = ring->enq_seg->next;
 145	xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
 146	xhci_link_segments(last, next, ring->type, chain_links);
 147	ring->num_segs += num_segs;
 
 148
 149	if (ring->enq_seg == ring->last_seg) {
 150		if (ring->type != TYPE_EVENT) {
 151			ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
 152				&= ~cpu_to_le32(LINK_TOGGLE);
 153			last->trbs[TRBS_PER_SEGMENT-1].link.control
 154				|= cpu_to_le32(LINK_TOGGLE);
 155		}
 156		ring->last_seg = last;
 157	}
 158
 159	for (seg = last; seg != ring->last_seg; seg = seg->next)
 160		seg->next->num = seg->num + 1;
 161}
 162
 163/*
 164 * We need a radix tree for mapping physical addresses of TRBs to which stream
 165 * ID they belong to.  We need to do this because the host controller won't tell
 166 * us which stream ring the TRB came from.  We could store the stream ID in an
 167 * event data TRB, but that doesn't help us for the cancellation case, since the
 168 * endpoint may stop before it reaches that event data TRB.
 169 *
 170 * The radix tree maps the upper portion of the TRB DMA address to a ring
 171 * segment that has the same upper portion of DMA addresses.  For example, say I
 172 * have segments of size 1KB, that are always 1KB aligned.  A segment may
 173 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 174 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 175 * pass the radix tree a key to get the right stream ID:
 176 *
 177 *	0x10c90fff >> 10 = 0x43243
 178 *	0x10c912c0 >> 10 = 0x43244
 179 *	0x10c91400 >> 10 = 0x43245
 180 *
 181 * Obviously, only those TRBs with DMA addresses that are within the segment
 182 * will make the radix tree return the stream ID for that ring.
 183 *
 184 * Caveats for the radix tree:
 185 *
 186 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 187 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 188 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 189 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 190 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 191 * extended systems (where the DMA address can be bigger than 32-bits),
 192 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 193 */
 194static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
 195		struct xhci_ring *ring,
 196		struct xhci_segment *seg,
 197		gfp_t mem_flags)
 198{
 199	unsigned long key;
 200	int ret;
 201
 202	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 203	/* Skip any segments that were already added. */
 204	if (radix_tree_lookup(trb_address_map, key))
 205		return 0;
 206
 207	ret = radix_tree_maybe_preload(mem_flags);
 208	if (ret)
 209		return ret;
 210	ret = radix_tree_insert(trb_address_map,
 211			key, ring);
 212	radix_tree_preload_end();
 213	return ret;
 214}
 215
 216static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
 217		struct xhci_segment *seg)
 218{
 219	unsigned long key;
 220
 221	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 222	if (radix_tree_lookup(trb_address_map, key))
 223		radix_tree_delete(trb_address_map, key);
 224}
 225
 226static int xhci_update_stream_segment_mapping(
 227		struct radix_tree_root *trb_address_map,
 228		struct xhci_ring *ring,
 229		struct xhci_segment *first_seg,
 230		struct xhci_segment *last_seg,
 231		gfp_t mem_flags)
 232{
 233	struct xhci_segment *seg;
 234	struct xhci_segment *failed_seg;
 235	int ret;
 236
 237	if (WARN_ON_ONCE(trb_address_map == NULL))
 238		return 0;
 239
 240	seg = first_seg;
 241	do {
 242		ret = xhci_insert_segment_mapping(trb_address_map,
 243				ring, seg, mem_flags);
 244		if (ret)
 245			goto remove_streams;
 246		if (seg == last_seg)
 247			return 0;
 248		seg = seg->next;
 249	} while (seg != first_seg);
 250
 251	return 0;
 252
 253remove_streams:
 254	failed_seg = seg;
 255	seg = first_seg;
 256	do {
 257		xhci_remove_segment_mapping(trb_address_map, seg);
 258		if (seg == failed_seg)
 259			return ret;
 260		seg = seg->next;
 261	} while (seg != first_seg);
 262
 263	return ret;
 264}
 265
 266static void xhci_remove_stream_mapping(struct xhci_ring *ring)
 267{
 268	struct xhci_segment *seg;
 269
 270	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
 271		return;
 272
 273	seg = ring->first_seg;
 274	do {
 275		xhci_remove_segment_mapping(ring->trb_address_map, seg);
 276		seg = seg->next;
 277	} while (seg != ring->first_seg);
 278}
 279
 280static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
 281{
 282	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
 283			ring->first_seg, ring->last_seg, mem_flags);
 284}
 285
 286/* XXX: Do we need the hcd structure in all these functions? */
 287void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 288{
 289	if (!ring)
 290		return;
 291
 292	trace_xhci_ring_free(ring);
 293
 294	if (ring->first_seg) {
 295		if (ring->type == TYPE_STREAM)
 296			xhci_remove_stream_mapping(ring);
 297		xhci_free_segments_for_ring(xhci, ring->first_seg);
 298	}
 299
 300	kfree(ring);
 301}
 302
 303void xhci_initialize_ring_info(struct xhci_ring *ring,
 304			       unsigned int cycle_state)
 305{
 306	/* The ring is empty, so the enqueue pointer == dequeue pointer */
 307	ring->enqueue = ring->first_seg->trbs;
 308	ring->enq_seg = ring->first_seg;
 309	ring->dequeue = ring->enqueue;
 310	ring->deq_seg = ring->first_seg;
 311	/* The ring is initialized to 0. The producer must write 1 to the cycle
 312	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 313	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
 314	 *
 315	 * New rings are initialized with cycle state equal to 1; if we are
 316	 * handling ring expansion, set the cycle state equal to the old ring.
 317	 */
 318	ring->cycle_state = cycle_state;
 319
 320	/*
 321	 * Each segment has a link TRB, and leave an extra TRB for SW
 322	 * accounting purpose
 323	 */
 324	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 325}
 326EXPORT_SYMBOL_GPL(xhci_initialize_ring_info);
 327
 328/* Allocate segments and link them for a ring */
 329static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
 330		struct xhci_segment **first, struct xhci_segment **last,
 331		unsigned int num_segs, unsigned int num,
 332		unsigned int cycle_state, enum xhci_ring_type type,
 333		unsigned int max_packet, gfp_t flags)
 334{
 335	struct xhci_segment *prev;
 336	bool chain_links;
 337
 338	/* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
 339	chain_links = !!(xhci_link_trb_quirk(xhci) ||
 340			 (type == TYPE_ISOC &&
 341			  (xhci->quirks & XHCI_AMD_0x96_HOST)));
 342
 343	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, num, flags);
 344	if (!prev)
 345		return -ENOMEM;
 346	num++;
 347
 348	*first = prev;
 349	while (num < num_segs) {
 350		struct xhci_segment	*next;
 351
 352		next = xhci_segment_alloc(xhci, cycle_state, max_packet, num,
 353					  flags);
 354		if (!next)
 355			goto free_segments;
 
 
 
 
 
 
 
 356
 357		xhci_link_segments(prev, next, type, chain_links);
 358		prev = next;
 359		num++;
 360	}
 361	xhci_link_segments(prev, *first, type, chain_links);
 362	*last = prev;
 363
 364	return 0;
 365
 366free_segments:
 367	xhci_free_segments_for_ring(xhci, *first);
 368	return -ENOMEM;
 369}
 370
 371/*
 372 * Create a new ring with zero or more segments.
 373 *
 374 * Link each segment together into a ring.
 375 * Set the end flag and the cycle toggle bit on the last segment.
 376 * See section 4.9.1 and figures 15 and 16.
 377 */
 378struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
 379		unsigned int num_segs, unsigned int cycle_state,
 380		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
 381{
 382	struct xhci_ring	*ring;
 383	int ret;
 384	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 385
 386	ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
 387	if (!ring)
 388		return NULL;
 389
 390	ring->num_segs = num_segs;
 391	ring->bounce_buf_len = max_packet;
 392	INIT_LIST_HEAD(&ring->td_list);
 393	ring->type = type;
 394	if (num_segs == 0)
 395		return ring;
 396
 397	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
 398			&ring->last_seg, num_segs, 0, cycle_state, type,
 399			max_packet, flags);
 400	if (ret)
 401		goto fail;
 402
 403	/* Only event ring does not use link TRB */
 404	if (type != TYPE_EVENT) {
 405		/* See section 4.9.2.1 and 6.4.4.1 */
 406		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
 407			cpu_to_le32(LINK_TOGGLE);
 408	}
 409	xhci_initialize_ring_info(ring, cycle_state);
 410	trace_xhci_ring_alloc(ring);
 411	return ring;
 412
 413fail:
 414	kfree(ring);
 415	return NULL;
 416}
 417
 418void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
 419		struct xhci_virt_device *virt_dev,
 420		unsigned int ep_index)
 421{
 422	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 423	virt_dev->eps[ep_index].ring = NULL;
 424}
 425
 426/*
 427 * Expand an existing ring.
 428 * Allocate a new ring which has same segment numbers and link the two rings.
 429 */
 430int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
 431				unsigned int num_new_segs, gfp_t flags)
 432{
 433	struct xhci_segment	*first;
 434	struct xhci_segment	*last;
 
 
 435	int			ret;
 436
 
 
 
 
 
 
 437	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
 438			num_new_segs, ring->enq_seg->num + 1,
 439			ring->cycle_state, ring->type,
 440			ring->bounce_buf_len, flags);
 441	if (ret)
 442		return -ENOMEM;
 443
 444	if (ring->type == TYPE_STREAM) {
 445		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
 446						ring, first, last, flags);
 447		if (ret)
 448			goto free_segments;
 
 
 
 
 
 
 
 
 449	}
 450
 451	xhci_link_rings(xhci, ring, first, last, num_new_segs);
 452	trace_xhci_ring_expansion(ring);
 453	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
 454			"ring expansion succeed, now has %d segments",
 455			ring->num_segs);
 456
 457	return 0;
 458
 459free_segments:
 460	xhci_free_segments_for_ring(xhci, first);
 461	return ret;
 462}
 463
 464struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 465						    int type, gfp_t flags)
 466{
 467	struct xhci_container_ctx *ctx;
 468	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 469
 470	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
 471		return NULL;
 472
 473	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
 474	if (!ctx)
 475		return NULL;
 476
 477	ctx->type = type;
 478	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 479	if (type == XHCI_CTX_TYPE_INPUT)
 480		ctx->size += CTX_SIZE(xhci->hcc_params);
 481
 482	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
 483	if (!ctx->bytes) {
 484		kfree(ctx);
 485		return NULL;
 486	}
 487	return ctx;
 488}
 489
 490void xhci_free_container_ctx(struct xhci_hcd *xhci,
 491			     struct xhci_container_ctx *ctx)
 492{
 493	if (!ctx)
 494		return;
 495	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 496	kfree(ctx);
 497}
 498
 499struct xhci_input_control_ctx *xhci_get_input_control_ctx(
 500					      struct xhci_container_ctx *ctx)
 501{
 502	if (ctx->type != XHCI_CTX_TYPE_INPUT)
 503		return NULL;
 504
 505	return (struct xhci_input_control_ctx *)ctx->bytes;
 506}
 507
 508struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 509					struct xhci_container_ctx *ctx)
 510{
 511	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 512		return (struct xhci_slot_ctx *)ctx->bytes;
 513
 514	return (struct xhci_slot_ctx *)
 515		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
 516}
 517
 518struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 519				    struct xhci_container_ctx *ctx,
 520				    unsigned int ep_index)
 521{
 522	/* increment ep index by offset of start of ep ctx array */
 523	ep_index++;
 524	if (ctx->type == XHCI_CTX_TYPE_INPUT)
 525		ep_index++;
 526
 527	return (struct xhci_ep_ctx *)
 528		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 529}
 530EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
 531
 532/***************** Streams structures manipulation *************************/
 533
 534static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 535		unsigned int num_stream_ctxs,
 536		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 537{
 538	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 539	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 540
 541	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 542		dma_free_coherent(dev, size, stream_ctx, dma);
 543	else if (size > SMALL_STREAM_ARRAY_SIZE)
 544		dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma);
 
 
 545	else
 546		dma_pool_free(xhci->small_streams_pool, stream_ctx, dma);
 
 547}
 548
 549/*
 550 * The stream context array for each endpoint with bulk streams enabled can
 551 * vary in size, based on:
 552 *  - how many streams the endpoint supports,
 553 *  - the maximum primary stream array size the host controller supports,
 554 *  - and how many streams the device driver asks for.
 555 *
 556 * The stream context array must be a power of 2, and can be as small as
 557 * 64 bytes or as large as 1MB.
 558 */
 559static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 560		unsigned int num_stream_ctxs, dma_addr_t *dma,
 561		gfp_t mem_flags)
 562{
 563	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 564	size_t size = size_mul(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
 565
 566	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 567		return dma_alloc_coherent(dev, size, dma, mem_flags);
 568	if (size > SMALL_STREAM_ARRAY_SIZE)
 569		return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma);
 
 
 570	else
 571		return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma);
 
 572}
 573
 574struct xhci_ring *xhci_dma_to_transfer_ring(
 575		struct xhci_virt_ep *ep,
 576		u64 address)
 577{
 578	if (ep->ep_state & EP_HAS_STREAMS)
 579		return radix_tree_lookup(&ep->stream_info->trb_address_map,
 580				address >> TRB_SEGMENT_SHIFT);
 581	return ep->ring;
 582}
 583
 584/*
 585 * Change an endpoint's internal structure so it supports stream IDs.  The
 586 * number of requested streams includes stream 0, which cannot be used by device
 587 * drivers.
 588 *
 589 * The number of stream contexts in the stream context array may be bigger than
 590 * the number of streams the driver wants to use.  This is because the number of
 591 * stream context array entries must be a power of two.
 592 */
 593struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 594		unsigned int num_stream_ctxs,
 595		unsigned int num_streams,
 596		unsigned int max_packet, gfp_t mem_flags)
 597{
 598	struct xhci_stream_info *stream_info;
 599	u32 cur_stream;
 600	struct xhci_ring *cur_ring;
 601	u64 addr;
 602	int ret;
 603	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 604
 605	xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n",
 
 606			num_streams, num_stream_ctxs);
 607	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 608		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 609		return NULL;
 610	}
 611	xhci->cmd_ring_reserved_trbs++;
 612
 613	stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
 614			dev_to_node(dev));
 615	if (!stream_info)
 616		goto cleanup_trbs;
 617
 618	stream_info->num_streams = num_streams;
 619	stream_info->num_stream_ctxs = num_stream_ctxs;
 620
 621	/* Initialize the array of virtual pointers to stream rings. */
 622	stream_info->stream_rings = kcalloc_node(
 623			num_streams, sizeof(struct xhci_ring *), mem_flags,
 624			dev_to_node(dev));
 625	if (!stream_info->stream_rings)
 626		goto cleanup_info;
 627
 628	/* Initialize the array of DMA addresses for stream rings for the HW. */
 629	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 630			num_stream_ctxs, &stream_info->ctx_array_dma,
 631			mem_flags);
 632	if (!stream_info->stream_ctx_array)
 633		goto cleanup_ring_array;
 
 
 634
 635	/* Allocate everything needed to free the stream rings later */
 636	stream_info->free_streams_command =
 637		xhci_alloc_command_with_ctx(xhci, true, mem_flags);
 638	if (!stream_info->free_streams_command)
 639		goto cleanup_ctx;
 640
 641	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 642
 643	/* Allocate rings for all the streams that the driver will use,
 644	 * and add their segment DMA addresses to the radix tree.
 645	 * Stream 0 is reserved.
 646	 */
 647
 648	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 649		stream_info->stream_rings[cur_stream] =
 650			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
 651					mem_flags);
 652		cur_ring = stream_info->stream_rings[cur_stream];
 653		if (!cur_ring)
 654			goto cleanup_rings;
 655		cur_ring->stream_id = cur_stream;
 656		cur_ring->trb_address_map = &stream_info->trb_address_map;
 657		/* Set deq ptr, cycle bit, and stream context type */
 658		addr = cur_ring->first_seg->dma |
 659			SCT_FOR_CTX(SCT_PRI_TR) |
 660			cur_ring->cycle_state;
 661		stream_info->stream_ctx_array[cur_stream].stream_ring =
 662			cpu_to_le64(addr);
 663		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr);
 
 664
 665		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
 666		if (ret) {
 667			xhci_ring_free(xhci, cur_ring);
 668			stream_info->stream_rings[cur_stream] = NULL;
 669			goto cleanup_rings;
 670		}
 671	}
 672	/* Leave the other unused stream ring pointers in the stream context
 673	 * array initialized to zero.  This will cause the xHC to give us an
 674	 * error if the device asks for a stream ID we don't have setup (if it
 675	 * was any other way, the host controller would assume the ring is
 676	 * "empty" and wait forever for data to be queued to that stream ID).
 677	 */
 678
 679	return stream_info;
 680
 681cleanup_rings:
 682	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 683		cur_ring = stream_info->stream_rings[cur_stream];
 684		if (cur_ring) {
 685			xhci_ring_free(xhci, cur_ring);
 686			stream_info->stream_rings[cur_stream] = NULL;
 687		}
 688	}
 689	xhci_free_command(xhci, stream_info->free_streams_command);
 690cleanup_ctx:
 691	xhci_free_stream_ctx(xhci,
 692		stream_info->num_stream_ctxs,
 693		stream_info->stream_ctx_array,
 694		stream_info->ctx_array_dma);
 695cleanup_ring_array:
 696	kfree(stream_info->stream_rings);
 697cleanup_info:
 698	kfree(stream_info);
 699cleanup_trbs:
 700	xhci->cmd_ring_reserved_trbs--;
 701	return NULL;
 702}
 703/*
 704 * Sets the MaxPStreams field and the Linear Stream Array field.
 705 * Sets the dequeue pointer to the stream context array.
 706 */
 707void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 708		struct xhci_ep_ctx *ep_ctx,
 709		struct xhci_stream_info *stream_info)
 710{
 711	u32 max_primary_streams;
 712	/* MaxPStreams is the number of stream context array entries, not the
 713	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 714	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 715	 */
 716	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 717	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
 718			"Setting number of stream ctx array entries to %u",
 719			1 << (max_primary_streams + 1));
 720	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
 721	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
 722				       | EP_HAS_LSA);
 723	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
 724}
 725
 726/*
 727 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 728 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 729 * not at the beginning of the ring).
 730 */
 731void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
 732		struct xhci_virt_ep *ep)
 733{
 734	dma_addr_t addr;
 735	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
 736	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 737	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
 738}
 739
 740/* Frees all stream contexts associated with the endpoint,
 741 *
 742 * Caller should fix the endpoint context streams fields.
 743 */
 744void xhci_free_stream_info(struct xhci_hcd *xhci,
 745		struct xhci_stream_info *stream_info)
 746{
 747	int cur_stream;
 748	struct xhci_ring *cur_ring;
 749
 750	if (!stream_info)
 751		return;
 752
 753	for (cur_stream = 1; cur_stream < stream_info->num_streams;
 754			cur_stream++) {
 755		cur_ring = stream_info->stream_rings[cur_stream];
 756		if (cur_ring) {
 757			xhci_ring_free(xhci, cur_ring);
 758			stream_info->stream_rings[cur_stream] = NULL;
 759		}
 760	}
 761	xhci_free_command(xhci, stream_info->free_streams_command);
 762	xhci->cmd_ring_reserved_trbs--;
 763	if (stream_info->stream_ctx_array)
 764		xhci_free_stream_ctx(xhci,
 765				stream_info->num_stream_ctxs,
 766				stream_info->stream_ctx_array,
 767				stream_info->ctx_array_dma);
 768
 769	kfree(stream_info->stream_rings);
 770	kfree(stream_info);
 771}
 772
 773
 774/***************** Device context manipulation *************************/
 775
 776static void xhci_free_tt_info(struct xhci_hcd *xhci,
 777		struct xhci_virt_device *virt_dev,
 778		int slot_id)
 779{
 780	struct list_head *tt_list_head;
 781	struct xhci_tt_bw_info *tt_info, *next;
 782	bool slot_found = false;
 783
 784	/* If the device never made it past the Set Address stage,
 785	 * it may not have the root hub port pointer set correctly.
 786	 */
 787	if (!virt_dev->rhub_port) {
 788		xhci_dbg(xhci, "Bad rhub port.\n");
 
 789		return;
 790	}
 791
 792	tt_list_head = &(xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts);
 793	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 794		/* Multi-TT hubs will have more than one entry */
 795		if (tt_info->slot_id == slot_id) {
 796			slot_found = true;
 797			list_del(&tt_info->tt_list);
 798			kfree(tt_info);
 799		} else if (slot_found) {
 800			break;
 801		}
 802	}
 803}
 804
 805int xhci_alloc_tt_info(struct xhci_hcd *xhci,
 806		struct xhci_virt_device *virt_dev,
 807		struct usb_device *hdev,
 808		struct usb_tt *tt, gfp_t mem_flags)
 809{
 810	struct xhci_tt_bw_info		*tt_info;
 811	unsigned int			num_ports;
 812	int				i, j;
 813	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 814
 815	if (!tt->multi)
 816		num_ports = 1;
 817	else
 818		num_ports = hdev->maxchild;
 819
 820	for (i = 0; i < num_ports; i++, tt_info++) {
 821		struct xhci_interval_bw_table *bw_table;
 822
 823		tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
 824				dev_to_node(dev));
 825		if (!tt_info)
 826			goto free_tts;
 827		INIT_LIST_HEAD(&tt_info->tt_list);
 828		list_add(&tt_info->tt_list,
 829				&xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts);
 830		tt_info->slot_id = virt_dev->udev->slot_id;
 831		if (tt->multi)
 832			tt_info->ttport = i+1;
 833		bw_table = &tt_info->bw_table;
 834		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
 835			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
 836	}
 837	return 0;
 838
 839free_tts:
 840	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
 841	return -ENOMEM;
 842}
 843
 844
 845/* All the xhci_tds in the ring's TD list should be freed at this point.
 846 * Should be called with xhci->lock held if there is any chance the TT lists
 847 * will be manipulated by the configure endpoint, allocate device, or update
 848 * hub functions while this function is removing the TT entries from the list.
 849 */
 850void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 851{
 852	struct xhci_virt_device *dev;
 853	int i;
 854	int old_active_eps = 0;
 855
 856	/* Slot ID 0 is reserved */
 857	if (slot_id == 0 || !xhci->devs[slot_id])
 858		return;
 859
 860	dev = xhci->devs[slot_id];
 861
 862	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 863	if (!dev)
 864		return;
 865
 866	trace_xhci_free_virt_device(dev);
 867
 868	if (dev->tt_info)
 869		old_active_eps = dev->tt_info->active_eps;
 870
 871	for (i = 0; i < 31; i++) {
 872		if (dev->eps[i].ring)
 873			xhci_ring_free(xhci, dev->eps[i].ring);
 874		if (dev->eps[i].stream_info)
 875			xhci_free_stream_info(xhci,
 876					dev->eps[i].stream_info);
 877		/*
 878		 * Endpoints are normally deleted from the bandwidth list when
 879		 * endpoints are dropped, before device is freed.
 880		 * If host is dying or being removed then endpoints aren't
 881		 * dropped cleanly, so delete the endpoint from list here.
 882		 * Only applicable for hosts with software bandwidth checking.
 883		 */
 884
 885		if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
 886			list_del_init(&dev->eps[i].bw_endpoint_list);
 887			xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
 888				 slot_id, i);
 889		}
 890	}
 891	/* If this is a hub, free the TT(s) from the TT list */
 892	xhci_free_tt_info(xhci, dev, slot_id);
 893	/* If necessary, update the number of active TTs on this root port */
 894	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
 895
 896	if (dev->in_ctx)
 897		xhci_free_container_ctx(xhci, dev->in_ctx);
 898	if (dev->out_ctx)
 899		xhci_free_container_ctx(xhci, dev->out_ctx);
 900
 901	if (dev->udev && dev->udev->slot_id)
 902		dev->udev->slot_id = 0;
 903	if (dev->rhub_port && dev->rhub_port->slot_id == slot_id)
 904		dev->rhub_port->slot_id = 0;
 905	kfree(xhci->devs[slot_id]);
 906	xhci->devs[slot_id] = NULL;
 907}
 908
 909/*
 910 * Free a virt_device structure.
 911 * If the virt_device added a tt_info (a hub) and has children pointing to
 912 * that tt_info, then free the child first. Recursive.
 913 * We can't rely on udev at this point to find child-parent relationships.
 914 */
 915static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
 916{
 917	struct xhci_virt_device *vdev;
 918	struct list_head *tt_list_head;
 919	struct xhci_tt_bw_info *tt_info, *next;
 920	int i;
 921
 922	vdev = xhci->devs[slot_id];
 923	if (!vdev)
 924		return;
 925
 926	if (!vdev->rhub_port) {
 927		xhci_dbg(xhci, "Bad rhub port.\n");
 
 928		goto out;
 929	}
 930
 931	tt_list_head = &(xhci->rh_bw[vdev->rhub_port->hw_portnum].tts);
 932	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 933		/* is this a hub device that added a tt_info to the tts list */
 934		if (tt_info->slot_id == slot_id) {
 935			/* are any devices using this tt_info? */
 936			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
 937				vdev = xhci->devs[i];
 938				if (vdev && (vdev->tt_info == tt_info))
 939					xhci_free_virt_devices_depth_first(
 940						xhci, i);
 941			}
 942		}
 943	}
 944out:
 945	/* we are now at a leaf device */
 946	xhci_debugfs_remove_slot(xhci, slot_id);
 947	xhci_free_virt_device(xhci, slot_id);
 948}
 949
 950int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
 951		struct usb_device *udev, gfp_t flags)
 952{
 953	struct xhci_virt_device *dev;
 954	int i;
 955
 956	/* Slot ID 0 is reserved */
 957	if (slot_id == 0 || xhci->devs[slot_id]) {
 958		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
 959		return 0;
 960	}
 961
 962	dev = kzalloc(sizeof(*dev), flags);
 963	if (!dev)
 964		return 0;
 965
 966	dev->slot_id = slot_id;
 967
 968	/* Allocate the (output) device context that will be used in the HC. */
 969	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
 970	if (!dev->out_ctx)
 971		goto fail;
 972
 973	xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma);
 
 974
 975	/* Allocate the (input) device context for address device command */
 976	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
 977	if (!dev->in_ctx)
 978		goto fail;
 979
 980	xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma);
 
 981
 982	/* Initialize the cancellation and bandwidth list for each ep */
 983	for (i = 0; i < 31; i++) {
 984		dev->eps[i].ep_index = i;
 985		dev->eps[i].vdev = dev;
 986		dev->eps[i].xhci = xhci;
 987		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
 988		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
 989	}
 990
 991	/* Allocate endpoint 0 ring */
 992	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
 993	if (!dev->eps[0].ring)
 994		goto fail;
 995
 996	dev->udev = udev;
 997
 998	/* Point to output device context in dcbaa. */
 999	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1000	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1001		 slot_id,
1002		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1003		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1004
1005	trace_xhci_alloc_virt_device(dev);
1006
1007	xhci->devs[slot_id] = dev;
1008
1009	return 1;
1010fail:
1011
1012	if (dev->in_ctx)
1013		xhci_free_container_ctx(xhci, dev->in_ctx);
1014	if (dev->out_ctx)
1015		xhci_free_container_ctx(xhci, dev->out_ctx);
1016	kfree(dev);
1017
1018	return 0;
1019}
1020
1021void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1022		struct usb_device *udev)
1023{
1024	struct xhci_virt_device *virt_dev;
1025	struct xhci_ep_ctx	*ep0_ctx;
1026	struct xhci_ring	*ep_ring;
1027
1028	virt_dev = xhci->devs[udev->slot_id];
1029	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1030	ep_ring = virt_dev->eps[0].ring;
1031	/*
1032	 * FIXME we don't keep track of the dequeue pointer very well after a
1033	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1034	 * host to our enqueue pointer.  This should only be called after a
1035	 * configured device has reset, so all control transfers should have
1036	 * been completed or cancelled before the reset.
1037	 */
1038	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1039							ep_ring->enqueue)
1040				   | ep_ring->cycle_state);
1041}
1042
1043/*
1044 * The xHCI roothub may have ports of differing speeds in any order in the port
1045 * status registers.
1046 *
1047 * The xHCI hardware wants to know the roothub port that the USB device
1048 * is attached to (or the roothub port its ancestor hub is attached to).  All we
1049 * know is the index of that port under either the USB 2.0 or the USB 3.0
1050 * roothub, but that doesn't give us the real index into the HW port status
1051 * registers.
1052 */
1053static struct xhci_port *xhci_find_rhub_port(struct xhci_hcd *xhci, struct usb_device *udev)
 
1054{
1055	struct usb_device *top_dev;
1056	struct xhci_hub *rhub;
1057	struct usb_hcd *hcd;
1058
1059	if (udev->speed >= USB_SPEED_SUPER)
1060		hcd = xhci_get_usb3_hcd(xhci);
1061	else
1062		hcd = xhci->main_hcd;
1063
1064	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1065			top_dev = top_dev->parent)
1066		/* Found device below root hub */;
1067
1068	rhub = xhci_get_rhub(hcd);
1069	return rhub->ports[top_dev->portnum - 1];
1070}
1071
1072/* Setup an xHCI virtual device for a Set Address command */
1073int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1074{
1075	struct xhci_virt_device *dev;
1076	struct xhci_ep_ctx	*ep0_ctx;
1077	struct xhci_slot_ctx    *slot_ctx;
 
1078	u32			max_packets;
 
1079
1080	dev = xhci->devs[udev->slot_id];
1081	/* Slot ID 0 is reserved */
1082	if (udev->slot_id == 0 || !dev) {
1083		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1084				udev->slot_id);
1085		return -EINVAL;
1086	}
1087	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1088	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1089
1090	/* 3) Only the control endpoint is valid - one endpoint context */
1091	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1092	switch (udev->speed) {
1093	case USB_SPEED_SUPER_PLUS:
1094		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1095		max_packets = MAX_PACKET(512);
1096		break;
1097	case USB_SPEED_SUPER:
1098		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1099		max_packets = MAX_PACKET(512);
1100		break;
1101	case USB_SPEED_HIGH:
1102		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1103		max_packets = MAX_PACKET(64);
1104		break;
1105	/* USB core guesses at a 64-byte max packet first for FS devices */
1106	case USB_SPEED_FULL:
1107		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1108		max_packets = MAX_PACKET(64);
1109		break;
1110	case USB_SPEED_LOW:
1111		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1112		max_packets = MAX_PACKET(8);
1113		break;
 
 
 
1114	default:
1115		/* Speed was set earlier, this shouldn't happen. */
1116		return -EINVAL;
1117	}
1118	/* Find the root hub port this device is under */
1119	dev->rhub_port = xhci_find_rhub_port(xhci, udev);
1120	if (!dev->rhub_port)
1121		return -EINVAL;
1122	/* Slot ID is set to the device directly below the root hub */
1123	if (!udev->parent->parent)
1124		dev->rhub_port->slot_id = udev->slot_id;
1125	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(dev->rhub_port->hw_portnum + 1));
1126	xhci_dbg(xhci, "Slot ID %d: HW portnum %d, hcd portnum %d\n",
1127		 udev->slot_id, dev->rhub_port->hw_portnum, dev->rhub_port->hcd_portnum);
 
 
 
1128
1129	/* Find the right bandwidth table that this device will be a part of.
1130	 * If this is a full speed device attached directly to a root port (or a
1131	 * decendent of one), it counts as a primary bandwidth domain, not a
1132	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1133	 * will never be created for the HS root hub.
1134	 */
1135	if (!udev->tt || !udev->tt->hub->parent) {
1136		dev->bw_table = &xhci->rh_bw[dev->rhub_port->hw_portnum].bw_table;
1137	} else {
1138		struct xhci_root_port_bw_info *rh_bw;
1139		struct xhci_tt_bw_info *tt_bw;
1140
1141		rh_bw = &xhci->rh_bw[dev->rhub_port->hw_portnum];
1142		/* Find the right TT. */
1143		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1144			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1145				continue;
1146
1147			if (!dev->udev->tt->multi ||
1148					(udev->tt->multi &&
1149					 tt_bw->ttport == dev->udev->ttport)) {
1150				dev->bw_table = &tt_bw->bw_table;
1151				dev->tt_info = tt_bw;
1152				break;
1153			}
1154		}
1155		if (!dev->tt_info)
1156			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1157	}
1158
1159	/* Is this a LS/FS device under an external HS hub? */
1160	if (udev->tt && udev->tt->hub->parent) {
1161		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1162						(udev->ttport << 8));
1163		if (udev->tt->multi)
1164			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1165	}
1166	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1167	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1168
1169	/* Step 4 - ring already allocated */
1170	/* Step 5 */
1171	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1172
1173	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1174	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1175					 max_packets);
1176
1177	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1178				   dev->eps[0].ring->cycle_state);
1179
1180	trace_xhci_setup_addressable_virt_device(dev);
1181
1182	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1183
1184	return 0;
1185}
1186
1187/*
1188 * Convert interval expressed as 2^(bInterval - 1) == interval into
1189 * straight exponent value 2^n == interval.
1190 *
1191 */
1192static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1193		struct usb_host_endpoint *ep)
1194{
1195	unsigned int interval;
1196
1197	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1198	if (interval != ep->desc.bInterval - 1)
1199		dev_warn(&udev->dev,
1200			 "ep %#x - rounding interval to %d %sframes\n",
1201			 ep->desc.bEndpointAddress,
1202			 1 << interval,
1203			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1204
1205	if (udev->speed == USB_SPEED_FULL) {
1206		/*
1207		 * Full speed isoc endpoints specify interval in frames,
1208		 * not microframes. We are using microframes everywhere,
1209		 * so adjust accordingly.
1210		 */
1211		interval += 3;	/* 1 frame = 2^3 uframes */
1212	}
1213
1214	return interval;
1215}
1216
1217/*
1218 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1219 * microframes, rounded down to nearest power of 2.
1220 */
1221static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1222		struct usb_host_endpoint *ep, unsigned int desc_interval,
1223		unsigned int min_exponent, unsigned int max_exponent)
1224{
1225	unsigned int interval;
1226
1227	interval = fls(desc_interval) - 1;
1228	interval = clamp_val(interval, min_exponent, max_exponent);
1229	if ((1 << interval) != desc_interval)
1230		dev_dbg(&udev->dev,
1231			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1232			 ep->desc.bEndpointAddress,
1233			 1 << interval,
1234			 desc_interval);
1235
1236	return interval;
1237}
1238
1239static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1240		struct usb_host_endpoint *ep)
1241{
1242	if (ep->desc.bInterval == 0)
1243		return 0;
1244	return xhci_microframes_to_exponent(udev, ep,
1245			ep->desc.bInterval, 0, 15);
1246}
1247
1248
1249static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1250		struct usb_host_endpoint *ep)
1251{
1252	return xhci_microframes_to_exponent(udev, ep,
1253			ep->desc.bInterval * 8, 3, 10);
1254}
1255
1256/* Return the polling or NAK interval.
1257 *
1258 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1259 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1260 *
1261 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1262 * is set to 0.
1263 */
1264static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1265		struct usb_host_endpoint *ep)
1266{
1267	unsigned int interval = 0;
1268
1269	switch (udev->speed) {
1270	case USB_SPEED_HIGH:
1271		/* Max NAK rate */
1272		if (usb_endpoint_xfer_control(&ep->desc) ||
1273		    usb_endpoint_xfer_bulk(&ep->desc)) {
1274			interval = xhci_parse_microframe_interval(udev, ep);
1275			break;
1276		}
1277		fallthrough;	/* SS and HS isoc/int have same decoding */
1278
1279	case USB_SPEED_SUPER_PLUS:
1280	case USB_SPEED_SUPER:
1281		if (usb_endpoint_xfer_int(&ep->desc) ||
1282		    usb_endpoint_xfer_isoc(&ep->desc)) {
1283			interval = xhci_parse_exponent_interval(udev, ep);
1284		}
1285		break;
1286
1287	case USB_SPEED_FULL:
1288		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1289			interval = xhci_parse_exponent_interval(udev, ep);
1290			break;
1291		}
1292		/*
1293		 * Fall through for interrupt endpoint interval decoding
1294		 * since it uses the same rules as low speed interrupt
1295		 * endpoints.
1296		 */
1297		fallthrough;
1298
1299	case USB_SPEED_LOW:
1300		if (usb_endpoint_xfer_int(&ep->desc) ||
1301		    usb_endpoint_xfer_isoc(&ep->desc)) {
1302
1303			interval = xhci_parse_frame_interval(udev, ep);
1304		}
1305		break;
1306
1307	default:
1308		BUG();
1309	}
1310	return interval;
1311}
1312
1313/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1314 * High speed endpoint descriptors can define "the number of additional
1315 * transaction opportunities per microframe", but that goes in the Max Burst
1316 * endpoint context field.
1317 */
1318static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1319		struct usb_host_endpoint *ep)
1320{
1321	if (udev->speed < USB_SPEED_SUPER ||
1322			!usb_endpoint_xfer_isoc(&ep->desc))
1323		return 0;
1324	return ep->ss_ep_comp.bmAttributes;
1325}
1326
1327static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1328				       struct usb_host_endpoint *ep)
1329{
1330	/* Super speed and Plus have max burst in ep companion desc */
1331	if (udev->speed >= USB_SPEED_SUPER)
1332		return ep->ss_ep_comp.bMaxBurst;
1333
1334	if (udev->speed == USB_SPEED_HIGH &&
1335	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1336	     usb_endpoint_xfer_int(&ep->desc)))
1337		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1338
1339	return 0;
1340}
1341
1342static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1343{
1344	int in;
1345
1346	in = usb_endpoint_dir_in(&ep->desc);
1347
1348	switch (usb_endpoint_type(&ep->desc)) {
1349	case USB_ENDPOINT_XFER_CONTROL:
1350		return CTRL_EP;
1351	case USB_ENDPOINT_XFER_BULK:
1352		return in ? BULK_IN_EP : BULK_OUT_EP;
1353	case USB_ENDPOINT_XFER_ISOC:
1354		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1355	case USB_ENDPOINT_XFER_INT:
1356		return in ? INT_IN_EP : INT_OUT_EP;
1357	}
1358	return 0;
1359}
1360
1361/* Return the maximum endpoint service interval time (ESIT) payload.
1362 * Basically, this is the maxpacket size, multiplied by the burst size
1363 * and mult size.
1364 */
1365static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1366		struct usb_host_endpoint *ep)
1367{
1368	int max_burst;
1369	int max_packet;
1370
1371	/* Only applies for interrupt or isochronous endpoints */
1372	if (usb_endpoint_xfer_control(&ep->desc) ||
1373			usb_endpoint_xfer_bulk(&ep->desc))
1374		return 0;
1375
1376	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1377	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1378	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1379		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1380
1381	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1382	if (udev->speed >= USB_SPEED_SUPER)
1383		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1384
1385	max_packet = usb_endpoint_maxp(&ep->desc);
1386	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1387	/* A 0 in max burst means 1 transfer per ESIT */
1388	return max_packet * max_burst;
1389}
1390
1391/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1392 * Drivers will have to call usb_alloc_streams() to do that.
1393 */
1394int xhci_endpoint_init(struct xhci_hcd *xhci,
1395		struct xhci_virt_device *virt_dev,
1396		struct usb_device *udev,
1397		struct usb_host_endpoint *ep,
1398		gfp_t mem_flags)
1399{
1400	unsigned int ep_index;
1401	struct xhci_ep_ctx *ep_ctx;
1402	struct xhci_ring *ep_ring;
1403	unsigned int max_packet;
1404	enum xhci_ring_type ring_type;
1405	u32 max_esit_payload;
1406	u32 endpoint_type;
1407	unsigned int max_burst;
1408	unsigned int interval;
1409	unsigned int mult;
1410	unsigned int avg_trb_len;
1411	unsigned int err_count = 0;
1412
1413	ep_index = xhci_get_endpoint_index(&ep->desc);
1414	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1415
1416	endpoint_type = xhci_get_endpoint_type(ep);
1417	if (!endpoint_type)
1418		return -EINVAL;
1419
1420	ring_type = usb_endpoint_type(&ep->desc);
1421
1422	/*
1423	 * Get values to fill the endpoint context, mostly from ep descriptor.
1424	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1425	 * have no clue on scatter gather list entry size. For Isoc and Int,
1426	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1427	 */
1428	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1429	interval = xhci_get_endpoint_interval(udev, ep);
1430
1431	/* Periodic endpoint bInterval limit quirk */
1432	if (usb_endpoint_xfer_int(&ep->desc) ||
1433	    usb_endpoint_xfer_isoc(&ep->desc)) {
1434		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1435		    udev->speed >= USB_SPEED_HIGH &&
1436		    interval >= 7) {
1437			interval = 6;
1438		}
1439	}
1440
1441	mult = xhci_get_endpoint_mult(udev, ep);
1442	max_packet = usb_endpoint_maxp(&ep->desc);
1443	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1444	avg_trb_len = max_esit_payload;
1445
1446	/* FIXME dig Mult and streams info out of ep companion desc */
1447
1448	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1449	if (!usb_endpoint_xfer_isoc(&ep->desc))
1450		err_count = 3;
1451	/* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1452	if (usb_endpoint_xfer_bulk(&ep->desc)) {
1453		if (udev->speed == USB_SPEED_HIGH)
1454			max_packet = 512;
1455		if (udev->speed == USB_SPEED_FULL) {
1456			max_packet = rounddown_pow_of_two(max_packet);
1457			max_packet = clamp_val(max_packet, 8, 64);
1458		}
1459	}
1460	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1461	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1462		avg_trb_len = 8;
1463	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1464	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1465		mult = 0;
1466
1467	/* Set up the endpoint ring */
1468	virt_dev->eps[ep_index].new_ring =
1469		xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1470	if (!virt_dev->eps[ep_index].new_ring)
1471		return -ENOMEM;
1472
1473	virt_dev->eps[ep_index].skip = false;
1474	ep_ring = virt_dev->eps[ep_index].new_ring;
1475
1476	/* Fill the endpoint context */
1477	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1478				      EP_INTERVAL(interval) |
1479				      EP_MULT(mult));
1480	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1481				       MAX_PACKET(max_packet) |
1482				       MAX_BURST(max_burst) |
1483				       ERROR_COUNT(err_count));
1484	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1485				  ep_ring->cycle_state);
1486
1487	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1488				      EP_AVG_TRB_LENGTH(avg_trb_len));
1489
1490	return 0;
1491}
1492
1493void xhci_endpoint_zero(struct xhci_hcd *xhci,
1494		struct xhci_virt_device *virt_dev,
1495		struct usb_host_endpoint *ep)
1496{
1497	unsigned int ep_index;
1498	struct xhci_ep_ctx *ep_ctx;
1499
1500	ep_index = xhci_get_endpoint_index(&ep->desc);
1501	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1502
1503	ep_ctx->ep_info = 0;
1504	ep_ctx->ep_info2 = 0;
1505	ep_ctx->deq = 0;
1506	ep_ctx->tx_info = 0;
1507	/* Don't free the endpoint ring until the set interface or configuration
1508	 * request succeeds.
1509	 */
1510}
1511
1512void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1513{
1514	bw_info->ep_interval = 0;
1515	bw_info->mult = 0;
1516	bw_info->num_packets = 0;
1517	bw_info->max_packet_size = 0;
1518	bw_info->type = 0;
1519	bw_info->max_esit_payload = 0;
1520}
1521
1522void xhci_update_bw_info(struct xhci_hcd *xhci,
1523		struct xhci_container_ctx *in_ctx,
1524		struct xhci_input_control_ctx *ctrl_ctx,
1525		struct xhci_virt_device *virt_dev)
1526{
1527	struct xhci_bw_info *bw_info;
1528	struct xhci_ep_ctx *ep_ctx;
1529	unsigned int ep_type;
1530	int i;
1531
1532	for (i = 1; i < 31; i++) {
1533		bw_info = &virt_dev->eps[i].bw_info;
1534
1535		/* We can't tell what endpoint type is being dropped, but
1536		 * unconditionally clearing the bandwidth info for non-periodic
1537		 * endpoints should be harmless because the info will never be
1538		 * set in the first place.
1539		 */
1540		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1541			/* Dropped endpoint */
1542			xhci_clear_endpoint_bw_info(bw_info);
1543			continue;
1544		}
1545
1546		if (EP_IS_ADDED(ctrl_ctx, i)) {
1547			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1548			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1549
1550			/* Ignore non-periodic endpoints */
1551			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1552					ep_type != ISOC_IN_EP &&
1553					ep_type != INT_IN_EP)
1554				continue;
1555
1556			/* Added or changed endpoint */
1557			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1558					le32_to_cpu(ep_ctx->ep_info));
1559			/* Number of packets and mult are zero-based in the
1560			 * input context, but we want one-based for the
1561			 * interval table.
1562			 */
1563			bw_info->mult = CTX_TO_EP_MULT(
1564					le32_to_cpu(ep_ctx->ep_info)) + 1;
1565			bw_info->num_packets = CTX_TO_MAX_BURST(
1566					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1567			bw_info->max_packet_size = MAX_PACKET_DECODED(
1568					le32_to_cpu(ep_ctx->ep_info2));
1569			bw_info->type = ep_type;
1570			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1571					le32_to_cpu(ep_ctx->tx_info));
1572		}
1573	}
1574}
1575
1576/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1577 * Useful when you want to change one particular aspect of the endpoint and then
1578 * issue a configure endpoint command.
1579 */
1580void xhci_endpoint_copy(struct xhci_hcd *xhci,
1581		struct xhci_container_ctx *in_ctx,
1582		struct xhci_container_ctx *out_ctx,
1583		unsigned int ep_index)
1584{
1585	struct xhci_ep_ctx *out_ep_ctx;
1586	struct xhci_ep_ctx *in_ep_ctx;
1587
1588	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1589	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1590
1591	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1592	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1593	in_ep_ctx->deq = out_ep_ctx->deq;
1594	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1595	if (xhci->quirks & XHCI_MTK_HOST) {
1596		in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1597		in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1598	}
1599}
1600
1601/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1602 * Useful when you want to change one particular aspect of the endpoint and then
1603 * issue a configure endpoint command.  Only the context entries field matters,
1604 * but we'll copy the whole thing anyway.
1605 */
1606void xhci_slot_copy(struct xhci_hcd *xhci,
1607		struct xhci_container_ctx *in_ctx,
1608		struct xhci_container_ctx *out_ctx)
1609{
1610	struct xhci_slot_ctx *in_slot_ctx;
1611	struct xhci_slot_ctx *out_slot_ctx;
1612
1613	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1614	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1615
1616	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1617	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1618	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1619	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1620}
1621
1622/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1623static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1624{
1625	int i;
1626	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1627	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1628
1629	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1630			"Allocating %d scratchpad buffers", num_sp);
1631
1632	if (!num_sp)
1633		return 0;
1634
1635	xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1636				dev_to_node(dev));
1637	if (!xhci->scratchpad)
1638		goto fail_sp;
1639
1640	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1641				     size_mul(sizeof(u64), num_sp),
1642				     &xhci->scratchpad->sp_dma, flags);
1643	if (!xhci->scratchpad->sp_array)
1644		goto fail_sp2;
1645
1646	xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1647					flags, dev_to_node(dev));
1648	if (!xhci->scratchpad->sp_buffers)
1649		goto fail_sp3;
1650
1651	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1652	for (i = 0; i < num_sp; i++) {
1653		dma_addr_t dma;
1654		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1655					       flags);
1656		if (!buf)
1657			goto fail_sp4;
1658
1659		xhci->scratchpad->sp_array[i] = dma;
1660		xhci->scratchpad->sp_buffers[i] = buf;
1661	}
1662
1663	return 0;
1664
1665 fail_sp4:
1666	while (i--)
1667		dma_free_coherent(dev, xhci->page_size,
1668				    xhci->scratchpad->sp_buffers[i],
1669				    xhci->scratchpad->sp_array[i]);
 
1670
1671	kfree(xhci->scratchpad->sp_buffers);
1672
1673 fail_sp3:
1674	dma_free_coherent(dev, num_sp * sizeof(u64),
1675			    xhci->scratchpad->sp_array,
1676			    xhci->scratchpad->sp_dma);
1677
1678 fail_sp2:
1679	kfree(xhci->scratchpad);
1680	xhci->scratchpad = NULL;
1681
1682 fail_sp:
1683	return -ENOMEM;
1684}
1685
1686static void scratchpad_free(struct xhci_hcd *xhci)
1687{
1688	int num_sp;
1689	int i;
1690	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1691
1692	if (!xhci->scratchpad)
1693		return;
1694
1695	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1696
1697	for (i = 0; i < num_sp; i++) {
1698		dma_free_coherent(dev, xhci->page_size,
1699				    xhci->scratchpad->sp_buffers[i],
1700				    xhci->scratchpad->sp_array[i]);
1701	}
1702	kfree(xhci->scratchpad->sp_buffers);
1703	dma_free_coherent(dev, num_sp * sizeof(u64),
1704			    xhci->scratchpad->sp_array,
1705			    xhci->scratchpad->sp_dma);
1706	kfree(xhci->scratchpad);
1707	xhci->scratchpad = NULL;
1708}
1709
1710struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1711		bool allocate_completion, gfp_t mem_flags)
1712{
1713	struct xhci_command *command;
1714	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1715
1716	command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1717	if (!command)
1718		return NULL;
1719
1720	if (allocate_completion) {
1721		command->completion =
1722			kzalloc_node(sizeof(struct completion), mem_flags,
1723				dev_to_node(dev));
1724		if (!command->completion) {
1725			kfree(command);
1726			return NULL;
1727		}
1728		init_completion(command->completion);
1729	}
1730
1731	command->status = 0;
1732	/* set default timeout to 5000 ms */
1733	command->timeout_ms = XHCI_CMD_DEFAULT_TIMEOUT;
1734	INIT_LIST_HEAD(&command->cmd_list);
1735	return command;
1736}
1737
1738struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1739		bool allocate_completion, gfp_t mem_flags)
1740{
1741	struct xhci_command *command;
1742
1743	command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1744	if (!command)
1745		return NULL;
1746
1747	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1748						   mem_flags);
1749	if (!command->in_ctx) {
1750		kfree(command->completion);
1751		kfree(command);
1752		return NULL;
1753	}
1754	return command;
1755}
1756
1757void xhci_urb_free_priv(struct urb_priv *urb_priv)
1758{
1759	kfree(urb_priv);
1760}
1761
1762void xhci_free_command(struct xhci_hcd *xhci,
1763		struct xhci_command *command)
1764{
1765	xhci_free_container_ctx(xhci,
1766			command->in_ctx);
1767	kfree(command->completion);
1768	kfree(command);
1769}
1770
1771static int xhci_alloc_erst(struct xhci_hcd *xhci,
1772		    struct xhci_ring *evt_ring,
1773		    struct xhci_erst *erst,
1774		    gfp_t flags)
1775{
1776	size_t size;
1777	unsigned int val;
1778	struct xhci_segment *seg;
1779	struct xhci_erst_entry *entry;
1780
1781	size = size_mul(sizeof(struct xhci_erst_entry), evt_ring->num_segs);
1782	erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1783					   size, &erst->erst_dma_addr, flags);
1784	if (!erst->entries)
1785		return -ENOMEM;
1786
1787	erst->num_entries = evt_ring->num_segs;
1788
1789	seg = evt_ring->first_seg;
1790	for (val = 0; val < evt_ring->num_segs; val++) {
1791		entry = &erst->entries[val];
1792		entry->seg_addr = cpu_to_le64(seg->dma);
1793		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1794		entry->rsvd = 0;
1795		seg = seg->next;
1796	}
1797
1798	return 0;
1799}
1800
1801static void
1802xhci_remove_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1803{
1804	u32 tmp;
1805
1806	if (!ir)
1807		return;
1808
1809	/*
1810	 * Clean out interrupter registers except ERSTBA. Clearing either the
1811	 * low or high 32 bits of ERSTBA immediately causes the controller to
1812	 * dereference the partially cleared 64 bit address, causing IOMMU error.
1813	 */
1814	if (ir->ir_set) {
1815		tmp = readl(&ir->ir_set->erst_size);
1816		tmp &= ERST_SIZE_MASK;
1817		writel(tmp, &ir->ir_set->erst_size);
1818
1819		xhci_write_64(xhci, ERST_EHB, &ir->ir_set->erst_dequeue);
1820	}
1821}
1822
1823static void
1824xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1825{
 
1826	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1827	size_t erst_size;
1828
1829	if (!ir)
1830		return;
1831
1832	erst_size = sizeof(struct xhci_erst_entry) * ir->erst.num_entries;
1833	if (ir->erst.entries)
1834		dma_free_coherent(dev, erst_size,
1835				  ir->erst.entries,
1836				  ir->erst.erst_dma_addr);
1837	ir->erst.entries = NULL;
1838
1839	/* free interrupter event ring */
1840	if (ir->event_ring)
1841		xhci_ring_free(xhci, ir->event_ring);
1842
1843	ir->event_ring = NULL;
1844
1845	kfree(ir);
 
 
 
1846}
1847
1848void xhci_remove_secondary_interrupter(struct usb_hcd *hcd, struct xhci_interrupter *ir)
1849{
1850	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1851	unsigned int intr_num;
1852
1853	spin_lock_irq(&xhci->lock);
1854
1855	/* interrupter 0 is primary interrupter, don't touch it */
1856	if (!ir || !ir->intr_num || ir->intr_num >= xhci->max_interrupters) {
1857		xhci_dbg(xhci, "Invalid secondary interrupter, can't remove\n");
1858		spin_unlock_irq(&xhci->lock);
1859		return;
1860	}
1861
1862	intr_num = ir->intr_num;
1863
1864	xhci_remove_interrupter(xhci, ir);
1865	xhci->interrupters[intr_num] = NULL;
1866
1867	spin_unlock_irq(&xhci->lock);
1868
1869	xhci_free_interrupter(xhci, ir);
1870}
1871EXPORT_SYMBOL_GPL(xhci_remove_secondary_interrupter);
1872
1873void xhci_mem_cleanup(struct xhci_hcd *xhci)
1874{
1875	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
1876	int i, j, num_ports;
1877
1878	cancel_delayed_work_sync(&xhci->cmd_timer);
1879
1880	for (i = 0; i < xhci->max_interrupters; i++) {
1881		if (xhci->interrupters[i]) {
1882			xhci_remove_interrupter(xhci, xhci->interrupters[i]);
1883			xhci_free_interrupter(xhci, xhci->interrupters[i]);
1884			xhci->interrupters[i] = NULL;
1885		}
1886	}
1887	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed interrupters");
1888
1889	if (xhci->cmd_ring)
1890		xhci_ring_free(xhci, xhci->cmd_ring);
1891	xhci->cmd_ring = NULL;
1892	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1893	xhci_cleanup_command_queue(xhci);
1894
1895	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1896	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1897		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1898		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1899			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1900			while (!list_empty(ep))
1901				list_del_init(ep->next);
1902		}
1903	}
1904
1905	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1906		xhci_free_virt_devices_depth_first(xhci, i);
1907
1908	dma_pool_destroy(xhci->segment_pool);
1909	xhci->segment_pool = NULL;
1910	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1911
1912	dma_pool_destroy(xhci->device_pool);
1913	xhci->device_pool = NULL;
1914	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1915
1916	dma_pool_destroy(xhci->small_streams_pool);
1917	xhci->small_streams_pool = NULL;
1918	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1919			"Freed small stream array pool");
1920
1921	dma_pool_destroy(xhci->medium_streams_pool);
1922	xhci->medium_streams_pool = NULL;
1923	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1924			"Freed medium stream array pool");
1925
1926	if (xhci->dcbaa)
1927		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1928				xhci->dcbaa, xhci->dcbaa->dma);
1929	xhci->dcbaa = NULL;
1930
1931	scratchpad_free(xhci);
1932
1933	if (!xhci->rh_bw)
1934		goto no_bw;
1935
1936	for (i = 0; i < num_ports; i++) {
1937		struct xhci_tt_bw_info *tt, *n;
1938		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1939			list_del(&tt->tt_list);
1940			kfree(tt);
1941		}
1942	}
1943
1944no_bw:
1945	xhci->cmd_ring_reserved_trbs = 0;
1946	xhci->usb2_rhub.num_ports = 0;
1947	xhci->usb3_rhub.num_ports = 0;
1948	xhci->num_active_eps = 0;
1949	kfree(xhci->usb2_rhub.ports);
1950	kfree(xhci->usb3_rhub.ports);
1951	kfree(xhci->hw_ports);
1952	kfree(xhci->rh_bw);
1953	kfree(xhci->ext_caps);
1954	for (i = 0; i < xhci->num_port_caps; i++)
1955		kfree(xhci->port_caps[i].psi);
1956	kfree(xhci->port_caps);
1957	kfree(xhci->interrupters);
1958	xhci->num_port_caps = 0;
1959
1960	xhci->usb2_rhub.ports = NULL;
1961	xhci->usb3_rhub.ports = NULL;
1962	xhci->hw_ports = NULL;
1963	xhci->rh_bw = NULL;
1964	xhci->ext_caps = NULL;
1965	xhci->port_caps = NULL;
1966	xhci->interrupters = NULL;
1967
1968	xhci->page_size = 0;
1969	xhci->page_shift = 0;
1970	xhci->usb2_rhub.bus_state.bus_suspended = 0;
1971	xhci->usb3_rhub.bus_state.bus_suspended = 0;
1972}
1973
1974static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
 
 
 
 
 
 
1975{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1976	dma_addr_t deq;
1977
1978	deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg,
1979			ir->event_ring->dequeue);
1980	if (!deq)
1981		xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n");
 
1982	/* Update HC event ring dequeue pointer */
 
 
1983	/* Don't clear the EHB bit (which is RW1C) because
1984	 * there might be more events to service.
1985	 */
 
1986	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1987		       "// Write event ring dequeue pointer, preserving EHB bit");
1988	xhci_write_64(xhci, deq & ERST_PTR_MASK, &ir->ir_set->erst_dequeue);
 
 
1989}
1990
1991static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1992		__le32 __iomem *addr, int max_caps)
1993{
1994	u32 temp, port_offset, port_count;
1995	int i;
1996	u8 major_revision, minor_revision, tmp_minor_revision;
1997	struct xhci_hub *rhub;
1998	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1999	struct xhci_port_cap *port_cap;
2000
2001	temp = readl(addr);
2002	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2003	minor_revision = XHCI_EXT_PORT_MINOR(temp);
2004
2005	if (major_revision == 0x03) {
2006		rhub = &xhci->usb3_rhub;
2007		/*
2008		 * Some hosts incorrectly use sub-minor version for minor
2009		 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2010		 * for bcdUSB 0x310). Since there is no USB release with sub
2011		 * minor version 0x301 to 0x309, we can assume that they are
2012		 * incorrect and fix it here.
2013		 */
2014		if (minor_revision > 0x00 && minor_revision < 0x10)
2015			minor_revision <<= 4;
2016		/*
2017		 * Some zhaoxin's xHCI controller that follow usb3.1 spec
2018		 * but only support Gen1.
2019		 */
2020		if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
2021			tmp_minor_revision = minor_revision;
2022			minor_revision = 0;
2023		}
2024
2025	} else if (major_revision <= 0x02) {
2026		rhub = &xhci->usb2_rhub;
2027	} else {
2028		xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n",
 
2029				addr, major_revision);
2030		/* Ignoring port protocol we can't understand. FIXME */
2031		return;
2032	}
 
 
 
 
2033
2034	/* Port offset and count in the third dword, see section 7.2 */
2035	temp = readl(addr + 2);
2036	port_offset = XHCI_EXT_PORT_OFF(temp);
2037	port_count = XHCI_EXT_PORT_COUNT(temp);
2038	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2039		       "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x",
2040		       addr, port_offset, port_count, major_revision);
 
2041	/* Port count includes the current port offset */
2042	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2043		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2044		return;
2045
2046	port_cap = &xhci->port_caps[xhci->num_port_caps++];
2047	if (xhci->num_port_caps > max_caps)
2048		return;
2049
 
 
2050	port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2051
2052	if (port_cap->psi_count) {
2053		port_cap->psi = kcalloc_node(port_cap->psi_count,
2054					     sizeof(*port_cap->psi),
2055					     GFP_KERNEL, dev_to_node(dev));
2056		if (!port_cap->psi)
2057			port_cap->psi_count = 0;
2058
2059		port_cap->psi_uid_count++;
2060		for (i = 0; i < port_cap->psi_count; i++) {
2061			port_cap->psi[i] = readl(addr + 4 + i);
2062
2063			/* count unique ID values, two consecutive entries can
2064			 * have the same ID if link is assymetric
2065			 */
2066			if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2067				  XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2068				port_cap->psi_uid_count++;
2069
2070			if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2071			    major_revision == 0x03 &&
2072			    XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2073				minor_revision = tmp_minor_revision;
2074
2075			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2076				  XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2077				  XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2078				  XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2079				  XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2080				  XHCI_EXT_PORT_LP(port_cap->psi[i]),
2081				  XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2082		}
2083	}
2084
2085	rhub->maj_rev = major_revision;
2086
2087	if (rhub->min_rev < minor_revision)
2088		rhub->min_rev = minor_revision;
2089
2090	port_cap->maj_rev = major_revision;
2091	port_cap->min_rev = minor_revision;
2092
2093	/* cache usb2 port capabilities */
2094	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2095		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2096
2097	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2098		 (temp & XHCI_HLC)) {
2099		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2100			       "xHCI 1.0: support USB2 hardware lpm");
2101		xhci->hw_lpm_support = 1;
2102	}
2103
2104	port_offset--;
2105	for (i = port_offset; i < (port_offset + port_count); i++) {
2106		struct xhci_port *hw_port = &xhci->hw_ports[i];
2107		/* Duplicate entry.  Ignore the port if the revisions differ. */
2108		if (hw_port->rhub) {
2109			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i);
2110			xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n",
 
 
2111					hw_port->rhub->maj_rev, major_revision);
2112			/* Only adjust the roothub port counts if we haven't
2113			 * found a similar duplicate.
2114			 */
2115			if (hw_port->rhub != rhub &&
2116				 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2117				hw_port->rhub->num_ports--;
2118				hw_port->hcd_portnum = DUPLICATE_ENTRY;
2119			}
2120			continue;
2121		}
2122		hw_port->rhub = rhub;
2123		hw_port->port_cap = port_cap;
2124		rhub->num_ports++;
2125	}
2126	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2127}
2128
2129static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2130					struct xhci_hub *rhub, gfp_t flags)
2131{
2132	int port_index = 0;
2133	int i;
2134	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2135
2136	if (!rhub->num_ports)
2137		return;
2138	rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2139			flags, dev_to_node(dev));
2140	if (!rhub->ports)
2141		return;
2142
2143	for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2144		if (xhci->hw_ports[i].rhub != rhub ||
2145		    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2146			continue;
2147		xhci->hw_ports[i].hcd_portnum = port_index;
2148		rhub->ports[port_index] = &xhci->hw_ports[i];
2149		port_index++;
2150		if (port_index == rhub->num_ports)
2151			break;
2152	}
2153}
2154
2155/*
2156 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2157 * specify what speeds each port is supposed to be.  We can't count on the port
2158 * speed bits in the PORTSC register being correct until a device is connected,
2159 * but we need to set up the two fake roothubs with the correct number of USB
2160 * 3.0 and USB 2.0 ports at host controller initialization time.
2161 */
2162static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2163{
2164	void __iomem *base;
2165	u32 offset;
2166	unsigned int num_ports;
2167	int i, j;
2168	int cap_count = 0;
2169	u32 cap_start;
2170	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2171
2172	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2173	xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2174				flags, dev_to_node(dev));
2175	if (!xhci->hw_ports)
2176		return -ENOMEM;
2177
2178	for (i = 0; i < num_ports; i++) {
2179		xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2180			NUM_PORT_REGS * i;
2181		xhci->hw_ports[i].hw_portnum = i;
2182
2183		init_completion(&xhci->hw_ports[i].rexit_done);
2184		init_completion(&xhci->hw_ports[i].u3exit_done);
2185	}
2186
2187	xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2188				   dev_to_node(dev));
2189	if (!xhci->rh_bw)
2190		return -ENOMEM;
2191	for (i = 0; i < num_ports; i++) {
2192		struct xhci_interval_bw_table *bw_table;
2193
2194		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2195		bw_table = &xhci->rh_bw[i].bw_table;
2196		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2197			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2198	}
2199	base = &xhci->cap_regs->hc_capbase;
2200
2201	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2202	if (!cap_start) {
2203		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2204		return -ENODEV;
2205	}
2206
2207	offset = cap_start;
2208	/* count extended protocol capability entries for later caching */
2209	while (offset) {
2210		cap_count++;
2211		offset = xhci_find_next_ext_cap(base, offset,
2212						      XHCI_EXT_CAPS_PROTOCOL);
2213	}
2214
2215	xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2216				flags, dev_to_node(dev));
2217	if (!xhci->ext_caps)
2218		return -ENOMEM;
2219
2220	xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2221				flags, dev_to_node(dev));
2222	if (!xhci->port_caps)
2223		return -ENOMEM;
2224
2225	offset = cap_start;
2226
2227	while (offset) {
2228		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2229		if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2230		    num_ports)
2231			break;
2232		offset = xhci_find_next_ext_cap(base, offset,
2233						XHCI_EXT_CAPS_PROTOCOL);
2234	}
2235	if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2236		xhci_warn(xhci, "No ports on the roothubs?\n");
2237		return -ENODEV;
2238	}
2239	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2240		       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2241		       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2242
2243	/* Place limits on the number of roothub ports so that the hub
2244	 * descriptors aren't longer than the USB core will allocate.
2245	 */
2246	if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2247		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2248				"Limiting USB 3.0 roothub ports to %u.",
2249				USB_SS_MAXPORTS);
2250		xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2251	}
2252	if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2253		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2254				"Limiting USB 2.0 roothub ports to %u.",
2255				USB_MAXCHILDREN);
2256		xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2257	}
2258
2259	if (!xhci->usb2_rhub.num_ports)
2260		xhci_info(xhci, "USB2 root hub has no ports\n");
2261
2262	if (!xhci->usb3_rhub.num_ports)
2263		xhci_info(xhci, "USB3 root hub has no ports\n");
2264
2265	xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2266	xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2267
2268	return 0;
2269}
2270
2271static struct xhci_interrupter *
2272xhci_alloc_interrupter(struct xhci_hcd *xhci, unsigned int segs, gfp_t flags)
2273{
2274	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2275	struct xhci_interrupter *ir;
2276	unsigned int max_segs;
2277	int ret;
2278
2279	if (!segs)
2280		segs = ERST_DEFAULT_SEGS;
2281
2282	max_segs = BIT(HCS_ERST_MAX(xhci->hcs_params2));
2283	segs = min(segs, max_segs);
2284
2285	ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev));
2286	if (!ir)
2287		return NULL;
2288
2289	ir->event_ring = xhci_ring_alloc(xhci, segs, 1, TYPE_EVENT, 0, flags);
2290	if (!ir->event_ring) {
2291		xhci_warn(xhci, "Failed to allocate interrupter event ring\n");
2292		kfree(ir);
2293		return NULL;
2294	}
2295
2296	ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags);
2297	if (ret) {
2298		xhci_warn(xhci, "Failed to allocate interrupter erst\n");
2299		xhci_ring_free(xhci, ir->event_ring);
2300		kfree(ir);
2301		return NULL;
2302	}
2303
2304	return ir;
2305}
2306
2307static int
2308xhci_add_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir,
2309		     unsigned int intr_num)
2310{
2311	u64 erst_base;
2312	u32 erst_size;
2313
2314	if (intr_num >= xhci->max_interrupters) {
2315		xhci_warn(xhci, "Can't add interrupter %d, max interrupters %d\n",
2316			  intr_num, xhci->max_interrupters);
2317		return -EINVAL;
2318	}
2319
2320	if (xhci->interrupters[intr_num]) {
2321		xhci_warn(xhci, "Interrupter %d\n already set up", intr_num);
2322		return -EINVAL;
2323	}
2324
2325	xhci->interrupters[intr_num] = ir;
2326	ir->intr_num = intr_num;
2327	ir->ir_set = &xhci->run_regs->ir_set[intr_num];
2328
2329	/* set ERST count with the number of entries in the segment table */
2330	erst_size = readl(&ir->ir_set->erst_size);
2331	erst_size &= ERST_SIZE_MASK;
2332	erst_size |= ir->event_ring->num_segs;
2333	writel(erst_size, &ir->ir_set->erst_size);
2334
2335	erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
2336	erst_base &= ERST_BASE_RSVDP;
2337	erst_base |= ir->erst.erst_dma_addr & ~ERST_BASE_RSVDP;
2338	xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base);
2339
2340	/* Set the event ring dequeue address of this interrupter */
2341	xhci_set_hc_event_deq(xhci, ir);
2342
2343	return 0;
2344}
2345
2346struct xhci_interrupter *
2347xhci_create_secondary_interrupter(struct usb_hcd *hcd, unsigned int segs)
2348{
2349	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2350	struct xhci_interrupter *ir;
2351	unsigned int i;
2352	int err = -ENOSPC;
2353
2354	if (!xhci->interrupters || xhci->max_interrupters <= 1)
2355		return NULL;
2356
2357	ir = xhci_alloc_interrupter(xhci, segs, GFP_KERNEL);
2358	if (!ir)
2359		return NULL;
2360
2361	spin_lock_irq(&xhci->lock);
2362
2363	/* Find available secondary interrupter, interrupter 0 is reserved for primary */
2364	for (i = 1; i < xhci->max_interrupters; i++) {
2365		if (xhci->interrupters[i] == NULL) {
2366			err = xhci_add_interrupter(xhci, ir, i);
2367			break;
2368		}
2369	}
2370
2371	spin_unlock_irq(&xhci->lock);
2372
2373	if (err) {
2374		xhci_warn(xhci, "Failed to add secondary interrupter, max interrupters %d\n",
2375			  xhci->max_interrupters);
2376		xhci_free_interrupter(xhci, ir);
2377		return NULL;
2378	}
2379
2380	xhci_dbg(xhci, "Add secondary interrupter %d, max interrupters %d\n",
2381		 i, xhci->max_interrupters);
2382
2383	return ir;
2384}
2385EXPORT_SYMBOL_GPL(xhci_create_secondary_interrupter);
2386
2387int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2388{
2389	struct xhci_interrupter *ir;
2390	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2391	dma_addr_t	dma;
2392	unsigned int	val, val2;
2393	u64		val_64;
2394	u32		page_size, temp;
2395	int		i;
2396
2397	INIT_LIST_HEAD(&xhci->cmd_list);
2398
2399	/* init command timeout work */
2400	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2401	init_completion(&xhci->cmd_ring_stop_completion);
2402
2403	page_size = readl(&xhci->op_regs->page_size);
2404	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2405			"Supported page size register = 0x%x", page_size);
2406	i = ffs(page_size);
2407	if (i < 16)
2408		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2409			"Supported page size of %iK", (1 << (i+12)) / 1024);
2410	else
2411		xhci_warn(xhci, "WARN: no supported page size\n");
2412	/* Use 4K pages, since that's common and the minimum the HC supports */
2413	xhci->page_shift = 12;
2414	xhci->page_size = 1 << xhci->page_shift;
2415	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2416			"HCD page size set to %iK", xhci->page_size / 1024);
2417
2418	/*
2419	 * Program the Number of Device Slots Enabled field in the CONFIG
2420	 * register with the max value of slots the HC can handle.
2421	 */
2422	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2423	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2424			"// xHC can handle at most %d device slots.", val);
2425	val2 = readl(&xhci->op_regs->config_reg);
2426	val |= (val2 & ~HCS_SLOTS_MASK);
2427	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2428			"// Setting Max device slots reg = 0x%x.", val);
2429	writel(val, &xhci->op_regs->config_reg);
2430
2431	/*
2432	 * xHCI section 5.4.6 - Device Context array must be
2433	 * "physically contiguous and 64-byte (cache line) aligned".
2434	 */
2435	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2436			flags);
2437	if (!xhci->dcbaa)
2438		goto fail;
2439	xhci->dcbaa->dma = dma;
2440	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2441			"// Device context base array address = 0x%pad (DMA), %p (virt)",
2442			&xhci->dcbaa->dma, xhci->dcbaa);
2443	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2444
2445	/*
2446	 * Initialize the ring segment pool.  The ring must be a contiguous
2447	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2448	 * however, the command ring segment needs 64-byte aligned segments
2449	 * and our use of dma addresses in the trb_address_map radix tree needs
2450	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2451	 */
2452	if (xhci->quirks & XHCI_ZHAOXIN_TRB_FETCH)
2453		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2454				TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2);
2455	else
2456		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2457				TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2458
2459	/* See Table 46 and Note on Figure 55 */
2460	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2461			2112, 64, xhci->page_size);
2462	if (!xhci->segment_pool || !xhci->device_pool)
2463		goto fail;
2464
2465	/* Linear stream context arrays don't have any boundary restrictions,
2466	 * and only need to be 16-byte aligned.
2467	 */
2468	xhci->small_streams_pool =
2469		dma_pool_create("xHCI 256 byte stream ctx arrays",
2470			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2471	xhci->medium_streams_pool =
2472		dma_pool_create("xHCI 1KB stream ctx arrays",
2473			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2474	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2475	 * will be allocated with dma_alloc_coherent()
2476	 */
2477
2478	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2479		goto fail;
2480
2481	/* Set up the command ring to have one segments for now. */
2482	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2483	if (!xhci->cmd_ring)
2484		goto fail;
2485	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2486			"Allocated command ring at %p", xhci->cmd_ring);
2487	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad",
2488			&xhci->cmd_ring->first_seg->dma);
2489
2490	/* Set the address in the Command Ring Control register */
2491	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2492	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2493		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2494		xhci->cmd_ring->cycle_state;
2495	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2496			"// Setting command ring address to 0x%016llx", val_64);
2497	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2498
2499	/* Reserve one command ring TRB for disabling LPM.
2500	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2501	 * disabling LPM, we only need to reserve one TRB for all devices.
2502	 */
2503	xhci->cmd_ring_reserved_trbs++;
2504
2505	val = readl(&xhci->cap_regs->db_off);
2506	val &= DBOFF_MASK;
2507	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2508		       "// Doorbell array is located at offset 0x%x from cap regs base addr",
2509		       val);
2510	xhci->dba = (void __iomem *) xhci->cap_regs + val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2511
2512	/* Allocate and set up primary interrupter 0 with an event ring. */
 
 
 
 
 
 
 
2513	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2514		       "Allocating primary event ring");
2515	xhci->interrupters = kcalloc_node(xhci->max_interrupters, sizeof(*xhci->interrupters),
2516					  flags, dev_to_node(dev));
2517
2518	ir = xhci_alloc_interrupter(xhci, 0, flags);
2519	if (!ir)
2520		goto fail;
 
 
 
 
 
 
 
2521
2522	if (xhci_add_interrupter(xhci, ir, 0))
2523		goto fail;
 
 
2524
2525	ir->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2526
2527	/*
2528	 * XXX: Might need to set the Interrupter Moderation Register to
2529	 * something other than the default (~1ms minimum between interrupts).
2530	 * See section 5.5.1.2.
2531	 */
2532	for (i = 0; i < MAX_HC_SLOTS; i++)
2533		xhci->devs[i] = NULL;
 
 
 
 
 
 
 
2534
2535	if (scratchpad_alloc(xhci, flags))
2536		goto fail;
2537	if (xhci_setup_port_arrays(xhci, flags))
2538		goto fail;
2539
2540	/* Enable USB 3.0 device notifications for function remote wake, which
2541	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2542	 * U3 (device suspend).
2543	 */
2544	temp = readl(&xhci->op_regs->dev_notification);
2545	temp &= ~DEV_NOTE_MASK;
2546	temp |= DEV_NOTE_FWAKE;
2547	writel(temp, &xhci->op_regs->dev_notification);
2548
2549	return 0;
2550
2551fail:
2552	xhci_halt(xhci);
2553	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2554	xhci_mem_cleanup(xhci);
2555	return -ENOMEM;
2556}