Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Core IEEE1394 transaction logic
   4 *
   5 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
   6 */
   7
   8#include <linux/bug.h>
   9#include <linux/completion.h>
  10#include <linux/device.h>
  11#include <linux/errno.h>
  12#include <linux/firewire.h>
  13#include <linux/firewire-constants.h>
  14#include <linux/fs.h>
  15#include <linux/init.h>
  16#include <linux/idr.h>
  17#include <linux/jiffies.h>
  18#include <linux/kernel.h>
  19#include <linux/list.h>
  20#include <linux/module.h>
  21#include <linux/rculist.h>
  22#include <linux/slab.h>
  23#include <linux/spinlock.h>
  24#include <linux/string.h>
  25#include <linux/timer.h>
  26#include <linux/types.h>
  27#include <linux/workqueue.h>
  28
  29#include <asm/byteorder.h>
  30
  31#include "core.h"
 
 
 
  32
  33#define HEADER_PRI(pri)			((pri) << 0)
  34#define HEADER_TCODE(tcode)		((tcode) << 4)
  35#define HEADER_RETRY(retry)		((retry) << 8)
  36#define HEADER_TLABEL(tlabel)		((tlabel) << 10)
  37#define HEADER_DESTINATION(destination)	((destination) << 16)
  38#define HEADER_SOURCE(source)		((source) << 16)
  39#define HEADER_RCODE(rcode)		((rcode) << 12)
  40#define HEADER_OFFSET_HIGH(offset_high)	((offset_high) << 0)
  41#define HEADER_DATA_LENGTH(length)	((length) << 16)
  42#define HEADER_EXTENDED_TCODE(tcode)	((tcode) << 0)
  43
  44#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
  45#define HEADER_GET_TLABEL(q)		(((q) >> 10) & 0x3f)
  46#define HEADER_GET_RCODE(q)		(((q) >> 12) & 0x0f)
  47#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
  48#define HEADER_GET_SOURCE(q)		(((q) >> 16) & 0xffff)
  49#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
  50#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
  51#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
  52
  53#define HEADER_DESTINATION_IS_BROADCAST(q) \
  54	(((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
  55
  56#define PHY_PACKET_CONFIG	0x0
  57#define PHY_PACKET_LINK_ON	0x1
  58#define PHY_PACKET_SELF_ID	0x2
  59
  60#define PHY_CONFIG_GAP_COUNT(gap_count)	(((gap_count) << 16) | (1 << 22))
  61#define PHY_CONFIG_ROOT_ID(node_id)	((((node_id) & 0x3f) << 24) | (1 << 23))
  62#define PHY_IDENTIFIER(id)		((id) << 30)
  63
  64/* returns 0 if the split timeout handler is already running */
  65static int try_cancel_split_timeout(struct fw_transaction *t)
  66{
  67	if (t->is_split_transaction)
  68		return del_timer(&t->split_timeout_timer);
  69	else
  70		return 1;
  71}
  72
  73static int close_transaction(struct fw_transaction *transaction,
  74			     struct fw_card *card, int rcode)
  75{
  76	struct fw_transaction *t = NULL, *iter;
  77	unsigned long flags;
  78
  79	spin_lock_irqsave(&card->lock, flags);
  80	list_for_each_entry(iter, &card->transaction_list, link) {
  81		if (iter == transaction) {
  82			if (!try_cancel_split_timeout(iter)) {
  83				spin_unlock_irqrestore(&card->lock, flags);
  84				goto timed_out;
 
 
 
  85			}
  86			list_del_init(&iter->link);
  87			card->tlabel_mask &= ~(1ULL << iter->tlabel);
  88			t = iter;
  89			break;
  90		}
  91	}
  92	spin_unlock_irqrestore(&card->lock, flags);
  93
  94	if (t) {
  95		t->callback(card, rcode, NULL, 0, t->callback_data);
  96		return 0;
 
 
 
 
 
  97	}
  98
  99 timed_out:
 100	return -ENOENT;
 101}
 102
 103/*
 104 * Only valid for transactions that are potentially pending (ie have
 105 * been sent).
 106 */
 107int fw_cancel_transaction(struct fw_card *card,
 108			  struct fw_transaction *transaction)
 109{
 
 
 110	/*
 111	 * Cancel the packet transmission if it's still queued.  That
 112	 * will call the packet transmission callback which cancels
 113	 * the transaction.
 114	 */
 115
 116	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
 117		return 0;
 118
 119	/*
 120	 * If the request packet has already been sent, we need to see
 121	 * if the transaction is still pending and remove it in that case.
 122	 */
 123
 124	return close_transaction(transaction, card, RCODE_CANCELLED);
 
 
 
 
 
 
 
 
 
 
 125}
 126EXPORT_SYMBOL(fw_cancel_transaction);
 127
 128static void split_transaction_timeout_callback(struct timer_list *timer)
 129{
 130	struct fw_transaction *t = from_timer(t, timer, split_timeout_timer);
 131	struct fw_card *card = t->card;
 132	unsigned long flags;
 133
 134	spin_lock_irqsave(&card->lock, flags);
 135	if (list_empty(&t->link)) {
 136		spin_unlock_irqrestore(&card->lock, flags);
 137		return;
 
 138	}
 139	list_del(&t->link);
 140	card->tlabel_mask &= ~(1ULL << t->tlabel);
 141	spin_unlock_irqrestore(&card->lock, flags);
 142
 143	t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
 
 
 
 
 
 144}
 145
 146static void start_split_transaction_timeout(struct fw_transaction *t,
 147					    struct fw_card *card)
 148{
 149	unsigned long flags;
 150
 151	spin_lock_irqsave(&card->lock, flags);
 152
 153	if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
 154		spin_unlock_irqrestore(&card->lock, flags);
 155		return;
 156	}
 157
 158	t->is_split_transaction = true;
 159	mod_timer(&t->split_timeout_timer,
 160		  jiffies + card->split_timeout_jiffies);
 161
 162	spin_unlock_irqrestore(&card->lock, flags);
 163}
 164
 
 
 165static void transmit_complete_callback(struct fw_packet *packet,
 166				       struct fw_card *card, int status)
 167{
 168	struct fw_transaction *t =
 169	    container_of(packet, struct fw_transaction, packet);
 170
 
 
 
 171	switch (status) {
 172	case ACK_COMPLETE:
 173		close_transaction(t, card, RCODE_COMPLETE);
 174		break;
 175	case ACK_PENDING:
 
 
 
 176		start_split_transaction_timeout(t, card);
 177		break;
 
 178	case ACK_BUSY_X:
 179	case ACK_BUSY_A:
 180	case ACK_BUSY_B:
 181		close_transaction(t, card, RCODE_BUSY);
 182		break;
 183	case ACK_DATA_ERROR:
 184		close_transaction(t, card, RCODE_DATA_ERROR);
 185		break;
 186	case ACK_TYPE_ERROR:
 187		close_transaction(t, card, RCODE_TYPE_ERROR);
 188		break;
 189	default:
 190		/*
 191		 * In this case the ack is really a juju specific
 192		 * rcode, so just forward that to the callback.
 193		 */
 194		close_transaction(t, card, status);
 195		break;
 196	}
 197}
 198
 199static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
 200		int destination_id, int source_id, int generation, int speed,
 201		unsigned long long offset, void *payload, size_t length)
 202{
 203	int ext_tcode;
 204
 205	if (tcode == TCODE_STREAM_DATA) {
 206		packet->header[0] =
 207			HEADER_DATA_LENGTH(length) |
 208			destination_id |
 209			HEADER_TCODE(TCODE_STREAM_DATA);
 
 210		packet->header_length = 4;
 211		packet->payload = payload;
 212		packet->payload_length = length;
 213
 214		goto common;
 215	}
 216
 217	if (tcode > 0x10) {
 218		ext_tcode = tcode & ~0x10;
 219		tcode = TCODE_LOCK_REQUEST;
 220	} else
 221		ext_tcode = 0;
 222
 223	packet->header[0] =
 224		HEADER_RETRY(RETRY_X) |
 225		HEADER_TLABEL(tlabel) |
 226		HEADER_TCODE(tcode) |
 227		HEADER_DESTINATION(destination_id);
 228	packet->header[1] =
 229		HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
 230	packet->header[2] =
 231		offset;
 232
 233	switch (tcode) {
 234	case TCODE_WRITE_QUADLET_REQUEST:
 235		packet->header[3] = *(u32 *)payload;
 236		packet->header_length = 16;
 237		packet->payload_length = 0;
 238		break;
 239
 240	case TCODE_LOCK_REQUEST:
 241	case TCODE_WRITE_BLOCK_REQUEST:
 242		packet->header[3] =
 243			HEADER_DATA_LENGTH(length) |
 244			HEADER_EXTENDED_TCODE(ext_tcode);
 245		packet->header_length = 16;
 246		packet->payload = payload;
 247		packet->payload_length = length;
 248		break;
 249
 250	case TCODE_READ_QUADLET_REQUEST:
 251		packet->header_length = 12;
 252		packet->payload_length = 0;
 253		break;
 254
 255	case TCODE_READ_BLOCK_REQUEST:
 256		packet->header[3] =
 257			HEADER_DATA_LENGTH(length) |
 258			HEADER_EXTENDED_TCODE(ext_tcode);
 259		packet->header_length = 16;
 260		packet->payload_length = 0;
 261		break;
 262
 263	default:
 264		WARN(1, "wrong tcode %d\n", tcode);
 265	}
 266 common:
 267	packet->speed = speed;
 268	packet->generation = generation;
 269	packet->ack = 0;
 270	packet->payload_mapped = false;
 271}
 272
 273static int allocate_tlabel(struct fw_card *card)
 274{
 275	int tlabel;
 276
 277	tlabel = card->current_tlabel;
 278	while (card->tlabel_mask & (1ULL << tlabel)) {
 279		tlabel = (tlabel + 1) & 0x3f;
 280		if (tlabel == card->current_tlabel)
 281			return -EBUSY;
 282	}
 283
 284	card->current_tlabel = (tlabel + 1) & 0x3f;
 285	card->tlabel_mask |= 1ULL << tlabel;
 286
 287	return tlabel;
 288}
 289
 290/**
 291 * fw_send_request() - submit a request packet for transmission
 
 292 * @card:		interface to send the request at
 293 * @t:			transaction instance to which the request belongs
 294 * @tcode:		transaction code
 295 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
 296 * @generation:		bus generation in which request and response are valid
 297 * @speed:		transmission speed
 298 * @offset:		48bit wide offset into destination's address space
 299 * @payload:		data payload for the request subaction
 300 * @length:		length of the payload, in bytes
 301 * @callback:		function to be called when the transaction is completed
 
 
 302 * @callback_data:	data to be passed to the transaction completion callback
 303 *
 304 * Submit a request packet into the asynchronous request transmission queue.
 305 * Can be called from atomic context.  If you prefer a blocking API, use
 306 * fw_run_transaction() in a context that can sleep.
 307 *
 308 * In case of lock requests, specify one of the firewire-core specific %TCODE_
 309 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
 310 *
 311 * Make sure that the value in @destination_id is not older than the one in
 312 * @generation.  Otherwise the request is in danger to be sent to a wrong node.
 313 *
 314 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
 315 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
 316 * It will contain tag, channel, and sy data instead of a node ID then.
 317 *
 318 * The payload buffer at @data is going to be DMA-mapped except in case of
 319 * @length <= 8 or of local (loopback) requests.  Hence make sure that the
 320 * buffer complies with the restrictions of the streaming DMA mapping API.
 321 * @payload must not be freed before the @callback is called.
 322 *
 323 * In case of request types without payload, @data is NULL and @length is 0.
 324 *
 325 * After the transaction is completed successfully or unsuccessfully, the
 326 * @callback will be called.  Among its parameters is the response code which
 327 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
 328 * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
 329 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
 330 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
 331 * generation, or missing ACK respectively.
 332 *
 333 * Note some timing corner cases:  fw_send_request() may complete much earlier
 334 * than when the request packet actually hits the wire.  On the other hand,
 335 * transaction completion and hence execution of @callback may happen even
 336 * before fw_send_request() returns.
 337 */
 338void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
 339		     int destination_id, int generation, int speed,
 340		     unsigned long long offset, void *payload, size_t length,
 341		     fw_transaction_callback_t callback, void *callback_data)
 342{
 343	unsigned long flags;
 344	int tlabel;
 345
 346	/*
 347	 * Allocate tlabel from the bitmap and put the transaction on
 348	 * the list while holding the card spinlock.
 349	 */
 350
 351	spin_lock_irqsave(&card->lock, flags);
 352
 353	tlabel = allocate_tlabel(card);
 354	if (tlabel < 0) {
 355		spin_unlock_irqrestore(&card->lock, flags);
 356		callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
 
 
 
 
 
 
 
 
 
 
 
 
 357		return;
 358	}
 359
 360	t->node_id = destination_id;
 361	t->tlabel = tlabel;
 362	t->card = card;
 363	t->is_split_transaction = false;
 364	timer_setup(&t->split_timeout_timer,
 365		    split_transaction_timeout_callback, 0);
 366	t->callback = callback;
 
 367	t->callback_data = callback_data;
 368
 369	fw_fill_request(&t->packet, tcode, t->tlabel,
 370			destination_id, card->node_id, generation,
 371			speed, offset, payload, length);
 372	t->packet.callback = transmit_complete_callback;
 373
 374	list_add_tail(&t->link, &card->transaction_list);
 375
 376	spin_unlock_irqrestore(&card->lock, flags);
 377
 
 
 
 
 378	card->driver->send_request(card, &t->packet);
 379}
 380EXPORT_SYMBOL(fw_send_request);
 381
 382struct transaction_callback_data {
 383	struct completion done;
 384	void *payload;
 385	int rcode;
 386};
 387
 388static void transaction_callback(struct fw_card *card, int rcode,
 389				 void *payload, size_t length, void *data)
 390{
 391	struct transaction_callback_data *d = data;
 392
 393	if (rcode == RCODE_COMPLETE)
 394		memcpy(d->payload, payload, length);
 395	d->rcode = rcode;
 396	complete(&d->done);
 397}
 398
 399/**
 400 * fw_run_transaction() - send request and sleep until transaction is completed
 401 * @card:		card interface for this request
 402 * @tcode:		transaction code
 403 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
 404 * @generation:		bus generation in which request and response are valid
 405 * @speed:		transmission speed
 406 * @offset:		48bit wide offset into destination's address space
 407 * @payload:		data payload for the request subaction
 408 * @length:		length of the payload, in bytes
 409 *
 410 * Returns the RCODE.  See fw_send_request() for parameter documentation.
 411 * Unlike fw_send_request(), @data points to the payload of the request or/and
 412 * to the payload of the response.  DMA mapping restrictions apply to outbound
 413 * request payloads of >= 8 bytes but not to inbound response payloads.
 414 */
 415int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
 416		       int generation, int speed, unsigned long long offset,
 417		       void *payload, size_t length)
 418{
 419	struct transaction_callback_data d;
 420	struct fw_transaction t;
 421
 422	timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
 423	init_completion(&d.done);
 424	d.payload = payload;
 425	fw_send_request(card, &t, tcode, destination_id, generation, speed,
 426			offset, payload, length, transaction_callback, &d);
 427	wait_for_completion(&d.done);
 428	destroy_timer_on_stack(&t.split_timeout_timer);
 429
 430	return d.rcode;
 431}
 432EXPORT_SYMBOL(fw_run_transaction);
 433
 434static DEFINE_MUTEX(phy_config_mutex);
 435static DECLARE_COMPLETION(phy_config_done);
 436
 437static void transmit_phy_packet_callback(struct fw_packet *packet,
 438					 struct fw_card *card, int status)
 439{
 
 
 440	complete(&phy_config_done);
 441}
 442
 443static struct fw_packet phy_config_packet = {
 444	.header_length	= 12,
 445	.header[0]	= TCODE_LINK_INTERNAL << 4,
 446	.payload_length	= 0,
 447	.speed		= SCODE_100,
 448	.callback	= transmit_phy_packet_callback,
 449};
 450
 451void fw_send_phy_config(struct fw_card *card,
 452			int node_id, int generation, int gap_count)
 453{
 454	long timeout = DIV_ROUND_UP(HZ, 10);
 455	u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
 456
 457	if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
 458		data |= PHY_CONFIG_ROOT_ID(node_id);
 
 
 
 
 459
 460	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
 461		gap_count = card->driver->read_phy_reg(card, 1);
 462		if (gap_count < 0)
 463			return;
 464
 465		gap_count &= 63;
 466		if (gap_count == 63)
 467			return;
 468	}
 469	data |= PHY_CONFIG_GAP_COUNT(gap_count);
 
 470
 471	mutex_lock(&phy_config_mutex);
 472
 
 473	phy_config_packet.header[1] = data;
 474	phy_config_packet.header[2] = ~data;
 475	phy_config_packet.generation = generation;
 476	reinit_completion(&phy_config_done);
 477
 
 
 
 
 478	card->driver->send_request(card, &phy_config_packet);
 479	wait_for_completion_timeout(&phy_config_done, timeout);
 480
 481	mutex_unlock(&phy_config_mutex);
 482}
 483
 484static struct fw_address_handler *lookup_overlapping_address_handler(
 485	struct list_head *list, unsigned long long offset, size_t length)
 486{
 487	struct fw_address_handler *handler;
 488
 489	list_for_each_entry_rcu(handler, list, link) {
 490		if (handler->offset < offset + length &&
 491		    offset < handler->offset + handler->length)
 492			return handler;
 493	}
 494
 495	return NULL;
 496}
 497
 498static bool is_enclosing_handler(struct fw_address_handler *handler,
 499				 unsigned long long offset, size_t length)
 500{
 501	return handler->offset <= offset &&
 502		offset + length <= handler->offset + handler->length;
 503}
 504
 505static struct fw_address_handler *lookup_enclosing_address_handler(
 506	struct list_head *list, unsigned long long offset, size_t length)
 507{
 508	struct fw_address_handler *handler;
 509
 510	list_for_each_entry_rcu(handler, list, link) {
 511		if (is_enclosing_handler(handler, offset, length))
 512			return handler;
 513	}
 514
 515	return NULL;
 516}
 517
 518static DEFINE_SPINLOCK(address_handler_list_lock);
 519static LIST_HEAD(address_handler_list);
 520
 521const struct fw_address_region fw_high_memory_region =
 522	{ .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
 523EXPORT_SYMBOL(fw_high_memory_region);
 524
 525static const struct fw_address_region low_memory_region =
 526	{ .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
 527
 528#if 0
 529const struct fw_address_region fw_private_region =
 530	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
 531const struct fw_address_region fw_csr_region =
 532	{ .start = CSR_REGISTER_BASE,
 533	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
 534const struct fw_address_region fw_unit_space_region =
 535	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
 536#endif  /*  0  */
 537
 538static bool is_in_fcp_region(u64 offset, size_t length)
 539{
 540	return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
 541		offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
 542}
 543
 544/**
 545 * fw_core_add_address_handler() - register for incoming requests
 546 * @handler:	callback
 547 * @region:	region in the IEEE 1212 node space address range
 548 *
 549 * region->start, ->end, and handler->length have to be quadlet-aligned.
 550 *
 551 * When a request is received that falls within the specified address range,
 552 * the specified callback is invoked.  The parameters passed to the callback
 553 * give the details of the particular request.
 554 *
 555 * To be called in process context.
 556 * Return value:  0 on success, non-zero otherwise.
 557 *
 558 * The start offset of the handler's address region is determined by
 559 * fw_core_add_address_handler() and is returned in handler->offset.
 560 *
 561 * Address allocations are exclusive, except for the FCP registers.
 562 */
 563int fw_core_add_address_handler(struct fw_address_handler *handler,
 564				const struct fw_address_region *region)
 565{
 566	struct fw_address_handler *other;
 567	int ret = -EBUSY;
 568
 569	if (region->start & 0xffff000000000003ULL ||
 570	    region->start >= region->end ||
 571	    region->end   > 0x0001000000000000ULL ||
 572	    handler->length & 3 ||
 573	    handler->length == 0)
 574		return -EINVAL;
 575
 576	spin_lock(&address_handler_list_lock);
 577
 578	handler->offset = region->start;
 579	while (handler->offset + handler->length <= region->end) {
 580		if (is_in_fcp_region(handler->offset, handler->length))
 581			other = NULL;
 582		else
 583			other = lookup_overlapping_address_handler
 584					(&address_handler_list,
 585					 handler->offset, handler->length);
 586		if (other != NULL) {
 587			handler->offset += other->length;
 588		} else {
 589			list_add_tail_rcu(&handler->link, &address_handler_list);
 590			ret = 0;
 591			break;
 592		}
 593	}
 594
 595	spin_unlock(&address_handler_list_lock);
 596
 597	return ret;
 598}
 599EXPORT_SYMBOL(fw_core_add_address_handler);
 600
 601/**
 602 * fw_core_remove_address_handler() - unregister an address handler
 603 * @handler: callback
 604 *
 605 * To be called in process context.
 606 *
 607 * When fw_core_remove_address_handler() returns, @handler->callback() is
 608 * guaranteed to not run on any CPU anymore.
 609 */
 610void fw_core_remove_address_handler(struct fw_address_handler *handler)
 611{
 612	spin_lock(&address_handler_list_lock);
 613	list_del_rcu(&handler->link);
 614	spin_unlock(&address_handler_list_lock);
 615	synchronize_rcu();
 616}
 617EXPORT_SYMBOL(fw_core_remove_address_handler);
 618
 619struct fw_request {
 
 620	struct fw_packet response;
 621	u32 request_header[4];
 622	int ack;
 623	u32 timestamp;
 624	u32 length;
 625	u32 data[];
 626};
 627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 628static void free_response_callback(struct fw_packet *packet,
 629				   struct fw_card *card, int status)
 630{
 631	struct fw_request *request;
 632
 633	request = container_of(packet, struct fw_request, response);
 634	kfree(request);
 
 
 
 
 
 
 635}
 636
 637int fw_get_response_length(struct fw_request *r)
 638{
 639	int tcode, ext_tcode, data_length;
 640
 641	tcode = HEADER_GET_TCODE(r->request_header[0]);
 642
 643	switch (tcode) {
 644	case TCODE_WRITE_QUADLET_REQUEST:
 645	case TCODE_WRITE_BLOCK_REQUEST:
 646		return 0;
 647
 648	case TCODE_READ_QUADLET_REQUEST:
 649		return 4;
 650
 651	case TCODE_READ_BLOCK_REQUEST:
 652		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
 653		return data_length;
 654
 655	case TCODE_LOCK_REQUEST:
 656		ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
 657		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
 658		switch (ext_tcode) {
 659		case EXTCODE_FETCH_ADD:
 660		case EXTCODE_LITTLE_ADD:
 661			return data_length;
 662		default:
 663			return data_length / 2;
 664		}
 665
 666	default:
 667		WARN(1, "wrong tcode %d\n", tcode);
 668		return 0;
 669	}
 670}
 671
 672void fw_fill_response(struct fw_packet *response, u32 *request_header,
 673		      int rcode, void *payload, size_t length)
 674{
 675	int tcode, tlabel, extended_tcode, source, destination;
 676
 677	tcode          = HEADER_GET_TCODE(request_header[0]);
 678	tlabel         = HEADER_GET_TLABEL(request_header[0]);
 679	source         = HEADER_GET_DESTINATION(request_header[0]);
 680	destination    = HEADER_GET_SOURCE(request_header[1]);
 681	extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
 682
 683	response->header[0] =
 684		HEADER_RETRY(RETRY_1) |
 685		HEADER_TLABEL(tlabel) |
 686		HEADER_DESTINATION(destination);
 687	response->header[1] =
 688		HEADER_SOURCE(source) |
 689		HEADER_RCODE(rcode);
 690	response->header[2] = 0;
 691
 692	switch (tcode) {
 693	case TCODE_WRITE_QUADLET_REQUEST:
 694	case TCODE_WRITE_BLOCK_REQUEST:
 695		response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
 696		response->header_length = 12;
 697		response->payload_length = 0;
 698		break;
 699
 700	case TCODE_READ_QUADLET_REQUEST:
 701		response->header[0] |=
 702			HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
 703		if (payload != NULL)
 704			response->header[3] = *(u32 *)payload;
 705		else
 706			response->header[3] = 0;
 707		response->header_length = 16;
 708		response->payload_length = 0;
 709		break;
 710
 711	case TCODE_READ_BLOCK_REQUEST:
 712	case TCODE_LOCK_REQUEST:
 713		response->header[0] |= HEADER_TCODE(tcode + 2);
 714		response->header[3] =
 715			HEADER_DATA_LENGTH(length) |
 716			HEADER_EXTENDED_TCODE(extended_tcode);
 717		response->header_length = 16;
 718		response->payload = payload;
 719		response->payload_length = length;
 720		break;
 721
 722	default:
 723		WARN(1, "wrong tcode %d\n", tcode);
 724	}
 725
 726	response->payload_mapped = false;
 727}
 728EXPORT_SYMBOL(fw_fill_response);
 729
 730static u32 compute_split_timeout_timestamp(struct fw_card *card,
 731					   u32 request_timestamp)
 732{
 733	unsigned int cycles;
 734	u32 timestamp;
 735
 736	cycles = card->split_timeout_cycles;
 737	cycles += request_timestamp & 0x1fff;
 738
 739	timestamp = request_timestamp & ~0x1fff;
 740	timestamp += (cycles / 8000) << 13;
 741	timestamp |= cycles % 8000;
 742
 743	return timestamp;
 744}
 745
 746static struct fw_request *allocate_request(struct fw_card *card,
 747					   struct fw_packet *p)
 748{
 749	struct fw_request *request;
 750	u32 *data, length;
 751	int request_tcode;
 752
 753	request_tcode = HEADER_GET_TCODE(p->header[0]);
 754	switch (request_tcode) {
 755	case TCODE_WRITE_QUADLET_REQUEST:
 756		data = &p->header[3];
 757		length = 4;
 758		break;
 759
 760	case TCODE_WRITE_BLOCK_REQUEST:
 761	case TCODE_LOCK_REQUEST:
 762		data = p->payload;
 763		length = HEADER_GET_DATA_LENGTH(p->header[3]);
 764		break;
 765
 766	case TCODE_READ_QUADLET_REQUEST:
 767		data = NULL;
 768		length = 4;
 769		break;
 770
 771	case TCODE_READ_BLOCK_REQUEST:
 772		data = NULL;
 773		length = HEADER_GET_DATA_LENGTH(p->header[3]);
 774		break;
 775
 776	default:
 777		fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
 778			 p->header[0], p->header[1], p->header[2]);
 779		return NULL;
 780	}
 781
 782	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
 783	if (request == NULL)
 784		return NULL;
 
 785
 786	request->response.speed = p->speed;
 787	request->response.timestamp =
 788			compute_split_timeout_timestamp(card, p->timestamp);
 789	request->response.generation = p->generation;
 790	request->response.ack = 0;
 791	request->response.callback = free_response_callback;
 792	request->ack = p->ack;
 793	request->timestamp = p->timestamp;
 794	request->length = length;
 795	if (data)
 796		memcpy(request->data, data, length);
 797
 798	memcpy(request->request_header, p->header, sizeof(p->header));
 799
 800	return request;
 801}
 802
 
 
 
 
 
 
 
 
 
 803void fw_send_response(struct fw_card *card,
 804		      struct fw_request *request, int rcode)
 805{
 806	if (WARN_ONCE(!request, "invalid for FCP address handlers"))
 807		return;
 808
 809	/* unified transaction or broadcast transaction: don't respond */
 810	if (request->ack != ACK_PENDING ||
 811	    HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
 812		kfree(request);
 813		return;
 814	}
 815
 816	if (rcode == RCODE_COMPLETE)
 817		fw_fill_response(&request->response, request->request_header,
 818				 rcode, request->data,
 819				 fw_get_response_length(request));
 820	else
 821		fw_fill_response(&request->response, request->request_header,
 822				 rcode, NULL, 0);
 
 
 
 
 
 
 
 823
 824	card->driver->send_response(card, &request->response);
 825}
 826EXPORT_SYMBOL(fw_send_response);
 827
 828/**
 829 * fw_get_request_speed() - returns speed at which the @request was received
 830 * @request: firewire request data
 831 */
 832int fw_get_request_speed(struct fw_request *request)
 833{
 834	return request->response.speed;
 835}
 836EXPORT_SYMBOL(fw_get_request_speed);
 837
 838/**
 839 * fw_request_get_timestamp: Get timestamp of the request.
 840 * @request: The opaque pointer to request structure.
 841 *
 842 * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The
 843 * timestamp consists of the low order 3 bits of second field and the full 13 bits of count
 844 * field of isochronous cycle time register.
 845 *
 846 * Returns: timestamp of the request.
 847 */
 848u32 fw_request_get_timestamp(const struct fw_request *request)
 849{
 850	return request->timestamp;
 851}
 852EXPORT_SYMBOL_GPL(fw_request_get_timestamp);
 853
 854static void handle_exclusive_region_request(struct fw_card *card,
 855					    struct fw_packet *p,
 856					    struct fw_request *request,
 857					    unsigned long long offset)
 858{
 859	struct fw_address_handler *handler;
 860	int tcode, destination, source;
 861
 862	destination = HEADER_GET_DESTINATION(p->header[0]);
 863	source      = HEADER_GET_SOURCE(p->header[1]);
 864	tcode       = HEADER_GET_TCODE(p->header[0]);
 865	if (tcode == TCODE_LOCK_REQUEST)
 866		tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
 867
 868	rcu_read_lock();
 869	handler = lookup_enclosing_address_handler(&address_handler_list,
 870						   offset, request->length);
 871	if (handler)
 872		handler->address_callback(card, request,
 873					  tcode, destination, source,
 874					  p->generation, offset,
 875					  request->data, request->length,
 876					  handler->callback_data);
 877	rcu_read_unlock();
 878
 879	if (!handler)
 880		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
 881}
 882
 883static void handle_fcp_region_request(struct fw_card *card,
 884				      struct fw_packet *p,
 885				      struct fw_request *request,
 886				      unsigned long long offset)
 887{
 888	struct fw_address_handler *handler;
 889	int tcode, destination, source;
 890
 891	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
 892	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
 893	    request->length > 0x200) {
 894		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
 895
 896		return;
 897	}
 898
 899	tcode       = HEADER_GET_TCODE(p->header[0]);
 900	destination = HEADER_GET_DESTINATION(p->header[0]);
 901	source      = HEADER_GET_SOURCE(p->header[1]);
 902
 903	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
 904	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
 905		fw_send_response(card, request, RCODE_TYPE_ERROR);
 906
 907		return;
 908	}
 909
 910	rcu_read_lock();
 911	list_for_each_entry_rcu(handler, &address_handler_list, link) {
 912		if (is_enclosing_handler(handler, offset, request->length))
 913			handler->address_callback(card, NULL, tcode,
 914						  destination, source,
 915						  p->generation, offset,
 916						  request->data,
 917						  request->length,
 918						  handler->callback_data);
 919	}
 920	rcu_read_unlock();
 921
 922	fw_send_response(card, request, RCODE_COMPLETE);
 923}
 924
 925void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
 926{
 927	struct fw_request *request;
 928	unsigned long long offset;
 
 929
 930	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
 931		return;
 932
 933	if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
 
 
 
 934		fw_cdev_handle_phy_packet(card, p);
 935		return;
 936	}
 937
 938	request = allocate_request(card, p);
 939	if (request == NULL) {
 940		/* FIXME: send statically allocated busy packet. */
 941		return;
 942	}
 943
 944	offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
 945		p->header[2];
 
 
 
 946
 947	if (!is_in_fcp_region(offset, request->length))
 948		handle_exclusive_region_request(card, p, request, offset);
 949	else
 950		handle_fcp_region_request(card, p, request, offset);
 951
 952}
 953EXPORT_SYMBOL(fw_core_handle_request);
 954
 955void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
 956{
 957	struct fw_transaction *t = NULL, *iter;
 958	unsigned long flags;
 959	u32 *data;
 960	size_t data_length;
 961	int tcode, tlabel, source, rcode;
 962
 963	tcode	= HEADER_GET_TCODE(p->header[0]);
 964	tlabel	= HEADER_GET_TLABEL(p->header[0]);
 965	source	= HEADER_GET_SOURCE(p->header[1]);
 966	rcode	= HEADER_GET_RCODE(p->header[1]);
 967
 968	spin_lock_irqsave(&card->lock, flags);
 969	list_for_each_entry(iter, &card->transaction_list, link) {
 970		if (iter->node_id == source && iter->tlabel == tlabel) {
 971			if (!try_cancel_split_timeout(iter)) {
 972				spin_unlock_irqrestore(&card->lock, flags);
 973				goto timed_out;
 974			}
 975			list_del_init(&iter->link);
 976			card->tlabel_mask &= ~(1ULL << iter->tlabel);
 977			t = iter;
 978			break;
 979		}
 980	}
 981	spin_unlock_irqrestore(&card->lock, flags);
 982
 983	if (!t) {
 984 timed_out:
 985		fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
 986			  source, tlabel);
 987		return;
 988	}
 989
 990	/*
 991	 * FIXME: sanity check packet, is length correct, does tcodes
 992	 * and addresses match.
 993	 */
 994
 995	switch (tcode) {
 996	case TCODE_READ_QUADLET_RESPONSE:
 997		data = (u32 *) &p->header[3];
 998		data_length = 4;
 999		break;
1000
1001	case TCODE_WRITE_RESPONSE:
1002		data = NULL;
1003		data_length = 0;
1004		break;
1005
1006	case TCODE_READ_BLOCK_RESPONSE:
1007	case TCODE_LOCK_RESPONSE:
1008		data = p->payload;
1009		data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
1010		break;
1011
1012	default:
1013		/* Should never happen, this is just to shut up gcc. */
1014		data = NULL;
1015		data_length = 0;
1016		break;
1017	}
1018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1019	/*
1020	 * The response handler may be executed while the request handler
1021	 * is still pending.  Cancel the request handler.
1022	 */
1023	card->driver->cancel_packet(card, &t->packet);
1024
1025	t->callback(card, rcode, data, data_length, t->callback_data);
 
 
 
 
 
1026}
1027EXPORT_SYMBOL(fw_core_handle_response);
1028
1029/**
1030 * fw_rcode_string - convert a firewire result code to an error description
1031 * @rcode: the result code
1032 */
1033const char *fw_rcode_string(int rcode)
1034{
1035	static const char *const names[] = {
1036		[RCODE_COMPLETE]       = "no error",
1037		[RCODE_CONFLICT_ERROR] = "conflict error",
1038		[RCODE_DATA_ERROR]     = "data error",
1039		[RCODE_TYPE_ERROR]     = "type error",
1040		[RCODE_ADDRESS_ERROR]  = "address error",
1041		[RCODE_SEND_ERROR]     = "send error",
1042		[RCODE_CANCELLED]      = "timeout",
1043		[RCODE_BUSY]           = "busy",
1044		[RCODE_GENERATION]     = "bus reset",
1045		[RCODE_NO_ACK]         = "no ack",
1046	};
1047
1048	if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1049		return names[rcode];
1050	else
1051		return "unknown";
1052}
1053EXPORT_SYMBOL(fw_rcode_string);
1054
1055static const struct fw_address_region topology_map_region =
1056	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1057	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1058
1059static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1060		int tcode, int destination, int source, int generation,
1061		unsigned long long offset, void *payload, size_t length,
1062		void *callback_data)
1063{
1064	int start;
1065
1066	if (!TCODE_IS_READ_REQUEST(tcode)) {
1067		fw_send_response(card, request, RCODE_TYPE_ERROR);
1068		return;
1069	}
1070
1071	if ((offset & 3) > 0 || (length & 3) > 0) {
1072		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1073		return;
1074	}
1075
1076	start = (offset - topology_map_region.start) / 4;
1077	memcpy(payload, &card->topology_map[start], length);
1078
1079	fw_send_response(card, request, RCODE_COMPLETE);
1080}
1081
1082static struct fw_address_handler topology_map = {
1083	.length			= 0x400,
1084	.address_callback	= handle_topology_map,
1085};
1086
1087static const struct fw_address_region registers_region =
1088	{ .start = CSR_REGISTER_BASE,
1089	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1090
1091static void update_split_timeout(struct fw_card *card)
1092{
1093	unsigned int cycles;
1094
1095	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1096
1097	/* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1098	cycles = clamp(cycles, 800u, 3u * 8000u);
1099
1100	card->split_timeout_cycles = cycles;
1101	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1102}
1103
1104static void handle_registers(struct fw_card *card, struct fw_request *request,
1105		int tcode, int destination, int source, int generation,
1106		unsigned long long offset, void *payload, size_t length,
1107		void *callback_data)
1108{
1109	int reg = offset & ~CSR_REGISTER_BASE;
1110	__be32 *data = payload;
1111	int rcode = RCODE_COMPLETE;
1112	unsigned long flags;
1113
1114	switch (reg) {
1115	case CSR_PRIORITY_BUDGET:
1116		if (!card->priority_budget_implemented) {
1117			rcode = RCODE_ADDRESS_ERROR;
1118			break;
1119		}
1120		fallthrough;
1121
1122	case CSR_NODE_IDS:
1123		/*
1124		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1125		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1126		 */
1127		fallthrough;
1128
1129	case CSR_STATE_CLEAR:
1130	case CSR_STATE_SET:
1131	case CSR_CYCLE_TIME:
1132	case CSR_BUS_TIME:
1133	case CSR_BUSY_TIMEOUT:
1134		if (tcode == TCODE_READ_QUADLET_REQUEST)
1135			*data = cpu_to_be32(card->driver->read_csr(card, reg));
1136		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1137			card->driver->write_csr(card, reg, be32_to_cpu(*data));
1138		else
1139			rcode = RCODE_TYPE_ERROR;
1140		break;
1141
1142	case CSR_RESET_START:
1143		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1144			card->driver->write_csr(card, CSR_STATE_CLEAR,
1145						CSR_STATE_BIT_ABDICATE);
1146		else
1147			rcode = RCODE_TYPE_ERROR;
1148		break;
1149
1150	case CSR_SPLIT_TIMEOUT_HI:
1151		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1152			*data = cpu_to_be32(card->split_timeout_hi);
1153		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1154			spin_lock_irqsave(&card->lock, flags);
 
1155			card->split_timeout_hi = be32_to_cpu(*data) & 7;
1156			update_split_timeout(card);
1157			spin_unlock_irqrestore(&card->lock, flags);
1158		} else {
1159			rcode = RCODE_TYPE_ERROR;
1160		}
1161		break;
1162
1163	case CSR_SPLIT_TIMEOUT_LO:
1164		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1165			*data = cpu_to_be32(card->split_timeout_lo);
1166		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1167			spin_lock_irqsave(&card->lock, flags);
1168			card->split_timeout_lo =
1169					be32_to_cpu(*data) & 0xfff80000;
1170			update_split_timeout(card);
1171			spin_unlock_irqrestore(&card->lock, flags);
1172		} else {
1173			rcode = RCODE_TYPE_ERROR;
1174		}
1175		break;
1176
1177	case CSR_MAINT_UTILITY:
1178		if (tcode == TCODE_READ_QUADLET_REQUEST)
1179			*data = card->maint_utility_register;
1180		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1181			card->maint_utility_register = *data;
1182		else
1183			rcode = RCODE_TYPE_ERROR;
1184		break;
1185
1186	case CSR_BROADCAST_CHANNEL:
1187		if (tcode == TCODE_READ_QUADLET_REQUEST)
1188			*data = cpu_to_be32(card->broadcast_channel);
1189		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1190			card->broadcast_channel =
1191			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1192			    BROADCAST_CHANNEL_INITIAL;
1193		else
1194			rcode = RCODE_TYPE_ERROR;
1195		break;
1196
1197	case CSR_BUS_MANAGER_ID:
1198	case CSR_BANDWIDTH_AVAILABLE:
1199	case CSR_CHANNELS_AVAILABLE_HI:
1200	case CSR_CHANNELS_AVAILABLE_LO:
1201		/*
1202		 * FIXME: these are handled by the OHCI hardware and
1203		 * the stack never sees these request. If we add
1204		 * support for a new type of controller that doesn't
1205		 * handle this in hardware we need to deal with these
1206		 * transactions.
1207		 */
1208		BUG();
1209		break;
1210
1211	default:
1212		rcode = RCODE_ADDRESS_ERROR;
1213		break;
1214	}
1215
1216	fw_send_response(card, request, rcode);
1217}
1218
1219static struct fw_address_handler registers = {
1220	.length			= 0x400,
1221	.address_callback	= handle_registers,
1222};
1223
1224static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1225		int tcode, int destination, int source, int generation,
1226		unsigned long long offset, void *payload, size_t length,
1227		void *callback_data)
1228{
1229	/*
1230	 * This catches requests not handled by the physical DMA unit,
1231	 * i.e., wrong transaction types or unauthorized source nodes.
1232	 */
1233	fw_send_response(card, request, RCODE_TYPE_ERROR);
1234}
1235
1236static struct fw_address_handler low_memory = {
1237	.length			= FW_MAX_PHYSICAL_RANGE,
1238	.address_callback	= handle_low_memory,
1239};
1240
1241MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1242MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1243MODULE_LICENSE("GPL");
1244
1245static const u32 vendor_textual_descriptor[] = {
1246	/* textual descriptor leaf () */
1247	0x00060000,
1248	0x00000000,
1249	0x00000000,
1250	0x4c696e75,		/* L i n u */
1251	0x78204669,		/* x   F i */
1252	0x72657769,		/* r e w i */
1253	0x72650000,		/* r e     */
1254};
1255
1256static const u32 model_textual_descriptor[] = {
1257	/* model descriptor leaf () */
1258	0x00030000,
1259	0x00000000,
1260	0x00000000,
1261	0x4a756a75,		/* J u j u */
1262};
1263
1264static struct fw_descriptor vendor_id_descriptor = {
1265	.length = ARRAY_SIZE(vendor_textual_descriptor),
1266	.immediate = 0x03001f11,
1267	.key = 0x81000000,
1268	.data = vendor_textual_descriptor,
1269};
1270
1271static struct fw_descriptor model_id_descriptor = {
1272	.length = ARRAY_SIZE(model_textual_descriptor),
1273	.immediate = 0x17023901,
1274	.key = 0x81000000,
1275	.data = model_textual_descriptor,
1276};
1277
1278static int __init fw_core_init(void)
1279{
1280	int ret;
1281
1282	fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1283	if (!fw_workqueue)
1284		return -ENOMEM;
1285
1286	ret = bus_register(&fw_bus_type);
1287	if (ret < 0) {
1288		destroy_workqueue(fw_workqueue);
1289		return ret;
1290	}
1291
1292	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1293	if (fw_cdev_major < 0) {
1294		bus_unregister(&fw_bus_type);
1295		destroy_workqueue(fw_workqueue);
1296		return fw_cdev_major;
1297	}
1298
1299	fw_core_add_address_handler(&topology_map, &topology_map_region);
1300	fw_core_add_address_handler(&registers, &registers_region);
1301	fw_core_add_address_handler(&low_memory, &low_memory_region);
1302	fw_core_add_descriptor(&vendor_id_descriptor);
1303	fw_core_add_descriptor(&model_id_descriptor);
1304
1305	return 0;
1306}
1307
1308static void __exit fw_core_cleanup(void)
1309{
1310	unregister_chrdev(fw_cdev_major, "firewire");
1311	bus_unregister(&fw_bus_type);
1312	destroy_workqueue(fw_workqueue);
1313	idr_destroy(&fw_device_idr);
1314}
1315
1316module_init(fw_core_init);
1317module_exit(fw_core_cleanup);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Core IEEE1394 transaction logic
   4 *
   5 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
   6 */
   7
   8#include <linux/bug.h>
   9#include <linux/completion.h>
  10#include <linux/device.h>
  11#include <linux/errno.h>
  12#include <linux/firewire.h>
  13#include <linux/firewire-constants.h>
  14#include <linux/fs.h>
  15#include <linux/init.h>
 
  16#include <linux/jiffies.h>
  17#include <linux/kernel.h>
  18#include <linux/list.h>
  19#include <linux/module.h>
  20#include <linux/rculist.h>
  21#include <linux/slab.h>
  22#include <linux/spinlock.h>
  23#include <linux/string.h>
  24#include <linux/timer.h>
  25#include <linux/types.h>
  26#include <linux/workqueue.h>
  27
  28#include <asm/byteorder.h>
  29
  30#include "core.h"
  31#include "packet-header-definitions.h"
  32#include "phy-packet-definitions.h"
  33#include <trace/events/firewire.h>
  34
  35#define HEADER_DESTINATION_IS_BROADCAST(header) \
  36	((async_header_get_destination(header) & 0x3f) == 0x3f)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  37
  38/* returns 0 if the split timeout handler is already running */
  39static int try_cancel_split_timeout(struct fw_transaction *t)
  40{
  41	if (t->is_split_transaction)
  42		return del_timer(&t->split_timeout_timer);
  43	else
  44		return 1;
  45}
  46
  47static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode,
  48			     u32 response_tstamp)
  49{
  50	struct fw_transaction *t = NULL, *iter;
 
  51
  52	scoped_guard(spinlock_irqsave, &card->lock) {
  53		list_for_each_entry(iter, &card->transaction_list, link) {
  54			if (iter == transaction) {
  55				if (try_cancel_split_timeout(iter)) {
  56					list_del_init(&iter->link);
  57					card->tlabel_mask &= ~(1ULL << iter->tlabel);
  58					t = iter;
  59				}
  60				break;
  61			}
 
 
 
 
  62		}
  63	}
 
  64
  65	if (!t)
  66		return -ENOENT;
  67
  68	if (!t->with_tstamp) {
  69		t->callback.without_tstamp(card, rcode, NULL, 0, t->callback_data);
  70	} else {
  71		t->callback.with_tstamp(card, rcode, t->packet.timestamp, response_tstamp, NULL, 0,
  72					t->callback_data);
  73	}
  74
  75	return 0;
 
  76}
  77
  78/*
  79 * Only valid for transactions that are potentially pending (ie have
  80 * been sent).
  81 */
  82int fw_cancel_transaction(struct fw_card *card,
  83			  struct fw_transaction *transaction)
  84{
  85	u32 tstamp;
  86
  87	/*
  88	 * Cancel the packet transmission if it's still queued.  That
  89	 * will call the packet transmission callback which cancels
  90	 * the transaction.
  91	 */
  92
  93	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
  94		return 0;
  95
  96	/*
  97	 * If the request packet has already been sent, we need to see
  98	 * if the transaction is still pending and remove it in that case.
  99	 */
 100
 101	if (transaction->packet.ack == 0) {
 102		// The timestamp is reused since it was just read now.
 103		tstamp = transaction->packet.timestamp;
 104	} else {
 105		u32 curr_cycle_time = 0;
 106
 107		(void)fw_card_read_cycle_time(card, &curr_cycle_time);
 108		tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
 109	}
 110
 111	return close_transaction(transaction, card, RCODE_CANCELLED, tstamp);
 112}
 113EXPORT_SYMBOL(fw_cancel_transaction);
 114
 115static void split_transaction_timeout_callback(struct timer_list *timer)
 116{
 117	struct fw_transaction *t = from_timer(t, timer, split_timeout_timer);
 118	struct fw_card *card = t->card;
 
 119
 120	scoped_guard(spinlock_irqsave, &card->lock) {
 121		if (list_empty(&t->link))
 122			return;
 123		list_del(&t->link);
 124		card->tlabel_mask &= ~(1ULL << t->tlabel);
 125	}
 
 
 
 126
 127	if (!t->with_tstamp) {
 128		t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
 129	} else {
 130		t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp,
 131					t->split_timeout_cycle, NULL, 0, t->callback_data);
 132	}
 133}
 134
 135static void start_split_transaction_timeout(struct fw_transaction *t,
 136					    struct fw_card *card)
 137{
 138	guard(spinlock_irqsave)(&card->lock);
 139
 140	if (list_empty(&t->link) || WARN_ON(t->is_split_transaction))
 
 
 
 141		return;
 
 142
 143	t->is_split_transaction = true;
 144	mod_timer(&t->split_timeout_timer,
 145		  jiffies + card->split_timeout_jiffies);
 
 
 146}
 147
 148static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp);
 149
 150static void transmit_complete_callback(struct fw_packet *packet,
 151				       struct fw_card *card, int status)
 152{
 153	struct fw_transaction *t =
 154	    container_of(packet, struct fw_transaction, packet);
 155
 156	trace_async_request_outbound_complete((uintptr_t)t, card->index, packet->generation,
 157					      packet->speed, status, packet->timestamp);
 158
 159	switch (status) {
 160	case ACK_COMPLETE:
 161		close_transaction(t, card, RCODE_COMPLETE, packet->timestamp);
 162		break;
 163	case ACK_PENDING:
 164	{
 165		t->split_timeout_cycle =
 166			compute_split_timeout_timestamp(card, packet->timestamp) & 0xffff;
 167		start_split_transaction_timeout(t, card);
 168		break;
 169	}
 170	case ACK_BUSY_X:
 171	case ACK_BUSY_A:
 172	case ACK_BUSY_B:
 173		close_transaction(t, card, RCODE_BUSY, packet->timestamp);
 174		break;
 175	case ACK_DATA_ERROR:
 176		close_transaction(t, card, RCODE_DATA_ERROR, packet->timestamp);
 177		break;
 178	case ACK_TYPE_ERROR:
 179		close_transaction(t, card, RCODE_TYPE_ERROR, packet->timestamp);
 180		break;
 181	default:
 182		/*
 183		 * In this case the ack is really a juju specific
 184		 * rcode, so just forward that to the callback.
 185		 */
 186		close_transaction(t, card, status, packet->timestamp);
 187		break;
 188	}
 189}
 190
 191static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
 192		int destination_id, int source_id, int generation, int speed,
 193		unsigned long long offset, void *payload, size_t length)
 194{
 195	int ext_tcode;
 196
 197	if (tcode == TCODE_STREAM_DATA) {
 198		// The value of destination_id argument should include tag, channel, and sy fields
 199		// as isochronous packet header has.
 200		packet->header[0] = destination_id;
 201		isoc_header_set_data_length(packet->header, length);
 202		isoc_header_set_tcode(packet->header, TCODE_STREAM_DATA);
 203		packet->header_length = 4;
 204		packet->payload = payload;
 205		packet->payload_length = length;
 206
 207		goto common;
 208	}
 209
 210	if (tcode > 0x10) {
 211		ext_tcode = tcode & ~0x10;
 212		tcode = TCODE_LOCK_REQUEST;
 213	} else
 214		ext_tcode = 0;
 215
 216	async_header_set_retry(packet->header, RETRY_X);
 217	async_header_set_tlabel(packet->header, tlabel);
 218	async_header_set_tcode(packet->header, tcode);
 219	async_header_set_destination(packet->header, destination_id);
 220	async_header_set_source(packet->header, source_id);
 221	async_header_set_offset(packet->header, offset);
 
 
 
 222
 223	switch (tcode) {
 224	case TCODE_WRITE_QUADLET_REQUEST:
 225		async_header_set_quadlet_data(packet->header, *(u32 *)payload);
 226		packet->header_length = 16;
 227		packet->payload_length = 0;
 228		break;
 229
 230	case TCODE_LOCK_REQUEST:
 231	case TCODE_WRITE_BLOCK_REQUEST:
 232		async_header_set_data_length(packet->header, length);
 233		async_header_set_extended_tcode(packet->header, ext_tcode);
 
 234		packet->header_length = 16;
 235		packet->payload = payload;
 236		packet->payload_length = length;
 237		break;
 238
 239	case TCODE_READ_QUADLET_REQUEST:
 240		packet->header_length = 12;
 241		packet->payload_length = 0;
 242		break;
 243
 244	case TCODE_READ_BLOCK_REQUEST:
 245		async_header_set_data_length(packet->header, length);
 246		async_header_set_extended_tcode(packet->header, ext_tcode);
 
 247		packet->header_length = 16;
 248		packet->payload_length = 0;
 249		break;
 250
 251	default:
 252		WARN(1, "wrong tcode %d\n", tcode);
 253	}
 254 common:
 255	packet->speed = speed;
 256	packet->generation = generation;
 257	packet->ack = 0;
 258	packet->payload_mapped = false;
 259}
 260
 261static int allocate_tlabel(struct fw_card *card)
 262{
 263	int tlabel;
 264
 265	tlabel = card->current_tlabel;
 266	while (card->tlabel_mask & (1ULL << tlabel)) {
 267		tlabel = (tlabel + 1) & 0x3f;
 268		if (tlabel == card->current_tlabel)
 269			return -EBUSY;
 270	}
 271
 272	card->current_tlabel = (tlabel + 1) & 0x3f;
 273	card->tlabel_mask |= 1ULL << tlabel;
 274
 275	return tlabel;
 276}
 277
 278/**
 279 * __fw_send_request() - submit a request packet for transmission to generate callback for response
 280 *			 subaction with or without time stamp.
 281 * @card:		interface to send the request at
 282 * @t:			transaction instance to which the request belongs
 283 * @tcode:		transaction code
 284 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
 285 * @generation:		bus generation in which request and response are valid
 286 * @speed:		transmission speed
 287 * @offset:		48bit wide offset into destination's address space
 288 * @payload:		data payload for the request subaction
 289 * @length:		length of the payload, in bytes
 290 * @callback:		union of two functions whether to receive time stamp or not for response
 291 *			subaction.
 292 * @with_tstamp:	Whether to receive time stamp or not for response subaction.
 293 * @callback_data:	data to be passed to the transaction completion callback
 294 *
 295 * Submit a request packet into the asynchronous request transmission queue.
 296 * Can be called from atomic context.  If you prefer a blocking API, use
 297 * fw_run_transaction() in a context that can sleep.
 298 *
 299 * In case of lock requests, specify one of the firewire-core specific %TCODE_
 300 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
 301 *
 302 * Make sure that the value in @destination_id is not older than the one in
 303 * @generation.  Otherwise the request is in danger to be sent to a wrong node.
 304 *
 305 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
 306 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
 307 * It will contain tag, channel, and sy data instead of a node ID then.
 308 *
 309 * The payload buffer at @data is going to be DMA-mapped except in case of
 310 * @length <= 8 or of local (loopback) requests.  Hence make sure that the
 311 * buffer complies with the restrictions of the streaming DMA mapping API.
 312 * @payload must not be freed before the @callback is called.
 313 *
 314 * In case of request types without payload, @data is NULL and @length is 0.
 315 *
 316 * After the transaction is completed successfully or unsuccessfully, the
 317 * @callback will be called.  Among its parameters is the response code which
 318 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
 319 * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
 320 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
 321 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
 322 * generation, or missing ACK respectively.
 323 *
 324 * Note some timing corner cases:  fw_send_request() may complete much earlier
 325 * than when the request packet actually hits the wire.  On the other hand,
 326 * transaction completion and hence execution of @callback may happen even
 327 * before fw_send_request() returns.
 328 */
 329void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
 330		int destination_id, int generation, int speed, unsigned long long offset,
 331		void *payload, size_t length, union fw_transaction_callback callback,
 332		bool with_tstamp, void *callback_data)
 333{
 334	unsigned long flags;
 335	int tlabel;
 336
 337	/*
 338	 * Allocate tlabel from the bitmap and put the transaction on
 339	 * the list while holding the card spinlock.
 340	 */
 341
 342	spin_lock_irqsave(&card->lock, flags);
 343
 344	tlabel = allocate_tlabel(card);
 345	if (tlabel < 0) {
 346		spin_unlock_irqrestore(&card->lock, flags);
 347		if (!with_tstamp) {
 348			callback.without_tstamp(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
 349		} else {
 350			// Timestamping on behalf of hardware.
 351			u32 curr_cycle_time = 0;
 352			u32 tstamp;
 353
 354			(void)fw_card_read_cycle_time(card, &curr_cycle_time);
 355			tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
 356
 357			callback.with_tstamp(card, RCODE_SEND_ERROR, tstamp, tstamp, NULL, 0,
 358					     callback_data);
 359		}
 360		return;
 361	}
 362
 363	t->node_id = destination_id;
 364	t->tlabel = tlabel;
 365	t->card = card;
 366	t->is_split_transaction = false;
 367	timer_setup(&t->split_timeout_timer, split_transaction_timeout_callback, 0);
 
 368	t->callback = callback;
 369	t->with_tstamp = with_tstamp;
 370	t->callback_data = callback_data;
 371
 372	fw_fill_request(&t->packet, tcode, t->tlabel, destination_id, card->node_id, generation,
 
 373			speed, offset, payload, length);
 374	t->packet.callback = transmit_complete_callback;
 375
 376	list_add_tail(&t->link, &card->transaction_list);
 377
 378	spin_unlock_irqrestore(&card->lock, flags);
 379
 380	trace_async_request_outbound_initiate((uintptr_t)t, card->index, generation, speed,
 381					      t->packet.header, payload,
 382					      tcode_is_read_request(tcode) ? 0 : length / 4);
 383
 384	card->driver->send_request(card, &t->packet);
 385}
 386EXPORT_SYMBOL_GPL(__fw_send_request);
 387
 388struct transaction_callback_data {
 389	struct completion done;
 390	void *payload;
 391	int rcode;
 392};
 393
 394static void transaction_callback(struct fw_card *card, int rcode,
 395				 void *payload, size_t length, void *data)
 396{
 397	struct transaction_callback_data *d = data;
 398
 399	if (rcode == RCODE_COMPLETE)
 400		memcpy(d->payload, payload, length);
 401	d->rcode = rcode;
 402	complete(&d->done);
 403}
 404
 405/**
 406 * fw_run_transaction() - send request and sleep until transaction is completed
 407 * @card:		card interface for this request
 408 * @tcode:		transaction code
 409 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
 410 * @generation:		bus generation in which request and response are valid
 411 * @speed:		transmission speed
 412 * @offset:		48bit wide offset into destination's address space
 413 * @payload:		data payload for the request subaction
 414 * @length:		length of the payload, in bytes
 415 *
 416 * Returns the RCODE.  See fw_send_request() for parameter documentation.
 417 * Unlike fw_send_request(), @data points to the payload of the request or/and
 418 * to the payload of the response.  DMA mapping restrictions apply to outbound
 419 * request payloads of >= 8 bytes but not to inbound response payloads.
 420 */
 421int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
 422		       int generation, int speed, unsigned long long offset,
 423		       void *payload, size_t length)
 424{
 425	struct transaction_callback_data d;
 426	struct fw_transaction t;
 427
 428	timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
 429	init_completion(&d.done);
 430	d.payload = payload;
 431	fw_send_request(card, &t, tcode, destination_id, generation, speed,
 432			offset, payload, length, transaction_callback, &d);
 433	wait_for_completion(&d.done);
 434	destroy_timer_on_stack(&t.split_timeout_timer);
 435
 436	return d.rcode;
 437}
 438EXPORT_SYMBOL(fw_run_transaction);
 439
 440static DEFINE_MUTEX(phy_config_mutex);
 441static DECLARE_COMPLETION(phy_config_done);
 442
 443static void transmit_phy_packet_callback(struct fw_packet *packet,
 444					 struct fw_card *card, int status)
 445{
 446	trace_async_phy_outbound_complete((uintptr_t)packet, card->index, packet->generation, status,
 447					  packet->timestamp);
 448	complete(&phy_config_done);
 449}
 450
 451static struct fw_packet phy_config_packet = {
 452	.header_length	= 12,
 
 453	.payload_length	= 0,
 454	.speed		= SCODE_100,
 455	.callback	= transmit_phy_packet_callback,
 456};
 457
 458void fw_send_phy_config(struct fw_card *card,
 459			int node_id, int generation, int gap_count)
 460{
 461	long timeout = DIV_ROUND_UP(HZ, 10);
 462	u32 data = 0;
 463
 464	phy_packet_set_packet_identifier(&data, PHY_PACKET_PACKET_IDENTIFIER_PHY_CONFIG);
 465
 466	if (node_id != FW_PHY_CONFIG_NO_NODE_ID) {
 467		phy_packet_phy_config_set_root_id(&data, node_id);
 468		phy_packet_phy_config_set_force_root_node(&data, true);
 469	}
 470
 471	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
 472		gap_count = card->driver->read_phy_reg(card, 1);
 473		if (gap_count < 0)
 474			return;
 475
 476		gap_count &= 63;
 477		if (gap_count == 63)
 478			return;
 479	}
 480	phy_packet_phy_config_set_gap_count(&data, gap_count);
 481	phy_packet_phy_config_set_gap_count_optimization(&data, true);
 482
 483	guard(mutex)(&phy_config_mutex);
 484
 485	async_header_set_tcode(phy_config_packet.header, TCODE_LINK_INTERNAL);
 486	phy_config_packet.header[1] = data;
 487	phy_config_packet.header[2] = ~data;
 488	phy_config_packet.generation = generation;
 489	reinit_completion(&phy_config_done);
 490
 491	trace_async_phy_outbound_initiate((uintptr_t)&phy_config_packet, card->index,
 492					  phy_config_packet.generation, phy_config_packet.header[1],
 493					  phy_config_packet.header[2]);
 494
 495	card->driver->send_request(card, &phy_config_packet);
 496	wait_for_completion_timeout(&phy_config_done, timeout);
 
 
 497}
 498
 499static struct fw_address_handler *lookup_overlapping_address_handler(
 500	struct list_head *list, unsigned long long offset, size_t length)
 501{
 502	struct fw_address_handler *handler;
 503
 504	list_for_each_entry_rcu(handler, list, link) {
 505		if (handler->offset < offset + length &&
 506		    offset < handler->offset + handler->length)
 507			return handler;
 508	}
 509
 510	return NULL;
 511}
 512
 513static bool is_enclosing_handler(struct fw_address_handler *handler,
 514				 unsigned long long offset, size_t length)
 515{
 516	return handler->offset <= offset &&
 517		offset + length <= handler->offset + handler->length;
 518}
 519
 520static struct fw_address_handler *lookup_enclosing_address_handler(
 521	struct list_head *list, unsigned long long offset, size_t length)
 522{
 523	struct fw_address_handler *handler;
 524
 525	list_for_each_entry_rcu(handler, list, link) {
 526		if (is_enclosing_handler(handler, offset, length))
 527			return handler;
 528	}
 529
 530	return NULL;
 531}
 532
 533static DEFINE_SPINLOCK(address_handler_list_lock);
 534static LIST_HEAD(address_handler_list);
 535
 536const struct fw_address_region fw_high_memory_region =
 537	{ .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
 538EXPORT_SYMBOL(fw_high_memory_region);
 539
 540static const struct fw_address_region low_memory_region =
 541	{ .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
 542
 543#if 0
 544const struct fw_address_region fw_private_region =
 545	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
 546const struct fw_address_region fw_csr_region =
 547	{ .start = CSR_REGISTER_BASE,
 548	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
 549const struct fw_address_region fw_unit_space_region =
 550	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
 551#endif  /*  0  */
 552
 
 
 
 
 
 
 553/**
 554 * fw_core_add_address_handler() - register for incoming requests
 555 * @handler:	callback
 556 * @region:	region in the IEEE 1212 node space address range
 557 *
 558 * region->start, ->end, and handler->length have to be quadlet-aligned.
 559 *
 560 * When a request is received that falls within the specified address range,
 561 * the specified callback is invoked.  The parameters passed to the callback
 562 * give the details of the particular request.
 563 *
 564 * To be called in process context.
 565 * Return value:  0 on success, non-zero otherwise.
 566 *
 567 * The start offset of the handler's address region is determined by
 568 * fw_core_add_address_handler() and is returned in handler->offset.
 569 *
 570 * Address allocations are exclusive, except for the FCP registers.
 571 */
 572int fw_core_add_address_handler(struct fw_address_handler *handler,
 573				const struct fw_address_region *region)
 574{
 575	struct fw_address_handler *other;
 576	int ret = -EBUSY;
 577
 578	if (region->start & 0xffff000000000003ULL ||
 579	    region->start >= region->end ||
 580	    region->end   > 0x0001000000000000ULL ||
 581	    handler->length & 3 ||
 582	    handler->length == 0)
 583		return -EINVAL;
 584
 585	guard(spinlock)(&address_handler_list_lock);
 586
 587	handler->offset = region->start;
 588	while (handler->offset + handler->length <= region->end) {
 589		if (is_in_fcp_region(handler->offset, handler->length))
 590			other = NULL;
 591		else
 592			other = lookup_overlapping_address_handler
 593					(&address_handler_list,
 594					 handler->offset, handler->length);
 595		if (other != NULL) {
 596			handler->offset += other->length;
 597		} else {
 598			list_add_tail_rcu(&handler->link, &address_handler_list);
 599			ret = 0;
 600			break;
 601		}
 602	}
 603
 
 
 604	return ret;
 605}
 606EXPORT_SYMBOL(fw_core_add_address_handler);
 607
 608/**
 609 * fw_core_remove_address_handler() - unregister an address handler
 610 * @handler: callback
 611 *
 612 * To be called in process context.
 613 *
 614 * When fw_core_remove_address_handler() returns, @handler->callback() is
 615 * guaranteed to not run on any CPU anymore.
 616 */
 617void fw_core_remove_address_handler(struct fw_address_handler *handler)
 618{
 619	scoped_guard(spinlock, &address_handler_list_lock)
 620		list_del_rcu(&handler->link);
 621
 622	synchronize_rcu();
 623}
 624EXPORT_SYMBOL(fw_core_remove_address_handler);
 625
 626struct fw_request {
 627	struct kref kref;
 628	struct fw_packet response;
 629	u32 request_header[ASYNC_HEADER_QUADLET_COUNT];
 630	int ack;
 631	u32 timestamp;
 632	u32 length;
 633	u32 data[];
 634};
 635
 636void fw_request_get(struct fw_request *request)
 637{
 638	kref_get(&request->kref);
 639}
 640
 641static void release_request(struct kref *kref)
 642{
 643	struct fw_request *request = container_of(kref, struct fw_request, kref);
 644
 645	kfree(request);
 646}
 647
 648void fw_request_put(struct fw_request *request)
 649{
 650	kref_put(&request->kref, release_request);
 651}
 652
 653static void free_response_callback(struct fw_packet *packet,
 654				   struct fw_card *card, int status)
 655{
 656	struct fw_request *request = container_of(packet, struct fw_request, response);
 657
 658	trace_async_response_outbound_complete((uintptr_t)request, card->index, packet->generation,
 659					       packet->speed, status, packet->timestamp);
 660
 661	// Decrease the reference count since not at in-flight.
 662	fw_request_put(request);
 663
 664	// Decrease the reference count to release the object.
 665	fw_request_put(request);
 666}
 667
 668int fw_get_response_length(struct fw_request *r)
 669{
 670	int tcode, ext_tcode, data_length;
 671
 672	tcode = async_header_get_tcode(r->request_header);
 673
 674	switch (tcode) {
 675	case TCODE_WRITE_QUADLET_REQUEST:
 676	case TCODE_WRITE_BLOCK_REQUEST:
 677		return 0;
 678
 679	case TCODE_READ_QUADLET_REQUEST:
 680		return 4;
 681
 682	case TCODE_READ_BLOCK_REQUEST:
 683		data_length = async_header_get_data_length(r->request_header);
 684		return data_length;
 685
 686	case TCODE_LOCK_REQUEST:
 687		ext_tcode = async_header_get_extended_tcode(r->request_header);
 688		data_length = async_header_get_data_length(r->request_header);
 689		switch (ext_tcode) {
 690		case EXTCODE_FETCH_ADD:
 691		case EXTCODE_LITTLE_ADD:
 692			return data_length;
 693		default:
 694			return data_length / 2;
 695		}
 696
 697	default:
 698		WARN(1, "wrong tcode %d\n", tcode);
 699		return 0;
 700	}
 701}
 702
 703void fw_fill_response(struct fw_packet *response, u32 *request_header,
 704		      int rcode, void *payload, size_t length)
 705{
 706	int tcode, tlabel, extended_tcode, source, destination;
 707
 708	tcode = async_header_get_tcode(request_header);
 709	tlabel = async_header_get_tlabel(request_header);
 710	source = async_header_get_destination(request_header); // Exchange.
 711	destination = async_header_get_source(request_header); // Exchange.
 712	extended_tcode = async_header_get_extended_tcode(request_header);
 713
 714	async_header_set_retry(response->header, RETRY_1);
 715	async_header_set_tlabel(response->header, tlabel);
 716	async_header_set_destination(response->header, destination);
 717	async_header_set_source(response->header, source);
 718	async_header_set_rcode(response->header, rcode);
 719	response->header[2] = 0;	// The field is reserved.
 
 
 720
 721	switch (tcode) {
 722	case TCODE_WRITE_QUADLET_REQUEST:
 723	case TCODE_WRITE_BLOCK_REQUEST:
 724		async_header_set_tcode(response->header, TCODE_WRITE_RESPONSE);
 725		response->header_length = 12;
 726		response->payload_length = 0;
 727		break;
 728
 729	case TCODE_READ_QUADLET_REQUEST:
 730		async_header_set_tcode(response->header, TCODE_READ_QUADLET_RESPONSE);
 
 731		if (payload != NULL)
 732			async_header_set_quadlet_data(response->header, *(u32 *)payload);
 733		else
 734			async_header_set_quadlet_data(response->header, 0);
 735		response->header_length = 16;
 736		response->payload_length = 0;
 737		break;
 738
 739	case TCODE_READ_BLOCK_REQUEST:
 740	case TCODE_LOCK_REQUEST:
 741		async_header_set_tcode(response->header, tcode + 2);
 742		async_header_set_data_length(response->header, length);
 743		async_header_set_extended_tcode(response->header, extended_tcode);
 
 744		response->header_length = 16;
 745		response->payload = payload;
 746		response->payload_length = length;
 747		break;
 748
 749	default:
 750		WARN(1, "wrong tcode %d\n", tcode);
 751	}
 752
 753	response->payload_mapped = false;
 754}
 755EXPORT_SYMBOL(fw_fill_response);
 756
 757static u32 compute_split_timeout_timestamp(struct fw_card *card,
 758					   u32 request_timestamp)
 759{
 760	unsigned int cycles;
 761	u32 timestamp;
 762
 763	cycles = card->split_timeout_cycles;
 764	cycles += request_timestamp & 0x1fff;
 765
 766	timestamp = request_timestamp & ~0x1fff;
 767	timestamp += (cycles / 8000) << 13;
 768	timestamp |= cycles % 8000;
 769
 770	return timestamp;
 771}
 772
 773static struct fw_request *allocate_request(struct fw_card *card,
 774					   struct fw_packet *p)
 775{
 776	struct fw_request *request;
 777	u32 *data, length;
 778	int request_tcode;
 779
 780	request_tcode = async_header_get_tcode(p->header);
 781	switch (request_tcode) {
 782	case TCODE_WRITE_QUADLET_REQUEST:
 783		data = &p->header[3];
 784		length = 4;
 785		break;
 786
 787	case TCODE_WRITE_BLOCK_REQUEST:
 788	case TCODE_LOCK_REQUEST:
 789		data = p->payload;
 790		length = async_header_get_data_length(p->header);
 791		break;
 792
 793	case TCODE_READ_QUADLET_REQUEST:
 794		data = NULL;
 795		length = 4;
 796		break;
 797
 798	case TCODE_READ_BLOCK_REQUEST:
 799		data = NULL;
 800		length = async_header_get_data_length(p->header);
 801		break;
 802
 803	default:
 804		fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
 805			 p->header[0], p->header[1], p->header[2]);
 806		return NULL;
 807	}
 808
 809	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
 810	if (request == NULL)
 811		return NULL;
 812	kref_init(&request->kref);
 813
 814	request->response.speed = p->speed;
 815	request->response.timestamp =
 816			compute_split_timeout_timestamp(card, p->timestamp);
 817	request->response.generation = p->generation;
 818	request->response.ack = 0;
 819	request->response.callback = free_response_callback;
 820	request->ack = p->ack;
 821	request->timestamp = p->timestamp;
 822	request->length = length;
 823	if (data)
 824		memcpy(request->data, data, length);
 825
 826	memcpy(request->request_header, p->header, sizeof(p->header));
 827
 828	return request;
 829}
 830
 831/**
 832 * fw_send_response: - send response packet for asynchronous transaction.
 833 * @card:	interface to send the response at.
 834 * @request:	firewire request data for the transaction.
 835 * @rcode:	response code to send.
 836 *
 837 * Submit a response packet into the asynchronous response transmission queue. The @request
 838 * is going to be released when the transmission successfully finishes later.
 839 */
 840void fw_send_response(struct fw_card *card,
 841		      struct fw_request *request, int rcode)
 842{
 843	u32 *data = NULL;
 844	unsigned int data_length = 0;
 845
 846	/* unified transaction or broadcast transaction: don't respond */
 847	if (request->ack != ACK_PENDING ||
 848	    HEADER_DESTINATION_IS_BROADCAST(request->request_header)) {
 849		fw_request_put(request);
 850		return;
 851	}
 852
 853	if (rcode == RCODE_COMPLETE) {
 854		data = request->data;
 855		data_length = fw_get_response_length(request);
 856	}
 857
 858	fw_fill_response(&request->response, request->request_header, rcode, data, data_length);
 859
 860	// Increase the reference count so that the object is kept during in-flight.
 861	fw_request_get(request);
 862
 863	trace_async_response_outbound_initiate((uintptr_t)request, card->index,
 864					       request->response.generation, request->response.speed,
 865					       request->response.header, data,
 866					       data ? data_length / 4 : 0);
 867
 868	card->driver->send_response(card, &request->response);
 869}
 870EXPORT_SYMBOL(fw_send_response);
 871
 872/**
 873 * fw_get_request_speed() - returns speed at which the @request was received
 874 * @request: firewire request data
 875 */
 876int fw_get_request_speed(struct fw_request *request)
 877{
 878	return request->response.speed;
 879}
 880EXPORT_SYMBOL(fw_get_request_speed);
 881
 882/**
 883 * fw_request_get_timestamp: Get timestamp of the request.
 884 * @request: The opaque pointer to request structure.
 885 *
 886 * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The
 887 * timestamp consists of the low order 3 bits of second field and the full 13 bits of count
 888 * field of isochronous cycle time register.
 889 *
 890 * Returns: timestamp of the request.
 891 */
 892u32 fw_request_get_timestamp(const struct fw_request *request)
 893{
 894	return request->timestamp;
 895}
 896EXPORT_SYMBOL_GPL(fw_request_get_timestamp);
 897
 898static void handle_exclusive_region_request(struct fw_card *card,
 899					    struct fw_packet *p,
 900					    struct fw_request *request,
 901					    unsigned long long offset)
 902{
 903	struct fw_address_handler *handler;
 904	int tcode, destination, source;
 905
 906	destination = async_header_get_destination(p->header);
 907	source = async_header_get_source(p->header);
 908	tcode = async_header_get_tcode(p->header);
 909	if (tcode == TCODE_LOCK_REQUEST)
 910		tcode = 0x10 + async_header_get_extended_tcode(p->header);
 911
 912	scoped_guard(rcu) {
 913		handler = lookup_enclosing_address_handler(&address_handler_list, offset,
 914							   request->length);
 915		if (handler)
 916			handler->address_callback(card, request, tcode, destination, source,
 917						  p->generation, offset, request->data,
 918						  request->length, handler->callback_data);
 919	}
 
 
 920
 921	if (!handler)
 922		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
 923}
 924
 925static void handle_fcp_region_request(struct fw_card *card,
 926				      struct fw_packet *p,
 927				      struct fw_request *request,
 928				      unsigned long long offset)
 929{
 930	struct fw_address_handler *handler;
 931	int tcode, destination, source;
 932
 933	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
 934	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
 935	    request->length > 0x200) {
 936		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
 937
 938		return;
 939	}
 940
 941	tcode = async_header_get_tcode(p->header);
 942	destination = async_header_get_destination(p->header);
 943	source = async_header_get_source(p->header);
 944
 945	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
 946	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
 947		fw_send_response(card, request, RCODE_TYPE_ERROR);
 948
 949		return;
 950	}
 951
 952	scoped_guard(rcu) {
 953		list_for_each_entry_rcu(handler, &address_handler_list, link) {
 954			if (is_enclosing_handler(handler, offset, request->length))
 955				handler->address_callback(card, request, tcode, destination, source,
 956							  p->generation, offset, request->data,
 957							  request->length, handler->callback_data);
 958		}
 
 
 959	}
 
 960
 961	fw_send_response(card, request, RCODE_COMPLETE);
 962}
 963
 964void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
 965{
 966	struct fw_request *request;
 967	unsigned long long offset;
 968	unsigned int tcode;
 969
 970	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
 971		return;
 972
 973	tcode = async_header_get_tcode(p->header);
 974	if (tcode_is_link_internal(tcode)) {
 975		trace_async_phy_inbound((uintptr_t)p, card->index, p->generation, p->ack, p->timestamp,
 976					 p->header[1], p->header[2]);
 977		fw_cdev_handle_phy_packet(card, p);
 978		return;
 979	}
 980
 981	request = allocate_request(card, p);
 982	if (request == NULL) {
 983		/* FIXME: send statically allocated busy packet. */
 984		return;
 985	}
 986
 987	trace_async_request_inbound((uintptr_t)request, card->index, p->generation, p->speed,
 988				    p->ack, p->timestamp, p->header, request->data,
 989				    tcode_is_read_request(tcode) ? 0 : request->length / 4);
 990
 991	offset = async_header_get_offset(p->header);
 992
 993	if (!is_in_fcp_region(offset, request->length))
 994		handle_exclusive_region_request(card, p, request, offset);
 995	else
 996		handle_fcp_region_request(card, p, request, offset);
 997
 998}
 999EXPORT_SYMBOL(fw_core_handle_request);
1000
1001void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
1002{
1003	struct fw_transaction *t = NULL, *iter;
 
1004	u32 *data;
1005	size_t data_length;
1006	int tcode, tlabel, source, rcode;
1007
1008	tcode = async_header_get_tcode(p->header);
1009	tlabel = async_header_get_tlabel(p->header);
1010	source = async_header_get_source(p->header);
1011	rcode = async_header_get_rcode(p->header);
1012
1013	// FIXME: sanity check packet, is length correct, does tcodes
1014	// and addresses match to the transaction request queried later.
1015	//
1016	// For the tracepoints event, let us decode the header here against the concern.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1017
1018	switch (tcode) {
1019	case TCODE_READ_QUADLET_RESPONSE:
1020		data = (u32 *) &p->header[3];
1021		data_length = 4;
1022		break;
1023
1024	case TCODE_WRITE_RESPONSE:
1025		data = NULL;
1026		data_length = 0;
1027		break;
1028
1029	case TCODE_READ_BLOCK_RESPONSE:
1030	case TCODE_LOCK_RESPONSE:
1031		data = p->payload;
1032		data_length = async_header_get_data_length(p->header);
1033		break;
1034
1035	default:
1036		/* Should never happen, this is just to shut up gcc. */
1037		data = NULL;
1038		data_length = 0;
1039		break;
1040	}
1041
1042	scoped_guard(spinlock_irqsave, &card->lock) {
1043		list_for_each_entry(iter, &card->transaction_list, link) {
1044			if (iter->node_id == source && iter->tlabel == tlabel) {
1045				if (try_cancel_split_timeout(iter)) {
1046					list_del_init(&iter->link);
1047					card->tlabel_mask &= ~(1ULL << iter->tlabel);
1048					t = iter;
1049				}
1050				break;
1051			}
1052		}
1053	}
1054
1055	trace_async_response_inbound((uintptr_t)t, card->index, p->generation, p->speed, p->ack,
1056				     p->timestamp, p->header, data, data_length / 4);
1057
1058	if (!t) {
1059		fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
1060			  source, tlabel);
1061		return;
1062	}
1063
1064	/*
1065	 * The response handler may be executed while the request handler
1066	 * is still pending.  Cancel the request handler.
1067	 */
1068	card->driver->cancel_packet(card, &t->packet);
1069
1070	if (!t->with_tstamp) {
1071		t->callback.without_tstamp(card, rcode, data, data_length, t->callback_data);
1072	} else {
1073		t->callback.with_tstamp(card, rcode, t->packet.timestamp, p->timestamp, data,
1074					data_length, t->callback_data);
1075	}
1076}
1077EXPORT_SYMBOL(fw_core_handle_response);
1078
1079/**
1080 * fw_rcode_string - convert a firewire result code to an error description
1081 * @rcode: the result code
1082 */
1083const char *fw_rcode_string(int rcode)
1084{
1085	static const char *const names[] = {
1086		[RCODE_COMPLETE]       = "no error",
1087		[RCODE_CONFLICT_ERROR] = "conflict error",
1088		[RCODE_DATA_ERROR]     = "data error",
1089		[RCODE_TYPE_ERROR]     = "type error",
1090		[RCODE_ADDRESS_ERROR]  = "address error",
1091		[RCODE_SEND_ERROR]     = "send error",
1092		[RCODE_CANCELLED]      = "timeout",
1093		[RCODE_BUSY]           = "busy",
1094		[RCODE_GENERATION]     = "bus reset",
1095		[RCODE_NO_ACK]         = "no ack",
1096	};
1097
1098	if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1099		return names[rcode];
1100	else
1101		return "unknown";
1102}
1103EXPORT_SYMBOL(fw_rcode_string);
1104
1105static const struct fw_address_region topology_map_region =
1106	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1107	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1108
1109static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1110		int tcode, int destination, int source, int generation,
1111		unsigned long long offset, void *payload, size_t length,
1112		void *callback_data)
1113{
1114	int start;
1115
1116	if (!tcode_is_read_request(tcode)) {
1117		fw_send_response(card, request, RCODE_TYPE_ERROR);
1118		return;
1119	}
1120
1121	if ((offset & 3) > 0 || (length & 3) > 0) {
1122		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1123		return;
1124	}
1125
1126	start = (offset - topology_map_region.start) / 4;
1127	memcpy(payload, &card->topology_map[start], length);
1128
1129	fw_send_response(card, request, RCODE_COMPLETE);
1130}
1131
1132static struct fw_address_handler topology_map = {
1133	.length			= 0x400,
1134	.address_callback	= handle_topology_map,
1135};
1136
1137static const struct fw_address_region registers_region =
1138	{ .start = CSR_REGISTER_BASE,
1139	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1140
1141static void update_split_timeout(struct fw_card *card)
1142{
1143	unsigned int cycles;
1144
1145	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1146
1147	/* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1148	cycles = clamp(cycles, 800u, 3u * 8000u);
1149
1150	card->split_timeout_cycles = cycles;
1151	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1152}
1153
1154static void handle_registers(struct fw_card *card, struct fw_request *request,
1155		int tcode, int destination, int source, int generation,
1156		unsigned long long offset, void *payload, size_t length,
1157		void *callback_data)
1158{
1159	int reg = offset & ~CSR_REGISTER_BASE;
1160	__be32 *data = payload;
1161	int rcode = RCODE_COMPLETE;
 
1162
1163	switch (reg) {
1164	case CSR_PRIORITY_BUDGET:
1165		if (!card->priority_budget_implemented) {
1166			rcode = RCODE_ADDRESS_ERROR;
1167			break;
1168		}
1169		fallthrough;
1170
1171	case CSR_NODE_IDS:
1172		/*
1173		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1174		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1175		 */
1176		fallthrough;
1177
1178	case CSR_STATE_CLEAR:
1179	case CSR_STATE_SET:
1180	case CSR_CYCLE_TIME:
1181	case CSR_BUS_TIME:
1182	case CSR_BUSY_TIMEOUT:
1183		if (tcode == TCODE_READ_QUADLET_REQUEST)
1184			*data = cpu_to_be32(card->driver->read_csr(card, reg));
1185		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1186			card->driver->write_csr(card, reg, be32_to_cpu(*data));
1187		else
1188			rcode = RCODE_TYPE_ERROR;
1189		break;
1190
1191	case CSR_RESET_START:
1192		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1193			card->driver->write_csr(card, CSR_STATE_CLEAR,
1194						CSR_STATE_BIT_ABDICATE);
1195		else
1196			rcode = RCODE_TYPE_ERROR;
1197		break;
1198
1199	case CSR_SPLIT_TIMEOUT_HI:
1200		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1201			*data = cpu_to_be32(card->split_timeout_hi);
1202		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1203			guard(spinlock_irqsave)(&card->lock);
1204
1205			card->split_timeout_hi = be32_to_cpu(*data) & 7;
1206			update_split_timeout(card);
 
1207		} else {
1208			rcode = RCODE_TYPE_ERROR;
1209		}
1210		break;
1211
1212	case CSR_SPLIT_TIMEOUT_LO:
1213		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1214			*data = cpu_to_be32(card->split_timeout_lo);
1215		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1216			guard(spinlock_irqsave)(&card->lock);
1217
1218			card->split_timeout_lo = be32_to_cpu(*data) & 0xfff80000;
1219			update_split_timeout(card);
 
1220		} else {
1221			rcode = RCODE_TYPE_ERROR;
1222		}
1223		break;
1224
1225	case CSR_MAINT_UTILITY:
1226		if (tcode == TCODE_READ_QUADLET_REQUEST)
1227			*data = card->maint_utility_register;
1228		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1229			card->maint_utility_register = *data;
1230		else
1231			rcode = RCODE_TYPE_ERROR;
1232		break;
1233
1234	case CSR_BROADCAST_CHANNEL:
1235		if (tcode == TCODE_READ_QUADLET_REQUEST)
1236			*data = cpu_to_be32(card->broadcast_channel);
1237		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1238			card->broadcast_channel =
1239			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1240			    BROADCAST_CHANNEL_INITIAL;
1241		else
1242			rcode = RCODE_TYPE_ERROR;
1243		break;
1244
1245	case CSR_BUS_MANAGER_ID:
1246	case CSR_BANDWIDTH_AVAILABLE:
1247	case CSR_CHANNELS_AVAILABLE_HI:
1248	case CSR_CHANNELS_AVAILABLE_LO:
1249		/*
1250		 * FIXME: these are handled by the OHCI hardware and
1251		 * the stack never sees these request. If we add
1252		 * support for a new type of controller that doesn't
1253		 * handle this in hardware we need to deal with these
1254		 * transactions.
1255		 */
1256		BUG();
1257		break;
1258
1259	default:
1260		rcode = RCODE_ADDRESS_ERROR;
1261		break;
1262	}
1263
1264	fw_send_response(card, request, rcode);
1265}
1266
1267static struct fw_address_handler registers = {
1268	.length			= 0x400,
1269	.address_callback	= handle_registers,
1270};
1271
1272static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1273		int tcode, int destination, int source, int generation,
1274		unsigned long long offset, void *payload, size_t length,
1275		void *callback_data)
1276{
1277	/*
1278	 * This catches requests not handled by the physical DMA unit,
1279	 * i.e., wrong transaction types or unauthorized source nodes.
1280	 */
1281	fw_send_response(card, request, RCODE_TYPE_ERROR);
1282}
1283
1284static struct fw_address_handler low_memory = {
1285	.length			= FW_MAX_PHYSICAL_RANGE,
1286	.address_callback	= handle_low_memory,
1287};
1288
1289MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1290MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1291MODULE_LICENSE("GPL");
1292
1293static const u32 vendor_textual_descriptor[] = {
1294	/* textual descriptor leaf () */
1295	0x00060000,
1296	0x00000000,
1297	0x00000000,
1298	0x4c696e75,		/* L i n u */
1299	0x78204669,		/* x   F i */
1300	0x72657769,		/* r e w i */
1301	0x72650000,		/* r e     */
1302};
1303
1304static const u32 model_textual_descriptor[] = {
1305	/* model descriptor leaf () */
1306	0x00030000,
1307	0x00000000,
1308	0x00000000,
1309	0x4a756a75,		/* J u j u */
1310};
1311
1312static struct fw_descriptor vendor_id_descriptor = {
1313	.length = ARRAY_SIZE(vendor_textual_descriptor),
1314	.immediate = 0x03001f11,
1315	.key = 0x81000000,
1316	.data = vendor_textual_descriptor,
1317};
1318
1319static struct fw_descriptor model_id_descriptor = {
1320	.length = ARRAY_SIZE(model_textual_descriptor),
1321	.immediate = 0x17023901,
1322	.key = 0x81000000,
1323	.data = model_textual_descriptor,
1324};
1325
1326static int __init fw_core_init(void)
1327{
1328	int ret;
1329
1330	fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1331	if (!fw_workqueue)
1332		return -ENOMEM;
1333
1334	ret = bus_register(&fw_bus_type);
1335	if (ret < 0) {
1336		destroy_workqueue(fw_workqueue);
1337		return ret;
1338	}
1339
1340	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1341	if (fw_cdev_major < 0) {
1342		bus_unregister(&fw_bus_type);
1343		destroy_workqueue(fw_workqueue);
1344		return fw_cdev_major;
1345	}
1346
1347	fw_core_add_address_handler(&topology_map, &topology_map_region);
1348	fw_core_add_address_handler(&registers, &registers_region);
1349	fw_core_add_address_handler(&low_memory, &low_memory_region);
1350	fw_core_add_descriptor(&vendor_id_descriptor);
1351	fw_core_add_descriptor(&model_id_descriptor);
1352
1353	return 0;
1354}
1355
1356static void __exit fw_core_cleanup(void)
1357{
1358	unregister_chrdev(fw_cdev_major, "firewire");
1359	bus_unregister(&fw_bus_type);
1360	destroy_workqueue(fw_workqueue);
1361	xa_destroy(&fw_device_xa);
1362}
1363
1364module_init(fw_core_init);
1365module_exit(fw_core_cleanup);