Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Core IEEE1394 transaction logic
4 *
5 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8#include <linux/bug.h>
9#include <linux/completion.h>
10#include <linux/device.h>
11#include <linux/errno.h>
12#include <linux/firewire.h>
13#include <linux/firewire-constants.h>
14#include <linux/fs.h>
15#include <linux/init.h>
16#include <linux/idr.h>
17#include <linux/jiffies.h>
18#include <linux/kernel.h>
19#include <linux/list.h>
20#include <linux/module.h>
21#include <linux/rculist.h>
22#include <linux/slab.h>
23#include <linux/spinlock.h>
24#include <linux/string.h>
25#include <linux/timer.h>
26#include <linux/types.h>
27#include <linux/workqueue.h>
28
29#include <asm/byteorder.h>
30
31#include "core.h"
32
33#define HEADER_PRI(pri) ((pri) << 0)
34#define HEADER_TCODE(tcode) ((tcode) << 4)
35#define HEADER_RETRY(retry) ((retry) << 8)
36#define HEADER_TLABEL(tlabel) ((tlabel) << 10)
37#define HEADER_DESTINATION(destination) ((destination) << 16)
38#define HEADER_SOURCE(source) ((source) << 16)
39#define HEADER_RCODE(rcode) ((rcode) << 12)
40#define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0)
41#define HEADER_DATA_LENGTH(length) ((length) << 16)
42#define HEADER_EXTENDED_TCODE(tcode) ((tcode) << 0)
43
44#define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
45#define HEADER_GET_TLABEL(q) (((q) >> 10) & 0x3f)
46#define HEADER_GET_RCODE(q) (((q) >> 12) & 0x0f)
47#define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
48#define HEADER_GET_SOURCE(q) (((q) >> 16) & 0xffff)
49#define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
50#define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
51#define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
52
53#define HEADER_DESTINATION_IS_BROADCAST(q) \
54 (((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
55
56#define PHY_PACKET_CONFIG 0x0
57#define PHY_PACKET_LINK_ON 0x1
58#define PHY_PACKET_SELF_ID 0x2
59
60#define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22))
61#define PHY_CONFIG_ROOT_ID(node_id) ((((node_id) & 0x3f) << 24) | (1 << 23))
62#define PHY_IDENTIFIER(id) ((id) << 30)
63
64/* returns 0 if the split timeout handler is already running */
65static int try_cancel_split_timeout(struct fw_transaction *t)
66{
67 if (t->is_split_transaction)
68 return del_timer(&t->split_timeout_timer);
69 else
70 return 1;
71}
72
73static int close_transaction(struct fw_transaction *transaction,
74 struct fw_card *card, int rcode)
75{
76 struct fw_transaction *t = NULL, *iter;
77 unsigned long flags;
78
79 spin_lock_irqsave(&card->lock, flags);
80 list_for_each_entry(iter, &card->transaction_list, link) {
81 if (iter == transaction) {
82 if (!try_cancel_split_timeout(iter)) {
83 spin_unlock_irqrestore(&card->lock, flags);
84 goto timed_out;
85 }
86 list_del_init(&iter->link);
87 card->tlabel_mask &= ~(1ULL << iter->tlabel);
88 t = iter;
89 break;
90 }
91 }
92 spin_unlock_irqrestore(&card->lock, flags);
93
94 if (t) {
95 t->callback(card, rcode, NULL, 0, t->callback_data);
96 return 0;
97 }
98
99 timed_out:
100 return -ENOENT;
101}
102
103/*
104 * Only valid for transactions that are potentially pending (ie have
105 * been sent).
106 */
107int fw_cancel_transaction(struct fw_card *card,
108 struct fw_transaction *transaction)
109{
110 /*
111 * Cancel the packet transmission if it's still queued. That
112 * will call the packet transmission callback which cancels
113 * the transaction.
114 */
115
116 if (card->driver->cancel_packet(card, &transaction->packet) == 0)
117 return 0;
118
119 /*
120 * If the request packet has already been sent, we need to see
121 * if the transaction is still pending and remove it in that case.
122 */
123
124 return close_transaction(transaction, card, RCODE_CANCELLED);
125}
126EXPORT_SYMBOL(fw_cancel_transaction);
127
128static void split_transaction_timeout_callback(struct timer_list *timer)
129{
130 struct fw_transaction *t = from_timer(t, timer, split_timeout_timer);
131 struct fw_card *card = t->card;
132 unsigned long flags;
133
134 spin_lock_irqsave(&card->lock, flags);
135 if (list_empty(&t->link)) {
136 spin_unlock_irqrestore(&card->lock, flags);
137 return;
138 }
139 list_del(&t->link);
140 card->tlabel_mask &= ~(1ULL << t->tlabel);
141 spin_unlock_irqrestore(&card->lock, flags);
142
143 t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
144}
145
146static void start_split_transaction_timeout(struct fw_transaction *t,
147 struct fw_card *card)
148{
149 unsigned long flags;
150
151 spin_lock_irqsave(&card->lock, flags);
152
153 if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
154 spin_unlock_irqrestore(&card->lock, flags);
155 return;
156 }
157
158 t->is_split_transaction = true;
159 mod_timer(&t->split_timeout_timer,
160 jiffies + card->split_timeout_jiffies);
161
162 spin_unlock_irqrestore(&card->lock, flags);
163}
164
165static void transmit_complete_callback(struct fw_packet *packet,
166 struct fw_card *card, int status)
167{
168 struct fw_transaction *t =
169 container_of(packet, struct fw_transaction, packet);
170
171 switch (status) {
172 case ACK_COMPLETE:
173 close_transaction(t, card, RCODE_COMPLETE);
174 break;
175 case ACK_PENDING:
176 start_split_transaction_timeout(t, card);
177 break;
178 case ACK_BUSY_X:
179 case ACK_BUSY_A:
180 case ACK_BUSY_B:
181 close_transaction(t, card, RCODE_BUSY);
182 break;
183 case ACK_DATA_ERROR:
184 close_transaction(t, card, RCODE_DATA_ERROR);
185 break;
186 case ACK_TYPE_ERROR:
187 close_transaction(t, card, RCODE_TYPE_ERROR);
188 break;
189 default:
190 /*
191 * In this case the ack is really a juju specific
192 * rcode, so just forward that to the callback.
193 */
194 close_transaction(t, card, status);
195 break;
196 }
197}
198
199static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
200 int destination_id, int source_id, int generation, int speed,
201 unsigned long long offset, void *payload, size_t length)
202{
203 int ext_tcode;
204
205 if (tcode == TCODE_STREAM_DATA) {
206 packet->header[0] =
207 HEADER_DATA_LENGTH(length) |
208 destination_id |
209 HEADER_TCODE(TCODE_STREAM_DATA);
210 packet->header_length = 4;
211 packet->payload = payload;
212 packet->payload_length = length;
213
214 goto common;
215 }
216
217 if (tcode > 0x10) {
218 ext_tcode = tcode & ~0x10;
219 tcode = TCODE_LOCK_REQUEST;
220 } else
221 ext_tcode = 0;
222
223 packet->header[0] =
224 HEADER_RETRY(RETRY_X) |
225 HEADER_TLABEL(tlabel) |
226 HEADER_TCODE(tcode) |
227 HEADER_DESTINATION(destination_id);
228 packet->header[1] =
229 HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
230 packet->header[2] =
231 offset;
232
233 switch (tcode) {
234 case TCODE_WRITE_QUADLET_REQUEST:
235 packet->header[3] = *(u32 *)payload;
236 packet->header_length = 16;
237 packet->payload_length = 0;
238 break;
239
240 case TCODE_LOCK_REQUEST:
241 case TCODE_WRITE_BLOCK_REQUEST:
242 packet->header[3] =
243 HEADER_DATA_LENGTH(length) |
244 HEADER_EXTENDED_TCODE(ext_tcode);
245 packet->header_length = 16;
246 packet->payload = payload;
247 packet->payload_length = length;
248 break;
249
250 case TCODE_READ_QUADLET_REQUEST:
251 packet->header_length = 12;
252 packet->payload_length = 0;
253 break;
254
255 case TCODE_READ_BLOCK_REQUEST:
256 packet->header[3] =
257 HEADER_DATA_LENGTH(length) |
258 HEADER_EXTENDED_TCODE(ext_tcode);
259 packet->header_length = 16;
260 packet->payload_length = 0;
261 break;
262
263 default:
264 WARN(1, "wrong tcode %d\n", tcode);
265 }
266 common:
267 packet->speed = speed;
268 packet->generation = generation;
269 packet->ack = 0;
270 packet->payload_mapped = false;
271}
272
273static int allocate_tlabel(struct fw_card *card)
274{
275 int tlabel;
276
277 tlabel = card->current_tlabel;
278 while (card->tlabel_mask & (1ULL << tlabel)) {
279 tlabel = (tlabel + 1) & 0x3f;
280 if (tlabel == card->current_tlabel)
281 return -EBUSY;
282 }
283
284 card->current_tlabel = (tlabel + 1) & 0x3f;
285 card->tlabel_mask |= 1ULL << tlabel;
286
287 return tlabel;
288}
289
290/**
291 * fw_send_request() - submit a request packet for transmission
292 * @card: interface to send the request at
293 * @t: transaction instance to which the request belongs
294 * @tcode: transaction code
295 * @destination_id: destination node ID, consisting of bus_ID and phy_ID
296 * @generation: bus generation in which request and response are valid
297 * @speed: transmission speed
298 * @offset: 48bit wide offset into destination's address space
299 * @payload: data payload for the request subaction
300 * @length: length of the payload, in bytes
301 * @callback: function to be called when the transaction is completed
302 * @callback_data: data to be passed to the transaction completion callback
303 *
304 * Submit a request packet into the asynchronous request transmission queue.
305 * Can be called from atomic context. If you prefer a blocking API, use
306 * fw_run_transaction() in a context that can sleep.
307 *
308 * In case of lock requests, specify one of the firewire-core specific %TCODE_
309 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
310 *
311 * Make sure that the value in @destination_id is not older than the one in
312 * @generation. Otherwise the request is in danger to be sent to a wrong node.
313 *
314 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
315 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
316 * It will contain tag, channel, and sy data instead of a node ID then.
317 *
318 * The payload buffer at @data is going to be DMA-mapped except in case of
319 * @length <= 8 or of local (loopback) requests. Hence make sure that the
320 * buffer complies with the restrictions of the streaming DMA mapping API.
321 * @payload must not be freed before the @callback is called.
322 *
323 * In case of request types without payload, @data is NULL and @length is 0.
324 *
325 * After the transaction is completed successfully or unsuccessfully, the
326 * @callback will be called. Among its parameters is the response code which
327 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
328 * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core
329 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
330 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
331 * generation, or missing ACK respectively.
332 *
333 * Note some timing corner cases: fw_send_request() may complete much earlier
334 * than when the request packet actually hits the wire. On the other hand,
335 * transaction completion and hence execution of @callback may happen even
336 * before fw_send_request() returns.
337 */
338void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
339 int destination_id, int generation, int speed,
340 unsigned long long offset, void *payload, size_t length,
341 fw_transaction_callback_t callback, void *callback_data)
342{
343 unsigned long flags;
344 int tlabel;
345
346 /*
347 * Allocate tlabel from the bitmap and put the transaction on
348 * the list while holding the card spinlock.
349 */
350
351 spin_lock_irqsave(&card->lock, flags);
352
353 tlabel = allocate_tlabel(card);
354 if (tlabel < 0) {
355 spin_unlock_irqrestore(&card->lock, flags);
356 callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
357 return;
358 }
359
360 t->node_id = destination_id;
361 t->tlabel = tlabel;
362 t->card = card;
363 t->is_split_transaction = false;
364 timer_setup(&t->split_timeout_timer,
365 split_transaction_timeout_callback, 0);
366 t->callback = callback;
367 t->callback_data = callback_data;
368
369 fw_fill_request(&t->packet, tcode, t->tlabel,
370 destination_id, card->node_id, generation,
371 speed, offset, payload, length);
372 t->packet.callback = transmit_complete_callback;
373
374 list_add_tail(&t->link, &card->transaction_list);
375
376 spin_unlock_irqrestore(&card->lock, flags);
377
378 card->driver->send_request(card, &t->packet);
379}
380EXPORT_SYMBOL(fw_send_request);
381
382struct transaction_callback_data {
383 struct completion done;
384 void *payload;
385 int rcode;
386};
387
388static void transaction_callback(struct fw_card *card, int rcode,
389 void *payload, size_t length, void *data)
390{
391 struct transaction_callback_data *d = data;
392
393 if (rcode == RCODE_COMPLETE)
394 memcpy(d->payload, payload, length);
395 d->rcode = rcode;
396 complete(&d->done);
397}
398
399/**
400 * fw_run_transaction() - send request and sleep until transaction is completed
401 * @card: card interface for this request
402 * @tcode: transaction code
403 * @destination_id: destination node ID, consisting of bus_ID and phy_ID
404 * @generation: bus generation in which request and response are valid
405 * @speed: transmission speed
406 * @offset: 48bit wide offset into destination's address space
407 * @payload: data payload for the request subaction
408 * @length: length of the payload, in bytes
409 *
410 * Returns the RCODE. See fw_send_request() for parameter documentation.
411 * Unlike fw_send_request(), @data points to the payload of the request or/and
412 * to the payload of the response. DMA mapping restrictions apply to outbound
413 * request payloads of >= 8 bytes but not to inbound response payloads.
414 */
415int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
416 int generation, int speed, unsigned long long offset,
417 void *payload, size_t length)
418{
419 struct transaction_callback_data d;
420 struct fw_transaction t;
421
422 timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
423 init_completion(&d.done);
424 d.payload = payload;
425 fw_send_request(card, &t, tcode, destination_id, generation, speed,
426 offset, payload, length, transaction_callback, &d);
427 wait_for_completion(&d.done);
428 destroy_timer_on_stack(&t.split_timeout_timer);
429
430 return d.rcode;
431}
432EXPORT_SYMBOL(fw_run_transaction);
433
434static DEFINE_MUTEX(phy_config_mutex);
435static DECLARE_COMPLETION(phy_config_done);
436
437static void transmit_phy_packet_callback(struct fw_packet *packet,
438 struct fw_card *card, int status)
439{
440 complete(&phy_config_done);
441}
442
443static struct fw_packet phy_config_packet = {
444 .header_length = 12,
445 .header[0] = TCODE_LINK_INTERNAL << 4,
446 .payload_length = 0,
447 .speed = SCODE_100,
448 .callback = transmit_phy_packet_callback,
449};
450
451void fw_send_phy_config(struct fw_card *card,
452 int node_id, int generation, int gap_count)
453{
454 long timeout = DIV_ROUND_UP(HZ, 10);
455 u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
456
457 if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
458 data |= PHY_CONFIG_ROOT_ID(node_id);
459
460 if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
461 gap_count = card->driver->read_phy_reg(card, 1);
462 if (gap_count < 0)
463 return;
464
465 gap_count &= 63;
466 if (gap_count == 63)
467 return;
468 }
469 data |= PHY_CONFIG_GAP_COUNT(gap_count);
470
471 mutex_lock(&phy_config_mutex);
472
473 phy_config_packet.header[1] = data;
474 phy_config_packet.header[2] = ~data;
475 phy_config_packet.generation = generation;
476 reinit_completion(&phy_config_done);
477
478 card->driver->send_request(card, &phy_config_packet);
479 wait_for_completion_timeout(&phy_config_done, timeout);
480
481 mutex_unlock(&phy_config_mutex);
482}
483
484static struct fw_address_handler *lookup_overlapping_address_handler(
485 struct list_head *list, unsigned long long offset, size_t length)
486{
487 struct fw_address_handler *handler;
488
489 list_for_each_entry_rcu(handler, list, link) {
490 if (handler->offset < offset + length &&
491 offset < handler->offset + handler->length)
492 return handler;
493 }
494
495 return NULL;
496}
497
498static bool is_enclosing_handler(struct fw_address_handler *handler,
499 unsigned long long offset, size_t length)
500{
501 return handler->offset <= offset &&
502 offset + length <= handler->offset + handler->length;
503}
504
505static struct fw_address_handler *lookup_enclosing_address_handler(
506 struct list_head *list, unsigned long long offset, size_t length)
507{
508 struct fw_address_handler *handler;
509
510 list_for_each_entry_rcu(handler, list, link) {
511 if (is_enclosing_handler(handler, offset, length))
512 return handler;
513 }
514
515 return NULL;
516}
517
518static DEFINE_SPINLOCK(address_handler_list_lock);
519static LIST_HEAD(address_handler_list);
520
521const struct fw_address_region fw_high_memory_region =
522 { .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
523EXPORT_SYMBOL(fw_high_memory_region);
524
525static const struct fw_address_region low_memory_region =
526 { .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
527
528#if 0
529const struct fw_address_region fw_private_region =
530 { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, };
531const struct fw_address_region fw_csr_region =
532 { .start = CSR_REGISTER_BASE,
533 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, };
534const struct fw_address_region fw_unit_space_region =
535 { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
536#endif /* 0 */
537
538static bool is_in_fcp_region(u64 offset, size_t length)
539{
540 return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
541 offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
542}
543
544/**
545 * fw_core_add_address_handler() - register for incoming requests
546 * @handler: callback
547 * @region: region in the IEEE 1212 node space address range
548 *
549 * region->start, ->end, and handler->length have to be quadlet-aligned.
550 *
551 * When a request is received that falls within the specified address range,
552 * the specified callback is invoked. The parameters passed to the callback
553 * give the details of the particular request.
554 *
555 * To be called in process context.
556 * Return value: 0 on success, non-zero otherwise.
557 *
558 * The start offset of the handler's address region is determined by
559 * fw_core_add_address_handler() and is returned in handler->offset.
560 *
561 * Address allocations are exclusive, except for the FCP registers.
562 */
563int fw_core_add_address_handler(struct fw_address_handler *handler,
564 const struct fw_address_region *region)
565{
566 struct fw_address_handler *other;
567 int ret = -EBUSY;
568
569 if (region->start & 0xffff000000000003ULL ||
570 region->start >= region->end ||
571 region->end > 0x0001000000000000ULL ||
572 handler->length & 3 ||
573 handler->length == 0)
574 return -EINVAL;
575
576 spin_lock(&address_handler_list_lock);
577
578 handler->offset = region->start;
579 while (handler->offset + handler->length <= region->end) {
580 if (is_in_fcp_region(handler->offset, handler->length))
581 other = NULL;
582 else
583 other = lookup_overlapping_address_handler
584 (&address_handler_list,
585 handler->offset, handler->length);
586 if (other != NULL) {
587 handler->offset += other->length;
588 } else {
589 list_add_tail_rcu(&handler->link, &address_handler_list);
590 ret = 0;
591 break;
592 }
593 }
594
595 spin_unlock(&address_handler_list_lock);
596
597 return ret;
598}
599EXPORT_SYMBOL(fw_core_add_address_handler);
600
601/**
602 * fw_core_remove_address_handler() - unregister an address handler
603 * @handler: callback
604 *
605 * To be called in process context.
606 *
607 * When fw_core_remove_address_handler() returns, @handler->callback() is
608 * guaranteed to not run on any CPU anymore.
609 */
610void fw_core_remove_address_handler(struct fw_address_handler *handler)
611{
612 spin_lock(&address_handler_list_lock);
613 list_del_rcu(&handler->link);
614 spin_unlock(&address_handler_list_lock);
615 synchronize_rcu();
616}
617EXPORT_SYMBOL(fw_core_remove_address_handler);
618
619struct fw_request {
620 struct fw_packet response;
621 u32 request_header[4];
622 int ack;
623 u32 timestamp;
624 u32 length;
625 u32 data[];
626};
627
628static void free_response_callback(struct fw_packet *packet,
629 struct fw_card *card, int status)
630{
631 struct fw_request *request;
632
633 request = container_of(packet, struct fw_request, response);
634 kfree(request);
635}
636
637int fw_get_response_length(struct fw_request *r)
638{
639 int tcode, ext_tcode, data_length;
640
641 tcode = HEADER_GET_TCODE(r->request_header[0]);
642
643 switch (tcode) {
644 case TCODE_WRITE_QUADLET_REQUEST:
645 case TCODE_WRITE_BLOCK_REQUEST:
646 return 0;
647
648 case TCODE_READ_QUADLET_REQUEST:
649 return 4;
650
651 case TCODE_READ_BLOCK_REQUEST:
652 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
653 return data_length;
654
655 case TCODE_LOCK_REQUEST:
656 ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
657 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
658 switch (ext_tcode) {
659 case EXTCODE_FETCH_ADD:
660 case EXTCODE_LITTLE_ADD:
661 return data_length;
662 default:
663 return data_length / 2;
664 }
665
666 default:
667 WARN(1, "wrong tcode %d\n", tcode);
668 return 0;
669 }
670}
671
672void fw_fill_response(struct fw_packet *response, u32 *request_header,
673 int rcode, void *payload, size_t length)
674{
675 int tcode, tlabel, extended_tcode, source, destination;
676
677 tcode = HEADER_GET_TCODE(request_header[0]);
678 tlabel = HEADER_GET_TLABEL(request_header[0]);
679 source = HEADER_GET_DESTINATION(request_header[0]);
680 destination = HEADER_GET_SOURCE(request_header[1]);
681 extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
682
683 response->header[0] =
684 HEADER_RETRY(RETRY_1) |
685 HEADER_TLABEL(tlabel) |
686 HEADER_DESTINATION(destination);
687 response->header[1] =
688 HEADER_SOURCE(source) |
689 HEADER_RCODE(rcode);
690 response->header[2] = 0;
691
692 switch (tcode) {
693 case TCODE_WRITE_QUADLET_REQUEST:
694 case TCODE_WRITE_BLOCK_REQUEST:
695 response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
696 response->header_length = 12;
697 response->payload_length = 0;
698 break;
699
700 case TCODE_READ_QUADLET_REQUEST:
701 response->header[0] |=
702 HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
703 if (payload != NULL)
704 response->header[3] = *(u32 *)payload;
705 else
706 response->header[3] = 0;
707 response->header_length = 16;
708 response->payload_length = 0;
709 break;
710
711 case TCODE_READ_BLOCK_REQUEST:
712 case TCODE_LOCK_REQUEST:
713 response->header[0] |= HEADER_TCODE(tcode + 2);
714 response->header[3] =
715 HEADER_DATA_LENGTH(length) |
716 HEADER_EXTENDED_TCODE(extended_tcode);
717 response->header_length = 16;
718 response->payload = payload;
719 response->payload_length = length;
720 break;
721
722 default:
723 WARN(1, "wrong tcode %d\n", tcode);
724 }
725
726 response->payload_mapped = false;
727}
728EXPORT_SYMBOL(fw_fill_response);
729
730static u32 compute_split_timeout_timestamp(struct fw_card *card,
731 u32 request_timestamp)
732{
733 unsigned int cycles;
734 u32 timestamp;
735
736 cycles = card->split_timeout_cycles;
737 cycles += request_timestamp & 0x1fff;
738
739 timestamp = request_timestamp & ~0x1fff;
740 timestamp += (cycles / 8000) << 13;
741 timestamp |= cycles % 8000;
742
743 return timestamp;
744}
745
746static struct fw_request *allocate_request(struct fw_card *card,
747 struct fw_packet *p)
748{
749 struct fw_request *request;
750 u32 *data, length;
751 int request_tcode;
752
753 request_tcode = HEADER_GET_TCODE(p->header[0]);
754 switch (request_tcode) {
755 case TCODE_WRITE_QUADLET_REQUEST:
756 data = &p->header[3];
757 length = 4;
758 break;
759
760 case TCODE_WRITE_BLOCK_REQUEST:
761 case TCODE_LOCK_REQUEST:
762 data = p->payload;
763 length = HEADER_GET_DATA_LENGTH(p->header[3]);
764 break;
765
766 case TCODE_READ_QUADLET_REQUEST:
767 data = NULL;
768 length = 4;
769 break;
770
771 case TCODE_READ_BLOCK_REQUEST:
772 data = NULL;
773 length = HEADER_GET_DATA_LENGTH(p->header[3]);
774 break;
775
776 default:
777 fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
778 p->header[0], p->header[1], p->header[2]);
779 return NULL;
780 }
781
782 request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
783 if (request == NULL)
784 return NULL;
785
786 request->response.speed = p->speed;
787 request->response.timestamp =
788 compute_split_timeout_timestamp(card, p->timestamp);
789 request->response.generation = p->generation;
790 request->response.ack = 0;
791 request->response.callback = free_response_callback;
792 request->ack = p->ack;
793 request->timestamp = p->timestamp;
794 request->length = length;
795 if (data)
796 memcpy(request->data, data, length);
797
798 memcpy(request->request_header, p->header, sizeof(p->header));
799
800 return request;
801}
802
803void fw_send_response(struct fw_card *card,
804 struct fw_request *request, int rcode)
805{
806 if (WARN_ONCE(!request, "invalid for FCP address handlers"))
807 return;
808
809 /* unified transaction or broadcast transaction: don't respond */
810 if (request->ack != ACK_PENDING ||
811 HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
812 kfree(request);
813 return;
814 }
815
816 if (rcode == RCODE_COMPLETE)
817 fw_fill_response(&request->response, request->request_header,
818 rcode, request->data,
819 fw_get_response_length(request));
820 else
821 fw_fill_response(&request->response, request->request_header,
822 rcode, NULL, 0);
823
824 card->driver->send_response(card, &request->response);
825}
826EXPORT_SYMBOL(fw_send_response);
827
828/**
829 * fw_get_request_speed() - returns speed at which the @request was received
830 * @request: firewire request data
831 */
832int fw_get_request_speed(struct fw_request *request)
833{
834 return request->response.speed;
835}
836EXPORT_SYMBOL(fw_get_request_speed);
837
838/**
839 * fw_request_get_timestamp: Get timestamp of the request.
840 * @request: The opaque pointer to request structure.
841 *
842 * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The
843 * timestamp consists of the low order 3 bits of second field and the full 13 bits of count
844 * field of isochronous cycle time register.
845 *
846 * Returns: timestamp of the request.
847 */
848u32 fw_request_get_timestamp(const struct fw_request *request)
849{
850 return request->timestamp;
851}
852EXPORT_SYMBOL_GPL(fw_request_get_timestamp);
853
854static void handle_exclusive_region_request(struct fw_card *card,
855 struct fw_packet *p,
856 struct fw_request *request,
857 unsigned long long offset)
858{
859 struct fw_address_handler *handler;
860 int tcode, destination, source;
861
862 destination = HEADER_GET_DESTINATION(p->header[0]);
863 source = HEADER_GET_SOURCE(p->header[1]);
864 tcode = HEADER_GET_TCODE(p->header[0]);
865 if (tcode == TCODE_LOCK_REQUEST)
866 tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
867
868 rcu_read_lock();
869 handler = lookup_enclosing_address_handler(&address_handler_list,
870 offset, request->length);
871 if (handler)
872 handler->address_callback(card, request,
873 tcode, destination, source,
874 p->generation, offset,
875 request->data, request->length,
876 handler->callback_data);
877 rcu_read_unlock();
878
879 if (!handler)
880 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
881}
882
883static void handle_fcp_region_request(struct fw_card *card,
884 struct fw_packet *p,
885 struct fw_request *request,
886 unsigned long long offset)
887{
888 struct fw_address_handler *handler;
889 int tcode, destination, source;
890
891 if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
892 offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
893 request->length > 0x200) {
894 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
895
896 return;
897 }
898
899 tcode = HEADER_GET_TCODE(p->header[0]);
900 destination = HEADER_GET_DESTINATION(p->header[0]);
901 source = HEADER_GET_SOURCE(p->header[1]);
902
903 if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
904 tcode != TCODE_WRITE_BLOCK_REQUEST) {
905 fw_send_response(card, request, RCODE_TYPE_ERROR);
906
907 return;
908 }
909
910 rcu_read_lock();
911 list_for_each_entry_rcu(handler, &address_handler_list, link) {
912 if (is_enclosing_handler(handler, offset, request->length))
913 handler->address_callback(card, NULL, tcode,
914 destination, source,
915 p->generation, offset,
916 request->data,
917 request->length,
918 handler->callback_data);
919 }
920 rcu_read_unlock();
921
922 fw_send_response(card, request, RCODE_COMPLETE);
923}
924
925void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
926{
927 struct fw_request *request;
928 unsigned long long offset;
929
930 if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
931 return;
932
933 if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
934 fw_cdev_handle_phy_packet(card, p);
935 return;
936 }
937
938 request = allocate_request(card, p);
939 if (request == NULL) {
940 /* FIXME: send statically allocated busy packet. */
941 return;
942 }
943
944 offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
945 p->header[2];
946
947 if (!is_in_fcp_region(offset, request->length))
948 handle_exclusive_region_request(card, p, request, offset);
949 else
950 handle_fcp_region_request(card, p, request, offset);
951
952}
953EXPORT_SYMBOL(fw_core_handle_request);
954
955void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
956{
957 struct fw_transaction *t = NULL, *iter;
958 unsigned long flags;
959 u32 *data;
960 size_t data_length;
961 int tcode, tlabel, source, rcode;
962
963 tcode = HEADER_GET_TCODE(p->header[0]);
964 tlabel = HEADER_GET_TLABEL(p->header[0]);
965 source = HEADER_GET_SOURCE(p->header[1]);
966 rcode = HEADER_GET_RCODE(p->header[1]);
967
968 spin_lock_irqsave(&card->lock, flags);
969 list_for_each_entry(iter, &card->transaction_list, link) {
970 if (iter->node_id == source && iter->tlabel == tlabel) {
971 if (!try_cancel_split_timeout(iter)) {
972 spin_unlock_irqrestore(&card->lock, flags);
973 goto timed_out;
974 }
975 list_del_init(&iter->link);
976 card->tlabel_mask &= ~(1ULL << iter->tlabel);
977 t = iter;
978 break;
979 }
980 }
981 spin_unlock_irqrestore(&card->lock, flags);
982
983 if (!t) {
984 timed_out:
985 fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
986 source, tlabel);
987 return;
988 }
989
990 /*
991 * FIXME: sanity check packet, is length correct, does tcodes
992 * and addresses match.
993 */
994
995 switch (tcode) {
996 case TCODE_READ_QUADLET_RESPONSE:
997 data = (u32 *) &p->header[3];
998 data_length = 4;
999 break;
1000
1001 case TCODE_WRITE_RESPONSE:
1002 data = NULL;
1003 data_length = 0;
1004 break;
1005
1006 case TCODE_READ_BLOCK_RESPONSE:
1007 case TCODE_LOCK_RESPONSE:
1008 data = p->payload;
1009 data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
1010 break;
1011
1012 default:
1013 /* Should never happen, this is just to shut up gcc. */
1014 data = NULL;
1015 data_length = 0;
1016 break;
1017 }
1018
1019 /*
1020 * The response handler may be executed while the request handler
1021 * is still pending. Cancel the request handler.
1022 */
1023 card->driver->cancel_packet(card, &t->packet);
1024
1025 t->callback(card, rcode, data, data_length, t->callback_data);
1026}
1027EXPORT_SYMBOL(fw_core_handle_response);
1028
1029/**
1030 * fw_rcode_string - convert a firewire result code to an error description
1031 * @rcode: the result code
1032 */
1033const char *fw_rcode_string(int rcode)
1034{
1035 static const char *const names[] = {
1036 [RCODE_COMPLETE] = "no error",
1037 [RCODE_CONFLICT_ERROR] = "conflict error",
1038 [RCODE_DATA_ERROR] = "data error",
1039 [RCODE_TYPE_ERROR] = "type error",
1040 [RCODE_ADDRESS_ERROR] = "address error",
1041 [RCODE_SEND_ERROR] = "send error",
1042 [RCODE_CANCELLED] = "timeout",
1043 [RCODE_BUSY] = "busy",
1044 [RCODE_GENERATION] = "bus reset",
1045 [RCODE_NO_ACK] = "no ack",
1046 };
1047
1048 if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1049 return names[rcode];
1050 else
1051 return "unknown";
1052}
1053EXPORT_SYMBOL(fw_rcode_string);
1054
1055static const struct fw_address_region topology_map_region =
1056 { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1057 .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1058
1059static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1060 int tcode, int destination, int source, int generation,
1061 unsigned long long offset, void *payload, size_t length,
1062 void *callback_data)
1063{
1064 int start;
1065
1066 if (!TCODE_IS_READ_REQUEST(tcode)) {
1067 fw_send_response(card, request, RCODE_TYPE_ERROR);
1068 return;
1069 }
1070
1071 if ((offset & 3) > 0 || (length & 3) > 0) {
1072 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1073 return;
1074 }
1075
1076 start = (offset - topology_map_region.start) / 4;
1077 memcpy(payload, &card->topology_map[start], length);
1078
1079 fw_send_response(card, request, RCODE_COMPLETE);
1080}
1081
1082static struct fw_address_handler topology_map = {
1083 .length = 0x400,
1084 .address_callback = handle_topology_map,
1085};
1086
1087static const struct fw_address_region registers_region =
1088 { .start = CSR_REGISTER_BASE,
1089 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1090
1091static void update_split_timeout(struct fw_card *card)
1092{
1093 unsigned int cycles;
1094
1095 cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1096
1097 /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1098 cycles = clamp(cycles, 800u, 3u * 8000u);
1099
1100 card->split_timeout_cycles = cycles;
1101 card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1102}
1103
1104static void handle_registers(struct fw_card *card, struct fw_request *request,
1105 int tcode, int destination, int source, int generation,
1106 unsigned long long offset, void *payload, size_t length,
1107 void *callback_data)
1108{
1109 int reg = offset & ~CSR_REGISTER_BASE;
1110 __be32 *data = payload;
1111 int rcode = RCODE_COMPLETE;
1112 unsigned long flags;
1113
1114 switch (reg) {
1115 case CSR_PRIORITY_BUDGET:
1116 if (!card->priority_budget_implemented) {
1117 rcode = RCODE_ADDRESS_ERROR;
1118 break;
1119 }
1120 fallthrough;
1121
1122 case CSR_NODE_IDS:
1123 /*
1124 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1125 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1126 */
1127 fallthrough;
1128
1129 case CSR_STATE_CLEAR:
1130 case CSR_STATE_SET:
1131 case CSR_CYCLE_TIME:
1132 case CSR_BUS_TIME:
1133 case CSR_BUSY_TIMEOUT:
1134 if (tcode == TCODE_READ_QUADLET_REQUEST)
1135 *data = cpu_to_be32(card->driver->read_csr(card, reg));
1136 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1137 card->driver->write_csr(card, reg, be32_to_cpu(*data));
1138 else
1139 rcode = RCODE_TYPE_ERROR;
1140 break;
1141
1142 case CSR_RESET_START:
1143 if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1144 card->driver->write_csr(card, CSR_STATE_CLEAR,
1145 CSR_STATE_BIT_ABDICATE);
1146 else
1147 rcode = RCODE_TYPE_ERROR;
1148 break;
1149
1150 case CSR_SPLIT_TIMEOUT_HI:
1151 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1152 *data = cpu_to_be32(card->split_timeout_hi);
1153 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1154 spin_lock_irqsave(&card->lock, flags);
1155 card->split_timeout_hi = be32_to_cpu(*data) & 7;
1156 update_split_timeout(card);
1157 spin_unlock_irqrestore(&card->lock, flags);
1158 } else {
1159 rcode = RCODE_TYPE_ERROR;
1160 }
1161 break;
1162
1163 case CSR_SPLIT_TIMEOUT_LO:
1164 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1165 *data = cpu_to_be32(card->split_timeout_lo);
1166 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1167 spin_lock_irqsave(&card->lock, flags);
1168 card->split_timeout_lo =
1169 be32_to_cpu(*data) & 0xfff80000;
1170 update_split_timeout(card);
1171 spin_unlock_irqrestore(&card->lock, flags);
1172 } else {
1173 rcode = RCODE_TYPE_ERROR;
1174 }
1175 break;
1176
1177 case CSR_MAINT_UTILITY:
1178 if (tcode == TCODE_READ_QUADLET_REQUEST)
1179 *data = card->maint_utility_register;
1180 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1181 card->maint_utility_register = *data;
1182 else
1183 rcode = RCODE_TYPE_ERROR;
1184 break;
1185
1186 case CSR_BROADCAST_CHANNEL:
1187 if (tcode == TCODE_READ_QUADLET_REQUEST)
1188 *data = cpu_to_be32(card->broadcast_channel);
1189 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1190 card->broadcast_channel =
1191 (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1192 BROADCAST_CHANNEL_INITIAL;
1193 else
1194 rcode = RCODE_TYPE_ERROR;
1195 break;
1196
1197 case CSR_BUS_MANAGER_ID:
1198 case CSR_BANDWIDTH_AVAILABLE:
1199 case CSR_CHANNELS_AVAILABLE_HI:
1200 case CSR_CHANNELS_AVAILABLE_LO:
1201 /*
1202 * FIXME: these are handled by the OHCI hardware and
1203 * the stack never sees these request. If we add
1204 * support for a new type of controller that doesn't
1205 * handle this in hardware we need to deal with these
1206 * transactions.
1207 */
1208 BUG();
1209 break;
1210
1211 default:
1212 rcode = RCODE_ADDRESS_ERROR;
1213 break;
1214 }
1215
1216 fw_send_response(card, request, rcode);
1217}
1218
1219static struct fw_address_handler registers = {
1220 .length = 0x400,
1221 .address_callback = handle_registers,
1222};
1223
1224static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1225 int tcode, int destination, int source, int generation,
1226 unsigned long long offset, void *payload, size_t length,
1227 void *callback_data)
1228{
1229 /*
1230 * This catches requests not handled by the physical DMA unit,
1231 * i.e., wrong transaction types or unauthorized source nodes.
1232 */
1233 fw_send_response(card, request, RCODE_TYPE_ERROR);
1234}
1235
1236static struct fw_address_handler low_memory = {
1237 .length = FW_MAX_PHYSICAL_RANGE,
1238 .address_callback = handle_low_memory,
1239};
1240
1241MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1242MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1243MODULE_LICENSE("GPL");
1244
1245static const u32 vendor_textual_descriptor[] = {
1246 /* textual descriptor leaf () */
1247 0x00060000,
1248 0x00000000,
1249 0x00000000,
1250 0x4c696e75, /* L i n u */
1251 0x78204669, /* x F i */
1252 0x72657769, /* r e w i */
1253 0x72650000, /* r e */
1254};
1255
1256static const u32 model_textual_descriptor[] = {
1257 /* model descriptor leaf () */
1258 0x00030000,
1259 0x00000000,
1260 0x00000000,
1261 0x4a756a75, /* J u j u */
1262};
1263
1264static struct fw_descriptor vendor_id_descriptor = {
1265 .length = ARRAY_SIZE(vendor_textual_descriptor),
1266 .immediate = 0x03001f11,
1267 .key = 0x81000000,
1268 .data = vendor_textual_descriptor,
1269};
1270
1271static struct fw_descriptor model_id_descriptor = {
1272 .length = ARRAY_SIZE(model_textual_descriptor),
1273 .immediate = 0x17023901,
1274 .key = 0x81000000,
1275 .data = model_textual_descriptor,
1276};
1277
1278static int __init fw_core_init(void)
1279{
1280 int ret;
1281
1282 fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1283 if (!fw_workqueue)
1284 return -ENOMEM;
1285
1286 ret = bus_register(&fw_bus_type);
1287 if (ret < 0) {
1288 destroy_workqueue(fw_workqueue);
1289 return ret;
1290 }
1291
1292 fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1293 if (fw_cdev_major < 0) {
1294 bus_unregister(&fw_bus_type);
1295 destroy_workqueue(fw_workqueue);
1296 return fw_cdev_major;
1297 }
1298
1299 fw_core_add_address_handler(&topology_map, &topology_map_region);
1300 fw_core_add_address_handler(®isters, ®isters_region);
1301 fw_core_add_address_handler(&low_memory, &low_memory_region);
1302 fw_core_add_descriptor(&vendor_id_descriptor);
1303 fw_core_add_descriptor(&model_id_descriptor);
1304
1305 return 0;
1306}
1307
1308static void __exit fw_core_cleanup(void)
1309{
1310 unregister_chrdev(fw_cdev_major, "firewire");
1311 bus_unregister(&fw_bus_type);
1312 destroy_workqueue(fw_workqueue);
1313 idr_destroy(&fw_device_idr);
1314}
1315
1316module_init(fw_core_init);
1317module_exit(fw_core_cleanup);
1/*
2 * Core IEEE1394 transaction logic
3 *
4 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21#include <linux/bug.h>
22#include <linux/completion.h>
23#include <linux/device.h>
24#include <linux/errno.h>
25#include <linux/firewire.h>
26#include <linux/firewire-constants.h>
27#include <linux/fs.h>
28#include <linux/init.h>
29#include <linux/idr.h>
30#include <linux/jiffies.h>
31#include <linux/kernel.h>
32#include <linux/list.h>
33#include <linux/module.h>
34#include <linux/rculist.h>
35#include <linux/slab.h>
36#include <linux/spinlock.h>
37#include <linux/string.h>
38#include <linux/timer.h>
39#include <linux/types.h>
40#include <linux/workqueue.h>
41
42#include <asm/byteorder.h>
43
44#include "core.h"
45
46#define HEADER_PRI(pri) ((pri) << 0)
47#define HEADER_TCODE(tcode) ((tcode) << 4)
48#define HEADER_RETRY(retry) ((retry) << 8)
49#define HEADER_TLABEL(tlabel) ((tlabel) << 10)
50#define HEADER_DESTINATION(destination) ((destination) << 16)
51#define HEADER_SOURCE(source) ((source) << 16)
52#define HEADER_RCODE(rcode) ((rcode) << 12)
53#define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0)
54#define HEADER_DATA_LENGTH(length) ((length) << 16)
55#define HEADER_EXTENDED_TCODE(tcode) ((tcode) << 0)
56
57#define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
58#define HEADER_GET_TLABEL(q) (((q) >> 10) & 0x3f)
59#define HEADER_GET_RCODE(q) (((q) >> 12) & 0x0f)
60#define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
61#define HEADER_GET_SOURCE(q) (((q) >> 16) & 0xffff)
62#define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
63#define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
64#define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
65
66#define HEADER_DESTINATION_IS_BROADCAST(q) \
67 (((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
68
69#define PHY_PACKET_CONFIG 0x0
70#define PHY_PACKET_LINK_ON 0x1
71#define PHY_PACKET_SELF_ID 0x2
72
73#define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22))
74#define PHY_CONFIG_ROOT_ID(node_id) ((((node_id) & 0x3f) << 24) | (1 << 23))
75#define PHY_IDENTIFIER(id) ((id) << 30)
76
77/* returns 0 if the split timeout handler is already running */
78static int try_cancel_split_timeout(struct fw_transaction *t)
79{
80 if (t->is_split_transaction)
81 return del_timer(&t->split_timeout_timer);
82 else
83 return 1;
84}
85
86static int close_transaction(struct fw_transaction *transaction,
87 struct fw_card *card, int rcode)
88{
89 struct fw_transaction *t;
90 unsigned long flags;
91
92 spin_lock_irqsave(&card->lock, flags);
93 list_for_each_entry(t, &card->transaction_list, link) {
94 if (t == transaction) {
95 if (!try_cancel_split_timeout(t)) {
96 spin_unlock_irqrestore(&card->lock, flags);
97 goto timed_out;
98 }
99 list_del_init(&t->link);
100 card->tlabel_mask &= ~(1ULL << t->tlabel);
101 break;
102 }
103 }
104 spin_unlock_irqrestore(&card->lock, flags);
105
106 if (&t->link != &card->transaction_list) {
107 t->callback(card, rcode, NULL, 0, t->callback_data);
108 return 0;
109 }
110
111 timed_out:
112 return -ENOENT;
113}
114
115/*
116 * Only valid for transactions that are potentially pending (ie have
117 * been sent).
118 */
119int fw_cancel_transaction(struct fw_card *card,
120 struct fw_transaction *transaction)
121{
122 /*
123 * Cancel the packet transmission if it's still queued. That
124 * will call the packet transmission callback which cancels
125 * the transaction.
126 */
127
128 if (card->driver->cancel_packet(card, &transaction->packet) == 0)
129 return 0;
130
131 /*
132 * If the request packet has already been sent, we need to see
133 * if the transaction is still pending and remove it in that case.
134 */
135
136 return close_transaction(transaction, card, RCODE_CANCELLED);
137}
138EXPORT_SYMBOL(fw_cancel_transaction);
139
140static void split_transaction_timeout_callback(unsigned long data)
141{
142 struct fw_transaction *t = (struct fw_transaction *)data;
143 struct fw_card *card = t->card;
144 unsigned long flags;
145
146 spin_lock_irqsave(&card->lock, flags);
147 if (list_empty(&t->link)) {
148 spin_unlock_irqrestore(&card->lock, flags);
149 return;
150 }
151 list_del(&t->link);
152 card->tlabel_mask &= ~(1ULL << t->tlabel);
153 spin_unlock_irqrestore(&card->lock, flags);
154
155 t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
156}
157
158static void start_split_transaction_timeout(struct fw_transaction *t,
159 struct fw_card *card)
160{
161 unsigned long flags;
162
163 spin_lock_irqsave(&card->lock, flags);
164
165 if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
166 spin_unlock_irqrestore(&card->lock, flags);
167 return;
168 }
169
170 t->is_split_transaction = true;
171 mod_timer(&t->split_timeout_timer,
172 jiffies + card->split_timeout_jiffies);
173
174 spin_unlock_irqrestore(&card->lock, flags);
175}
176
177static void transmit_complete_callback(struct fw_packet *packet,
178 struct fw_card *card, int status)
179{
180 struct fw_transaction *t =
181 container_of(packet, struct fw_transaction, packet);
182
183 switch (status) {
184 case ACK_COMPLETE:
185 close_transaction(t, card, RCODE_COMPLETE);
186 break;
187 case ACK_PENDING:
188 start_split_transaction_timeout(t, card);
189 break;
190 case ACK_BUSY_X:
191 case ACK_BUSY_A:
192 case ACK_BUSY_B:
193 close_transaction(t, card, RCODE_BUSY);
194 break;
195 case ACK_DATA_ERROR:
196 close_transaction(t, card, RCODE_DATA_ERROR);
197 break;
198 case ACK_TYPE_ERROR:
199 close_transaction(t, card, RCODE_TYPE_ERROR);
200 break;
201 default:
202 /*
203 * In this case the ack is really a juju specific
204 * rcode, so just forward that to the callback.
205 */
206 close_transaction(t, card, status);
207 break;
208 }
209}
210
211static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
212 int destination_id, int source_id, int generation, int speed,
213 unsigned long long offset, void *payload, size_t length)
214{
215 int ext_tcode;
216
217 if (tcode == TCODE_STREAM_DATA) {
218 packet->header[0] =
219 HEADER_DATA_LENGTH(length) |
220 destination_id |
221 HEADER_TCODE(TCODE_STREAM_DATA);
222 packet->header_length = 4;
223 packet->payload = payload;
224 packet->payload_length = length;
225
226 goto common;
227 }
228
229 if (tcode > 0x10) {
230 ext_tcode = tcode & ~0x10;
231 tcode = TCODE_LOCK_REQUEST;
232 } else
233 ext_tcode = 0;
234
235 packet->header[0] =
236 HEADER_RETRY(RETRY_X) |
237 HEADER_TLABEL(tlabel) |
238 HEADER_TCODE(tcode) |
239 HEADER_DESTINATION(destination_id);
240 packet->header[1] =
241 HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
242 packet->header[2] =
243 offset;
244
245 switch (tcode) {
246 case TCODE_WRITE_QUADLET_REQUEST:
247 packet->header[3] = *(u32 *)payload;
248 packet->header_length = 16;
249 packet->payload_length = 0;
250 break;
251
252 case TCODE_LOCK_REQUEST:
253 case TCODE_WRITE_BLOCK_REQUEST:
254 packet->header[3] =
255 HEADER_DATA_LENGTH(length) |
256 HEADER_EXTENDED_TCODE(ext_tcode);
257 packet->header_length = 16;
258 packet->payload = payload;
259 packet->payload_length = length;
260 break;
261
262 case TCODE_READ_QUADLET_REQUEST:
263 packet->header_length = 12;
264 packet->payload_length = 0;
265 break;
266
267 case TCODE_READ_BLOCK_REQUEST:
268 packet->header[3] =
269 HEADER_DATA_LENGTH(length) |
270 HEADER_EXTENDED_TCODE(ext_tcode);
271 packet->header_length = 16;
272 packet->payload_length = 0;
273 break;
274
275 default:
276 WARN(1, "wrong tcode %d\n", tcode);
277 }
278 common:
279 packet->speed = speed;
280 packet->generation = generation;
281 packet->ack = 0;
282 packet->payload_mapped = false;
283}
284
285static int allocate_tlabel(struct fw_card *card)
286{
287 int tlabel;
288
289 tlabel = card->current_tlabel;
290 while (card->tlabel_mask & (1ULL << tlabel)) {
291 tlabel = (tlabel + 1) & 0x3f;
292 if (tlabel == card->current_tlabel)
293 return -EBUSY;
294 }
295
296 card->current_tlabel = (tlabel + 1) & 0x3f;
297 card->tlabel_mask |= 1ULL << tlabel;
298
299 return tlabel;
300}
301
302/**
303 * fw_send_request() - submit a request packet for transmission
304 * @card: interface to send the request at
305 * @t: transaction instance to which the request belongs
306 * @tcode: transaction code
307 * @destination_id: destination node ID, consisting of bus_ID and phy_ID
308 * @generation: bus generation in which request and response are valid
309 * @speed: transmission speed
310 * @offset: 48bit wide offset into destination's address space
311 * @payload: data payload for the request subaction
312 * @length: length of the payload, in bytes
313 * @callback: function to be called when the transaction is completed
314 * @callback_data: data to be passed to the transaction completion callback
315 *
316 * Submit a request packet into the asynchronous request transmission queue.
317 * Can be called from atomic context. If you prefer a blocking API, use
318 * fw_run_transaction() in a context that can sleep.
319 *
320 * In case of lock requests, specify one of the firewire-core specific %TCODE_
321 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
322 *
323 * Make sure that the value in @destination_id is not older than the one in
324 * @generation. Otherwise the request is in danger to be sent to a wrong node.
325 *
326 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
327 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
328 * It will contain tag, channel, and sy data instead of a node ID then.
329 *
330 * The payload buffer at @data is going to be DMA-mapped except in case of
331 * @length <= 8 or of local (loopback) requests. Hence make sure that the
332 * buffer complies with the restrictions of the streaming DMA mapping API.
333 * @payload must not be freed before the @callback is called.
334 *
335 * In case of request types without payload, @data is NULL and @length is 0.
336 *
337 * After the transaction is completed successfully or unsuccessfully, the
338 * @callback will be called. Among its parameters is the response code which
339 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
340 * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core
341 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
342 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
343 * generation, or missing ACK respectively.
344 *
345 * Note some timing corner cases: fw_send_request() may complete much earlier
346 * than when the request packet actually hits the wire. On the other hand,
347 * transaction completion and hence execution of @callback may happen even
348 * before fw_send_request() returns.
349 */
350void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
351 int destination_id, int generation, int speed,
352 unsigned long long offset, void *payload, size_t length,
353 fw_transaction_callback_t callback, void *callback_data)
354{
355 unsigned long flags;
356 int tlabel;
357
358 /*
359 * Allocate tlabel from the bitmap and put the transaction on
360 * the list while holding the card spinlock.
361 */
362
363 spin_lock_irqsave(&card->lock, flags);
364
365 tlabel = allocate_tlabel(card);
366 if (tlabel < 0) {
367 spin_unlock_irqrestore(&card->lock, flags);
368 callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
369 return;
370 }
371
372 t->node_id = destination_id;
373 t->tlabel = tlabel;
374 t->card = card;
375 t->is_split_transaction = false;
376 setup_timer(&t->split_timeout_timer,
377 split_transaction_timeout_callback, (unsigned long)t);
378 t->callback = callback;
379 t->callback_data = callback_data;
380
381 fw_fill_request(&t->packet, tcode, t->tlabel,
382 destination_id, card->node_id, generation,
383 speed, offset, payload, length);
384 t->packet.callback = transmit_complete_callback;
385
386 list_add_tail(&t->link, &card->transaction_list);
387
388 spin_unlock_irqrestore(&card->lock, flags);
389
390 card->driver->send_request(card, &t->packet);
391}
392EXPORT_SYMBOL(fw_send_request);
393
394struct transaction_callback_data {
395 struct completion done;
396 void *payload;
397 int rcode;
398};
399
400static void transaction_callback(struct fw_card *card, int rcode,
401 void *payload, size_t length, void *data)
402{
403 struct transaction_callback_data *d = data;
404
405 if (rcode == RCODE_COMPLETE)
406 memcpy(d->payload, payload, length);
407 d->rcode = rcode;
408 complete(&d->done);
409}
410
411/**
412 * fw_run_transaction() - send request and sleep until transaction is completed
413 *
414 * Returns the RCODE. See fw_send_request() for parameter documentation.
415 * Unlike fw_send_request(), @data points to the payload of the request or/and
416 * to the payload of the response. DMA mapping restrictions apply to outbound
417 * request payloads of >= 8 bytes but not to inbound response payloads.
418 */
419int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
420 int generation, int speed, unsigned long long offset,
421 void *payload, size_t length)
422{
423 struct transaction_callback_data d;
424 struct fw_transaction t;
425
426 init_timer_on_stack(&t.split_timeout_timer);
427 init_completion(&d.done);
428 d.payload = payload;
429 fw_send_request(card, &t, tcode, destination_id, generation, speed,
430 offset, payload, length, transaction_callback, &d);
431 wait_for_completion(&d.done);
432 destroy_timer_on_stack(&t.split_timeout_timer);
433
434 return d.rcode;
435}
436EXPORT_SYMBOL(fw_run_transaction);
437
438static DEFINE_MUTEX(phy_config_mutex);
439static DECLARE_COMPLETION(phy_config_done);
440
441static void transmit_phy_packet_callback(struct fw_packet *packet,
442 struct fw_card *card, int status)
443{
444 complete(&phy_config_done);
445}
446
447static struct fw_packet phy_config_packet = {
448 .header_length = 12,
449 .header[0] = TCODE_LINK_INTERNAL << 4,
450 .payload_length = 0,
451 .speed = SCODE_100,
452 .callback = transmit_phy_packet_callback,
453};
454
455void fw_send_phy_config(struct fw_card *card,
456 int node_id, int generation, int gap_count)
457{
458 long timeout = DIV_ROUND_UP(HZ, 10);
459 u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
460
461 if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
462 data |= PHY_CONFIG_ROOT_ID(node_id);
463
464 if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
465 gap_count = card->driver->read_phy_reg(card, 1);
466 if (gap_count < 0)
467 return;
468
469 gap_count &= 63;
470 if (gap_count == 63)
471 return;
472 }
473 data |= PHY_CONFIG_GAP_COUNT(gap_count);
474
475 mutex_lock(&phy_config_mutex);
476
477 phy_config_packet.header[1] = data;
478 phy_config_packet.header[2] = ~data;
479 phy_config_packet.generation = generation;
480 reinit_completion(&phy_config_done);
481
482 card->driver->send_request(card, &phy_config_packet);
483 wait_for_completion_timeout(&phy_config_done, timeout);
484
485 mutex_unlock(&phy_config_mutex);
486}
487
488static struct fw_address_handler *lookup_overlapping_address_handler(
489 struct list_head *list, unsigned long long offset, size_t length)
490{
491 struct fw_address_handler *handler;
492
493 list_for_each_entry_rcu(handler, list, link) {
494 if (handler->offset < offset + length &&
495 offset < handler->offset + handler->length)
496 return handler;
497 }
498
499 return NULL;
500}
501
502static bool is_enclosing_handler(struct fw_address_handler *handler,
503 unsigned long long offset, size_t length)
504{
505 return handler->offset <= offset &&
506 offset + length <= handler->offset + handler->length;
507}
508
509static struct fw_address_handler *lookup_enclosing_address_handler(
510 struct list_head *list, unsigned long long offset, size_t length)
511{
512 struct fw_address_handler *handler;
513
514 list_for_each_entry_rcu(handler, list, link) {
515 if (is_enclosing_handler(handler, offset, length))
516 return handler;
517 }
518
519 return NULL;
520}
521
522static DEFINE_SPINLOCK(address_handler_list_lock);
523static LIST_HEAD(address_handler_list);
524
525const struct fw_address_region fw_high_memory_region =
526 { .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
527EXPORT_SYMBOL(fw_high_memory_region);
528
529static const struct fw_address_region low_memory_region =
530 { .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
531
532#if 0
533const struct fw_address_region fw_private_region =
534 { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, };
535const struct fw_address_region fw_csr_region =
536 { .start = CSR_REGISTER_BASE,
537 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, };
538const struct fw_address_region fw_unit_space_region =
539 { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
540#endif /* 0 */
541
542static bool is_in_fcp_region(u64 offset, size_t length)
543{
544 return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
545 offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
546}
547
548/**
549 * fw_core_add_address_handler() - register for incoming requests
550 * @handler: callback
551 * @region: region in the IEEE 1212 node space address range
552 *
553 * region->start, ->end, and handler->length have to be quadlet-aligned.
554 *
555 * When a request is received that falls within the specified address range,
556 * the specified callback is invoked. The parameters passed to the callback
557 * give the details of the particular request.
558 *
559 * To be called in process context.
560 * Return value: 0 on success, non-zero otherwise.
561 *
562 * The start offset of the handler's address region is determined by
563 * fw_core_add_address_handler() and is returned in handler->offset.
564 *
565 * Address allocations are exclusive, except for the FCP registers.
566 */
567int fw_core_add_address_handler(struct fw_address_handler *handler,
568 const struct fw_address_region *region)
569{
570 struct fw_address_handler *other;
571 int ret = -EBUSY;
572
573 if (region->start & 0xffff000000000003ULL ||
574 region->start >= region->end ||
575 region->end > 0x0001000000000000ULL ||
576 handler->length & 3 ||
577 handler->length == 0)
578 return -EINVAL;
579
580 spin_lock(&address_handler_list_lock);
581
582 handler->offset = region->start;
583 while (handler->offset + handler->length <= region->end) {
584 if (is_in_fcp_region(handler->offset, handler->length))
585 other = NULL;
586 else
587 other = lookup_overlapping_address_handler
588 (&address_handler_list,
589 handler->offset, handler->length);
590 if (other != NULL) {
591 handler->offset += other->length;
592 } else {
593 list_add_tail_rcu(&handler->link, &address_handler_list);
594 ret = 0;
595 break;
596 }
597 }
598
599 spin_unlock(&address_handler_list_lock);
600
601 return ret;
602}
603EXPORT_SYMBOL(fw_core_add_address_handler);
604
605/**
606 * fw_core_remove_address_handler() - unregister an address handler
607 *
608 * To be called in process context.
609 *
610 * When fw_core_remove_address_handler() returns, @handler->callback() is
611 * guaranteed to not run on any CPU anymore.
612 */
613void fw_core_remove_address_handler(struct fw_address_handler *handler)
614{
615 spin_lock(&address_handler_list_lock);
616 list_del_rcu(&handler->link);
617 spin_unlock(&address_handler_list_lock);
618 synchronize_rcu();
619}
620EXPORT_SYMBOL(fw_core_remove_address_handler);
621
622struct fw_request {
623 struct fw_packet response;
624 u32 request_header[4];
625 int ack;
626 u32 length;
627 u32 data[0];
628};
629
630static void free_response_callback(struct fw_packet *packet,
631 struct fw_card *card, int status)
632{
633 struct fw_request *request;
634
635 request = container_of(packet, struct fw_request, response);
636 kfree(request);
637}
638
639int fw_get_response_length(struct fw_request *r)
640{
641 int tcode, ext_tcode, data_length;
642
643 tcode = HEADER_GET_TCODE(r->request_header[0]);
644
645 switch (tcode) {
646 case TCODE_WRITE_QUADLET_REQUEST:
647 case TCODE_WRITE_BLOCK_REQUEST:
648 return 0;
649
650 case TCODE_READ_QUADLET_REQUEST:
651 return 4;
652
653 case TCODE_READ_BLOCK_REQUEST:
654 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
655 return data_length;
656
657 case TCODE_LOCK_REQUEST:
658 ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
659 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
660 switch (ext_tcode) {
661 case EXTCODE_FETCH_ADD:
662 case EXTCODE_LITTLE_ADD:
663 return data_length;
664 default:
665 return data_length / 2;
666 }
667
668 default:
669 WARN(1, "wrong tcode %d\n", tcode);
670 return 0;
671 }
672}
673
674void fw_fill_response(struct fw_packet *response, u32 *request_header,
675 int rcode, void *payload, size_t length)
676{
677 int tcode, tlabel, extended_tcode, source, destination;
678
679 tcode = HEADER_GET_TCODE(request_header[0]);
680 tlabel = HEADER_GET_TLABEL(request_header[0]);
681 source = HEADER_GET_DESTINATION(request_header[0]);
682 destination = HEADER_GET_SOURCE(request_header[1]);
683 extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
684
685 response->header[0] =
686 HEADER_RETRY(RETRY_1) |
687 HEADER_TLABEL(tlabel) |
688 HEADER_DESTINATION(destination);
689 response->header[1] =
690 HEADER_SOURCE(source) |
691 HEADER_RCODE(rcode);
692 response->header[2] = 0;
693
694 switch (tcode) {
695 case TCODE_WRITE_QUADLET_REQUEST:
696 case TCODE_WRITE_BLOCK_REQUEST:
697 response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
698 response->header_length = 12;
699 response->payload_length = 0;
700 break;
701
702 case TCODE_READ_QUADLET_REQUEST:
703 response->header[0] |=
704 HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
705 if (payload != NULL)
706 response->header[3] = *(u32 *)payload;
707 else
708 response->header[3] = 0;
709 response->header_length = 16;
710 response->payload_length = 0;
711 break;
712
713 case TCODE_READ_BLOCK_REQUEST:
714 case TCODE_LOCK_REQUEST:
715 response->header[0] |= HEADER_TCODE(tcode + 2);
716 response->header[3] =
717 HEADER_DATA_LENGTH(length) |
718 HEADER_EXTENDED_TCODE(extended_tcode);
719 response->header_length = 16;
720 response->payload = payload;
721 response->payload_length = length;
722 break;
723
724 default:
725 WARN(1, "wrong tcode %d\n", tcode);
726 }
727
728 response->payload_mapped = false;
729}
730EXPORT_SYMBOL(fw_fill_response);
731
732static u32 compute_split_timeout_timestamp(struct fw_card *card,
733 u32 request_timestamp)
734{
735 unsigned int cycles;
736 u32 timestamp;
737
738 cycles = card->split_timeout_cycles;
739 cycles += request_timestamp & 0x1fff;
740
741 timestamp = request_timestamp & ~0x1fff;
742 timestamp += (cycles / 8000) << 13;
743 timestamp |= cycles % 8000;
744
745 return timestamp;
746}
747
748static struct fw_request *allocate_request(struct fw_card *card,
749 struct fw_packet *p)
750{
751 struct fw_request *request;
752 u32 *data, length;
753 int request_tcode;
754
755 request_tcode = HEADER_GET_TCODE(p->header[0]);
756 switch (request_tcode) {
757 case TCODE_WRITE_QUADLET_REQUEST:
758 data = &p->header[3];
759 length = 4;
760 break;
761
762 case TCODE_WRITE_BLOCK_REQUEST:
763 case TCODE_LOCK_REQUEST:
764 data = p->payload;
765 length = HEADER_GET_DATA_LENGTH(p->header[3]);
766 break;
767
768 case TCODE_READ_QUADLET_REQUEST:
769 data = NULL;
770 length = 4;
771 break;
772
773 case TCODE_READ_BLOCK_REQUEST:
774 data = NULL;
775 length = HEADER_GET_DATA_LENGTH(p->header[3]);
776 break;
777
778 default:
779 fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
780 p->header[0], p->header[1], p->header[2]);
781 return NULL;
782 }
783
784 request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
785 if (request == NULL)
786 return NULL;
787
788 request->response.speed = p->speed;
789 request->response.timestamp =
790 compute_split_timeout_timestamp(card, p->timestamp);
791 request->response.generation = p->generation;
792 request->response.ack = 0;
793 request->response.callback = free_response_callback;
794 request->ack = p->ack;
795 request->length = length;
796 if (data)
797 memcpy(request->data, data, length);
798
799 memcpy(request->request_header, p->header, sizeof(p->header));
800
801 return request;
802}
803
804void fw_send_response(struct fw_card *card,
805 struct fw_request *request, int rcode)
806{
807 if (WARN_ONCE(!request, "invalid for FCP address handlers"))
808 return;
809
810 /* unified transaction or broadcast transaction: don't respond */
811 if (request->ack != ACK_PENDING ||
812 HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
813 kfree(request);
814 return;
815 }
816
817 if (rcode == RCODE_COMPLETE)
818 fw_fill_response(&request->response, request->request_header,
819 rcode, request->data,
820 fw_get_response_length(request));
821 else
822 fw_fill_response(&request->response, request->request_header,
823 rcode, NULL, 0);
824
825 card->driver->send_response(card, &request->response);
826}
827EXPORT_SYMBOL(fw_send_response);
828
829/**
830 * fw_get_request_speed() - returns speed at which the @request was received
831 */
832int fw_get_request_speed(struct fw_request *request)
833{
834 return request->response.speed;
835}
836EXPORT_SYMBOL(fw_get_request_speed);
837
838static void handle_exclusive_region_request(struct fw_card *card,
839 struct fw_packet *p,
840 struct fw_request *request,
841 unsigned long long offset)
842{
843 struct fw_address_handler *handler;
844 int tcode, destination, source;
845
846 destination = HEADER_GET_DESTINATION(p->header[0]);
847 source = HEADER_GET_SOURCE(p->header[1]);
848 tcode = HEADER_GET_TCODE(p->header[0]);
849 if (tcode == TCODE_LOCK_REQUEST)
850 tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
851
852 rcu_read_lock();
853 handler = lookup_enclosing_address_handler(&address_handler_list,
854 offset, request->length);
855 if (handler)
856 handler->address_callback(card, request,
857 tcode, destination, source,
858 p->generation, offset,
859 request->data, request->length,
860 handler->callback_data);
861 rcu_read_unlock();
862
863 if (!handler)
864 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
865}
866
867static void handle_fcp_region_request(struct fw_card *card,
868 struct fw_packet *p,
869 struct fw_request *request,
870 unsigned long long offset)
871{
872 struct fw_address_handler *handler;
873 int tcode, destination, source;
874
875 if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
876 offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
877 request->length > 0x200) {
878 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
879
880 return;
881 }
882
883 tcode = HEADER_GET_TCODE(p->header[0]);
884 destination = HEADER_GET_DESTINATION(p->header[0]);
885 source = HEADER_GET_SOURCE(p->header[1]);
886
887 if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
888 tcode != TCODE_WRITE_BLOCK_REQUEST) {
889 fw_send_response(card, request, RCODE_TYPE_ERROR);
890
891 return;
892 }
893
894 rcu_read_lock();
895 list_for_each_entry_rcu(handler, &address_handler_list, link) {
896 if (is_enclosing_handler(handler, offset, request->length))
897 handler->address_callback(card, NULL, tcode,
898 destination, source,
899 p->generation, offset,
900 request->data,
901 request->length,
902 handler->callback_data);
903 }
904 rcu_read_unlock();
905
906 fw_send_response(card, request, RCODE_COMPLETE);
907}
908
909void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
910{
911 struct fw_request *request;
912 unsigned long long offset;
913
914 if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
915 return;
916
917 if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
918 fw_cdev_handle_phy_packet(card, p);
919 return;
920 }
921
922 request = allocate_request(card, p);
923 if (request == NULL) {
924 /* FIXME: send statically allocated busy packet. */
925 return;
926 }
927
928 offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
929 p->header[2];
930
931 if (!is_in_fcp_region(offset, request->length))
932 handle_exclusive_region_request(card, p, request, offset);
933 else
934 handle_fcp_region_request(card, p, request, offset);
935
936}
937EXPORT_SYMBOL(fw_core_handle_request);
938
939void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
940{
941 struct fw_transaction *t;
942 unsigned long flags;
943 u32 *data;
944 size_t data_length;
945 int tcode, tlabel, source, rcode;
946
947 tcode = HEADER_GET_TCODE(p->header[0]);
948 tlabel = HEADER_GET_TLABEL(p->header[0]);
949 source = HEADER_GET_SOURCE(p->header[1]);
950 rcode = HEADER_GET_RCODE(p->header[1]);
951
952 spin_lock_irqsave(&card->lock, flags);
953 list_for_each_entry(t, &card->transaction_list, link) {
954 if (t->node_id == source && t->tlabel == tlabel) {
955 if (!try_cancel_split_timeout(t)) {
956 spin_unlock_irqrestore(&card->lock, flags);
957 goto timed_out;
958 }
959 list_del_init(&t->link);
960 card->tlabel_mask &= ~(1ULL << t->tlabel);
961 break;
962 }
963 }
964 spin_unlock_irqrestore(&card->lock, flags);
965
966 if (&t->link == &card->transaction_list) {
967 timed_out:
968 fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
969 source, tlabel);
970 return;
971 }
972
973 /*
974 * FIXME: sanity check packet, is length correct, does tcodes
975 * and addresses match.
976 */
977
978 switch (tcode) {
979 case TCODE_READ_QUADLET_RESPONSE:
980 data = (u32 *) &p->header[3];
981 data_length = 4;
982 break;
983
984 case TCODE_WRITE_RESPONSE:
985 data = NULL;
986 data_length = 0;
987 break;
988
989 case TCODE_READ_BLOCK_RESPONSE:
990 case TCODE_LOCK_RESPONSE:
991 data = p->payload;
992 data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
993 break;
994
995 default:
996 /* Should never happen, this is just to shut up gcc. */
997 data = NULL;
998 data_length = 0;
999 break;
1000 }
1001
1002 /*
1003 * The response handler may be executed while the request handler
1004 * is still pending. Cancel the request handler.
1005 */
1006 card->driver->cancel_packet(card, &t->packet);
1007
1008 t->callback(card, rcode, data, data_length, t->callback_data);
1009}
1010EXPORT_SYMBOL(fw_core_handle_response);
1011
1012/**
1013 * fw_rcode_string - convert a firewire result code to an error description
1014 * @rcode: the result code
1015 */
1016const char *fw_rcode_string(int rcode)
1017{
1018 static const char *const names[] = {
1019 [RCODE_COMPLETE] = "no error",
1020 [RCODE_CONFLICT_ERROR] = "conflict error",
1021 [RCODE_DATA_ERROR] = "data error",
1022 [RCODE_TYPE_ERROR] = "type error",
1023 [RCODE_ADDRESS_ERROR] = "address error",
1024 [RCODE_SEND_ERROR] = "send error",
1025 [RCODE_CANCELLED] = "timeout",
1026 [RCODE_BUSY] = "busy",
1027 [RCODE_GENERATION] = "bus reset",
1028 [RCODE_NO_ACK] = "no ack",
1029 };
1030
1031 if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1032 return names[rcode];
1033 else
1034 return "unknown";
1035}
1036EXPORT_SYMBOL(fw_rcode_string);
1037
1038static const struct fw_address_region topology_map_region =
1039 { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1040 .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1041
1042static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1043 int tcode, int destination, int source, int generation,
1044 unsigned long long offset, void *payload, size_t length,
1045 void *callback_data)
1046{
1047 int start;
1048
1049 if (!TCODE_IS_READ_REQUEST(tcode)) {
1050 fw_send_response(card, request, RCODE_TYPE_ERROR);
1051 return;
1052 }
1053
1054 if ((offset & 3) > 0 || (length & 3) > 0) {
1055 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1056 return;
1057 }
1058
1059 start = (offset - topology_map_region.start) / 4;
1060 memcpy(payload, &card->topology_map[start], length);
1061
1062 fw_send_response(card, request, RCODE_COMPLETE);
1063}
1064
1065static struct fw_address_handler topology_map = {
1066 .length = 0x400,
1067 .address_callback = handle_topology_map,
1068};
1069
1070static const struct fw_address_region registers_region =
1071 { .start = CSR_REGISTER_BASE,
1072 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1073
1074static void update_split_timeout(struct fw_card *card)
1075{
1076 unsigned int cycles;
1077
1078 cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1079
1080 /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1081 cycles = clamp(cycles, 800u, 3u * 8000u);
1082
1083 card->split_timeout_cycles = cycles;
1084 card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1085}
1086
1087static void handle_registers(struct fw_card *card, struct fw_request *request,
1088 int tcode, int destination, int source, int generation,
1089 unsigned long long offset, void *payload, size_t length,
1090 void *callback_data)
1091{
1092 int reg = offset & ~CSR_REGISTER_BASE;
1093 __be32 *data = payload;
1094 int rcode = RCODE_COMPLETE;
1095 unsigned long flags;
1096
1097 switch (reg) {
1098 case CSR_PRIORITY_BUDGET:
1099 if (!card->priority_budget_implemented) {
1100 rcode = RCODE_ADDRESS_ERROR;
1101 break;
1102 }
1103 /* else fall through */
1104
1105 case CSR_NODE_IDS:
1106 /*
1107 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1108 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1109 */
1110 /* fall through */
1111
1112 case CSR_STATE_CLEAR:
1113 case CSR_STATE_SET:
1114 case CSR_CYCLE_TIME:
1115 case CSR_BUS_TIME:
1116 case CSR_BUSY_TIMEOUT:
1117 if (tcode == TCODE_READ_QUADLET_REQUEST)
1118 *data = cpu_to_be32(card->driver->read_csr(card, reg));
1119 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1120 card->driver->write_csr(card, reg, be32_to_cpu(*data));
1121 else
1122 rcode = RCODE_TYPE_ERROR;
1123 break;
1124
1125 case CSR_RESET_START:
1126 if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1127 card->driver->write_csr(card, CSR_STATE_CLEAR,
1128 CSR_STATE_BIT_ABDICATE);
1129 else
1130 rcode = RCODE_TYPE_ERROR;
1131 break;
1132
1133 case CSR_SPLIT_TIMEOUT_HI:
1134 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1135 *data = cpu_to_be32(card->split_timeout_hi);
1136 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1137 spin_lock_irqsave(&card->lock, flags);
1138 card->split_timeout_hi = be32_to_cpu(*data) & 7;
1139 update_split_timeout(card);
1140 spin_unlock_irqrestore(&card->lock, flags);
1141 } else {
1142 rcode = RCODE_TYPE_ERROR;
1143 }
1144 break;
1145
1146 case CSR_SPLIT_TIMEOUT_LO:
1147 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1148 *data = cpu_to_be32(card->split_timeout_lo);
1149 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1150 spin_lock_irqsave(&card->lock, flags);
1151 card->split_timeout_lo =
1152 be32_to_cpu(*data) & 0xfff80000;
1153 update_split_timeout(card);
1154 spin_unlock_irqrestore(&card->lock, flags);
1155 } else {
1156 rcode = RCODE_TYPE_ERROR;
1157 }
1158 break;
1159
1160 case CSR_MAINT_UTILITY:
1161 if (tcode == TCODE_READ_QUADLET_REQUEST)
1162 *data = card->maint_utility_register;
1163 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1164 card->maint_utility_register = *data;
1165 else
1166 rcode = RCODE_TYPE_ERROR;
1167 break;
1168
1169 case CSR_BROADCAST_CHANNEL:
1170 if (tcode == TCODE_READ_QUADLET_REQUEST)
1171 *data = cpu_to_be32(card->broadcast_channel);
1172 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1173 card->broadcast_channel =
1174 (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1175 BROADCAST_CHANNEL_INITIAL;
1176 else
1177 rcode = RCODE_TYPE_ERROR;
1178 break;
1179
1180 case CSR_BUS_MANAGER_ID:
1181 case CSR_BANDWIDTH_AVAILABLE:
1182 case CSR_CHANNELS_AVAILABLE_HI:
1183 case CSR_CHANNELS_AVAILABLE_LO:
1184 /*
1185 * FIXME: these are handled by the OHCI hardware and
1186 * the stack never sees these request. If we add
1187 * support for a new type of controller that doesn't
1188 * handle this in hardware we need to deal with these
1189 * transactions.
1190 */
1191 BUG();
1192 break;
1193
1194 default:
1195 rcode = RCODE_ADDRESS_ERROR;
1196 break;
1197 }
1198
1199 fw_send_response(card, request, rcode);
1200}
1201
1202static struct fw_address_handler registers = {
1203 .length = 0x400,
1204 .address_callback = handle_registers,
1205};
1206
1207static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1208 int tcode, int destination, int source, int generation,
1209 unsigned long long offset, void *payload, size_t length,
1210 void *callback_data)
1211{
1212 /*
1213 * This catches requests not handled by the physical DMA unit,
1214 * i.e., wrong transaction types or unauthorized source nodes.
1215 */
1216 fw_send_response(card, request, RCODE_TYPE_ERROR);
1217}
1218
1219static struct fw_address_handler low_memory = {
1220 .length = FW_MAX_PHYSICAL_RANGE,
1221 .address_callback = handle_low_memory,
1222};
1223
1224MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1225MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1226MODULE_LICENSE("GPL");
1227
1228static const u32 vendor_textual_descriptor[] = {
1229 /* textual descriptor leaf () */
1230 0x00060000,
1231 0x00000000,
1232 0x00000000,
1233 0x4c696e75, /* L i n u */
1234 0x78204669, /* x F i */
1235 0x72657769, /* r e w i */
1236 0x72650000, /* r e */
1237};
1238
1239static const u32 model_textual_descriptor[] = {
1240 /* model descriptor leaf () */
1241 0x00030000,
1242 0x00000000,
1243 0x00000000,
1244 0x4a756a75, /* J u j u */
1245};
1246
1247static struct fw_descriptor vendor_id_descriptor = {
1248 .length = ARRAY_SIZE(vendor_textual_descriptor),
1249 .immediate = 0x03001f11,
1250 .key = 0x81000000,
1251 .data = vendor_textual_descriptor,
1252};
1253
1254static struct fw_descriptor model_id_descriptor = {
1255 .length = ARRAY_SIZE(model_textual_descriptor),
1256 .immediate = 0x17023901,
1257 .key = 0x81000000,
1258 .data = model_textual_descriptor,
1259};
1260
1261static int __init fw_core_init(void)
1262{
1263 int ret;
1264
1265 fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1266 if (!fw_workqueue)
1267 return -ENOMEM;
1268
1269 ret = bus_register(&fw_bus_type);
1270 if (ret < 0) {
1271 destroy_workqueue(fw_workqueue);
1272 return ret;
1273 }
1274
1275 fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1276 if (fw_cdev_major < 0) {
1277 bus_unregister(&fw_bus_type);
1278 destroy_workqueue(fw_workqueue);
1279 return fw_cdev_major;
1280 }
1281
1282 fw_core_add_address_handler(&topology_map, &topology_map_region);
1283 fw_core_add_address_handler(®isters, ®isters_region);
1284 fw_core_add_address_handler(&low_memory, &low_memory_region);
1285 fw_core_add_descriptor(&vendor_id_descriptor);
1286 fw_core_add_descriptor(&model_id_descriptor);
1287
1288 return 0;
1289}
1290
1291static void __exit fw_core_cleanup(void)
1292{
1293 unregister_chrdev(fw_cdev_major, "firewire");
1294 bus_unregister(&fw_bus_type);
1295 destroy_workqueue(fw_workqueue);
1296 idr_destroy(&fw_device_idr);
1297}
1298
1299module_init(fw_core_init);
1300module_exit(fw_core_cleanup);